2 * Copyright (C) 2012 Red Hat. All rights reserved.
4 * This file is released under the GPL.
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
22 #define DM_MSG_PREFIX "cache"
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle
,
25 "A percentage of time allocated for copying to and/or from cache");
27 /*----------------------------------------------------------------*/
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
40 /*----------------------------------------------------------------*/
46 * Sectors of in-flight IO.
51 * The time, in jiffies, when this device became idle (if it is
54 unsigned long idle_time
;
55 unsigned long last_update_time
;
58 static void iot_init(struct io_tracker
*iot
)
60 spin_lock_init(&iot
->lock
);
63 iot
->last_update_time
= jiffies
;
66 static bool __iot_idle_for(struct io_tracker
*iot
, unsigned long jifs
)
71 return time_after(jiffies
, iot
->idle_time
+ jifs
);
74 static bool iot_idle_for(struct io_tracker
*iot
, unsigned long jifs
)
79 spin_lock_irqsave(&iot
->lock
, flags
);
80 r
= __iot_idle_for(iot
, jifs
);
81 spin_unlock_irqrestore(&iot
->lock
, flags
);
86 static void iot_io_begin(struct io_tracker
*iot
, sector_t len
)
90 spin_lock_irqsave(&iot
->lock
, flags
);
91 iot
->in_flight
+= len
;
92 spin_unlock_irqrestore(&iot
->lock
, flags
);
95 static void __iot_io_end(struct io_tracker
*iot
, sector_t len
)
100 iot
->in_flight
-= len
;
102 iot
->idle_time
= jiffies
;
105 static void iot_io_end(struct io_tracker
*iot
, sector_t len
)
109 spin_lock_irqsave(&iot
->lock
, flags
);
110 __iot_io_end(iot
, len
);
111 spin_unlock_irqrestore(&iot
->lock
, flags
);
114 /*----------------------------------------------------------------*/
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
120 struct continuation
{
121 struct work_struct ws
;
125 static inline void init_continuation(struct continuation
*k
,
126 void (*fn
)(struct work_struct
*))
128 INIT_WORK(&k
->ws
, fn
);
132 static inline void queue_continuation(struct workqueue_struct
*wq
,
133 struct continuation
*k
)
135 queue_work(wq
, &k
->ws
);
138 /*----------------------------------------------------------------*/
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
146 * The operation that everyone is waiting for.
148 blk_status_t (*commit_op
)(void *context
);
149 void *commit_context
;
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
155 void (*issue_op
)(struct bio
*bio
, void *context
);
159 * Queued work gets put on here after commit.
161 struct workqueue_struct
*wq
;
164 struct list_head work_items
;
165 struct bio_list bios
;
166 struct work_struct commit_work
;
168 bool commit_scheduled
;
171 static void __commit(struct work_struct
*_ws
)
173 struct batcher
*b
= container_of(_ws
, struct batcher
, commit_work
);
176 struct list_head work_items
;
177 struct work_struct
*ws
, *tmp
;
178 struct continuation
*k
;
180 struct bio_list bios
;
182 INIT_LIST_HEAD(&work_items
);
183 bio_list_init(&bios
);
186 * We have to grab these before the commit_op to avoid a race
189 spin_lock_irqsave(&b
->lock
, flags
);
190 list_splice_init(&b
->work_items
, &work_items
);
191 bio_list_merge(&bios
, &b
->bios
);
192 bio_list_init(&b
->bios
);
193 b
->commit_scheduled
= false;
194 spin_unlock_irqrestore(&b
->lock
, flags
);
196 r
= b
->commit_op(b
->commit_context
);
198 list_for_each_entry_safe(ws
, tmp
, &work_items
, entry
) {
199 k
= container_of(ws
, struct continuation
, ws
);
201 INIT_LIST_HEAD(&ws
->entry
); /* to avoid a WARN_ON */
202 queue_work(b
->wq
, ws
);
205 while ((bio
= bio_list_pop(&bios
))) {
210 b
->issue_op(bio
, b
->issue_context
);
214 static void batcher_init(struct batcher
*b
,
215 blk_status_t (*commit_op
)(void *),
216 void *commit_context
,
217 void (*issue_op
)(struct bio
*bio
, void *),
219 struct workqueue_struct
*wq
)
221 b
->commit_op
= commit_op
;
222 b
->commit_context
= commit_context
;
223 b
->issue_op
= issue_op
;
224 b
->issue_context
= issue_context
;
227 spin_lock_init(&b
->lock
);
228 INIT_LIST_HEAD(&b
->work_items
);
229 bio_list_init(&b
->bios
);
230 INIT_WORK(&b
->commit_work
, __commit
);
231 b
->commit_scheduled
= false;
234 static void async_commit(struct batcher
*b
)
236 queue_work(b
->wq
, &b
->commit_work
);
239 static void continue_after_commit(struct batcher
*b
, struct continuation
*k
)
242 bool commit_scheduled
;
244 spin_lock_irqsave(&b
->lock
, flags
);
245 commit_scheduled
= b
->commit_scheduled
;
246 list_add_tail(&k
->ws
.entry
, &b
->work_items
);
247 spin_unlock_irqrestore(&b
->lock
, flags
);
249 if (commit_scheduled
)
254 * Bios are errored if commit failed.
256 static void issue_after_commit(struct batcher
*b
, struct bio
*bio
)
259 bool commit_scheduled
;
261 spin_lock_irqsave(&b
->lock
, flags
);
262 commit_scheduled
= b
->commit_scheduled
;
263 bio_list_add(&b
->bios
, bio
);
264 spin_unlock_irqrestore(&b
->lock
, flags
);
266 if (commit_scheduled
)
271 * Call this if some urgent work is waiting for the commit to complete.
273 static void schedule_commit(struct batcher
*b
)
278 spin_lock_irqsave(&b
->lock
, flags
);
279 immediate
= !list_empty(&b
->work_items
) || !bio_list_empty(&b
->bios
);
280 b
->commit_scheduled
= true;
281 spin_unlock_irqrestore(&b
->lock
, flags
);
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
292 struct dm_hook_info
{
293 bio_end_io_t
*bi_end_io
;
296 static void dm_hook_bio(struct dm_hook_info
*h
, struct bio
*bio
,
297 bio_end_io_t
*bi_end_io
, void *bi_private
)
299 h
->bi_end_io
= bio
->bi_end_io
;
301 bio
->bi_end_io
= bi_end_io
;
302 bio
->bi_private
= bi_private
;
305 static void dm_unhook_bio(struct dm_hook_info
*h
, struct bio
*bio
)
307 bio
->bi_end_io
= h
->bi_end_io
;
310 /*----------------------------------------------------------------*/
312 #define MIGRATION_POOL_SIZE 128
313 #define COMMIT_PERIOD HZ
314 #define MIGRATION_COUNT_WINDOW 10
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
320 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
323 enum cache_metadata_mode
{
324 CM_WRITE
, /* metadata may be changed */
325 CM_READ_ONLY
, /* metadata may not be changed */
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
352 struct cache_features
{
353 enum cache_metadata_mode mode
;
354 enum cache_io_mode io_mode
;
355 unsigned metadata_version
;
366 atomic_t copies_avoided
;
367 atomic_t cache_cell_clash
;
368 atomic_t commit_count
;
369 atomic_t discard_count
;
373 struct dm_target
*ti
;
374 struct dm_target_callbacks callbacks
;
376 struct dm_cache_metadata
*cmd
;
379 * Metadata is written to this device.
381 struct dm_dev
*metadata_dev
;
384 * The slower of the two data devices. Typically a spindle.
386 struct dm_dev
*origin_dev
;
389 * The faster of the two data devices. Typically an SSD.
391 struct dm_dev
*cache_dev
;
394 * Size of the origin device in _complete_ blocks and native sectors.
396 dm_oblock_t origin_blocks
;
397 sector_t origin_sectors
;
400 * Size of the cache device in blocks.
402 dm_cblock_t cache_size
;
405 * Fields for converting from sectors to blocks.
407 sector_t sectors_per_block
;
408 int sectors_per_block_shift
;
411 struct bio_list deferred_bios
;
412 sector_t migration_threshold
;
413 wait_queue_head_t migration_wait
;
414 atomic_t nr_allocated_migrations
;
417 * The number of in flight migrations that are performing
418 * background io. eg, promotion, writeback.
420 atomic_t nr_io_migrations
;
422 struct rw_semaphore quiesce_lock
;
425 * cache_size entries, dirty if set
428 unsigned long *dirty_bitset
;
431 * origin_blocks entries, discarded if set.
433 dm_dblock_t discard_nr_blocks
;
434 unsigned long *discard_bitset
;
435 uint32_t discard_block_size
; /* a power of 2 times sectors per block */
438 * Rather than reconstructing the table line for the status we just
439 * save it and regurgitate.
441 unsigned nr_ctr_args
;
442 const char **ctr_args
;
444 struct dm_kcopyd_client
*copier
;
445 struct workqueue_struct
*wq
;
446 struct work_struct deferred_bio_worker
;
447 struct work_struct migration_worker
;
448 struct delayed_work waker
;
449 struct dm_bio_prison_v2
*prison
;
452 mempool_t
*migration_pool
;
454 struct dm_cache_policy
*policy
;
455 unsigned policy_nr_args
;
457 bool need_tick_bio
:1;
460 bool commit_requested
:1;
461 bool loaded_mappings
:1;
462 bool loaded_discards
:1;
465 * Cache features such as write-through.
467 struct cache_features features
;
469 struct cache_stats stats
;
472 * Invalidation fields.
474 spinlock_t invalidation_lock
;
475 struct list_head invalidation_requests
;
477 struct io_tracker tracker
;
479 struct work_struct commit_ws
;
480 struct batcher committer
;
482 struct rw_semaphore background_work_lock
;
485 struct per_bio_data
{
488 struct dm_bio_prison_cell_v2
*cell
;
489 struct dm_hook_info hook_info
;
493 struct dm_cache_migration
{
494 struct continuation k
;
497 struct policy_work
*op
;
498 struct bio
*overwrite_bio
;
499 struct dm_bio_prison_cell_v2
*cell
;
501 dm_cblock_t invalidate_cblock
;
502 dm_oblock_t invalidate_oblock
;
505 /*----------------------------------------------------------------*/
507 static bool writethrough_mode(struct cache
*cache
)
509 return cache
->features
.io_mode
== CM_IO_WRITETHROUGH
;
512 static bool writeback_mode(struct cache
*cache
)
514 return cache
->features
.io_mode
== CM_IO_WRITEBACK
;
517 static inline bool passthrough_mode(struct cache
*cache
)
519 return unlikely(cache
->features
.io_mode
== CM_IO_PASSTHROUGH
);
522 /*----------------------------------------------------------------*/
524 static void wake_deferred_bio_worker(struct cache
*cache
)
526 queue_work(cache
->wq
, &cache
->deferred_bio_worker
);
529 static void wake_migration_worker(struct cache
*cache
)
531 if (passthrough_mode(cache
))
534 queue_work(cache
->wq
, &cache
->migration_worker
);
537 /*----------------------------------------------------------------*/
539 static struct dm_bio_prison_cell_v2
*alloc_prison_cell(struct cache
*cache
)
541 return dm_bio_prison_alloc_cell_v2(cache
->prison
, GFP_NOWAIT
);
544 static void free_prison_cell(struct cache
*cache
, struct dm_bio_prison_cell_v2
*cell
)
546 dm_bio_prison_free_cell_v2(cache
->prison
, cell
);
549 static struct dm_cache_migration
*alloc_migration(struct cache
*cache
)
551 struct dm_cache_migration
*mg
;
553 mg
= mempool_alloc(cache
->migration_pool
, GFP_NOWAIT
);
557 memset(mg
, 0, sizeof(*mg
));
560 atomic_inc(&cache
->nr_allocated_migrations
);
565 static void free_migration(struct dm_cache_migration
*mg
)
567 struct cache
*cache
= mg
->cache
;
569 if (atomic_dec_and_test(&cache
->nr_allocated_migrations
))
570 wake_up(&cache
->migration_wait
);
572 mempool_free(mg
, cache
->migration_pool
);
575 /*----------------------------------------------------------------*/
577 static inline dm_oblock_t
oblock_succ(dm_oblock_t b
)
579 return to_oblock(from_oblock(b
) + 1ull);
582 static void build_key(dm_oblock_t begin
, dm_oblock_t end
, struct dm_cell_key_v2
*key
)
586 key
->block_begin
= from_oblock(begin
);
587 key
->block_end
= from_oblock(end
);
591 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
592 * level 1 which prevents *both* READs and WRITEs.
594 #define WRITE_LOCK_LEVEL 0
595 #define READ_WRITE_LOCK_LEVEL 1
597 static unsigned lock_level(struct bio
*bio
)
599 return bio_data_dir(bio
) == WRITE
?
601 READ_WRITE_LOCK_LEVEL
;
604 /*----------------------------------------------------------------
606 *--------------------------------------------------------------*/
608 static struct per_bio_data
*get_per_bio_data(struct bio
*bio
)
610 struct per_bio_data
*pb
= dm_per_bio_data(bio
, sizeof(struct per_bio_data
));
615 static struct per_bio_data
*init_per_bio_data(struct bio
*bio
)
617 struct per_bio_data
*pb
= get_per_bio_data(bio
);
620 pb
->req_nr
= dm_bio_get_target_bio_nr(bio
);
627 /*----------------------------------------------------------------*/
629 static void defer_bio(struct cache
*cache
, struct bio
*bio
)
633 spin_lock_irqsave(&cache
->lock
, flags
);
634 bio_list_add(&cache
->deferred_bios
, bio
);
635 spin_unlock_irqrestore(&cache
->lock
, flags
);
637 wake_deferred_bio_worker(cache
);
640 static void defer_bios(struct cache
*cache
, struct bio_list
*bios
)
644 spin_lock_irqsave(&cache
->lock
, flags
);
645 bio_list_merge(&cache
->deferred_bios
, bios
);
647 spin_unlock_irqrestore(&cache
->lock
, flags
);
649 wake_deferred_bio_worker(cache
);
652 /*----------------------------------------------------------------*/
654 static bool bio_detain_shared(struct cache
*cache
, dm_oblock_t oblock
, struct bio
*bio
)
657 struct per_bio_data
*pb
;
658 struct dm_cell_key_v2 key
;
659 dm_oblock_t end
= to_oblock(from_oblock(oblock
) + 1ULL);
660 struct dm_bio_prison_cell_v2
*cell_prealloc
, *cell
;
662 cell_prealloc
= alloc_prison_cell(cache
); /* FIXME: allow wait if calling from worker */
663 if (!cell_prealloc
) {
664 defer_bio(cache
, bio
);
668 build_key(oblock
, end
, &key
);
669 r
= dm_cell_get_v2(cache
->prison
, &key
, lock_level(bio
), bio
, cell_prealloc
, &cell
);
672 * Failed to get the lock.
674 free_prison_cell(cache
, cell_prealloc
);
678 if (cell
!= cell_prealloc
)
679 free_prison_cell(cache
, cell_prealloc
);
681 pb
= get_per_bio_data(bio
);
687 /*----------------------------------------------------------------*/
689 static bool is_dirty(struct cache
*cache
, dm_cblock_t b
)
691 return test_bit(from_cblock(b
), cache
->dirty_bitset
);
694 static void set_dirty(struct cache
*cache
, dm_cblock_t cblock
)
696 if (!test_and_set_bit(from_cblock(cblock
), cache
->dirty_bitset
)) {
697 atomic_inc(&cache
->nr_dirty
);
698 policy_set_dirty(cache
->policy
, cblock
);
703 * These two are called when setting after migrations to force the policy
704 * and dirty bitset to be in sync.
706 static void force_set_dirty(struct cache
*cache
, dm_cblock_t cblock
)
708 if (!test_and_set_bit(from_cblock(cblock
), cache
->dirty_bitset
))
709 atomic_inc(&cache
->nr_dirty
);
710 policy_set_dirty(cache
->policy
, cblock
);
713 static void force_clear_dirty(struct cache
*cache
, dm_cblock_t cblock
)
715 if (test_and_clear_bit(from_cblock(cblock
), cache
->dirty_bitset
)) {
716 if (atomic_dec_return(&cache
->nr_dirty
) == 0)
717 dm_table_event(cache
->ti
->table
);
720 policy_clear_dirty(cache
->policy
, cblock
);
723 /*----------------------------------------------------------------*/
725 static bool block_size_is_power_of_two(struct cache
*cache
)
727 return cache
->sectors_per_block_shift
>= 0;
730 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
731 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
734 static dm_block_t
block_div(dm_block_t b
, uint32_t n
)
741 static dm_block_t
oblocks_per_dblock(struct cache
*cache
)
743 dm_block_t oblocks
= cache
->discard_block_size
;
745 if (block_size_is_power_of_two(cache
))
746 oblocks
>>= cache
->sectors_per_block_shift
;
748 oblocks
= block_div(oblocks
, cache
->sectors_per_block
);
753 static dm_dblock_t
oblock_to_dblock(struct cache
*cache
, dm_oblock_t oblock
)
755 return to_dblock(block_div(from_oblock(oblock
),
756 oblocks_per_dblock(cache
)));
759 static void set_discard(struct cache
*cache
, dm_dblock_t b
)
763 BUG_ON(from_dblock(b
) >= from_dblock(cache
->discard_nr_blocks
));
764 atomic_inc(&cache
->stats
.discard_count
);
766 spin_lock_irqsave(&cache
->lock
, flags
);
767 set_bit(from_dblock(b
), cache
->discard_bitset
);
768 spin_unlock_irqrestore(&cache
->lock
, flags
);
771 static void clear_discard(struct cache
*cache
, dm_dblock_t b
)
775 spin_lock_irqsave(&cache
->lock
, flags
);
776 clear_bit(from_dblock(b
), cache
->discard_bitset
);
777 spin_unlock_irqrestore(&cache
->lock
, flags
);
780 static bool is_discarded(struct cache
*cache
, dm_dblock_t b
)
785 spin_lock_irqsave(&cache
->lock
, flags
);
786 r
= test_bit(from_dblock(b
), cache
->discard_bitset
);
787 spin_unlock_irqrestore(&cache
->lock
, flags
);
792 static bool is_discarded_oblock(struct cache
*cache
, dm_oblock_t b
)
797 spin_lock_irqsave(&cache
->lock
, flags
);
798 r
= test_bit(from_dblock(oblock_to_dblock(cache
, b
)),
799 cache
->discard_bitset
);
800 spin_unlock_irqrestore(&cache
->lock
, flags
);
805 /*----------------------------------------------------------------
807 *--------------------------------------------------------------*/
808 static void remap_to_origin(struct cache
*cache
, struct bio
*bio
)
810 bio_set_dev(bio
, cache
->origin_dev
->bdev
);
813 static void remap_to_cache(struct cache
*cache
, struct bio
*bio
,
816 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
817 sector_t block
= from_cblock(cblock
);
819 bio_set_dev(bio
, cache
->cache_dev
->bdev
);
820 if (!block_size_is_power_of_two(cache
))
821 bio
->bi_iter
.bi_sector
=
822 (block
* cache
->sectors_per_block
) +
823 sector_div(bi_sector
, cache
->sectors_per_block
);
825 bio
->bi_iter
.bi_sector
=
826 (block
<< cache
->sectors_per_block_shift
) |
827 (bi_sector
& (cache
->sectors_per_block
- 1));
830 static void check_if_tick_bio_needed(struct cache
*cache
, struct bio
*bio
)
833 struct per_bio_data
*pb
;
835 spin_lock_irqsave(&cache
->lock
, flags
);
836 if (cache
->need_tick_bio
&& !op_is_flush(bio
->bi_opf
) &&
837 bio_op(bio
) != REQ_OP_DISCARD
) {
838 pb
= get_per_bio_data(bio
);
840 cache
->need_tick_bio
= false;
842 spin_unlock_irqrestore(&cache
->lock
, flags
);
845 static void __remap_to_origin_clear_discard(struct cache
*cache
, struct bio
*bio
,
846 dm_oblock_t oblock
, bool bio_has_pbd
)
849 check_if_tick_bio_needed(cache
, bio
);
850 remap_to_origin(cache
, bio
);
851 if (bio_data_dir(bio
) == WRITE
)
852 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
855 static void remap_to_origin_clear_discard(struct cache
*cache
, struct bio
*bio
,
858 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
859 __remap_to_origin_clear_discard(cache
, bio
, oblock
, true);
862 static void remap_to_cache_dirty(struct cache
*cache
, struct bio
*bio
,
863 dm_oblock_t oblock
, dm_cblock_t cblock
)
865 check_if_tick_bio_needed(cache
, bio
);
866 remap_to_cache(cache
, bio
, cblock
);
867 if (bio_data_dir(bio
) == WRITE
) {
868 set_dirty(cache
, cblock
);
869 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
873 static dm_oblock_t
get_bio_block(struct cache
*cache
, struct bio
*bio
)
875 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
877 if (!block_size_is_power_of_two(cache
))
878 (void) sector_div(block_nr
, cache
->sectors_per_block
);
880 block_nr
>>= cache
->sectors_per_block_shift
;
882 return to_oblock(block_nr
);
885 static bool accountable_bio(struct cache
*cache
, struct bio
*bio
)
887 return bio_op(bio
) != REQ_OP_DISCARD
;
890 static void accounted_begin(struct cache
*cache
, struct bio
*bio
)
892 struct per_bio_data
*pb
;
894 if (accountable_bio(cache
, bio
)) {
895 pb
= get_per_bio_data(bio
);
896 pb
->len
= bio_sectors(bio
);
897 iot_io_begin(&cache
->tracker
, pb
->len
);
901 static void accounted_complete(struct cache
*cache
, struct bio
*bio
)
903 struct per_bio_data
*pb
= get_per_bio_data(bio
);
905 iot_io_end(&cache
->tracker
, pb
->len
);
908 static void accounted_request(struct cache
*cache
, struct bio
*bio
)
910 accounted_begin(cache
, bio
);
911 generic_make_request(bio
);
914 static void issue_op(struct bio
*bio
, void *context
)
916 struct cache
*cache
= context
;
917 accounted_request(cache
, bio
);
921 * When running in writethrough mode we need to send writes to clean blocks
922 * to both the cache and origin devices. Clone the bio and send them in parallel.
924 static void remap_to_origin_and_cache(struct cache
*cache
, struct bio
*bio
,
925 dm_oblock_t oblock
, dm_cblock_t cblock
)
927 struct bio
*origin_bio
= bio_clone_fast(bio
, GFP_NOIO
, cache
->bs
);
931 bio_chain(origin_bio
, bio
);
933 * Passing false to __remap_to_origin_clear_discard() skips
934 * all code that might use per_bio_data (since clone doesn't have it)
936 __remap_to_origin_clear_discard(cache
, origin_bio
, oblock
, false);
937 submit_bio(origin_bio
);
939 remap_to_cache(cache
, bio
, cblock
);
942 /*----------------------------------------------------------------
944 *--------------------------------------------------------------*/
945 static enum cache_metadata_mode
get_cache_mode(struct cache
*cache
)
947 return cache
->features
.mode
;
950 static const char *cache_device_name(struct cache
*cache
)
952 return dm_device_name(dm_table_get_md(cache
->ti
->table
));
955 static void notify_mode_switch(struct cache
*cache
, enum cache_metadata_mode mode
)
957 const char *descs
[] = {
963 dm_table_event(cache
->ti
->table
);
964 DMINFO("%s: switching cache to %s mode",
965 cache_device_name(cache
), descs
[(int)mode
]);
968 static void set_cache_mode(struct cache
*cache
, enum cache_metadata_mode new_mode
)
971 enum cache_metadata_mode old_mode
= get_cache_mode(cache
);
973 if (dm_cache_metadata_needs_check(cache
->cmd
, &needs_check
)) {
974 DMERR("%s: unable to read needs_check flag, setting failure mode.",
975 cache_device_name(cache
));
979 if (new_mode
== CM_WRITE
&& needs_check
) {
980 DMERR("%s: unable to switch cache to write mode until repaired.",
981 cache_device_name(cache
));
982 if (old_mode
!= new_mode
)
985 new_mode
= CM_READ_ONLY
;
988 /* Never move out of fail mode */
989 if (old_mode
== CM_FAIL
)
995 dm_cache_metadata_set_read_only(cache
->cmd
);
999 dm_cache_metadata_set_read_write(cache
->cmd
);
1003 cache
->features
.mode
= new_mode
;
1005 if (new_mode
!= old_mode
)
1006 notify_mode_switch(cache
, new_mode
);
1009 static void abort_transaction(struct cache
*cache
)
1011 const char *dev_name
= cache_device_name(cache
);
1013 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1016 if (dm_cache_metadata_set_needs_check(cache
->cmd
)) {
1017 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
1018 set_cache_mode(cache
, CM_FAIL
);
1021 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
1022 if (dm_cache_metadata_abort(cache
->cmd
)) {
1023 DMERR("%s: failed to abort metadata transaction", dev_name
);
1024 set_cache_mode(cache
, CM_FAIL
);
1028 static void metadata_operation_failed(struct cache
*cache
, const char *op
, int r
)
1030 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1031 cache_device_name(cache
), op
, r
);
1032 abort_transaction(cache
);
1033 set_cache_mode(cache
, CM_READ_ONLY
);
1036 /*----------------------------------------------------------------*/
1038 static void load_stats(struct cache
*cache
)
1040 struct dm_cache_statistics stats
;
1042 dm_cache_metadata_get_stats(cache
->cmd
, &stats
);
1043 atomic_set(&cache
->stats
.read_hit
, stats
.read_hits
);
1044 atomic_set(&cache
->stats
.read_miss
, stats
.read_misses
);
1045 atomic_set(&cache
->stats
.write_hit
, stats
.write_hits
);
1046 atomic_set(&cache
->stats
.write_miss
, stats
.write_misses
);
1049 static void save_stats(struct cache
*cache
)
1051 struct dm_cache_statistics stats
;
1053 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1056 stats
.read_hits
= atomic_read(&cache
->stats
.read_hit
);
1057 stats
.read_misses
= atomic_read(&cache
->stats
.read_miss
);
1058 stats
.write_hits
= atomic_read(&cache
->stats
.write_hit
);
1059 stats
.write_misses
= atomic_read(&cache
->stats
.write_miss
);
1061 dm_cache_metadata_set_stats(cache
->cmd
, &stats
);
1064 static void update_stats(struct cache_stats
*stats
, enum policy_operation op
)
1067 case POLICY_PROMOTE
:
1068 atomic_inc(&stats
->promotion
);
1072 atomic_inc(&stats
->demotion
);
1075 case POLICY_WRITEBACK
:
1076 atomic_inc(&stats
->writeback
);
1081 /*----------------------------------------------------------------
1082 * Migration processing
1084 * Migration covers moving data from the origin device to the cache, or
1086 *--------------------------------------------------------------*/
1088 static void inc_io_migrations(struct cache
*cache
)
1090 atomic_inc(&cache
->nr_io_migrations
);
1093 static void dec_io_migrations(struct cache
*cache
)
1095 atomic_dec(&cache
->nr_io_migrations
);
1098 static bool discard_or_flush(struct bio
*bio
)
1100 return bio_op(bio
) == REQ_OP_DISCARD
|| op_is_flush(bio
->bi_opf
);
1103 static void calc_discard_block_range(struct cache
*cache
, struct bio
*bio
,
1104 dm_dblock_t
*b
, dm_dblock_t
*e
)
1106 sector_t sb
= bio
->bi_iter
.bi_sector
;
1107 sector_t se
= bio_end_sector(bio
);
1109 *b
= to_dblock(dm_sector_div_up(sb
, cache
->discard_block_size
));
1111 if (se
- sb
< cache
->discard_block_size
)
1114 *e
= to_dblock(block_div(se
, cache
->discard_block_size
));
1117 /*----------------------------------------------------------------*/
1119 static void prevent_background_work(struct cache
*cache
)
1122 down_write(&cache
->background_work_lock
);
1126 static void allow_background_work(struct cache
*cache
)
1129 up_write(&cache
->background_work_lock
);
1133 static bool background_work_begin(struct cache
*cache
)
1138 r
= down_read_trylock(&cache
->background_work_lock
);
1144 static void background_work_end(struct cache
*cache
)
1147 up_read(&cache
->background_work_lock
);
1151 /*----------------------------------------------------------------*/
1153 static bool bio_writes_complete_block(struct cache
*cache
, struct bio
*bio
)
1155 return (bio_data_dir(bio
) == WRITE
) &&
1156 (bio
->bi_iter
.bi_size
== (cache
->sectors_per_block
<< SECTOR_SHIFT
));
1159 static bool optimisable_bio(struct cache
*cache
, struct bio
*bio
, dm_oblock_t block
)
1161 return writeback_mode(cache
) &&
1162 (is_discarded_oblock(cache
, block
) || bio_writes_complete_block(cache
, bio
));
1165 static void quiesce(struct dm_cache_migration
*mg
,
1166 void (*continuation
)(struct work_struct
*))
1168 init_continuation(&mg
->k
, continuation
);
1169 dm_cell_quiesce_v2(mg
->cache
->prison
, mg
->cell
, &mg
->k
.ws
);
1172 static struct dm_cache_migration
*ws_to_mg(struct work_struct
*ws
)
1174 struct continuation
*k
= container_of(ws
, struct continuation
, ws
);
1175 return container_of(k
, struct dm_cache_migration
, k
);
1178 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
1180 struct dm_cache_migration
*mg
= container_of(context
, struct dm_cache_migration
, k
);
1182 if (read_err
|| write_err
)
1183 mg
->k
.input
= BLK_STS_IOERR
;
1185 queue_continuation(mg
->cache
->wq
, &mg
->k
);
1188 static int copy(struct dm_cache_migration
*mg
, bool promote
)
1191 struct dm_io_region o_region
, c_region
;
1192 struct cache
*cache
= mg
->cache
;
1194 o_region
.bdev
= cache
->origin_dev
->bdev
;
1195 o_region
.sector
= from_oblock(mg
->op
->oblock
) * cache
->sectors_per_block
;
1196 o_region
.count
= cache
->sectors_per_block
;
1198 c_region
.bdev
= cache
->cache_dev
->bdev
;
1199 c_region
.sector
= from_cblock(mg
->op
->cblock
) * cache
->sectors_per_block
;
1200 c_region
.count
= cache
->sectors_per_block
;
1203 r
= dm_kcopyd_copy(cache
->copier
, &o_region
, 1, &c_region
, 0, copy_complete
, &mg
->k
);
1205 r
= dm_kcopyd_copy(cache
->copier
, &c_region
, 1, &o_region
, 0, copy_complete
, &mg
->k
);
1210 static void bio_drop_shared_lock(struct cache
*cache
, struct bio
*bio
)
1212 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1214 if (pb
->cell
&& dm_cell_put_v2(cache
->prison
, pb
->cell
))
1215 free_prison_cell(cache
, pb
->cell
);
1219 static void overwrite_endio(struct bio
*bio
)
1221 struct dm_cache_migration
*mg
= bio
->bi_private
;
1222 struct cache
*cache
= mg
->cache
;
1223 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1225 dm_unhook_bio(&pb
->hook_info
, bio
);
1228 mg
->k
.input
= bio
->bi_status
;
1230 queue_continuation(cache
->wq
, &mg
->k
);
1233 static void overwrite(struct dm_cache_migration
*mg
,
1234 void (*continuation
)(struct work_struct
*))
1236 struct bio
*bio
= mg
->overwrite_bio
;
1237 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1239 dm_hook_bio(&pb
->hook_info
, bio
, overwrite_endio
, mg
);
1242 * The overwrite bio is part of the copy operation, as such it does
1243 * not set/clear discard or dirty flags.
1245 if (mg
->op
->op
== POLICY_PROMOTE
)
1246 remap_to_cache(mg
->cache
, bio
, mg
->op
->cblock
);
1248 remap_to_origin(mg
->cache
, bio
);
1250 init_continuation(&mg
->k
, continuation
);
1251 accounted_request(mg
->cache
, bio
);
1257 * 1) exclusive lock preventing WRITEs
1259 * 3) copy or issue overwrite bio
1260 * 4) upgrade to exclusive lock preventing READs and WRITEs
1262 * 6) update metadata and commit
1265 static void mg_complete(struct dm_cache_migration
*mg
, bool success
)
1267 struct bio_list bios
;
1268 struct cache
*cache
= mg
->cache
;
1269 struct policy_work
*op
= mg
->op
;
1270 dm_cblock_t cblock
= op
->cblock
;
1273 update_stats(&cache
->stats
, op
->op
);
1276 case POLICY_PROMOTE
:
1277 clear_discard(cache
, oblock_to_dblock(cache
, op
->oblock
));
1278 policy_complete_background_work(cache
->policy
, op
, success
);
1280 if (mg
->overwrite_bio
) {
1282 force_set_dirty(cache
, cblock
);
1283 else if (mg
->k
.input
)
1284 mg
->overwrite_bio
->bi_status
= mg
->k
.input
;
1286 mg
->overwrite_bio
->bi_status
= BLK_STS_IOERR
;
1287 bio_endio(mg
->overwrite_bio
);
1290 force_clear_dirty(cache
, cblock
);
1291 dec_io_migrations(cache
);
1297 * We clear dirty here to update the nr_dirty counter.
1300 force_clear_dirty(cache
, cblock
);
1301 policy_complete_background_work(cache
->policy
, op
, success
);
1302 dec_io_migrations(cache
);
1305 case POLICY_WRITEBACK
:
1307 force_clear_dirty(cache
, cblock
);
1308 policy_complete_background_work(cache
->policy
, op
, success
);
1309 dec_io_migrations(cache
);
1313 bio_list_init(&bios
);
1315 if (dm_cell_unlock_v2(cache
->prison
, mg
->cell
, &bios
))
1316 free_prison_cell(cache
, mg
->cell
);
1320 defer_bios(cache
, &bios
);
1321 wake_migration_worker(cache
);
1323 background_work_end(cache
);
1326 static void mg_success(struct work_struct
*ws
)
1328 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1329 mg_complete(mg
, mg
->k
.input
== 0);
1332 static void mg_update_metadata(struct work_struct
*ws
)
1335 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1336 struct cache
*cache
= mg
->cache
;
1337 struct policy_work
*op
= mg
->op
;
1340 case POLICY_PROMOTE
:
1341 r
= dm_cache_insert_mapping(cache
->cmd
, op
->cblock
, op
->oblock
);
1343 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1344 cache_device_name(cache
));
1345 metadata_operation_failed(cache
, "dm_cache_insert_mapping", r
);
1347 mg_complete(mg
, false);
1350 mg_complete(mg
, true);
1354 r
= dm_cache_remove_mapping(cache
->cmd
, op
->cblock
);
1356 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1357 cache_device_name(cache
));
1358 metadata_operation_failed(cache
, "dm_cache_remove_mapping", r
);
1360 mg_complete(mg
, false);
1365 * It would be nice if we only had to commit when a REQ_FLUSH
1366 * comes through. But there's one scenario that we have to
1369 * - vblock x in a cache block
1371 * - cache block gets reallocated and over written
1374 * When we recover, because there was no commit the cache will
1375 * rollback to having the data for vblock x in the cache block.
1376 * But the cache block has since been overwritten, so it'll end
1377 * up pointing to data that was never in 'x' during the history
1380 * To avoid this issue we require a commit as part of the
1381 * demotion operation.
1383 init_continuation(&mg
->k
, mg_success
);
1384 continue_after_commit(&cache
->committer
, &mg
->k
);
1385 schedule_commit(&cache
->committer
);
1388 case POLICY_WRITEBACK
:
1389 mg_complete(mg
, true);
1394 static void mg_update_metadata_after_copy(struct work_struct
*ws
)
1396 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1399 * Did the copy succeed?
1402 mg_complete(mg
, false);
1404 mg_update_metadata(ws
);
1407 static void mg_upgrade_lock(struct work_struct
*ws
)
1410 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1413 * Did the copy succeed?
1416 mg_complete(mg
, false);
1420 * Now we want the lock to prevent both reads and writes.
1422 r
= dm_cell_lock_promote_v2(mg
->cache
->prison
, mg
->cell
,
1423 READ_WRITE_LOCK_LEVEL
);
1425 mg_complete(mg
, false);
1428 quiesce(mg
, mg_update_metadata
);
1431 mg_update_metadata(ws
);
1435 static void mg_full_copy(struct work_struct
*ws
)
1437 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1438 struct cache
*cache
= mg
->cache
;
1439 struct policy_work
*op
= mg
->op
;
1440 bool is_policy_promote
= (op
->op
== POLICY_PROMOTE
);
1442 if ((!is_policy_promote
&& !is_dirty(cache
, op
->cblock
)) ||
1443 is_discarded_oblock(cache
, op
->oblock
)) {
1444 mg_upgrade_lock(ws
);
1448 init_continuation(&mg
->k
, mg_upgrade_lock
);
1450 if (copy(mg
, is_policy_promote
)) {
1451 DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache
));
1452 mg
->k
.input
= BLK_STS_IOERR
;
1453 mg_complete(mg
, false);
1457 static void mg_copy(struct work_struct
*ws
)
1459 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1461 if (mg
->overwrite_bio
) {
1463 * No exclusive lock was held when we last checked if the bio
1464 * was optimisable. So we have to check again in case things
1465 * have changed (eg, the block may no longer be discarded).
1467 if (!optimisable_bio(mg
->cache
, mg
->overwrite_bio
, mg
->op
->oblock
)) {
1469 * Fallback to a real full copy after doing some tidying up.
1471 bool rb
= bio_detain_shared(mg
->cache
, mg
->op
->oblock
, mg
->overwrite_bio
);
1472 BUG_ON(rb
); /* An exclussive lock must _not_ be held for this block */
1473 mg
->overwrite_bio
= NULL
;
1474 inc_io_migrations(mg
->cache
);
1480 * It's safe to do this here, even though it's new data
1481 * because all IO has been locked out of the block.
1483 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1484 * so _not_ using mg_upgrade_lock() as continutation.
1486 overwrite(mg
, mg_update_metadata_after_copy
);
1492 static int mg_lock_writes(struct dm_cache_migration
*mg
)
1495 struct dm_cell_key_v2 key
;
1496 struct cache
*cache
= mg
->cache
;
1497 struct dm_bio_prison_cell_v2
*prealloc
;
1499 prealloc
= alloc_prison_cell(cache
);
1501 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache
));
1502 mg_complete(mg
, false);
1507 * Prevent writes to the block, but allow reads to continue.
1508 * Unless we're using an overwrite bio, in which case we lock
1511 build_key(mg
->op
->oblock
, oblock_succ(mg
->op
->oblock
), &key
);
1512 r
= dm_cell_lock_v2(cache
->prison
, &key
,
1513 mg
->overwrite_bio
? READ_WRITE_LOCK_LEVEL
: WRITE_LOCK_LEVEL
,
1514 prealloc
, &mg
->cell
);
1516 free_prison_cell(cache
, prealloc
);
1517 mg_complete(mg
, false);
1521 if (mg
->cell
!= prealloc
)
1522 free_prison_cell(cache
, prealloc
);
1527 quiesce(mg
, mg_copy
);
1532 static int mg_start(struct cache
*cache
, struct policy_work
*op
, struct bio
*bio
)
1534 struct dm_cache_migration
*mg
;
1536 if (!background_work_begin(cache
)) {
1537 policy_complete_background_work(cache
->policy
, op
, false);
1541 mg
= alloc_migration(cache
);
1543 policy_complete_background_work(cache
->policy
, op
, false);
1544 background_work_end(cache
);
1549 mg
->overwrite_bio
= bio
;
1552 inc_io_migrations(cache
);
1554 return mg_lock_writes(mg
);
1557 /*----------------------------------------------------------------
1558 * invalidation processing
1559 *--------------------------------------------------------------*/
1561 static void invalidate_complete(struct dm_cache_migration
*mg
, bool success
)
1563 struct bio_list bios
;
1564 struct cache
*cache
= mg
->cache
;
1566 bio_list_init(&bios
);
1567 if (dm_cell_unlock_v2(cache
->prison
, mg
->cell
, &bios
))
1568 free_prison_cell(cache
, mg
->cell
);
1570 if (!success
&& mg
->overwrite_bio
)
1571 bio_io_error(mg
->overwrite_bio
);
1574 defer_bios(cache
, &bios
);
1576 background_work_end(cache
);
1579 static void invalidate_completed(struct work_struct
*ws
)
1581 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1582 invalidate_complete(mg
, !mg
->k
.input
);
1585 static int invalidate_cblock(struct cache
*cache
, dm_cblock_t cblock
)
1587 int r
= policy_invalidate_mapping(cache
->policy
, cblock
);
1589 r
= dm_cache_remove_mapping(cache
->cmd
, cblock
);
1591 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1592 cache_device_name(cache
));
1593 metadata_operation_failed(cache
, "dm_cache_remove_mapping", r
);
1596 } else if (r
== -ENODATA
) {
1598 * Harmless, already unmapped.
1603 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache
));
1608 static void invalidate_remove(struct work_struct
*ws
)
1611 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1612 struct cache
*cache
= mg
->cache
;
1614 r
= invalidate_cblock(cache
, mg
->invalidate_cblock
);
1616 invalidate_complete(mg
, false);
1620 init_continuation(&mg
->k
, invalidate_completed
);
1621 continue_after_commit(&cache
->committer
, &mg
->k
);
1622 remap_to_origin_clear_discard(cache
, mg
->overwrite_bio
, mg
->invalidate_oblock
);
1623 mg
->overwrite_bio
= NULL
;
1624 schedule_commit(&cache
->committer
);
1627 static int invalidate_lock(struct dm_cache_migration
*mg
)
1630 struct dm_cell_key_v2 key
;
1631 struct cache
*cache
= mg
->cache
;
1632 struct dm_bio_prison_cell_v2
*prealloc
;
1634 prealloc
= alloc_prison_cell(cache
);
1636 invalidate_complete(mg
, false);
1640 build_key(mg
->invalidate_oblock
, oblock_succ(mg
->invalidate_oblock
), &key
);
1641 r
= dm_cell_lock_v2(cache
->prison
, &key
,
1642 READ_WRITE_LOCK_LEVEL
, prealloc
, &mg
->cell
);
1644 free_prison_cell(cache
, prealloc
);
1645 invalidate_complete(mg
, false);
1649 if (mg
->cell
!= prealloc
)
1650 free_prison_cell(cache
, prealloc
);
1653 quiesce(mg
, invalidate_remove
);
1657 * We can't call invalidate_remove() directly here because we
1658 * might still be in request context.
1660 init_continuation(&mg
->k
, invalidate_remove
);
1661 queue_work(cache
->wq
, &mg
->k
.ws
);
1667 static int invalidate_start(struct cache
*cache
, dm_cblock_t cblock
,
1668 dm_oblock_t oblock
, struct bio
*bio
)
1670 struct dm_cache_migration
*mg
;
1672 if (!background_work_begin(cache
))
1675 mg
= alloc_migration(cache
);
1677 background_work_end(cache
);
1681 mg
->overwrite_bio
= bio
;
1682 mg
->invalidate_cblock
= cblock
;
1683 mg
->invalidate_oblock
= oblock
;
1685 return invalidate_lock(mg
);
1688 /*----------------------------------------------------------------
1690 *--------------------------------------------------------------*/
1697 static enum busy
spare_migration_bandwidth(struct cache
*cache
)
1699 bool idle
= iot_idle_for(&cache
->tracker
, HZ
);
1700 sector_t current_volume
= (atomic_read(&cache
->nr_io_migrations
) + 1) *
1701 cache
->sectors_per_block
;
1703 if (idle
&& current_volume
<= cache
->migration_threshold
)
1709 static void inc_hit_counter(struct cache
*cache
, struct bio
*bio
)
1711 atomic_inc(bio_data_dir(bio
) == READ
?
1712 &cache
->stats
.read_hit
: &cache
->stats
.write_hit
);
1715 static void inc_miss_counter(struct cache
*cache
, struct bio
*bio
)
1717 atomic_inc(bio_data_dir(bio
) == READ
?
1718 &cache
->stats
.read_miss
: &cache
->stats
.write_miss
);
1721 /*----------------------------------------------------------------*/
1723 static int map_bio(struct cache
*cache
, struct bio
*bio
, dm_oblock_t block
,
1724 bool *commit_needed
)
1727 bool rb
, background_queued
;
1730 *commit_needed
= false;
1732 rb
= bio_detain_shared(cache
, block
, bio
);
1735 * An exclusive lock is held for this block, so we have to
1736 * wait. We set the commit_needed flag so the current
1737 * transaction will be committed asap, allowing this lock
1740 *commit_needed
= true;
1741 return DM_MAPIO_SUBMITTED
;
1744 data_dir
= bio_data_dir(bio
);
1746 if (optimisable_bio(cache
, bio
, block
)) {
1747 struct policy_work
*op
= NULL
;
1749 r
= policy_lookup_with_work(cache
->policy
, block
, &cblock
, data_dir
, true, &op
);
1750 if (unlikely(r
&& r
!= -ENOENT
)) {
1751 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1752 cache_device_name(cache
), r
);
1754 return DM_MAPIO_SUBMITTED
;
1757 if (r
== -ENOENT
&& op
) {
1758 bio_drop_shared_lock(cache
, bio
);
1759 BUG_ON(op
->op
!= POLICY_PROMOTE
);
1760 mg_start(cache
, op
, bio
);
1761 return DM_MAPIO_SUBMITTED
;
1764 r
= policy_lookup(cache
->policy
, block
, &cblock
, data_dir
, false, &background_queued
);
1765 if (unlikely(r
&& r
!= -ENOENT
)) {
1766 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1767 cache_device_name(cache
), r
);
1769 return DM_MAPIO_SUBMITTED
;
1772 if (background_queued
)
1773 wake_migration_worker(cache
);
1777 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1782 inc_miss_counter(cache
, bio
);
1783 if (pb
->req_nr
== 0) {
1784 accounted_begin(cache
, bio
);
1785 remap_to_origin_clear_discard(cache
, bio
, block
);
1788 * This is a duplicate writethrough io that is no
1789 * longer needed because the block has been demoted.
1792 return DM_MAPIO_SUBMITTED
;
1798 inc_hit_counter(cache
, bio
);
1801 * Passthrough always maps to the origin, invalidating any
1802 * cache blocks that are written to.
1804 if (passthrough_mode(cache
)) {
1805 if (bio_data_dir(bio
) == WRITE
) {
1806 bio_drop_shared_lock(cache
, bio
);
1807 atomic_inc(&cache
->stats
.demotion
);
1808 invalidate_start(cache
, cblock
, block
, bio
);
1810 remap_to_origin_clear_discard(cache
, bio
, block
);
1812 if (bio_data_dir(bio
) == WRITE
&& writethrough_mode(cache
) &&
1813 !is_dirty(cache
, cblock
)) {
1814 remap_to_origin_and_cache(cache
, bio
, block
, cblock
);
1815 accounted_begin(cache
, bio
);
1817 remap_to_cache_dirty(cache
, bio
, block
, cblock
);
1822 * dm core turns FUA requests into a separate payload and FLUSH req.
1824 if (bio
->bi_opf
& REQ_FUA
) {
1826 * issue_after_commit will call accounted_begin a second time. So
1827 * we call accounted_complete() to avoid double accounting.
1829 accounted_complete(cache
, bio
);
1830 issue_after_commit(&cache
->committer
, bio
);
1831 *commit_needed
= true;
1832 return DM_MAPIO_SUBMITTED
;
1835 return DM_MAPIO_REMAPPED
;
1838 static bool process_bio(struct cache
*cache
, struct bio
*bio
)
1842 if (map_bio(cache
, bio
, get_bio_block(cache
, bio
), &commit_needed
) == DM_MAPIO_REMAPPED
)
1843 generic_make_request(bio
);
1845 return commit_needed
;
1849 * A non-zero return indicates read_only or fail_io mode.
1851 static int commit(struct cache
*cache
, bool clean_shutdown
)
1855 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1858 atomic_inc(&cache
->stats
.commit_count
);
1859 r
= dm_cache_commit(cache
->cmd
, clean_shutdown
);
1861 metadata_operation_failed(cache
, "dm_cache_commit", r
);
1867 * Used by the batcher.
1869 static blk_status_t
commit_op(void *context
)
1871 struct cache
*cache
= context
;
1873 if (dm_cache_changed_this_transaction(cache
->cmd
))
1874 return errno_to_blk_status(commit(cache
, false));
1879 /*----------------------------------------------------------------*/
1881 static bool process_flush_bio(struct cache
*cache
, struct bio
*bio
)
1883 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1886 remap_to_origin(cache
, bio
);
1888 remap_to_cache(cache
, bio
, 0);
1890 issue_after_commit(&cache
->committer
, bio
);
1894 static bool process_discard_bio(struct cache
*cache
, struct bio
*bio
)
1898 // FIXME: do we need to lock the region? Or can we just assume the
1899 // user wont be so foolish as to issue discard concurrently with
1901 calc_discard_block_range(cache
, bio
, &b
, &e
);
1903 set_discard(cache
, b
);
1904 b
= to_dblock(from_dblock(b
) + 1);
1912 static void process_deferred_bios(struct work_struct
*ws
)
1914 struct cache
*cache
= container_of(ws
, struct cache
, deferred_bio_worker
);
1916 unsigned long flags
;
1917 bool commit_needed
= false;
1918 struct bio_list bios
;
1921 bio_list_init(&bios
);
1923 spin_lock_irqsave(&cache
->lock
, flags
);
1924 bio_list_merge(&bios
, &cache
->deferred_bios
);
1925 bio_list_init(&cache
->deferred_bios
);
1926 spin_unlock_irqrestore(&cache
->lock
, flags
);
1928 while ((bio
= bio_list_pop(&bios
))) {
1929 if (bio
->bi_opf
& REQ_PREFLUSH
)
1930 commit_needed
= process_flush_bio(cache
, bio
) || commit_needed
;
1932 else if (bio_op(bio
) == REQ_OP_DISCARD
)
1933 commit_needed
= process_discard_bio(cache
, bio
) || commit_needed
;
1936 commit_needed
= process_bio(cache
, bio
) || commit_needed
;
1940 schedule_commit(&cache
->committer
);
1943 /*----------------------------------------------------------------
1945 *--------------------------------------------------------------*/
1947 static void requeue_deferred_bios(struct cache
*cache
)
1950 struct bio_list bios
;
1952 bio_list_init(&bios
);
1953 bio_list_merge(&bios
, &cache
->deferred_bios
);
1954 bio_list_init(&cache
->deferred_bios
);
1956 while ((bio
= bio_list_pop(&bios
))) {
1957 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
1963 * We want to commit periodically so that not too much
1964 * unwritten metadata builds up.
1966 static void do_waker(struct work_struct
*ws
)
1968 struct cache
*cache
= container_of(to_delayed_work(ws
), struct cache
, waker
);
1970 policy_tick(cache
->policy
, true);
1971 wake_migration_worker(cache
);
1972 schedule_commit(&cache
->committer
);
1973 queue_delayed_work(cache
->wq
, &cache
->waker
, COMMIT_PERIOD
);
1976 static void check_migrations(struct work_struct
*ws
)
1979 struct policy_work
*op
;
1980 struct cache
*cache
= container_of(ws
, struct cache
, migration_worker
);
1984 b
= spare_migration_bandwidth(cache
);
1986 r
= policy_get_background_work(cache
->policy
, b
== IDLE
, &op
);
1991 DMERR_LIMIT("%s: policy_background_work failed",
1992 cache_device_name(cache
));
1996 r
= mg_start(cache
, op
, NULL
);
2002 /*----------------------------------------------------------------
2004 *--------------------------------------------------------------*/
2007 * This function gets called on the error paths of the constructor, so we
2008 * have to cope with a partially initialised struct.
2010 static void destroy(struct cache
*cache
)
2014 mempool_destroy(cache
->migration_pool
);
2017 dm_bio_prison_destroy_v2(cache
->prison
);
2020 destroy_workqueue(cache
->wq
);
2022 if (cache
->dirty_bitset
)
2023 free_bitset(cache
->dirty_bitset
);
2025 if (cache
->discard_bitset
)
2026 free_bitset(cache
->discard_bitset
);
2029 dm_kcopyd_client_destroy(cache
->copier
);
2032 dm_cache_metadata_close(cache
->cmd
);
2034 if (cache
->metadata_dev
)
2035 dm_put_device(cache
->ti
, cache
->metadata_dev
);
2037 if (cache
->origin_dev
)
2038 dm_put_device(cache
->ti
, cache
->origin_dev
);
2040 if (cache
->cache_dev
)
2041 dm_put_device(cache
->ti
, cache
->cache_dev
);
2044 dm_cache_policy_destroy(cache
->policy
);
2046 for (i
= 0; i
< cache
->nr_ctr_args
; i
++)
2047 kfree(cache
->ctr_args
[i
]);
2048 kfree(cache
->ctr_args
);
2051 bioset_free(cache
->bs
);
2056 static void cache_dtr(struct dm_target
*ti
)
2058 struct cache
*cache
= ti
->private;
2063 static sector_t
get_dev_size(struct dm_dev
*dev
)
2065 return i_size_read(dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
2068 /*----------------------------------------------------------------*/
2071 * Construct a cache device mapping.
2073 * cache <metadata dev> <cache dev> <origin dev> <block size>
2074 * <#feature args> [<feature arg>]*
2075 * <policy> <#policy args> [<policy arg>]*
2077 * metadata dev : fast device holding the persistent metadata
2078 * cache dev : fast device holding cached data blocks
2079 * origin dev : slow device holding original data blocks
2080 * block size : cache unit size in sectors
2082 * #feature args : number of feature arguments passed
2083 * feature args : writethrough. (The default is writeback.)
2085 * policy : the replacement policy to use
2086 * #policy args : an even number of policy arguments corresponding
2087 * to key/value pairs passed to the policy
2088 * policy args : key/value pairs passed to the policy
2089 * E.g. 'sequential_threshold 1024'
2090 * See cache-policies.txt for details.
2092 * Optional feature arguments are:
2093 * writethrough : write through caching that prohibits cache block
2094 * content from being different from origin block content.
2095 * Without this argument, the default behaviour is to write
2096 * back cache block contents later for performance reasons,
2097 * so they may differ from the corresponding origin blocks.
2100 struct dm_target
*ti
;
2102 struct dm_dev
*metadata_dev
;
2104 struct dm_dev
*cache_dev
;
2105 sector_t cache_sectors
;
2107 struct dm_dev
*origin_dev
;
2108 sector_t origin_sectors
;
2110 uint32_t block_size
;
2112 const char *policy_name
;
2114 const char **policy_argv
;
2116 struct cache_features features
;
2119 static void destroy_cache_args(struct cache_args
*ca
)
2121 if (ca
->metadata_dev
)
2122 dm_put_device(ca
->ti
, ca
->metadata_dev
);
2125 dm_put_device(ca
->ti
, ca
->cache_dev
);
2128 dm_put_device(ca
->ti
, ca
->origin_dev
);
2133 static bool at_least_one_arg(struct dm_arg_set
*as
, char **error
)
2136 *error
= "Insufficient args";
2143 static int parse_metadata_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2147 sector_t metadata_dev_size
;
2148 char b
[BDEVNAME_SIZE
];
2150 if (!at_least_one_arg(as
, error
))
2153 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
), FMODE_READ
| FMODE_WRITE
,
2156 *error
= "Error opening metadata device";
2160 metadata_dev_size
= get_dev_size(ca
->metadata_dev
);
2161 if (metadata_dev_size
> DM_CACHE_METADATA_MAX_SECTORS_WARNING
)
2162 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2163 bdevname(ca
->metadata_dev
->bdev
, b
), THIN_METADATA_MAX_SECTORS
);
2168 static int parse_cache_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2173 if (!at_least_one_arg(as
, error
))
2176 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
), FMODE_READ
| FMODE_WRITE
,
2179 *error
= "Error opening cache device";
2182 ca
->cache_sectors
= get_dev_size(ca
->cache_dev
);
2187 static int parse_origin_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2192 if (!at_least_one_arg(as
, error
))
2195 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
), FMODE_READ
| FMODE_WRITE
,
2198 *error
= "Error opening origin device";
2202 ca
->origin_sectors
= get_dev_size(ca
->origin_dev
);
2203 if (ca
->ti
->len
> ca
->origin_sectors
) {
2204 *error
= "Device size larger than cached device";
2211 static int parse_block_size(struct cache_args
*ca
, struct dm_arg_set
*as
,
2214 unsigned long block_size
;
2216 if (!at_least_one_arg(as
, error
))
2219 if (kstrtoul(dm_shift_arg(as
), 10, &block_size
) || !block_size
||
2220 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
2221 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
2222 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
2223 *error
= "Invalid data block size";
2227 if (block_size
> ca
->cache_sectors
) {
2228 *error
= "Data block size is larger than the cache device";
2232 ca
->block_size
= block_size
;
2237 static void init_features(struct cache_features
*cf
)
2239 cf
->mode
= CM_WRITE
;
2240 cf
->io_mode
= CM_IO_WRITEBACK
;
2241 cf
->metadata_version
= 1;
2244 static int parse_features(struct cache_args
*ca
, struct dm_arg_set
*as
,
2247 static const struct dm_arg _args
[] = {
2248 {0, 2, "Invalid number of cache feature arguments"},
2254 struct cache_features
*cf
= &ca
->features
;
2258 r
= dm_read_arg_group(_args
, as
, &argc
, error
);
2263 arg
= dm_shift_arg(as
);
2265 if (!strcasecmp(arg
, "writeback"))
2266 cf
->io_mode
= CM_IO_WRITEBACK
;
2268 else if (!strcasecmp(arg
, "writethrough"))
2269 cf
->io_mode
= CM_IO_WRITETHROUGH
;
2271 else if (!strcasecmp(arg
, "passthrough"))
2272 cf
->io_mode
= CM_IO_PASSTHROUGH
;
2274 else if (!strcasecmp(arg
, "metadata2"))
2275 cf
->metadata_version
= 2;
2278 *error
= "Unrecognised cache feature requested";
2286 static int parse_policy(struct cache_args
*ca
, struct dm_arg_set
*as
,
2289 static const struct dm_arg _args
[] = {
2290 {0, 1024, "Invalid number of policy arguments"},
2295 if (!at_least_one_arg(as
, error
))
2298 ca
->policy_name
= dm_shift_arg(as
);
2300 r
= dm_read_arg_group(_args
, as
, &ca
->policy_argc
, error
);
2304 ca
->policy_argv
= (const char **)as
->argv
;
2305 dm_consume_args(as
, ca
->policy_argc
);
2310 static int parse_cache_args(struct cache_args
*ca
, int argc
, char **argv
,
2314 struct dm_arg_set as
;
2319 r
= parse_metadata_dev(ca
, &as
, error
);
2323 r
= parse_cache_dev(ca
, &as
, error
);
2327 r
= parse_origin_dev(ca
, &as
, error
);
2331 r
= parse_block_size(ca
, &as
, error
);
2335 r
= parse_features(ca
, &as
, error
);
2339 r
= parse_policy(ca
, &as
, error
);
2346 /*----------------------------------------------------------------*/
2348 static struct kmem_cache
*migration_cache
;
2350 #define NOT_CORE_OPTION 1
2352 static int process_config_option(struct cache
*cache
, const char *key
, const char *value
)
2356 if (!strcasecmp(key
, "migration_threshold")) {
2357 if (kstrtoul(value
, 10, &tmp
))
2360 cache
->migration_threshold
= tmp
;
2364 return NOT_CORE_OPTION
;
2367 static int set_config_value(struct cache
*cache
, const char *key
, const char *value
)
2369 int r
= process_config_option(cache
, key
, value
);
2371 if (r
== NOT_CORE_OPTION
)
2372 r
= policy_set_config_value(cache
->policy
, key
, value
);
2375 DMWARN("bad config value for %s: %s", key
, value
);
2380 static int set_config_values(struct cache
*cache
, int argc
, const char **argv
)
2385 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2390 r
= set_config_value(cache
, argv
[0], argv
[1]);
2401 static int create_cache_policy(struct cache
*cache
, struct cache_args
*ca
,
2404 struct dm_cache_policy
*p
= dm_cache_policy_create(ca
->policy_name
,
2406 cache
->origin_sectors
,
2407 cache
->sectors_per_block
);
2409 *error
= "Error creating cache's policy";
2413 BUG_ON(!cache
->policy
);
2419 * We want the discard block size to be at least the size of the cache
2420 * block size and have no more than 2^14 discard blocks across the origin.
2422 #define MAX_DISCARD_BLOCKS (1 << 14)
2424 static bool too_many_discard_blocks(sector_t discard_block_size
,
2425 sector_t origin_size
)
2427 (void) sector_div(origin_size
, discard_block_size
);
2429 return origin_size
> MAX_DISCARD_BLOCKS
;
2432 static sector_t
calculate_discard_block_size(sector_t cache_block_size
,
2433 sector_t origin_size
)
2435 sector_t discard_block_size
= cache_block_size
;
2438 while (too_many_discard_blocks(discard_block_size
, origin_size
))
2439 discard_block_size
*= 2;
2441 return discard_block_size
;
2444 static void set_cache_size(struct cache
*cache
, dm_cblock_t size
)
2446 dm_block_t nr_blocks
= from_cblock(size
);
2448 if (nr_blocks
> (1 << 20) && cache
->cache_size
!= size
)
2449 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2450 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2451 "Please consider increasing the cache block size to reduce the overall cache block count.",
2452 (unsigned long long) nr_blocks
);
2454 cache
->cache_size
= size
;
2457 static int is_congested(struct dm_dev
*dev
, int bdi_bits
)
2459 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
2460 return bdi_congested(q
->backing_dev_info
, bdi_bits
);
2463 static int cache_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2465 struct cache
*cache
= container_of(cb
, struct cache
, callbacks
);
2467 return is_congested(cache
->origin_dev
, bdi_bits
) ||
2468 is_congested(cache
->cache_dev
, bdi_bits
);
2471 #define DEFAULT_MIGRATION_THRESHOLD 2048
2473 static int cache_create(struct cache_args
*ca
, struct cache
**result
)
2476 char **error
= &ca
->ti
->error
;
2477 struct cache
*cache
;
2478 struct dm_target
*ti
= ca
->ti
;
2479 dm_block_t origin_blocks
;
2480 struct dm_cache_metadata
*cmd
;
2481 bool may_format
= ca
->features
.mode
== CM_WRITE
;
2483 cache
= kzalloc(sizeof(*cache
), GFP_KERNEL
);
2488 ti
->private = cache
;
2489 ti
->num_flush_bios
= 2;
2490 ti
->flush_supported
= true;
2492 ti
->num_discard_bios
= 1;
2493 ti
->discards_supported
= true;
2494 ti
->split_discard_bios
= false;
2496 ti
->per_io_data_size
= sizeof(struct per_bio_data
);
2498 cache
->features
= ca
->features
;
2499 if (writethrough_mode(cache
)) {
2500 /* Create bioset for writethrough bios issued to origin */
2501 cache
->bs
= bioset_create(BIO_POOL_SIZE
, 0, 0);
2506 cache
->callbacks
.congested_fn
= cache_is_congested
;
2507 dm_table_add_target_callbacks(ti
->table
, &cache
->callbacks
);
2509 cache
->metadata_dev
= ca
->metadata_dev
;
2510 cache
->origin_dev
= ca
->origin_dev
;
2511 cache
->cache_dev
= ca
->cache_dev
;
2513 ca
->metadata_dev
= ca
->origin_dev
= ca
->cache_dev
= NULL
;
2515 origin_blocks
= cache
->origin_sectors
= ca
->origin_sectors
;
2516 origin_blocks
= block_div(origin_blocks
, ca
->block_size
);
2517 cache
->origin_blocks
= to_oblock(origin_blocks
);
2519 cache
->sectors_per_block
= ca
->block_size
;
2520 if (dm_set_target_max_io_len(ti
, cache
->sectors_per_block
)) {
2525 if (ca
->block_size
& (ca
->block_size
- 1)) {
2526 dm_block_t cache_size
= ca
->cache_sectors
;
2528 cache
->sectors_per_block_shift
= -1;
2529 cache_size
= block_div(cache_size
, ca
->block_size
);
2530 set_cache_size(cache
, to_cblock(cache_size
));
2532 cache
->sectors_per_block_shift
= __ffs(ca
->block_size
);
2533 set_cache_size(cache
, to_cblock(ca
->cache_sectors
>> cache
->sectors_per_block_shift
));
2536 r
= create_cache_policy(cache
, ca
, error
);
2540 cache
->policy_nr_args
= ca
->policy_argc
;
2541 cache
->migration_threshold
= DEFAULT_MIGRATION_THRESHOLD
;
2543 r
= set_config_values(cache
, ca
->policy_argc
, ca
->policy_argv
);
2545 *error
= "Error setting cache policy's config values";
2549 cmd
= dm_cache_metadata_open(cache
->metadata_dev
->bdev
,
2550 ca
->block_size
, may_format
,
2551 dm_cache_policy_get_hint_size(cache
->policy
),
2552 ca
->features
.metadata_version
);
2554 *error
= "Error creating metadata object";
2559 set_cache_mode(cache
, CM_WRITE
);
2560 if (get_cache_mode(cache
) != CM_WRITE
) {
2561 *error
= "Unable to get write access to metadata, please check/repair metadata.";
2566 if (passthrough_mode(cache
)) {
2569 r
= dm_cache_metadata_all_clean(cache
->cmd
, &all_clean
);
2571 *error
= "dm_cache_metadata_all_clean() failed";
2576 *error
= "Cannot enter passthrough mode unless all blocks are clean";
2581 policy_allow_migrations(cache
->policy
, false);
2584 spin_lock_init(&cache
->lock
);
2585 bio_list_init(&cache
->deferred_bios
);
2586 atomic_set(&cache
->nr_allocated_migrations
, 0);
2587 atomic_set(&cache
->nr_io_migrations
, 0);
2588 init_waitqueue_head(&cache
->migration_wait
);
2591 atomic_set(&cache
->nr_dirty
, 0);
2592 cache
->dirty_bitset
= alloc_bitset(from_cblock(cache
->cache_size
));
2593 if (!cache
->dirty_bitset
) {
2594 *error
= "could not allocate dirty bitset";
2597 clear_bitset(cache
->dirty_bitset
, from_cblock(cache
->cache_size
));
2599 cache
->discard_block_size
=
2600 calculate_discard_block_size(cache
->sectors_per_block
,
2601 cache
->origin_sectors
);
2602 cache
->discard_nr_blocks
= to_dblock(dm_sector_div_up(cache
->origin_sectors
,
2603 cache
->discard_block_size
));
2604 cache
->discard_bitset
= alloc_bitset(from_dblock(cache
->discard_nr_blocks
));
2605 if (!cache
->discard_bitset
) {
2606 *error
= "could not allocate discard bitset";
2609 clear_bitset(cache
->discard_bitset
, from_dblock(cache
->discard_nr_blocks
));
2611 cache
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2612 if (IS_ERR(cache
->copier
)) {
2613 *error
= "could not create kcopyd client";
2614 r
= PTR_ERR(cache
->copier
);
2618 cache
->wq
= alloc_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
, 0);
2620 *error
= "could not create workqueue for metadata object";
2623 INIT_WORK(&cache
->deferred_bio_worker
, process_deferred_bios
);
2624 INIT_WORK(&cache
->migration_worker
, check_migrations
);
2625 INIT_DELAYED_WORK(&cache
->waker
, do_waker
);
2627 cache
->prison
= dm_bio_prison_create_v2(cache
->wq
);
2628 if (!cache
->prison
) {
2629 *error
= "could not create bio prison";
2633 cache
->migration_pool
= mempool_create_slab_pool(MIGRATION_POOL_SIZE
,
2635 if (!cache
->migration_pool
) {
2636 *error
= "Error creating cache's migration mempool";
2640 cache
->need_tick_bio
= true;
2641 cache
->sized
= false;
2642 cache
->invalidate
= false;
2643 cache
->commit_requested
= false;
2644 cache
->loaded_mappings
= false;
2645 cache
->loaded_discards
= false;
2649 atomic_set(&cache
->stats
.demotion
, 0);
2650 atomic_set(&cache
->stats
.promotion
, 0);
2651 atomic_set(&cache
->stats
.copies_avoided
, 0);
2652 atomic_set(&cache
->stats
.cache_cell_clash
, 0);
2653 atomic_set(&cache
->stats
.commit_count
, 0);
2654 atomic_set(&cache
->stats
.discard_count
, 0);
2656 spin_lock_init(&cache
->invalidation_lock
);
2657 INIT_LIST_HEAD(&cache
->invalidation_requests
);
2659 batcher_init(&cache
->committer
, commit_op
, cache
,
2660 issue_op
, cache
, cache
->wq
);
2661 iot_init(&cache
->tracker
);
2663 init_rwsem(&cache
->background_work_lock
);
2664 prevent_background_work(cache
);
2673 static int copy_ctr_args(struct cache
*cache
, int argc
, const char **argv
)
2678 copy
= kcalloc(argc
, sizeof(*copy
), GFP_KERNEL
);
2681 for (i
= 0; i
< argc
; i
++) {
2682 copy
[i
] = kstrdup(argv
[i
], GFP_KERNEL
);
2691 cache
->nr_ctr_args
= argc
;
2692 cache
->ctr_args
= copy
;
2697 static int cache_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2700 struct cache_args
*ca
;
2701 struct cache
*cache
= NULL
;
2703 ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
2705 ti
->error
= "Error allocating memory for cache";
2710 r
= parse_cache_args(ca
, argc
, argv
, &ti
->error
);
2714 r
= cache_create(ca
, &cache
);
2718 r
= copy_ctr_args(cache
, argc
- 3, (const char **)argv
+ 3);
2724 ti
->private = cache
;
2726 destroy_cache_args(ca
);
2730 /*----------------------------------------------------------------*/
2732 static int cache_map(struct dm_target
*ti
, struct bio
*bio
)
2734 struct cache
*cache
= ti
->private;
2738 dm_oblock_t block
= get_bio_block(cache
, bio
);
2740 init_per_bio_data(bio
);
2741 if (unlikely(from_oblock(block
) >= from_oblock(cache
->origin_blocks
))) {
2743 * This can only occur if the io goes to a partial block at
2744 * the end of the origin device. We don't cache these.
2745 * Just remap to the origin and carry on.
2747 remap_to_origin(cache
, bio
);
2748 accounted_begin(cache
, bio
);
2749 return DM_MAPIO_REMAPPED
;
2752 if (discard_or_flush(bio
)) {
2753 defer_bio(cache
, bio
);
2754 return DM_MAPIO_SUBMITTED
;
2757 r
= map_bio(cache
, bio
, block
, &commit_needed
);
2759 schedule_commit(&cache
->committer
);
2764 static int cache_end_io(struct dm_target
*ti
, struct bio
*bio
, blk_status_t
*error
)
2766 struct cache
*cache
= ti
->private;
2767 unsigned long flags
;
2768 struct per_bio_data
*pb
= get_per_bio_data(bio
);
2771 policy_tick(cache
->policy
, false);
2773 spin_lock_irqsave(&cache
->lock
, flags
);
2774 cache
->need_tick_bio
= true;
2775 spin_unlock_irqrestore(&cache
->lock
, flags
);
2778 bio_drop_shared_lock(cache
, bio
);
2779 accounted_complete(cache
, bio
);
2781 return DM_ENDIO_DONE
;
2784 static int write_dirty_bitset(struct cache
*cache
)
2788 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2791 r
= dm_cache_set_dirty_bits(cache
->cmd
, from_cblock(cache
->cache_size
), cache
->dirty_bitset
);
2793 metadata_operation_failed(cache
, "dm_cache_set_dirty_bits", r
);
2798 static int write_discard_bitset(struct cache
*cache
)
2802 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2805 r
= dm_cache_discard_bitset_resize(cache
->cmd
, cache
->discard_block_size
,
2806 cache
->discard_nr_blocks
);
2808 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache
));
2809 metadata_operation_failed(cache
, "dm_cache_discard_bitset_resize", r
);
2813 for (i
= 0; i
< from_dblock(cache
->discard_nr_blocks
); i
++) {
2814 r
= dm_cache_set_discard(cache
->cmd
, to_dblock(i
),
2815 is_discarded(cache
, to_dblock(i
)));
2817 metadata_operation_failed(cache
, "dm_cache_set_discard", r
);
2825 static int write_hints(struct cache
*cache
)
2829 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2832 r
= dm_cache_write_hints(cache
->cmd
, cache
->policy
);
2834 metadata_operation_failed(cache
, "dm_cache_write_hints", r
);
2842 * returns true on success
2844 static bool sync_metadata(struct cache
*cache
)
2848 r1
= write_dirty_bitset(cache
);
2850 DMERR("%s: could not write dirty bitset", cache_device_name(cache
));
2852 r2
= write_discard_bitset(cache
);
2854 DMERR("%s: could not write discard bitset", cache_device_name(cache
));
2858 r3
= write_hints(cache
);
2860 DMERR("%s: could not write hints", cache_device_name(cache
));
2863 * If writing the above metadata failed, we still commit, but don't
2864 * set the clean shutdown flag. This will effectively force every
2865 * dirty bit to be set on reload.
2867 r4
= commit(cache
, !r1
&& !r2
&& !r3
);
2869 DMERR("%s: could not write cache metadata", cache_device_name(cache
));
2871 return !r1
&& !r2
&& !r3
&& !r4
;
2874 static void cache_postsuspend(struct dm_target
*ti
)
2876 struct cache
*cache
= ti
->private;
2878 prevent_background_work(cache
);
2879 BUG_ON(atomic_read(&cache
->nr_io_migrations
));
2881 cancel_delayed_work(&cache
->waker
);
2882 flush_workqueue(cache
->wq
);
2883 WARN_ON(cache
->tracker
.in_flight
);
2886 * If it's a flush suspend there won't be any deferred bios, so this
2889 requeue_deferred_bios(cache
);
2891 if (get_cache_mode(cache
) == CM_WRITE
)
2892 (void) sync_metadata(cache
);
2895 static int load_mapping(void *context
, dm_oblock_t oblock
, dm_cblock_t cblock
,
2896 bool dirty
, uint32_t hint
, bool hint_valid
)
2899 struct cache
*cache
= context
;
2902 set_bit(from_cblock(cblock
), cache
->dirty_bitset
);
2903 atomic_inc(&cache
->nr_dirty
);
2905 clear_bit(from_cblock(cblock
), cache
->dirty_bitset
);
2907 r
= policy_load_mapping(cache
->policy
, oblock
, cblock
, dirty
, hint
, hint_valid
);
2915 * The discard block size in the on disk metadata is not
2916 * neccessarily the same as we're currently using. So we have to
2917 * be careful to only set the discarded attribute if we know it
2918 * covers a complete block of the new size.
2920 struct discard_load_info
{
2921 struct cache
*cache
;
2924 * These blocks are sized using the on disk dblock size, rather
2925 * than the current one.
2927 dm_block_t block_size
;
2928 dm_block_t discard_begin
, discard_end
;
2931 static void discard_load_info_init(struct cache
*cache
,
2932 struct discard_load_info
*li
)
2935 li
->discard_begin
= li
->discard_end
= 0;
2938 static void set_discard_range(struct discard_load_info
*li
)
2942 if (li
->discard_begin
== li
->discard_end
)
2946 * Convert to sectors.
2948 b
= li
->discard_begin
* li
->block_size
;
2949 e
= li
->discard_end
* li
->block_size
;
2952 * Then convert back to the current dblock size.
2954 b
= dm_sector_div_up(b
, li
->cache
->discard_block_size
);
2955 sector_div(e
, li
->cache
->discard_block_size
);
2958 * The origin may have shrunk, so we need to check we're still in
2961 if (e
> from_dblock(li
->cache
->discard_nr_blocks
))
2962 e
= from_dblock(li
->cache
->discard_nr_blocks
);
2965 set_discard(li
->cache
, to_dblock(b
));
2968 static int load_discard(void *context
, sector_t discard_block_size
,
2969 dm_dblock_t dblock
, bool discard
)
2971 struct discard_load_info
*li
= context
;
2973 li
->block_size
= discard_block_size
;
2976 if (from_dblock(dblock
) == li
->discard_end
)
2978 * We're already in a discard range, just extend it.
2980 li
->discard_end
= li
->discard_end
+ 1ULL;
2984 * Emit the old range and start a new one.
2986 set_discard_range(li
);
2987 li
->discard_begin
= from_dblock(dblock
);
2988 li
->discard_end
= li
->discard_begin
+ 1ULL;
2991 set_discard_range(li
);
2992 li
->discard_begin
= li
->discard_end
= 0;
2998 static dm_cblock_t
get_cache_dev_size(struct cache
*cache
)
3000 sector_t size
= get_dev_size(cache
->cache_dev
);
3001 (void) sector_div(size
, cache
->sectors_per_block
);
3002 return to_cblock(size
);
3005 static bool can_resize(struct cache
*cache
, dm_cblock_t new_size
)
3007 if (from_cblock(new_size
) > from_cblock(cache
->cache_size
))
3011 * We can't drop a dirty block when shrinking the cache.
3013 while (from_cblock(new_size
) < from_cblock(cache
->cache_size
)) {
3014 new_size
= to_cblock(from_cblock(new_size
) + 1);
3015 if (is_dirty(cache
, new_size
)) {
3016 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3017 cache_device_name(cache
),
3018 (unsigned long long) from_cblock(new_size
));
3026 static int resize_cache_dev(struct cache
*cache
, dm_cblock_t new_size
)
3030 r
= dm_cache_resize(cache
->cmd
, new_size
);
3032 DMERR("%s: could not resize cache metadata", cache_device_name(cache
));
3033 metadata_operation_failed(cache
, "dm_cache_resize", r
);
3037 set_cache_size(cache
, new_size
);
3042 static int cache_preresume(struct dm_target
*ti
)
3045 struct cache
*cache
= ti
->private;
3046 dm_cblock_t csize
= get_cache_dev_size(cache
);
3049 * Check to see if the cache has resized.
3051 if (!cache
->sized
) {
3052 r
= resize_cache_dev(cache
, csize
);
3056 cache
->sized
= true;
3058 } else if (csize
!= cache
->cache_size
) {
3059 if (!can_resize(cache
, csize
))
3062 r
= resize_cache_dev(cache
, csize
);
3067 if (!cache
->loaded_mappings
) {
3068 r
= dm_cache_load_mappings(cache
->cmd
, cache
->policy
,
3069 load_mapping
, cache
);
3071 DMERR("%s: could not load cache mappings", cache_device_name(cache
));
3072 metadata_operation_failed(cache
, "dm_cache_load_mappings", r
);
3076 cache
->loaded_mappings
= true;
3079 if (!cache
->loaded_discards
) {
3080 struct discard_load_info li
;
3083 * The discard bitset could have been resized, or the
3084 * discard block size changed. To be safe we start by
3085 * setting every dblock to not discarded.
3087 clear_bitset(cache
->discard_bitset
, from_dblock(cache
->discard_nr_blocks
));
3089 discard_load_info_init(cache
, &li
);
3090 r
= dm_cache_load_discards(cache
->cmd
, load_discard
, &li
);
3092 DMERR("%s: could not load origin discards", cache_device_name(cache
));
3093 metadata_operation_failed(cache
, "dm_cache_load_discards", r
);
3096 set_discard_range(&li
);
3098 cache
->loaded_discards
= true;
3104 static void cache_resume(struct dm_target
*ti
)
3106 struct cache
*cache
= ti
->private;
3108 cache
->need_tick_bio
= true;
3109 allow_background_work(cache
);
3110 do_waker(&cache
->waker
.work
);
3116 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3117 * <cache block size> <#used cache blocks>/<#total cache blocks>
3118 * <#read hits> <#read misses> <#write hits> <#write misses>
3119 * <#demotions> <#promotions> <#dirty>
3120 * <#features> <features>*
3121 * <#core args> <core args>
3122 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3124 static void cache_status(struct dm_target
*ti
, status_type_t type
,
3125 unsigned status_flags
, char *result
, unsigned maxlen
)
3130 dm_block_t nr_free_blocks_metadata
= 0;
3131 dm_block_t nr_blocks_metadata
= 0;
3132 char buf
[BDEVNAME_SIZE
];
3133 struct cache
*cache
= ti
->private;
3134 dm_cblock_t residency
;
3138 case STATUSTYPE_INFO
:
3139 if (get_cache_mode(cache
) == CM_FAIL
) {
3144 /* Commit to ensure statistics aren't out-of-date */
3145 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3146 (void) commit(cache
, false);
3148 r
= dm_cache_get_free_metadata_block_count(cache
->cmd
, &nr_free_blocks_metadata
);
3150 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3151 cache_device_name(cache
), r
);
3155 r
= dm_cache_get_metadata_dev_size(cache
->cmd
, &nr_blocks_metadata
);
3157 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3158 cache_device_name(cache
), r
);
3162 residency
= policy_residency(cache
->policy
);
3164 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3165 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE
,
3166 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3167 (unsigned long long)nr_blocks_metadata
,
3168 (unsigned long long)cache
->sectors_per_block
,
3169 (unsigned long long) from_cblock(residency
),
3170 (unsigned long long) from_cblock(cache
->cache_size
),
3171 (unsigned) atomic_read(&cache
->stats
.read_hit
),
3172 (unsigned) atomic_read(&cache
->stats
.read_miss
),
3173 (unsigned) atomic_read(&cache
->stats
.write_hit
),
3174 (unsigned) atomic_read(&cache
->stats
.write_miss
),
3175 (unsigned) atomic_read(&cache
->stats
.demotion
),
3176 (unsigned) atomic_read(&cache
->stats
.promotion
),
3177 (unsigned long) atomic_read(&cache
->nr_dirty
));
3179 if (cache
->features
.metadata_version
== 2)
3180 DMEMIT("2 metadata2 ");
3184 if (writethrough_mode(cache
))
3185 DMEMIT("writethrough ");
3187 else if (passthrough_mode(cache
))
3188 DMEMIT("passthrough ");
3190 else if (writeback_mode(cache
))
3191 DMEMIT("writeback ");
3194 DMERR("%s: internal error: unknown io mode: %d",
3195 cache_device_name(cache
), (int) cache
->features
.io_mode
);
3199 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache
->migration_threshold
);
3201 DMEMIT("%s ", dm_cache_policy_get_name(cache
->policy
));
3203 r
= policy_emit_config_values(cache
->policy
, result
, maxlen
, &sz
);
3205 DMERR("%s: policy_emit_config_values returned %d",
3206 cache_device_name(cache
), r
);
3209 if (get_cache_mode(cache
) == CM_READ_ONLY
)
3214 r
= dm_cache_metadata_needs_check(cache
->cmd
, &needs_check
);
3216 if (r
|| needs_check
)
3217 DMEMIT("needs_check ");
3223 case STATUSTYPE_TABLE
:
3224 format_dev_t(buf
, cache
->metadata_dev
->bdev
->bd_dev
);
3226 format_dev_t(buf
, cache
->cache_dev
->bdev
->bd_dev
);
3228 format_dev_t(buf
, cache
->origin_dev
->bdev
->bd_dev
);
3231 for (i
= 0; i
< cache
->nr_ctr_args
- 1; i
++)
3232 DMEMIT(" %s", cache
->ctr_args
[i
]);
3233 if (cache
->nr_ctr_args
)
3234 DMEMIT(" %s", cache
->ctr_args
[cache
->nr_ctr_args
- 1]);
3244 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3245 * the one-past-the-end value.
3247 struct cblock_range
{
3253 * A cache block range can take two forms:
3255 * i) A single cblock, eg. '3456'
3256 * ii) A begin and end cblock with a dash between, eg. 123-234
3258 static int parse_cblock_range(struct cache
*cache
, const char *str
,
3259 struct cblock_range
*result
)
3266 * Try and parse form (ii) first.
3268 r
= sscanf(str
, "%llu-%llu%c", &b
, &e
, &dummy
);
3273 result
->begin
= to_cblock(b
);
3274 result
->end
= to_cblock(e
);
3279 * That didn't work, try form (i).
3281 r
= sscanf(str
, "%llu%c", &b
, &dummy
);
3286 result
->begin
= to_cblock(b
);
3287 result
->end
= to_cblock(from_cblock(result
->begin
) + 1u);
3291 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache
), str
);
3295 static int validate_cblock_range(struct cache
*cache
, struct cblock_range
*range
)
3297 uint64_t b
= from_cblock(range
->begin
);
3298 uint64_t e
= from_cblock(range
->end
);
3299 uint64_t n
= from_cblock(cache
->cache_size
);
3302 DMERR("%s: begin cblock out of range: %llu >= %llu",
3303 cache_device_name(cache
), b
, n
);
3308 DMERR("%s: end cblock out of range: %llu > %llu",
3309 cache_device_name(cache
), e
, n
);
3314 DMERR("%s: invalid cblock range: %llu >= %llu",
3315 cache_device_name(cache
), b
, e
);
3322 static inline dm_cblock_t
cblock_succ(dm_cblock_t b
)
3324 return to_cblock(from_cblock(b
) + 1);
3327 static int request_invalidation(struct cache
*cache
, struct cblock_range
*range
)
3332 * We don't need to do any locking here because we know we're in
3333 * passthrough mode. There's is potential for a race between an
3334 * invalidation triggered by an io and an invalidation message. This
3335 * is harmless, we must not worry if the policy call fails.
3337 while (range
->begin
!= range
->end
) {
3338 r
= invalidate_cblock(cache
, range
->begin
);
3342 range
->begin
= cblock_succ(range
->begin
);
3345 cache
->commit_requested
= true;
3349 static int process_invalidate_cblocks_message(struct cache
*cache
, unsigned count
,
3350 const char **cblock_ranges
)
3354 struct cblock_range range
;
3356 if (!passthrough_mode(cache
)) {
3357 DMERR("%s: cache has to be in passthrough mode for invalidation",
3358 cache_device_name(cache
));
3362 for (i
= 0; i
< count
; i
++) {
3363 r
= parse_cblock_range(cache
, cblock_ranges
[i
], &range
);
3367 r
= validate_cblock_range(cache
, &range
);
3372 * Pass begin and end origin blocks to the worker and wake it.
3374 r
= request_invalidation(cache
, &range
);
3386 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3388 * The key migration_threshold is supported by the cache target core.
3390 static int cache_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
3392 struct cache
*cache
= ti
->private;
3397 if (get_cache_mode(cache
) >= CM_READ_ONLY
) {
3398 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3399 cache_device_name(cache
));
3403 if (!strcasecmp(argv
[0], "invalidate_cblocks"))
3404 return process_invalidate_cblocks_message(cache
, argc
- 1, (const char **) argv
+ 1);
3409 return set_config_value(cache
, argv
[0], argv
[1]);
3412 static int cache_iterate_devices(struct dm_target
*ti
,
3413 iterate_devices_callout_fn fn
, void *data
)
3416 struct cache
*cache
= ti
->private;
3418 r
= fn(ti
, cache
->cache_dev
, 0, get_dev_size(cache
->cache_dev
), data
);
3420 r
= fn(ti
, cache
->origin_dev
, 0, ti
->len
, data
);
3425 static void set_discard_limits(struct cache
*cache
, struct queue_limits
*limits
)
3428 * FIXME: these limits may be incompatible with the cache device
3430 limits
->max_discard_sectors
= min_t(sector_t
, cache
->discard_block_size
* 1024,
3431 cache
->origin_sectors
);
3432 limits
->discard_granularity
= cache
->discard_block_size
<< SECTOR_SHIFT
;
3435 static void cache_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3437 struct cache
*cache
= ti
->private;
3438 uint64_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3441 * If the system-determined stacked limits are compatible with the
3442 * cache's blocksize (io_opt is a factor) do not override them.
3444 if (io_opt_sectors
< cache
->sectors_per_block
||
3445 do_div(io_opt_sectors
, cache
->sectors_per_block
)) {
3446 blk_limits_io_min(limits
, cache
->sectors_per_block
<< SECTOR_SHIFT
);
3447 blk_limits_io_opt(limits
, cache
->sectors_per_block
<< SECTOR_SHIFT
);
3449 set_discard_limits(cache
, limits
);
3452 /*----------------------------------------------------------------*/
3454 static struct target_type cache_target
= {
3456 .version
= {2, 0, 0},
3457 .module
= THIS_MODULE
,
3461 .end_io
= cache_end_io
,
3462 .postsuspend
= cache_postsuspend
,
3463 .preresume
= cache_preresume
,
3464 .resume
= cache_resume
,
3465 .status
= cache_status
,
3466 .message
= cache_message
,
3467 .iterate_devices
= cache_iterate_devices
,
3468 .io_hints
= cache_io_hints
,
3471 static int __init
dm_cache_init(void)
3475 migration_cache
= KMEM_CACHE(dm_cache_migration
, 0);
3476 if (!migration_cache
) {
3477 dm_unregister_target(&cache_target
);
3481 r
= dm_register_target(&cache_target
);
3483 DMERR("cache target registration failed: %d", r
);
3490 static void __exit
dm_cache_exit(void)
3492 dm_unregister_target(&cache_target
);
3493 kmem_cache_destroy(migration_cache
);
3496 module_init(dm_cache_init
);
3497 module_exit(dm_cache_exit
);
3499 MODULE_DESCRIPTION(DM_NAME
" cache target");
3500 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3501 MODULE_LICENSE("GPL");