2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
6 * This file is released under the GPL.
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <crypto/hash.h>
19 #include <crypto/skcipher.h>
20 #include <linux/async_tx.h>
23 #define DM_MSG_PREFIX "integrity"
25 #define DEFAULT_INTERLEAVE_SECTORS 32768
26 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
27 #define DEFAULT_BUFFER_SECTORS 128
28 #define DEFAULT_JOURNAL_WATERMARK 50
29 #define DEFAULT_SYNC_MSEC 10000
30 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
31 #define MIN_LOG2_INTERLEAVE_SECTORS 3
32 #define MAX_LOG2_INTERLEAVE_SECTORS 31
33 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
36 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
37 * so it should not be enabled in the official kernel
40 //#define INTERNAL_VERIFY
46 #define SB_MAGIC "integrt"
49 #define MAX_SECTORS_PER_BLOCK 8
54 __u8 log2_interleave_sectors
;
55 __u16 integrity_tag_size
;
56 __u32 journal_sections
;
57 __u64 provided_data_sectors
; /* userspace uses this value */
59 __u8 log2_sectors_per_block
;
62 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
64 #define JOURNAL_ENTRY_ROUNDUP 8
66 typedef __u64 commit_id_t
;
67 #define JOURNAL_MAC_PER_SECTOR 8
69 struct journal_entry
{
77 commit_id_t last_bytes
[0];
81 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
83 #if BITS_PER_LONG == 64
84 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
85 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
86 #elif defined(CONFIG_LBDAF)
87 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
88 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
90 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
91 #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
93 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
94 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
95 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
96 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
98 #define JOURNAL_BLOCK_SECTORS 8
99 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
100 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
102 struct journal_sector
{
103 __u8 entries
[JOURNAL_SECTOR_DATA
- JOURNAL_MAC_PER_SECTOR
];
104 __u8 mac
[JOURNAL_MAC_PER_SECTOR
];
105 commit_id_t commit_id
;
108 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
110 #define METADATA_PADDING_SECTORS 8
112 #define N_COMMIT_IDS 4
114 static unsigned char prev_commit_seq(unsigned char seq
)
116 return (seq
+ N_COMMIT_IDS
- 1) % N_COMMIT_IDS
;
119 static unsigned char next_commit_seq(unsigned char seq
)
121 return (seq
+ 1) % N_COMMIT_IDS
;
125 * In-memory structures
128 struct journal_node
{
140 struct dm_integrity_c
{
145 mempool_t
*journal_io_mempool
;
146 struct dm_io_client
*io
;
147 struct dm_bufio_client
*bufio
;
148 struct workqueue_struct
*metadata_wq
;
149 struct superblock
*sb
;
150 unsigned journal_pages
;
151 struct page_list
*journal
;
152 struct page_list
*journal_io
;
153 struct page_list
*journal_xor
;
155 struct crypto_skcipher
*journal_crypt
;
156 struct scatterlist
**journal_scatterlist
;
157 struct scatterlist
**journal_io_scatterlist
;
158 struct skcipher_request
**sk_requests
;
160 struct crypto_shash
*journal_mac
;
162 struct journal_node
*journal_tree
;
163 struct rb_root journal_tree_root
;
165 sector_t provided_data_sectors
;
167 unsigned short journal_entry_size
;
168 unsigned char journal_entries_per_sector
;
169 unsigned char journal_section_entries
;
170 unsigned short journal_section_sectors
;
171 unsigned journal_sections
;
172 unsigned journal_entries
;
173 sector_t device_sectors
;
174 unsigned initial_sectors
;
175 unsigned metadata_run
;
176 __s8 log2_metadata_run
;
177 __u8 log2_buffer_sectors
;
178 __u8 sectors_per_block
;
185 struct crypto_shash
*internal_hash
;
187 /* these variables are locked with endio_wait.lock */
188 struct rb_root in_progress
;
189 wait_queue_head_t endio_wait
;
190 struct workqueue_struct
*wait_wq
;
192 unsigned char commit_seq
;
193 commit_id_t commit_ids
[N_COMMIT_IDS
];
195 unsigned committed_section
;
196 unsigned n_committed_sections
;
198 unsigned uncommitted_section
;
199 unsigned n_uncommitted_sections
;
201 unsigned free_section
;
202 unsigned char free_section_entry
;
203 unsigned free_sectors
;
205 unsigned free_sectors_threshold
;
207 struct workqueue_struct
*commit_wq
;
208 struct work_struct commit_work
;
210 struct workqueue_struct
*writer_wq
;
211 struct work_struct writer_work
;
213 struct bio_list flush_bio_list
;
215 unsigned long autocommit_jiffies
;
216 struct timer_list autocommit_timer
;
217 unsigned autocommit_msec
;
219 wait_queue_head_t copy_to_journal_wait
;
221 struct completion crypto_backoff
;
223 bool journal_uptodate
;
226 struct alg_spec internal_hash_alg
;
227 struct alg_spec journal_crypt_alg
;
228 struct alg_spec journal_mac_alg
;
230 atomic64_t number_of_mismatches
;
233 struct dm_integrity_range
{
234 sector_t logical_sector
;
239 struct dm_integrity_io
{
240 struct work_struct work
;
242 struct dm_integrity_c
*ic
;
246 struct dm_integrity_range range
;
248 sector_t metadata_block
;
249 unsigned metadata_offset
;
252 blk_status_t bi_status
;
254 struct completion
*completion
;
256 struct gendisk
*orig_bi_disk
;
258 bio_end_io_t
*orig_bi_end_io
;
259 struct bio_integrity_payload
*orig_bi_integrity
;
260 struct bvec_iter orig_bi_iter
;
263 struct journal_completion
{
264 struct dm_integrity_c
*ic
;
266 struct completion comp
;
270 struct dm_integrity_range range
;
271 struct journal_completion
*comp
;
274 static struct kmem_cache
*journal_io_cache
;
276 #define JOURNAL_IO_MEMPOOL 32
279 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
280 static void __DEBUG_bytes(__u8
*bytes
, size_t len
, const char *msg
, ...)
289 pr_cont(" %02x", *bytes
);
295 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
297 #define DEBUG_print(x, ...) do { } while (0)
298 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
302 * DM Integrity profile, protection is performed layer above (dm-crypt)
304 static const struct blk_integrity_profile dm_integrity_profile
= {
305 .name
= "DM-DIF-EXT-TAG",
310 static void dm_integrity_map_continue(struct dm_integrity_io
*dio
, bool from_map
);
311 static void integrity_bio_wait(struct work_struct
*w
);
312 static void dm_integrity_dtr(struct dm_target
*ti
);
314 static void dm_integrity_io_error(struct dm_integrity_c
*ic
, const char *msg
, int err
)
317 atomic64_inc(&ic
->number_of_mismatches
);
318 if (!cmpxchg(&ic
->failed
, 0, err
))
319 DMERR("Error on %s: %d", msg
, err
);
322 static int dm_integrity_failed(struct dm_integrity_c
*ic
)
324 return READ_ONCE(ic
->failed
);
327 static commit_id_t
dm_integrity_commit_id(struct dm_integrity_c
*ic
, unsigned i
,
328 unsigned j
, unsigned char seq
)
331 * Xor the number with section and sector, so that if a piece of
332 * journal is written at wrong place, it is detected.
334 return ic
->commit_ids
[seq
] ^ cpu_to_le64(((__u64
)i
<< 32) ^ j
);
337 static void get_area_and_offset(struct dm_integrity_c
*ic
, sector_t data_sector
,
338 sector_t
*area
, sector_t
*offset
)
340 __u8 log2_interleave_sectors
= ic
->sb
->log2_interleave_sectors
;
342 *area
= data_sector
>> log2_interleave_sectors
;
343 *offset
= (unsigned)data_sector
& ((1U << log2_interleave_sectors
) - 1);
346 #define sector_to_block(ic, n) \
348 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
349 (n) >>= (ic)->sb->log2_sectors_per_block; \
352 static __u64
get_metadata_sector_and_offset(struct dm_integrity_c
*ic
, sector_t area
,
353 sector_t offset
, unsigned *metadata_offset
)
358 ms
= area
<< ic
->sb
->log2_interleave_sectors
;
359 if (likely(ic
->log2_metadata_run
>= 0))
360 ms
+= area
<< ic
->log2_metadata_run
;
362 ms
+= area
* ic
->metadata_run
;
363 ms
>>= ic
->log2_buffer_sectors
;
365 sector_to_block(ic
, offset
);
367 if (likely(ic
->log2_tag_size
>= 0)) {
368 ms
+= offset
>> (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
- ic
->log2_tag_size
);
369 mo
= (offset
<< ic
->log2_tag_size
) & ((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - 1);
371 ms
+= (__u64
)offset
* ic
->tag_size
>> (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
);
372 mo
= (offset
* ic
->tag_size
) & ((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - 1);
374 *metadata_offset
= mo
;
378 static sector_t
get_data_sector(struct dm_integrity_c
*ic
, sector_t area
, sector_t offset
)
382 result
= area
<< ic
->sb
->log2_interleave_sectors
;
383 if (likely(ic
->log2_metadata_run
>= 0))
384 result
+= (area
+ 1) << ic
->log2_metadata_run
;
386 result
+= (area
+ 1) * ic
->metadata_run
;
388 result
+= (sector_t
)ic
->initial_sectors
+ offset
;
392 static void wraparound_section(struct dm_integrity_c
*ic
, unsigned *sec_ptr
)
394 if (unlikely(*sec_ptr
>= ic
->journal_sections
))
395 *sec_ptr
-= ic
->journal_sections
;
398 static int sync_rw_sb(struct dm_integrity_c
*ic
, int op
, int op_flags
)
400 struct dm_io_request io_req
;
401 struct dm_io_region io_loc
;
404 io_req
.bi_op_flags
= op_flags
;
405 io_req
.mem
.type
= DM_IO_KMEM
;
406 io_req
.mem
.ptr
.addr
= ic
->sb
;
407 io_req
.notify
.fn
= NULL
;
408 io_req
.client
= ic
->io
;
409 io_loc
.bdev
= ic
->dev
->bdev
;
410 io_loc
.sector
= ic
->start
;
411 io_loc
.count
= SB_SECTORS
;
413 return dm_io(&io_req
, 1, &io_loc
, NULL
);
416 static void access_journal_check(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
,
417 bool e
, const char *function
)
419 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
420 unsigned limit
= e
? ic
->journal_section_entries
: ic
->journal_section_sectors
;
422 if (unlikely(section
>= ic
->journal_sections
) ||
423 unlikely(offset
>= limit
)) {
424 printk(KERN_CRIT
"%s: invalid access at (%u,%u), limit (%u,%u)\n",
425 function
, section
, offset
, ic
->journal_sections
, limit
);
431 static void page_list_location(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
,
432 unsigned *pl_index
, unsigned *pl_offset
)
436 access_journal_check(ic
, section
, offset
, false, "page_list_location");
438 sector
= section
* ic
->journal_section_sectors
+ offset
;
440 *pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
441 *pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
444 static struct journal_sector
*access_page_list(struct dm_integrity_c
*ic
, struct page_list
*pl
,
445 unsigned section
, unsigned offset
, unsigned *n_sectors
)
447 unsigned pl_index
, pl_offset
;
450 page_list_location(ic
, section
, offset
, &pl_index
, &pl_offset
);
453 *n_sectors
= (PAGE_SIZE
- pl_offset
) >> SECTOR_SHIFT
;
455 va
= lowmem_page_address(pl
[pl_index
].page
);
457 return (struct journal_sector
*)(va
+ pl_offset
);
460 static struct journal_sector
*access_journal(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
)
462 return access_page_list(ic
, ic
->journal
, section
, offset
, NULL
);
465 static struct journal_entry
*access_journal_entry(struct dm_integrity_c
*ic
, unsigned section
, unsigned n
)
467 unsigned rel_sector
, offset
;
468 struct journal_sector
*js
;
470 access_journal_check(ic
, section
, n
, true, "access_journal_entry");
472 rel_sector
= n
% JOURNAL_BLOCK_SECTORS
;
473 offset
= n
/ JOURNAL_BLOCK_SECTORS
;
475 js
= access_journal(ic
, section
, rel_sector
);
476 return (struct journal_entry
*)((char *)js
+ offset
* ic
->journal_entry_size
);
479 static struct journal_sector
*access_journal_data(struct dm_integrity_c
*ic
, unsigned section
, unsigned n
)
481 n
<<= ic
->sb
->log2_sectors_per_block
;
483 n
+= JOURNAL_BLOCK_SECTORS
;
485 access_journal_check(ic
, section
, n
, false, "access_journal_data");
487 return access_journal(ic
, section
, n
);
490 static void section_mac(struct dm_integrity_c
*ic
, unsigned section
, __u8 result
[JOURNAL_MAC_SIZE
])
492 SHASH_DESC_ON_STACK(desc
, ic
->journal_mac
);
496 desc
->tfm
= ic
->journal_mac
;
497 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
499 r
= crypto_shash_init(desc
);
501 dm_integrity_io_error(ic
, "crypto_shash_init", r
);
505 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
506 struct journal_entry
*je
= access_journal_entry(ic
, section
, j
);
507 r
= crypto_shash_update(desc
, (__u8
*)&je
->u
.sector
, sizeof je
->u
.sector
);
509 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
514 size
= crypto_shash_digestsize(ic
->journal_mac
);
516 if (likely(size
<= JOURNAL_MAC_SIZE
)) {
517 r
= crypto_shash_final(desc
, result
);
519 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
522 memset(result
+ size
, 0, JOURNAL_MAC_SIZE
- size
);
525 r
= crypto_shash_final(desc
, digest
);
527 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
530 memcpy(result
, digest
, JOURNAL_MAC_SIZE
);
535 memset(result
, 0, JOURNAL_MAC_SIZE
);
538 static void rw_section_mac(struct dm_integrity_c
*ic
, unsigned section
, bool wr
)
540 __u8 result
[JOURNAL_MAC_SIZE
];
543 if (!ic
->journal_mac
)
546 section_mac(ic
, section
, result
);
548 for (j
= 0; j
< JOURNAL_BLOCK_SECTORS
; j
++) {
549 struct journal_sector
*js
= access_journal(ic
, section
, j
);
552 memcpy(&js
->mac
, result
+ (j
* JOURNAL_MAC_PER_SECTOR
), JOURNAL_MAC_PER_SECTOR
);
554 if (memcmp(&js
->mac
, result
+ (j
* JOURNAL_MAC_PER_SECTOR
), JOURNAL_MAC_PER_SECTOR
))
555 dm_integrity_io_error(ic
, "journal mac", -EILSEQ
);
560 static void complete_journal_op(void *context
)
562 struct journal_completion
*comp
= context
;
563 BUG_ON(!atomic_read(&comp
->in_flight
));
564 if (likely(atomic_dec_and_test(&comp
->in_flight
)))
565 complete(&comp
->comp
);
568 static void xor_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned section
,
569 unsigned n_sections
, struct journal_completion
*comp
)
571 struct async_submit_ctl submit
;
572 size_t n_bytes
= (size_t)(n_sections
* ic
->journal_section_sectors
) << SECTOR_SHIFT
;
573 unsigned pl_index
, pl_offset
, section_index
;
574 struct page_list
*source_pl
, *target_pl
;
576 if (likely(encrypt
)) {
577 source_pl
= ic
->journal
;
578 target_pl
= ic
->journal_io
;
580 source_pl
= ic
->journal_io
;
581 target_pl
= ic
->journal
;
584 page_list_location(ic
, section
, 0, &pl_index
, &pl_offset
);
586 atomic_add(roundup(pl_offset
+ n_bytes
, PAGE_SIZE
) >> PAGE_SHIFT
, &comp
->in_flight
);
588 init_async_submit(&submit
, ASYNC_TX_XOR_ZERO_DST
, NULL
, complete_journal_op
, comp
, NULL
);
590 section_index
= pl_index
;
594 struct page
*src_pages
[2];
595 struct page
*dst_page
;
597 while (unlikely(pl_index
== section_index
)) {
600 rw_section_mac(ic
, section
, true);
605 page_list_location(ic
, section
, 0, §ion_index
, &dummy
);
608 this_step
= min(n_bytes
, (size_t)PAGE_SIZE
- pl_offset
);
609 dst_page
= target_pl
[pl_index
].page
;
610 src_pages
[0] = source_pl
[pl_index
].page
;
611 src_pages
[1] = ic
->journal_xor
[pl_index
].page
;
613 async_xor(dst_page
, src_pages
, pl_offset
, 2, this_step
, &submit
);
617 n_bytes
-= this_step
;
622 async_tx_issue_pending_all();
625 static void complete_journal_encrypt(struct crypto_async_request
*req
, int err
)
627 struct journal_completion
*comp
= req
->data
;
629 if (likely(err
== -EINPROGRESS
)) {
630 complete(&comp
->ic
->crypto_backoff
);
633 dm_integrity_io_error(comp
->ic
, "asynchronous encrypt", err
);
635 complete_journal_op(comp
);
638 static bool do_crypt(bool encrypt
, struct skcipher_request
*req
, struct journal_completion
*comp
)
641 skcipher_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
642 complete_journal_encrypt
, comp
);
644 r
= crypto_skcipher_encrypt(req
);
646 r
= crypto_skcipher_decrypt(req
);
649 if (likely(r
== -EINPROGRESS
))
651 if (likely(r
== -EBUSY
)) {
652 wait_for_completion(&comp
->ic
->crypto_backoff
);
653 reinit_completion(&comp
->ic
->crypto_backoff
);
656 dm_integrity_io_error(comp
->ic
, "encrypt", r
);
660 static void crypt_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned section
,
661 unsigned n_sections
, struct journal_completion
*comp
)
663 struct scatterlist
**source_sg
;
664 struct scatterlist
**target_sg
;
666 atomic_add(2, &comp
->in_flight
);
668 if (likely(encrypt
)) {
669 source_sg
= ic
->journal_scatterlist
;
670 target_sg
= ic
->journal_io_scatterlist
;
672 source_sg
= ic
->journal_io_scatterlist
;
673 target_sg
= ic
->journal_scatterlist
;
677 struct skcipher_request
*req
;
682 rw_section_mac(ic
, section
, true);
684 req
= ic
->sk_requests
[section
];
685 ivsize
= crypto_skcipher_ivsize(ic
->journal_crypt
);
688 memcpy(iv
, iv
+ ivsize
, ivsize
);
690 req
->src
= source_sg
[section
];
691 req
->dst
= target_sg
[section
];
693 if (unlikely(do_crypt(encrypt
, req
, comp
)))
694 atomic_inc(&comp
->in_flight
);
698 } while (n_sections
);
700 atomic_dec(&comp
->in_flight
);
701 complete_journal_op(comp
);
704 static void encrypt_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned section
,
705 unsigned n_sections
, struct journal_completion
*comp
)
708 return xor_journal(ic
, encrypt
, section
, n_sections
, comp
);
710 return crypt_journal(ic
, encrypt
, section
, n_sections
, comp
);
713 static void complete_journal_io(unsigned long error
, void *context
)
715 struct journal_completion
*comp
= context
;
716 if (unlikely(error
!= 0))
717 dm_integrity_io_error(comp
->ic
, "writing journal", -EIO
);
718 complete_journal_op(comp
);
721 static void rw_journal(struct dm_integrity_c
*ic
, int op
, int op_flags
, unsigned section
,
722 unsigned n_sections
, struct journal_completion
*comp
)
724 struct dm_io_request io_req
;
725 struct dm_io_region io_loc
;
726 unsigned sector
, n_sectors
, pl_index
, pl_offset
;
729 if (unlikely(dm_integrity_failed(ic
))) {
731 complete_journal_io(-1UL, comp
);
735 sector
= section
* ic
->journal_section_sectors
;
736 n_sectors
= n_sections
* ic
->journal_section_sectors
;
738 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
739 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
742 io_req
.bi_op_flags
= op_flags
;
743 io_req
.mem
.type
= DM_IO_PAGE_LIST
;
745 io_req
.mem
.ptr
.pl
= &ic
->journal_io
[pl_index
];
747 io_req
.mem
.ptr
.pl
= &ic
->journal
[pl_index
];
748 io_req
.mem
.offset
= pl_offset
;
749 if (likely(comp
!= NULL
)) {
750 io_req
.notify
.fn
= complete_journal_io
;
751 io_req
.notify
.context
= comp
;
753 io_req
.notify
.fn
= NULL
;
755 io_req
.client
= ic
->io
;
756 io_loc
.bdev
= ic
->dev
->bdev
;
757 io_loc
.sector
= ic
->start
+ SB_SECTORS
+ sector
;
758 io_loc
.count
= n_sectors
;
760 r
= dm_io(&io_req
, 1, &io_loc
, NULL
);
762 dm_integrity_io_error(ic
, op
== REQ_OP_READ
? "reading journal" : "writing journal", r
);
764 WARN_ONCE(1, "asynchronous dm_io failed: %d", r
);
765 complete_journal_io(-1UL, comp
);
770 static void write_journal(struct dm_integrity_c
*ic
, unsigned commit_start
, unsigned commit_sections
)
772 struct journal_completion io_comp
;
773 struct journal_completion crypt_comp_1
;
774 struct journal_completion crypt_comp_2
;
778 init_completion(&io_comp
.comp
);
780 if (commit_start
+ commit_sections
<= ic
->journal_sections
) {
781 io_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
782 if (ic
->journal_io
) {
783 crypt_comp_1
.ic
= ic
;
784 init_completion(&crypt_comp_1
.comp
);
785 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
786 encrypt_journal(ic
, true, commit_start
, commit_sections
, &crypt_comp_1
);
787 wait_for_completion_io(&crypt_comp_1
.comp
);
789 for (i
= 0; i
< commit_sections
; i
++)
790 rw_section_mac(ic
, commit_start
+ i
, true);
792 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
, commit_start
,
793 commit_sections
, &io_comp
);
796 io_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(2);
797 to_end
= ic
->journal_sections
- commit_start
;
798 if (ic
->journal_io
) {
799 crypt_comp_1
.ic
= ic
;
800 init_completion(&crypt_comp_1
.comp
);
801 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
802 encrypt_journal(ic
, true, commit_start
, to_end
, &crypt_comp_1
);
803 if (try_wait_for_completion(&crypt_comp_1
.comp
)) {
804 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, commit_start
, to_end
, &io_comp
);
805 reinit_completion(&crypt_comp_1
.comp
);
806 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
807 encrypt_journal(ic
, true, 0, commit_sections
- to_end
, &crypt_comp_1
);
808 wait_for_completion_io(&crypt_comp_1
.comp
);
810 crypt_comp_2
.ic
= ic
;
811 init_completion(&crypt_comp_2
.comp
);
812 crypt_comp_2
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
813 encrypt_journal(ic
, true, 0, commit_sections
- to_end
, &crypt_comp_2
);
814 wait_for_completion_io(&crypt_comp_1
.comp
);
815 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, commit_start
, to_end
, &io_comp
);
816 wait_for_completion_io(&crypt_comp_2
.comp
);
819 for (i
= 0; i
< to_end
; i
++)
820 rw_section_mac(ic
, commit_start
+ i
, true);
821 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, commit_start
, to_end
, &io_comp
);
822 for (i
= 0; i
< commit_sections
- to_end
; i
++)
823 rw_section_mac(ic
, i
, true);
825 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, 0, commit_sections
- to_end
, &io_comp
);
828 wait_for_completion_io(&io_comp
.comp
);
831 static void copy_from_journal(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
,
832 unsigned n_sectors
, sector_t target
, io_notify_fn fn
, void *data
)
834 struct dm_io_request io_req
;
835 struct dm_io_region io_loc
;
837 unsigned sector
, pl_index
, pl_offset
;
839 BUG_ON((target
| n_sectors
| offset
) & (unsigned)(ic
->sectors_per_block
- 1));
841 if (unlikely(dm_integrity_failed(ic
))) {
846 sector
= section
* ic
->journal_section_sectors
+ JOURNAL_BLOCK_SECTORS
+ offset
;
848 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
849 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
851 io_req
.bi_op
= REQ_OP_WRITE
;
852 io_req
.bi_op_flags
= 0;
853 io_req
.mem
.type
= DM_IO_PAGE_LIST
;
854 io_req
.mem
.ptr
.pl
= &ic
->journal
[pl_index
];
855 io_req
.mem
.offset
= pl_offset
;
856 io_req
.notify
.fn
= fn
;
857 io_req
.notify
.context
= data
;
858 io_req
.client
= ic
->io
;
859 io_loc
.bdev
= ic
->dev
->bdev
;
860 io_loc
.sector
= ic
->start
+ target
;
861 io_loc
.count
= n_sectors
;
863 r
= dm_io(&io_req
, 1, &io_loc
, NULL
);
865 WARN_ONCE(1, "asynchronous dm_io failed: %d", r
);
870 static bool add_new_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*new_range
)
872 struct rb_node
**n
= &ic
->in_progress
.rb_node
;
873 struct rb_node
*parent
;
875 BUG_ON((new_range
->logical_sector
| new_range
->n_sectors
) & (unsigned)(ic
->sectors_per_block
- 1));
880 struct dm_integrity_range
*range
= container_of(*n
, struct dm_integrity_range
, node
);
883 if (new_range
->logical_sector
+ new_range
->n_sectors
<= range
->logical_sector
) {
884 n
= &range
->node
.rb_left
;
885 } else if (new_range
->logical_sector
>= range
->logical_sector
+ range
->n_sectors
) {
886 n
= &range
->node
.rb_right
;
892 rb_link_node(&new_range
->node
, parent
, n
);
893 rb_insert_color(&new_range
->node
, &ic
->in_progress
);
898 static void remove_range_unlocked(struct dm_integrity_c
*ic
, struct dm_integrity_range
*range
)
900 rb_erase(&range
->node
, &ic
->in_progress
);
901 wake_up_locked(&ic
->endio_wait
);
904 static void remove_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*range
)
908 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
909 remove_range_unlocked(ic
, range
);
910 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
913 static void init_journal_node(struct journal_node
*node
)
915 RB_CLEAR_NODE(&node
->node
);
916 node
->sector
= (sector_t
)-1;
919 static void add_journal_node(struct dm_integrity_c
*ic
, struct journal_node
*node
, sector_t sector
)
921 struct rb_node
**link
;
922 struct rb_node
*parent
;
924 node
->sector
= sector
;
925 BUG_ON(!RB_EMPTY_NODE(&node
->node
));
927 link
= &ic
->journal_tree_root
.rb_node
;
931 struct journal_node
*j
;
933 j
= container_of(parent
, struct journal_node
, node
);
934 if (sector
< j
->sector
)
935 link
= &j
->node
.rb_left
;
937 link
= &j
->node
.rb_right
;
940 rb_link_node(&node
->node
, parent
, link
);
941 rb_insert_color(&node
->node
, &ic
->journal_tree_root
);
944 static void remove_journal_node(struct dm_integrity_c
*ic
, struct journal_node
*node
)
946 BUG_ON(RB_EMPTY_NODE(&node
->node
));
947 rb_erase(&node
->node
, &ic
->journal_tree_root
);
948 init_journal_node(node
);
951 #define NOT_FOUND (-1U)
953 static unsigned find_journal_node(struct dm_integrity_c
*ic
, sector_t sector
, sector_t
*next_sector
)
955 struct rb_node
*n
= ic
->journal_tree_root
.rb_node
;
956 unsigned found
= NOT_FOUND
;
957 *next_sector
= (sector_t
)-1;
959 struct journal_node
*j
= container_of(n
, struct journal_node
, node
);
960 if (sector
== j
->sector
) {
961 found
= j
- ic
->journal_tree
;
963 if (sector
< j
->sector
) {
964 *next_sector
= j
->sector
;
967 n
= j
->node
.rb_right
;
974 static bool test_journal_node(struct dm_integrity_c
*ic
, unsigned pos
, sector_t sector
)
976 struct journal_node
*node
, *next_node
;
977 struct rb_node
*next
;
979 if (unlikely(pos
>= ic
->journal_entries
))
981 node
= &ic
->journal_tree
[pos
];
982 if (unlikely(RB_EMPTY_NODE(&node
->node
)))
984 if (unlikely(node
->sector
!= sector
))
987 next
= rb_next(&node
->node
);
991 next_node
= container_of(next
, struct journal_node
, node
);
992 return next_node
->sector
!= sector
;
995 static bool find_newer_committed_node(struct dm_integrity_c
*ic
, struct journal_node
*node
)
997 struct rb_node
*next
;
998 struct journal_node
*next_node
;
999 unsigned next_section
;
1001 BUG_ON(RB_EMPTY_NODE(&node
->node
));
1003 next
= rb_next(&node
->node
);
1004 if (unlikely(!next
))
1007 next_node
= container_of(next
, struct journal_node
, node
);
1009 if (next_node
->sector
!= node
->sector
)
1012 next_section
= (unsigned)(next_node
- ic
->journal_tree
) / ic
->journal_section_entries
;
1013 if (next_section
>= ic
->committed_section
&&
1014 next_section
< ic
->committed_section
+ ic
->n_committed_sections
)
1016 if (next_section
+ ic
->journal_sections
< ic
->committed_section
+ ic
->n_committed_sections
)
1026 static int dm_integrity_rw_tag(struct dm_integrity_c
*ic
, unsigned char *tag
, sector_t
*metadata_block
,
1027 unsigned *metadata_offset
, unsigned total_size
, int op
)
1030 unsigned char *data
, *dp
;
1031 struct dm_buffer
*b
;
1035 r
= dm_integrity_failed(ic
);
1039 data
= dm_bufio_read(ic
->bufio
, *metadata_block
, &b
);
1040 if (unlikely(IS_ERR(data
)))
1041 return PTR_ERR(data
);
1043 to_copy
= min((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - *metadata_offset
, total_size
);
1044 dp
= data
+ *metadata_offset
;
1045 if (op
== TAG_READ
) {
1046 memcpy(tag
, dp
, to_copy
);
1047 } else if (op
== TAG_WRITE
) {
1048 memcpy(dp
, tag
, to_copy
);
1049 dm_bufio_mark_partial_buffer_dirty(b
, *metadata_offset
, *metadata_offset
+ to_copy
);
1051 /* e.g.: op == TAG_CMP */
1052 if (unlikely(memcmp(dp
, tag
, to_copy
))) {
1055 for (i
= 0; i
< to_copy
; i
++) {
1056 if (dp
[i
] != tag
[i
])
1060 dm_bufio_release(b
);
1064 dm_bufio_release(b
);
1067 *metadata_offset
+= to_copy
;
1068 if (unlikely(*metadata_offset
== 1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
)) {
1069 (*metadata_block
)++;
1070 *metadata_offset
= 0;
1072 total_size
-= to_copy
;
1073 } while (unlikely(total_size
));
1078 static void dm_integrity_flush_buffers(struct dm_integrity_c
*ic
)
1081 r
= dm_bufio_write_dirty_buffers(ic
->bufio
);
1083 dm_integrity_io_error(ic
, "writing tags", r
);
1086 static void sleep_on_endio_wait(struct dm_integrity_c
*ic
)
1088 DECLARE_WAITQUEUE(wait
, current
);
1089 __add_wait_queue(&ic
->endio_wait
, &wait
);
1090 __set_current_state(TASK_UNINTERRUPTIBLE
);
1091 spin_unlock_irq(&ic
->endio_wait
.lock
);
1093 spin_lock_irq(&ic
->endio_wait
.lock
);
1094 __remove_wait_queue(&ic
->endio_wait
, &wait
);
1097 static void autocommit_fn(struct timer_list
*t
)
1099 struct dm_integrity_c
*ic
= from_timer(ic
, t
, autocommit_timer
);
1101 if (likely(!dm_integrity_failed(ic
)))
1102 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1105 static void schedule_autocommit(struct dm_integrity_c
*ic
)
1107 if (!timer_pending(&ic
->autocommit_timer
))
1108 mod_timer(&ic
->autocommit_timer
, jiffies
+ ic
->autocommit_jiffies
);
1111 static void submit_flush_bio(struct dm_integrity_c
*ic
, struct dm_integrity_io
*dio
)
1114 unsigned long flags
;
1116 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
1117 bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1118 bio_list_add(&ic
->flush_bio_list
, bio
);
1119 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
1121 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1124 static void do_endio(struct dm_integrity_c
*ic
, struct bio
*bio
)
1126 int r
= dm_integrity_failed(ic
);
1127 if (unlikely(r
) && !bio
->bi_status
)
1128 bio
->bi_status
= errno_to_blk_status(r
);
1132 static void do_endio_flush(struct dm_integrity_c
*ic
, struct dm_integrity_io
*dio
)
1134 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1136 if (unlikely(dio
->fua
) && likely(!bio
->bi_status
) && likely(!dm_integrity_failed(ic
)))
1137 submit_flush_bio(ic
, dio
);
1142 static void dec_in_flight(struct dm_integrity_io
*dio
)
1144 if (atomic_dec_and_test(&dio
->in_flight
)) {
1145 struct dm_integrity_c
*ic
= dio
->ic
;
1148 remove_range(ic
, &dio
->range
);
1150 if (unlikely(dio
->write
))
1151 schedule_autocommit(ic
);
1153 bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1155 if (unlikely(dio
->bi_status
) && !bio
->bi_status
)
1156 bio
->bi_status
= dio
->bi_status
;
1157 if (likely(!bio
->bi_status
) && unlikely(bio_sectors(bio
) != dio
->range
.n_sectors
)) {
1158 dio
->range
.logical_sector
+= dio
->range
.n_sectors
;
1159 bio_advance(bio
, dio
->range
.n_sectors
<< SECTOR_SHIFT
);
1160 INIT_WORK(&dio
->work
, integrity_bio_wait
);
1161 queue_work(ic
->wait_wq
, &dio
->work
);
1164 do_endio_flush(ic
, dio
);
1168 static void integrity_end_io(struct bio
*bio
)
1170 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
1172 bio
->bi_iter
= dio
->orig_bi_iter
;
1173 bio
->bi_disk
= dio
->orig_bi_disk
;
1174 bio
->bi_partno
= dio
->orig_bi_partno
;
1175 if (dio
->orig_bi_integrity
) {
1176 bio
->bi_integrity
= dio
->orig_bi_integrity
;
1177 bio
->bi_opf
|= REQ_INTEGRITY
;
1179 bio
->bi_end_io
= dio
->orig_bi_end_io
;
1181 if (dio
->completion
)
1182 complete(dio
->completion
);
1187 static void integrity_sector_checksum(struct dm_integrity_c
*ic
, sector_t sector
,
1188 const char *data
, char *result
)
1190 __u64 sector_le
= cpu_to_le64(sector
);
1191 SHASH_DESC_ON_STACK(req
, ic
->internal_hash
);
1193 unsigned digest_size
;
1195 req
->tfm
= ic
->internal_hash
;
1198 r
= crypto_shash_init(req
);
1199 if (unlikely(r
< 0)) {
1200 dm_integrity_io_error(ic
, "crypto_shash_init", r
);
1204 r
= crypto_shash_update(req
, (const __u8
*)§or_le
, sizeof sector_le
);
1205 if (unlikely(r
< 0)) {
1206 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
1210 r
= crypto_shash_update(req
, data
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
1211 if (unlikely(r
< 0)) {
1212 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
1216 r
= crypto_shash_final(req
, result
);
1217 if (unlikely(r
< 0)) {
1218 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
1222 digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1223 if (unlikely(digest_size
< ic
->tag_size
))
1224 memset(result
+ digest_size
, 0, ic
->tag_size
- digest_size
);
1229 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1230 get_random_bytes(result
, ic
->tag_size
);
1233 static void integrity_metadata(struct work_struct
*w
)
1235 struct dm_integrity_io
*dio
= container_of(w
, struct dm_integrity_io
, work
);
1236 struct dm_integrity_c
*ic
= dio
->ic
;
1240 if (ic
->internal_hash
) {
1241 struct bvec_iter iter
;
1243 unsigned digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1244 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1246 unsigned extra_space
= unlikely(digest_size
> ic
->tag_size
) ? digest_size
- ic
->tag_size
: 0;
1247 char checksums_onstack
[ic
->tag_size
+ extra_space
];
1248 unsigned sectors_to_process
= dio
->range
.n_sectors
;
1249 sector_t sector
= dio
->range
.logical_sector
;
1251 if (unlikely(ic
->mode
== 'R'))
1254 checksums
= kmalloc((PAGE_SIZE
>> SECTOR_SHIFT
>> ic
->sb
->log2_sectors_per_block
) * ic
->tag_size
+ extra_space
,
1255 GFP_NOIO
| __GFP_NORETRY
| __GFP_NOWARN
);
1257 checksums
= checksums_onstack
;
1259 __bio_for_each_segment(bv
, bio
, iter
, dio
->orig_bi_iter
) {
1261 char *mem
, *checksums_ptr
;
1264 mem
= (char *)kmap_atomic(bv
.bv_page
) + bv
.bv_offset
;
1266 checksums_ptr
= checksums
;
1268 integrity_sector_checksum(ic
, sector
, mem
+ pos
, checksums_ptr
);
1269 checksums_ptr
+= ic
->tag_size
;
1270 sectors_to_process
-= ic
->sectors_per_block
;
1271 pos
+= ic
->sectors_per_block
<< SECTOR_SHIFT
;
1272 sector
+= ic
->sectors_per_block
;
1273 } while (pos
< bv
.bv_len
&& sectors_to_process
&& checksums
!= checksums_onstack
);
1276 r
= dm_integrity_rw_tag(ic
, checksums
, &dio
->metadata_block
, &dio
->metadata_offset
,
1277 checksums_ptr
- checksums
, !dio
->write
? TAG_CMP
: TAG_WRITE
);
1280 DMERR("Checksum failed at sector 0x%llx",
1281 (unsigned long long)(sector
- ((r
+ ic
->tag_size
- 1) / ic
->tag_size
)));
1283 atomic64_inc(&ic
->number_of_mismatches
);
1285 if (likely(checksums
!= checksums_onstack
))
1290 if (!sectors_to_process
)
1293 if (unlikely(pos
< bv
.bv_len
)) {
1294 bv
.bv_offset
+= pos
;
1300 if (likely(checksums
!= checksums_onstack
))
1303 struct bio_integrity_payload
*bip
= dio
->orig_bi_integrity
;
1307 struct bvec_iter iter
;
1308 unsigned data_to_process
= dio
->range
.n_sectors
;
1309 sector_to_block(ic
, data_to_process
);
1310 data_to_process
*= ic
->tag_size
;
1312 bip_for_each_vec(biv
, bip
, iter
) {
1316 BUG_ON(PageHighMem(biv
.bv_page
));
1317 tag
= lowmem_page_address(biv
.bv_page
) + biv
.bv_offset
;
1318 this_len
= min(biv
.bv_len
, data_to_process
);
1319 r
= dm_integrity_rw_tag(ic
, tag
, &dio
->metadata_block
, &dio
->metadata_offset
,
1320 this_len
, !dio
->write
? TAG_READ
: TAG_WRITE
);
1323 data_to_process
-= this_len
;
1324 if (!data_to_process
)
1333 dio
->bi_status
= errno_to_blk_status(r
);
1337 static int dm_integrity_map(struct dm_target
*ti
, struct bio
*bio
)
1339 struct dm_integrity_c
*ic
= ti
->private;
1340 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
1341 struct bio_integrity_payload
*bip
;
1343 sector_t area
, offset
;
1348 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1349 submit_flush_bio(ic
, dio
);
1350 return DM_MAPIO_SUBMITTED
;
1353 dio
->range
.logical_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1354 dio
->write
= bio_op(bio
) == REQ_OP_WRITE
;
1355 dio
->fua
= dio
->write
&& bio
->bi_opf
& REQ_FUA
;
1356 if (unlikely(dio
->fua
)) {
1358 * Don't pass down the FUA flag because we have to flush
1359 * disk cache anyway.
1361 bio
->bi_opf
&= ~REQ_FUA
;
1363 if (unlikely(dio
->range
.logical_sector
+ bio_sectors(bio
) > ic
->provided_data_sectors
)) {
1364 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1365 (unsigned long long)dio
->range
.logical_sector
, bio_sectors(bio
),
1366 (unsigned long long)ic
->provided_data_sectors
);
1367 return DM_MAPIO_KILL
;
1369 if (unlikely((dio
->range
.logical_sector
| bio_sectors(bio
)) & (unsigned)(ic
->sectors_per_block
- 1))) {
1370 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1371 ic
->sectors_per_block
,
1372 (unsigned long long)dio
->range
.logical_sector
, bio_sectors(bio
));
1373 return DM_MAPIO_KILL
;
1376 if (ic
->sectors_per_block
> 1) {
1377 struct bvec_iter iter
;
1379 bio_for_each_segment(bv
, bio
, iter
) {
1380 if (unlikely(bv
.bv_len
& ((ic
->sectors_per_block
<< SECTOR_SHIFT
) - 1))) {
1381 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1382 bv
.bv_offset
, bv
.bv_len
, ic
->sectors_per_block
);
1383 return DM_MAPIO_KILL
;
1388 bip
= bio_integrity(bio
);
1389 if (!ic
->internal_hash
) {
1391 unsigned wanted_tag_size
= bio_sectors(bio
) >> ic
->sb
->log2_sectors_per_block
;
1392 if (ic
->log2_tag_size
>= 0)
1393 wanted_tag_size
<<= ic
->log2_tag_size
;
1395 wanted_tag_size
*= ic
->tag_size
;
1396 if (unlikely(wanted_tag_size
!= bip
->bip_iter
.bi_size
)) {
1397 DMERR("Invalid integrity data size %u, expected %u", bip
->bip_iter
.bi_size
, wanted_tag_size
);
1398 return DM_MAPIO_KILL
;
1402 if (unlikely(bip
!= NULL
)) {
1403 DMERR("Unexpected integrity data when using internal hash");
1404 return DM_MAPIO_KILL
;
1408 if (unlikely(ic
->mode
== 'R') && unlikely(dio
->write
))
1409 return DM_MAPIO_KILL
;
1411 get_area_and_offset(ic
, dio
->range
.logical_sector
, &area
, &offset
);
1412 dio
->metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &dio
->metadata_offset
);
1413 bio
->bi_iter
.bi_sector
= get_data_sector(ic
, area
, offset
);
1415 dm_integrity_map_continue(dio
, true);
1416 return DM_MAPIO_SUBMITTED
;
1419 static bool __journal_read_write(struct dm_integrity_io
*dio
, struct bio
*bio
,
1420 unsigned journal_section
, unsigned journal_entry
)
1422 struct dm_integrity_c
*ic
= dio
->ic
;
1423 sector_t logical_sector
;
1426 logical_sector
= dio
->range
.logical_sector
;
1427 n_sectors
= dio
->range
.n_sectors
;
1429 struct bio_vec bv
= bio_iovec(bio
);
1432 if (unlikely(bv
.bv_len
>> SECTOR_SHIFT
> n_sectors
))
1433 bv
.bv_len
= n_sectors
<< SECTOR_SHIFT
;
1434 n_sectors
-= bv
.bv_len
>> SECTOR_SHIFT
;
1435 bio_advance_iter(bio
, &bio
->bi_iter
, bv
.bv_len
);
1437 mem
= kmap_atomic(bv
.bv_page
);
1438 if (likely(dio
->write
))
1439 flush_dcache_page(bv
.bv_page
);
1442 struct journal_entry
*je
= access_journal_entry(ic
, journal_section
, journal_entry
);
1444 if (unlikely(!dio
->write
)) {
1445 struct journal_sector
*js
;
1449 if (unlikely(journal_entry_is_inprogress(je
))) {
1450 flush_dcache_page(bv
.bv_page
);
1453 __io_wait_event(ic
->copy_to_journal_wait
, !journal_entry_is_inprogress(je
));
1457 BUG_ON(journal_entry_get_sector(je
) != logical_sector
);
1458 js
= access_journal_data(ic
, journal_section
, journal_entry
);
1459 mem_ptr
= mem
+ bv
.bv_offset
;
1462 memcpy(mem_ptr
, js
, JOURNAL_SECTOR_DATA
);
1463 *(commit_id_t
*)(mem_ptr
+ JOURNAL_SECTOR_DATA
) = je
->last_bytes
[s
];
1465 mem_ptr
+= 1 << SECTOR_SHIFT
;
1466 } while (++s
< ic
->sectors_per_block
);
1467 #ifdef INTERNAL_VERIFY
1468 if (ic
->internal_hash
) {
1469 char checksums_onstack
[max(crypto_shash_digestsize(ic
->internal_hash
), ic
->tag_size
)];
1471 integrity_sector_checksum(ic
, logical_sector
, mem
+ bv
.bv_offset
, checksums_onstack
);
1472 if (unlikely(memcmp(checksums_onstack
, journal_entry_tag(ic
, je
), ic
->tag_size
))) {
1473 DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1474 (unsigned long long)logical_sector
);
1480 if (!ic
->internal_hash
) {
1481 struct bio_integrity_payload
*bip
= bio_integrity(bio
);
1482 unsigned tag_todo
= ic
->tag_size
;
1483 char *tag_ptr
= journal_entry_tag(ic
, je
);
1486 struct bio_vec biv
= bvec_iter_bvec(bip
->bip_vec
, bip
->bip_iter
);
1487 unsigned tag_now
= min(biv
.bv_len
, tag_todo
);
1489 BUG_ON(PageHighMem(biv
.bv_page
));
1490 tag_addr
= lowmem_page_address(biv
.bv_page
) + biv
.bv_offset
;
1491 if (likely(dio
->write
))
1492 memcpy(tag_ptr
, tag_addr
, tag_now
);
1494 memcpy(tag_addr
, tag_ptr
, tag_now
);
1495 bvec_iter_advance(bip
->bip_vec
, &bip
->bip_iter
, tag_now
);
1497 tag_todo
-= tag_now
;
1498 } while (unlikely(tag_todo
)); else {
1499 if (likely(dio
->write
))
1500 memset(tag_ptr
, 0, tag_todo
);
1504 if (likely(dio
->write
)) {
1505 struct journal_sector
*js
;
1508 js
= access_journal_data(ic
, journal_section
, journal_entry
);
1509 memcpy(js
, mem
+ bv
.bv_offset
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
1513 je
->last_bytes
[s
] = js
[s
].commit_id
;
1514 } while (++s
< ic
->sectors_per_block
);
1516 if (ic
->internal_hash
) {
1517 unsigned digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1518 if (unlikely(digest_size
> ic
->tag_size
)) {
1519 char checksums_onstack
[digest_size
];
1520 integrity_sector_checksum(ic
, logical_sector
, (char *)js
, checksums_onstack
);
1521 memcpy(journal_entry_tag(ic
, je
), checksums_onstack
, ic
->tag_size
);
1523 integrity_sector_checksum(ic
, logical_sector
, (char *)js
, journal_entry_tag(ic
, je
));
1526 journal_entry_set_sector(je
, logical_sector
);
1528 logical_sector
+= ic
->sectors_per_block
;
1531 if (unlikely(journal_entry
== ic
->journal_section_entries
)) {
1534 wraparound_section(ic
, &journal_section
);
1537 bv
.bv_offset
+= ic
->sectors_per_block
<< SECTOR_SHIFT
;
1538 } while (bv
.bv_len
-= ic
->sectors_per_block
<< SECTOR_SHIFT
);
1540 if (unlikely(!dio
->write
))
1541 flush_dcache_page(bv
.bv_page
);
1543 } while (n_sectors
);
1545 if (likely(dio
->write
)) {
1547 if (unlikely(waitqueue_active(&ic
->copy_to_journal_wait
)))
1548 wake_up(&ic
->copy_to_journal_wait
);
1549 if (READ_ONCE(ic
->free_sectors
) <= ic
->free_sectors_threshold
) {
1550 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1552 schedule_autocommit(ic
);
1555 remove_range(ic
, &dio
->range
);
1558 if (unlikely(bio
->bi_iter
.bi_size
)) {
1559 sector_t area
, offset
;
1561 dio
->range
.logical_sector
= logical_sector
;
1562 get_area_and_offset(ic
, dio
->range
.logical_sector
, &area
, &offset
);
1563 dio
->metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &dio
->metadata_offset
);
1570 static void dm_integrity_map_continue(struct dm_integrity_io
*dio
, bool from_map
)
1572 struct dm_integrity_c
*ic
= dio
->ic
;
1573 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1574 unsigned journal_section
, journal_entry
;
1575 unsigned journal_read_pos
;
1576 struct completion read_comp
;
1577 bool need_sync_io
= ic
->internal_hash
&& !dio
->write
;
1579 if (need_sync_io
&& from_map
) {
1580 INIT_WORK(&dio
->work
, integrity_bio_wait
);
1581 queue_work(ic
->metadata_wq
, &dio
->work
);
1586 spin_lock_irq(&ic
->endio_wait
.lock
);
1588 if (unlikely(dm_integrity_failed(ic
))) {
1589 spin_unlock_irq(&ic
->endio_wait
.lock
);
1593 dio
->range
.n_sectors
= bio_sectors(bio
);
1594 journal_read_pos
= NOT_FOUND
;
1595 if (likely(ic
->mode
== 'J')) {
1597 unsigned next_entry
, i
, pos
;
1598 unsigned ws
, we
, range_sectors
;
1600 dio
->range
.n_sectors
= min(dio
->range
.n_sectors
,
1601 ic
->free_sectors
<< ic
->sb
->log2_sectors_per_block
);
1602 if (unlikely(!dio
->range
.n_sectors
))
1604 range_sectors
= dio
->range
.n_sectors
>> ic
->sb
->log2_sectors_per_block
;
1605 ic
->free_sectors
-= range_sectors
;
1606 journal_section
= ic
->free_section
;
1607 journal_entry
= ic
->free_section_entry
;
1609 next_entry
= ic
->free_section_entry
+ range_sectors
;
1610 ic
->free_section_entry
= next_entry
% ic
->journal_section_entries
;
1611 ic
->free_section
+= next_entry
/ ic
->journal_section_entries
;
1612 ic
->n_uncommitted_sections
+= next_entry
/ ic
->journal_section_entries
;
1613 wraparound_section(ic
, &ic
->free_section
);
1615 pos
= journal_section
* ic
->journal_section_entries
+ journal_entry
;
1616 ws
= journal_section
;
1620 struct journal_entry
*je
;
1622 add_journal_node(ic
, &ic
->journal_tree
[pos
], dio
->range
.logical_sector
+ i
);
1624 if (unlikely(pos
>= ic
->journal_entries
))
1627 je
= access_journal_entry(ic
, ws
, we
);
1628 BUG_ON(!journal_entry_is_unused(je
));
1629 journal_entry_set_inprogress(je
);
1631 if (unlikely(we
== ic
->journal_section_entries
)) {
1634 wraparound_section(ic
, &ws
);
1636 } while ((i
+= ic
->sectors_per_block
) < dio
->range
.n_sectors
);
1638 spin_unlock_irq(&ic
->endio_wait
.lock
);
1639 goto journal_read_write
;
1641 sector_t next_sector
;
1642 journal_read_pos
= find_journal_node(ic
, dio
->range
.logical_sector
, &next_sector
);
1643 if (likely(journal_read_pos
== NOT_FOUND
)) {
1644 if (unlikely(dio
->range
.n_sectors
> next_sector
- dio
->range
.logical_sector
))
1645 dio
->range
.n_sectors
= next_sector
- dio
->range
.logical_sector
;
1648 unsigned jp
= journal_read_pos
+ 1;
1649 for (i
= ic
->sectors_per_block
; i
< dio
->range
.n_sectors
; i
+= ic
->sectors_per_block
, jp
++) {
1650 if (!test_journal_node(ic
, jp
, dio
->range
.logical_sector
+ i
))
1653 dio
->range
.n_sectors
= i
;
1657 if (unlikely(!add_new_range(ic
, &dio
->range
))) {
1659 * We must not sleep in the request routine because it could
1660 * stall bios on current->bio_list.
1661 * So, we offload the bio to a workqueue if we have to sleep.
1665 spin_unlock_irq(&ic
->endio_wait
.lock
);
1666 INIT_WORK(&dio
->work
, integrity_bio_wait
);
1667 queue_work(ic
->wait_wq
, &dio
->work
);
1670 sleep_on_endio_wait(ic
);
1674 spin_unlock_irq(&ic
->endio_wait
.lock
);
1676 if (unlikely(journal_read_pos
!= NOT_FOUND
)) {
1677 journal_section
= journal_read_pos
/ ic
->journal_section_entries
;
1678 journal_entry
= journal_read_pos
% ic
->journal_section_entries
;
1679 goto journal_read_write
;
1682 dio
->in_flight
= (atomic_t
)ATOMIC_INIT(2);
1685 init_completion(&read_comp
);
1686 dio
->completion
= &read_comp
;
1688 dio
->completion
= NULL
;
1690 dio
->orig_bi_iter
= bio
->bi_iter
;
1692 dio
->orig_bi_disk
= bio
->bi_disk
;
1693 dio
->orig_bi_partno
= bio
->bi_partno
;
1694 bio_set_dev(bio
, ic
->dev
->bdev
);
1696 dio
->orig_bi_integrity
= bio_integrity(bio
);
1697 bio
->bi_integrity
= NULL
;
1698 bio
->bi_opf
&= ~REQ_INTEGRITY
;
1700 dio
->orig_bi_end_io
= bio
->bi_end_io
;
1701 bio
->bi_end_io
= integrity_end_io
;
1703 bio
->bi_iter
.bi_size
= dio
->range
.n_sectors
<< SECTOR_SHIFT
;
1704 bio
->bi_iter
.bi_sector
+= ic
->start
;
1705 generic_make_request(bio
);
1708 wait_for_completion_io(&read_comp
);
1709 if (likely(!bio
->bi_status
))
1710 integrity_metadata(&dio
->work
);
1715 INIT_WORK(&dio
->work
, integrity_metadata
);
1716 queue_work(ic
->metadata_wq
, &dio
->work
);
1722 if (unlikely(__journal_read_write(dio
, bio
, journal_section
, journal_entry
)))
1725 do_endio_flush(ic
, dio
);
1729 static void integrity_bio_wait(struct work_struct
*w
)
1731 struct dm_integrity_io
*dio
= container_of(w
, struct dm_integrity_io
, work
);
1733 dm_integrity_map_continue(dio
, false);
1736 static void pad_uncommitted(struct dm_integrity_c
*ic
)
1738 if (ic
->free_section_entry
) {
1739 ic
->free_sectors
-= ic
->journal_section_entries
- ic
->free_section_entry
;
1740 ic
->free_section_entry
= 0;
1742 wraparound_section(ic
, &ic
->free_section
);
1743 ic
->n_uncommitted_sections
++;
1745 WARN_ON(ic
->journal_sections
* ic
->journal_section_entries
!=
1746 (ic
->n_uncommitted_sections
+ ic
->n_committed_sections
) * ic
->journal_section_entries
+ ic
->free_sectors
);
1749 static void integrity_commit(struct work_struct
*w
)
1751 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, commit_work
);
1752 unsigned commit_start
, commit_sections
;
1754 struct bio
*flushes
;
1756 del_timer(&ic
->autocommit_timer
);
1758 spin_lock_irq(&ic
->endio_wait
.lock
);
1759 flushes
= bio_list_get(&ic
->flush_bio_list
);
1760 if (unlikely(ic
->mode
!= 'J')) {
1761 spin_unlock_irq(&ic
->endio_wait
.lock
);
1762 dm_integrity_flush_buffers(ic
);
1763 goto release_flush_bios
;
1766 pad_uncommitted(ic
);
1767 commit_start
= ic
->uncommitted_section
;
1768 commit_sections
= ic
->n_uncommitted_sections
;
1769 spin_unlock_irq(&ic
->endio_wait
.lock
);
1771 if (!commit_sections
)
1772 goto release_flush_bios
;
1775 for (n
= 0; n
< commit_sections
; n
++) {
1776 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
1777 struct journal_entry
*je
;
1778 je
= access_journal_entry(ic
, i
, j
);
1779 io_wait_event(ic
->copy_to_journal_wait
, !journal_entry_is_inprogress(je
));
1781 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
1782 struct journal_sector
*js
;
1783 js
= access_journal(ic
, i
, j
);
1784 js
->commit_id
= dm_integrity_commit_id(ic
, i
, j
, ic
->commit_seq
);
1787 if (unlikely(i
>= ic
->journal_sections
))
1788 ic
->commit_seq
= next_commit_seq(ic
->commit_seq
);
1789 wraparound_section(ic
, &i
);
1793 write_journal(ic
, commit_start
, commit_sections
);
1795 spin_lock_irq(&ic
->endio_wait
.lock
);
1796 ic
->uncommitted_section
+= commit_sections
;
1797 wraparound_section(ic
, &ic
->uncommitted_section
);
1798 ic
->n_uncommitted_sections
-= commit_sections
;
1799 ic
->n_committed_sections
+= commit_sections
;
1800 spin_unlock_irq(&ic
->endio_wait
.lock
);
1802 if (READ_ONCE(ic
->free_sectors
) <= ic
->free_sectors_threshold
)
1803 queue_work(ic
->writer_wq
, &ic
->writer_work
);
1807 struct bio
*next
= flushes
->bi_next
;
1808 flushes
->bi_next
= NULL
;
1809 do_endio(ic
, flushes
);
1814 static void complete_copy_from_journal(unsigned long error
, void *context
)
1816 struct journal_io
*io
= context
;
1817 struct journal_completion
*comp
= io
->comp
;
1818 struct dm_integrity_c
*ic
= comp
->ic
;
1819 remove_range(ic
, &io
->range
);
1820 mempool_free(io
, ic
->journal_io_mempool
);
1821 if (unlikely(error
!= 0))
1822 dm_integrity_io_error(ic
, "copying from journal", -EIO
);
1823 complete_journal_op(comp
);
1826 static void restore_last_bytes(struct dm_integrity_c
*ic
, struct journal_sector
*js
,
1827 struct journal_entry
*je
)
1831 js
->commit_id
= je
->last_bytes
[s
];
1833 } while (++s
< ic
->sectors_per_block
);
1836 static void do_journal_write(struct dm_integrity_c
*ic
, unsigned write_start
,
1837 unsigned write_sections
, bool from_replay
)
1840 struct journal_completion comp
;
1841 struct blk_plug plug
;
1843 blk_start_plug(&plug
);
1846 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
1847 init_completion(&comp
.comp
);
1850 for (n
= 0; n
< write_sections
; n
++, i
++, wraparound_section(ic
, &i
)) {
1851 #ifndef INTERNAL_VERIFY
1852 if (unlikely(from_replay
))
1854 rw_section_mac(ic
, i
, false);
1855 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
1856 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
1857 sector_t sec
, area
, offset
;
1858 unsigned k
, l
, next_loop
;
1859 sector_t metadata_block
;
1860 unsigned metadata_offset
;
1861 struct journal_io
*io
;
1863 if (journal_entry_is_unused(je
))
1865 BUG_ON(unlikely(journal_entry_is_inprogress(je
)) && !from_replay
);
1866 sec
= journal_entry_get_sector(je
);
1867 if (unlikely(from_replay
)) {
1868 if (unlikely(sec
& (unsigned)(ic
->sectors_per_block
- 1))) {
1869 dm_integrity_io_error(ic
, "invalid sector in journal", -EIO
);
1870 sec
&= ~(sector_t
)(ic
->sectors_per_block
- 1);
1873 get_area_and_offset(ic
, sec
, &area
, &offset
);
1874 restore_last_bytes(ic
, access_journal_data(ic
, i
, j
), je
);
1875 for (k
= j
+ 1; k
< ic
->journal_section_entries
; k
++) {
1876 struct journal_entry
*je2
= access_journal_entry(ic
, i
, k
);
1877 sector_t sec2
, area2
, offset2
;
1878 if (journal_entry_is_unused(je2
))
1880 BUG_ON(unlikely(journal_entry_is_inprogress(je2
)) && !from_replay
);
1881 sec2
= journal_entry_get_sector(je2
);
1882 get_area_and_offset(ic
, sec2
, &area2
, &offset2
);
1883 if (area2
!= area
|| offset2
!= offset
+ ((k
- j
) << ic
->sb
->log2_sectors_per_block
))
1885 restore_last_bytes(ic
, access_journal_data(ic
, i
, k
), je2
);
1889 io
= mempool_alloc(ic
->journal_io_mempool
, GFP_NOIO
);
1891 io
->range
.logical_sector
= sec
;
1892 io
->range
.n_sectors
= (k
- j
) << ic
->sb
->log2_sectors_per_block
;
1894 spin_lock_irq(&ic
->endio_wait
.lock
);
1895 while (unlikely(!add_new_range(ic
, &io
->range
)))
1896 sleep_on_endio_wait(ic
);
1898 if (likely(!from_replay
)) {
1899 struct journal_node
*section_node
= &ic
->journal_tree
[i
* ic
->journal_section_entries
];
1901 /* don't write if there is newer committed sector */
1902 while (j
< k
&& find_newer_committed_node(ic
, §ion_node
[j
])) {
1903 struct journal_entry
*je2
= access_journal_entry(ic
, i
, j
);
1905 journal_entry_set_unused(je2
);
1906 remove_journal_node(ic
, §ion_node
[j
]);
1908 sec
+= ic
->sectors_per_block
;
1909 offset
+= ic
->sectors_per_block
;
1911 while (j
< k
&& find_newer_committed_node(ic
, §ion_node
[k
- 1])) {
1912 struct journal_entry
*je2
= access_journal_entry(ic
, i
, k
- 1);
1914 journal_entry_set_unused(je2
);
1915 remove_journal_node(ic
, §ion_node
[k
- 1]);
1919 remove_range_unlocked(ic
, &io
->range
);
1920 spin_unlock_irq(&ic
->endio_wait
.lock
);
1921 mempool_free(io
, ic
->journal_io_mempool
);
1924 for (l
= j
; l
< k
; l
++) {
1925 remove_journal_node(ic
, §ion_node
[l
]);
1928 spin_unlock_irq(&ic
->endio_wait
.lock
);
1930 metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &metadata_offset
);
1931 for (l
= j
; l
< k
; l
++) {
1933 struct journal_entry
*je2
= access_journal_entry(ic
, i
, l
);
1936 #ifndef INTERNAL_VERIFY
1937 unlikely(from_replay
) &&
1939 ic
->internal_hash
) {
1940 char test_tag
[max(crypto_shash_digestsize(ic
->internal_hash
), ic
->tag_size
)];
1942 integrity_sector_checksum(ic
, sec
+ ((l
- j
) << ic
->sb
->log2_sectors_per_block
),
1943 (char *)access_journal_data(ic
, i
, l
), test_tag
);
1944 if (unlikely(memcmp(test_tag
, journal_entry_tag(ic
, je2
), ic
->tag_size
)))
1945 dm_integrity_io_error(ic
, "tag mismatch when replaying journal", -EILSEQ
);
1948 journal_entry_set_unused(je2
);
1949 r
= dm_integrity_rw_tag(ic
, journal_entry_tag(ic
, je2
), &metadata_block
, &metadata_offset
,
1950 ic
->tag_size
, TAG_WRITE
);
1952 dm_integrity_io_error(ic
, "reading tags", r
);
1956 atomic_inc(&comp
.in_flight
);
1957 copy_from_journal(ic
, i
, j
<< ic
->sb
->log2_sectors_per_block
,
1958 (k
- j
) << ic
->sb
->log2_sectors_per_block
,
1959 get_data_sector(ic
, area
, offset
),
1960 complete_copy_from_journal
, io
);
1966 dm_bufio_write_dirty_buffers_async(ic
->bufio
);
1968 blk_finish_plug(&plug
);
1970 complete_journal_op(&comp
);
1971 wait_for_completion_io(&comp
.comp
);
1973 dm_integrity_flush_buffers(ic
);
1976 static void integrity_writer(struct work_struct
*w
)
1978 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, writer_work
);
1979 unsigned write_start
, write_sections
;
1981 unsigned prev_free_sectors
;
1983 /* the following test is not needed, but it tests the replay code */
1984 if (READ_ONCE(ic
->suspending
))
1987 spin_lock_irq(&ic
->endio_wait
.lock
);
1988 write_start
= ic
->committed_section
;
1989 write_sections
= ic
->n_committed_sections
;
1990 spin_unlock_irq(&ic
->endio_wait
.lock
);
1992 if (!write_sections
)
1995 do_journal_write(ic
, write_start
, write_sections
, false);
1997 spin_lock_irq(&ic
->endio_wait
.lock
);
1999 ic
->committed_section
+= write_sections
;
2000 wraparound_section(ic
, &ic
->committed_section
);
2001 ic
->n_committed_sections
-= write_sections
;
2003 prev_free_sectors
= ic
->free_sectors
;
2004 ic
->free_sectors
+= write_sections
* ic
->journal_section_entries
;
2005 if (unlikely(!prev_free_sectors
))
2006 wake_up_locked(&ic
->endio_wait
);
2008 spin_unlock_irq(&ic
->endio_wait
.lock
);
2011 static void init_journal(struct dm_integrity_c
*ic
, unsigned start_section
,
2012 unsigned n_sections
, unsigned char commit_seq
)
2019 for (n
= 0; n
< n_sections
; n
++) {
2020 i
= start_section
+ n
;
2021 wraparound_section(ic
, &i
);
2022 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2023 struct journal_sector
*js
= access_journal(ic
, i
, j
);
2024 memset(&js
->entries
, 0, JOURNAL_SECTOR_DATA
);
2025 js
->commit_id
= dm_integrity_commit_id(ic
, i
, j
, commit_seq
);
2027 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2028 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
2029 journal_entry_set_unused(je
);
2033 write_journal(ic
, start_section
, n_sections
);
2036 static int find_commit_seq(struct dm_integrity_c
*ic
, unsigned i
, unsigned j
, commit_id_t id
)
2039 for (k
= 0; k
< N_COMMIT_IDS
; k
++) {
2040 if (dm_integrity_commit_id(ic
, i
, j
, k
) == id
)
2043 dm_integrity_io_error(ic
, "journal commit id", -EIO
);
2047 static void replay_journal(struct dm_integrity_c
*ic
)
2050 bool used_commit_ids
[N_COMMIT_IDS
];
2051 unsigned max_commit_id_sections
[N_COMMIT_IDS
];
2052 unsigned write_start
, write_sections
;
2053 unsigned continue_section
;
2055 unsigned char unused
, last_used
, want_commit_seq
;
2057 if (ic
->mode
== 'R')
2060 if (ic
->journal_uptodate
)
2066 if (!ic
->just_formatted
) {
2067 DEBUG_print("reading journal\n");
2068 rw_journal(ic
, REQ_OP_READ
, 0, 0, ic
->journal_sections
, NULL
);
2070 DEBUG_bytes(lowmem_page_address(ic
->journal_io
[0].page
), 64, "read journal");
2071 if (ic
->journal_io
) {
2072 struct journal_completion crypt_comp
;
2074 init_completion(&crypt_comp
.comp
);
2075 crypt_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
2076 encrypt_journal(ic
, false, 0, ic
->journal_sections
, &crypt_comp
);
2077 wait_for_completion(&crypt_comp
.comp
);
2079 DEBUG_bytes(lowmem_page_address(ic
->journal
[0].page
), 64, "decrypted journal");
2082 if (dm_integrity_failed(ic
))
2085 journal_empty
= true;
2086 memset(used_commit_ids
, 0, sizeof used_commit_ids
);
2087 memset(max_commit_id_sections
, 0, sizeof max_commit_id_sections
);
2088 for (i
= 0; i
< ic
->journal_sections
; i
++) {
2089 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2091 struct journal_sector
*js
= access_journal(ic
, i
, j
);
2092 k
= find_commit_seq(ic
, i
, j
, js
->commit_id
);
2095 used_commit_ids
[k
] = true;
2096 max_commit_id_sections
[k
] = i
;
2098 if (journal_empty
) {
2099 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2100 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
2101 if (!journal_entry_is_unused(je
)) {
2102 journal_empty
= false;
2109 if (!used_commit_ids
[N_COMMIT_IDS
- 1]) {
2110 unused
= N_COMMIT_IDS
- 1;
2111 while (unused
&& !used_commit_ids
[unused
- 1])
2114 for (unused
= 0; unused
< N_COMMIT_IDS
; unused
++)
2115 if (!used_commit_ids
[unused
])
2117 if (unused
== N_COMMIT_IDS
) {
2118 dm_integrity_io_error(ic
, "journal commit ids", -EIO
);
2122 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2123 unused
, used_commit_ids
[0], used_commit_ids
[1],
2124 used_commit_ids
[2], used_commit_ids
[3]);
2126 last_used
= prev_commit_seq(unused
);
2127 want_commit_seq
= prev_commit_seq(last_used
);
2129 if (!used_commit_ids
[want_commit_seq
] && used_commit_ids
[prev_commit_seq(want_commit_seq
)])
2130 journal_empty
= true;
2132 write_start
= max_commit_id_sections
[last_used
] + 1;
2133 if (unlikely(write_start
>= ic
->journal_sections
))
2134 want_commit_seq
= next_commit_seq(want_commit_seq
);
2135 wraparound_section(ic
, &write_start
);
2138 for (write_sections
= 0; write_sections
< ic
->journal_sections
; write_sections
++) {
2139 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2140 struct journal_sector
*js
= access_journal(ic
, i
, j
);
2142 if (js
->commit_id
!= dm_integrity_commit_id(ic
, i
, j
, want_commit_seq
)) {
2144 * This could be caused by crash during writing.
2145 * We won't replay the inconsistent part of the
2148 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2149 i
, j
, find_commit_seq(ic
, i
, j
, js
->commit_id
), want_commit_seq
);
2154 if (unlikely(i
>= ic
->journal_sections
))
2155 want_commit_seq
= next_commit_seq(want_commit_seq
);
2156 wraparound_section(ic
, &i
);
2160 if (!journal_empty
) {
2161 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2162 write_sections
, write_start
, want_commit_seq
);
2163 do_journal_write(ic
, write_start
, write_sections
, true);
2166 if (write_sections
== ic
->journal_sections
&& (ic
->mode
== 'J' || journal_empty
)) {
2167 continue_section
= write_start
;
2168 ic
->commit_seq
= want_commit_seq
;
2169 DEBUG_print("continuing from section %u, commit seq %d\n", write_start
, ic
->commit_seq
);
2172 unsigned char erase_seq
;
2174 DEBUG_print("clearing journal\n");
2176 erase_seq
= prev_commit_seq(prev_commit_seq(last_used
));
2178 init_journal(ic
, s
, 1, erase_seq
);
2180 wraparound_section(ic
, &s
);
2181 if (ic
->journal_sections
>= 2) {
2182 init_journal(ic
, s
, ic
->journal_sections
- 2, erase_seq
);
2183 s
+= ic
->journal_sections
- 2;
2184 wraparound_section(ic
, &s
);
2185 init_journal(ic
, s
, 1, erase_seq
);
2188 continue_section
= 0;
2189 ic
->commit_seq
= next_commit_seq(erase_seq
);
2192 ic
->committed_section
= continue_section
;
2193 ic
->n_committed_sections
= 0;
2195 ic
->uncommitted_section
= continue_section
;
2196 ic
->n_uncommitted_sections
= 0;
2198 ic
->free_section
= continue_section
;
2199 ic
->free_section_entry
= 0;
2200 ic
->free_sectors
= ic
->journal_entries
;
2202 ic
->journal_tree_root
= RB_ROOT
;
2203 for (i
= 0; i
< ic
->journal_entries
; i
++)
2204 init_journal_node(&ic
->journal_tree
[i
]);
2207 static void dm_integrity_postsuspend(struct dm_target
*ti
)
2209 struct dm_integrity_c
*ic
= (struct dm_integrity_c
*)ti
->private;
2211 del_timer_sync(&ic
->autocommit_timer
);
2213 ic
->suspending
= true;
2215 queue_work(ic
->commit_wq
, &ic
->commit_work
);
2216 drain_workqueue(ic
->commit_wq
);
2218 if (ic
->mode
== 'J') {
2219 drain_workqueue(ic
->writer_wq
);
2220 dm_integrity_flush_buffers(ic
);
2223 ic
->suspending
= false;
2225 BUG_ON(!RB_EMPTY_ROOT(&ic
->in_progress
));
2227 ic
->journal_uptodate
= true;
2230 static void dm_integrity_resume(struct dm_target
*ti
)
2232 struct dm_integrity_c
*ic
= (struct dm_integrity_c
*)ti
->private;
2237 static void dm_integrity_status(struct dm_target
*ti
, status_type_t type
,
2238 unsigned status_flags
, char *result
, unsigned maxlen
)
2240 struct dm_integrity_c
*ic
= (struct dm_integrity_c
*)ti
->private;
2245 case STATUSTYPE_INFO
:
2246 DMEMIT("%llu", (unsigned long long)atomic64_read(&ic
->number_of_mismatches
));
2249 case STATUSTYPE_TABLE
: {
2250 __u64 watermark_percentage
= (__u64
)(ic
->journal_entries
- ic
->free_sectors_threshold
) * 100;
2251 watermark_percentage
+= ic
->journal_entries
/ 2;
2252 do_div(watermark_percentage
, ic
->journal_entries
);
2254 arg_count
+= ic
->sectors_per_block
!= 1;
2255 arg_count
+= !!ic
->internal_hash_alg
.alg_string
;
2256 arg_count
+= !!ic
->journal_crypt_alg
.alg_string
;
2257 arg_count
+= !!ic
->journal_mac_alg
.alg_string
;
2258 DMEMIT("%s %llu %u %c %u", ic
->dev
->name
, (unsigned long long)ic
->start
,
2259 ic
->tag_size
, ic
->mode
, arg_count
);
2260 DMEMIT(" journal_sectors:%u", ic
->initial_sectors
- SB_SECTORS
);
2261 DMEMIT(" interleave_sectors:%u", 1U << ic
->sb
->log2_interleave_sectors
);
2262 DMEMIT(" buffer_sectors:%u", 1U << ic
->log2_buffer_sectors
);
2263 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage
);
2264 DMEMIT(" commit_time:%u", ic
->autocommit_msec
);
2265 if (ic
->sectors_per_block
!= 1)
2266 DMEMIT(" block_size:%u", ic
->sectors_per_block
<< SECTOR_SHIFT
);
2268 #define EMIT_ALG(a, n) \
2270 if (ic->a.alg_string) { \
2271 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2272 if (ic->a.key_string) \
2273 DMEMIT(":%s", ic->a.key_string);\
2276 EMIT_ALG(internal_hash_alg
, "internal_hash");
2277 EMIT_ALG(journal_crypt_alg
, "journal_crypt");
2278 EMIT_ALG(journal_mac_alg
, "journal_mac");
2284 static int dm_integrity_iterate_devices(struct dm_target
*ti
,
2285 iterate_devices_callout_fn fn
, void *data
)
2287 struct dm_integrity_c
*ic
= ti
->private;
2289 return fn(ti
, ic
->dev
, ic
->start
+ ic
->initial_sectors
+ ic
->metadata_run
, ti
->len
, data
);
2292 static void dm_integrity_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2294 struct dm_integrity_c
*ic
= ti
->private;
2296 if (ic
->sectors_per_block
> 1) {
2297 limits
->logical_block_size
= ic
->sectors_per_block
<< SECTOR_SHIFT
;
2298 limits
->physical_block_size
= ic
->sectors_per_block
<< SECTOR_SHIFT
;
2299 blk_limits_io_min(limits
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
2303 static void calculate_journal_section_size(struct dm_integrity_c
*ic
)
2305 unsigned sector_space
= JOURNAL_SECTOR_DATA
;
2307 ic
->journal_sections
= le32_to_cpu(ic
->sb
->journal_sections
);
2308 ic
->journal_entry_size
= roundup(offsetof(struct journal_entry
, last_bytes
[ic
->sectors_per_block
]) + ic
->tag_size
,
2309 JOURNAL_ENTRY_ROUNDUP
);
2311 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
))
2312 sector_space
-= JOURNAL_MAC_PER_SECTOR
;
2313 ic
->journal_entries_per_sector
= sector_space
/ ic
->journal_entry_size
;
2314 ic
->journal_section_entries
= ic
->journal_entries_per_sector
* JOURNAL_BLOCK_SECTORS
;
2315 ic
->journal_section_sectors
= (ic
->journal_section_entries
<< ic
->sb
->log2_sectors_per_block
) + JOURNAL_BLOCK_SECTORS
;
2316 ic
->journal_entries
= ic
->journal_section_entries
* ic
->journal_sections
;
2319 static int calculate_device_limits(struct dm_integrity_c
*ic
)
2321 __u64 initial_sectors
;
2322 sector_t last_sector
, last_area
, last_offset
;
2324 calculate_journal_section_size(ic
);
2325 initial_sectors
= SB_SECTORS
+ (__u64
)ic
->journal_section_sectors
* ic
->journal_sections
;
2326 if (initial_sectors
+ METADATA_PADDING_SECTORS
>= ic
->device_sectors
|| initial_sectors
> UINT_MAX
)
2328 ic
->initial_sectors
= initial_sectors
;
2330 ic
->metadata_run
= roundup((__u64
)ic
->tag_size
<< (ic
->sb
->log2_interleave_sectors
- ic
->sb
->log2_sectors_per_block
),
2331 (__u64
)(1 << SECTOR_SHIFT
<< METADATA_PADDING_SECTORS
)) >> SECTOR_SHIFT
;
2332 if (!(ic
->metadata_run
& (ic
->metadata_run
- 1)))
2333 ic
->log2_metadata_run
= __ffs(ic
->metadata_run
);
2335 ic
->log2_metadata_run
= -1;
2337 get_area_and_offset(ic
, ic
->provided_data_sectors
- 1, &last_area
, &last_offset
);
2338 last_sector
= get_data_sector(ic
, last_area
, last_offset
);
2340 if (ic
->start
+ last_sector
< last_sector
|| ic
->start
+ last_sector
>= ic
->device_sectors
)
2346 static int initialize_superblock(struct dm_integrity_c
*ic
, unsigned journal_sectors
, unsigned interleave_sectors
)
2348 unsigned journal_sections
;
2351 memset(ic
->sb
, 0, SB_SECTORS
<< SECTOR_SHIFT
);
2352 memcpy(ic
->sb
->magic
, SB_MAGIC
, 8);
2353 ic
->sb
->version
= SB_VERSION
;
2354 ic
->sb
->integrity_tag_size
= cpu_to_le16(ic
->tag_size
);
2355 ic
->sb
->log2_sectors_per_block
= __ffs(ic
->sectors_per_block
);
2356 if (ic
->journal_mac_alg
.alg_string
)
2357 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
);
2359 calculate_journal_section_size(ic
);
2360 journal_sections
= journal_sectors
/ ic
->journal_section_sectors
;
2361 if (!journal_sections
)
2362 journal_sections
= 1;
2363 ic
->sb
->journal_sections
= cpu_to_le32(journal_sections
);
2365 if (!interleave_sectors
)
2366 interleave_sectors
= DEFAULT_INTERLEAVE_SECTORS
;
2367 ic
->sb
->log2_interleave_sectors
= __fls(interleave_sectors
);
2368 ic
->sb
->log2_interleave_sectors
= max((__u8
)MIN_LOG2_INTERLEAVE_SECTORS
, ic
->sb
->log2_interleave_sectors
);
2369 ic
->sb
->log2_interleave_sectors
= min((__u8
)MAX_LOG2_INTERLEAVE_SECTORS
, ic
->sb
->log2_interleave_sectors
);
2371 ic
->provided_data_sectors
= 0;
2372 for (test_bit
= fls64(ic
->device_sectors
) - 1; test_bit
>= 3; test_bit
--) {
2373 __u64 prev_data_sectors
= ic
->provided_data_sectors
;
2375 ic
->provided_data_sectors
|= (sector_t
)1 << test_bit
;
2376 if (calculate_device_limits(ic
))
2377 ic
->provided_data_sectors
= prev_data_sectors
;
2380 if (!ic
->provided_data_sectors
)
2383 ic
->sb
->provided_data_sectors
= cpu_to_le64(ic
->provided_data_sectors
);
2388 static void dm_integrity_set(struct dm_target
*ti
, struct dm_integrity_c
*ic
)
2390 struct gendisk
*disk
= dm_disk(dm_table_get_md(ti
->table
));
2391 struct blk_integrity bi
;
2393 memset(&bi
, 0, sizeof(bi
));
2394 bi
.profile
= &dm_integrity_profile
;
2395 bi
.tuple_size
= ic
->tag_size
;
2396 bi
.tag_size
= bi
.tuple_size
;
2397 bi
.interval_exp
= ic
->sb
->log2_sectors_per_block
+ SECTOR_SHIFT
;
2399 blk_integrity_register(disk
, &bi
);
2400 blk_queue_max_integrity_segments(disk
->queue
, UINT_MAX
);
2403 static void dm_integrity_free_page_list(struct dm_integrity_c
*ic
, struct page_list
*pl
)
2409 for (i
= 0; i
< ic
->journal_pages
; i
++)
2411 __free_page(pl
[i
].page
);
2415 static struct page_list
*dm_integrity_alloc_page_list(struct dm_integrity_c
*ic
)
2417 size_t page_list_desc_size
= ic
->journal_pages
* sizeof(struct page_list
);
2418 struct page_list
*pl
;
2421 pl
= kvmalloc(page_list_desc_size
, GFP_KERNEL
| __GFP_ZERO
);
2425 for (i
= 0; i
< ic
->journal_pages
; i
++) {
2426 pl
[i
].page
= alloc_page(GFP_KERNEL
);
2428 dm_integrity_free_page_list(ic
, pl
);
2432 pl
[i
- 1].next
= &pl
[i
];
2438 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c
*ic
, struct scatterlist
**sl
)
2441 for (i
= 0; i
< ic
->journal_sections
; i
++)
2446 static struct scatterlist
**dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c
*ic
, struct page_list
*pl
)
2448 struct scatterlist
**sl
;
2451 sl
= kvmalloc(ic
->journal_sections
* sizeof(struct scatterlist
*), GFP_KERNEL
| __GFP_ZERO
);
2455 for (i
= 0; i
< ic
->journal_sections
; i
++) {
2456 struct scatterlist
*s
;
2457 unsigned start_index
, start_offset
;
2458 unsigned end_index
, end_offset
;
2462 page_list_location(ic
, i
, 0, &start_index
, &start_offset
);
2463 page_list_location(ic
, i
, ic
->journal_section_sectors
- 1, &end_index
, &end_offset
);
2465 n_pages
= (end_index
- start_index
+ 1);
2467 s
= kvmalloc(n_pages
* sizeof(struct scatterlist
), GFP_KERNEL
);
2469 dm_integrity_free_journal_scatterlist(ic
, sl
);
2473 sg_init_table(s
, n_pages
);
2474 for (idx
= start_index
; idx
<= end_index
; idx
++) {
2475 char *va
= lowmem_page_address(pl
[idx
].page
);
2476 unsigned start
= 0, end
= PAGE_SIZE
;
2477 if (idx
== start_index
)
2478 start
= start_offset
;
2479 if (idx
== end_index
)
2480 end
= end_offset
+ (1 << SECTOR_SHIFT
);
2481 sg_set_buf(&s
[idx
- start_index
], va
+ start
, end
- start
);
2490 static void free_alg(struct alg_spec
*a
)
2492 kzfree(a
->alg_string
);
2494 memset(a
, 0, sizeof *a
);
2497 static int get_alg_and_key(const char *arg
, struct alg_spec
*a
, char **error
, char *error_inval
)
2503 a
->alg_string
= kstrdup(strchr(arg
, ':') + 1, GFP_KERNEL
);
2507 k
= strchr(a
->alg_string
, ':');
2510 a
->key_string
= k
+ 1;
2511 if (strlen(a
->key_string
) & 1)
2514 a
->key_size
= strlen(a
->key_string
) / 2;
2515 a
->key
= kmalloc(a
->key_size
, GFP_KERNEL
);
2518 if (hex2bin(a
->key
, a
->key_string
, a
->key_size
))
2524 *error
= error_inval
;
2527 *error
= "Out of memory for an argument";
2531 static int get_mac(struct crypto_shash
**hash
, struct alg_spec
*a
, char **error
,
2532 char *error_alg
, char *error_key
)
2536 if (a
->alg_string
) {
2537 *hash
= crypto_alloc_shash(a
->alg_string
, 0, CRYPTO_ALG_ASYNC
);
2538 if (IS_ERR(*hash
)) {
2546 r
= crypto_shash_setkey(*hash
, a
->key
, a
->key_size
);
2557 static int create_journal(struct dm_integrity_c
*ic
, char **error
)
2561 __u64 journal_pages
, journal_desc_size
, journal_tree_size
;
2562 unsigned char *crypt_data
= NULL
, *crypt_iv
= NULL
;
2563 struct skcipher_request
*req
= NULL
;
2565 ic
->commit_ids
[0] = cpu_to_le64(0x1111111111111111ULL
);
2566 ic
->commit_ids
[1] = cpu_to_le64(0x2222222222222222ULL
);
2567 ic
->commit_ids
[2] = cpu_to_le64(0x3333333333333333ULL
);
2568 ic
->commit_ids
[3] = cpu_to_le64(0x4444444444444444ULL
);
2570 journal_pages
= roundup((__u64
)ic
->journal_sections
* ic
->journal_section_sectors
,
2571 PAGE_SIZE
>> SECTOR_SHIFT
) >> (PAGE_SHIFT
- SECTOR_SHIFT
);
2572 journal_desc_size
= journal_pages
* sizeof(struct page_list
);
2573 if (journal_pages
>= totalram_pages
- totalhigh_pages
|| journal_desc_size
> ULONG_MAX
) {
2574 *error
= "Journal doesn't fit into memory";
2578 ic
->journal_pages
= journal_pages
;
2580 ic
->journal
= dm_integrity_alloc_page_list(ic
);
2582 *error
= "Could not allocate memory for journal";
2586 if (ic
->journal_crypt_alg
.alg_string
) {
2587 unsigned ivsize
, blocksize
;
2588 struct journal_completion comp
;
2591 ic
->journal_crypt
= crypto_alloc_skcipher(ic
->journal_crypt_alg
.alg_string
, 0, 0);
2592 if (IS_ERR(ic
->journal_crypt
)) {
2593 *error
= "Invalid journal cipher";
2594 r
= PTR_ERR(ic
->journal_crypt
);
2595 ic
->journal_crypt
= NULL
;
2598 ivsize
= crypto_skcipher_ivsize(ic
->journal_crypt
);
2599 blocksize
= crypto_skcipher_blocksize(ic
->journal_crypt
);
2601 if (ic
->journal_crypt_alg
.key
) {
2602 r
= crypto_skcipher_setkey(ic
->journal_crypt
, ic
->journal_crypt_alg
.key
,
2603 ic
->journal_crypt_alg
.key_size
);
2605 *error
= "Error setting encryption key";
2609 DEBUG_print("cipher %s, block size %u iv size %u\n",
2610 ic
->journal_crypt_alg
.alg_string
, blocksize
, ivsize
);
2612 ic
->journal_io
= dm_integrity_alloc_page_list(ic
);
2613 if (!ic
->journal_io
) {
2614 *error
= "Could not allocate memory for journal io";
2619 if (blocksize
== 1) {
2620 struct scatterlist
*sg
;
2622 req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
2624 *error
= "Could not allocate crypt request";
2629 crypt_iv
= kmalloc(ivsize
, GFP_KERNEL
);
2631 *error
= "Could not allocate iv";
2636 ic
->journal_xor
= dm_integrity_alloc_page_list(ic
);
2637 if (!ic
->journal_xor
) {
2638 *error
= "Could not allocate memory for journal xor";
2643 sg
= kvmalloc((ic
->journal_pages
+ 1) * sizeof(struct scatterlist
), GFP_KERNEL
);
2645 *error
= "Unable to allocate sg list";
2649 sg_init_table(sg
, ic
->journal_pages
+ 1);
2650 for (i
= 0; i
< ic
->journal_pages
; i
++) {
2651 char *va
= lowmem_page_address(ic
->journal_xor
[i
].page
);
2653 sg_set_buf(&sg
[i
], va
, PAGE_SIZE
);
2655 sg_set_buf(&sg
[i
], &ic
->commit_ids
, sizeof ic
->commit_ids
);
2656 memset(crypt_iv
, 0x00, ivsize
);
2658 skcipher_request_set_crypt(req
, sg
, sg
, PAGE_SIZE
* ic
->journal_pages
+ sizeof ic
->commit_ids
, crypt_iv
);
2659 init_completion(&comp
.comp
);
2660 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
2661 if (do_crypt(true, req
, &comp
))
2662 wait_for_completion(&comp
.comp
);
2664 r
= dm_integrity_failed(ic
);
2666 *error
= "Unable to encrypt journal";
2669 DEBUG_bytes(lowmem_page_address(ic
->journal_xor
[0].page
), 64, "xor data");
2671 crypto_free_skcipher(ic
->journal_crypt
);
2672 ic
->journal_crypt
= NULL
;
2674 unsigned crypt_len
= roundup(ivsize
, blocksize
);
2676 req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
2678 *error
= "Could not allocate crypt request";
2683 crypt_iv
= kmalloc(ivsize
, GFP_KERNEL
);
2685 *error
= "Could not allocate iv";
2690 crypt_data
= kmalloc(crypt_len
, GFP_KERNEL
);
2692 *error
= "Unable to allocate crypt data";
2697 ic
->journal_scatterlist
= dm_integrity_alloc_journal_scatterlist(ic
, ic
->journal
);
2698 if (!ic
->journal_scatterlist
) {
2699 *error
= "Unable to allocate sg list";
2703 ic
->journal_io_scatterlist
= dm_integrity_alloc_journal_scatterlist(ic
, ic
->journal_io
);
2704 if (!ic
->journal_io_scatterlist
) {
2705 *error
= "Unable to allocate sg list";
2709 ic
->sk_requests
= kvmalloc(ic
->journal_sections
* sizeof(struct skcipher_request
*), GFP_KERNEL
| __GFP_ZERO
);
2710 if (!ic
->sk_requests
) {
2711 *error
= "Unable to allocate sk requests";
2715 for (i
= 0; i
< ic
->journal_sections
; i
++) {
2716 struct scatterlist sg
;
2717 struct skcipher_request
*section_req
;
2718 __u32 section_le
= cpu_to_le32(i
);
2720 memset(crypt_iv
, 0x00, ivsize
);
2721 memset(crypt_data
, 0x00, crypt_len
);
2722 memcpy(crypt_data
, §ion_le
, min((size_t)crypt_len
, sizeof(section_le
)));
2724 sg_init_one(&sg
, crypt_data
, crypt_len
);
2725 skcipher_request_set_crypt(req
, &sg
, &sg
, crypt_len
, crypt_iv
);
2726 init_completion(&comp
.comp
);
2727 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
2728 if (do_crypt(true, req
, &comp
))
2729 wait_for_completion(&comp
.comp
);
2731 r
= dm_integrity_failed(ic
);
2733 *error
= "Unable to generate iv";
2737 section_req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
2739 *error
= "Unable to allocate crypt request";
2743 section_req
->iv
= kmalloc(ivsize
* 2, GFP_KERNEL
);
2744 if (!section_req
->iv
) {
2745 skcipher_request_free(section_req
);
2746 *error
= "Unable to allocate iv";
2750 memcpy(section_req
->iv
+ ivsize
, crypt_data
, ivsize
);
2751 section_req
->cryptlen
= (size_t)ic
->journal_section_sectors
<< SECTOR_SHIFT
;
2752 ic
->sk_requests
[i
] = section_req
;
2753 DEBUG_bytes(crypt_data
, ivsize
, "iv(%u)", i
);
2758 for (i
= 0; i
< N_COMMIT_IDS
; i
++) {
2761 for (j
= 0; j
< i
; j
++) {
2762 if (ic
->commit_ids
[j
] == ic
->commit_ids
[i
]) {
2763 ic
->commit_ids
[i
] = cpu_to_le64(le64_to_cpu(ic
->commit_ids
[i
]) + 1);
2764 goto retest_commit_id
;
2767 DEBUG_print("commit id %u: %016llx\n", i
, ic
->commit_ids
[i
]);
2770 journal_tree_size
= (__u64
)ic
->journal_entries
* sizeof(struct journal_node
);
2771 if (journal_tree_size
> ULONG_MAX
) {
2772 *error
= "Journal doesn't fit into memory";
2776 ic
->journal_tree
= kvmalloc(journal_tree_size
, GFP_KERNEL
);
2777 if (!ic
->journal_tree
) {
2778 *error
= "Could not allocate memory for journal tree";
2784 skcipher_request_free(req
);
2790 * Construct a integrity mapping
2794 * offset from the start of the device
2796 * D - direct writes, J - journal writes, R - recovery mode
2797 * number of optional arguments
2798 * optional arguments:
2800 * interleave_sectors
2809 static int dm_integrity_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2811 struct dm_integrity_c
*ic
;
2814 unsigned extra_args
;
2815 struct dm_arg_set as
;
2816 static const struct dm_arg _args
[] = {
2817 {0, 9, "Invalid number of feature args"},
2819 unsigned journal_sectors
, interleave_sectors
, buffer_sectors
, journal_watermark
, sync_msec
;
2820 bool should_write_sb
;
2822 unsigned long long start
;
2824 #define DIRECT_ARGUMENTS 4
2826 if (argc
<= DIRECT_ARGUMENTS
) {
2827 ti
->error
= "Invalid argument count";
2831 ic
= kzalloc(sizeof(struct dm_integrity_c
), GFP_KERNEL
);
2833 ti
->error
= "Cannot allocate integrity context";
2837 ti
->per_io_data_size
= sizeof(struct dm_integrity_io
);
2839 ic
->in_progress
= RB_ROOT
;
2840 init_waitqueue_head(&ic
->endio_wait
);
2841 bio_list_init(&ic
->flush_bio_list
);
2842 init_waitqueue_head(&ic
->copy_to_journal_wait
);
2843 init_completion(&ic
->crypto_backoff
);
2844 atomic64_set(&ic
->number_of_mismatches
, 0);
2846 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &ic
->dev
);
2848 ti
->error
= "Device lookup failed";
2852 if (sscanf(argv
[1], "%llu%c", &start
, &dummy
) != 1 || start
!= (sector_t
)start
) {
2853 ti
->error
= "Invalid starting offset";
2859 if (strcmp(argv
[2], "-")) {
2860 if (sscanf(argv
[2], "%u%c", &ic
->tag_size
, &dummy
) != 1 || !ic
->tag_size
) {
2861 ti
->error
= "Invalid tag size";
2867 if (!strcmp(argv
[3], "J") || !strcmp(argv
[3], "D") || !strcmp(argv
[3], "R"))
2868 ic
->mode
= argv
[3][0];
2870 ti
->error
= "Invalid mode (expecting J, D, R)";
2875 ic
->device_sectors
= i_size_read(ic
->dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
2876 journal_sectors
= min((sector_t
)DEFAULT_MAX_JOURNAL_SECTORS
,
2877 ic
->device_sectors
>> DEFAULT_JOURNAL_SIZE_FACTOR
);
2878 interleave_sectors
= DEFAULT_INTERLEAVE_SECTORS
;
2879 buffer_sectors
= DEFAULT_BUFFER_SECTORS
;
2880 journal_watermark
= DEFAULT_JOURNAL_WATERMARK
;
2881 sync_msec
= DEFAULT_SYNC_MSEC
;
2882 ic
->sectors_per_block
= 1;
2884 as
.argc
= argc
- DIRECT_ARGUMENTS
;
2885 as
.argv
= argv
+ DIRECT_ARGUMENTS
;
2886 r
= dm_read_arg_group(_args
, &as
, &extra_args
, &ti
->error
);
2890 while (extra_args
--) {
2891 const char *opt_string
;
2893 opt_string
= dm_shift_arg(&as
);
2896 ti
->error
= "Not enough feature arguments";
2899 if (sscanf(opt_string
, "journal_sectors:%u%c", &val
, &dummy
) == 1)
2900 journal_sectors
= val
;
2901 else if (sscanf(opt_string
, "interleave_sectors:%u%c", &val
, &dummy
) == 1)
2902 interleave_sectors
= val
;
2903 else if (sscanf(opt_string
, "buffer_sectors:%u%c", &val
, &dummy
) == 1)
2904 buffer_sectors
= val
;
2905 else if (sscanf(opt_string
, "journal_watermark:%u%c", &val
, &dummy
) == 1 && val
<= 100)
2906 journal_watermark
= val
;
2907 else if (sscanf(opt_string
, "commit_time:%u%c", &val
, &dummy
) == 1)
2909 else if (sscanf(opt_string
, "block_size:%u%c", &val
, &dummy
) == 1) {
2910 if (val
< 1 << SECTOR_SHIFT
||
2911 val
> MAX_SECTORS_PER_BLOCK
<< SECTOR_SHIFT
||
2914 ti
->error
= "Invalid block_size argument";
2917 ic
->sectors_per_block
= val
>> SECTOR_SHIFT
;
2918 } else if (!memcmp(opt_string
, "internal_hash:", strlen("internal_hash:"))) {
2919 r
= get_alg_and_key(opt_string
, &ic
->internal_hash_alg
, &ti
->error
,
2920 "Invalid internal_hash argument");
2923 } else if (!memcmp(opt_string
, "journal_crypt:", strlen("journal_crypt:"))) {
2924 r
= get_alg_and_key(opt_string
, &ic
->journal_crypt_alg
, &ti
->error
,
2925 "Invalid journal_crypt argument");
2928 } else if (!memcmp(opt_string
, "journal_mac:", strlen("journal_mac:"))) {
2929 r
= get_alg_and_key(opt_string
, &ic
->journal_mac_alg
, &ti
->error
,
2930 "Invalid journal_mac argument");
2935 ti
->error
= "Invalid argument";
2940 r
= get_mac(&ic
->internal_hash
, &ic
->internal_hash_alg
, &ti
->error
,
2941 "Invalid internal hash", "Error setting internal hash key");
2945 r
= get_mac(&ic
->journal_mac
, &ic
->journal_mac_alg
, &ti
->error
,
2946 "Invalid journal mac", "Error setting journal mac key");
2950 if (!ic
->tag_size
) {
2951 if (!ic
->internal_hash
) {
2952 ti
->error
= "Unknown tag size";
2956 ic
->tag_size
= crypto_shash_digestsize(ic
->internal_hash
);
2958 if (ic
->tag_size
> MAX_TAG_SIZE
) {
2959 ti
->error
= "Too big tag size";
2963 if (!(ic
->tag_size
& (ic
->tag_size
- 1)))
2964 ic
->log2_tag_size
= __ffs(ic
->tag_size
);
2966 ic
->log2_tag_size
= -1;
2968 ic
->autocommit_jiffies
= msecs_to_jiffies(sync_msec
);
2969 ic
->autocommit_msec
= sync_msec
;
2970 timer_setup(&ic
->autocommit_timer
, autocommit_fn
, 0);
2972 ic
->io
= dm_io_client_create();
2973 if (IS_ERR(ic
->io
)) {
2974 r
= PTR_ERR(ic
->io
);
2976 ti
->error
= "Cannot allocate dm io";
2980 ic
->journal_io_mempool
= mempool_create_slab_pool(JOURNAL_IO_MEMPOOL
, journal_io_cache
);
2981 if (!ic
->journal_io_mempool
) {
2983 ti
->error
= "Cannot allocate mempool";
2987 ic
->metadata_wq
= alloc_workqueue("dm-integrity-metadata",
2988 WQ_MEM_RECLAIM
, METADATA_WORKQUEUE_MAX_ACTIVE
);
2989 if (!ic
->metadata_wq
) {
2990 ti
->error
= "Cannot allocate workqueue";
2996 * If this workqueue were percpu, it would cause bio reordering
2997 * and reduced performance.
2999 ic
->wait_wq
= alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM
| WQ_UNBOUND
, 1);
3001 ti
->error
= "Cannot allocate workqueue";
3006 ic
->commit_wq
= alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM
, 1);
3007 if (!ic
->commit_wq
) {
3008 ti
->error
= "Cannot allocate workqueue";
3012 INIT_WORK(&ic
->commit_work
, integrity_commit
);
3014 if (ic
->mode
== 'J') {
3015 ic
->writer_wq
= alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM
, 1);
3016 if (!ic
->writer_wq
) {
3017 ti
->error
= "Cannot allocate workqueue";
3021 INIT_WORK(&ic
->writer_work
, integrity_writer
);
3024 ic
->sb
= alloc_pages_exact(SB_SECTORS
<< SECTOR_SHIFT
, GFP_KERNEL
);
3027 ti
->error
= "Cannot allocate superblock area";
3031 r
= sync_rw_sb(ic
, REQ_OP_READ
, 0);
3033 ti
->error
= "Error reading superblock";
3036 should_write_sb
= false;
3037 if (memcmp(ic
->sb
->magic
, SB_MAGIC
, 8)) {
3038 if (ic
->mode
!= 'R') {
3039 if (memchr_inv(ic
->sb
, 0, SB_SECTORS
<< SECTOR_SHIFT
)) {
3041 ti
->error
= "The device is not initialized";
3046 r
= initialize_superblock(ic
, journal_sectors
, interleave_sectors
);
3048 ti
->error
= "Could not initialize superblock";
3051 if (ic
->mode
!= 'R')
3052 should_write_sb
= true;
3055 if (ic
->sb
->version
!= SB_VERSION
) {
3057 ti
->error
= "Unknown version";
3060 if (le16_to_cpu(ic
->sb
->integrity_tag_size
) != ic
->tag_size
) {
3062 ti
->error
= "Tag size doesn't match the information in superblock";
3065 if (ic
->sb
->log2_sectors_per_block
!= __ffs(ic
->sectors_per_block
)) {
3067 ti
->error
= "Block size doesn't match the information in superblock";
3070 if (!le32_to_cpu(ic
->sb
->journal_sections
)) {
3072 ti
->error
= "Corrupted superblock, journal_sections is 0";
3075 /* make sure that ti->max_io_len doesn't overflow */
3076 if (ic
->sb
->log2_interleave_sectors
< MIN_LOG2_INTERLEAVE_SECTORS
||
3077 ic
->sb
->log2_interleave_sectors
> MAX_LOG2_INTERLEAVE_SECTORS
) {
3079 ti
->error
= "Invalid interleave_sectors in the superblock";
3082 ic
->provided_data_sectors
= le64_to_cpu(ic
->sb
->provided_data_sectors
);
3083 if (ic
->provided_data_sectors
!= le64_to_cpu(ic
->sb
->provided_data_sectors
)) {
3084 /* test for overflow */
3086 ti
->error
= "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3089 if (!!(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
)) != !!ic
->journal_mac_alg
.alg_string
) {
3091 ti
->error
= "Journal mac mismatch";
3094 r
= calculate_device_limits(ic
);
3096 ti
->error
= "The device is too small";
3099 if (ti
->len
> ic
->provided_data_sectors
) {
3101 ti
->error
= "Not enough provided sectors for requested mapping size";
3105 if (!buffer_sectors
)
3107 ic
->log2_buffer_sectors
= min3((int)__fls(buffer_sectors
), (int)__ffs(ic
->metadata_run
), 31 - SECTOR_SHIFT
);
3109 threshold
= (__u64
)ic
->journal_entries
* (100 - journal_watermark
);
3111 do_div(threshold
, 100);
3112 ic
->free_sectors_threshold
= threshold
;
3114 DEBUG_print("initialized:\n");
3115 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic
->sb
->integrity_tag_size
));
3116 DEBUG_print(" journal_entry_size %u\n", ic
->journal_entry_size
);
3117 DEBUG_print(" journal_entries_per_sector %u\n", ic
->journal_entries_per_sector
);
3118 DEBUG_print(" journal_section_entries %u\n", ic
->journal_section_entries
);
3119 DEBUG_print(" journal_section_sectors %u\n", ic
->journal_section_sectors
);
3120 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic
->sb
->journal_sections
));
3121 DEBUG_print(" journal_entries %u\n", ic
->journal_entries
);
3122 DEBUG_print(" log2_interleave_sectors %d\n", ic
->sb
->log2_interleave_sectors
);
3123 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic
->device_sectors
);
3124 DEBUG_print(" initial_sectors 0x%x\n", ic
->initial_sectors
);
3125 DEBUG_print(" metadata_run 0x%x\n", ic
->metadata_run
);
3126 DEBUG_print(" log2_metadata_run %d\n", ic
->log2_metadata_run
);
3127 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic
->provided_data_sectors
,
3128 (unsigned long long)ic
->provided_data_sectors
);
3129 DEBUG_print(" log2_buffer_sectors %u\n", ic
->log2_buffer_sectors
);
3131 ic
->bufio
= dm_bufio_client_create(ic
->dev
->bdev
, 1U << (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
),
3133 if (IS_ERR(ic
->bufio
)) {
3134 r
= PTR_ERR(ic
->bufio
);
3135 ti
->error
= "Cannot initialize dm-bufio";
3139 dm_bufio_set_sector_offset(ic
->bufio
, ic
->start
+ ic
->initial_sectors
);
3141 if (ic
->mode
!= 'R') {
3142 r
= create_journal(ic
, &ti
->error
);
3147 if (should_write_sb
) {
3150 init_journal(ic
, 0, ic
->journal_sections
, 0);
3151 r
= dm_integrity_failed(ic
);
3153 ti
->error
= "Error initializing journal";
3156 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, REQ_FUA
);
3158 ti
->error
= "Error initializing superblock";
3161 ic
->just_formatted
= true;
3164 r
= dm_set_target_max_io_len(ti
, 1U << ic
->sb
->log2_interleave_sectors
);
3168 if (!ic
->internal_hash
)
3169 dm_integrity_set(ti
, ic
);
3171 ti
->num_flush_bios
= 1;
3172 ti
->flush_supported
= true;
3176 dm_integrity_dtr(ti
);
3180 static void dm_integrity_dtr(struct dm_target
*ti
)
3182 struct dm_integrity_c
*ic
= ti
->private;
3184 BUG_ON(!RB_EMPTY_ROOT(&ic
->in_progress
));
3186 if (ic
->metadata_wq
)
3187 destroy_workqueue(ic
->metadata_wq
);
3189 destroy_workqueue(ic
->wait_wq
);
3191 destroy_workqueue(ic
->commit_wq
);
3193 destroy_workqueue(ic
->writer_wq
);
3195 dm_bufio_client_destroy(ic
->bufio
);
3196 mempool_destroy(ic
->journal_io_mempool
);
3198 dm_io_client_destroy(ic
->io
);
3200 dm_put_device(ti
, ic
->dev
);
3201 dm_integrity_free_page_list(ic
, ic
->journal
);
3202 dm_integrity_free_page_list(ic
, ic
->journal_io
);
3203 dm_integrity_free_page_list(ic
, ic
->journal_xor
);
3204 if (ic
->journal_scatterlist
)
3205 dm_integrity_free_journal_scatterlist(ic
, ic
->journal_scatterlist
);
3206 if (ic
->journal_io_scatterlist
)
3207 dm_integrity_free_journal_scatterlist(ic
, ic
->journal_io_scatterlist
);
3208 if (ic
->sk_requests
) {
3211 for (i
= 0; i
< ic
->journal_sections
; i
++) {
3212 struct skcipher_request
*req
= ic
->sk_requests
[i
];
3215 skcipher_request_free(req
);
3218 kvfree(ic
->sk_requests
);
3220 kvfree(ic
->journal_tree
);
3222 free_pages_exact(ic
->sb
, SB_SECTORS
<< SECTOR_SHIFT
);
3224 if (ic
->internal_hash
)
3225 crypto_free_shash(ic
->internal_hash
);
3226 free_alg(&ic
->internal_hash_alg
);
3228 if (ic
->journal_crypt
)
3229 crypto_free_skcipher(ic
->journal_crypt
);
3230 free_alg(&ic
->journal_crypt_alg
);
3232 if (ic
->journal_mac
)
3233 crypto_free_shash(ic
->journal_mac
);
3234 free_alg(&ic
->journal_mac_alg
);
3239 static struct target_type integrity_target
= {
3240 .name
= "integrity",
3241 .version
= {1, 1, 0},
3242 .module
= THIS_MODULE
,
3243 .features
= DM_TARGET_SINGLETON
| DM_TARGET_INTEGRITY
,
3244 .ctr
= dm_integrity_ctr
,
3245 .dtr
= dm_integrity_dtr
,
3246 .map
= dm_integrity_map
,
3247 .postsuspend
= dm_integrity_postsuspend
,
3248 .resume
= dm_integrity_resume
,
3249 .status
= dm_integrity_status
,
3250 .iterate_devices
= dm_integrity_iterate_devices
,
3251 .io_hints
= dm_integrity_io_hints
,
3254 int __init
dm_integrity_init(void)
3258 journal_io_cache
= kmem_cache_create("integrity_journal_io",
3259 sizeof(struct journal_io
), 0, 0, NULL
);
3260 if (!journal_io_cache
) {
3261 DMERR("can't allocate journal io cache");
3265 r
= dm_register_target(&integrity_target
);
3268 DMERR("register failed %d", r
);
3273 void dm_integrity_exit(void)
3275 dm_unregister_target(&integrity_target
);
3276 kmem_cache_destroy(journal_io_cache
);
3279 module_init(dm_integrity_init
);
3280 module_exit(dm_integrity_exit
);
3282 MODULE_AUTHOR("Milan Broz");
3283 MODULE_AUTHOR("Mikulas Patocka");
3284 MODULE_DESCRIPTION(DM_NAME
" target for integrity tags extension");
3285 MODULE_LICENSE("GPL");