2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 static int destroy_cq(struct c4iw_rdev
*rdev
, struct t4_cq
*cq
,
36 struct c4iw_dev_ucontext
*uctx
, struct sk_buff
*skb
,
37 struct c4iw_wr_wait
*wr_waitp
)
39 struct fw_ri_res_wr
*res_wr
;
40 struct fw_ri_res
*res
;
44 wr_len
= sizeof *res_wr
+ sizeof *res
;
45 set_wr_txq(skb
, CPL_PRIORITY_CONTROL
, 0);
47 res_wr
= __skb_put_zero(skb
, wr_len
);
48 res_wr
->op_nres
= cpu_to_be32(
49 FW_WR_OP_V(FW_RI_RES_WR
) |
50 FW_RI_RES_WR_NRES_V(1) |
52 res_wr
->len16_pkd
= cpu_to_be32(DIV_ROUND_UP(wr_len
, 16));
53 res_wr
->cookie
= (uintptr_t)wr_waitp
;
55 res
->u
.cq
.restype
= FW_RI_RES_TYPE_CQ
;
56 res
->u
.cq
.op
= FW_RI_RES_OP_RESET
;
57 res
->u
.cq
.iqid
= cpu_to_be32(cq
->cqid
);
59 c4iw_init_wr_wait(wr_waitp
);
60 ret
= c4iw_ref_send_wait(rdev
, skb
, wr_waitp
, 0, 0, __func__
);
63 dma_free_coherent(&(rdev
->lldi
.pdev
->dev
),
64 cq
->memsize
, cq
->queue
,
65 dma_unmap_addr(cq
, mapping
));
66 c4iw_put_cqid(rdev
, cq
->cqid
, uctx
);
70 static int create_cq(struct c4iw_rdev
*rdev
, struct t4_cq
*cq
,
71 struct c4iw_dev_ucontext
*uctx
,
72 struct c4iw_wr_wait
*wr_waitp
)
74 struct fw_ri_res_wr
*res_wr
;
75 struct fw_ri_res
*res
;
77 int user
= (uctx
!= &rdev
->uctx
);
81 cq
->cqid
= c4iw_get_cqid(rdev
, uctx
);
88 cq
->sw_queue
= kzalloc(cq
->memsize
, GFP_KERNEL
);
94 cq
->queue
= dma_alloc_coherent(&rdev
->lldi
.pdev
->dev
, cq
->memsize
,
95 &cq
->dma_addr
, GFP_KERNEL
);
100 dma_unmap_addr_set(cq
, mapping
, cq
->dma_addr
);
101 memset(cq
->queue
, 0, cq
->memsize
);
103 /* build fw_ri_res_wr */
104 wr_len
= sizeof *res_wr
+ sizeof *res
;
106 skb
= alloc_skb(wr_len
, GFP_KERNEL
);
111 set_wr_txq(skb
, CPL_PRIORITY_CONTROL
, 0);
113 res_wr
= __skb_put_zero(skb
, wr_len
);
114 res_wr
->op_nres
= cpu_to_be32(
115 FW_WR_OP_V(FW_RI_RES_WR
) |
116 FW_RI_RES_WR_NRES_V(1) |
118 res_wr
->len16_pkd
= cpu_to_be32(DIV_ROUND_UP(wr_len
, 16));
119 res_wr
->cookie
= (uintptr_t)wr_waitp
;
121 res
->u
.cq
.restype
= FW_RI_RES_TYPE_CQ
;
122 res
->u
.cq
.op
= FW_RI_RES_OP_WRITE
;
123 res
->u
.cq
.iqid
= cpu_to_be32(cq
->cqid
);
124 res
->u
.cq
.iqandst_to_iqandstindex
= cpu_to_be32(
125 FW_RI_RES_WR_IQANUS_V(0) |
126 FW_RI_RES_WR_IQANUD_V(1) |
127 FW_RI_RES_WR_IQANDST_F
|
128 FW_RI_RES_WR_IQANDSTINDEX_V(
129 rdev
->lldi
.ciq_ids
[cq
->vector
]));
130 res
->u
.cq
.iqdroprss_to_iqesize
= cpu_to_be16(
131 FW_RI_RES_WR_IQDROPRSS_F
|
132 FW_RI_RES_WR_IQPCIECH_V(2) |
133 FW_RI_RES_WR_IQINTCNTTHRESH_V(0) |
135 FW_RI_RES_WR_IQESIZE_V(1));
136 res
->u
.cq
.iqsize
= cpu_to_be16(cq
->size
);
137 res
->u
.cq
.iqaddr
= cpu_to_be64(cq
->dma_addr
);
139 c4iw_init_wr_wait(wr_waitp
);
140 ret
= c4iw_ref_send_wait(rdev
, skb
, wr_waitp
, 0, 0, __func__
);
145 cq
->gts
= rdev
->lldi
.gts_reg
;
148 cq
->bar2_va
= c4iw_bar2_addrs(rdev
, cq
->cqid
, T4_BAR2_QTYPE_INGRESS
,
150 user
? &cq
->bar2_pa
: NULL
);
151 if (user
&& !cq
->bar2_pa
) {
152 pr_warn("%s: cqid %u not in BAR2 range\n",
153 pci_name(rdev
->lldi
.pdev
), cq
->cqid
);
159 dma_free_coherent(&rdev
->lldi
.pdev
->dev
, cq
->memsize
, cq
->queue
,
160 dma_unmap_addr(cq
, mapping
));
164 c4iw_put_cqid(rdev
, cq
->cqid
, uctx
);
169 static void insert_recv_cqe(struct t4_wq
*wq
, struct t4_cq
*cq
)
173 pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
174 wq
, cq
, cq
->sw_cidx
, cq
->sw_pidx
);
175 memset(&cqe
, 0, sizeof(cqe
));
176 cqe
.header
= cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH
) |
177 CQE_OPCODE_V(FW_RI_SEND
) |
180 CQE_QPID_V(wq
->sq
.qid
));
181 cqe
.bits_type_ts
= cpu_to_be64(CQE_GENBIT_V((u64
)cq
->gen
));
182 cq
->sw_queue
[cq
->sw_pidx
] = cqe
;
186 int c4iw_flush_rq(struct t4_wq
*wq
, struct t4_cq
*cq
, int count
)
189 int in_use
= wq
->rq
.in_use
- count
;
191 pr_debug("wq %p cq %p rq.in_use %u skip count %u\n",
192 wq
, cq
, wq
->rq
.in_use
, count
);
194 insert_recv_cqe(wq
, cq
);
200 static void insert_sq_cqe(struct t4_wq
*wq
, struct t4_cq
*cq
,
201 struct t4_swsqe
*swcqe
)
205 pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
206 wq
, cq
, cq
->sw_cidx
, cq
->sw_pidx
);
207 memset(&cqe
, 0, sizeof(cqe
));
208 cqe
.header
= cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH
) |
209 CQE_OPCODE_V(swcqe
->opcode
) |
212 CQE_QPID_V(wq
->sq
.qid
));
213 CQE_WRID_SQ_IDX(&cqe
) = swcqe
->idx
;
214 cqe
.bits_type_ts
= cpu_to_be64(CQE_GENBIT_V((u64
)cq
->gen
));
215 cq
->sw_queue
[cq
->sw_pidx
] = cqe
;
219 static void advance_oldest_read(struct t4_wq
*wq
);
221 int c4iw_flush_sq(struct c4iw_qp
*qhp
)
224 struct t4_wq
*wq
= &qhp
->wq
;
225 struct c4iw_cq
*chp
= to_c4iw_cq(qhp
->ibqp
.send_cq
);
226 struct t4_cq
*cq
= &chp
->cq
;
228 struct t4_swsqe
*swsqe
;
230 if (wq
->sq
.flush_cidx
== -1)
231 wq
->sq
.flush_cidx
= wq
->sq
.cidx
;
232 idx
= wq
->sq
.flush_cidx
;
233 while (idx
!= wq
->sq
.pidx
) {
234 swsqe
= &wq
->sq
.sw_sq
[idx
];
236 insert_sq_cqe(wq
, cq
, swsqe
);
237 if (wq
->sq
.oldest_read
== swsqe
) {
238 advance_oldest_read(wq
);
241 if (++idx
== wq
->sq
.size
)
244 wq
->sq
.flush_cidx
+= flushed
;
245 if (wq
->sq
.flush_cidx
>= wq
->sq
.size
)
246 wq
->sq
.flush_cidx
-= wq
->sq
.size
;
250 static void flush_completed_wrs(struct t4_wq
*wq
, struct t4_cq
*cq
)
252 struct t4_swsqe
*swsqe
;
255 if (wq
->sq
.flush_cidx
== -1)
256 wq
->sq
.flush_cidx
= wq
->sq
.cidx
;
257 cidx
= wq
->sq
.flush_cidx
;
259 while (cidx
!= wq
->sq
.pidx
) {
260 swsqe
= &wq
->sq
.sw_sq
[cidx
];
261 if (!swsqe
->signaled
) {
262 if (++cidx
== wq
->sq
.size
)
264 } else if (swsqe
->complete
) {
267 * Insert this completed cqe into the swcq.
269 pr_debug("moving cqe into swcq sq idx %u cq idx %u\n",
271 swsqe
->cqe
.header
|= htonl(CQE_SWCQE_V(1));
272 cq
->sw_queue
[cq
->sw_pidx
] = swsqe
->cqe
;
275 if (++cidx
== wq
->sq
.size
)
277 wq
->sq
.flush_cidx
= cidx
;
283 static void create_read_req_cqe(struct t4_wq
*wq
, struct t4_cqe
*hw_cqe
,
284 struct t4_cqe
*read_cqe
)
286 read_cqe
->u
.scqe
.cidx
= wq
->sq
.oldest_read
->idx
;
287 read_cqe
->len
= htonl(wq
->sq
.oldest_read
->read_len
);
288 read_cqe
->header
= htonl(CQE_QPID_V(CQE_QPID(hw_cqe
)) |
289 CQE_SWCQE_V(SW_CQE(hw_cqe
)) |
290 CQE_OPCODE_V(FW_RI_READ_REQ
) |
292 read_cqe
->bits_type_ts
= hw_cqe
->bits_type_ts
;
295 static void advance_oldest_read(struct t4_wq
*wq
)
298 u32 rptr
= wq
->sq
.oldest_read
- wq
->sq
.sw_sq
+ 1;
300 if (rptr
== wq
->sq
.size
)
302 while (rptr
!= wq
->sq
.pidx
) {
303 wq
->sq
.oldest_read
= &wq
->sq
.sw_sq
[rptr
];
305 if (wq
->sq
.oldest_read
->opcode
== FW_RI_READ_REQ
)
307 if (++rptr
== wq
->sq
.size
)
310 wq
->sq
.oldest_read
= NULL
;
314 * Move all CQEs from the HWCQ into the SWCQ.
315 * Deal with out-of-order and/or completions that complete
316 * prior unsignalled WRs.
318 void c4iw_flush_hw_cq(struct c4iw_cq
*chp
)
320 struct t4_cqe
*hw_cqe
, *swcqe
, read_cqe
;
322 struct t4_swsqe
*swsqe
;
325 pr_debug("cqid 0x%x\n", chp
->cq
.cqid
);
326 ret
= t4_next_hw_cqe(&chp
->cq
, &hw_cqe
);
329 * This logic is similar to poll_cq(), but not quite the same
330 * unfortunately. Need to move pertinent HW CQEs to the SW CQ but
331 * also do any translation magic that poll_cq() normally does.
334 qhp
= get_qhp(chp
->rhp
, CQE_QPID(hw_cqe
));
337 * drop CQEs with no associated QP
342 if (CQE_OPCODE(hw_cqe
) == FW_RI_TERMINATE
)
345 if (CQE_OPCODE(hw_cqe
) == FW_RI_READ_RESP
) {
347 /* If we have reached here because of async
348 * event or other error, and have egress error
351 if (CQE_TYPE(hw_cqe
) == 1)
354 /* drop peer2peer RTR reads.
356 if (CQE_WRID_STAG(hw_cqe
) == 1)
360 * Eat completions for unsignaled read WRs.
362 if (!qhp
->wq
.sq
.oldest_read
->signaled
) {
363 advance_oldest_read(&qhp
->wq
);
368 * Don't write to the HWCQ, create a new read req CQE
369 * in local memory and move it into the swcq.
371 create_read_req_cqe(&qhp
->wq
, hw_cqe
, &read_cqe
);
373 advance_oldest_read(&qhp
->wq
);
376 /* if its a SQ completion, then do the magic to move all the
377 * unsignaled and now in-order completions into the swcq.
379 if (SQ_TYPE(hw_cqe
)) {
380 swsqe
= &qhp
->wq
.sq
.sw_sq
[CQE_WRID_SQ_IDX(hw_cqe
)];
381 swsqe
->cqe
= *hw_cqe
;
383 flush_completed_wrs(&qhp
->wq
, &chp
->cq
);
385 swcqe
= &chp
->cq
.sw_queue
[chp
->cq
.sw_pidx
];
387 swcqe
->header
|= cpu_to_be32(CQE_SWCQE_V(1));
388 t4_swcq_produce(&chp
->cq
);
391 t4_hwcq_consume(&chp
->cq
);
392 ret
= t4_next_hw_cqe(&chp
->cq
, &hw_cqe
);
396 static int cqe_completes_wr(struct t4_cqe
*cqe
, struct t4_wq
*wq
)
398 if (DRAIN_CQE(cqe
)) {
399 WARN_ONCE(1, "Unexpected DRAIN CQE qp id %u!\n", wq
->sq
.qid
);
403 if (CQE_OPCODE(cqe
) == FW_RI_TERMINATE
)
406 if ((CQE_OPCODE(cqe
) == FW_RI_RDMA_WRITE
) && RQ_TYPE(cqe
))
409 if ((CQE_OPCODE(cqe
) == FW_RI_READ_RESP
) && SQ_TYPE(cqe
))
412 if (CQE_SEND_OPCODE(cqe
) && RQ_TYPE(cqe
) && t4_rq_empty(wq
))
417 void c4iw_count_rcqes(struct t4_cq
*cq
, struct t4_wq
*wq
, int *count
)
423 pr_debug("count zero %d\n", *count
);
425 while (ptr
!= cq
->sw_pidx
) {
426 cqe
= &cq
->sw_queue
[ptr
];
427 if (RQ_TYPE(cqe
) && (CQE_OPCODE(cqe
) != FW_RI_READ_RESP
) &&
428 (CQE_QPID(cqe
) == wq
->sq
.qid
) && cqe_completes_wr(cqe
, wq
))
430 if (++ptr
== cq
->size
)
433 pr_debug("cq %p count %d\n", cq
, *count
);
440 * check the validity of the first CQE,
441 * supply the wq assicated with the qpid.
443 * credit: cq credit to return to sge.
444 * cqe_flushed: 1 iff the CQE is flushed.
445 * cqe: copy of the polled CQE.
449 * -EAGAIN CQE skipped, try again.
450 * -EOVERFLOW CQ overflow detected.
452 static int poll_cq(struct t4_wq
*wq
, struct t4_cq
*cq
, struct t4_cqe
*cqe
,
453 u8
*cqe_flushed
, u64
*cookie
, u32
*credit
)
456 struct t4_cqe
*hw_cqe
, read_cqe
;
460 ret
= t4_next_cqe(cq
, &hw_cqe
);
464 pr_debug("CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
465 CQE_OVFBIT(hw_cqe
), CQE_QPID(hw_cqe
),
466 CQE_GENBIT(hw_cqe
), CQE_TYPE(hw_cqe
), CQE_STATUS(hw_cqe
),
467 CQE_OPCODE(hw_cqe
), CQE_LEN(hw_cqe
), CQE_WRID_HI(hw_cqe
),
468 CQE_WRID_LOW(hw_cqe
));
471 * skip cqe's not affiliated with a QP.
479 * skip hw cqe's if the wq is flushed.
481 if (wq
->flushed
&& !SW_CQE(hw_cqe
)) {
487 * skip TERMINATE cqes...
489 if (CQE_OPCODE(hw_cqe
) == FW_RI_TERMINATE
) {
495 * Special cqe for drain WR completions...
497 if (DRAIN_CQE(hw_cqe
)) {
498 *cookie
= CQE_DRAIN_COOKIE(hw_cqe
);
504 * Gotta tweak READ completions:
505 * 1) the cqe doesn't contain the sq_wptr from the wr.
506 * 2) opcode not reflected from the wr.
507 * 3) read_len not reflected from the wr.
508 * 4) cq_type is RQ_TYPE not SQ_TYPE.
510 if (RQ_TYPE(hw_cqe
) && (CQE_OPCODE(hw_cqe
) == FW_RI_READ_RESP
)) {
512 /* If we have reached here because of async
513 * event or other error, and have egress error
516 if (CQE_TYPE(hw_cqe
) == 1) {
517 if (CQE_STATUS(hw_cqe
))
518 t4_set_wq_in_error(wq
);
523 /* If this is an unsolicited read response, then the read
524 * was generated by the kernel driver as part of peer-2-peer
525 * connection setup. So ignore the completion.
527 if (CQE_WRID_STAG(hw_cqe
) == 1) {
528 if (CQE_STATUS(hw_cqe
))
529 t4_set_wq_in_error(wq
);
535 * Eat completions for unsignaled read WRs.
537 if (!wq
->sq
.oldest_read
->signaled
) {
538 advance_oldest_read(wq
);
544 * Don't write to the HWCQ, so create a new read req CQE
547 create_read_req_cqe(wq
, hw_cqe
, &read_cqe
);
549 advance_oldest_read(wq
);
552 if (CQE_STATUS(hw_cqe
) || t4_wq_in_error(wq
)) {
553 *cqe_flushed
= (CQE_STATUS(hw_cqe
) == T4_ERR_SWFLUSH
);
554 t4_set_wq_in_error(wq
);
560 if (RQ_TYPE(hw_cqe
)) {
563 * HW only validates 4 bits of MSN. So we must validate that
564 * the MSN in the SEND is the next expected MSN. If its not,
565 * then we complete this with T4_ERR_MSN and mark the wq in
569 if (t4_rq_empty(wq
)) {
570 t4_set_wq_in_error(wq
);
574 if (unlikely(!CQE_STATUS(hw_cqe
) &&
575 CQE_WRID_MSN(hw_cqe
) != wq
->rq
.msn
)) {
576 t4_set_wq_in_error(wq
);
577 hw_cqe
->header
|= cpu_to_be32(CQE_STATUS_V(T4_ERR_MSN
));
583 * If we get here its a send completion.
585 * Handle out of order completion. These get stuffed
586 * in the SW SQ. Then the SW SQ is walked to move any
587 * now in-order completions into the SW CQ. This handles
589 * 1) reaping unsignaled WRs when the first subsequent
590 * signaled WR is completed.
591 * 2) out of order read completions.
593 if (!SW_CQE(hw_cqe
) && (CQE_WRID_SQ_IDX(hw_cqe
) != wq
->sq
.cidx
)) {
594 struct t4_swsqe
*swsqe
;
596 pr_debug("out of order completion going in sw_sq at idx %u\n",
597 CQE_WRID_SQ_IDX(hw_cqe
));
598 swsqe
= &wq
->sq
.sw_sq
[CQE_WRID_SQ_IDX(hw_cqe
)];
599 swsqe
->cqe
= *hw_cqe
;
609 * Reap the associated WR(s) that are freed up with this
612 if (SQ_TYPE(hw_cqe
)) {
613 int idx
= CQE_WRID_SQ_IDX(hw_cqe
);
616 * Account for any unsignaled completions completed by
617 * this signaled completion. In this case, cidx points
618 * to the first unsignaled one, and idx points to the
619 * signaled one. So adjust in_use based on this delta.
620 * if this is not completing any unsigned wrs, then the
621 * delta will be 0. Handle wrapping also!
623 if (idx
< wq
->sq
.cidx
)
624 wq
->sq
.in_use
-= wq
->sq
.size
+ idx
- wq
->sq
.cidx
;
626 wq
->sq
.in_use
-= idx
- wq
->sq
.cidx
;
628 wq
->sq
.cidx
= (uint16_t)idx
;
629 pr_debug("completing sq idx %u\n", wq
->sq
.cidx
);
630 *cookie
= wq
->sq
.sw_sq
[wq
->sq
.cidx
].wr_id
;
632 c4iw_log_wr_stats(wq
, hw_cqe
);
635 pr_debug("completing rq idx %u\n", wq
->rq
.cidx
);
636 *cookie
= wq
->rq
.sw_rq
[wq
->rq
.cidx
].wr_id
;
638 c4iw_log_wr_stats(wq
, hw_cqe
);
645 * Flush any completed cqes that are now in-order.
647 flush_completed_wrs(wq
, cq
);
650 if (SW_CQE(hw_cqe
)) {
651 pr_debug("cq %p cqid 0x%x skip sw cqe cidx %u\n",
652 cq
, cq
->cqid
, cq
->sw_cidx
);
655 pr_debug("cq %p cqid 0x%x skip hw cqe cidx %u\n",
656 cq
, cq
->cqid
, cq
->cidx
);
663 * Get one cq entry from c4iw and map it to openib.
668 * -EAGAIN caller must try again
669 * any other -errno fatal error
671 static int c4iw_poll_cq_one(struct c4iw_cq
*chp
, struct ib_wc
*wc
)
673 struct c4iw_qp
*qhp
= NULL
;
674 struct t4_cqe
uninitialized_var(cqe
), *rd_cqe
;
681 ret
= t4_next_cqe(&chp
->cq
, &rd_cqe
);
686 qhp
= get_qhp(chp
->rhp
, CQE_QPID(rd_cqe
));
690 spin_lock(&qhp
->lock
);
693 ret
= poll_cq(wq
, &(chp
->cq
), &cqe
, &cqe_flushed
, &cookie
, &credit
);
699 wc
->vendor_err
= CQE_STATUS(&cqe
);
702 pr_debug("qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x lo 0x%x cookie 0x%llx\n",
704 CQE_TYPE(&cqe
), CQE_OPCODE(&cqe
),
705 CQE_STATUS(&cqe
), CQE_LEN(&cqe
),
706 CQE_WRID_HI(&cqe
), CQE_WRID_LOW(&cqe
),
707 (unsigned long long)cookie
);
709 if (CQE_TYPE(&cqe
) == 0) {
710 if (!CQE_STATUS(&cqe
))
711 wc
->byte_len
= CQE_LEN(&cqe
);
714 wc
->opcode
= IB_WC_RECV
;
715 if (CQE_OPCODE(&cqe
) == FW_RI_SEND_WITH_INV
||
716 CQE_OPCODE(&cqe
) == FW_RI_SEND_WITH_SE_INV
) {
717 wc
->ex
.invalidate_rkey
= CQE_WRID_STAG(&cqe
);
718 wc
->wc_flags
|= IB_WC_WITH_INVALIDATE
;
719 c4iw_invalidate_mr(qhp
->rhp
, wc
->ex
.invalidate_rkey
);
722 switch (CQE_OPCODE(&cqe
)) {
723 case FW_RI_RDMA_WRITE
:
724 wc
->opcode
= IB_WC_RDMA_WRITE
;
727 wc
->opcode
= IB_WC_RDMA_READ
;
728 wc
->byte_len
= CQE_LEN(&cqe
);
730 case FW_RI_SEND_WITH_INV
:
731 case FW_RI_SEND_WITH_SE_INV
:
732 wc
->opcode
= IB_WC_SEND
;
733 wc
->wc_flags
|= IB_WC_WITH_INVALIDATE
;
736 case FW_RI_SEND_WITH_SE
:
737 wc
->opcode
= IB_WC_SEND
;
740 case FW_RI_LOCAL_INV
:
741 wc
->opcode
= IB_WC_LOCAL_INV
;
743 case FW_RI_FAST_REGISTER
:
744 wc
->opcode
= IB_WC_REG_MR
;
746 /* Invalidate the MR if the fastreg failed */
747 if (CQE_STATUS(&cqe
) != T4_ERR_SUCCESS
)
748 c4iw_invalidate_mr(qhp
->rhp
,
749 CQE_WRID_FR_STAG(&cqe
));
752 pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n",
753 CQE_OPCODE(&cqe
), CQE_QPID(&cqe
));
760 wc
->status
= IB_WC_WR_FLUSH_ERR
;
763 switch (CQE_STATUS(&cqe
)) {
765 wc
->status
= IB_WC_SUCCESS
;
768 wc
->status
= IB_WC_LOC_ACCESS_ERR
;
771 wc
->status
= IB_WC_LOC_PROT_ERR
;
775 wc
->status
= IB_WC_LOC_ACCESS_ERR
;
778 wc
->status
= IB_WC_GENERAL_ERR
;
781 wc
->status
= IB_WC_LOC_LEN_ERR
;
783 case T4_ERR_INVALIDATE_SHARED_MR
:
784 case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND
:
785 wc
->status
= IB_WC_MW_BIND_ERR
;
789 case T4_ERR_PDU_LEN_ERR
:
790 case T4_ERR_OUT_OF_RQE
:
791 case T4_ERR_DDP_VERSION
:
792 case T4_ERR_RDMA_VERSION
:
793 case T4_ERR_DDP_QUEUE_NUM
:
797 case T4_ERR_MSN_RANGE
:
798 case T4_ERR_IRD_OVERFLOW
:
800 case T4_ERR_INTERNAL_ERR
:
801 wc
->status
= IB_WC_FATAL_ERR
;
804 wc
->status
= IB_WC_WR_FLUSH_ERR
;
807 pr_err("Unexpected cqe_status 0x%x for QPID=0x%0x\n",
808 CQE_STATUS(&cqe
), CQE_QPID(&cqe
));
809 wc
->status
= IB_WC_FATAL_ERR
;
814 spin_unlock(&qhp
->lock
);
818 int c4iw_poll_cq(struct ib_cq
*ibcq
, int num_entries
, struct ib_wc
*wc
)
825 chp
= to_c4iw_cq(ibcq
);
827 spin_lock_irqsave(&chp
->lock
, flags
);
828 for (npolled
= 0; npolled
< num_entries
; ++npolled
) {
830 err
= c4iw_poll_cq_one(chp
, wc
+ npolled
);
831 } while (err
== -EAGAIN
);
835 spin_unlock_irqrestore(&chp
->lock
, flags
);
836 return !err
|| err
== -ENODATA
? npolled
: err
;
839 int c4iw_destroy_cq(struct ib_cq
*ib_cq
)
842 struct c4iw_ucontext
*ucontext
;
844 pr_debug("ib_cq %p\n", ib_cq
);
845 chp
= to_c4iw_cq(ib_cq
);
847 remove_handle(chp
->rhp
, &chp
->rhp
->cqidr
, chp
->cq
.cqid
);
848 atomic_dec(&chp
->refcnt
);
849 wait_event(chp
->wait
, !atomic_read(&chp
->refcnt
));
851 ucontext
= ib_cq
->uobject
? to_c4iw_ucontext(ib_cq
->uobject
->context
)
853 destroy_cq(&chp
->rhp
->rdev
, &chp
->cq
,
854 ucontext
? &ucontext
->uctx
: &chp
->cq
.rdev
->uctx
,
855 chp
->destroy_skb
, chp
->wr_waitp
);
856 c4iw_put_wr_wait(chp
->wr_waitp
);
861 struct ib_cq
*c4iw_create_cq(struct ib_device
*ibdev
,
862 const struct ib_cq_init_attr
*attr
,
863 struct ib_ucontext
*ib_context
,
864 struct ib_udata
*udata
)
866 int entries
= attr
->cqe
;
867 int vector
= attr
->comp_vector
;
868 struct c4iw_dev
*rhp
;
870 struct c4iw_create_cq_resp uresp
;
871 struct c4iw_ucontext
*ucontext
= NULL
;
873 size_t memsize
, hwentries
;
874 struct c4iw_mm_entry
*mm
, *mm2
;
876 pr_debug("ib_dev %p entries %d\n", ibdev
, entries
);
878 return ERR_PTR(-EINVAL
);
880 rhp
= to_c4iw_dev(ibdev
);
882 if (vector
>= rhp
->rdev
.lldi
.nciq
)
883 return ERR_PTR(-EINVAL
);
885 chp
= kzalloc(sizeof(*chp
), GFP_KERNEL
);
887 return ERR_PTR(-ENOMEM
);
888 chp
->wr_waitp
= c4iw_alloc_wr_wait(GFP_KERNEL
);
889 if (!chp
->wr_waitp
) {
893 c4iw_init_wr_wait(chp
->wr_waitp
);
895 wr_len
= sizeof(struct fw_ri_res_wr
) + sizeof(struct fw_ri_res
);
896 chp
->destroy_skb
= alloc_skb(wr_len
, GFP_KERNEL
);
897 if (!chp
->destroy_skb
) {
899 goto err_free_wr_wait
;
903 ucontext
= to_c4iw_ucontext(ib_context
);
905 /* account for the status page. */
908 /* IQ needs one extra entry to differentiate full vs empty. */
912 * entries must be multiple of 16 for HW.
914 entries
= roundup(entries
, 16);
917 * Make actual HW queue 2x to avoid cdix_inc overflows.
919 hwentries
= min(entries
* 2, rhp
->rdev
.hw_queue
.t4_max_iq_size
);
922 * Make HW queue at least 64 entries so GTS updates aren't too
928 memsize
= hwentries
* sizeof *chp
->cq
.queue
;
931 * memsize must be a multiple of the page size if its a user cq.
934 memsize
= roundup(memsize
, PAGE_SIZE
);
935 chp
->cq
.size
= hwentries
;
936 chp
->cq
.memsize
= memsize
;
937 chp
->cq
.vector
= vector
;
939 ret
= create_cq(&rhp
->rdev
, &chp
->cq
,
940 ucontext
? &ucontext
->uctx
: &rhp
->rdev
.uctx
,
946 chp
->cq
.size
--; /* status page */
947 chp
->ibcq
.cqe
= entries
- 2;
948 spin_lock_init(&chp
->lock
);
949 spin_lock_init(&chp
->comp_handler_lock
);
950 atomic_set(&chp
->refcnt
, 1);
951 init_waitqueue_head(&chp
->wait
);
952 ret
= insert_handle(rhp
, &rhp
->cqidr
, chp
, chp
->cq
.cqid
);
958 mm
= kmalloc(sizeof *mm
, GFP_KERNEL
);
960 goto err_remove_handle
;
961 mm2
= kmalloc(sizeof *mm2
, GFP_KERNEL
);
965 uresp
.qid_mask
= rhp
->rdev
.cqmask
;
966 uresp
.cqid
= chp
->cq
.cqid
;
967 uresp
.size
= chp
->cq
.size
;
968 uresp
.memsize
= chp
->cq
.memsize
;
969 spin_lock(&ucontext
->mmap_lock
);
970 uresp
.key
= ucontext
->key
;
971 ucontext
->key
+= PAGE_SIZE
;
972 uresp
.gts_key
= ucontext
->key
;
973 ucontext
->key
+= PAGE_SIZE
;
974 spin_unlock(&ucontext
->mmap_lock
);
975 ret
= ib_copy_to_udata(udata
, &uresp
,
976 sizeof(uresp
) - sizeof(uresp
.reserved
));
981 mm
->addr
= virt_to_phys(chp
->cq
.queue
);
982 mm
->len
= chp
->cq
.memsize
;
983 insert_mmap(ucontext
, mm
);
985 mm2
->key
= uresp
.gts_key
;
986 mm2
->addr
= chp
->cq
.bar2_pa
;
987 mm2
->len
= PAGE_SIZE
;
988 insert_mmap(ucontext
, mm2
);
990 pr_debug("cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n",
991 chp
->cq
.cqid
, chp
, chp
->cq
.size
,
992 chp
->cq
.memsize
, (unsigned long long)chp
->cq
.dma_addr
);
999 remove_handle(rhp
, &rhp
->cqidr
, chp
->cq
.cqid
);
1001 destroy_cq(&chp
->rhp
->rdev
, &chp
->cq
,
1002 ucontext
? &ucontext
->uctx
: &rhp
->rdev
.uctx
,
1003 chp
->destroy_skb
, chp
->wr_waitp
);
1005 kfree_skb(chp
->destroy_skb
);
1007 c4iw_put_wr_wait(chp
->wr_waitp
);
1010 return ERR_PTR(ret
);
1013 int c4iw_resize_cq(struct ib_cq
*cq
, int cqe
, struct ib_udata
*udata
)
1018 int c4iw_arm_cq(struct ib_cq
*ibcq
, enum ib_cq_notify_flags flags
)
1020 struct c4iw_cq
*chp
;
1024 chp
= to_c4iw_cq(ibcq
);
1025 spin_lock_irqsave(&chp
->lock
, flag
);
1027 (flags
& IB_CQ_SOLICITED_MASK
) == IB_CQ_SOLICITED
);
1028 if (flags
& IB_CQ_REPORT_MISSED_EVENTS
)
1029 ret
= t4_cq_notempty(&chp
->cq
);
1030 spin_unlock_irqrestore(&chp
->lock
, flag
);