2 * Copyright(c) 2016, 2017 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
60 static void rvt_rc_timeout(struct timer_list
*t
);
63 * Convert the AETH RNR timeout code into the number of microseconds.
65 static const u32 ib_rvt_rnr_table
[32] = {
66 655360, /* 00: 655.36 */
86 10240, /* 14: 10.24 */
87 15360, /* 15: 15.36 */
88 20480, /* 16: 20.48 */
89 30720, /* 17: 30.72 */
90 40960, /* 18: 40.96 */
91 61440, /* 19: 61.44 */
92 81920, /* 1A: 81.92 */
93 122880, /* 1B: 122.88 */
94 163840, /* 1C: 163.84 */
95 245760, /* 1D: 245.76 */
96 327680, /* 1E: 327.68 */
97 491520 /* 1F: 491.52 */
101 * Note that it is OK to post send work requests in the SQE and ERR
102 * states; rvt_do_send() will process them and generate error
103 * completions as per IB 1.2 C10-96.
105 const int ib_rvt_state_ops
[IB_QPS_ERR
+ 1] = {
107 [IB_QPS_INIT
] = RVT_POST_RECV_OK
,
108 [IB_QPS_RTR
] = RVT_POST_RECV_OK
| RVT_PROCESS_RECV_OK
,
109 [IB_QPS_RTS
] = RVT_POST_RECV_OK
| RVT_PROCESS_RECV_OK
|
110 RVT_POST_SEND_OK
| RVT_PROCESS_SEND_OK
|
111 RVT_PROCESS_NEXT_SEND_OK
,
112 [IB_QPS_SQD
] = RVT_POST_RECV_OK
| RVT_PROCESS_RECV_OK
|
113 RVT_POST_SEND_OK
| RVT_PROCESS_SEND_OK
,
114 [IB_QPS_SQE
] = RVT_POST_RECV_OK
| RVT_PROCESS_RECV_OK
|
115 RVT_POST_SEND_OK
| RVT_FLUSH_SEND
,
116 [IB_QPS_ERR
] = RVT_POST_RECV_OK
| RVT_FLUSH_RECV
|
117 RVT_POST_SEND_OK
| RVT_FLUSH_SEND
,
119 EXPORT_SYMBOL(ib_rvt_state_ops
);
121 static void get_map_page(struct rvt_qpn_table
*qpt
,
122 struct rvt_qpn_map
*map
)
124 unsigned long page
= get_zeroed_page(GFP_KERNEL
);
127 * Free the page if someone raced with us installing it.
130 spin_lock(&qpt
->lock
);
134 map
->page
= (void *)page
;
135 spin_unlock(&qpt
->lock
);
139 * init_qpn_table - initialize the QP number table for a device
140 * @qpt: the QPN table
142 static int init_qpn_table(struct rvt_dev_info
*rdi
, struct rvt_qpn_table
*qpt
)
145 struct rvt_qpn_map
*map
;
148 if (!(rdi
->dparms
.qpn_res_end
>= rdi
->dparms
.qpn_res_start
))
151 spin_lock_init(&qpt
->lock
);
153 qpt
->last
= rdi
->dparms
.qpn_start
;
154 qpt
->incr
= rdi
->dparms
.qpn_inc
<< rdi
->dparms
.qos_shift
;
157 * Drivers may want some QPs beyond what we need for verbs let them use
158 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
159 * for those. The reserved range must be *after* the range which verbs
163 /* Figure out number of bit maps needed before reserved range */
164 qpt
->nmaps
= rdi
->dparms
.qpn_res_start
/ RVT_BITS_PER_PAGE
;
166 /* This should always be zero */
167 offset
= rdi
->dparms
.qpn_res_start
& RVT_BITS_PER_PAGE_MASK
;
169 /* Starting with the first reserved bit map */
170 map
= &qpt
->map
[qpt
->nmaps
];
172 rvt_pr_info(rdi
, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
173 rdi
->dparms
.qpn_res_start
, rdi
->dparms
.qpn_res_end
);
174 for (i
= rdi
->dparms
.qpn_res_start
; i
<= rdi
->dparms
.qpn_res_end
; i
++) {
176 get_map_page(qpt
, map
);
182 set_bit(offset
, map
->page
);
184 if (offset
== RVT_BITS_PER_PAGE
) {
195 * free_qpn_table - free the QP number table for a device
196 * @qpt: the QPN table
198 static void free_qpn_table(struct rvt_qpn_table
*qpt
)
202 for (i
= 0; i
< ARRAY_SIZE(qpt
->map
); i
++)
203 free_page((unsigned long)qpt
->map
[i
].page
);
207 * rvt_driver_qp_init - Init driver qp resources
208 * @rdi: rvt dev strucutre
210 * Return: 0 on success
212 int rvt_driver_qp_init(struct rvt_dev_info
*rdi
)
217 if (!rdi
->dparms
.qp_table_size
)
221 * If driver is not doing any QP allocation then make sure it is
222 * providing the necessary QP functions.
224 if (!rdi
->driver_f
.free_all_qps
||
225 !rdi
->driver_f
.qp_priv_alloc
||
226 !rdi
->driver_f
.qp_priv_free
||
227 !rdi
->driver_f
.notify_qp_reset
||
228 !rdi
->driver_f
.notify_restart_rc
)
231 /* allocate parent object */
232 rdi
->qp_dev
= kzalloc_node(sizeof(*rdi
->qp_dev
), GFP_KERNEL
,
237 /* allocate hash table */
238 rdi
->qp_dev
->qp_table_size
= rdi
->dparms
.qp_table_size
;
239 rdi
->qp_dev
->qp_table_bits
= ilog2(rdi
->dparms
.qp_table_size
);
240 rdi
->qp_dev
->qp_table
=
241 kmalloc_array_node(rdi
->qp_dev
->qp_table_size
,
242 sizeof(*rdi
->qp_dev
->qp_table
),
243 GFP_KERNEL
, rdi
->dparms
.node
);
244 if (!rdi
->qp_dev
->qp_table
)
247 for (i
= 0; i
< rdi
->qp_dev
->qp_table_size
; i
++)
248 RCU_INIT_POINTER(rdi
->qp_dev
->qp_table
[i
], NULL
);
250 spin_lock_init(&rdi
->qp_dev
->qpt_lock
);
252 /* initialize qpn map */
253 if (init_qpn_table(rdi
, &rdi
->qp_dev
->qpn_table
))
256 spin_lock_init(&rdi
->n_qps_lock
);
261 kfree(rdi
->qp_dev
->qp_table
);
262 free_qpn_table(&rdi
->qp_dev
->qpn_table
);
271 * free_all_qps - check for QPs still in use
272 * @rdi: rvt device info structure
274 * There should not be any QPs still in use.
275 * Free memory for table.
277 static unsigned rvt_free_all_qps(struct rvt_dev_info
*rdi
)
281 unsigned n
, qp_inuse
= 0;
282 spinlock_t
*ql
; /* work around too long line below */
284 if (rdi
->driver_f
.free_all_qps
)
285 qp_inuse
= rdi
->driver_f
.free_all_qps(rdi
);
287 qp_inuse
+= rvt_mcast_tree_empty(rdi
);
292 ql
= &rdi
->qp_dev
->qpt_lock
;
293 spin_lock_irqsave(ql
, flags
);
294 for (n
= 0; n
< rdi
->qp_dev
->qp_table_size
; n
++) {
295 qp
= rcu_dereference_protected(rdi
->qp_dev
->qp_table
[n
],
296 lockdep_is_held(ql
));
297 RCU_INIT_POINTER(rdi
->qp_dev
->qp_table
[n
], NULL
);
299 for (; qp
; qp
= rcu_dereference_protected(qp
->next
,
300 lockdep_is_held(ql
)))
303 spin_unlock_irqrestore(ql
, flags
);
309 * rvt_qp_exit - clean up qps on device exit
310 * @rdi: rvt dev structure
312 * Check for qp leaks and free resources.
314 void rvt_qp_exit(struct rvt_dev_info
*rdi
)
316 u32 qps_inuse
= rvt_free_all_qps(rdi
);
319 rvt_pr_err(rdi
, "QP memory leak! %u still in use\n",
324 kfree(rdi
->qp_dev
->qp_table
);
325 free_qpn_table(&rdi
->qp_dev
->qpn_table
);
329 static inline unsigned mk_qpn(struct rvt_qpn_table
*qpt
,
330 struct rvt_qpn_map
*map
, unsigned off
)
332 return (map
- qpt
->map
) * RVT_BITS_PER_PAGE
+ off
;
336 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
337 * IB_QPT_SMI/IB_QPT_GSI
338 * @rdi: rvt device info structure
339 * @qpt: queue pair number table pointer
340 * @port_num: IB port number, 1 based, comes from core
342 * Return: The queue pair number
344 static int alloc_qpn(struct rvt_dev_info
*rdi
, struct rvt_qpn_table
*qpt
,
345 enum ib_qp_type type
, u8 port_num
)
347 u32 i
, offset
, max_scan
, qpn
;
348 struct rvt_qpn_map
*map
;
351 if (rdi
->driver_f
.alloc_qpn
)
352 return rdi
->driver_f
.alloc_qpn(rdi
, qpt
, type
, port_num
);
354 if (type
== IB_QPT_SMI
|| type
== IB_QPT_GSI
) {
357 ret
= type
== IB_QPT_GSI
;
358 n
= 1 << (ret
+ 2 * (port_num
- 1));
359 spin_lock(&qpt
->lock
);
364 spin_unlock(&qpt
->lock
);
368 qpn
= qpt
->last
+ qpt
->incr
;
369 if (qpn
>= RVT_QPN_MAX
)
370 qpn
= qpt
->incr
| ((qpt
->last
& 1) ^ 1);
371 /* offset carries bit 0 */
372 offset
= qpn
& RVT_BITS_PER_PAGE_MASK
;
373 map
= &qpt
->map
[qpn
/ RVT_BITS_PER_PAGE
];
374 max_scan
= qpt
->nmaps
- !offset
;
376 if (unlikely(!map
->page
)) {
377 get_map_page(qpt
, map
);
378 if (unlikely(!map
->page
))
382 if (!test_and_set_bit(offset
, map
->page
)) {
389 * This qpn might be bogus if offset >= BITS_PER_PAGE.
390 * That is OK. It gets re-assigned below
392 qpn
= mk_qpn(qpt
, map
, offset
);
393 } while (offset
< RVT_BITS_PER_PAGE
&& qpn
< RVT_QPN_MAX
);
395 * In order to keep the number of pages allocated to a
396 * minimum, we scan the all existing pages before increasing
397 * the size of the bitmap table.
399 if (++i
> max_scan
) {
400 if (qpt
->nmaps
== RVT_QPNMAP_ENTRIES
)
402 map
= &qpt
->map
[qpt
->nmaps
++];
403 /* start at incr with current bit 0 */
404 offset
= qpt
->incr
| (offset
& 1);
405 } else if (map
< &qpt
->map
[qpt
->nmaps
]) {
407 /* start at incr with current bit 0 */
408 offset
= qpt
->incr
| (offset
& 1);
411 /* wrap to first map page, invert bit 0 */
412 offset
= qpt
->incr
| ((offset
& 1) ^ 1);
414 /* there can be no set bits in low-order QoS bits */
415 WARN_ON(offset
& (BIT(rdi
->dparms
.qos_shift
) - 1));
416 qpn
= mk_qpn(qpt
, map
, offset
);
426 * rvt_clear_mr_refs - Drop help mr refs
427 * @qp: rvt qp data structure
428 * @clr_sends: If shoudl clear send side or not
430 static void rvt_clear_mr_refs(struct rvt_qp
*qp
, int clr_sends
)
433 struct rvt_dev_info
*rdi
= ib_to_rvt(qp
->ibqp
.device
);
435 if (test_and_clear_bit(RVT_R_REWIND_SGE
, &qp
->r_aflags
))
436 rvt_put_ss(&qp
->s_rdma_read_sge
);
438 rvt_put_ss(&qp
->r_sge
);
441 while (qp
->s_last
!= qp
->s_head
) {
442 struct rvt_swqe
*wqe
= rvt_get_swqe_ptr(qp
, qp
->s_last
);
446 if (qp
->ibqp
.qp_type
== IB_QPT_UD
||
447 qp
->ibqp
.qp_type
== IB_QPT_SMI
||
448 qp
->ibqp
.qp_type
== IB_QPT_GSI
)
449 atomic_dec(&ibah_to_rvtah(
450 wqe
->ud_wr
.ah
)->refcount
);
451 if (++qp
->s_last
>= qp
->s_size
)
453 smp_wmb(); /* see qp_set_savail */
456 rvt_put_mr(qp
->s_rdma_mr
);
457 qp
->s_rdma_mr
= NULL
;
461 for (n
= 0; qp
->s_ack_queue
&& n
< rvt_max_atomic(rdi
); n
++) {
462 struct rvt_ack_entry
*e
= &qp
->s_ack_queue
[n
];
464 if (e
->rdma_sge
.mr
) {
465 rvt_put_mr(e
->rdma_sge
.mr
);
466 e
->rdma_sge
.mr
= NULL
;
472 * rvt_swqe_has_lkey - return true if lkey is used by swqe
473 * @wqe - the send wqe
476 * Test the swqe for using lkey
478 static bool rvt_swqe_has_lkey(struct rvt_swqe
*wqe
, u32 lkey
)
482 for (i
= 0; i
< wqe
->wr
.num_sge
; i
++) {
483 struct rvt_sge
*sge
= &wqe
->sg_list
[i
];
485 if (rvt_mr_has_lkey(sge
->mr
, lkey
))
492 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
496 static bool rvt_qp_sends_has_lkey(struct rvt_qp
*qp
, u32 lkey
)
498 u32 s_last
= qp
->s_last
;
500 while (s_last
!= qp
->s_head
) {
501 struct rvt_swqe
*wqe
= rvt_get_swqe_ptr(qp
, s_last
);
503 if (rvt_swqe_has_lkey(wqe
, lkey
))
506 if (++s_last
>= qp
->s_size
)
510 if (rvt_mr_has_lkey(qp
->s_rdma_mr
, lkey
))
516 * rvt_qp_acks_has_lkey - return true if acks have lkey
520 static bool rvt_qp_acks_has_lkey(struct rvt_qp
*qp
, u32 lkey
)
523 struct rvt_dev_info
*rdi
= ib_to_rvt(qp
->ibqp
.device
);
525 for (i
= 0; qp
->s_ack_queue
&& i
< rvt_max_atomic(rdi
); i
++) {
526 struct rvt_ack_entry
*e
= &qp
->s_ack_queue
[i
];
528 if (rvt_mr_has_lkey(e
->rdma_sge
.mr
, lkey
))
535 * rvt_qp_mr_clean - clean up remote ops for lkey
537 * @lkey - the lkey that is being de-registered
539 * This routine checks if the lkey is being used by
542 * If so, the qp is put into an error state to elminate
543 * any references from the qp.
545 void rvt_qp_mr_clean(struct rvt_qp
*qp
, u32 lkey
)
547 bool lastwqe
= false;
549 if (qp
->ibqp
.qp_type
== IB_QPT_SMI
||
550 qp
->ibqp
.qp_type
== IB_QPT_GSI
)
551 /* avoid special QPs */
553 spin_lock_irq(&qp
->r_lock
);
554 spin_lock(&qp
->s_hlock
);
555 spin_lock(&qp
->s_lock
);
557 if (qp
->state
== IB_QPS_ERR
|| qp
->state
== IB_QPS_RESET
)
560 if (rvt_ss_has_lkey(&qp
->r_sge
, lkey
) ||
561 rvt_qp_sends_has_lkey(qp
, lkey
) ||
562 rvt_qp_acks_has_lkey(qp
, lkey
))
563 lastwqe
= rvt_error_qp(qp
, IB_WC_LOC_PROT_ERR
);
565 spin_unlock(&qp
->s_lock
);
566 spin_unlock(&qp
->s_hlock
);
567 spin_unlock_irq(&qp
->r_lock
);
571 ev
.device
= qp
->ibqp
.device
;
572 ev
.element
.qp
= &qp
->ibqp
;
573 ev
.event
= IB_EVENT_QP_LAST_WQE_REACHED
;
574 qp
->ibqp
.event_handler(&ev
, qp
->ibqp
.qp_context
);
579 * rvt_remove_qp - remove qp form table
580 * @rdi: rvt dev struct
583 * Remove the QP from the table so it can't be found asynchronously by
584 * the receive routine.
586 static void rvt_remove_qp(struct rvt_dev_info
*rdi
, struct rvt_qp
*qp
)
588 struct rvt_ibport
*rvp
= rdi
->ports
[qp
->port_num
- 1];
589 u32 n
= hash_32(qp
->ibqp
.qp_num
, rdi
->qp_dev
->qp_table_bits
);
593 spin_lock_irqsave(&rdi
->qp_dev
->qpt_lock
, flags
);
595 if (rcu_dereference_protected(rvp
->qp
[0],
596 lockdep_is_held(&rdi
->qp_dev
->qpt_lock
)) == qp
) {
597 RCU_INIT_POINTER(rvp
->qp
[0], NULL
);
598 } else if (rcu_dereference_protected(rvp
->qp
[1],
599 lockdep_is_held(&rdi
->qp_dev
->qpt_lock
)) == qp
) {
600 RCU_INIT_POINTER(rvp
->qp
[1], NULL
);
603 struct rvt_qp __rcu
**qpp
;
606 qpp
= &rdi
->qp_dev
->qp_table
[n
];
607 for (; (q
= rcu_dereference_protected(*qpp
,
608 lockdep_is_held(&rdi
->qp_dev
->qpt_lock
))) != NULL
;
611 RCU_INIT_POINTER(*qpp
,
612 rcu_dereference_protected(qp
->next
,
613 lockdep_is_held(&rdi
->qp_dev
->qpt_lock
)));
615 trace_rvt_qpremove(qp
, n
);
621 spin_unlock_irqrestore(&rdi
->qp_dev
->qpt_lock
, flags
);
629 * rvt_init_qp - initialize the QP state to the reset state
630 * @qp: the QP to init or reinit
633 * This function is called from both rvt_create_qp() and
634 * rvt_reset_qp(). The difference is that the reset
635 * patch the necessary locks to protect against concurent
638 static void rvt_init_qp(struct rvt_dev_info
*rdi
, struct rvt_qp
*qp
,
639 enum ib_qp_type type
)
643 qp
->qp_access_flags
= 0;
644 qp
->s_flags
&= RVT_S_SIGNAL_REQ_WR
;
650 qp
->s_sending_psn
= 0;
651 qp
->s_sending_hpsn
= 0;
655 if (type
== IB_QPT_RC
) {
656 qp
->s_state
= IB_OPCODE_RC_SEND_LAST
;
657 qp
->r_state
= IB_OPCODE_RC_SEND_LAST
;
659 qp
->s_state
= IB_OPCODE_UC_SEND_LAST
;
660 qp
->r_state
= IB_OPCODE_UC_SEND_LAST
;
662 qp
->s_ack_state
= IB_OPCODE_RC_ACKNOWLEDGE
;
673 qp
->s_mig_state
= IB_MIG_MIGRATED
;
674 qp
->r_head_ack_queue
= 0;
675 qp
->s_tail_ack_queue
= 0;
676 qp
->s_num_rd_atomic
= 0;
678 qp
->r_rq
.wq
->head
= 0;
679 qp
->r_rq
.wq
->tail
= 0;
681 qp
->r_sge
.num_sge
= 0;
682 atomic_set(&qp
->s_reserved_used
, 0);
686 * rvt_reset_qp - initialize the QP state to the reset state
687 * @qp: the QP to reset
690 * r_lock, s_hlock, and s_lock are required to be held by the caller
692 static void rvt_reset_qp(struct rvt_dev_info
*rdi
, struct rvt_qp
*qp
,
693 enum ib_qp_type type
)
694 __must_hold(&qp
->s_lock
)
695 __must_hold(&qp
->s_hlock
)
696 __must_hold(&qp
->r_lock
)
698 lockdep_assert_held(&qp
->r_lock
);
699 lockdep_assert_held(&qp
->s_hlock
);
700 lockdep_assert_held(&qp
->s_lock
);
701 if (qp
->state
!= IB_QPS_RESET
) {
702 qp
->state
= IB_QPS_RESET
;
704 /* Let drivers flush their waitlist */
705 rdi
->driver_f
.flush_qp_waiters(qp
);
706 rvt_stop_rc_timers(qp
);
707 qp
->s_flags
&= ~(RVT_S_TIMER
| RVT_S_ANY_WAIT
);
708 spin_unlock(&qp
->s_lock
);
709 spin_unlock(&qp
->s_hlock
);
710 spin_unlock_irq(&qp
->r_lock
);
712 /* Stop the send queue and the retry timer */
713 rdi
->driver_f
.stop_send_queue(qp
);
714 rvt_del_timers_sync(qp
);
715 /* Wait for things to stop */
716 rdi
->driver_f
.quiesce_qp(qp
);
718 /* take qp out the hash and wait for it to be unused */
719 rvt_remove_qp(rdi
, qp
);
721 /* grab the lock b/c it was locked at call time */
722 spin_lock_irq(&qp
->r_lock
);
723 spin_lock(&qp
->s_hlock
);
724 spin_lock(&qp
->s_lock
);
726 rvt_clear_mr_refs(qp
, 1);
728 * Let the driver do any tear down or re-init it needs to for
729 * a qp that has been reset
731 rdi
->driver_f
.notify_qp_reset(qp
);
733 rvt_init_qp(rdi
, qp
, type
);
734 lockdep_assert_held(&qp
->r_lock
);
735 lockdep_assert_held(&qp
->s_hlock
);
736 lockdep_assert_held(&qp
->s_lock
);
739 /** rvt_free_qpn - Free a qpn from the bit map
741 * @qpn: queue pair number to free
743 static void rvt_free_qpn(struct rvt_qpn_table
*qpt
, u32 qpn
)
745 struct rvt_qpn_map
*map
;
747 map
= qpt
->map
+ (qpn
& RVT_QPN_MASK
) / RVT_BITS_PER_PAGE
;
749 clear_bit(qpn
& RVT_BITS_PER_PAGE_MASK
, map
->page
);
753 * rvt_create_qp - create a queue pair for a device
754 * @ibpd: the protection domain who's device we create the queue pair for
755 * @init_attr: the attributes of the queue pair
756 * @udata: user data for libibverbs.so
758 * Queue pair creation is mostly an rvt issue. However, drivers have their own
759 * unique idea of what queue pair numbers mean. For instance there is a reserved
762 * Return: the queue pair on success, otherwise returns an errno.
764 * Called by the ib_create_qp() core verbs function.
766 struct ib_qp
*rvt_create_qp(struct ib_pd
*ibpd
,
767 struct ib_qp_init_attr
*init_attr
,
768 struct ib_udata
*udata
)
772 struct rvt_swqe
*swq
= NULL
;
775 struct ib_qp
*ret
= ERR_PTR(-ENOMEM
);
776 struct rvt_dev_info
*rdi
= ib_to_rvt(ibpd
->device
);
781 return ERR_PTR(-EINVAL
);
783 if (init_attr
->cap
.max_send_sge
> rdi
->dparms
.props
.max_sge
||
784 init_attr
->cap
.max_send_wr
> rdi
->dparms
.props
.max_qp_wr
||
785 init_attr
->create_flags
)
786 return ERR_PTR(-EINVAL
);
788 /* Check receive queue parameters if no SRQ is specified. */
789 if (!init_attr
->srq
) {
790 if (init_attr
->cap
.max_recv_sge
> rdi
->dparms
.props
.max_sge
||
791 init_attr
->cap
.max_recv_wr
> rdi
->dparms
.props
.max_qp_wr
)
792 return ERR_PTR(-EINVAL
);
794 if (init_attr
->cap
.max_send_sge
+
795 init_attr
->cap
.max_send_wr
+
796 init_attr
->cap
.max_recv_sge
+
797 init_attr
->cap
.max_recv_wr
== 0)
798 return ERR_PTR(-EINVAL
);
801 init_attr
->cap
.max_send_wr
+ 1 +
802 rdi
->dparms
.reserved_operations
;
803 switch (init_attr
->qp_type
) {
806 if (init_attr
->port_num
== 0 ||
807 init_attr
->port_num
> ibpd
->device
->phys_port_cnt
)
808 return ERR_PTR(-EINVAL
);
813 sz
= sizeof(struct rvt_sge
) *
814 init_attr
->cap
.max_send_sge
+
815 sizeof(struct rvt_swqe
);
816 swq
= vzalloc_node(sqsize
* sz
, rdi
->dparms
.node
);
818 return ERR_PTR(-ENOMEM
);
822 if (init_attr
->srq
) {
823 struct rvt_srq
*srq
= ibsrq_to_rvtsrq(init_attr
->srq
);
825 if (srq
->rq
.max_sge
> 1)
826 sg_list_sz
= sizeof(*qp
->r_sg_list
) *
827 (srq
->rq
.max_sge
- 1);
828 } else if (init_attr
->cap
.max_recv_sge
> 1)
829 sg_list_sz
= sizeof(*qp
->r_sg_list
) *
830 (init_attr
->cap
.max_recv_sge
- 1);
831 qp
= kzalloc_node(sz
+ sg_list_sz
, GFP_KERNEL
,
836 RCU_INIT_POINTER(qp
->next
, NULL
);
837 if (init_attr
->qp_type
== IB_QPT_RC
) {
840 sizeof(*qp
->s_ack_queue
) *
844 if (!qp
->s_ack_queue
)
847 /* initialize timers needed for rc qp */
848 timer_setup(&qp
->s_timer
, rvt_rc_timeout
, 0);
849 hrtimer_init(&qp
->s_rnr_timer
, CLOCK_MONOTONIC
,
851 qp
->s_rnr_timer
.function
= rvt_rc_rnr_retry
;
854 * Driver needs to set up it's private QP structure and do any
855 * initialization that is needed.
857 priv
= rdi
->driver_f
.qp_priv_alloc(rdi
, qp
);
863 qp
->timeout_jiffies
=
864 usecs_to_jiffies((4096UL * (1UL << qp
->timeout
)) /
866 if (init_attr
->srq
) {
869 qp
->r_rq
.size
= init_attr
->cap
.max_recv_wr
+ 1;
870 qp
->r_rq
.max_sge
= init_attr
->cap
.max_recv_sge
;
871 sz
= (sizeof(struct ib_sge
) * qp
->r_rq
.max_sge
) +
872 sizeof(struct rvt_rwqe
);
874 qp
->r_rq
.wq
= vmalloc_user(
875 sizeof(struct rvt_rwq
) +
878 qp
->r_rq
.wq
= vzalloc_node(
879 sizeof(struct rvt_rwq
) +
883 goto bail_driver_priv
;
887 * ib_create_qp() will initialize qp->ibqp
888 * except for qp->ibqp.qp_num.
890 spin_lock_init(&qp
->r_lock
);
891 spin_lock_init(&qp
->s_hlock
);
892 spin_lock_init(&qp
->s_lock
);
893 spin_lock_init(&qp
->r_rq
.lock
);
894 atomic_set(&qp
->refcount
, 0);
895 atomic_set(&qp
->local_ops_pending
, 0);
896 init_waitqueue_head(&qp
->wait
);
897 INIT_LIST_HEAD(&qp
->rspwait
);
898 qp
->state
= IB_QPS_RESET
;
901 qp
->s_avail
= init_attr
->cap
.max_send_wr
;
902 qp
->s_max_sge
= init_attr
->cap
.max_send_sge
;
903 if (init_attr
->sq_sig_type
== IB_SIGNAL_REQ_WR
)
904 qp
->s_flags
= RVT_S_SIGNAL_REQ_WR
;
906 err
= alloc_qpn(rdi
, &rdi
->qp_dev
->qpn_table
,
908 init_attr
->port_num
);
913 qp
->ibqp
.qp_num
= err
;
914 qp
->port_num
= init_attr
->port_num
;
915 rvt_init_qp(rdi
, qp
, init_attr
->qp_type
);
919 /* Don't support raw QPs */
920 return ERR_PTR(-EINVAL
);
923 init_attr
->cap
.max_inline_data
= 0;
926 * Return the address of the RWQ as the offset to mmap.
927 * See rvt_mmap() for details.
929 if (udata
&& udata
->outlen
>= sizeof(__u64
)) {
933 err
= ib_copy_to_udata(udata
, &offset
,
940 u32 s
= sizeof(struct rvt_rwq
) + qp
->r_rq
.size
* sz
;
942 qp
->ip
= rvt_create_mmap_info(rdi
, s
,
943 ibpd
->uobject
->context
,
946 ret
= ERR_PTR(-ENOMEM
);
950 err
= ib_copy_to_udata(udata
, &qp
->ip
->offset
,
951 sizeof(qp
->ip
->offset
));
957 qp
->pid
= current
->pid
;
960 spin_lock(&rdi
->n_qps_lock
);
961 if (rdi
->n_qps_allocated
== rdi
->dparms
.props
.max_qp
) {
962 spin_unlock(&rdi
->n_qps_lock
);
963 ret
= ERR_PTR(-ENOMEM
);
967 rdi
->n_qps_allocated
++;
969 * Maintain a busy_jiffies variable that will be added to the timeout
970 * period in mod_retry_timer and add_retry_timer. This busy jiffies
971 * is scaled by the number of rc qps created for the device to reduce
972 * the number of timeouts occurring when there is a large number of
973 * qps. busy_jiffies is incremented every rc qp scaling interval.
974 * The scaling interval is selected based on extensive performance
975 * evaluation of targeted workloads.
977 if (init_attr
->qp_type
== IB_QPT_RC
) {
979 rdi
->busy_jiffies
= rdi
->n_rc_qps
/ RC_QP_SCALING_INTERVAL
;
981 spin_unlock(&rdi
->n_qps_lock
);
984 spin_lock_irq(&rdi
->pending_lock
);
985 list_add(&qp
->ip
->pending_mmaps
, &rdi
->pending_mmaps
);
986 spin_unlock_irq(&rdi
->pending_lock
);
992 * We have our QP and its good, now keep track of what types of opcodes
993 * can be processed on this QP. We do this by keeping track of what the
994 * 3 high order bits of the opcode are.
996 switch (init_attr
->qp_type
) {
1000 qp
->allowed_ops
= IB_OPCODE_UD
;
1003 qp
->allowed_ops
= IB_OPCODE_RC
;
1006 qp
->allowed_ops
= IB_OPCODE_UC
;
1009 ret
= ERR_PTR(-EINVAL
);
1017 kref_put(&qp
->ip
->ref
, rvt_release_mmap_info
);
1020 rvt_free_qpn(&rdi
->qp_dev
->qpn_table
, qp
->ibqp
.qp_num
);
1027 rdi
->driver_f
.qp_priv_free(rdi
, qp
);
1030 kfree(qp
->s_ack_queue
);
1040 * rvt_error_qp - put a QP into the error state
1041 * @qp: the QP to put into the error state
1042 * @err: the receive completion error to signal if a RWQE is active
1044 * Flushes both send and receive work queues.
1046 * Return: true if last WQE event should be generated.
1047 * The QP r_lock and s_lock should be held and interrupts disabled.
1048 * If we are already in error state, just return.
1050 int rvt_error_qp(struct rvt_qp
*qp
, enum ib_wc_status err
)
1054 struct rvt_dev_info
*rdi
= ib_to_rvt(qp
->ibqp
.device
);
1056 lockdep_assert_held(&qp
->r_lock
);
1057 lockdep_assert_held(&qp
->s_lock
);
1058 if (qp
->state
== IB_QPS_ERR
|| qp
->state
== IB_QPS_RESET
)
1061 qp
->state
= IB_QPS_ERR
;
1063 if (qp
->s_flags
& (RVT_S_TIMER
| RVT_S_WAIT_RNR
)) {
1064 qp
->s_flags
&= ~(RVT_S_TIMER
| RVT_S_WAIT_RNR
);
1065 del_timer(&qp
->s_timer
);
1068 if (qp
->s_flags
& RVT_S_ANY_WAIT_SEND
)
1069 qp
->s_flags
&= ~RVT_S_ANY_WAIT_SEND
;
1071 rdi
->driver_f
.notify_error_qp(qp
);
1073 /* Schedule the sending tasklet to drain the send work queue. */
1074 if (READ_ONCE(qp
->s_last
) != qp
->s_head
)
1075 rdi
->driver_f
.schedule_send(qp
);
1077 rvt_clear_mr_refs(qp
, 0);
1079 memset(&wc
, 0, sizeof(wc
));
1081 wc
.opcode
= IB_WC_RECV
;
1083 if (test_and_clear_bit(RVT_R_WRID_VALID
, &qp
->r_aflags
)) {
1084 wc
.wr_id
= qp
->r_wr_id
;
1086 rvt_cq_enter(ibcq_to_rvtcq(qp
->ibqp
.recv_cq
), &wc
, 1);
1088 wc
.status
= IB_WC_WR_FLUSH_ERR
;
1095 spin_lock(&qp
->r_rq
.lock
);
1097 /* sanity check pointers before trusting them */
1100 if (head
>= qp
->r_rq
.size
)
1103 if (tail
>= qp
->r_rq
.size
)
1105 while (tail
!= head
) {
1106 wc
.wr_id
= rvt_get_rwqe_ptr(&qp
->r_rq
, tail
)->wr_id
;
1107 if (++tail
>= qp
->r_rq
.size
)
1109 rvt_cq_enter(ibcq_to_rvtcq(qp
->ibqp
.recv_cq
), &wc
, 1);
1113 spin_unlock(&qp
->r_rq
.lock
);
1114 } else if (qp
->ibqp
.event_handler
) {
1121 EXPORT_SYMBOL(rvt_error_qp
);
1124 * Put the QP into the hash table.
1125 * The hash table holds a reference to the QP.
1127 static void rvt_insert_qp(struct rvt_dev_info
*rdi
, struct rvt_qp
*qp
)
1129 struct rvt_ibport
*rvp
= rdi
->ports
[qp
->port_num
- 1];
1130 unsigned long flags
;
1133 spin_lock_irqsave(&rdi
->qp_dev
->qpt_lock
, flags
);
1135 if (qp
->ibqp
.qp_num
<= 1) {
1136 rcu_assign_pointer(rvp
->qp
[qp
->ibqp
.qp_num
], qp
);
1138 u32 n
= hash_32(qp
->ibqp
.qp_num
, rdi
->qp_dev
->qp_table_bits
);
1140 qp
->next
= rdi
->qp_dev
->qp_table
[n
];
1141 rcu_assign_pointer(rdi
->qp_dev
->qp_table
[n
], qp
);
1142 trace_rvt_qpinsert(qp
, n
);
1145 spin_unlock_irqrestore(&rdi
->qp_dev
->qpt_lock
, flags
);
1149 * rvt_modify_qp - modify the attributes of a queue pair
1150 * @ibqp: the queue pair who's attributes we're modifying
1151 * @attr: the new attributes
1152 * @attr_mask: the mask of attributes to modify
1153 * @udata: user data for libibverbs.so
1155 * Return: 0 on success, otherwise returns an errno.
1157 int rvt_modify_qp(struct ib_qp
*ibqp
, struct ib_qp_attr
*attr
,
1158 int attr_mask
, struct ib_udata
*udata
)
1160 struct rvt_dev_info
*rdi
= ib_to_rvt(ibqp
->device
);
1161 struct rvt_qp
*qp
= ibqp_to_rvtqp(ibqp
);
1162 enum ib_qp_state cur_state
, new_state
;
1166 int pmtu
= 0; /* for gcc warning only */
1167 enum rdma_link_layer link
;
1170 link
= rdma_port_get_link_layer(ibqp
->device
, qp
->port_num
);
1172 spin_lock_irq(&qp
->r_lock
);
1173 spin_lock(&qp
->s_hlock
);
1174 spin_lock(&qp
->s_lock
);
1176 cur_state
= attr_mask
& IB_QP_CUR_STATE
?
1177 attr
->cur_qp_state
: qp
->state
;
1178 new_state
= attr_mask
& IB_QP_STATE
? attr
->qp_state
: cur_state
;
1179 opa_ah
= rdma_cap_opa_ah(ibqp
->device
, qp
->port_num
);
1181 if (!ib_modify_qp_is_ok(cur_state
, new_state
, ibqp
->qp_type
,
1185 if (rdi
->driver_f
.check_modify_qp
&&
1186 rdi
->driver_f
.check_modify_qp(qp
, attr
, attr_mask
, udata
))
1189 if (attr_mask
& IB_QP_AV
) {
1191 if (rdma_ah_get_dlid(&attr
->ah_attr
) >=
1192 opa_get_mcast_base(OPA_MCAST_NR
))
1195 if (rdma_ah_get_dlid(&attr
->ah_attr
) >=
1196 be16_to_cpu(IB_MULTICAST_LID_BASE
))
1200 if (rvt_check_ah(qp
->ibqp
.device
, &attr
->ah_attr
))
1204 if (attr_mask
& IB_QP_ALT_PATH
) {
1206 if (rdma_ah_get_dlid(&attr
->alt_ah_attr
) >=
1207 opa_get_mcast_base(OPA_MCAST_NR
))
1210 if (rdma_ah_get_dlid(&attr
->alt_ah_attr
) >=
1211 be16_to_cpu(IB_MULTICAST_LID_BASE
))
1215 if (rvt_check_ah(qp
->ibqp
.device
, &attr
->alt_ah_attr
))
1217 if (attr
->alt_pkey_index
>= rvt_get_npkeys(rdi
))
1221 if (attr_mask
& IB_QP_PKEY_INDEX
)
1222 if (attr
->pkey_index
>= rvt_get_npkeys(rdi
))
1225 if (attr_mask
& IB_QP_MIN_RNR_TIMER
)
1226 if (attr
->min_rnr_timer
> 31)
1229 if (attr_mask
& IB_QP_PORT
)
1230 if (qp
->ibqp
.qp_type
== IB_QPT_SMI
||
1231 qp
->ibqp
.qp_type
== IB_QPT_GSI
||
1232 attr
->port_num
== 0 ||
1233 attr
->port_num
> ibqp
->device
->phys_port_cnt
)
1236 if (attr_mask
& IB_QP_DEST_QPN
)
1237 if (attr
->dest_qp_num
> RVT_QPN_MASK
)
1240 if (attr_mask
& IB_QP_RETRY_CNT
)
1241 if (attr
->retry_cnt
> 7)
1244 if (attr_mask
& IB_QP_RNR_RETRY
)
1245 if (attr
->rnr_retry
> 7)
1249 * Don't allow invalid path_mtu values. OK to set greater
1250 * than the active mtu (or even the max_cap, if we have tuned
1251 * that to a small mtu. We'll set qp->path_mtu
1252 * to the lesser of requested attribute mtu and active,
1253 * for packetizing messages.
1254 * Note that the QP port has to be set in INIT and MTU in RTR.
1256 if (attr_mask
& IB_QP_PATH_MTU
) {
1257 pmtu
= rdi
->driver_f
.get_pmtu_from_attr(rdi
, qp
, attr
);
1262 if (attr_mask
& IB_QP_PATH_MIG_STATE
) {
1263 if (attr
->path_mig_state
== IB_MIG_REARM
) {
1264 if (qp
->s_mig_state
== IB_MIG_ARMED
)
1266 if (new_state
!= IB_QPS_RTS
)
1268 } else if (attr
->path_mig_state
== IB_MIG_MIGRATED
) {
1269 if (qp
->s_mig_state
== IB_MIG_REARM
)
1271 if (new_state
!= IB_QPS_RTS
&& new_state
!= IB_QPS_SQD
)
1273 if (qp
->s_mig_state
== IB_MIG_ARMED
)
1280 if (attr_mask
& IB_QP_MAX_DEST_RD_ATOMIC
)
1281 if (attr
->max_dest_rd_atomic
> rdi
->dparms
.max_rdma_atomic
)
1284 switch (new_state
) {
1286 if (qp
->state
!= IB_QPS_RESET
)
1287 rvt_reset_qp(rdi
, qp
, ibqp
->qp_type
);
1291 /* Allow event to re-trigger if QP set to RTR more than once */
1292 qp
->r_flags
&= ~RVT_R_COMM_EST
;
1293 qp
->state
= new_state
;
1297 qp
->s_draining
= qp
->s_last
!= qp
->s_cur
;
1298 qp
->state
= new_state
;
1302 if (qp
->ibqp
.qp_type
== IB_QPT_RC
)
1304 qp
->state
= new_state
;
1308 lastwqe
= rvt_error_qp(qp
, IB_WC_WR_FLUSH_ERR
);
1312 qp
->state
= new_state
;
1316 if (attr_mask
& IB_QP_PKEY_INDEX
)
1317 qp
->s_pkey_index
= attr
->pkey_index
;
1319 if (attr_mask
& IB_QP_PORT
)
1320 qp
->port_num
= attr
->port_num
;
1322 if (attr_mask
& IB_QP_DEST_QPN
)
1323 qp
->remote_qpn
= attr
->dest_qp_num
;
1325 if (attr_mask
& IB_QP_SQ_PSN
) {
1326 qp
->s_next_psn
= attr
->sq_psn
& rdi
->dparms
.psn_modify_mask
;
1327 qp
->s_psn
= qp
->s_next_psn
;
1328 qp
->s_sending_psn
= qp
->s_next_psn
;
1329 qp
->s_last_psn
= qp
->s_next_psn
- 1;
1330 qp
->s_sending_hpsn
= qp
->s_last_psn
;
1333 if (attr_mask
& IB_QP_RQ_PSN
)
1334 qp
->r_psn
= attr
->rq_psn
& rdi
->dparms
.psn_modify_mask
;
1336 if (attr_mask
& IB_QP_ACCESS_FLAGS
)
1337 qp
->qp_access_flags
= attr
->qp_access_flags
;
1339 if (attr_mask
& IB_QP_AV
) {
1340 qp
->remote_ah_attr
= attr
->ah_attr
;
1341 qp
->s_srate
= rdma_ah_get_static_rate(&attr
->ah_attr
);
1342 qp
->srate_mbps
= ib_rate_to_mbps(qp
->s_srate
);
1345 if (attr_mask
& IB_QP_ALT_PATH
) {
1346 qp
->alt_ah_attr
= attr
->alt_ah_attr
;
1347 qp
->s_alt_pkey_index
= attr
->alt_pkey_index
;
1350 if (attr_mask
& IB_QP_PATH_MIG_STATE
) {
1351 qp
->s_mig_state
= attr
->path_mig_state
;
1353 qp
->remote_ah_attr
= qp
->alt_ah_attr
;
1354 qp
->port_num
= rdma_ah_get_port_num(&qp
->alt_ah_attr
);
1355 qp
->s_pkey_index
= qp
->s_alt_pkey_index
;
1359 if (attr_mask
& IB_QP_PATH_MTU
) {
1360 qp
->pmtu
= rdi
->driver_f
.mtu_from_qp(rdi
, qp
, pmtu
);
1361 qp
->log_pmtu
= ilog2(qp
->pmtu
);
1364 if (attr_mask
& IB_QP_RETRY_CNT
) {
1365 qp
->s_retry_cnt
= attr
->retry_cnt
;
1366 qp
->s_retry
= attr
->retry_cnt
;
1369 if (attr_mask
& IB_QP_RNR_RETRY
) {
1370 qp
->s_rnr_retry_cnt
= attr
->rnr_retry
;
1371 qp
->s_rnr_retry
= attr
->rnr_retry
;
1374 if (attr_mask
& IB_QP_MIN_RNR_TIMER
)
1375 qp
->r_min_rnr_timer
= attr
->min_rnr_timer
;
1377 if (attr_mask
& IB_QP_TIMEOUT
) {
1378 qp
->timeout
= attr
->timeout
;
1379 qp
->timeout_jiffies
= rvt_timeout_to_jiffies(qp
->timeout
);
1382 if (attr_mask
& IB_QP_QKEY
)
1383 qp
->qkey
= attr
->qkey
;
1385 if (attr_mask
& IB_QP_MAX_DEST_RD_ATOMIC
)
1386 qp
->r_max_rd_atomic
= attr
->max_dest_rd_atomic
;
1388 if (attr_mask
& IB_QP_MAX_QP_RD_ATOMIC
)
1389 qp
->s_max_rd_atomic
= attr
->max_rd_atomic
;
1391 if (rdi
->driver_f
.modify_qp
)
1392 rdi
->driver_f
.modify_qp(qp
, attr
, attr_mask
, udata
);
1394 spin_unlock(&qp
->s_lock
);
1395 spin_unlock(&qp
->s_hlock
);
1396 spin_unlock_irq(&qp
->r_lock
);
1398 if (cur_state
== IB_QPS_RESET
&& new_state
== IB_QPS_INIT
)
1399 rvt_insert_qp(rdi
, qp
);
1402 ev
.device
= qp
->ibqp
.device
;
1403 ev
.element
.qp
= &qp
->ibqp
;
1404 ev
.event
= IB_EVENT_QP_LAST_WQE_REACHED
;
1405 qp
->ibqp
.event_handler(&ev
, qp
->ibqp
.qp_context
);
1408 ev
.device
= qp
->ibqp
.device
;
1409 ev
.element
.qp
= &qp
->ibqp
;
1410 ev
.event
= IB_EVENT_PATH_MIG
;
1411 qp
->ibqp
.event_handler(&ev
, qp
->ibqp
.qp_context
);
1416 spin_unlock(&qp
->s_lock
);
1417 spin_unlock(&qp
->s_hlock
);
1418 spin_unlock_irq(&qp
->r_lock
);
1423 * rvt_destroy_qp - destroy a queue pair
1424 * @ibqp: the queue pair to destroy
1426 * Note that this can be called while the QP is actively sending or
1429 * Return: 0 on success.
1431 int rvt_destroy_qp(struct ib_qp
*ibqp
)
1433 struct rvt_qp
*qp
= ibqp_to_rvtqp(ibqp
);
1434 struct rvt_dev_info
*rdi
= ib_to_rvt(ibqp
->device
);
1436 spin_lock_irq(&qp
->r_lock
);
1437 spin_lock(&qp
->s_hlock
);
1438 spin_lock(&qp
->s_lock
);
1439 rvt_reset_qp(rdi
, qp
, ibqp
->qp_type
);
1440 spin_unlock(&qp
->s_lock
);
1441 spin_unlock(&qp
->s_hlock
);
1442 spin_unlock_irq(&qp
->r_lock
);
1444 wait_event(qp
->wait
, !atomic_read(&qp
->refcount
));
1445 /* qpn is now available for use again */
1446 rvt_free_qpn(&rdi
->qp_dev
->qpn_table
, qp
->ibqp
.qp_num
);
1448 spin_lock(&rdi
->n_qps_lock
);
1449 rdi
->n_qps_allocated
--;
1450 if (qp
->ibqp
.qp_type
== IB_QPT_RC
) {
1452 rdi
->busy_jiffies
= rdi
->n_rc_qps
/ RC_QP_SCALING_INTERVAL
;
1454 spin_unlock(&rdi
->n_qps_lock
);
1457 kref_put(&qp
->ip
->ref
, rvt_release_mmap_info
);
1461 rdi
->driver_f
.qp_priv_free(rdi
, qp
);
1462 kfree(qp
->s_ack_queue
);
1468 * rvt_query_qp - query an ipbq
1469 * @ibqp: IB qp to query
1470 * @attr: attr struct to fill in
1471 * @attr_mask: attr mask ignored
1472 * @init_attr: struct to fill in
1476 int rvt_query_qp(struct ib_qp
*ibqp
, struct ib_qp_attr
*attr
,
1477 int attr_mask
, struct ib_qp_init_attr
*init_attr
)
1479 struct rvt_qp
*qp
= ibqp_to_rvtqp(ibqp
);
1480 struct rvt_dev_info
*rdi
= ib_to_rvt(ibqp
->device
);
1482 attr
->qp_state
= qp
->state
;
1483 attr
->cur_qp_state
= attr
->qp_state
;
1484 attr
->path_mtu
= rdi
->driver_f
.mtu_to_path_mtu(qp
->pmtu
);
1485 attr
->path_mig_state
= qp
->s_mig_state
;
1486 attr
->qkey
= qp
->qkey
;
1487 attr
->rq_psn
= qp
->r_psn
& rdi
->dparms
.psn_mask
;
1488 attr
->sq_psn
= qp
->s_next_psn
& rdi
->dparms
.psn_mask
;
1489 attr
->dest_qp_num
= qp
->remote_qpn
;
1490 attr
->qp_access_flags
= qp
->qp_access_flags
;
1491 attr
->cap
.max_send_wr
= qp
->s_size
- 1 -
1492 rdi
->dparms
.reserved_operations
;
1493 attr
->cap
.max_recv_wr
= qp
->ibqp
.srq
? 0 : qp
->r_rq
.size
- 1;
1494 attr
->cap
.max_send_sge
= qp
->s_max_sge
;
1495 attr
->cap
.max_recv_sge
= qp
->r_rq
.max_sge
;
1496 attr
->cap
.max_inline_data
= 0;
1497 attr
->ah_attr
= qp
->remote_ah_attr
;
1498 attr
->alt_ah_attr
= qp
->alt_ah_attr
;
1499 attr
->pkey_index
= qp
->s_pkey_index
;
1500 attr
->alt_pkey_index
= qp
->s_alt_pkey_index
;
1501 attr
->en_sqd_async_notify
= 0;
1502 attr
->sq_draining
= qp
->s_draining
;
1503 attr
->max_rd_atomic
= qp
->s_max_rd_atomic
;
1504 attr
->max_dest_rd_atomic
= qp
->r_max_rd_atomic
;
1505 attr
->min_rnr_timer
= qp
->r_min_rnr_timer
;
1506 attr
->port_num
= qp
->port_num
;
1507 attr
->timeout
= qp
->timeout
;
1508 attr
->retry_cnt
= qp
->s_retry_cnt
;
1509 attr
->rnr_retry
= qp
->s_rnr_retry_cnt
;
1510 attr
->alt_port_num
=
1511 rdma_ah_get_port_num(&qp
->alt_ah_attr
);
1512 attr
->alt_timeout
= qp
->alt_timeout
;
1514 init_attr
->event_handler
= qp
->ibqp
.event_handler
;
1515 init_attr
->qp_context
= qp
->ibqp
.qp_context
;
1516 init_attr
->send_cq
= qp
->ibqp
.send_cq
;
1517 init_attr
->recv_cq
= qp
->ibqp
.recv_cq
;
1518 init_attr
->srq
= qp
->ibqp
.srq
;
1519 init_attr
->cap
= attr
->cap
;
1520 if (qp
->s_flags
& RVT_S_SIGNAL_REQ_WR
)
1521 init_attr
->sq_sig_type
= IB_SIGNAL_REQ_WR
;
1523 init_attr
->sq_sig_type
= IB_SIGNAL_ALL_WR
;
1524 init_attr
->qp_type
= qp
->ibqp
.qp_type
;
1525 init_attr
->port_num
= qp
->port_num
;
1530 * rvt_post_receive - post a receive on a QP
1531 * @ibqp: the QP to post the receive on
1532 * @wr: the WR to post
1533 * @bad_wr: the first bad WR is put here
1535 * This may be called from interrupt context.
1537 * Return: 0 on success otherwise errno
1539 int rvt_post_recv(struct ib_qp
*ibqp
, struct ib_recv_wr
*wr
,
1540 struct ib_recv_wr
**bad_wr
)
1542 struct rvt_qp
*qp
= ibqp_to_rvtqp(ibqp
);
1543 struct rvt_rwq
*wq
= qp
->r_rq
.wq
;
1544 unsigned long flags
;
1545 int qp_err_flush
= (ib_rvt_state_ops
[qp
->state
] & RVT_FLUSH_RECV
) &&
1548 /* Check that state is OK to post receive. */
1549 if (!(ib_rvt_state_ops
[qp
->state
] & RVT_POST_RECV_OK
) || !wq
) {
1554 for (; wr
; wr
= wr
->next
) {
1555 struct rvt_rwqe
*wqe
;
1559 if ((unsigned)wr
->num_sge
> qp
->r_rq
.max_sge
) {
1564 spin_lock_irqsave(&qp
->r_rq
.lock
, flags
);
1565 next
= wq
->head
+ 1;
1566 if (next
>= qp
->r_rq
.size
)
1568 if (next
== wq
->tail
) {
1569 spin_unlock_irqrestore(&qp
->r_rq
.lock
, flags
);
1573 if (unlikely(qp_err_flush
)) {
1576 memset(&wc
, 0, sizeof(wc
));
1578 wc
.opcode
= IB_WC_RECV
;
1579 wc
.wr_id
= wr
->wr_id
;
1580 wc
.status
= IB_WC_WR_FLUSH_ERR
;
1581 rvt_cq_enter(ibcq_to_rvtcq(qp
->ibqp
.recv_cq
), &wc
, 1);
1583 wqe
= rvt_get_rwqe_ptr(&qp
->r_rq
, wq
->head
);
1584 wqe
->wr_id
= wr
->wr_id
;
1585 wqe
->num_sge
= wr
->num_sge
;
1586 for (i
= 0; i
< wr
->num_sge
; i
++)
1587 wqe
->sg_list
[i
] = wr
->sg_list
[i
];
1589 * Make sure queue entry is written
1590 * before the head index.
1595 spin_unlock_irqrestore(&qp
->r_rq
.lock
, flags
);
1601 * rvt_qp_valid_operation - validate post send wr request
1603 * @post-parms - the post send table for the driver
1604 * @wr - the work request
1606 * The routine validates the operation based on the
1607 * validation table an returns the length of the operation
1608 * which can extend beyond the ib_send_bw. Operation
1609 * dependent flags key atomic operation validation.
1611 * There is an exception for UD qps that validates the pd and
1612 * overrides the length to include the additional UD specific
1615 * Returns a negative error or the length of the work request
1616 * for building the swqe.
1618 static inline int rvt_qp_valid_operation(
1620 const struct rvt_operation_params
*post_parms
,
1621 struct ib_send_wr
*wr
)
1625 if (wr
->opcode
>= RVT_OPERATION_MAX
|| !post_parms
[wr
->opcode
].length
)
1627 if (!(post_parms
[wr
->opcode
].qpt_support
& BIT(qp
->ibqp
.qp_type
)))
1629 if ((post_parms
[wr
->opcode
].flags
& RVT_OPERATION_PRIV
) &&
1630 ibpd_to_rvtpd(qp
->ibqp
.pd
)->user
)
1632 if (post_parms
[wr
->opcode
].flags
& RVT_OPERATION_ATOMIC_SGE
&&
1633 (wr
->num_sge
== 0 ||
1634 wr
->sg_list
[0].length
< sizeof(u64
) ||
1635 wr
->sg_list
[0].addr
& (sizeof(u64
) - 1)))
1637 if (post_parms
[wr
->opcode
].flags
& RVT_OPERATION_ATOMIC
&&
1638 !qp
->s_max_rd_atomic
)
1640 len
= post_parms
[wr
->opcode
].length
;
1642 if (qp
->ibqp
.qp_type
!= IB_QPT_UC
&&
1643 qp
->ibqp
.qp_type
!= IB_QPT_RC
) {
1644 if (qp
->ibqp
.pd
!= ud_wr(wr
)->ah
->pd
)
1646 len
= sizeof(struct ib_ud_wr
);
1652 * rvt_qp_is_avail - determine queue capacity
1654 * @rdi: the rdmavt device
1655 * @reserved_op: is reserved operation
1657 * This assumes the s_hlock is held but the s_last
1658 * qp variable is uncontrolled.
1660 * For non reserved operations, the qp->s_avail
1663 * The return value is zero or a -ENOMEM.
1665 static inline int rvt_qp_is_avail(
1667 struct rvt_dev_info
*rdi
,
1674 /* see rvt_qp_wqe_unreserve() */
1675 smp_mb__before_atomic();
1676 reserved_used
= atomic_read(&qp
->s_reserved_used
);
1677 if (unlikely(reserved_op
)) {
1678 /* see rvt_qp_wqe_unreserve() */
1679 smp_mb__before_atomic();
1680 if (reserved_used
>= rdi
->dparms
.reserved_operations
)
1684 /* non-reserved operations */
1685 if (likely(qp
->s_avail
))
1687 slast
= READ_ONCE(qp
->s_last
);
1688 if (qp
->s_head
>= slast
)
1689 avail
= qp
->s_size
- (qp
->s_head
- slast
);
1691 avail
= slast
- qp
->s_head
;
1693 /* see rvt_qp_wqe_unreserve() */
1694 smp_mb__before_atomic();
1695 reserved_used
= atomic_read(&qp
->s_reserved_used
);
1697 (rdi
->dparms
.reserved_operations
- reserved_used
);
1698 /* insure we don't assign a negative s_avail */
1699 if ((s32
)avail
<= 0)
1701 qp
->s_avail
= avail
;
1702 if (WARN_ON(qp
->s_avail
>
1703 (qp
->s_size
- 1 - rdi
->dparms
.reserved_operations
)))
1705 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1706 qp
->ibqp
.qp_num
, qp
->s_size
, qp
->s_avail
,
1707 qp
->s_head
, qp
->s_tail
, qp
->s_cur
,
1708 qp
->s_acked
, qp
->s_last
);
1713 * rvt_post_one_wr - post one RC, UC, or UD send work request
1714 * @qp: the QP to post on
1715 * @wr: the work request to send
1717 static int rvt_post_one_wr(struct rvt_qp
*qp
,
1718 struct ib_send_wr
*wr
,
1721 struct rvt_swqe
*wqe
;
1726 struct rvt_lkey_table
*rkt
;
1728 struct rvt_dev_info
*rdi
= ib_to_rvt(qp
->ibqp
.device
);
1733 int local_ops_delayed
= 0;
1735 BUILD_BUG_ON(IB_QPT_MAX
>= (sizeof(u32
) * BITS_PER_BYTE
));
1737 /* IB spec says that num_sge == 0 is OK. */
1738 if (unlikely(wr
->num_sge
> qp
->s_max_sge
))
1741 ret
= rvt_qp_valid_operation(qp
, rdi
->post_parms
, wr
);
1747 * Local operations include fast register and local invalidate.
1748 * Fast register needs to be processed immediately because the
1749 * registered lkey may be used by following work requests and the
1750 * lkey needs to be valid at the time those requests are posted.
1751 * Local invalidate can be processed immediately if fencing is
1752 * not required and no previous local invalidate ops are pending.
1753 * Signaled local operations that have been processed immediately
1754 * need to have requests with "completion only" flags set posted
1755 * to the send queue in order to generate completions.
1757 if ((rdi
->post_parms
[wr
->opcode
].flags
& RVT_OPERATION_LOCAL
)) {
1758 switch (wr
->opcode
) {
1760 ret
= rvt_fast_reg_mr(qp
,
1763 reg_wr(wr
)->access
);
1764 if (ret
|| !(wr
->send_flags
& IB_SEND_SIGNALED
))
1767 case IB_WR_LOCAL_INV
:
1768 if ((wr
->send_flags
& IB_SEND_FENCE
) ||
1769 atomic_read(&qp
->local_ops_pending
)) {
1770 local_ops_delayed
= 1;
1772 ret
= rvt_invalidate_rkey(
1773 qp
, wr
->ex
.invalidate_rkey
);
1774 if (ret
|| !(wr
->send_flags
& IB_SEND_SIGNALED
))
1783 reserved_op
= rdi
->post_parms
[wr
->opcode
].flags
&
1784 RVT_OPERATION_USE_RESERVE
;
1785 /* check for avail */
1786 ret
= rvt_qp_is_avail(qp
, rdi
, reserved_op
);
1789 next
= qp
->s_head
+ 1;
1790 if (next
>= qp
->s_size
)
1793 rkt
= &rdi
->lkey_table
;
1794 pd
= ibpd_to_rvtpd(qp
->ibqp
.pd
);
1795 wqe
= rvt_get_swqe_ptr(qp
, qp
->s_head
);
1797 /* cplen has length from above */
1798 memcpy(&wqe
->wr
, wr
, cplen
);
1803 struct rvt_sge
*last_sge
= NULL
;
1805 acc
= wr
->opcode
>= IB_WR_RDMA_READ
?
1806 IB_ACCESS_LOCAL_WRITE
: 0;
1807 for (i
= 0; i
< wr
->num_sge
; i
++) {
1808 u32 length
= wr
->sg_list
[i
].length
;
1812 ret
= rvt_lkey_ok(rkt
, pd
, &wqe
->sg_list
[j
], last_sge
,
1813 &wr
->sg_list
[i
], acc
);
1814 if (unlikely(ret
< 0))
1815 goto bail_inval_free
;
1816 wqe
->length
+= length
;
1818 last_sge
= &wqe
->sg_list
[j
];
1821 wqe
->wr
.num_sge
= j
;
1824 /* general part of wqe valid - allow for driver checks */
1825 if (rdi
->driver_f
.check_send_wqe
) {
1826 ret
= rdi
->driver_f
.check_send_wqe(qp
, wqe
);
1828 goto bail_inval_free
;
1833 log_pmtu
= qp
->log_pmtu
;
1834 if (qp
->ibqp
.qp_type
!= IB_QPT_UC
&&
1835 qp
->ibqp
.qp_type
!= IB_QPT_RC
) {
1836 struct rvt_ah
*ah
= ibah_to_rvtah(wqe
->ud_wr
.ah
);
1838 log_pmtu
= ah
->log_pmtu
;
1839 atomic_inc(&ibah_to_rvtah(ud_wr(wr
)->ah
)->refcount
);
1842 if (rdi
->post_parms
[wr
->opcode
].flags
& RVT_OPERATION_LOCAL
) {
1843 if (local_ops_delayed
)
1844 atomic_inc(&qp
->local_ops_pending
);
1846 wqe
->wr
.send_flags
|= RVT_SEND_COMPLETION_ONLY
;
1851 wqe
->ssn
= qp
->s_ssn
++;
1852 wqe
->psn
= qp
->s_next_psn
;
1853 wqe
->lpsn
= wqe
->psn
+
1855 ((wqe
->length
- 1) >> log_pmtu
) :
1857 qp
->s_next_psn
= wqe
->lpsn
+ 1;
1859 if (unlikely(reserved_op
)) {
1860 wqe
->wr
.send_flags
|= RVT_SEND_RESERVE_USED
;
1861 rvt_qp_wqe_reserve(qp
, wqe
);
1863 wqe
->wr
.send_flags
&= ~RVT_SEND_RESERVE_USED
;
1866 trace_rvt_post_one_wr(qp
, wqe
, wr
->num_sge
);
1867 smp_wmb(); /* see request builders */
1873 /* release mr holds */
1875 struct rvt_sge
*sge
= &wqe
->sg_list
[--j
];
1877 rvt_put_mr(sge
->mr
);
1883 * rvt_post_send - post a send on a QP
1884 * @ibqp: the QP to post the send on
1885 * @wr: the list of work requests to post
1886 * @bad_wr: the first bad WR is put here
1888 * This may be called from interrupt context.
1890 * Return: 0 on success else errno
1892 int rvt_post_send(struct ib_qp
*ibqp
, struct ib_send_wr
*wr
,
1893 struct ib_send_wr
**bad_wr
)
1895 struct rvt_qp
*qp
= ibqp_to_rvtqp(ibqp
);
1896 struct rvt_dev_info
*rdi
= ib_to_rvt(ibqp
->device
);
1897 unsigned long flags
= 0;
1902 spin_lock_irqsave(&qp
->s_hlock
, flags
);
1905 * Ensure QP state is such that we can send. If not bail out early,
1906 * there is no need to do this every time we post a send.
1908 if (unlikely(!(ib_rvt_state_ops
[qp
->state
] & RVT_POST_SEND_OK
))) {
1909 spin_unlock_irqrestore(&qp
->s_hlock
, flags
);
1914 * If the send queue is empty, and we only have a single WR then just go
1915 * ahead and kick the send engine into gear. Otherwise we will always
1916 * just schedule the send to happen later.
1918 call_send
= qp
->s_head
== READ_ONCE(qp
->s_last
) && !wr
->next
;
1920 for (; wr
; wr
= wr
->next
) {
1921 err
= rvt_post_one_wr(qp
, wr
, &call_send
);
1922 if (unlikely(err
)) {
1929 spin_unlock_irqrestore(&qp
->s_hlock
, flags
);
1932 rdi
->driver_f
.do_send(qp
);
1934 rdi
->driver_f
.schedule_send_no_lock(qp
);
1940 * rvt_post_srq_receive - post a receive on a shared receive queue
1941 * @ibsrq: the SRQ to post the receive on
1942 * @wr: the list of work requests to post
1943 * @bad_wr: A pointer to the first WR to cause a problem is put here
1945 * This may be called from interrupt context.
1947 * Return: 0 on success else errno
1949 int rvt_post_srq_recv(struct ib_srq
*ibsrq
, struct ib_recv_wr
*wr
,
1950 struct ib_recv_wr
**bad_wr
)
1952 struct rvt_srq
*srq
= ibsrq_to_rvtsrq(ibsrq
);
1954 unsigned long flags
;
1956 for (; wr
; wr
= wr
->next
) {
1957 struct rvt_rwqe
*wqe
;
1961 if ((unsigned)wr
->num_sge
> srq
->rq
.max_sge
) {
1966 spin_lock_irqsave(&srq
->rq
.lock
, flags
);
1968 next
= wq
->head
+ 1;
1969 if (next
>= srq
->rq
.size
)
1971 if (next
== wq
->tail
) {
1972 spin_unlock_irqrestore(&srq
->rq
.lock
, flags
);
1977 wqe
= rvt_get_rwqe_ptr(&srq
->rq
, wq
->head
);
1978 wqe
->wr_id
= wr
->wr_id
;
1979 wqe
->num_sge
= wr
->num_sge
;
1980 for (i
= 0; i
< wr
->num_sge
; i
++)
1981 wqe
->sg_list
[i
] = wr
->sg_list
[i
];
1982 /* Make sure queue entry is written before the head index. */
1985 spin_unlock_irqrestore(&srq
->rq
.lock
, flags
);
1991 * qp_comm_est - handle trap with QP established
1994 void rvt_comm_est(struct rvt_qp
*qp
)
1996 qp
->r_flags
|= RVT_R_COMM_EST
;
1997 if (qp
->ibqp
.event_handler
) {
2000 ev
.device
= qp
->ibqp
.device
;
2001 ev
.element
.qp
= &qp
->ibqp
;
2002 ev
.event
= IB_EVENT_COMM_EST
;
2003 qp
->ibqp
.event_handler(&ev
, qp
->ibqp
.qp_context
);
2006 EXPORT_SYMBOL(rvt_comm_est
);
2008 void rvt_rc_error(struct rvt_qp
*qp
, enum ib_wc_status err
)
2010 unsigned long flags
;
2013 spin_lock_irqsave(&qp
->s_lock
, flags
);
2014 lastwqe
= rvt_error_qp(qp
, err
);
2015 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
2020 ev
.device
= qp
->ibqp
.device
;
2021 ev
.element
.qp
= &qp
->ibqp
;
2022 ev
.event
= IB_EVENT_QP_LAST_WQE_REACHED
;
2023 qp
->ibqp
.event_handler(&ev
, qp
->ibqp
.qp_context
);
2026 EXPORT_SYMBOL(rvt_rc_error
);
2029 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2030 * @index - the index
2031 * return usec from an index into ib_rvt_rnr_table
2033 unsigned long rvt_rnr_tbl_to_usec(u32 index
)
2035 return ib_rvt_rnr_table
[(index
& IB_AETH_CREDIT_MASK
)];
2037 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec
);
2039 static inline unsigned long rvt_aeth_to_usec(u32 aeth
)
2041 return ib_rvt_rnr_table
[(aeth
>> IB_AETH_CREDIT_SHIFT
) &
2042 IB_AETH_CREDIT_MASK
];
2046 * rvt_add_retry_timer - add/start a retry timer
2048 * add a retry timer on the QP
2050 void rvt_add_retry_timer(struct rvt_qp
*qp
)
2052 struct ib_qp
*ibqp
= &qp
->ibqp
;
2053 struct rvt_dev_info
*rdi
= ib_to_rvt(ibqp
->device
);
2055 lockdep_assert_held(&qp
->s_lock
);
2056 qp
->s_flags
|= RVT_S_TIMER
;
2057 /* 4.096 usec. * (1 << qp->timeout) */
2058 qp
->s_timer
.expires
= jiffies
+ qp
->timeout_jiffies
+
2060 add_timer(&qp
->s_timer
);
2062 EXPORT_SYMBOL(rvt_add_retry_timer
);
2065 * rvt_add_rnr_timer - add/start an rnr timer
2067 * @aeth - aeth of RNR timeout, simulated aeth for loopback
2068 * add an rnr timer on the QP
2070 void rvt_add_rnr_timer(struct rvt_qp
*qp
, u32 aeth
)
2074 lockdep_assert_held(&qp
->s_lock
);
2075 qp
->s_flags
|= RVT_S_WAIT_RNR
;
2076 to
= rvt_aeth_to_usec(aeth
);
2077 trace_rvt_rnrnak_add(qp
, to
);
2078 hrtimer_start(&qp
->s_rnr_timer
,
2079 ns_to_ktime(1000 * to
), HRTIMER_MODE_REL
);
2081 EXPORT_SYMBOL(rvt_add_rnr_timer
);
2084 * rvt_stop_rc_timers - stop all timers
2086 * stop any pending timers
2088 void rvt_stop_rc_timers(struct rvt_qp
*qp
)
2090 lockdep_assert_held(&qp
->s_lock
);
2091 /* Remove QP from all timers */
2092 if (qp
->s_flags
& (RVT_S_TIMER
| RVT_S_WAIT_RNR
)) {
2093 qp
->s_flags
&= ~(RVT_S_TIMER
| RVT_S_WAIT_RNR
);
2094 del_timer(&qp
->s_timer
);
2095 hrtimer_try_to_cancel(&qp
->s_rnr_timer
);
2098 EXPORT_SYMBOL(rvt_stop_rc_timers
);
2101 * rvt_stop_rnr_timer - stop an rnr timer
2104 * stop an rnr timer and return if the timer
2107 static void rvt_stop_rnr_timer(struct rvt_qp
*qp
)
2109 lockdep_assert_held(&qp
->s_lock
);
2110 /* Remove QP from rnr timer */
2111 if (qp
->s_flags
& RVT_S_WAIT_RNR
) {
2112 qp
->s_flags
&= ~RVT_S_WAIT_RNR
;
2113 trace_rvt_rnrnak_stop(qp
, 0);
2118 * rvt_del_timers_sync - wait for any timeout routines to exit
2121 void rvt_del_timers_sync(struct rvt_qp
*qp
)
2123 del_timer_sync(&qp
->s_timer
);
2124 hrtimer_cancel(&qp
->s_rnr_timer
);
2126 EXPORT_SYMBOL(rvt_del_timers_sync
);
2129 * This is called from s_timer for missing responses.
2131 static void rvt_rc_timeout(struct timer_list
*t
)
2133 struct rvt_qp
*qp
= from_timer(qp
, t
, s_timer
);
2134 struct rvt_dev_info
*rdi
= ib_to_rvt(qp
->ibqp
.device
);
2135 unsigned long flags
;
2137 spin_lock_irqsave(&qp
->r_lock
, flags
);
2138 spin_lock(&qp
->s_lock
);
2139 if (qp
->s_flags
& RVT_S_TIMER
) {
2140 struct rvt_ibport
*rvp
= rdi
->ports
[qp
->port_num
- 1];
2142 qp
->s_flags
&= ~RVT_S_TIMER
;
2143 rvp
->n_rc_timeouts
++;
2144 del_timer(&qp
->s_timer
);
2145 trace_rvt_rc_timeout(qp
, qp
->s_last_psn
+ 1);
2146 if (rdi
->driver_f
.notify_restart_rc
)
2147 rdi
->driver_f
.notify_restart_rc(qp
,
2150 rdi
->driver_f
.schedule_send(qp
);
2152 spin_unlock(&qp
->s_lock
);
2153 spin_unlock_irqrestore(&qp
->r_lock
, flags
);
2157 * This is called from s_timer for RNR timeouts.
2159 enum hrtimer_restart
rvt_rc_rnr_retry(struct hrtimer
*t
)
2161 struct rvt_qp
*qp
= container_of(t
, struct rvt_qp
, s_rnr_timer
);
2162 struct rvt_dev_info
*rdi
= ib_to_rvt(qp
->ibqp
.device
);
2163 unsigned long flags
;
2165 spin_lock_irqsave(&qp
->s_lock
, flags
);
2166 rvt_stop_rnr_timer(qp
);
2167 trace_rvt_rnrnak_timeout(qp
, 0);
2168 rdi
->driver_f
.schedule_send(qp
);
2169 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
2170 return HRTIMER_NORESTART
;
2172 EXPORT_SYMBOL(rvt_rc_rnr_retry
);
2175 * rvt_qp_iter_init - initial for QP iteration
2179 * This returns an iterator suitable for iterating QPs
2182 * The @cb is a user defined callback and @v is a 64
2183 * bit value passed to and relevant for processing in the
2184 * @cb. An example use case would be to alter QP processing
2185 * based on criteria not part of the rvt_qp.
2187 * Use cases that require memory allocation to succeed
2188 * must preallocate appropriately.
2190 * Return: a pointer to an rvt_qp_iter or NULL
2192 struct rvt_qp_iter
*rvt_qp_iter_init(struct rvt_dev_info
*rdi
,
2194 void (*cb
)(struct rvt_qp
*qp
, u64 v
))
2196 struct rvt_qp_iter
*i
;
2198 i
= kzalloc(sizeof(*i
), GFP_KERNEL
);
2203 /* number of special QPs (SMI/GSI) for device */
2204 i
->specials
= rdi
->ibdev
.phys_port_cnt
* 2;
2210 EXPORT_SYMBOL(rvt_qp_iter_init
);
2213 * rvt_qp_iter_next - return the next QP in iter
2214 * @iter - the iterator
2216 * Fine grained QP iterator suitable for use
2217 * with debugfs seq_file mechanisms.
2219 * Updates iter->qp with the current QP when the return
2222 * Return: 0 - iter->qp is valid 1 - no more QPs
2224 int rvt_qp_iter_next(struct rvt_qp_iter
*iter
)
2229 struct rvt_qp
*pqp
= iter
->qp
;
2231 struct rvt_dev_info
*rdi
= iter
->rdi
;
2234 * The approach is to consider the special qps
2235 * as additional table entries before the
2236 * real hash table. Since the qp code sets
2237 * the qp->next hash link to NULL, this works just fine.
2239 * iter->specials is 2 * # ports
2241 * n = 0..iter->specials is the special qp indices
2243 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2244 * the potential hash bucket entries
2247 for (; n
< rdi
->qp_dev
->qp_table_size
+ iter
->specials
; n
++) {
2249 qp
= rcu_dereference(pqp
->next
);
2251 if (n
< iter
->specials
) {
2252 struct rvt_ibport
*rvp
;
2255 pidx
= n
% rdi
->ibdev
.phys_port_cnt
;
2256 rvp
= rdi
->ports
[pidx
];
2257 qp
= rcu_dereference(rvp
->qp
[n
& 1]);
2259 qp
= rcu_dereference(
2260 rdi
->qp_dev
->qp_table
[
2261 (n
- iter
->specials
)]);
2273 EXPORT_SYMBOL(rvt_qp_iter_next
);
2276 * rvt_qp_iter - iterate all QPs
2277 * @rdi - rvt devinfo
2278 * @v - a 64 bit value
2281 * This provides a way for iterating all QPs.
2283 * The @cb is a user defined callback and @v is a 64
2284 * bit value passed to and relevant for processing in the
2285 * cb. An example use case would be to alter QP processing
2286 * based on criteria not part of the rvt_qp.
2288 * The code has an internal iterator to simplify
2289 * non seq_file use cases.
2291 void rvt_qp_iter(struct rvt_dev_info
*rdi
,
2293 void (*cb
)(struct rvt_qp
*qp
, u64 v
))
2296 struct rvt_qp_iter i
= {
2298 .specials
= rdi
->ibdev
.phys_port_cnt
* 2,
2305 ret
= rvt_qp_iter_next(&i
);
2316 EXPORT_SYMBOL(rvt_qp_iter
);