2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
54 #include "core_priv.h"
56 static int ib_resolve_eth_dmac(struct ib_device
*device
,
57 struct rdma_ah_attr
*ah_attr
);
59 static const char * const ib_events
[] = {
60 [IB_EVENT_CQ_ERR
] = "CQ error",
61 [IB_EVENT_QP_FATAL
] = "QP fatal error",
62 [IB_EVENT_QP_REQ_ERR
] = "QP request error",
63 [IB_EVENT_QP_ACCESS_ERR
] = "QP access error",
64 [IB_EVENT_COMM_EST
] = "communication established",
65 [IB_EVENT_SQ_DRAINED
] = "send queue drained",
66 [IB_EVENT_PATH_MIG
] = "path migration successful",
67 [IB_EVENT_PATH_MIG_ERR
] = "path migration error",
68 [IB_EVENT_DEVICE_FATAL
] = "device fatal error",
69 [IB_EVENT_PORT_ACTIVE
] = "port active",
70 [IB_EVENT_PORT_ERR
] = "port error",
71 [IB_EVENT_LID_CHANGE
] = "LID change",
72 [IB_EVENT_PKEY_CHANGE
] = "P_key change",
73 [IB_EVENT_SM_CHANGE
] = "SM change",
74 [IB_EVENT_SRQ_ERR
] = "SRQ error",
75 [IB_EVENT_SRQ_LIMIT_REACHED
] = "SRQ limit reached",
76 [IB_EVENT_QP_LAST_WQE_REACHED
] = "last WQE reached",
77 [IB_EVENT_CLIENT_REREGISTER
] = "client reregister",
78 [IB_EVENT_GID_CHANGE
] = "GID changed",
81 const char *__attribute_const__
ib_event_msg(enum ib_event_type event
)
85 return (index
< ARRAY_SIZE(ib_events
) && ib_events
[index
]) ?
86 ib_events
[index
] : "unrecognized event";
88 EXPORT_SYMBOL(ib_event_msg
);
90 static const char * const wc_statuses
[] = {
91 [IB_WC_SUCCESS
] = "success",
92 [IB_WC_LOC_LEN_ERR
] = "local length error",
93 [IB_WC_LOC_QP_OP_ERR
] = "local QP operation error",
94 [IB_WC_LOC_EEC_OP_ERR
] = "local EE context operation error",
95 [IB_WC_LOC_PROT_ERR
] = "local protection error",
96 [IB_WC_WR_FLUSH_ERR
] = "WR flushed",
97 [IB_WC_MW_BIND_ERR
] = "memory management operation error",
98 [IB_WC_BAD_RESP_ERR
] = "bad response error",
99 [IB_WC_LOC_ACCESS_ERR
] = "local access error",
100 [IB_WC_REM_INV_REQ_ERR
] = "invalid request error",
101 [IB_WC_REM_ACCESS_ERR
] = "remote access error",
102 [IB_WC_REM_OP_ERR
] = "remote operation error",
103 [IB_WC_RETRY_EXC_ERR
] = "transport retry counter exceeded",
104 [IB_WC_RNR_RETRY_EXC_ERR
] = "RNR retry counter exceeded",
105 [IB_WC_LOC_RDD_VIOL_ERR
] = "local RDD violation error",
106 [IB_WC_REM_INV_RD_REQ_ERR
] = "remote invalid RD request",
107 [IB_WC_REM_ABORT_ERR
] = "operation aborted",
108 [IB_WC_INV_EECN_ERR
] = "invalid EE context number",
109 [IB_WC_INV_EEC_STATE_ERR
] = "invalid EE context state",
110 [IB_WC_FATAL_ERR
] = "fatal error",
111 [IB_WC_RESP_TIMEOUT_ERR
] = "response timeout error",
112 [IB_WC_GENERAL_ERR
] = "general error",
115 const char *__attribute_const__
ib_wc_status_msg(enum ib_wc_status status
)
117 size_t index
= status
;
119 return (index
< ARRAY_SIZE(wc_statuses
) && wc_statuses
[index
]) ?
120 wc_statuses
[index
] : "unrecognized status";
122 EXPORT_SYMBOL(ib_wc_status_msg
);
124 __attribute_const__
int ib_rate_to_mult(enum ib_rate rate
)
127 case IB_RATE_2_5_GBPS
: return 1;
128 case IB_RATE_5_GBPS
: return 2;
129 case IB_RATE_10_GBPS
: return 4;
130 case IB_RATE_20_GBPS
: return 8;
131 case IB_RATE_30_GBPS
: return 12;
132 case IB_RATE_40_GBPS
: return 16;
133 case IB_RATE_60_GBPS
: return 24;
134 case IB_RATE_80_GBPS
: return 32;
135 case IB_RATE_120_GBPS
: return 48;
136 case IB_RATE_14_GBPS
: return 6;
137 case IB_RATE_56_GBPS
: return 22;
138 case IB_RATE_112_GBPS
: return 45;
139 case IB_RATE_168_GBPS
: return 67;
140 case IB_RATE_25_GBPS
: return 10;
141 case IB_RATE_100_GBPS
: return 40;
142 case IB_RATE_200_GBPS
: return 80;
143 case IB_RATE_300_GBPS
: return 120;
147 EXPORT_SYMBOL(ib_rate_to_mult
);
149 __attribute_const__
enum ib_rate
mult_to_ib_rate(int mult
)
152 case 1: return IB_RATE_2_5_GBPS
;
153 case 2: return IB_RATE_5_GBPS
;
154 case 4: return IB_RATE_10_GBPS
;
155 case 8: return IB_RATE_20_GBPS
;
156 case 12: return IB_RATE_30_GBPS
;
157 case 16: return IB_RATE_40_GBPS
;
158 case 24: return IB_RATE_60_GBPS
;
159 case 32: return IB_RATE_80_GBPS
;
160 case 48: return IB_RATE_120_GBPS
;
161 case 6: return IB_RATE_14_GBPS
;
162 case 22: return IB_RATE_56_GBPS
;
163 case 45: return IB_RATE_112_GBPS
;
164 case 67: return IB_RATE_168_GBPS
;
165 case 10: return IB_RATE_25_GBPS
;
166 case 40: return IB_RATE_100_GBPS
;
167 case 80: return IB_RATE_200_GBPS
;
168 case 120: return IB_RATE_300_GBPS
;
169 default: return IB_RATE_PORT_CURRENT
;
172 EXPORT_SYMBOL(mult_to_ib_rate
);
174 __attribute_const__
int ib_rate_to_mbps(enum ib_rate rate
)
177 case IB_RATE_2_5_GBPS
: return 2500;
178 case IB_RATE_5_GBPS
: return 5000;
179 case IB_RATE_10_GBPS
: return 10000;
180 case IB_RATE_20_GBPS
: return 20000;
181 case IB_RATE_30_GBPS
: return 30000;
182 case IB_RATE_40_GBPS
: return 40000;
183 case IB_RATE_60_GBPS
: return 60000;
184 case IB_RATE_80_GBPS
: return 80000;
185 case IB_RATE_120_GBPS
: return 120000;
186 case IB_RATE_14_GBPS
: return 14062;
187 case IB_RATE_56_GBPS
: return 56250;
188 case IB_RATE_112_GBPS
: return 112500;
189 case IB_RATE_168_GBPS
: return 168750;
190 case IB_RATE_25_GBPS
: return 25781;
191 case IB_RATE_100_GBPS
: return 103125;
192 case IB_RATE_200_GBPS
: return 206250;
193 case IB_RATE_300_GBPS
: return 309375;
197 EXPORT_SYMBOL(ib_rate_to_mbps
);
199 __attribute_const__
enum rdma_transport_type
200 rdma_node_get_transport(enum rdma_node_type node_type
)
203 if (node_type
== RDMA_NODE_USNIC
)
204 return RDMA_TRANSPORT_USNIC
;
205 if (node_type
== RDMA_NODE_USNIC_UDP
)
206 return RDMA_TRANSPORT_USNIC_UDP
;
207 if (node_type
== RDMA_NODE_RNIC
)
208 return RDMA_TRANSPORT_IWARP
;
210 return RDMA_TRANSPORT_IB
;
212 EXPORT_SYMBOL(rdma_node_get_transport
);
214 enum rdma_link_layer
rdma_port_get_link_layer(struct ib_device
*device
, u8 port_num
)
216 enum rdma_transport_type lt
;
217 if (device
->get_link_layer
)
218 return device
->get_link_layer(device
, port_num
);
220 lt
= rdma_node_get_transport(device
->node_type
);
221 if (lt
== RDMA_TRANSPORT_IB
)
222 return IB_LINK_LAYER_INFINIBAND
;
224 return IB_LINK_LAYER_ETHERNET
;
226 EXPORT_SYMBOL(rdma_port_get_link_layer
);
228 /* Protection domains */
231 * ib_alloc_pd - Allocates an unused protection domain.
232 * @device: The device on which to allocate the protection domain.
234 * A protection domain object provides an association between QPs, shared
235 * receive queues, address handles, memory regions, and memory windows.
237 * Every PD has a local_dma_lkey which can be used as the lkey value for local
240 struct ib_pd
*__ib_alloc_pd(struct ib_device
*device
, unsigned int flags
,
244 int mr_access_flags
= 0;
246 pd
= device
->alloc_pd(device
, NULL
, NULL
);
252 pd
->__internal_mr
= NULL
;
253 atomic_set(&pd
->usecnt
, 0);
256 if (device
->attrs
.device_cap_flags
& IB_DEVICE_LOCAL_DMA_LKEY
)
257 pd
->local_dma_lkey
= device
->local_dma_lkey
;
259 mr_access_flags
|= IB_ACCESS_LOCAL_WRITE
;
261 if (flags
& IB_PD_UNSAFE_GLOBAL_RKEY
) {
262 pr_warn("%s: enabling unsafe global rkey\n", caller
);
263 mr_access_flags
|= IB_ACCESS_REMOTE_READ
| IB_ACCESS_REMOTE_WRITE
;
266 pd
->res
.type
= RDMA_RESTRACK_PD
;
267 pd
->res
.kern_name
= caller
;
268 rdma_restrack_add(&pd
->res
);
270 if (mr_access_flags
) {
273 mr
= pd
->device
->get_dma_mr(pd
, mr_access_flags
);
279 mr
->device
= pd
->device
;
282 mr
->need_inval
= false;
284 pd
->__internal_mr
= mr
;
286 if (!(device
->attrs
.device_cap_flags
& IB_DEVICE_LOCAL_DMA_LKEY
))
287 pd
->local_dma_lkey
= pd
->__internal_mr
->lkey
;
289 if (flags
& IB_PD_UNSAFE_GLOBAL_RKEY
)
290 pd
->unsafe_global_rkey
= pd
->__internal_mr
->rkey
;
295 EXPORT_SYMBOL(__ib_alloc_pd
);
298 * ib_dealloc_pd - Deallocates a protection domain.
299 * @pd: The protection domain to deallocate.
301 * It is an error to call this function while any resources in the pd still
302 * exist. The caller is responsible to synchronously destroy them and
303 * guarantee no new allocations will happen.
305 void ib_dealloc_pd(struct ib_pd
*pd
)
309 if (pd
->__internal_mr
) {
310 ret
= pd
->device
->dereg_mr(pd
->__internal_mr
);
312 pd
->__internal_mr
= NULL
;
315 /* uverbs manipulates usecnt with proper locking, while the kabi
316 requires the caller to guarantee we can't race here. */
317 WARN_ON(atomic_read(&pd
->usecnt
));
319 rdma_restrack_del(&pd
->res
);
320 /* Making delalloc_pd a void return is a WIP, no driver should return
322 ret
= pd
->device
->dealloc_pd(pd
);
323 WARN_ONCE(ret
, "Infiniband HW driver failed dealloc_pd");
325 EXPORT_SYMBOL(ib_dealloc_pd
);
327 /* Address handles */
329 static struct ib_ah
*_rdma_create_ah(struct ib_pd
*pd
,
330 struct rdma_ah_attr
*ah_attr
,
331 struct ib_udata
*udata
)
335 ah
= pd
->device
->create_ah(pd
, ah_attr
, udata
);
338 ah
->device
= pd
->device
;
341 ah
->type
= ah_attr
->type
;
342 atomic_inc(&pd
->usecnt
);
348 struct ib_ah
*rdma_create_ah(struct ib_pd
*pd
, struct rdma_ah_attr
*ah_attr
)
350 return _rdma_create_ah(pd
, ah_attr
, NULL
);
352 EXPORT_SYMBOL(rdma_create_ah
);
355 * rdma_create_user_ah - Creates an address handle for the
356 * given address vector.
357 * It resolves destination mac address for ah attribute of RoCE type.
358 * @pd: The protection domain associated with the address handle.
359 * @ah_attr: The attributes of the address vector.
360 * @udata: pointer to user's input output buffer information need by
363 * It returns 0 on success and returns appropriate error code on error.
364 * The address handle is used to reference a local or global destination
365 * in all UD QP post sends.
367 struct ib_ah
*rdma_create_user_ah(struct ib_pd
*pd
,
368 struct rdma_ah_attr
*ah_attr
,
369 struct ib_udata
*udata
)
373 if (ah_attr
->type
== RDMA_AH_ATTR_TYPE_ROCE
) {
374 err
= ib_resolve_eth_dmac(pd
->device
, ah_attr
);
379 return _rdma_create_ah(pd
, ah_attr
, udata
);
381 EXPORT_SYMBOL(rdma_create_user_ah
);
383 int ib_get_rdma_header_version(const union rdma_network_hdr
*hdr
)
385 const struct iphdr
*ip4h
= (struct iphdr
*)&hdr
->roce4grh
;
386 struct iphdr ip4h_checked
;
387 const struct ipv6hdr
*ip6h
= (struct ipv6hdr
*)&hdr
->ibgrh
;
389 /* If it's IPv6, the version must be 6, otherwise, the first
390 * 20 bytes (before the IPv4 header) are garbled.
392 if (ip6h
->version
!= 6)
393 return (ip4h
->version
== 4) ? 4 : 0;
394 /* version may be 6 or 4 because the first 20 bytes could be garbled */
396 /* RoCE v2 requires no options, thus header length
403 * We can't write on scattered buffers so we need to copy to
406 memcpy(&ip4h_checked
, ip4h
, sizeof(ip4h_checked
));
407 ip4h_checked
.check
= 0;
408 ip4h_checked
.check
= ip_fast_csum((u8
*)&ip4h_checked
, 5);
409 /* if IPv4 header checksum is OK, believe it */
410 if (ip4h
->check
== ip4h_checked
.check
)
414 EXPORT_SYMBOL(ib_get_rdma_header_version
);
416 static enum rdma_network_type
ib_get_net_type_by_grh(struct ib_device
*device
,
418 const struct ib_grh
*grh
)
422 if (rdma_protocol_ib(device
, port_num
))
423 return RDMA_NETWORK_IB
;
425 grh_version
= ib_get_rdma_header_version((union rdma_network_hdr
*)grh
);
427 if (grh_version
== 4)
428 return RDMA_NETWORK_IPV4
;
430 if (grh
->next_hdr
== IPPROTO_UDP
)
431 return RDMA_NETWORK_IPV6
;
433 return RDMA_NETWORK_ROCE_V1
;
436 struct find_gid_index_context
{
438 enum ib_gid_type gid_type
;
441 static bool find_gid_index(const union ib_gid
*gid
,
442 const struct ib_gid_attr
*gid_attr
,
445 struct find_gid_index_context
*ctx
= context
;
447 if (ctx
->gid_type
!= gid_attr
->gid_type
)
450 if ((!!(ctx
->vlan_id
!= 0xffff) == !is_vlan_dev(gid_attr
->ndev
)) ||
451 (is_vlan_dev(gid_attr
->ndev
) &&
452 vlan_dev_vlan_id(gid_attr
->ndev
) != ctx
->vlan_id
))
458 static int get_sgid_index_from_eth(struct ib_device
*device
, u8 port_num
,
459 u16 vlan_id
, const union ib_gid
*sgid
,
460 enum ib_gid_type gid_type
,
463 struct find_gid_index_context context
= {.vlan_id
= vlan_id
,
464 .gid_type
= gid_type
};
466 return ib_find_gid_by_filter(device
, sgid
, port_num
, find_gid_index
,
467 &context
, gid_index
);
470 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr
*hdr
,
471 enum rdma_network_type net_type
,
472 union ib_gid
*sgid
, union ib_gid
*dgid
)
474 struct sockaddr_in src_in
;
475 struct sockaddr_in dst_in
;
476 __be32 src_saddr
, dst_saddr
;
481 if (net_type
== RDMA_NETWORK_IPV4
) {
482 memcpy(&src_in
.sin_addr
.s_addr
,
483 &hdr
->roce4grh
.saddr
, 4);
484 memcpy(&dst_in
.sin_addr
.s_addr
,
485 &hdr
->roce4grh
.daddr
, 4);
486 src_saddr
= src_in
.sin_addr
.s_addr
;
487 dst_saddr
= dst_in
.sin_addr
.s_addr
;
488 ipv6_addr_set_v4mapped(src_saddr
,
489 (struct in6_addr
*)sgid
);
490 ipv6_addr_set_v4mapped(dst_saddr
,
491 (struct in6_addr
*)dgid
);
493 } else if (net_type
== RDMA_NETWORK_IPV6
||
494 net_type
== RDMA_NETWORK_IB
) {
495 *dgid
= hdr
->ibgrh
.dgid
;
496 *sgid
= hdr
->ibgrh
.sgid
;
502 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr
);
504 /* Resolve destination mac address and hop limit for unicast destination
505 * GID entry, considering the source GID entry as well.
506 * ah_attribute must have have valid port_num, sgid_index.
508 static int ib_resolve_unicast_gid_dmac(struct ib_device
*device
,
509 struct rdma_ah_attr
*ah_attr
)
511 struct ib_gid_attr sgid_attr
;
512 struct ib_global_route
*grh
;
513 int hop_limit
= 0xff;
517 grh
= rdma_ah_retrieve_grh(ah_attr
);
519 ret
= ib_query_gid(device
,
520 rdma_ah_get_port_num(ah_attr
),
523 if (ret
|| !sgid_attr
.ndev
) {
529 /* If destination is link local and source GID is RoCEv1,
530 * IP stack is not used.
532 if (rdma_link_local_addr((struct in6_addr
*)grh
->dgid
.raw
) &&
533 sgid_attr
.gid_type
== IB_GID_TYPE_ROCE
) {
534 rdma_get_ll_mac((struct in6_addr
*)grh
->dgid
.raw
,
539 ret
= rdma_addr_find_l2_eth_by_grh(&sgid
, &grh
->dgid
,
541 sgid_attr
.ndev
, &hop_limit
);
543 dev_put(sgid_attr
.ndev
);
545 grh
->hop_limit
= hop_limit
;
550 * This function initializes address handle attributes from the incoming packet.
551 * Incoming packet has dgid of the receiver node on which this code is
552 * getting executed and, sgid contains the GID of the sender.
554 * When resolving mac address of destination, the arrived dgid is used
555 * as sgid and, sgid is used as dgid because sgid contains destinations
556 * GID whom to respond to.
559 int ib_init_ah_attr_from_wc(struct ib_device
*device
, u8 port_num
,
560 const struct ib_wc
*wc
, const struct ib_grh
*grh
,
561 struct rdma_ah_attr
*ah_attr
)
566 enum rdma_network_type net_type
= RDMA_NETWORK_IB
;
567 enum ib_gid_type gid_type
= IB_GID_TYPE_IB
;
574 memset(ah_attr
, 0, sizeof *ah_attr
);
575 ah_attr
->type
= rdma_ah_find_type(device
, port_num
);
576 if (rdma_cap_eth_ah(device
, port_num
)) {
577 if (wc
->wc_flags
& IB_WC_WITH_NETWORK_HDR_TYPE
)
578 net_type
= wc
->network_hdr_type
;
580 net_type
= ib_get_net_type_by_grh(device
, port_num
, grh
);
581 gid_type
= ib_network_to_gid_type(net_type
);
583 ret
= ib_get_gids_from_rdma_hdr((union rdma_network_hdr
*)grh
, net_type
,
588 rdma_ah_set_sl(ah_attr
, wc
->sl
);
589 rdma_ah_set_port_num(ah_attr
, port_num
);
591 if (rdma_protocol_roce(device
, port_num
)) {
592 u16 vlan_id
= wc
->wc_flags
& IB_WC_WITH_VLAN
?
593 wc
->vlan_id
: 0xffff;
595 if (!(wc
->wc_flags
& IB_WC_GRH
))
598 ret
= get_sgid_index_from_eth(device
, port_num
,
600 gid_type
, &gid_index
);
604 flow_class
= be32_to_cpu(grh
->version_tclass_flow
);
605 rdma_ah_set_grh(ah_attr
, &sgid
,
606 flow_class
& 0xFFFFF,
607 (u8
)gid_index
, hoplimit
,
608 (flow_class
>> 20) & 0xFF);
609 return ib_resolve_unicast_gid_dmac(device
, ah_attr
);
611 rdma_ah_set_dlid(ah_attr
, wc
->slid
);
612 rdma_ah_set_path_bits(ah_attr
, wc
->dlid_path_bits
);
614 if (wc
->wc_flags
& IB_WC_GRH
) {
615 if (dgid
.global
.interface_id
!= cpu_to_be64(IB_SA_WELL_KNOWN_GUID
)) {
616 ret
= ib_find_cached_gid_by_port(device
, &dgid
,
626 flow_class
= be32_to_cpu(grh
->version_tclass_flow
);
627 rdma_ah_set_grh(ah_attr
, &sgid
,
628 flow_class
& 0xFFFFF,
629 (u8
)gid_index
, hoplimit
,
630 (flow_class
>> 20) & 0xFF);
635 EXPORT_SYMBOL(ib_init_ah_attr_from_wc
);
637 struct ib_ah
*ib_create_ah_from_wc(struct ib_pd
*pd
, const struct ib_wc
*wc
,
638 const struct ib_grh
*grh
, u8 port_num
)
640 struct rdma_ah_attr ah_attr
;
643 ret
= ib_init_ah_attr_from_wc(pd
->device
, port_num
, wc
, grh
, &ah_attr
);
647 return rdma_create_ah(pd
, &ah_attr
);
649 EXPORT_SYMBOL(ib_create_ah_from_wc
);
651 int rdma_modify_ah(struct ib_ah
*ah
, struct rdma_ah_attr
*ah_attr
)
653 if (ah
->type
!= ah_attr
->type
)
656 return ah
->device
->modify_ah
?
657 ah
->device
->modify_ah(ah
, ah_attr
) :
660 EXPORT_SYMBOL(rdma_modify_ah
);
662 int rdma_query_ah(struct ib_ah
*ah
, struct rdma_ah_attr
*ah_attr
)
664 return ah
->device
->query_ah
?
665 ah
->device
->query_ah(ah
, ah_attr
) :
668 EXPORT_SYMBOL(rdma_query_ah
);
670 int rdma_destroy_ah(struct ib_ah
*ah
)
676 ret
= ah
->device
->destroy_ah(ah
);
678 atomic_dec(&pd
->usecnt
);
682 EXPORT_SYMBOL(rdma_destroy_ah
);
684 /* Shared receive queues */
686 struct ib_srq
*ib_create_srq(struct ib_pd
*pd
,
687 struct ib_srq_init_attr
*srq_init_attr
)
691 if (!pd
->device
->create_srq
)
692 return ERR_PTR(-ENOSYS
);
694 srq
= pd
->device
->create_srq(pd
, srq_init_attr
, NULL
);
697 srq
->device
= pd
->device
;
700 srq
->event_handler
= srq_init_attr
->event_handler
;
701 srq
->srq_context
= srq_init_attr
->srq_context
;
702 srq
->srq_type
= srq_init_attr
->srq_type
;
703 if (ib_srq_has_cq(srq
->srq_type
)) {
704 srq
->ext
.cq
= srq_init_attr
->ext
.cq
;
705 atomic_inc(&srq
->ext
.cq
->usecnt
);
707 if (srq
->srq_type
== IB_SRQT_XRC
) {
708 srq
->ext
.xrc
.xrcd
= srq_init_attr
->ext
.xrc
.xrcd
;
709 atomic_inc(&srq
->ext
.xrc
.xrcd
->usecnt
);
711 atomic_inc(&pd
->usecnt
);
712 atomic_set(&srq
->usecnt
, 0);
717 EXPORT_SYMBOL(ib_create_srq
);
719 int ib_modify_srq(struct ib_srq
*srq
,
720 struct ib_srq_attr
*srq_attr
,
721 enum ib_srq_attr_mask srq_attr_mask
)
723 return srq
->device
->modify_srq
?
724 srq
->device
->modify_srq(srq
, srq_attr
, srq_attr_mask
, NULL
) :
727 EXPORT_SYMBOL(ib_modify_srq
);
729 int ib_query_srq(struct ib_srq
*srq
,
730 struct ib_srq_attr
*srq_attr
)
732 return srq
->device
->query_srq
?
733 srq
->device
->query_srq(srq
, srq_attr
) : -ENOSYS
;
735 EXPORT_SYMBOL(ib_query_srq
);
737 int ib_destroy_srq(struct ib_srq
*srq
)
740 enum ib_srq_type srq_type
;
741 struct ib_xrcd
*uninitialized_var(xrcd
);
742 struct ib_cq
*uninitialized_var(cq
);
745 if (atomic_read(&srq
->usecnt
))
749 srq_type
= srq
->srq_type
;
750 if (ib_srq_has_cq(srq_type
))
752 if (srq_type
== IB_SRQT_XRC
)
753 xrcd
= srq
->ext
.xrc
.xrcd
;
755 ret
= srq
->device
->destroy_srq(srq
);
757 atomic_dec(&pd
->usecnt
);
758 if (srq_type
== IB_SRQT_XRC
)
759 atomic_dec(&xrcd
->usecnt
);
760 if (ib_srq_has_cq(srq_type
))
761 atomic_dec(&cq
->usecnt
);
766 EXPORT_SYMBOL(ib_destroy_srq
);
770 static void __ib_shared_qp_event_handler(struct ib_event
*event
, void *context
)
772 struct ib_qp
*qp
= context
;
775 spin_lock_irqsave(&qp
->device
->event_handler_lock
, flags
);
776 list_for_each_entry(event
->element
.qp
, &qp
->open_list
, open_list
)
777 if (event
->element
.qp
->event_handler
)
778 event
->element
.qp
->event_handler(event
, event
->element
.qp
->qp_context
);
779 spin_unlock_irqrestore(&qp
->device
->event_handler_lock
, flags
);
782 static void __ib_insert_xrcd_qp(struct ib_xrcd
*xrcd
, struct ib_qp
*qp
)
784 mutex_lock(&xrcd
->tgt_qp_mutex
);
785 list_add(&qp
->xrcd_list
, &xrcd
->tgt_qp_list
);
786 mutex_unlock(&xrcd
->tgt_qp_mutex
);
789 static struct ib_qp
*__ib_open_qp(struct ib_qp
*real_qp
,
790 void (*event_handler
)(struct ib_event
*, void *),
797 qp
= kzalloc(sizeof *qp
, GFP_KERNEL
);
799 return ERR_PTR(-ENOMEM
);
801 qp
->real_qp
= real_qp
;
802 err
= ib_open_shared_qp_security(qp
, real_qp
->device
);
808 qp
->real_qp
= real_qp
;
809 atomic_inc(&real_qp
->usecnt
);
810 qp
->device
= real_qp
->device
;
811 qp
->event_handler
= event_handler
;
812 qp
->qp_context
= qp_context
;
813 qp
->qp_num
= real_qp
->qp_num
;
814 qp
->qp_type
= real_qp
->qp_type
;
816 spin_lock_irqsave(&real_qp
->device
->event_handler_lock
, flags
);
817 list_add(&qp
->open_list
, &real_qp
->open_list
);
818 spin_unlock_irqrestore(&real_qp
->device
->event_handler_lock
, flags
);
823 struct ib_qp
*ib_open_qp(struct ib_xrcd
*xrcd
,
824 struct ib_qp_open_attr
*qp_open_attr
)
826 struct ib_qp
*qp
, *real_qp
;
828 if (qp_open_attr
->qp_type
!= IB_QPT_XRC_TGT
)
829 return ERR_PTR(-EINVAL
);
831 qp
= ERR_PTR(-EINVAL
);
832 mutex_lock(&xrcd
->tgt_qp_mutex
);
833 list_for_each_entry(real_qp
, &xrcd
->tgt_qp_list
, xrcd_list
) {
834 if (real_qp
->qp_num
== qp_open_attr
->qp_num
) {
835 qp
= __ib_open_qp(real_qp
, qp_open_attr
->event_handler
,
836 qp_open_attr
->qp_context
);
840 mutex_unlock(&xrcd
->tgt_qp_mutex
);
843 EXPORT_SYMBOL(ib_open_qp
);
845 static struct ib_qp
*ib_create_xrc_qp(struct ib_qp
*qp
,
846 struct ib_qp_init_attr
*qp_init_attr
)
848 struct ib_qp
*real_qp
= qp
;
850 qp
->event_handler
= __ib_shared_qp_event_handler
;
853 qp
->send_cq
= qp
->recv_cq
= NULL
;
855 qp
->xrcd
= qp_init_attr
->xrcd
;
856 atomic_inc(&qp_init_attr
->xrcd
->usecnt
);
857 INIT_LIST_HEAD(&qp
->open_list
);
859 qp
= __ib_open_qp(real_qp
, qp_init_attr
->event_handler
,
860 qp_init_attr
->qp_context
);
862 __ib_insert_xrcd_qp(qp_init_attr
->xrcd
, real_qp
);
864 real_qp
->device
->destroy_qp(real_qp
);
868 struct ib_qp
*ib_create_qp(struct ib_pd
*pd
,
869 struct ib_qp_init_attr
*qp_init_attr
)
871 struct ib_device
*device
= pd
? pd
->device
: qp_init_attr
->xrcd
->device
;
875 if (qp_init_attr
->rwq_ind_tbl
&&
876 (qp_init_attr
->recv_cq
||
877 qp_init_attr
->srq
|| qp_init_attr
->cap
.max_recv_wr
||
878 qp_init_attr
->cap
.max_recv_sge
))
879 return ERR_PTR(-EINVAL
);
882 * If the callers is using the RDMA API calculate the resources
883 * needed for the RDMA READ/WRITE operations.
885 * Note that these callers need to pass in a port number.
887 if (qp_init_attr
->cap
.max_rdma_ctxs
)
888 rdma_rw_init_qp(device
, qp_init_attr
);
890 qp
= _ib_create_qp(device
, pd
, qp_init_attr
, NULL
, NULL
);
894 ret
= ib_create_qp_security(qp
, device
);
901 qp
->qp_type
= qp_init_attr
->qp_type
;
902 qp
->rwq_ind_tbl
= qp_init_attr
->rwq_ind_tbl
;
904 atomic_set(&qp
->usecnt
, 0);
906 spin_lock_init(&qp
->mr_lock
);
907 INIT_LIST_HEAD(&qp
->rdma_mrs
);
908 INIT_LIST_HEAD(&qp
->sig_mrs
);
911 if (qp_init_attr
->qp_type
== IB_QPT_XRC_TGT
)
912 return ib_create_xrc_qp(qp
, qp_init_attr
);
914 qp
->event_handler
= qp_init_attr
->event_handler
;
915 qp
->qp_context
= qp_init_attr
->qp_context
;
916 if (qp_init_attr
->qp_type
== IB_QPT_XRC_INI
) {
920 qp
->recv_cq
= qp_init_attr
->recv_cq
;
921 if (qp_init_attr
->recv_cq
)
922 atomic_inc(&qp_init_attr
->recv_cq
->usecnt
);
923 qp
->srq
= qp_init_attr
->srq
;
925 atomic_inc(&qp_init_attr
->srq
->usecnt
);
928 qp
->send_cq
= qp_init_attr
->send_cq
;
931 atomic_inc(&pd
->usecnt
);
932 if (qp_init_attr
->send_cq
)
933 atomic_inc(&qp_init_attr
->send_cq
->usecnt
);
934 if (qp_init_attr
->rwq_ind_tbl
)
935 atomic_inc(&qp
->rwq_ind_tbl
->usecnt
);
937 if (qp_init_attr
->cap
.max_rdma_ctxs
) {
938 ret
= rdma_rw_init_mrs(qp
, qp_init_attr
);
940 pr_err("failed to init MR pool ret= %d\n", ret
);
947 * Note: all hw drivers guarantee that max_send_sge is lower than
948 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
949 * max_send_sge <= max_sge_rd.
951 qp
->max_write_sge
= qp_init_attr
->cap
.max_send_sge
;
952 qp
->max_read_sge
= min_t(u32
, qp_init_attr
->cap
.max_send_sge
,
953 device
->attrs
.max_sge_rd
);
957 EXPORT_SYMBOL(ib_create_qp
);
959 static const struct {
961 enum ib_qp_attr_mask req_param
[IB_QPT_MAX
];
962 enum ib_qp_attr_mask opt_param
[IB_QPT_MAX
];
963 } qp_state_table
[IB_QPS_ERR
+ 1][IB_QPS_ERR
+ 1] = {
965 [IB_QPS_RESET
] = { .valid
= 1 },
969 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
972 [IB_QPT_RAW_PACKET
] = IB_QP_PORT
,
973 [IB_QPT_UC
] = (IB_QP_PKEY_INDEX
|
976 [IB_QPT_RC
] = (IB_QP_PKEY_INDEX
|
979 [IB_QPT_XRC_INI
] = (IB_QP_PKEY_INDEX
|
982 [IB_QPT_XRC_TGT
] = (IB_QP_PKEY_INDEX
|
985 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
987 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
993 [IB_QPS_RESET
] = { .valid
= 1 },
994 [IB_QPS_ERR
] = { .valid
= 1 },
998 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1001 [IB_QPT_UC
] = (IB_QP_PKEY_INDEX
|
1003 IB_QP_ACCESS_FLAGS
),
1004 [IB_QPT_RC
] = (IB_QP_PKEY_INDEX
|
1006 IB_QP_ACCESS_FLAGS
),
1007 [IB_QPT_XRC_INI
] = (IB_QP_PKEY_INDEX
|
1009 IB_QP_ACCESS_FLAGS
),
1010 [IB_QPT_XRC_TGT
] = (IB_QP_PKEY_INDEX
|
1012 IB_QP_ACCESS_FLAGS
),
1013 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1015 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1022 [IB_QPT_UC
] = (IB_QP_AV
|
1026 [IB_QPT_RC
] = (IB_QP_AV
|
1030 IB_QP_MAX_DEST_RD_ATOMIC
|
1031 IB_QP_MIN_RNR_TIMER
),
1032 [IB_QPT_XRC_INI
] = (IB_QP_AV
|
1036 [IB_QPT_XRC_TGT
] = (IB_QP_AV
|
1040 IB_QP_MAX_DEST_RD_ATOMIC
|
1041 IB_QP_MIN_RNR_TIMER
),
1044 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1046 [IB_QPT_UC
] = (IB_QP_ALT_PATH
|
1047 IB_QP_ACCESS_FLAGS
|
1049 [IB_QPT_RC
] = (IB_QP_ALT_PATH
|
1050 IB_QP_ACCESS_FLAGS
|
1052 [IB_QPT_XRC_INI
] = (IB_QP_ALT_PATH
|
1053 IB_QP_ACCESS_FLAGS
|
1055 [IB_QPT_XRC_TGT
] = (IB_QP_ALT_PATH
|
1056 IB_QP_ACCESS_FLAGS
|
1058 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1060 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1066 [IB_QPS_RESET
] = { .valid
= 1 },
1067 [IB_QPS_ERR
] = { .valid
= 1 },
1071 [IB_QPT_UD
] = IB_QP_SQ_PSN
,
1072 [IB_QPT_UC
] = IB_QP_SQ_PSN
,
1073 [IB_QPT_RC
] = (IB_QP_TIMEOUT
|
1077 IB_QP_MAX_QP_RD_ATOMIC
),
1078 [IB_QPT_XRC_INI
] = (IB_QP_TIMEOUT
|
1082 IB_QP_MAX_QP_RD_ATOMIC
),
1083 [IB_QPT_XRC_TGT
] = (IB_QP_TIMEOUT
|
1085 [IB_QPT_SMI
] = IB_QP_SQ_PSN
,
1086 [IB_QPT_GSI
] = IB_QP_SQ_PSN
,
1089 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1091 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1093 IB_QP_ACCESS_FLAGS
|
1094 IB_QP_PATH_MIG_STATE
),
1095 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1097 IB_QP_ACCESS_FLAGS
|
1098 IB_QP_MIN_RNR_TIMER
|
1099 IB_QP_PATH_MIG_STATE
),
1100 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1102 IB_QP_ACCESS_FLAGS
|
1103 IB_QP_PATH_MIG_STATE
),
1104 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1106 IB_QP_ACCESS_FLAGS
|
1107 IB_QP_MIN_RNR_TIMER
|
1108 IB_QP_PATH_MIG_STATE
),
1109 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1111 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1113 [IB_QPT_RAW_PACKET
] = IB_QP_RATE_LIMIT
,
1118 [IB_QPS_RESET
] = { .valid
= 1 },
1119 [IB_QPS_ERR
] = { .valid
= 1 },
1123 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1125 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1126 IB_QP_ACCESS_FLAGS
|
1128 IB_QP_PATH_MIG_STATE
),
1129 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1130 IB_QP_ACCESS_FLAGS
|
1132 IB_QP_PATH_MIG_STATE
|
1133 IB_QP_MIN_RNR_TIMER
),
1134 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1135 IB_QP_ACCESS_FLAGS
|
1137 IB_QP_PATH_MIG_STATE
),
1138 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1139 IB_QP_ACCESS_FLAGS
|
1141 IB_QP_PATH_MIG_STATE
|
1142 IB_QP_MIN_RNR_TIMER
),
1143 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1145 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1147 [IB_QPT_RAW_PACKET
] = IB_QP_RATE_LIMIT
,
1153 [IB_QPT_UD
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1154 [IB_QPT_UC
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1155 [IB_QPT_RC
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1156 [IB_QPT_XRC_INI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1157 [IB_QPT_XRC_TGT
] = IB_QP_EN_SQD_ASYNC_NOTIFY
, /* ??? */
1158 [IB_QPT_SMI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1159 [IB_QPT_GSI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
1164 [IB_QPS_RESET
] = { .valid
= 1 },
1165 [IB_QPS_ERR
] = { .valid
= 1 },
1169 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1171 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1173 IB_QP_ACCESS_FLAGS
|
1174 IB_QP_PATH_MIG_STATE
),
1175 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1177 IB_QP_ACCESS_FLAGS
|
1178 IB_QP_MIN_RNR_TIMER
|
1179 IB_QP_PATH_MIG_STATE
),
1180 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1182 IB_QP_ACCESS_FLAGS
|
1183 IB_QP_PATH_MIG_STATE
),
1184 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1186 IB_QP_ACCESS_FLAGS
|
1187 IB_QP_MIN_RNR_TIMER
|
1188 IB_QP_PATH_MIG_STATE
),
1189 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1191 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1198 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1200 [IB_QPT_UC
] = (IB_QP_AV
|
1202 IB_QP_ACCESS_FLAGS
|
1204 IB_QP_PATH_MIG_STATE
),
1205 [IB_QPT_RC
] = (IB_QP_PORT
|
1210 IB_QP_MAX_QP_RD_ATOMIC
|
1211 IB_QP_MAX_DEST_RD_ATOMIC
|
1213 IB_QP_ACCESS_FLAGS
|
1215 IB_QP_MIN_RNR_TIMER
|
1216 IB_QP_PATH_MIG_STATE
),
1217 [IB_QPT_XRC_INI
] = (IB_QP_PORT
|
1222 IB_QP_MAX_QP_RD_ATOMIC
|
1224 IB_QP_ACCESS_FLAGS
|
1226 IB_QP_PATH_MIG_STATE
),
1227 [IB_QPT_XRC_TGT
] = (IB_QP_PORT
|
1230 IB_QP_MAX_DEST_RD_ATOMIC
|
1232 IB_QP_ACCESS_FLAGS
|
1234 IB_QP_MIN_RNR_TIMER
|
1235 IB_QP_PATH_MIG_STATE
),
1236 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1238 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1244 [IB_QPS_RESET
] = { .valid
= 1 },
1245 [IB_QPS_ERR
] = { .valid
= 1 },
1249 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1251 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1252 IB_QP_ACCESS_FLAGS
),
1253 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1255 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1261 [IB_QPS_RESET
] = { .valid
= 1 },
1262 [IB_QPS_ERR
] = { .valid
= 1 }
1266 int ib_modify_qp_is_ok(enum ib_qp_state cur_state
, enum ib_qp_state next_state
,
1267 enum ib_qp_type type
, enum ib_qp_attr_mask mask
,
1268 enum rdma_link_layer ll
)
1270 enum ib_qp_attr_mask req_param
, opt_param
;
1272 if (cur_state
< 0 || cur_state
> IB_QPS_ERR
||
1273 next_state
< 0 || next_state
> IB_QPS_ERR
)
1276 if (mask
& IB_QP_CUR_STATE
&&
1277 cur_state
!= IB_QPS_RTR
&& cur_state
!= IB_QPS_RTS
&&
1278 cur_state
!= IB_QPS_SQD
&& cur_state
!= IB_QPS_SQE
)
1281 if (!qp_state_table
[cur_state
][next_state
].valid
)
1284 req_param
= qp_state_table
[cur_state
][next_state
].req_param
[type
];
1285 opt_param
= qp_state_table
[cur_state
][next_state
].opt_param
[type
];
1287 if ((mask
& req_param
) != req_param
)
1290 if (mask
& ~(req_param
| opt_param
| IB_QP_STATE
))
1295 EXPORT_SYMBOL(ib_modify_qp_is_ok
);
1297 static int ib_resolve_eth_dmac(struct ib_device
*device
,
1298 struct rdma_ah_attr
*ah_attr
)
1301 struct ib_global_route
*grh
;
1303 if (!rdma_is_port_valid(device
, rdma_ah_get_port_num(ah_attr
)))
1306 grh
= rdma_ah_retrieve_grh(ah_attr
);
1308 if (rdma_is_multicast_addr((struct in6_addr
*)ah_attr
->grh
.dgid
.raw
)) {
1309 if (ipv6_addr_v4mapped((struct in6_addr
*)ah_attr
->grh
.dgid
.raw
)) {
1312 memcpy(&addr
, ah_attr
->grh
.dgid
.raw
+ 12, 4);
1313 ip_eth_mc_map(addr
, (char *)ah_attr
->roce
.dmac
);
1315 ipv6_eth_mc_map((struct in6_addr
*)ah_attr
->grh
.dgid
.raw
,
1316 (char *)ah_attr
->roce
.dmac
);
1319 ret
= ib_resolve_unicast_gid_dmac(device
, ah_attr
);
1325 * IB core internal function to perform QP attributes modification.
1327 static int _ib_modify_qp(struct ib_qp
*qp
, struct ib_qp_attr
*attr
,
1328 int attr_mask
, struct ib_udata
*udata
)
1330 u8 port
= attr_mask
& IB_QP_PORT
? attr
->port_num
: qp
->port
;
1333 if (rdma_ib_or_roce(qp
->device
, port
)) {
1334 if (attr_mask
& IB_QP_RQ_PSN
&& attr
->rq_psn
& ~0xffffff) {
1335 pr_warn("%s: %s rq_psn overflow, masking to 24 bits\n",
1336 __func__
, qp
->device
->name
);
1337 attr
->rq_psn
&= 0xffffff;
1340 if (attr_mask
& IB_QP_SQ_PSN
&& attr
->sq_psn
& ~0xffffff) {
1341 pr_warn("%s: %s sq_psn overflow, masking to 24 bits\n",
1342 __func__
, qp
->device
->name
);
1343 attr
->sq_psn
&= 0xffffff;
1347 ret
= ib_security_modify_qp(qp
, attr
, attr_mask
, udata
);
1348 if (!ret
&& (attr_mask
& IB_QP_PORT
))
1349 qp
->port
= attr
->port_num
;
1354 static bool is_qp_type_connected(const struct ib_qp
*qp
)
1356 return (qp
->qp_type
== IB_QPT_UC
||
1357 qp
->qp_type
== IB_QPT_RC
||
1358 qp
->qp_type
== IB_QPT_XRC_INI
||
1359 qp
->qp_type
== IB_QPT_XRC_TGT
);
1363 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1364 * @ib_qp: The QP to modify.
1365 * @attr: On input, specifies the QP attributes to modify. On output,
1366 * the current values of selected QP attributes are returned.
1367 * @attr_mask: A bit-mask used to specify which attributes of the QP
1368 * are being modified.
1369 * @udata: pointer to user's input output buffer information
1370 * are being modified.
1371 * It returns 0 on success and returns appropriate error code on error.
1373 int ib_modify_qp_with_udata(struct ib_qp
*ib_qp
, struct ib_qp_attr
*attr
,
1374 int attr_mask
, struct ib_udata
*udata
)
1376 struct ib_qp
*qp
= ib_qp
->real_qp
;
1379 if (attr_mask
& IB_QP_AV
&&
1380 attr
->ah_attr
.type
== RDMA_AH_ATTR_TYPE_ROCE
&&
1381 is_qp_type_connected(qp
)) {
1382 ret
= ib_resolve_eth_dmac(qp
->device
, &attr
->ah_attr
);
1386 return _ib_modify_qp(qp
, attr
, attr_mask
, udata
);
1388 EXPORT_SYMBOL(ib_modify_qp_with_udata
);
1390 int ib_get_eth_speed(struct ib_device
*dev
, u8 port_num
, u8
*speed
, u8
*width
)
1394 struct net_device
*netdev
;
1395 struct ethtool_link_ksettings lksettings
;
1397 if (rdma_port_get_link_layer(dev
, port_num
) != IB_LINK_LAYER_ETHERNET
)
1400 if (!dev
->get_netdev
)
1403 netdev
= dev
->get_netdev(dev
, port_num
);
1408 rc
= __ethtool_get_link_ksettings(netdev
, &lksettings
);
1414 netdev_speed
= lksettings
.base
.speed
;
1416 netdev_speed
= SPEED_1000
;
1417 pr_warn("%s speed is unknown, defaulting to %d\n", netdev
->name
,
1421 if (netdev_speed
<= SPEED_1000
) {
1422 *width
= IB_WIDTH_1X
;
1423 *speed
= IB_SPEED_SDR
;
1424 } else if (netdev_speed
<= SPEED_10000
) {
1425 *width
= IB_WIDTH_1X
;
1426 *speed
= IB_SPEED_FDR10
;
1427 } else if (netdev_speed
<= SPEED_20000
) {
1428 *width
= IB_WIDTH_4X
;
1429 *speed
= IB_SPEED_DDR
;
1430 } else if (netdev_speed
<= SPEED_25000
) {
1431 *width
= IB_WIDTH_1X
;
1432 *speed
= IB_SPEED_EDR
;
1433 } else if (netdev_speed
<= SPEED_40000
) {
1434 *width
= IB_WIDTH_4X
;
1435 *speed
= IB_SPEED_FDR10
;
1437 *width
= IB_WIDTH_4X
;
1438 *speed
= IB_SPEED_EDR
;
1443 EXPORT_SYMBOL(ib_get_eth_speed
);
1445 int ib_modify_qp(struct ib_qp
*qp
,
1446 struct ib_qp_attr
*qp_attr
,
1449 return _ib_modify_qp(qp
->real_qp
, qp_attr
, qp_attr_mask
, NULL
);
1451 EXPORT_SYMBOL(ib_modify_qp
);
1453 int ib_query_qp(struct ib_qp
*qp
,
1454 struct ib_qp_attr
*qp_attr
,
1456 struct ib_qp_init_attr
*qp_init_attr
)
1458 return qp
->device
->query_qp
?
1459 qp
->device
->query_qp(qp
->real_qp
, qp_attr
, qp_attr_mask
, qp_init_attr
) :
1462 EXPORT_SYMBOL(ib_query_qp
);
1464 int ib_close_qp(struct ib_qp
*qp
)
1466 struct ib_qp
*real_qp
;
1467 unsigned long flags
;
1469 real_qp
= qp
->real_qp
;
1473 spin_lock_irqsave(&real_qp
->device
->event_handler_lock
, flags
);
1474 list_del(&qp
->open_list
);
1475 spin_unlock_irqrestore(&real_qp
->device
->event_handler_lock
, flags
);
1477 atomic_dec(&real_qp
->usecnt
);
1479 ib_close_shared_qp_security(qp
->qp_sec
);
1484 EXPORT_SYMBOL(ib_close_qp
);
1486 static int __ib_destroy_shared_qp(struct ib_qp
*qp
)
1488 struct ib_xrcd
*xrcd
;
1489 struct ib_qp
*real_qp
;
1492 real_qp
= qp
->real_qp
;
1493 xrcd
= real_qp
->xrcd
;
1495 mutex_lock(&xrcd
->tgt_qp_mutex
);
1497 if (atomic_read(&real_qp
->usecnt
) == 0)
1498 list_del(&real_qp
->xrcd_list
);
1501 mutex_unlock(&xrcd
->tgt_qp_mutex
);
1504 ret
= ib_destroy_qp(real_qp
);
1506 atomic_dec(&xrcd
->usecnt
);
1508 __ib_insert_xrcd_qp(xrcd
, real_qp
);
1514 int ib_destroy_qp(struct ib_qp
*qp
)
1517 struct ib_cq
*scq
, *rcq
;
1519 struct ib_rwq_ind_table
*ind_tbl
;
1520 struct ib_qp_security
*sec
;
1523 WARN_ON_ONCE(qp
->mrs_used
> 0);
1525 if (atomic_read(&qp
->usecnt
))
1528 if (qp
->real_qp
!= qp
)
1529 return __ib_destroy_shared_qp(qp
);
1535 ind_tbl
= qp
->rwq_ind_tbl
;
1538 ib_destroy_qp_security_begin(sec
);
1541 rdma_rw_cleanup_mrs(qp
);
1543 rdma_restrack_del(&qp
->res
);
1544 ret
= qp
->device
->destroy_qp(qp
);
1547 atomic_dec(&pd
->usecnt
);
1549 atomic_dec(&scq
->usecnt
);
1551 atomic_dec(&rcq
->usecnt
);
1553 atomic_dec(&srq
->usecnt
);
1555 atomic_dec(&ind_tbl
->usecnt
);
1557 ib_destroy_qp_security_end(sec
);
1560 ib_destroy_qp_security_abort(sec
);
1565 EXPORT_SYMBOL(ib_destroy_qp
);
1567 /* Completion queues */
1569 struct ib_cq
*ib_create_cq(struct ib_device
*device
,
1570 ib_comp_handler comp_handler
,
1571 void (*event_handler
)(struct ib_event
*, void *),
1573 const struct ib_cq_init_attr
*cq_attr
)
1577 cq
= device
->create_cq(device
, cq_attr
, NULL
, NULL
);
1580 cq
->device
= device
;
1582 cq
->comp_handler
= comp_handler
;
1583 cq
->event_handler
= event_handler
;
1584 cq
->cq_context
= cq_context
;
1585 atomic_set(&cq
->usecnt
, 0);
1586 cq
->res
.type
= RDMA_RESTRACK_CQ
;
1587 rdma_restrack_add(&cq
->res
);
1592 EXPORT_SYMBOL(ib_create_cq
);
1594 int rdma_set_cq_moderation(struct ib_cq
*cq
, u16 cq_count
, u16 cq_period
)
1596 return cq
->device
->modify_cq
?
1597 cq
->device
->modify_cq(cq
, cq_count
, cq_period
) : -ENOSYS
;
1599 EXPORT_SYMBOL(rdma_set_cq_moderation
);
1601 int ib_destroy_cq(struct ib_cq
*cq
)
1603 if (atomic_read(&cq
->usecnt
))
1606 rdma_restrack_del(&cq
->res
);
1607 return cq
->device
->destroy_cq(cq
);
1609 EXPORT_SYMBOL(ib_destroy_cq
);
1611 int ib_resize_cq(struct ib_cq
*cq
, int cqe
)
1613 return cq
->device
->resize_cq
?
1614 cq
->device
->resize_cq(cq
, cqe
, NULL
) : -ENOSYS
;
1616 EXPORT_SYMBOL(ib_resize_cq
);
1618 /* Memory regions */
1620 int ib_dereg_mr(struct ib_mr
*mr
)
1622 struct ib_pd
*pd
= mr
->pd
;
1625 ret
= mr
->device
->dereg_mr(mr
);
1627 atomic_dec(&pd
->usecnt
);
1631 EXPORT_SYMBOL(ib_dereg_mr
);
1634 * ib_alloc_mr() - Allocates a memory region
1635 * @pd: protection domain associated with the region
1636 * @mr_type: memory region type
1637 * @max_num_sg: maximum sg entries available for registration.
1640 * Memory registeration page/sg lists must not exceed max_num_sg.
1641 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1642 * max_num_sg * used_page_size.
1645 struct ib_mr
*ib_alloc_mr(struct ib_pd
*pd
,
1646 enum ib_mr_type mr_type
,
1651 if (!pd
->device
->alloc_mr
)
1652 return ERR_PTR(-ENOSYS
);
1654 mr
= pd
->device
->alloc_mr(pd
, mr_type
, max_num_sg
);
1656 mr
->device
= pd
->device
;
1659 atomic_inc(&pd
->usecnt
);
1660 mr
->need_inval
= false;
1665 EXPORT_SYMBOL(ib_alloc_mr
);
1667 /* "Fast" memory regions */
1669 struct ib_fmr
*ib_alloc_fmr(struct ib_pd
*pd
,
1670 int mr_access_flags
,
1671 struct ib_fmr_attr
*fmr_attr
)
1675 if (!pd
->device
->alloc_fmr
)
1676 return ERR_PTR(-ENOSYS
);
1678 fmr
= pd
->device
->alloc_fmr(pd
, mr_access_flags
, fmr_attr
);
1680 fmr
->device
= pd
->device
;
1682 atomic_inc(&pd
->usecnt
);
1687 EXPORT_SYMBOL(ib_alloc_fmr
);
1689 int ib_unmap_fmr(struct list_head
*fmr_list
)
1693 if (list_empty(fmr_list
))
1696 fmr
= list_entry(fmr_list
->next
, struct ib_fmr
, list
);
1697 return fmr
->device
->unmap_fmr(fmr_list
);
1699 EXPORT_SYMBOL(ib_unmap_fmr
);
1701 int ib_dealloc_fmr(struct ib_fmr
*fmr
)
1707 ret
= fmr
->device
->dealloc_fmr(fmr
);
1709 atomic_dec(&pd
->usecnt
);
1713 EXPORT_SYMBOL(ib_dealloc_fmr
);
1715 /* Multicast groups */
1717 static bool is_valid_mcast_lid(struct ib_qp
*qp
, u16 lid
)
1719 struct ib_qp_init_attr init_attr
= {};
1720 struct ib_qp_attr attr
= {};
1721 int num_eth_ports
= 0;
1724 /* If QP state >= init, it is assigned to a port and we can check this
1727 if (!ib_query_qp(qp
, &attr
, IB_QP_STATE
| IB_QP_PORT
, &init_attr
)) {
1728 if (attr
.qp_state
>= IB_QPS_INIT
) {
1729 if (rdma_port_get_link_layer(qp
->device
, attr
.port_num
) !=
1730 IB_LINK_LAYER_INFINIBAND
)
1736 /* Can't get a quick answer, iterate over all ports */
1737 for (port
= 0; port
< qp
->device
->phys_port_cnt
; port
++)
1738 if (rdma_port_get_link_layer(qp
->device
, port
) !=
1739 IB_LINK_LAYER_INFINIBAND
)
1742 /* If we have at lease one Ethernet port, RoCE annex declares that
1743 * multicast LID should be ignored. We can't tell at this step if the
1744 * QP belongs to an IB or Ethernet port.
1749 /* If all the ports are IB, we can check according to IB spec. */
1751 return !(lid
< be16_to_cpu(IB_MULTICAST_LID_BASE
) ||
1752 lid
== be16_to_cpu(IB_LID_PERMISSIVE
));
1755 int ib_attach_mcast(struct ib_qp
*qp
, union ib_gid
*gid
, u16 lid
)
1759 if (!qp
->device
->attach_mcast
)
1762 if (!rdma_is_multicast_addr((struct in6_addr
*)gid
->raw
) ||
1763 qp
->qp_type
!= IB_QPT_UD
|| !is_valid_mcast_lid(qp
, lid
))
1766 ret
= qp
->device
->attach_mcast(qp
, gid
, lid
);
1768 atomic_inc(&qp
->usecnt
);
1771 EXPORT_SYMBOL(ib_attach_mcast
);
1773 int ib_detach_mcast(struct ib_qp
*qp
, union ib_gid
*gid
, u16 lid
)
1777 if (!qp
->device
->detach_mcast
)
1780 if (!rdma_is_multicast_addr((struct in6_addr
*)gid
->raw
) ||
1781 qp
->qp_type
!= IB_QPT_UD
|| !is_valid_mcast_lid(qp
, lid
))
1784 ret
= qp
->device
->detach_mcast(qp
, gid
, lid
);
1786 atomic_dec(&qp
->usecnt
);
1789 EXPORT_SYMBOL(ib_detach_mcast
);
1791 struct ib_xrcd
*__ib_alloc_xrcd(struct ib_device
*device
, const char *caller
)
1793 struct ib_xrcd
*xrcd
;
1795 if (!device
->alloc_xrcd
)
1796 return ERR_PTR(-ENOSYS
);
1798 xrcd
= device
->alloc_xrcd(device
, NULL
, NULL
);
1799 if (!IS_ERR(xrcd
)) {
1800 xrcd
->device
= device
;
1802 atomic_set(&xrcd
->usecnt
, 0);
1803 mutex_init(&xrcd
->tgt_qp_mutex
);
1804 INIT_LIST_HEAD(&xrcd
->tgt_qp_list
);
1809 EXPORT_SYMBOL(__ib_alloc_xrcd
);
1811 int ib_dealloc_xrcd(struct ib_xrcd
*xrcd
)
1816 if (atomic_read(&xrcd
->usecnt
))
1819 while (!list_empty(&xrcd
->tgt_qp_list
)) {
1820 qp
= list_entry(xrcd
->tgt_qp_list
.next
, struct ib_qp
, xrcd_list
);
1821 ret
= ib_destroy_qp(qp
);
1826 return xrcd
->device
->dealloc_xrcd(xrcd
);
1828 EXPORT_SYMBOL(ib_dealloc_xrcd
);
1831 * ib_create_wq - Creates a WQ associated with the specified protection
1833 * @pd: The protection domain associated with the WQ.
1834 * @wq_attr: A list of initial attributes required to create the
1835 * WQ. If WQ creation succeeds, then the attributes are updated to
1836 * the actual capabilities of the created WQ.
1838 * wq_attr->max_wr and wq_attr->max_sge determine
1839 * the requested size of the WQ, and set to the actual values allocated
1841 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1842 * at least as large as the requested values.
1844 struct ib_wq
*ib_create_wq(struct ib_pd
*pd
,
1845 struct ib_wq_init_attr
*wq_attr
)
1849 if (!pd
->device
->create_wq
)
1850 return ERR_PTR(-ENOSYS
);
1852 wq
= pd
->device
->create_wq(pd
, wq_attr
, NULL
);
1854 wq
->event_handler
= wq_attr
->event_handler
;
1855 wq
->wq_context
= wq_attr
->wq_context
;
1856 wq
->wq_type
= wq_attr
->wq_type
;
1857 wq
->cq
= wq_attr
->cq
;
1858 wq
->device
= pd
->device
;
1861 atomic_inc(&pd
->usecnt
);
1862 atomic_inc(&wq_attr
->cq
->usecnt
);
1863 atomic_set(&wq
->usecnt
, 0);
1867 EXPORT_SYMBOL(ib_create_wq
);
1870 * ib_destroy_wq - Destroys the specified WQ.
1871 * @wq: The WQ to destroy.
1873 int ib_destroy_wq(struct ib_wq
*wq
)
1876 struct ib_cq
*cq
= wq
->cq
;
1877 struct ib_pd
*pd
= wq
->pd
;
1879 if (atomic_read(&wq
->usecnt
))
1882 err
= wq
->device
->destroy_wq(wq
);
1884 atomic_dec(&pd
->usecnt
);
1885 atomic_dec(&cq
->usecnt
);
1889 EXPORT_SYMBOL(ib_destroy_wq
);
1892 * ib_modify_wq - Modifies the specified WQ.
1893 * @wq: The WQ to modify.
1894 * @wq_attr: On input, specifies the WQ attributes to modify.
1895 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1896 * are being modified.
1897 * On output, the current values of selected WQ attributes are returned.
1899 int ib_modify_wq(struct ib_wq
*wq
, struct ib_wq_attr
*wq_attr
,
1904 if (!wq
->device
->modify_wq
)
1907 err
= wq
->device
->modify_wq(wq
, wq_attr
, wq_attr_mask
, NULL
);
1910 EXPORT_SYMBOL(ib_modify_wq
);
1913 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1914 * @device: The device on which to create the rwq indirection table.
1915 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1916 * create the Indirection Table.
1918 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1919 * than the created ib_rwq_ind_table object and the caller is responsible
1920 * for its memory allocation/free.
1922 struct ib_rwq_ind_table
*ib_create_rwq_ind_table(struct ib_device
*device
,
1923 struct ib_rwq_ind_table_init_attr
*init_attr
)
1925 struct ib_rwq_ind_table
*rwq_ind_table
;
1929 if (!device
->create_rwq_ind_table
)
1930 return ERR_PTR(-ENOSYS
);
1932 table_size
= (1 << init_attr
->log_ind_tbl_size
);
1933 rwq_ind_table
= device
->create_rwq_ind_table(device
,
1935 if (IS_ERR(rwq_ind_table
))
1936 return rwq_ind_table
;
1938 rwq_ind_table
->ind_tbl
= init_attr
->ind_tbl
;
1939 rwq_ind_table
->log_ind_tbl_size
= init_attr
->log_ind_tbl_size
;
1940 rwq_ind_table
->device
= device
;
1941 rwq_ind_table
->uobject
= NULL
;
1942 atomic_set(&rwq_ind_table
->usecnt
, 0);
1944 for (i
= 0; i
< table_size
; i
++)
1945 atomic_inc(&rwq_ind_table
->ind_tbl
[i
]->usecnt
);
1947 return rwq_ind_table
;
1949 EXPORT_SYMBOL(ib_create_rwq_ind_table
);
1952 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1953 * @wq_ind_table: The Indirection Table to destroy.
1955 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table
*rwq_ind_table
)
1958 u32 table_size
= (1 << rwq_ind_table
->log_ind_tbl_size
);
1959 struct ib_wq
**ind_tbl
= rwq_ind_table
->ind_tbl
;
1961 if (atomic_read(&rwq_ind_table
->usecnt
))
1964 err
= rwq_ind_table
->device
->destroy_rwq_ind_table(rwq_ind_table
);
1966 for (i
= 0; i
< table_size
; i
++)
1967 atomic_dec(&ind_tbl
[i
]->usecnt
);
1972 EXPORT_SYMBOL(ib_destroy_rwq_ind_table
);
1974 struct ib_flow
*ib_create_flow(struct ib_qp
*qp
,
1975 struct ib_flow_attr
*flow_attr
,
1978 struct ib_flow
*flow_id
;
1979 if (!qp
->device
->create_flow
)
1980 return ERR_PTR(-ENOSYS
);
1982 flow_id
= qp
->device
->create_flow(qp
, flow_attr
, domain
);
1983 if (!IS_ERR(flow_id
)) {
1984 atomic_inc(&qp
->usecnt
);
1989 EXPORT_SYMBOL(ib_create_flow
);
1991 int ib_destroy_flow(struct ib_flow
*flow_id
)
1994 struct ib_qp
*qp
= flow_id
->qp
;
1996 err
= qp
->device
->destroy_flow(flow_id
);
1998 atomic_dec(&qp
->usecnt
);
2001 EXPORT_SYMBOL(ib_destroy_flow
);
2003 int ib_check_mr_status(struct ib_mr
*mr
, u32 check_mask
,
2004 struct ib_mr_status
*mr_status
)
2006 return mr
->device
->check_mr_status
?
2007 mr
->device
->check_mr_status(mr
, check_mask
, mr_status
) : -ENOSYS
;
2009 EXPORT_SYMBOL(ib_check_mr_status
);
2011 int ib_set_vf_link_state(struct ib_device
*device
, int vf
, u8 port
,
2014 if (!device
->set_vf_link_state
)
2017 return device
->set_vf_link_state(device
, vf
, port
, state
);
2019 EXPORT_SYMBOL(ib_set_vf_link_state
);
2021 int ib_get_vf_config(struct ib_device
*device
, int vf
, u8 port
,
2022 struct ifla_vf_info
*info
)
2024 if (!device
->get_vf_config
)
2027 return device
->get_vf_config(device
, vf
, port
, info
);
2029 EXPORT_SYMBOL(ib_get_vf_config
);
2031 int ib_get_vf_stats(struct ib_device
*device
, int vf
, u8 port
,
2032 struct ifla_vf_stats
*stats
)
2034 if (!device
->get_vf_stats
)
2037 return device
->get_vf_stats(device
, vf
, port
, stats
);
2039 EXPORT_SYMBOL(ib_get_vf_stats
);
2041 int ib_set_vf_guid(struct ib_device
*device
, int vf
, u8 port
, u64 guid
,
2044 if (!device
->set_vf_guid
)
2047 return device
->set_vf_guid(device
, vf
, port
, guid
, type
);
2049 EXPORT_SYMBOL(ib_set_vf_guid
);
2052 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2053 * and set it the memory region.
2054 * @mr: memory region
2055 * @sg: dma mapped scatterlist
2056 * @sg_nents: number of entries in sg
2057 * @sg_offset: offset in bytes into sg
2058 * @page_size: page vector desired page size
2061 * - The first sg element is allowed to have an offset.
2062 * - Each sg element must either be aligned to page_size or virtually
2063 * contiguous to the previous element. In case an sg element has a
2064 * non-contiguous offset, the mapping prefix will not include it.
2065 * - The last sg element is allowed to have length less than page_size.
2066 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2067 * then only max_num_sg entries will be mapped.
2068 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2069 * constraints holds and the page_size argument is ignored.
2071 * Returns the number of sg elements that were mapped to the memory region.
2073 * After this completes successfully, the memory region
2074 * is ready for registration.
2076 int ib_map_mr_sg(struct ib_mr
*mr
, struct scatterlist
*sg
, int sg_nents
,
2077 unsigned int *sg_offset
, unsigned int page_size
)
2079 if (unlikely(!mr
->device
->map_mr_sg
))
2082 mr
->page_size
= page_size
;
2084 return mr
->device
->map_mr_sg(mr
, sg
, sg_nents
, sg_offset
);
2086 EXPORT_SYMBOL(ib_map_mr_sg
);
2089 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2091 * @mr: memory region
2092 * @sgl: dma mapped scatterlist
2093 * @sg_nents: number of entries in sg
2094 * @sg_offset_p: IN: start offset in bytes into sg
2095 * OUT: offset in bytes for element n of the sg of the first
2096 * byte that has not been processed where n is the return
2097 * value of this function.
2098 * @set_page: driver page assignment function pointer
2100 * Core service helper for drivers to convert the largest
2101 * prefix of given sg list to a page vector. The sg list
2102 * prefix converted is the prefix that meet the requirements
2105 * Returns the number of sg elements that were assigned to
2108 int ib_sg_to_pages(struct ib_mr
*mr
, struct scatterlist
*sgl
, int sg_nents
,
2109 unsigned int *sg_offset_p
, int (*set_page
)(struct ib_mr
*, u64
))
2111 struct scatterlist
*sg
;
2112 u64 last_end_dma_addr
= 0;
2113 unsigned int sg_offset
= sg_offset_p
? *sg_offset_p
: 0;
2114 unsigned int last_page_off
= 0;
2115 u64 page_mask
= ~((u64
)mr
->page_size
- 1);
2118 if (unlikely(sg_nents
<= 0 || sg_offset
> sg_dma_len(&sgl
[0])))
2121 mr
->iova
= sg_dma_address(&sgl
[0]) + sg_offset
;
2124 for_each_sg(sgl
, sg
, sg_nents
, i
) {
2125 u64 dma_addr
= sg_dma_address(sg
) + sg_offset
;
2126 u64 prev_addr
= dma_addr
;
2127 unsigned int dma_len
= sg_dma_len(sg
) - sg_offset
;
2128 u64 end_dma_addr
= dma_addr
+ dma_len
;
2129 u64 page_addr
= dma_addr
& page_mask
;
2132 * For the second and later elements, check whether either the
2133 * end of element i-1 or the start of element i is not aligned
2134 * on a page boundary.
2136 if (i
&& (last_page_off
!= 0 || page_addr
!= dma_addr
)) {
2137 /* Stop mapping if there is a gap. */
2138 if (last_end_dma_addr
!= dma_addr
)
2142 * Coalesce this element with the last. If it is small
2143 * enough just update mr->length. Otherwise start
2144 * mapping from the next page.
2150 ret
= set_page(mr
, page_addr
);
2151 if (unlikely(ret
< 0)) {
2152 sg_offset
= prev_addr
- sg_dma_address(sg
);
2153 mr
->length
+= prev_addr
- dma_addr
;
2155 *sg_offset_p
= sg_offset
;
2156 return i
|| sg_offset
? i
: ret
;
2158 prev_addr
= page_addr
;
2160 page_addr
+= mr
->page_size
;
2161 } while (page_addr
< end_dma_addr
);
2163 mr
->length
+= dma_len
;
2164 last_end_dma_addr
= end_dma_addr
;
2165 last_page_off
= end_dma_addr
& ~page_mask
;
2174 EXPORT_SYMBOL(ib_sg_to_pages
);
2176 struct ib_drain_cqe
{
2178 struct completion done
;
2181 static void ib_drain_qp_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
2183 struct ib_drain_cqe
*cqe
= container_of(wc
->wr_cqe
, struct ib_drain_cqe
,
2186 complete(&cqe
->done
);
2190 * Post a WR and block until its completion is reaped for the SQ.
2192 static void __ib_drain_sq(struct ib_qp
*qp
)
2194 struct ib_cq
*cq
= qp
->send_cq
;
2195 struct ib_qp_attr attr
= { .qp_state
= IB_QPS_ERR
};
2196 struct ib_drain_cqe sdrain
;
2197 struct ib_send_wr swr
= {}, *bad_swr
;
2200 ret
= ib_modify_qp(qp
, &attr
, IB_QP_STATE
);
2202 WARN_ONCE(ret
, "failed to drain send queue: %d\n", ret
);
2206 swr
.wr_cqe
= &sdrain
.cqe
;
2207 sdrain
.cqe
.done
= ib_drain_qp_done
;
2208 init_completion(&sdrain
.done
);
2210 ret
= ib_post_send(qp
, &swr
, &bad_swr
);
2212 WARN_ONCE(ret
, "failed to drain send queue: %d\n", ret
);
2216 if (cq
->poll_ctx
== IB_POLL_DIRECT
)
2217 while (wait_for_completion_timeout(&sdrain
.done
, HZ
/ 10) <= 0)
2218 ib_process_cq_direct(cq
, -1);
2220 wait_for_completion(&sdrain
.done
);
2224 * Post a WR and block until its completion is reaped for the RQ.
2226 static void __ib_drain_rq(struct ib_qp
*qp
)
2228 struct ib_cq
*cq
= qp
->recv_cq
;
2229 struct ib_qp_attr attr
= { .qp_state
= IB_QPS_ERR
};
2230 struct ib_drain_cqe rdrain
;
2231 struct ib_recv_wr rwr
= {}, *bad_rwr
;
2234 ret
= ib_modify_qp(qp
, &attr
, IB_QP_STATE
);
2236 WARN_ONCE(ret
, "failed to drain recv queue: %d\n", ret
);
2240 rwr
.wr_cqe
= &rdrain
.cqe
;
2241 rdrain
.cqe
.done
= ib_drain_qp_done
;
2242 init_completion(&rdrain
.done
);
2244 ret
= ib_post_recv(qp
, &rwr
, &bad_rwr
);
2246 WARN_ONCE(ret
, "failed to drain recv queue: %d\n", ret
);
2250 if (cq
->poll_ctx
== IB_POLL_DIRECT
)
2251 while (wait_for_completion_timeout(&rdrain
.done
, HZ
/ 10) <= 0)
2252 ib_process_cq_direct(cq
, -1);
2254 wait_for_completion(&rdrain
.done
);
2258 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2260 * @qp: queue pair to drain
2262 * If the device has a provider-specific drain function, then
2263 * call that. Otherwise call the generic drain function
2268 * ensure there is room in the CQ and SQ for the drain work request and
2271 * allocate the CQ using ib_alloc_cq().
2273 * ensure that there are no other contexts that are posting WRs concurrently.
2274 * Otherwise the drain is not guaranteed.
2276 void ib_drain_sq(struct ib_qp
*qp
)
2278 if (qp
->device
->drain_sq
)
2279 qp
->device
->drain_sq(qp
);
2283 EXPORT_SYMBOL(ib_drain_sq
);
2286 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2288 * @qp: queue pair to drain
2290 * If the device has a provider-specific drain function, then
2291 * call that. Otherwise call the generic drain function
2296 * ensure there is room in the CQ and RQ for the drain work request and
2299 * allocate the CQ using ib_alloc_cq().
2301 * ensure that there are no other contexts that are posting WRs concurrently.
2302 * Otherwise the drain is not guaranteed.
2304 void ib_drain_rq(struct ib_qp
*qp
)
2306 if (qp
->device
->drain_rq
)
2307 qp
->device
->drain_rq(qp
);
2311 EXPORT_SYMBOL(ib_drain_rq
);
2314 * ib_drain_qp() - Block until all CQEs have been consumed by the
2315 * application on both the RQ and SQ.
2316 * @qp: queue pair to drain
2320 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2323 * allocate the CQs using ib_alloc_cq().
2325 * ensure that there are no other contexts that are posting WRs concurrently.
2326 * Otherwise the drain is not guaranteed.
2328 void ib_drain_qp(struct ib_qp
*qp
)
2334 EXPORT_SYMBOL(ib_drain_qp
);