Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / infiniband / hw / mlx5 / odp.c
blobf1a87a690a4cd0555a1bb0ccbd585bb114a498b9
1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
37 #include "mlx5_ib.h"
38 #include "cmd.h"
40 #define MAX_PREFETCH_LEN (4*1024*1024U)
42 /* Timeout in ms to wait for an active mmu notifier to complete when handling
43 * a pagefault. */
44 #define MMU_NOTIFIER_TIMEOUT 1000
46 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
47 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
48 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
49 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
50 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
52 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
54 static u64 mlx5_imr_ksm_entries;
56 static int check_parent(struct ib_umem_odp *odp,
57 struct mlx5_ib_mr *parent)
59 struct mlx5_ib_mr *mr = odp->private;
61 return mr && mr->parent == parent && !odp->dying;
64 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
66 struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
67 struct ib_ucontext *ctx = odp->umem->context;
68 struct rb_node *rb;
70 down_read(&ctx->umem_rwsem);
71 while (1) {
72 rb = rb_next(&odp->interval_tree.rb);
73 if (!rb)
74 goto not_found;
75 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
76 if (check_parent(odp, parent))
77 goto end;
79 not_found:
80 odp = NULL;
81 end:
82 up_read(&ctx->umem_rwsem);
83 return odp;
86 static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
87 u64 start, u64 length,
88 struct mlx5_ib_mr *parent)
90 struct ib_umem_odp *odp;
91 struct rb_node *rb;
93 down_read(&ctx->umem_rwsem);
94 odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
95 if (!odp)
96 goto end;
98 while (1) {
99 if (check_parent(odp, parent))
100 goto end;
101 rb = rb_next(&odp->interval_tree.rb);
102 if (!rb)
103 goto not_found;
104 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
105 if (ib_umem_start(odp->umem) > start + length)
106 goto not_found;
108 not_found:
109 odp = NULL;
110 end:
111 up_read(&ctx->umem_rwsem);
112 return odp;
115 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
116 size_t nentries, struct mlx5_ib_mr *mr, int flags)
118 struct ib_pd *pd = mr->ibmr.pd;
119 struct ib_ucontext *ctx = pd->uobject->context;
120 struct mlx5_ib_dev *dev = to_mdev(pd->device);
121 struct ib_umem_odp *odp;
122 unsigned long va;
123 int i;
125 if (flags & MLX5_IB_UPD_XLT_ZAP) {
126 for (i = 0; i < nentries; i++, pklm++) {
127 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
128 pklm->key = cpu_to_be32(dev->null_mkey);
129 pklm->va = 0;
131 return;
134 odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
135 nentries * MLX5_IMR_MTT_SIZE, mr);
137 for (i = 0; i < nentries; i++, pklm++) {
138 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
139 va = (offset + i) * MLX5_IMR_MTT_SIZE;
140 if (odp && odp->umem->address == va) {
141 struct mlx5_ib_mr *mtt = odp->private;
143 pklm->key = cpu_to_be32(mtt->ibmr.lkey);
144 odp = odp_next(odp);
145 } else {
146 pklm->key = cpu_to_be32(dev->null_mkey);
148 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
149 i, va, be32_to_cpu(pklm->key));
153 static void mr_leaf_free_action(struct work_struct *work)
155 struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
156 int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
157 struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
159 mr->parent = NULL;
160 synchronize_srcu(&mr->dev->mr_srcu);
162 ib_umem_release(odp->umem);
163 if (imr->live)
164 mlx5_ib_update_xlt(imr, idx, 1, 0,
165 MLX5_IB_UPD_XLT_INDIRECT |
166 MLX5_IB_UPD_XLT_ATOMIC);
167 mlx5_mr_cache_free(mr->dev, mr);
169 if (atomic_dec_and_test(&imr->num_leaf_free))
170 wake_up(&imr->q_leaf_free);
173 void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
174 unsigned long end)
176 struct mlx5_ib_mr *mr;
177 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
178 sizeof(struct mlx5_mtt)) - 1;
179 u64 idx = 0, blk_start_idx = 0;
180 int in_block = 0;
181 u64 addr;
183 if (!umem || !umem->odp_data) {
184 pr_err("invalidation called on NULL umem or non-ODP umem\n");
185 return;
188 mr = umem->odp_data->private;
190 if (!mr || !mr->ibmr.pd)
191 return;
193 start = max_t(u64, ib_umem_start(umem), start);
194 end = min_t(u64, ib_umem_end(umem), end);
197 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
198 * while we are doing the invalidation, no page fault will attempt to
199 * overwrite the same MTTs. Concurent invalidations might race us,
200 * but they will write 0s as well, so no difference in the end result.
203 for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
204 idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
206 * Strive to write the MTTs in chunks, but avoid overwriting
207 * non-existing MTTs. The huristic here can be improved to
208 * estimate the cost of another UMR vs. the cost of bigger
209 * UMR.
211 if (umem->odp_data->dma_list[idx] &
212 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
213 if (!in_block) {
214 blk_start_idx = idx;
215 in_block = 1;
217 } else {
218 u64 umr_offset = idx & umr_block_mask;
220 if (in_block && umr_offset == 0) {
221 mlx5_ib_update_xlt(mr, blk_start_idx,
222 idx - blk_start_idx, 0,
223 MLX5_IB_UPD_XLT_ZAP |
224 MLX5_IB_UPD_XLT_ATOMIC);
225 in_block = 0;
229 if (in_block)
230 mlx5_ib_update_xlt(mr, blk_start_idx,
231 idx - blk_start_idx + 1, 0,
232 MLX5_IB_UPD_XLT_ZAP |
233 MLX5_IB_UPD_XLT_ATOMIC);
235 * We are now sure that the device will not access the
236 * memory. We can safely unmap it, and mark it as dirty if
237 * needed.
240 ib_umem_odp_unmap_dma_pages(umem, start, end);
242 if (unlikely(!umem->npages && mr->parent &&
243 !umem->odp_data->dying)) {
244 WRITE_ONCE(umem->odp_data->dying, 1);
245 atomic_inc(&mr->parent->num_leaf_free);
246 schedule_work(&umem->odp_data->work);
250 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
252 struct ib_odp_caps *caps = &dev->odp_caps;
254 memset(caps, 0, sizeof(*caps));
256 if (!MLX5_CAP_GEN(dev->mdev, pg))
257 return;
259 caps->general_caps = IB_ODP_SUPPORT;
261 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
262 dev->odp_max_size = U64_MAX;
263 else
264 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
266 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
267 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
269 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
270 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
272 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
273 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
275 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
276 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
278 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
279 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
281 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
282 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
284 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
285 MLX5_CAP_GEN(dev->mdev, null_mkey) &&
286 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
287 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
289 return;
292 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
293 struct mlx5_pagefault *pfault,
294 int error)
296 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
297 pfault->wqe.wq_num : pfault->token;
298 int ret = mlx5_core_page_fault_resume(dev->mdev,
299 pfault->token,
300 wq_num,
301 pfault->type,
302 error);
303 if (ret)
304 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
305 wq_num);
308 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
309 struct ib_umem *umem,
310 bool ksm, int access_flags)
312 struct mlx5_ib_dev *dev = to_mdev(pd->device);
313 struct mlx5_ib_mr *mr;
314 int err;
316 mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
317 MLX5_IMR_MTT_CACHE_ENTRY);
319 if (IS_ERR(mr))
320 return mr;
322 mr->ibmr.pd = pd;
324 mr->dev = dev;
325 mr->access_flags = access_flags;
326 mr->mmkey.iova = 0;
327 mr->umem = umem;
329 if (ksm) {
330 err = mlx5_ib_update_xlt(mr, 0,
331 mlx5_imr_ksm_entries,
332 MLX5_KSM_PAGE_SHIFT,
333 MLX5_IB_UPD_XLT_INDIRECT |
334 MLX5_IB_UPD_XLT_ZAP |
335 MLX5_IB_UPD_XLT_ENABLE);
337 } else {
338 err = mlx5_ib_update_xlt(mr, 0,
339 MLX5_IMR_MTT_ENTRIES,
340 PAGE_SHIFT,
341 MLX5_IB_UPD_XLT_ZAP |
342 MLX5_IB_UPD_XLT_ENABLE |
343 MLX5_IB_UPD_XLT_ATOMIC);
346 if (err)
347 goto fail;
349 mr->ibmr.lkey = mr->mmkey.key;
350 mr->ibmr.rkey = mr->mmkey.key;
352 mr->live = 1;
354 mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
355 mr->mmkey.key, dev->mdev, mr);
357 return mr;
359 fail:
360 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
361 mlx5_mr_cache_free(dev, mr);
363 return ERR_PTR(err);
366 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
367 u64 io_virt, size_t bcnt)
369 struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
370 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
371 struct ib_umem_odp *odp, *result = NULL;
372 u64 addr = io_virt & MLX5_IMR_MTT_MASK;
373 int nentries = 0, start_idx = 0, ret;
374 struct mlx5_ib_mr *mtt;
375 struct ib_umem *umem;
377 mutex_lock(&mr->umem->odp_data->umem_mutex);
378 odp = odp_lookup(ctx, addr, 1, mr);
380 mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
381 io_virt, bcnt, addr, odp);
383 next_mr:
384 if (likely(odp)) {
385 if (nentries)
386 nentries++;
387 } else {
388 umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
389 if (IS_ERR(umem)) {
390 mutex_unlock(&mr->umem->odp_data->umem_mutex);
391 return ERR_CAST(umem);
394 mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
395 if (IS_ERR(mtt)) {
396 mutex_unlock(&mr->umem->odp_data->umem_mutex);
397 ib_umem_release(umem);
398 return ERR_CAST(mtt);
401 odp = umem->odp_data;
402 odp->private = mtt;
403 mtt->umem = umem;
404 mtt->mmkey.iova = addr;
405 mtt->parent = mr;
406 INIT_WORK(&odp->work, mr_leaf_free_action);
408 if (!nentries)
409 start_idx = addr >> MLX5_IMR_MTT_SHIFT;
410 nentries++;
413 /* Return first odp if region not covered by single one */
414 if (likely(!result))
415 result = odp;
417 addr += MLX5_IMR_MTT_SIZE;
418 if (unlikely(addr < io_virt + bcnt)) {
419 odp = odp_next(odp);
420 if (odp && odp->umem->address != addr)
421 odp = NULL;
422 goto next_mr;
425 if (unlikely(nentries)) {
426 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
427 MLX5_IB_UPD_XLT_INDIRECT |
428 MLX5_IB_UPD_XLT_ATOMIC);
429 if (ret) {
430 mlx5_ib_err(dev, "Failed to update PAS\n");
431 result = ERR_PTR(ret);
435 mutex_unlock(&mr->umem->odp_data->umem_mutex);
436 return result;
439 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
440 int access_flags)
442 struct ib_ucontext *ctx = pd->ibpd.uobject->context;
443 struct mlx5_ib_mr *imr;
444 struct ib_umem *umem;
446 umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
447 if (IS_ERR(umem))
448 return ERR_CAST(umem);
450 imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
451 if (IS_ERR(imr)) {
452 ib_umem_release(umem);
453 return ERR_CAST(imr);
456 imr->umem = umem;
457 init_waitqueue_head(&imr->q_leaf_free);
458 atomic_set(&imr->num_leaf_free, 0);
460 return imr;
463 static int mr_leaf_free(struct ib_umem *umem, u64 start,
464 u64 end, void *cookie)
466 struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
468 if (mr->parent != imr)
469 return 0;
471 ib_umem_odp_unmap_dma_pages(umem,
472 ib_umem_start(umem),
473 ib_umem_end(umem));
475 if (umem->odp_data->dying)
476 return 0;
478 WRITE_ONCE(umem->odp_data->dying, 1);
479 atomic_inc(&imr->num_leaf_free);
480 schedule_work(&umem->odp_data->work);
482 return 0;
485 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
487 struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
489 down_read(&ctx->umem_rwsem);
490 rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
491 mr_leaf_free, imr);
492 up_read(&ctx->umem_rwsem);
494 wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
497 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
498 u64 io_virt, size_t bcnt, u32 *bytes_mapped)
500 u64 access_mask = ODP_READ_ALLOWED_BIT;
501 int npages = 0, page_shift, np;
502 u64 start_idx, page_mask;
503 struct ib_umem_odp *odp;
504 int current_seq;
505 size_t size;
506 int ret;
508 if (!mr->umem->odp_data->page_list) {
509 odp = implicit_mr_get_data(mr, io_virt, bcnt);
511 if (IS_ERR(odp))
512 return PTR_ERR(odp);
513 mr = odp->private;
515 } else {
516 odp = mr->umem->odp_data;
519 next_mr:
520 size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
522 page_shift = mr->umem->page_shift;
523 page_mask = ~(BIT(page_shift) - 1);
524 start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
526 if (mr->umem->writable)
527 access_mask |= ODP_WRITE_ALLOWED_BIT;
529 current_seq = READ_ONCE(odp->notifiers_seq);
531 * Ensure the sequence number is valid for some time before we call
532 * gup.
534 smp_rmb();
536 ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
537 access_mask, current_seq);
539 if (ret < 0)
540 goto out;
542 np = ret;
544 mutex_lock(&odp->umem_mutex);
545 if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
547 * No need to check whether the MTTs really belong to
548 * this MR, since ib_umem_odp_map_dma_pages already
549 * checks this.
551 ret = mlx5_ib_update_xlt(mr, start_idx, np,
552 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
553 } else {
554 ret = -EAGAIN;
556 mutex_unlock(&odp->umem_mutex);
558 if (ret < 0) {
559 if (ret != -EAGAIN)
560 mlx5_ib_err(dev, "Failed to update mkey page tables\n");
561 goto out;
564 if (bytes_mapped) {
565 u32 new_mappings = (np << page_shift) -
566 (io_virt - round_down(io_virt, 1 << page_shift));
567 *bytes_mapped += min_t(u32, new_mappings, size);
570 npages += np << (page_shift - PAGE_SHIFT);
571 bcnt -= size;
573 if (unlikely(bcnt)) {
574 struct ib_umem_odp *next;
576 io_virt += size;
577 next = odp_next(odp);
578 if (unlikely(!next || next->umem->address != io_virt)) {
579 mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
580 io_virt, next);
581 return -EAGAIN;
583 odp = next;
584 mr = odp->private;
585 goto next_mr;
588 return npages;
590 out:
591 if (ret == -EAGAIN) {
592 if (mr->parent || !odp->dying) {
593 unsigned long timeout =
594 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
596 if (!wait_for_completion_timeout(
597 &odp->notifier_completion,
598 timeout)) {
599 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
600 current_seq, odp->notifiers_seq);
602 } else {
603 /* The MR is being killed, kill the QP as well. */
604 ret = -EFAULT;
608 return ret;
611 struct pf_frame {
612 struct pf_frame *next;
613 u32 key;
614 u64 io_virt;
615 size_t bcnt;
616 int depth;
620 * Handle a single data segment in a page-fault WQE or RDMA region.
622 * Returns number of OS pages retrieved on success. The caller may continue to
623 * the next data segment.
624 * Can return the following error codes:
625 * -EAGAIN to designate a temporary error. The caller will abort handling the
626 * page fault and resolve it.
627 * -EFAULT when there's an error mapping the requested pages. The caller will
628 * abort the page fault handling.
630 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
631 u32 key, u64 io_virt, size_t bcnt,
632 u32 *bytes_committed,
633 u32 *bytes_mapped)
635 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
636 struct pf_frame *head = NULL, *frame;
637 struct mlx5_core_mkey *mmkey;
638 struct mlx5_ib_mw *mw;
639 struct mlx5_ib_mr *mr;
640 struct mlx5_klm *pklm;
641 u32 *out = NULL;
642 size_t offset;
644 srcu_key = srcu_read_lock(&dev->mr_srcu);
646 io_virt += *bytes_committed;
647 bcnt -= *bytes_committed;
649 next_mr:
650 mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
651 if (!mmkey || mmkey->key != key) {
652 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
653 ret = -EFAULT;
654 goto srcu_unlock;
657 switch (mmkey->type) {
658 case MLX5_MKEY_MR:
659 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
660 if (!mr->live || !mr->ibmr.pd) {
661 mlx5_ib_dbg(dev, "got dead MR\n");
662 ret = -EFAULT;
663 goto srcu_unlock;
666 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
667 if (ret < 0)
668 goto srcu_unlock;
670 npages += ret;
671 ret = 0;
672 break;
674 case MLX5_MKEY_MW:
675 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
677 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
678 mlx5_ib_dbg(dev, "indirection level exceeded\n");
679 ret = -EFAULT;
680 goto srcu_unlock;
683 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
684 sizeof(*pklm) * (mw->ndescs - 2);
686 if (outlen > cur_outlen) {
687 kfree(out);
688 out = kzalloc(outlen, GFP_KERNEL);
689 if (!out) {
690 ret = -ENOMEM;
691 goto srcu_unlock;
693 cur_outlen = outlen;
696 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
697 bsf0_klm0_pas_mtt0_1);
699 ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
700 if (ret)
701 goto srcu_unlock;
703 offset = io_virt - MLX5_GET64(query_mkey_out, out,
704 memory_key_mkey_entry.start_addr);
706 for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
707 if (offset >= be32_to_cpu(pklm->bcount)) {
708 offset -= be32_to_cpu(pklm->bcount);
709 continue;
712 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
713 if (!frame) {
714 ret = -ENOMEM;
715 goto srcu_unlock;
718 frame->key = be32_to_cpu(pklm->key);
719 frame->io_virt = be64_to_cpu(pklm->va) + offset;
720 frame->bcnt = min_t(size_t, bcnt,
721 be32_to_cpu(pklm->bcount) - offset);
722 frame->depth = depth + 1;
723 frame->next = head;
724 head = frame;
726 bcnt -= frame->bcnt;
728 break;
730 default:
731 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
732 ret = -EFAULT;
733 goto srcu_unlock;
736 if (head) {
737 frame = head;
738 head = frame->next;
740 key = frame->key;
741 io_virt = frame->io_virt;
742 bcnt = frame->bcnt;
743 depth = frame->depth;
744 kfree(frame);
746 goto next_mr;
749 srcu_unlock:
750 while (head) {
751 frame = head;
752 head = frame->next;
753 kfree(frame);
755 kfree(out);
757 srcu_read_unlock(&dev->mr_srcu, srcu_key);
758 *bytes_committed = 0;
759 return ret ? ret : npages;
763 * Parse a series of data segments for page fault handling.
765 * @qp the QP on which the fault occurred.
766 * @pfault contains page fault information.
767 * @wqe points at the first data segment in the WQE.
768 * @wqe_end points after the end of the WQE.
769 * @bytes_mapped receives the number of bytes that the function was able to
770 * map. This allows the caller to decide intelligently whether
771 * enough memory was mapped to resolve the page fault
772 * successfully (e.g. enough for the next MTU, or the entire
773 * WQE).
774 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
775 * the committed bytes).
777 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
778 * negative error code.
780 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
781 struct mlx5_pagefault *pfault,
782 struct mlx5_ib_qp *qp, void *wqe,
783 void *wqe_end, u32 *bytes_mapped,
784 u32 *total_wqe_bytes, int receive_queue)
786 int ret = 0, npages = 0;
787 u64 io_virt;
788 u32 key;
789 u32 byte_count;
790 size_t bcnt;
791 int inline_segment;
793 /* Skip SRQ next-WQE segment. */
794 if (receive_queue && qp->ibqp.srq)
795 wqe += sizeof(struct mlx5_wqe_srq_next_seg);
797 if (bytes_mapped)
798 *bytes_mapped = 0;
799 if (total_wqe_bytes)
800 *total_wqe_bytes = 0;
802 while (wqe < wqe_end) {
803 struct mlx5_wqe_data_seg *dseg = wqe;
805 io_virt = be64_to_cpu(dseg->addr);
806 key = be32_to_cpu(dseg->lkey);
807 byte_count = be32_to_cpu(dseg->byte_count);
808 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
809 bcnt = byte_count & ~MLX5_INLINE_SEG;
811 if (inline_segment) {
812 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
813 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
814 16);
815 } else {
816 wqe += sizeof(*dseg);
819 /* receive WQE end of sg list. */
820 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
821 io_virt == 0)
822 break;
824 if (!inline_segment && total_wqe_bytes) {
825 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
826 pfault->bytes_committed);
829 /* A zero length data segment designates a length of 2GB. */
830 if (bcnt == 0)
831 bcnt = 1U << 31;
833 if (inline_segment || bcnt <= pfault->bytes_committed) {
834 pfault->bytes_committed -=
835 min_t(size_t, bcnt,
836 pfault->bytes_committed);
837 continue;
840 ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
841 &pfault->bytes_committed,
842 bytes_mapped);
843 if (ret < 0)
844 break;
845 npages += ret;
848 return ret < 0 ? ret : npages;
851 static const u32 mlx5_ib_odp_opcode_cap[] = {
852 [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
853 [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
854 [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
855 [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
856 [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
857 [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
858 [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
859 [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
863 * Parse initiator WQE. Advances the wqe pointer to point at the
864 * scatter-gather list, and set wqe_end to the end of the WQE.
866 static int mlx5_ib_mr_initiator_pfault_handler(
867 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
868 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
870 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
871 u16 wqe_index = pfault->wqe.wqe_index;
872 u32 transport_caps;
873 struct mlx5_base_av *av;
874 unsigned ds, opcode;
875 #if defined(DEBUG)
876 u32 ctrl_wqe_index, ctrl_qpn;
877 #endif
878 u32 qpn = qp->trans_qp.base.mqp.qpn;
880 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
881 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
882 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
883 ds, wqe_length);
884 return -EFAULT;
887 if (ds == 0) {
888 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
889 wqe_index, qpn);
890 return -EFAULT;
893 #if defined(DEBUG)
894 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
895 MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
896 MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
897 if (wqe_index != ctrl_wqe_index) {
898 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
899 wqe_index, qpn,
900 ctrl_wqe_index);
901 return -EFAULT;
904 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
905 MLX5_WQE_CTRL_QPN_SHIFT;
906 if (qpn != ctrl_qpn) {
907 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
908 wqe_index, qpn,
909 ctrl_qpn);
910 return -EFAULT;
912 #endif /* DEBUG */
914 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
915 *wqe += sizeof(*ctrl);
917 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
918 MLX5_WQE_CTRL_OPCODE_MASK;
920 switch (qp->ibqp.qp_type) {
921 case IB_QPT_RC:
922 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
923 break;
924 case IB_QPT_UD:
925 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
926 break;
927 default:
928 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
929 qp->ibqp.qp_type);
930 return -EFAULT;
933 if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
934 !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
935 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
936 opcode);
937 return -EFAULT;
940 if (qp->ibqp.qp_type != IB_QPT_RC) {
941 av = *wqe;
942 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
943 *wqe += sizeof(struct mlx5_av);
944 else
945 *wqe += sizeof(struct mlx5_base_av);
948 switch (opcode) {
949 case MLX5_OPCODE_RDMA_WRITE:
950 case MLX5_OPCODE_RDMA_WRITE_IMM:
951 case MLX5_OPCODE_RDMA_READ:
952 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
953 break;
954 case MLX5_OPCODE_ATOMIC_CS:
955 case MLX5_OPCODE_ATOMIC_FA:
956 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
957 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
958 break;
961 return 0;
965 * Parse responder WQE. Advances the wqe pointer to point at the
966 * scatter-gather list, and set wqe_end to the end of the WQE.
968 static int mlx5_ib_mr_responder_pfault_handler(
969 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
970 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
972 struct mlx5_ib_wq *wq = &qp->rq;
973 int wqe_size = 1 << wq->wqe_shift;
975 if (qp->ibqp.srq) {
976 mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
977 return -EFAULT;
980 if (qp->wq_sig) {
981 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
982 return -EFAULT;
985 if (wqe_size > wqe_length) {
986 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
987 return -EFAULT;
990 switch (qp->ibqp.qp_type) {
991 case IB_QPT_RC:
992 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
993 IB_ODP_SUPPORT_RECV))
994 goto invalid_transport_or_opcode;
995 break;
996 default:
997 invalid_transport_or_opcode:
998 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
999 qp->ibqp.qp_type);
1000 return -EFAULT;
1003 *wqe_end = *wqe + wqe_size;
1005 return 0;
1008 static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
1009 u32 wq_num)
1011 struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
1013 if (!mqp) {
1014 mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
1015 return NULL;
1018 return to_mibqp(mqp);
1021 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1022 struct mlx5_pagefault *pfault)
1024 int ret;
1025 void *wqe, *wqe_end;
1026 u32 bytes_mapped, total_wqe_bytes;
1027 char *buffer = NULL;
1028 int resume_with_error = 1;
1029 u16 wqe_index = pfault->wqe.wqe_index;
1030 int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
1031 struct mlx5_ib_qp *qp;
1033 buffer = (char *)__get_free_page(GFP_KERNEL);
1034 if (!buffer) {
1035 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1036 goto resolve_page_fault;
1039 qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
1040 if (!qp)
1041 goto resolve_page_fault;
1043 ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
1044 PAGE_SIZE, &qp->trans_qp.base);
1045 if (ret < 0) {
1046 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
1047 ret, wqe_index, pfault->token);
1048 goto resolve_page_fault;
1051 wqe = buffer;
1052 if (requestor)
1053 ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
1054 &wqe_end, ret);
1055 else
1056 ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
1057 &wqe_end, ret);
1058 if (ret < 0)
1059 goto resolve_page_fault;
1061 if (wqe >= wqe_end) {
1062 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
1063 goto resolve_page_fault;
1066 ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
1067 &bytes_mapped, &total_wqe_bytes,
1068 !requestor);
1069 if (ret == -EAGAIN) {
1070 resume_with_error = 0;
1071 goto resolve_page_fault;
1072 } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
1073 goto resolve_page_fault;
1076 resume_with_error = 0;
1077 resolve_page_fault:
1078 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1079 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1080 pfault->wqe.wq_num, resume_with_error,
1081 pfault->type);
1082 free_page((unsigned long)buffer);
1085 static int pages_in_range(u64 address, u32 length)
1087 return (ALIGN(address + length, PAGE_SIZE) -
1088 (address & PAGE_MASK)) >> PAGE_SHIFT;
1091 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1092 struct mlx5_pagefault *pfault)
1094 u64 address;
1095 u32 length;
1096 u32 prefetch_len = pfault->bytes_committed;
1097 int prefetch_activated = 0;
1098 u32 rkey = pfault->rdma.r_key;
1099 int ret;
1101 /* The RDMA responder handler handles the page fault in two parts.
1102 * First it brings the necessary pages for the current packet
1103 * (and uses the pfault context), and then (after resuming the QP)
1104 * prefetches more pages. The second operation cannot use the pfault
1105 * context and therefore uses the dummy_pfault context allocated on
1106 * the stack */
1107 pfault->rdma.rdma_va += pfault->bytes_committed;
1108 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1109 pfault->rdma.rdma_op_len);
1110 pfault->bytes_committed = 0;
1112 address = pfault->rdma.rdma_va;
1113 length = pfault->rdma.rdma_op_len;
1115 /* For some operations, the hardware cannot tell the exact message
1116 * length, and in those cases it reports zero. Use prefetch
1117 * logic. */
1118 if (length == 0) {
1119 prefetch_activated = 1;
1120 length = pfault->rdma.packet_size;
1121 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1124 ret = pagefault_single_data_segment(dev, rkey, address, length,
1125 &pfault->bytes_committed, NULL);
1126 if (ret == -EAGAIN) {
1127 /* We're racing with an invalidation, don't prefetch */
1128 prefetch_activated = 0;
1129 } else if (ret < 0 || pages_in_range(address, length) > ret) {
1130 mlx5_ib_page_fault_resume(dev, pfault, 1);
1131 if (ret != -ENOENT)
1132 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1133 ret, pfault->token, pfault->type);
1134 return;
1137 mlx5_ib_page_fault_resume(dev, pfault, 0);
1138 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1139 pfault->token, pfault->type,
1140 prefetch_activated);
1142 /* At this point, there might be a new pagefault already arriving in
1143 * the eq, switch to the dummy pagefault for the rest of the
1144 * processing. We're still OK with the objects being alive as the
1145 * work-queue is being fenced. */
1147 if (prefetch_activated) {
1148 u32 bytes_committed = 0;
1150 ret = pagefault_single_data_segment(dev, rkey, address,
1151 prefetch_len,
1152 &bytes_committed, NULL);
1153 if (ret < 0 && ret != -EAGAIN) {
1154 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1155 ret, pfault->token, address, prefetch_len);
1160 void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
1161 struct mlx5_pagefault *pfault)
1163 struct mlx5_ib_dev *dev = context;
1164 u8 event_subtype = pfault->event_subtype;
1166 switch (event_subtype) {
1167 case MLX5_PFAULT_SUBTYPE_WQE:
1168 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1169 break;
1170 case MLX5_PFAULT_SUBTYPE_RDMA:
1171 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1172 break;
1173 default:
1174 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1175 event_subtype);
1176 mlx5_ib_page_fault_resume(dev, pfault, 1);
1180 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1182 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1183 return;
1185 switch (ent->order - 2) {
1186 case MLX5_IMR_MTT_CACHE_ENTRY:
1187 ent->page = PAGE_SHIFT;
1188 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1189 sizeof(struct mlx5_mtt) /
1190 MLX5_IB_UMR_OCTOWORD;
1191 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1192 ent->limit = 0;
1193 break;
1195 case MLX5_IMR_KSM_CACHE_ENTRY:
1196 ent->page = MLX5_KSM_PAGE_SHIFT;
1197 ent->xlt = mlx5_imr_ksm_entries *
1198 sizeof(struct mlx5_klm) /
1199 MLX5_IB_UMR_OCTOWORD;
1200 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1201 ent->limit = 0;
1202 break;
1206 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1208 int ret;
1210 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1211 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1212 if (ret) {
1213 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1214 return ret;
1218 return 0;
1221 int mlx5_ib_odp_init(void)
1223 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1224 MLX5_IMR_MTT_BITS);
1226 return 0;