Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / infiniband / hw / qib / qib_sd7220.c
blob12caf3db8c349c6121ead1fa5dac808ee91fd29a
1 /*
2 * Copyright (c) 2013 Intel Corporation. All rights reserved.
3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 * This file contains all of the code that is specific to the SerDes
36 * on the QLogic_IB 7220 chip.
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/firmware.h>
44 #include "qib.h"
45 #include "qib_7220.h"
47 #define SD7220_FW_NAME "qlogic/sd7220.fw"
48 MODULE_FIRMWARE(SD7220_FW_NAME);
51 * Same as in qib_iba7220.c, but just the registers needed here.
52 * Could move whole set to qib_7220.h, but decided better to keep
53 * local.
55 #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
56 #define kr_hwerrclear KREG_IDX(HwErrClear)
57 #define kr_hwerrmask KREG_IDX(HwErrMask)
58 #define kr_hwerrstatus KREG_IDX(HwErrStatus)
59 #define kr_ibcstatus KREG_IDX(IBCStatus)
60 #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
61 #define kr_scratch KREG_IDX(Scratch)
62 #define kr_xgxs_cfg KREG_IDX(XGXSCfg)
63 /* these are used only here, not in qib_iba7220.c */
64 #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
65 #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
66 #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
67 #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
68 #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
71 * The IBSerDesMappTable is a memory that holds values to be stored in
72 * various SerDes registers by IBC.
74 #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
77 * Below used for sdnum parameter, selecting one of the two sections
78 * used for PCIe, or the single SerDes used for IB.
80 #define PCIE_SERDES0 0
81 #define PCIE_SERDES1 1
84 * The EPB requires addressing in a particular form. EPB_LOC() is intended
85 * to make #definitions a little more readable.
87 #define EPB_ADDR_SHF 8
88 #define EPB_LOC(chn, elt, reg) \
89 (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
90 EPB_ADDR_SHF)
91 #define EPB_IB_QUAD0_CS_SHF (25)
92 #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF)
93 #define EPB_IB_UC_CS_SHF (26)
94 #define EPB_PCIE_UC_CS_SHF (27)
95 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
97 /* Forward declarations. */
98 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
99 u32 data, u32 mask);
100 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
101 int mask);
102 static int qib_sd_trimdone_poll(struct qib_devdata *dd);
103 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
104 static int qib_sd_setvals(struct qib_devdata *dd);
105 static int qib_sd_early(struct qib_devdata *dd);
106 static int qib_sd_dactrim(struct qib_devdata *dd);
107 static int qib_internal_presets(struct qib_devdata *dd);
108 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
109 static int qib_sd_trimself(struct qib_devdata *dd, int val);
110 static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
111 static int qib_sd7220_ib_load(struct qib_devdata *dd,
112 const struct firmware *fw);
113 static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
114 const struct firmware *fw);
117 * Below keeps track of whether the "once per power-on" initialization has
118 * been done, because uC code Version 1.32.17 or higher allows the uC to
119 * be reset at will, and Automatic Equalization may require it. So the
120 * state of the reset "pin", is no longer valid. Instead, we check for the
121 * actual uC code having been loaded.
123 static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
124 const struct firmware *fw)
126 struct qib_devdata *dd = ppd->dd;
128 if (!dd->cspec->serdes_first_init_done &&
129 qib_sd7220_ib_vfy(dd, fw) > 0)
130 dd->cspec->serdes_first_init_done = 1;
131 return dd->cspec->serdes_first_init_done;
134 /* repeat #define for local use. "Real" #define is in qib_iba7220.c */
135 #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL
136 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
137 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
138 #define UC_PAR_CLR_D 8
139 #define UC_PAR_CLR_M 0xC
140 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
141 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
143 void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
145 int ret;
147 /* clear, then re-enable parity errs */
148 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
149 UC_PAR_CLR_D, UC_PAR_CLR_M);
150 if (ret < 0) {
151 qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
152 goto bail;
154 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
155 UC_PAR_CLR_M);
157 qib_read_kreg32(dd, kr_scratch);
158 udelay(4);
159 qib_write_kreg(dd, kr_hwerrclear,
160 QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
161 qib_read_kreg32(dd, kr_scratch);
162 bail:
163 return;
167 * After a reset or other unusual event, the epb interface may need
168 * to be re-synchronized, between the host and the uC.
169 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
171 #define IBSD_RESYNC_TRIES 3
172 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
173 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
175 static int qib_resync_ibepb(struct qib_devdata *dd)
177 int ret, pat, tries, chn;
178 u32 loc;
180 ret = -1;
181 chn = 0;
182 for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
183 loc = IB_PGUDP(chn);
184 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
185 if (ret < 0) {
186 qib_dev_err(dd, "Failed read in resync\n");
187 continue;
189 if (ret != 0xF0 && ret != 0x55 && tries == 0)
190 qib_dev_err(dd, "unexpected pattern in resync\n");
191 pat = ret ^ 0xA5; /* alternate F0 and 55 */
192 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
193 if (ret < 0) {
194 qib_dev_err(dd, "Failed write in resync\n");
195 continue;
197 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
198 if (ret < 0) {
199 qib_dev_err(dd, "Failed re-read in resync\n");
200 continue;
202 if (ret != pat) {
203 qib_dev_err(dd, "Failed compare1 in resync\n");
204 continue;
206 loc = IB_CMUDONE(chn);
207 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
208 if (ret < 0) {
209 qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
210 continue;
212 if ((ret & 0x70) != ((chn << 4) | 0x40)) {
213 qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
214 ret, chn);
215 continue;
217 if (++chn == 4)
218 break; /* Success */
220 return (ret > 0) ? 0 : ret;
224 * Localize the stuff that should be done to change IB uC reset
225 * returns <0 for errors.
227 static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
229 u64 rst_val;
230 int ret = 0;
231 unsigned long flags;
233 rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
234 if (assert_rst) {
236 * Vendor recommends "interrupting" uC before reset, to
237 * minimize possible glitches.
239 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
240 epb_access(dd, IB_7220_SERDES, 1);
241 rst_val |= 1ULL;
242 /* Squelch possible parity error from _asserting_ reset */
243 qib_write_kreg(dd, kr_hwerrmask,
244 dd->cspec->hwerrmask &
245 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
246 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
247 /* flush write, delay to ensure it took effect */
248 qib_read_kreg32(dd, kr_scratch);
249 udelay(2);
250 /* once it's reset, can remove interrupt */
251 epb_access(dd, IB_7220_SERDES, -1);
252 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
253 } else {
255 * Before we de-assert reset, we need to deal with
256 * possible glitch on the Parity-error line.
257 * Suppress it around the reset, both in chip-level
258 * hwerrmask and in IB uC control reg. uC will allow
259 * it again during startup.
261 u64 val;
263 rst_val &= ~(1ULL);
264 qib_write_kreg(dd, kr_hwerrmask,
265 dd->cspec->hwerrmask &
266 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
268 ret = qib_resync_ibepb(dd);
269 if (ret < 0)
270 qib_dev_err(dd, "unable to re-sync IB EPB\n");
272 /* set uC control regs to suppress parity errs */
273 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
274 if (ret < 0)
275 goto bail;
276 /* IB uC code past Version 1.32.17 allow suppression of wdog */
277 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
278 0x80);
279 if (ret < 0) {
280 qib_dev_err(dd, "Failed to set WDOG disable\n");
281 goto bail;
283 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
284 /* flush write, delay for startup */
285 qib_read_kreg32(dd, kr_scratch);
286 udelay(1);
287 /* clear, then re-enable parity errs */
288 qib_sd7220_clr_ibpar(dd);
289 val = qib_read_kreg64(dd, kr_hwerrstatus);
290 if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
291 qib_dev_err(dd, "IBUC Parity still set after RST\n");
292 dd->cspec->hwerrmask &=
293 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
295 qib_write_kreg(dd, kr_hwerrmask,
296 dd->cspec->hwerrmask);
299 bail:
300 return ret;
303 static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
304 const char *where)
306 int ret, chn, baduns;
307 u64 val;
309 if (!where)
310 where = "?";
312 /* give time for reset to settle out in EPB */
313 udelay(2);
315 ret = qib_resync_ibepb(dd);
316 if (ret < 0)
317 qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
319 /* Do "sacrificial read" to get EPB in sane state after reset */
320 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
321 if (ret < 0)
322 qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
324 /* Check/show "summary" Trim-done bit in IBCStatus */
325 val = qib_read_kreg64(dd, kr_ibcstatus);
326 if (!(val & (1ULL << 11)))
327 qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
329 * Do "dummy read/mod/wr" to get EPB in sane state after reset
330 * The default value for MPREG6 is 0.
332 udelay(2);
334 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
335 if (ret < 0)
336 qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
337 udelay(10);
339 baduns = 0;
341 for (chn = 3; chn >= 0; --chn) {
342 /* Read CTRL reg for each channel to check TRIMDONE */
343 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
344 IB_CTRL2(chn), 0, 0);
345 if (ret < 0)
346 qib_dev_err(dd,
347 "Failed checking TRIMDONE, chn %d (%s)\n",
348 chn, where);
350 if (!(ret & 0x10)) {
351 int probe;
353 baduns |= (1 << chn);
354 qib_dev_err(dd,
355 "TRIMDONE cleared on chn %d (%02X). (%s)\n",
356 chn, ret, where);
357 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
358 IB_PGUDP(0), 0, 0);
359 qib_dev_err(dd, "probe is %d (%02X)\n",
360 probe, probe);
361 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
362 IB_CTRL2(chn), 0, 0);
363 qib_dev_err(dd, "re-read: %d (%02X)\n",
364 probe, probe);
365 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
366 IB_CTRL2(chn), 0x10, 0x10);
367 if (ret < 0)
368 qib_dev_err(dd,
369 "Err on TRIMDONE rewrite1\n");
372 for (chn = 3; chn >= 0; --chn) {
373 /* Read CTRL reg for each channel to check TRIMDONE */
374 if (baduns & (1 << chn)) {
375 qib_dev_err(dd,
376 "Resetting TRIMDONE on chn %d (%s)\n",
377 chn, where);
378 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
379 IB_CTRL2(chn), 0x10, 0x10);
380 if (ret < 0)
381 qib_dev_err(dd,
382 "Failed re-setting TRIMDONE, chn %d (%s)\n",
383 chn, where);
389 * Below is portion of IBA7220-specific bringup_serdes() that actually
390 * deals with registers and memory within the SerDes itself.
391 * Post IB uC code version 1.32.17, was_reset being 1 is not really
392 * informative, so we double-check.
394 int qib_sd7220_init(struct qib_devdata *dd)
396 const struct firmware *fw;
397 int ret = 1; /* default to failure */
398 int first_reset, was_reset;
400 /* SERDES MPU reset recorded in D0 */
401 was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
402 if (!was_reset) {
403 /* entered with reset not asserted, we need to do it */
404 qib_ibsd_reset(dd, 1);
405 qib_sd_trimdone_monitor(dd, "Driver-reload");
408 ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
409 if (ret) {
410 qib_dev_err(dd, "Failed to load IB SERDES image\n");
411 goto done;
414 /* Substitute our deduced value for was_reset */
415 ret = qib_ibsd_ucode_loaded(dd->pport, fw);
416 if (ret < 0)
417 goto bail;
419 first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
421 * Alter some regs per vendor latest doc, reset-defaults
422 * are not right for IB.
424 ret = qib_sd_early(dd);
425 if (ret < 0) {
426 qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
427 goto bail;
430 * Set DAC manual trim IB.
431 * We only do this once after chip has been reset (usually
432 * same as once per system boot).
434 if (first_reset) {
435 ret = qib_sd_dactrim(dd);
436 if (ret < 0) {
437 qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
438 goto bail;
442 * Set various registers (DDS and RXEQ) that will be
443 * controlled by IBC (in 1.2 mode) to reasonable preset values
444 * Calling the "internal" version avoids the "check for needed"
445 * and "trimdone monitor" that might be counter-productive.
447 ret = qib_internal_presets(dd);
448 if (ret < 0) {
449 qib_dev_err(dd, "Failed to set IB SERDES presets\n");
450 goto bail;
452 ret = qib_sd_trimself(dd, 0x80);
453 if (ret < 0) {
454 qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
455 goto bail;
458 /* Load image, then try to verify */
459 ret = 0; /* Assume success */
460 if (first_reset) {
461 int vfy;
462 int trim_done;
464 ret = qib_sd7220_ib_load(dd, fw);
465 if (ret < 0) {
466 qib_dev_err(dd, "Failed to load IB SERDES image\n");
467 goto bail;
468 } else {
469 /* Loaded image, try to verify */
470 vfy = qib_sd7220_ib_vfy(dd, fw);
471 if (vfy != ret) {
472 qib_dev_err(dd, "SERDES PRAM VFY failed\n");
473 goto bail;
474 } /* end if verified */
475 } /* end if loaded */
478 * Loaded and verified. Almost good...
479 * hold "success" in ret
481 ret = 0;
483 * Prev steps all worked, continue bringup
484 * De-assert RESET to uC, only in first reset, to allow
485 * trimming.
487 * Since our default setup sets START_EQ1 to
488 * PRESET, we need to clear that for this very first run.
490 ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
491 if (ret < 0) {
492 qib_dev_err(dd, "Failed clearing START_EQ1\n");
493 goto bail;
496 qib_ibsd_reset(dd, 0);
498 * If this is not the first reset, trimdone should be set
499 * already. We may need to check about this.
501 trim_done = qib_sd_trimdone_poll(dd);
503 * Whether or not trimdone succeeded, we need to put the
504 * uC back into reset to avoid a possible fight with the
505 * IBC state-machine.
507 qib_ibsd_reset(dd, 1);
509 if (!trim_done) {
510 qib_dev_err(dd, "No TRIMDONE seen\n");
511 goto bail;
514 * DEBUG: check each time we reset if trimdone bits have
515 * gotten cleared, and re-set them.
517 qib_sd_trimdone_monitor(dd, "First-reset");
518 /* Remember so we do not re-do the load, dactrim, etc. */
519 dd->cspec->serdes_first_init_done = 1;
522 * setup for channel training and load values for
523 * RxEq and DDS in tables used by IBC in IB1.2 mode
525 ret = 0;
526 if (qib_sd_setvals(dd) >= 0)
527 goto done;
528 bail:
529 ret = 1;
530 done:
531 /* start relock timer regardless, but start at 1 second */
532 set_7220_relock_poll(dd, -1);
534 release_firmware(fw);
535 return ret;
538 #define EPB_ACC_REQ 1
539 #define EPB_ACC_GNT 0x100
540 #define EPB_DATA_MASK 0xFF
541 #define EPB_RD (1ULL << 24)
542 #define EPB_TRANS_RDY (1ULL << 31)
543 #define EPB_TRANS_ERR (1ULL << 30)
544 #define EPB_TRANS_TRIES 5
547 * query, claim, release ownership of the EPB (External Parallel Bus)
548 * for a specified SERDES.
549 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
550 * Returns <0 for errors, >0 if we had ownership, else 0.
552 static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
554 u16 acc;
555 u64 accval;
556 int owned = 0;
557 u64 oct_sel = 0;
559 switch (sdnum) {
560 case IB_7220_SERDES:
562 * The IB SERDES "ownership" is fairly simple. A single each
563 * request/grant.
565 acc = kr_ibsd_epb_access_ctrl;
566 break;
568 case PCIE_SERDES0:
569 case PCIE_SERDES1:
570 /* PCIe SERDES has two "octants", need to select which */
571 acc = kr_pciesd_epb_access_ctrl;
572 oct_sel = (2 << (sdnum - PCIE_SERDES0));
573 break;
575 default:
576 return 0;
579 /* Make sure any outstanding transaction was seen */
580 qib_read_kreg32(dd, kr_scratch);
581 udelay(15);
583 accval = qib_read_kreg32(dd, acc);
585 owned = !!(accval & EPB_ACC_GNT);
586 if (claim < 0) {
587 /* Need to release */
588 u64 pollval;
590 * The only writeable bits are the request and CS.
591 * Both should be clear
593 u64 newval = 0;
595 qib_write_kreg(dd, acc, newval);
596 /* First read after write is not trustworthy */
597 pollval = qib_read_kreg32(dd, acc);
598 udelay(5);
599 pollval = qib_read_kreg32(dd, acc);
600 if (pollval & EPB_ACC_GNT)
601 owned = -1;
602 } else if (claim > 0) {
603 /* Need to claim */
604 u64 pollval;
605 u64 newval = EPB_ACC_REQ | oct_sel;
607 qib_write_kreg(dd, acc, newval);
608 /* First read after write is not trustworthy */
609 pollval = qib_read_kreg32(dd, acc);
610 udelay(5);
611 pollval = qib_read_kreg32(dd, acc);
612 if (!(pollval & EPB_ACC_GNT))
613 owned = -1;
615 return owned;
619 * Lemma to deal with race condition of write..read to epb regs
621 static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
623 int tries;
624 u64 transval;
626 qib_write_kreg(dd, reg, i_val);
627 /* Throw away first read, as RDY bit may be stale */
628 transval = qib_read_kreg64(dd, reg);
630 for (tries = EPB_TRANS_TRIES; tries; --tries) {
631 transval = qib_read_kreg32(dd, reg);
632 if (transval & EPB_TRANS_RDY)
633 break;
634 udelay(5);
636 if (transval & EPB_TRANS_ERR)
637 return -1;
638 if (tries > 0 && o_vp)
639 *o_vp = transval;
640 return tries;
644 * qib_sd7220_reg_mod - modify SERDES register
645 * @dd: the qlogic_ib device
646 * @sdnum: which SERDES to access
647 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
648 * @wd: Write Data - value to set in register
649 * @mask: ones where data should be spliced into reg.
651 * Basic register read/modify/write, with un-needed acesses elided. That is,
652 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
653 * returns current (presumed, if a write was done) contents of selected
654 * register, or <0 if errors.
656 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
657 u32 wd, u32 mask)
659 u16 trans;
660 u64 transval;
661 int owned;
662 int tries, ret;
663 unsigned long flags;
665 switch (sdnum) {
666 case IB_7220_SERDES:
667 trans = kr_ibsd_epb_transaction_reg;
668 break;
670 case PCIE_SERDES0:
671 case PCIE_SERDES1:
672 trans = kr_pciesd_epb_transaction_reg;
673 break;
675 default:
676 return -1;
680 * All access is locked in software (vs other host threads) and
681 * hardware (vs uC access).
683 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
685 owned = epb_access(dd, sdnum, 1);
686 if (owned < 0) {
687 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
688 return -1;
690 ret = 0;
691 for (tries = EPB_TRANS_TRIES; tries; --tries) {
692 transval = qib_read_kreg32(dd, trans);
693 if (transval & EPB_TRANS_RDY)
694 break;
695 udelay(5);
698 if (tries > 0) {
699 tries = 1; /* to make read-skip work */
700 if (mask != 0xFF) {
702 * Not a pure write, so need to read.
703 * loc encodes chip-select as well as address
705 transval = loc | EPB_RD;
706 tries = epb_trans(dd, trans, transval, &transval);
708 if (tries > 0 && mask != 0) {
710 * Not a pure read, so need to write.
712 wd = (wd & mask) | (transval & ~mask);
713 transval = loc | (wd & EPB_DATA_MASK);
714 tries = epb_trans(dd, trans, transval, &transval);
717 /* else, failed to see ready, what error-handling? */
720 * Release bus. Failure is an error.
722 if (epb_access(dd, sdnum, -1) < 0)
723 ret = -1;
724 else
725 ret = transval & EPB_DATA_MASK;
727 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
728 if (tries <= 0)
729 ret = -1;
730 return ret;
733 #define EPB_ROM_R (2)
734 #define EPB_ROM_W (1)
736 * Below, all uC-related, use appropriate UC_CS, depending
737 * on which SerDes is used.
739 #define EPB_UC_CTL EPB_LOC(6, 0, 0)
740 #define EPB_MADDRL EPB_LOC(6, 0, 2)
741 #define EPB_MADDRH EPB_LOC(6, 0, 3)
742 #define EPB_ROMDATA EPB_LOC(6, 0, 4)
743 #define EPB_RAMDATA EPB_LOC(6, 0, 5)
745 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
746 static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
747 u8 *buf, int cnt, int rd_notwr)
749 u16 trans;
750 u64 transval;
751 u64 csbit;
752 int owned;
753 int tries;
754 int sofar;
755 int addr;
756 int ret;
757 unsigned long flags;
759 /* Pick appropriate transaction reg and "Chip select" for this serdes */
760 switch (sdnum) {
761 case IB_7220_SERDES:
762 csbit = 1ULL << EPB_IB_UC_CS_SHF;
763 trans = kr_ibsd_epb_transaction_reg;
764 break;
766 case PCIE_SERDES0:
767 case PCIE_SERDES1:
768 /* PCIe SERDES has uC "chip select" in different bit, too */
769 csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
770 trans = kr_pciesd_epb_transaction_reg;
771 break;
773 default:
774 return -1;
777 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
779 owned = epb_access(dd, sdnum, 1);
780 if (owned < 0) {
781 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
782 return -1;
786 * In future code, we may need to distinguish several address ranges,
787 * and select various memories based on this. For now, just trim
788 * "loc" (location including address and memory select) to
789 * "addr" (address within memory). we will only support PRAM
790 * The memory is 8KB.
792 addr = loc & 0x1FFF;
793 for (tries = EPB_TRANS_TRIES; tries; --tries) {
794 transval = qib_read_kreg32(dd, trans);
795 if (transval & EPB_TRANS_RDY)
796 break;
797 udelay(5);
800 sofar = 0;
801 if (tries > 0) {
803 * Every "memory" access is doubly-indirect.
804 * We set two bytes of address, then read/write
805 * one or mores bytes of data.
808 /* First, we set control to "Read" or "Write" */
809 transval = csbit | EPB_UC_CTL |
810 (rd_notwr ? EPB_ROM_R : EPB_ROM_W);
811 tries = epb_trans(dd, trans, transval, &transval);
812 while (tries > 0 && sofar < cnt) {
813 if (!sofar) {
814 /* Only set address at start of chunk */
815 int addrbyte = (addr + sofar) >> 8;
817 transval = csbit | EPB_MADDRH | addrbyte;
818 tries = epb_trans(dd, trans, transval,
819 &transval);
820 if (tries <= 0)
821 break;
822 addrbyte = (addr + sofar) & 0xFF;
823 transval = csbit | EPB_MADDRL | addrbyte;
824 tries = epb_trans(dd, trans, transval,
825 &transval);
826 if (tries <= 0)
827 break;
830 if (rd_notwr)
831 transval = csbit | EPB_ROMDATA | EPB_RD;
832 else
833 transval = csbit | EPB_ROMDATA | buf[sofar];
834 tries = epb_trans(dd, trans, transval, &transval);
835 if (tries <= 0)
836 break;
837 if (rd_notwr)
838 buf[sofar] = transval & EPB_DATA_MASK;
839 ++sofar;
841 /* Finally, clear control-bit for Read or Write */
842 transval = csbit | EPB_UC_CTL;
843 tries = epb_trans(dd, trans, transval, &transval);
846 ret = sofar;
847 /* Release bus. Failure is an error */
848 if (epb_access(dd, sdnum, -1) < 0)
849 ret = -1;
851 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
852 if (tries <= 0)
853 ret = -1;
854 return ret;
857 #define PROG_CHUNK 64
859 static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
860 const u8 *img, int len, int offset)
862 int cnt, sofar, req;
864 sofar = 0;
865 while (sofar < len) {
866 req = len - sofar;
867 if (req > PROG_CHUNK)
868 req = PROG_CHUNK;
869 cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
870 (u8 *)img + sofar, req, 0);
871 if (cnt < req) {
872 sofar = -1;
873 break;
875 sofar += req;
877 return sofar;
880 #define VFY_CHUNK 64
881 #define SD_PRAM_ERROR_LIMIT 42
883 static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
884 const u8 *img, int len, int offset)
886 int cnt, sofar, req, idx, errors;
887 unsigned char readback[VFY_CHUNK];
889 errors = 0;
890 sofar = 0;
891 while (sofar < len) {
892 req = len - sofar;
893 if (req > VFY_CHUNK)
894 req = VFY_CHUNK;
895 cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
896 readback, req, 1);
897 if (cnt < req) {
898 /* failed in read itself */
899 sofar = -1;
900 break;
902 for (idx = 0; idx < cnt; ++idx) {
903 if (readback[idx] != img[idx+sofar])
904 ++errors;
906 sofar += cnt;
908 return errors ? -errors : sofar;
911 static int
912 qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
914 return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
917 static int
918 qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
920 return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
924 * IRQ not set up at this point in init, so we poll.
926 #define IB_SERDES_TRIM_DONE (1ULL << 11)
927 #define TRIM_TMO (15)
929 static int qib_sd_trimdone_poll(struct qib_devdata *dd)
931 int trim_tmo, ret;
932 uint64_t val;
935 * Default to failure, so IBC will not start
936 * without IB_SERDES_TRIM_DONE.
938 ret = 0;
939 for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
940 val = qib_read_kreg64(dd, kr_ibcstatus);
941 if (val & IB_SERDES_TRIM_DONE) {
942 ret = 1;
943 break;
945 msleep(20);
947 if (trim_tmo >= TRIM_TMO) {
948 qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
949 ret = 0;
951 return ret;
954 #define TX_FAST_ELT (9)
957 * Set the "negotiation" values for SERDES. These are used by the IB1.2
958 * link negotiation. Macros below are attempt to keep the values a
959 * little more human-editable.
960 * First, values related to Drive De-emphasis Settings.
963 #define NUM_DDS_REGS 6
964 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
966 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
967 { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
968 (main_d << 3) | 4 | (ipre_d >> 2), \
969 (main_s << 3) | 4 | (ipre_s >> 2), \
970 ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
971 ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
973 static struct dds_init {
974 uint8_t reg_vals[NUM_DDS_REGS];
975 } dds_init_vals[] = {
976 /* DDR(FDR) SDR(HDR) */
977 /* Vendor recommends below for 3m cable */
978 #define DDS_3M 0
979 DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0),
980 DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
981 DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
982 DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
983 DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
984 DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
985 DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
986 DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
987 DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0),
988 DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0),
989 DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0),
990 DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0),
991 DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0),
992 /* Vendor recommends below for 1m cable */
993 #define DDS_1M 13
994 DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0),
995 DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0),
996 DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0)
1000 * Now the RXEQ section of the table.
1002 /* Hardware packs an element number and register address thus: */
1003 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
1004 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1005 {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1007 #define RXEQ_VAL_ALL(elt, adr, val) \
1008 {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1010 #define RXEQ_SDR_DFELTH 0
1011 #define RXEQ_SDR_TLTH 0
1012 #define RXEQ_SDR_G1CNT_Z1CNT 0x11
1013 #define RXEQ_SDR_ZCNT 23
1015 static struct rxeq_init {
1016 u16 rdesc; /* in form used in SerDesDDSRXEQ */
1017 u8 rdata[4];
1018 } rxeq_init_vals[] = {
1019 /* Set Rcv Eq. to Preset node */
1020 RXEQ_VAL_ALL(7, 0x27, 0x10),
1021 /* Set DFELTHFDR/HDR thresholds */
1022 RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1023 RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1024 /* Set TLTHFDR/HDR theshold */
1025 RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1026 RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */
1027 /* Set Preamp setting 2 (ZFR/ZCNT) */
1028 RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1029 RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1030 /* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1031 RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1032 RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1033 /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1034 RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1035 RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1038 /* There are 17 values from vendor, but IBC only accesses the first 16 */
1039 #define DDS_ROWS (16)
1040 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1042 static int qib_sd_setvals(struct qib_devdata *dd)
1044 int idx, midx;
1045 int min_idx; /* Minimum index for this portion of table */
1046 uint32_t dds_reg_map;
1047 u64 __iomem *taddr, *iaddr;
1048 uint64_t data;
1049 uint64_t sdctl;
1051 taddr = dd->kregbase + kr_serdes_maptable;
1052 iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1055 * Init the DDS section of the table.
1056 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1057 * registers indicated in DDS_REG_MAP.
1059 sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1060 sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1061 sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1062 qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1065 * Iterate down table within loop for each register to store.
1067 dds_reg_map = DDS_REG_MAP;
1068 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1069 data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1070 writeq(data, iaddr + idx);
1071 mmiowb();
1072 qib_read_kreg32(dd, kr_scratch);
1073 dds_reg_map >>= 4;
1074 for (midx = 0; midx < DDS_ROWS; ++midx) {
1075 u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1077 data = dds_init_vals[midx].reg_vals[idx];
1078 writeq(data, daddr);
1079 mmiowb();
1080 qib_read_kreg32(dd, kr_scratch);
1081 } /* End inner for (vals for this reg, each row) */
1082 } /* end outer for (regs to be stored) */
1085 * Init the RXEQ section of the table.
1086 * This runs in a different order, as the pattern of
1087 * register references is more complex, but there are only
1088 * four "data" values per register.
1090 min_idx = idx; /* RXEQ indices pick up where DDS left off */
1091 taddr += 0x100; /* RXEQ data is in second half of table */
1092 /* Iterate through RXEQ register addresses */
1093 for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1094 int didx; /* "destination" */
1095 int vidx;
1097 /* didx is offset by min_idx to address RXEQ range of regs */
1098 didx = idx + min_idx;
1099 /* Store the next RXEQ register address */
1100 writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1101 mmiowb();
1102 qib_read_kreg32(dd, kr_scratch);
1103 /* Iterate through RXEQ values */
1104 for (vidx = 0; vidx < 4; vidx++) {
1105 data = rxeq_init_vals[idx].rdata[vidx];
1106 writeq(data, taddr + (vidx << 6) + idx);
1107 mmiowb();
1108 qib_read_kreg32(dd, kr_scratch);
1110 } /* end outer for (Reg-writes for RXEQ) */
1111 return 0;
1114 #define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1115 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1116 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1117 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1118 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1119 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1122 * Repeat a "store" across all channels of the IB SerDes.
1123 * Although nominally it inherits the "read value" of the last
1124 * channel it modified, the only really useful return is <0 for
1125 * failure, >= 0 for success. The parameter 'loc' is assumed to
1126 * be the location in some channel of the register to be modified
1127 * The caller can specify use of the "gang write" option of EPB,
1128 * in which case we use the specified channel data for any fields
1129 * not explicitely written.
1131 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1132 int mask)
1134 int ret = -1;
1135 int chnl;
1137 if (loc & EPB_GLOBAL_WR) {
1139 * Our caller has assured us that we can set all four
1140 * channels at once. Trust that. If mask is not 0xFF,
1141 * we will read the _specified_ channel for our starting
1142 * value.
1144 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1145 chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1146 if (mask != 0xFF) {
1147 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1148 loc & ~EPB_GLOBAL_WR, 0, 0);
1149 if (ret < 0) {
1150 int sloc = loc >> EPB_ADDR_SHF;
1152 qib_dev_err(dd,
1153 "pre-read failed: elt %d, addr 0x%X, chnl %d\n",
1154 (sloc & 0xF),
1155 (sloc >> 9) & 0x3f, chnl);
1156 return ret;
1158 val = (ret & ~mask) | (val & mask);
1160 loc &= ~(7 << (4+EPB_ADDR_SHF));
1161 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1162 if (ret < 0) {
1163 int sloc = loc >> EPB_ADDR_SHF;
1165 qib_dev_err(dd,
1166 "Global WR failed: elt %d, addr 0x%X, val %02X\n",
1167 (sloc & 0xF), (sloc >> 9) & 0x3f, val);
1169 return ret;
1171 /* Clear "channel" and set CS so we can simply iterate */
1172 loc &= ~(7 << (4+EPB_ADDR_SHF));
1173 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1174 for (chnl = 0; chnl < 4; ++chnl) {
1175 int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1177 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1178 if (ret < 0) {
1179 int sloc = loc >> EPB_ADDR_SHF;
1181 qib_dev_err(dd,
1182 "Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n",
1183 (sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1184 val & 0xFF, mask & 0xFF);
1185 break;
1188 return ret;
1192 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1193 * values, as gotten from first row of init table.
1195 static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1197 int ret;
1198 int idx, reg, data;
1199 uint32_t regmap;
1201 regmap = DDS_REG_MAP;
1202 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1203 reg = (regmap & 0xF);
1204 regmap >>= 4;
1205 data = ddi->reg_vals[idx];
1206 /* Vendor says RMW not needed for these regs, use 0xFF mask */
1207 ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1208 if (ret < 0)
1209 break;
1211 return ret;
1215 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1216 * values, as gotten from selected column of init table.
1218 static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1220 int ret;
1221 int ridx;
1222 int cnt = ARRAY_SIZE(rxeq_init_vals);
1224 for (ridx = 0; ridx < cnt; ++ridx) {
1225 int elt, reg, val, loc;
1227 elt = rxeq_init_vals[ridx].rdesc & 0xF;
1228 reg = rxeq_init_vals[ridx].rdesc >> 4;
1229 loc = EPB_LOC(0, elt, reg);
1230 val = rxeq_init_vals[ridx].rdata[vsel];
1231 /* mask of 0xFF, because hardware does full-byte store. */
1232 ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1233 if (ret < 0)
1234 break;
1236 return ret;
1240 * Set the default values (row 0) for DDR Driver Demphasis.
1241 * we do this initially and whenever we turn off IB-1.2
1243 * The "default" values for Rx equalization are also stored to
1244 * SerDes registers. Formerly (and still default), we used set 2.
1245 * For experimenting with cables and link-partners, we allow changing
1246 * that via a module parameter.
1248 static unsigned qib_rxeq_set = 2;
1249 module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1250 S_IWUSR | S_IRUGO);
1251 MODULE_PARM_DESC(rxeq_default_set,
1252 "Which set [0..3] of Rx Equalization values is default");
1254 static int qib_internal_presets(struct qib_devdata *dd)
1256 int ret = 0;
1258 ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1260 if (ret < 0)
1261 qib_dev_err(dd, "Failed to set default DDS values\n");
1262 ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1263 if (ret < 0)
1264 qib_dev_err(dd, "Failed to set default RXEQ values\n");
1265 return ret;
1268 int qib_sd7220_presets(struct qib_devdata *dd)
1270 int ret = 0;
1272 if (!dd->cspec->presets_needed)
1273 return ret;
1274 dd->cspec->presets_needed = 0;
1275 /* Assert uC reset, so we don't clash with it. */
1276 qib_ibsd_reset(dd, 1);
1277 udelay(2);
1278 qib_sd_trimdone_monitor(dd, "link-down");
1280 ret = qib_internal_presets(dd);
1281 return ret;
1284 static int qib_sd_trimself(struct qib_devdata *dd, int val)
1286 int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1288 return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1291 static int qib_sd_early(struct qib_devdata *dd)
1293 int ret;
1295 ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1296 if (ret < 0)
1297 goto bail;
1298 ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1299 if (ret < 0)
1300 goto bail;
1301 ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1302 bail:
1303 return ret;
1306 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1307 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1308 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1310 static int qib_sd_dactrim(struct qib_devdata *dd)
1312 int ret;
1314 ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1315 if (ret < 0)
1316 goto bail;
1318 /* more fine-tuning of what will be default */
1319 ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1320 if (ret < 0)
1321 goto bail;
1323 ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1324 if (ret < 0)
1325 goto bail;
1327 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1328 if (ret < 0)
1329 goto bail;
1331 ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1332 if (ret < 0)
1333 goto bail;
1336 * Delay for max possible number of steps, with slop.
1337 * Each step is about 4usec.
1339 udelay(415);
1341 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1343 bail:
1344 return ret;
1347 #define RELOCK_FIRST_MS 3
1348 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1349 void toggle_7220_rclkrls(struct qib_devdata *dd)
1351 int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1352 int ret;
1354 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1355 if (ret < 0)
1356 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1357 else {
1358 udelay(1);
1359 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1361 /* And again for good measure */
1362 udelay(1);
1363 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1364 if (ret < 0)
1365 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1366 else {
1367 udelay(1);
1368 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1370 /* Now reset xgxs and IBC to complete the recovery */
1371 dd->f_xgxs_reset(dd->pport);
1375 * Shut down the timer that polls for relock occasions, if needed
1376 * this is "hooked" from qib_7220_quiet_serdes(), which is called
1377 * just before qib_shutdown_device() in qib_driver.c shuts down all
1378 * the other timers
1380 void shutdown_7220_relock_poll(struct qib_devdata *dd)
1382 if (dd->cspec->relock_timer_active)
1383 del_timer_sync(&dd->cspec->relock_timer);
1386 static unsigned qib_relock_by_timer = 1;
1387 module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1388 S_IWUSR | S_IRUGO);
1389 MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1391 static void qib_run_relock(struct timer_list *t)
1393 struct qib_chip_specific *cs = from_timer(cs, t, relock_timer);
1394 struct qib_devdata *dd = cs->dd;
1395 struct qib_pportdata *ppd = dd->pport;
1396 int timeoff;
1399 * Check link-training state for "stuck" state, when down.
1400 * if found, try relock and schedule another try at
1401 * exponentially growing delay, maxed at one second.
1402 * if not stuck, our work is done.
1404 if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1405 (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1406 QIBL_LINKACTIVE))) {
1407 if (qib_relock_by_timer) {
1408 if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1409 toggle_7220_rclkrls(dd);
1411 /* re-set timer for next check */
1412 timeoff = cs->relock_interval << 1;
1413 if (timeoff > HZ)
1414 timeoff = HZ;
1415 cs->relock_interval = timeoff;
1416 } else
1417 timeoff = HZ;
1418 mod_timer(&cs->relock_timer, jiffies + timeoff);
1421 void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1423 struct qib_chip_specific *cs = dd->cspec;
1425 if (ibup) {
1426 /* We are now up, relax timer to 1 second interval */
1427 if (cs->relock_timer_active) {
1428 cs->relock_interval = HZ;
1429 mod_timer(&cs->relock_timer, jiffies + HZ);
1431 } else {
1432 /* Transition to down, (re-)set timer to short interval. */
1433 unsigned int timeout;
1435 timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1436 if (timeout == 0)
1437 timeout = 1;
1438 /* If timer has not yet been started, do so. */
1439 if (!cs->relock_timer_active) {
1440 cs->relock_timer_active = 1;
1441 timer_setup(&cs->relock_timer, qib_run_relock, 0);
1442 cs->relock_interval = timeout;
1443 cs->relock_timer.expires = jiffies + timeout;
1444 add_timer(&cs->relock_timer);
1445 } else {
1446 cs->relock_interval = timeout;
1447 mod_timer(&cs->relock_timer, jiffies + timeout);