Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / md / dm.c
blob68136806d365821f63ace7675ce21ba2bf10ed8d
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name = DM_NAME;
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
43 static DEFINE_IDR(_minor_idr);
45 static DEFINE_SPINLOCK(_minor_lock);
47 static void do_deferred_remove(struct work_struct *w);
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
51 static struct workqueue_struct *deferred_remove_workqueue;
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
63 * One of these is allocated (on-stack) per original bio.
65 struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools {
151 struct bio_set *bs;
152 struct bio_set *io_bs;
155 struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
165 * Bio-based DM's mempools' reserved IOs set by the user.
167 #define RESERVED_BIO_BASED_IOS 16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 int param = READ_ONCE(*module_param);
173 int modified_param = 0;
174 bool modified = true;
176 if (param < min)
177 modified_param = min;
178 else if (param > max)
179 modified_param = max;
180 else
181 modified = false;
183 if (modified) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
188 return param;
191 unsigned __dm_get_module_param(unsigned *module_param,
192 unsigned def, unsigned max)
194 unsigned param = READ_ONCE(*module_param);
195 unsigned modified_param = 0;
197 if (!param)
198 modified_param = def;
199 else if (param > max)
200 modified_param = max;
202 if (modified_param) {
203 (void)cmpxchg(module_param, param, modified_param);
204 param = modified_param;
207 return param;
210 unsigned dm_get_reserved_bio_based_ios(void)
212 return __dm_get_module_param(&reserved_bio_based_ios,
213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 static unsigned dm_get_numa_node(void)
219 return __dm_get_module_param_int(&dm_numa_node,
220 DM_NUMA_NODE, num_online_nodes() - 1);
223 static int __init local_init(void)
225 int r = -ENOMEM;
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 if (!_rq_tio_cache)
229 return r;
231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 __alignof__(struct request), 0, NULL);
233 if (!_rq_cache)
234 goto out_free_rq_tio_cache;
236 r = dm_uevent_init();
237 if (r)
238 goto out_free_rq_cache;
240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 if (!deferred_remove_workqueue) {
242 r = -ENOMEM;
243 goto out_uevent_exit;
246 _major = major;
247 r = register_blkdev(_major, _name);
248 if (r < 0)
249 goto out_free_workqueue;
251 if (!_major)
252 _major = r;
254 return 0;
256 out_free_workqueue:
257 destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 dm_uevent_exit();
260 out_free_rq_cache:
261 kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 kmem_cache_destroy(_rq_tio_cache);
265 return r;
268 static void local_exit(void)
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue);
273 kmem_cache_destroy(_rq_cache);
274 kmem_cache_destroy(_rq_tio_cache);
275 unregister_blkdev(_major, _name);
276 dm_uevent_exit();
278 _major = 0;
280 DMINFO("cleaned up");
283 static int (*_inits[])(void) __initdata = {
284 local_init,
285 dm_target_init,
286 dm_linear_init,
287 dm_stripe_init,
288 dm_io_init,
289 dm_kcopyd_init,
290 dm_interface_init,
291 dm_statistics_init,
294 static void (*_exits[])(void) = {
295 local_exit,
296 dm_target_exit,
297 dm_linear_exit,
298 dm_stripe_exit,
299 dm_io_exit,
300 dm_kcopyd_exit,
301 dm_interface_exit,
302 dm_statistics_exit,
305 static int __init dm_init(void)
307 const int count = ARRAY_SIZE(_inits);
309 int r, i;
311 for (i = 0; i < count; i++) {
312 r = _inits[i]();
313 if (r)
314 goto bad;
317 return 0;
319 bad:
320 while (i--)
321 _exits[i]();
323 return r;
326 static void __exit dm_exit(void)
328 int i = ARRAY_SIZE(_exits);
330 while (i--)
331 _exits[i]();
334 * Should be empty by this point.
336 idr_destroy(&_minor_idr);
340 * Block device functions
342 int dm_deleting_md(struct mapped_device *md)
344 return test_bit(DMF_DELETING, &md->flags);
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 struct mapped_device *md;
351 spin_lock(&_minor_lock);
353 md = bdev->bd_disk->private_data;
354 if (!md)
355 goto out;
357 if (test_bit(DMF_FREEING, &md->flags) ||
358 dm_deleting_md(md)) {
359 md = NULL;
360 goto out;
363 dm_get(md);
364 atomic_inc(&md->open_count);
365 out:
366 spin_unlock(&_minor_lock);
368 return md ? 0 : -ENXIO;
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 struct mapped_device *md;
375 spin_lock(&_minor_lock);
377 md = disk->private_data;
378 if (WARN_ON(!md))
379 goto out;
381 if (atomic_dec_and_test(&md->open_count) &&
382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 queue_work(deferred_remove_workqueue, &deferred_remove_work);
385 dm_put(md);
386 out:
387 spin_unlock(&_minor_lock);
390 int dm_open_count(struct mapped_device *md)
392 return atomic_read(&md->open_count);
396 * Guarantees nothing is using the device before it's deleted.
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
400 int r = 0;
402 spin_lock(&_minor_lock);
404 if (dm_open_count(md)) {
405 r = -EBUSY;
406 if (mark_deferred)
407 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 r = -EEXIST;
410 else
411 set_bit(DMF_DELETING, &md->flags);
413 spin_unlock(&_minor_lock);
415 return r;
418 int dm_cancel_deferred_remove(struct mapped_device *md)
420 int r = 0;
422 spin_lock(&_minor_lock);
424 if (test_bit(DMF_DELETING, &md->flags))
425 r = -EBUSY;
426 else
427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429 spin_unlock(&_minor_lock);
431 return r;
434 static void do_deferred_remove(struct work_struct *w)
436 dm_deferred_remove();
439 sector_t dm_get_size(struct mapped_device *md)
441 return get_capacity(md->disk);
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
446 return md->queue;
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
451 return &md->stats;
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
456 struct mapped_device *md = bdev->bd_disk->private_data;
458 return dm_get_geometry(md, geo);
461 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
462 struct block_device **bdev,
463 fmode_t *mode)
465 struct dm_target *tgt;
466 struct dm_table *map;
467 int srcu_idx, r;
469 retry:
470 r = -ENOTTY;
471 map = dm_get_live_table(md, &srcu_idx);
472 if (!map || !dm_table_get_size(map))
473 goto out;
475 /* We only support devices that have a single target */
476 if (dm_table_get_num_targets(map) != 1)
477 goto out;
479 tgt = dm_table_get_target(map, 0);
480 if (!tgt->type->prepare_ioctl)
481 goto out;
483 if (dm_suspended_md(md)) {
484 r = -EAGAIN;
485 goto out;
488 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
489 if (r < 0)
490 goto out;
492 bdgrab(*bdev);
493 dm_put_live_table(md, srcu_idx);
494 return r;
496 out:
497 dm_put_live_table(md, srcu_idx);
498 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
499 msleep(10);
500 goto retry;
502 return r;
505 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
506 unsigned int cmd, unsigned long arg)
508 struct mapped_device *md = bdev->bd_disk->private_data;
509 int r;
511 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
512 if (r < 0)
513 return r;
515 if (r > 0) {
517 * Target determined this ioctl is being issued against a
518 * subset of the parent bdev; require extra privileges.
520 if (!capable(CAP_SYS_RAWIO)) {
521 DMWARN_LIMIT(
522 "%s: sending ioctl %x to DM device without required privilege.",
523 current->comm, cmd);
524 r = -ENOIOCTLCMD;
525 goto out;
529 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
530 out:
531 bdput(bdev);
532 return r;
535 static void start_io_acct(struct dm_io *io);
537 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
539 struct dm_io *io;
540 struct dm_target_io *tio;
541 struct bio *clone;
543 clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
544 if (!clone)
545 return NULL;
547 tio = container_of(clone, struct dm_target_io, clone);
548 tio->inside_dm_io = true;
549 tio->io = NULL;
551 io = container_of(tio, struct dm_io, tio);
552 io->magic = DM_IO_MAGIC;
553 io->status = 0;
554 atomic_set(&io->io_count, 1);
555 io->orig_bio = bio;
556 io->md = md;
557 spin_lock_init(&io->endio_lock);
559 start_io_acct(io);
561 return io;
564 static void free_io(struct mapped_device *md, struct dm_io *io)
566 bio_put(&io->tio.clone);
569 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
570 unsigned target_bio_nr, gfp_t gfp_mask)
572 struct dm_target_io *tio;
574 if (!ci->io->tio.io) {
575 /* the dm_target_io embedded in ci->io is available */
576 tio = &ci->io->tio;
577 } else {
578 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
579 if (!clone)
580 return NULL;
582 tio = container_of(clone, struct dm_target_io, clone);
583 tio->inside_dm_io = false;
586 tio->magic = DM_TIO_MAGIC;
587 tio->io = ci->io;
588 tio->ti = ti;
589 tio->target_bio_nr = target_bio_nr;
591 return tio;
594 static void free_tio(struct dm_target_io *tio)
596 if (tio->inside_dm_io)
597 return;
598 bio_put(&tio->clone);
601 int md_in_flight(struct mapped_device *md)
603 return atomic_read(&md->pending[READ]) +
604 atomic_read(&md->pending[WRITE]);
607 static void start_io_acct(struct dm_io *io)
609 struct mapped_device *md = io->md;
610 struct bio *bio = io->orig_bio;
611 int rw = bio_data_dir(bio);
613 io->start_time = jiffies;
615 generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
617 atomic_set(&dm_disk(md)->part0.in_flight[rw],
618 atomic_inc_return(&md->pending[rw]));
620 if (unlikely(dm_stats_used(&md->stats)))
621 dm_stats_account_io(&md->stats, bio_data_dir(bio),
622 bio->bi_iter.bi_sector, bio_sectors(bio),
623 false, 0, &io->stats_aux);
626 static void end_io_acct(struct dm_io *io)
628 struct mapped_device *md = io->md;
629 struct bio *bio = io->orig_bio;
630 unsigned long duration = jiffies - io->start_time;
631 int pending;
632 int rw = bio_data_dir(bio);
634 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
636 if (unlikely(dm_stats_used(&md->stats)))
637 dm_stats_account_io(&md->stats, bio_data_dir(bio),
638 bio->bi_iter.bi_sector, bio_sectors(bio),
639 true, duration, &io->stats_aux);
642 * After this is decremented the bio must not be touched if it is
643 * a flush.
645 pending = atomic_dec_return(&md->pending[rw]);
646 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
647 pending += atomic_read(&md->pending[rw^0x1]);
649 /* nudge anyone waiting on suspend queue */
650 if (!pending)
651 wake_up(&md->wait);
655 * Add the bio to the list of deferred io.
657 static void queue_io(struct mapped_device *md, struct bio *bio)
659 unsigned long flags;
661 spin_lock_irqsave(&md->deferred_lock, flags);
662 bio_list_add(&md->deferred, bio);
663 spin_unlock_irqrestore(&md->deferred_lock, flags);
664 queue_work(md->wq, &md->work);
668 * Everyone (including functions in this file), should use this
669 * function to access the md->map field, and make sure they call
670 * dm_put_live_table() when finished.
672 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
674 *srcu_idx = srcu_read_lock(&md->io_barrier);
676 return srcu_dereference(md->map, &md->io_barrier);
679 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
681 srcu_read_unlock(&md->io_barrier, srcu_idx);
684 void dm_sync_table(struct mapped_device *md)
686 synchronize_srcu(&md->io_barrier);
687 synchronize_rcu_expedited();
691 * A fast alternative to dm_get_live_table/dm_put_live_table.
692 * The caller must not block between these two functions.
694 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
696 rcu_read_lock();
697 return rcu_dereference(md->map);
700 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
702 rcu_read_unlock();
706 * Open a table device so we can use it as a map destination.
708 static int open_table_device(struct table_device *td, dev_t dev,
709 struct mapped_device *md)
711 static char *_claim_ptr = "I belong to device-mapper";
712 struct block_device *bdev;
714 int r;
716 BUG_ON(td->dm_dev.bdev);
718 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
719 if (IS_ERR(bdev))
720 return PTR_ERR(bdev);
722 r = bd_link_disk_holder(bdev, dm_disk(md));
723 if (r) {
724 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
725 return r;
728 td->dm_dev.bdev = bdev;
729 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
730 return 0;
734 * Close a table device that we've been using.
736 static void close_table_device(struct table_device *td, struct mapped_device *md)
738 if (!td->dm_dev.bdev)
739 return;
741 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
742 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
743 put_dax(td->dm_dev.dax_dev);
744 td->dm_dev.bdev = NULL;
745 td->dm_dev.dax_dev = NULL;
748 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
749 fmode_t mode) {
750 struct table_device *td;
752 list_for_each_entry(td, l, list)
753 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
754 return td;
756 return NULL;
759 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
760 struct dm_dev **result) {
761 int r;
762 struct table_device *td;
764 mutex_lock(&md->table_devices_lock);
765 td = find_table_device(&md->table_devices, dev, mode);
766 if (!td) {
767 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
768 if (!td) {
769 mutex_unlock(&md->table_devices_lock);
770 return -ENOMEM;
773 td->dm_dev.mode = mode;
774 td->dm_dev.bdev = NULL;
776 if ((r = open_table_device(td, dev, md))) {
777 mutex_unlock(&md->table_devices_lock);
778 kfree(td);
779 return r;
782 format_dev_t(td->dm_dev.name, dev);
784 refcount_set(&td->count, 1);
785 list_add(&td->list, &md->table_devices);
786 } else {
787 refcount_inc(&td->count);
789 mutex_unlock(&md->table_devices_lock);
791 *result = &td->dm_dev;
792 return 0;
794 EXPORT_SYMBOL_GPL(dm_get_table_device);
796 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
798 struct table_device *td = container_of(d, struct table_device, dm_dev);
800 mutex_lock(&md->table_devices_lock);
801 if (refcount_dec_and_test(&td->count)) {
802 close_table_device(td, md);
803 list_del(&td->list);
804 kfree(td);
806 mutex_unlock(&md->table_devices_lock);
808 EXPORT_SYMBOL(dm_put_table_device);
810 static void free_table_devices(struct list_head *devices)
812 struct list_head *tmp, *next;
814 list_for_each_safe(tmp, next, devices) {
815 struct table_device *td = list_entry(tmp, struct table_device, list);
817 DMWARN("dm_destroy: %s still exists with %d references",
818 td->dm_dev.name, refcount_read(&td->count));
819 kfree(td);
824 * Get the geometry associated with a dm device
826 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
828 *geo = md->geometry;
830 return 0;
834 * Set the geometry of a device.
836 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
838 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
840 if (geo->start > sz) {
841 DMWARN("Start sector is beyond the geometry limits.");
842 return -EINVAL;
845 md->geometry = *geo;
847 return 0;
850 static int __noflush_suspending(struct mapped_device *md)
852 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
856 * Decrements the number of outstanding ios that a bio has been
857 * cloned into, completing the original io if necc.
859 static void dec_pending(struct dm_io *io, blk_status_t error)
861 unsigned long flags;
862 blk_status_t io_error;
863 struct bio *bio;
864 struct mapped_device *md = io->md;
866 /* Push-back supersedes any I/O errors */
867 if (unlikely(error)) {
868 spin_lock_irqsave(&io->endio_lock, flags);
869 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
870 io->status = error;
871 spin_unlock_irqrestore(&io->endio_lock, flags);
874 if (atomic_dec_and_test(&io->io_count)) {
875 if (io->status == BLK_STS_DM_REQUEUE) {
877 * Target requested pushing back the I/O.
879 spin_lock_irqsave(&md->deferred_lock, flags);
880 if (__noflush_suspending(md))
881 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
882 bio_list_add_head(&md->deferred, io->orig_bio);
883 else
884 /* noflush suspend was interrupted. */
885 io->status = BLK_STS_IOERR;
886 spin_unlock_irqrestore(&md->deferred_lock, flags);
889 io_error = io->status;
890 bio = io->orig_bio;
891 end_io_acct(io);
892 free_io(md, io);
894 if (io_error == BLK_STS_DM_REQUEUE)
895 return;
897 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
899 * Preflush done for flush with data, reissue
900 * without REQ_PREFLUSH.
902 bio->bi_opf &= ~REQ_PREFLUSH;
903 queue_io(md, bio);
904 } else {
905 /* done with normal IO or empty flush */
906 if (io_error)
907 bio->bi_status = io_error;
908 bio_endio(bio);
913 void disable_write_same(struct mapped_device *md)
915 struct queue_limits *limits = dm_get_queue_limits(md);
917 /* device doesn't really support WRITE SAME, disable it */
918 limits->max_write_same_sectors = 0;
921 void disable_write_zeroes(struct mapped_device *md)
923 struct queue_limits *limits = dm_get_queue_limits(md);
925 /* device doesn't really support WRITE ZEROES, disable it */
926 limits->max_write_zeroes_sectors = 0;
929 static void clone_endio(struct bio *bio)
931 blk_status_t error = bio->bi_status;
932 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
933 struct dm_io *io = tio->io;
934 struct mapped_device *md = tio->io->md;
935 dm_endio_fn endio = tio->ti->type->end_io;
937 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
938 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
939 !bio->bi_disk->queue->limits.max_write_same_sectors)
940 disable_write_same(md);
941 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
942 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
943 disable_write_zeroes(md);
946 if (endio) {
947 int r = endio(tio->ti, bio, &error);
948 switch (r) {
949 case DM_ENDIO_REQUEUE:
950 error = BLK_STS_DM_REQUEUE;
951 /*FALLTHRU*/
952 case DM_ENDIO_DONE:
953 break;
954 case DM_ENDIO_INCOMPLETE:
955 /* The target will handle the io */
956 return;
957 default:
958 DMWARN("unimplemented target endio return value: %d", r);
959 BUG();
963 free_tio(tio);
964 dec_pending(io, error);
968 * Return maximum size of I/O possible at the supplied sector up to the current
969 * target boundary.
971 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
973 sector_t target_offset = dm_target_offset(ti, sector);
975 return ti->len - target_offset;
978 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
980 sector_t len = max_io_len_target_boundary(sector, ti);
981 sector_t offset, max_len;
984 * Does the target need to split even further?
986 if (ti->max_io_len) {
987 offset = dm_target_offset(ti, sector);
988 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
989 max_len = sector_div(offset, ti->max_io_len);
990 else
991 max_len = offset & (ti->max_io_len - 1);
992 max_len = ti->max_io_len - max_len;
994 if (len > max_len)
995 len = max_len;
998 return len;
1001 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1003 if (len > UINT_MAX) {
1004 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1005 (unsigned long long)len, UINT_MAX);
1006 ti->error = "Maximum size of target IO is too large";
1007 return -EINVAL;
1011 * BIO based queue uses its own splitting. When multipage bvecs
1012 * is switched on, size of the incoming bio may be too big to
1013 * be handled in some targets, such as crypt.
1015 * When these targets are ready for the big bio, we can remove
1016 * the limit.
1018 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1020 return 0;
1022 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1024 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1025 sector_t sector, int *srcu_idx)
1027 struct dm_table *map;
1028 struct dm_target *ti;
1030 map = dm_get_live_table(md, srcu_idx);
1031 if (!map)
1032 return NULL;
1034 ti = dm_table_find_target(map, sector);
1035 if (!dm_target_is_valid(ti))
1036 return NULL;
1038 return ti;
1041 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1042 long nr_pages, void **kaddr, pfn_t *pfn)
1044 struct mapped_device *md = dax_get_private(dax_dev);
1045 sector_t sector = pgoff * PAGE_SECTORS;
1046 struct dm_target *ti;
1047 long len, ret = -EIO;
1048 int srcu_idx;
1050 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1052 if (!ti)
1053 goto out;
1054 if (!ti->type->direct_access)
1055 goto out;
1056 len = max_io_len(sector, ti) / PAGE_SECTORS;
1057 if (len < 1)
1058 goto out;
1059 nr_pages = min(len, nr_pages);
1060 if (ti->type->direct_access)
1061 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1063 out:
1064 dm_put_live_table(md, srcu_idx);
1066 return ret;
1069 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1070 void *addr, size_t bytes, struct iov_iter *i)
1072 struct mapped_device *md = dax_get_private(dax_dev);
1073 sector_t sector = pgoff * PAGE_SECTORS;
1074 struct dm_target *ti;
1075 long ret = 0;
1076 int srcu_idx;
1078 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1080 if (!ti)
1081 goto out;
1082 if (!ti->type->dax_copy_from_iter) {
1083 ret = copy_from_iter(addr, bytes, i);
1084 goto out;
1086 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1087 out:
1088 dm_put_live_table(md, srcu_idx);
1090 return ret;
1094 * A target may call dm_accept_partial_bio only from the map routine. It is
1095 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1097 * dm_accept_partial_bio informs the dm that the target only wants to process
1098 * additional n_sectors sectors of the bio and the rest of the data should be
1099 * sent in a next bio.
1101 * A diagram that explains the arithmetics:
1102 * +--------------------+---------------+-------+
1103 * | 1 | 2 | 3 |
1104 * +--------------------+---------------+-------+
1106 * <-------------- *tio->len_ptr --------------->
1107 * <------- bi_size ------->
1108 * <-- n_sectors -->
1110 * Region 1 was already iterated over with bio_advance or similar function.
1111 * (it may be empty if the target doesn't use bio_advance)
1112 * Region 2 is the remaining bio size that the target wants to process.
1113 * (it may be empty if region 1 is non-empty, although there is no reason
1114 * to make it empty)
1115 * The target requires that region 3 is to be sent in the next bio.
1117 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1118 * the partially processed part (the sum of regions 1+2) must be the same for all
1119 * copies of the bio.
1121 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1123 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1124 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1125 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1126 BUG_ON(bi_size > *tio->len_ptr);
1127 BUG_ON(n_sectors > bi_size);
1128 *tio->len_ptr -= bi_size - n_sectors;
1129 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1131 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1134 * The zone descriptors obtained with a zone report indicate
1135 * zone positions within the target device. The zone descriptors
1136 * must be remapped to match their position within the dm device.
1137 * A target may call dm_remap_zone_report after completion of a
1138 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1139 * from the target device mapping to the dm device.
1141 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1143 #ifdef CONFIG_BLK_DEV_ZONED
1144 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1145 struct bio *report_bio = tio->io->orig_bio;
1146 struct blk_zone_report_hdr *hdr = NULL;
1147 struct blk_zone *zone;
1148 unsigned int nr_rep = 0;
1149 unsigned int ofst;
1150 struct bio_vec bvec;
1151 struct bvec_iter iter;
1152 void *addr;
1154 if (bio->bi_status)
1155 return;
1158 * Remap the start sector of the reported zones. For sequential zones,
1159 * also remap the write pointer position.
1161 bio_for_each_segment(bvec, report_bio, iter) {
1162 addr = kmap_atomic(bvec.bv_page);
1164 /* Remember the report header in the first page */
1165 if (!hdr) {
1166 hdr = addr;
1167 ofst = sizeof(struct blk_zone_report_hdr);
1168 } else
1169 ofst = 0;
1171 /* Set zones start sector */
1172 while (hdr->nr_zones && ofst < bvec.bv_len) {
1173 zone = addr + ofst;
1174 if (zone->start >= start + ti->len) {
1175 hdr->nr_zones = 0;
1176 break;
1178 zone->start = zone->start + ti->begin - start;
1179 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1180 if (zone->cond == BLK_ZONE_COND_FULL)
1181 zone->wp = zone->start + zone->len;
1182 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1183 zone->wp = zone->start;
1184 else
1185 zone->wp = zone->wp + ti->begin - start;
1187 ofst += sizeof(struct blk_zone);
1188 hdr->nr_zones--;
1189 nr_rep++;
1192 if (addr != hdr)
1193 kunmap_atomic(addr);
1195 if (!hdr->nr_zones)
1196 break;
1199 if (hdr) {
1200 hdr->nr_zones = nr_rep;
1201 kunmap_atomic(hdr);
1204 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1206 #else /* !CONFIG_BLK_DEV_ZONED */
1207 bio->bi_status = BLK_STS_NOTSUPP;
1208 #endif
1210 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1212 static blk_qc_t __map_bio(struct dm_target_io *tio)
1214 int r;
1215 sector_t sector;
1216 struct bio *clone = &tio->clone;
1217 struct dm_io *io = tio->io;
1218 struct mapped_device *md = io->md;
1219 struct dm_target *ti = tio->ti;
1220 blk_qc_t ret = BLK_QC_T_NONE;
1222 clone->bi_end_io = clone_endio;
1225 * Map the clone. If r == 0 we don't need to do
1226 * anything, the target has assumed ownership of
1227 * this io.
1229 atomic_inc(&io->io_count);
1230 sector = clone->bi_iter.bi_sector;
1232 r = ti->type->map(ti, clone);
1233 switch (r) {
1234 case DM_MAPIO_SUBMITTED:
1235 break;
1236 case DM_MAPIO_REMAPPED:
1237 /* the bio has been remapped so dispatch it */
1238 trace_block_bio_remap(clone->bi_disk->queue, clone,
1239 bio_dev(io->orig_bio), sector);
1240 if (md->type == DM_TYPE_NVME_BIO_BASED)
1241 ret = direct_make_request(clone);
1242 else
1243 ret = generic_make_request(clone);
1244 break;
1245 case DM_MAPIO_KILL:
1246 free_tio(tio);
1247 dec_pending(io, BLK_STS_IOERR);
1248 break;
1249 case DM_MAPIO_REQUEUE:
1250 free_tio(tio);
1251 dec_pending(io, BLK_STS_DM_REQUEUE);
1252 break;
1253 default:
1254 DMWARN("unimplemented target map return value: %d", r);
1255 BUG();
1258 return ret;
1261 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1263 bio->bi_iter.bi_sector = sector;
1264 bio->bi_iter.bi_size = to_bytes(len);
1268 * Creates a bio that consists of range of complete bvecs.
1270 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1271 sector_t sector, unsigned len)
1273 struct bio *clone = &tio->clone;
1275 __bio_clone_fast(clone, bio);
1277 if (unlikely(bio_integrity(bio) != NULL)) {
1278 int r;
1280 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1281 !dm_target_passes_integrity(tio->ti->type))) {
1282 DMWARN("%s: the target %s doesn't support integrity data.",
1283 dm_device_name(tio->io->md),
1284 tio->ti->type->name);
1285 return -EIO;
1288 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1289 if (r < 0)
1290 return r;
1293 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1294 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1295 clone->bi_iter.bi_size = to_bytes(len);
1297 if (unlikely(bio_integrity(bio) != NULL))
1298 bio_integrity_trim(clone);
1300 return 0;
1303 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1304 struct dm_target *ti, unsigned num_bios)
1306 struct dm_target_io *tio;
1307 int try;
1309 if (!num_bios)
1310 return;
1312 if (num_bios == 1) {
1313 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1314 bio_list_add(blist, &tio->clone);
1315 return;
1318 for (try = 0; try < 2; try++) {
1319 int bio_nr;
1320 struct bio *bio;
1322 if (try)
1323 mutex_lock(&ci->io->md->table_devices_lock);
1324 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1325 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1326 if (!tio)
1327 break;
1329 bio_list_add(blist, &tio->clone);
1331 if (try)
1332 mutex_unlock(&ci->io->md->table_devices_lock);
1333 if (bio_nr == num_bios)
1334 return;
1336 while ((bio = bio_list_pop(blist))) {
1337 tio = container_of(bio, struct dm_target_io, clone);
1338 free_tio(tio);
1343 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1344 struct dm_target_io *tio, unsigned *len)
1346 struct bio *clone = &tio->clone;
1348 tio->len_ptr = len;
1350 __bio_clone_fast(clone, ci->bio);
1351 if (len)
1352 bio_setup_sector(clone, ci->sector, *len);
1354 return __map_bio(tio);
1357 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1358 unsigned num_bios, unsigned *len)
1360 struct bio_list blist = BIO_EMPTY_LIST;
1361 struct bio *bio;
1362 struct dm_target_io *tio;
1364 alloc_multiple_bios(&blist, ci, ti, num_bios);
1366 while ((bio = bio_list_pop(&blist))) {
1367 tio = container_of(bio, struct dm_target_io, clone);
1368 (void) __clone_and_map_simple_bio(ci, tio, len);
1372 static int __send_empty_flush(struct clone_info *ci)
1374 unsigned target_nr = 0;
1375 struct dm_target *ti;
1377 BUG_ON(bio_has_data(ci->bio));
1378 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1379 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1381 return 0;
1384 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1385 sector_t sector, unsigned *len)
1387 struct bio *bio = ci->bio;
1388 struct dm_target_io *tio;
1389 int r;
1391 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1392 tio->len_ptr = len;
1393 r = clone_bio(tio, bio, sector, *len);
1394 if (r < 0) {
1395 free_tio(tio);
1396 return r;
1398 (void) __map_bio(tio);
1400 return 0;
1403 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1405 static unsigned get_num_discard_bios(struct dm_target *ti)
1407 return ti->num_discard_bios;
1410 static unsigned get_num_write_same_bios(struct dm_target *ti)
1412 return ti->num_write_same_bios;
1415 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1417 return ti->num_write_zeroes_bios;
1420 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1422 static bool is_split_required_for_discard(struct dm_target *ti)
1424 return ti->split_discard_bios;
1427 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1428 get_num_bios_fn get_num_bios,
1429 is_split_required_fn is_split_required)
1431 unsigned len;
1432 unsigned num_bios;
1435 * Even though the device advertised support for this type of
1436 * request, that does not mean every target supports it, and
1437 * reconfiguration might also have changed that since the
1438 * check was performed.
1440 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1441 if (!num_bios)
1442 return -EOPNOTSUPP;
1444 if (is_split_required && !is_split_required(ti))
1445 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1446 else
1447 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1449 __send_duplicate_bios(ci, ti, num_bios, &len);
1451 ci->sector += len;
1452 ci->sector_count -= len;
1454 return 0;
1457 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1459 return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1460 is_split_required_for_discard);
1463 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1465 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1468 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1470 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1474 * Select the correct strategy for processing a non-flush bio.
1476 static int __split_and_process_non_flush(struct clone_info *ci)
1478 struct bio *bio = ci->bio;
1479 struct dm_target *ti;
1480 unsigned len;
1481 int r;
1483 ti = dm_table_find_target(ci->map, ci->sector);
1484 if (!dm_target_is_valid(ti))
1485 return -EIO;
1487 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1488 return __send_discard(ci, ti);
1489 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1490 return __send_write_same(ci, ti);
1491 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1492 return __send_write_zeroes(ci, ti);
1494 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1495 len = ci->sector_count;
1496 else
1497 len = min_t(sector_t, max_io_len(ci->sector, ti),
1498 ci->sector_count);
1500 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1501 if (r < 0)
1502 return r;
1504 ci->sector += len;
1505 ci->sector_count -= len;
1507 return 0;
1510 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1511 struct dm_table *map, struct bio *bio)
1513 ci->map = map;
1514 ci->io = alloc_io(md, bio);
1515 ci->sector = bio->bi_iter.bi_sector;
1519 * Entry point to split a bio into clones and submit them to the targets.
1521 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1522 struct dm_table *map, struct bio *bio)
1524 struct clone_info ci;
1525 blk_qc_t ret = BLK_QC_T_NONE;
1526 int error = 0;
1528 if (unlikely(!map)) {
1529 bio_io_error(bio);
1530 return ret;
1533 init_clone_info(&ci, md, map, bio);
1535 if (bio->bi_opf & REQ_PREFLUSH) {
1536 ci.bio = &ci.io->md->flush_bio;
1537 ci.sector_count = 0;
1538 error = __send_empty_flush(&ci);
1539 /* dec_pending submits any data associated with flush */
1540 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1541 ci.bio = bio;
1542 ci.sector_count = 0;
1543 error = __split_and_process_non_flush(&ci);
1544 } else {
1545 ci.bio = bio;
1546 ci.sector_count = bio_sectors(bio);
1547 while (ci.sector_count && !error) {
1548 error = __split_and_process_non_flush(&ci);
1549 if (current->bio_list && ci.sector_count && !error) {
1551 * Remainder must be passed to generic_make_request()
1552 * so that it gets handled *after* bios already submitted
1553 * have been completely processed.
1554 * We take a clone of the original to store in
1555 * ci.io->orig_bio to be used by end_io_acct() and
1556 * for dec_pending to use for completion handling.
1557 * As this path is not used for REQ_OP_ZONE_REPORT,
1558 * the usage of io->orig_bio in dm_remap_zone_report()
1559 * won't be affected by this reassignment.
1561 struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1562 md->queue->bio_split);
1563 ci.io->orig_bio = b;
1564 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1565 bio_chain(b, bio);
1566 ret = generic_make_request(bio);
1567 break;
1572 /* drop the extra reference count */
1573 dec_pending(ci.io, errno_to_blk_status(error));
1574 return ret;
1578 * Optimized variant of __split_and_process_bio that leverages the
1579 * fact that targets that use it do _not_ have a need to split bios.
1581 static blk_qc_t __process_bio(struct mapped_device *md,
1582 struct dm_table *map, struct bio *bio)
1584 struct clone_info ci;
1585 blk_qc_t ret = BLK_QC_T_NONE;
1586 int error = 0;
1588 if (unlikely(!map)) {
1589 bio_io_error(bio);
1590 return ret;
1593 init_clone_info(&ci, md, map, bio);
1595 if (bio->bi_opf & REQ_PREFLUSH) {
1596 ci.bio = &ci.io->md->flush_bio;
1597 ci.sector_count = 0;
1598 error = __send_empty_flush(&ci);
1599 /* dec_pending submits any data associated with flush */
1600 } else {
1601 struct dm_target *ti = md->immutable_target;
1602 struct dm_target_io *tio;
1605 * Defend against IO still getting in during teardown
1606 * - as was seen for a time with nvme-fcloop
1608 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1609 error = -EIO;
1610 goto out;
1613 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1614 ci.bio = bio;
1615 ci.sector_count = bio_sectors(bio);
1616 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1618 out:
1619 /* drop the extra reference count */
1620 dec_pending(ci.io, errno_to_blk_status(error));
1621 return ret;
1624 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1626 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1627 process_bio_fn process_bio)
1629 struct mapped_device *md = q->queuedata;
1630 blk_qc_t ret = BLK_QC_T_NONE;
1631 int srcu_idx;
1632 struct dm_table *map;
1634 map = dm_get_live_table(md, &srcu_idx);
1636 /* if we're suspended, we have to queue this io for later */
1637 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1638 dm_put_live_table(md, srcu_idx);
1640 if (!(bio->bi_opf & REQ_RAHEAD))
1641 queue_io(md, bio);
1642 else
1643 bio_io_error(bio);
1644 return ret;
1647 ret = process_bio(md, map, bio);
1649 dm_put_live_table(md, srcu_idx);
1650 return ret;
1654 * The request function that remaps the bio to one target and
1655 * splits off any remainder.
1657 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1659 return __dm_make_request(q, bio, __split_and_process_bio);
1662 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1664 return __dm_make_request(q, bio, __process_bio);
1667 static int dm_any_congested(void *congested_data, int bdi_bits)
1669 int r = bdi_bits;
1670 struct mapped_device *md = congested_data;
1671 struct dm_table *map;
1673 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1674 if (dm_request_based(md)) {
1676 * With request-based DM we only need to check the
1677 * top-level queue for congestion.
1679 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1680 } else {
1681 map = dm_get_live_table_fast(md);
1682 if (map)
1683 r = dm_table_any_congested(map, bdi_bits);
1684 dm_put_live_table_fast(md);
1688 return r;
1691 /*-----------------------------------------------------------------
1692 * An IDR is used to keep track of allocated minor numbers.
1693 *---------------------------------------------------------------*/
1694 static void free_minor(int minor)
1696 spin_lock(&_minor_lock);
1697 idr_remove(&_minor_idr, minor);
1698 spin_unlock(&_minor_lock);
1702 * See if the device with a specific minor # is free.
1704 static int specific_minor(int minor)
1706 int r;
1708 if (minor >= (1 << MINORBITS))
1709 return -EINVAL;
1711 idr_preload(GFP_KERNEL);
1712 spin_lock(&_minor_lock);
1714 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1716 spin_unlock(&_minor_lock);
1717 idr_preload_end();
1718 if (r < 0)
1719 return r == -ENOSPC ? -EBUSY : r;
1720 return 0;
1723 static int next_free_minor(int *minor)
1725 int r;
1727 idr_preload(GFP_KERNEL);
1728 spin_lock(&_minor_lock);
1730 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1732 spin_unlock(&_minor_lock);
1733 idr_preload_end();
1734 if (r < 0)
1735 return r;
1736 *minor = r;
1737 return 0;
1740 static const struct block_device_operations dm_blk_dops;
1741 static const struct dax_operations dm_dax_ops;
1743 static void dm_wq_work(struct work_struct *work);
1745 static void dm_init_normal_md_queue(struct mapped_device *md)
1747 md->use_blk_mq = false;
1750 * Initialize aspects of queue that aren't relevant for blk-mq
1752 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1755 static void cleanup_mapped_device(struct mapped_device *md)
1757 if (md->wq)
1758 destroy_workqueue(md->wq);
1759 if (md->kworker_task)
1760 kthread_stop(md->kworker_task);
1761 if (md->bs)
1762 bioset_free(md->bs);
1763 if (md->io_bs)
1764 bioset_free(md->io_bs);
1766 if (md->dax_dev) {
1767 kill_dax(md->dax_dev);
1768 put_dax(md->dax_dev);
1769 md->dax_dev = NULL;
1772 if (md->disk) {
1773 spin_lock(&_minor_lock);
1774 md->disk->private_data = NULL;
1775 spin_unlock(&_minor_lock);
1776 del_gendisk(md->disk);
1777 put_disk(md->disk);
1780 if (md->queue)
1781 blk_cleanup_queue(md->queue);
1783 cleanup_srcu_struct(&md->io_barrier);
1785 if (md->bdev) {
1786 bdput(md->bdev);
1787 md->bdev = NULL;
1790 mutex_destroy(&md->suspend_lock);
1791 mutex_destroy(&md->type_lock);
1792 mutex_destroy(&md->table_devices_lock);
1794 dm_mq_cleanup_mapped_device(md);
1798 * Allocate and initialise a blank device with a given minor.
1800 static struct mapped_device *alloc_dev(int minor)
1802 int r, numa_node_id = dm_get_numa_node();
1803 struct dax_device *dax_dev;
1804 struct mapped_device *md;
1805 void *old_md;
1807 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1808 if (!md) {
1809 DMWARN("unable to allocate device, out of memory.");
1810 return NULL;
1813 if (!try_module_get(THIS_MODULE))
1814 goto bad_module_get;
1816 /* get a minor number for the dev */
1817 if (minor == DM_ANY_MINOR)
1818 r = next_free_minor(&minor);
1819 else
1820 r = specific_minor(minor);
1821 if (r < 0)
1822 goto bad_minor;
1824 r = init_srcu_struct(&md->io_barrier);
1825 if (r < 0)
1826 goto bad_io_barrier;
1828 md->numa_node_id = numa_node_id;
1829 md->use_blk_mq = dm_use_blk_mq_default();
1830 md->init_tio_pdu = false;
1831 md->type = DM_TYPE_NONE;
1832 mutex_init(&md->suspend_lock);
1833 mutex_init(&md->type_lock);
1834 mutex_init(&md->table_devices_lock);
1835 spin_lock_init(&md->deferred_lock);
1836 atomic_set(&md->holders, 1);
1837 atomic_set(&md->open_count, 0);
1838 atomic_set(&md->event_nr, 0);
1839 atomic_set(&md->uevent_seq, 0);
1840 INIT_LIST_HEAD(&md->uevent_list);
1841 INIT_LIST_HEAD(&md->table_devices);
1842 spin_lock_init(&md->uevent_lock);
1844 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1845 if (!md->queue)
1846 goto bad;
1847 md->queue->queuedata = md;
1848 md->queue->backing_dev_info->congested_data = md;
1850 md->disk = alloc_disk_node(1, md->numa_node_id);
1851 if (!md->disk)
1852 goto bad;
1854 atomic_set(&md->pending[0], 0);
1855 atomic_set(&md->pending[1], 0);
1856 init_waitqueue_head(&md->wait);
1857 INIT_WORK(&md->work, dm_wq_work);
1858 init_waitqueue_head(&md->eventq);
1859 init_completion(&md->kobj_holder.completion);
1860 md->kworker_task = NULL;
1862 md->disk->major = _major;
1863 md->disk->first_minor = minor;
1864 md->disk->fops = &dm_blk_dops;
1865 md->disk->queue = md->queue;
1866 md->disk->private_data = md;
1867 sprintf(md->disk->disk_name, "dm-%d", minor);
1869 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1870 if (!dax_dev)
1871 goto bad;
1872 md->dax_dev = dax_dev;
1874 add_disk_no_queue_reg(md->disk);
1875 format_dev_t(md->name, MKDEV(_major, minor));
1877 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1878 if (!md->wq)
1879 goto bad;
1881 md->bdev = bdget_disk(md->disk, 0);
1882 if (!md->bdev)
1883 goto bad;
1885 bio_init(&md->flush_bio, NULL, 0);
1886 bio_set_dev(&md->flush_bio, md->bdev);
1887 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1889 dm_stats_init(&md->stats);
1891 /* Populate the mapping, nobody knows we exist yet */
1892 spin_lock(&_minor_lock);
1893 old_md = idr_replace(&_minor_idr, md, minor);
1894 spin_unlock(&_minor_lock);
1896 BUG_ON(old_md != MINOR_ALLOCED);
1898 return md;
1900 bad:
1901 cleanup_mapped_device(md);
1902 bad_io_barrier:
1903 free_minor(minor);
1904 bad_minor:
1905 module_put(THIS_MODULE);
1906 bad_module_get:
1907 kvfree(md);
1908 return NULL;
1911 static void unlock_fs(struct mapped_device *md);
1913 static void free_dev(struct mapped_device *md)
1915 int minor = MINOR(disk_devt(md->disk));
1917 unlock_fs(md);
1919 cleanup_mapped_device(md);
1921 free_table_devices(&md->table_devices);
1922 dm_stats_cleanup(&md->stats);
1923 free_minor(minor);
1925 module_put(THIS_MODULE);
1926 kvfree(md);
1929 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1931 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1933 if (dm_table_bio_based(t)) {
1935 * The md may already have mempools that need changing.
1936 * If so, reload bioset because front_pad may have changed
1937 * because a different table was loaded.
1939 if (md->bs) {
1940 bioset_free(md->bs);
1941 md->bs = NULL;
1943 if (md->io_bs) {
1944 bioset_free(md->io_bs);
1945 md->io_bs = NULL;
1948 } else if (md->bs) {
1950 * There's no need to reload with request-based dm
1951 * because the size of front_pad doesn't change.
1952 * Note for future: If you are to reload bioset,
1953 * prep-ed requests in the queue may refer
1954 * to bio from the old bioset, so you must walk
1955 * through the queue to unprep.
1957 goto out;
1960 BUG_ON(!p || md->bs || md->io_bs);
1962 md->bs = p->bs;
1963 p->bs = NULL;
1964 md->io_bs = p->io_bs;
1965 p->io_bs = NULL;
1966 out:
1967 /* mempool bind completed, no longer need any mempools in the table */
1968 dm_table_free_md_mempools(t);
1972 * Bind a table to the device.
1974 static void event_callback(void *context)
1976 unsigned long flags;
1977 LIST_HEAD(uevents);
1978 struct mapped_device *md = (struct mapped_device *) context;
1980 spin_lock_irqsave(&md->uevent_lock, flags);
1981 list_splice_init(&md->uevent_list, &uevents);
1982 spin_unlock_irqrestore(&md->uevent_lock, flags);
1984 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1986 atomic_inc(&md->event_nr);
1987 wake_up(&md->eventq);
1988 dm_issue_global_event();
1992 * Protected by md->suspend_lock obtained by dm_swap_table().
1994 static void __set_size(struct mapped_device *md, sector_t size)
1996 lockdep_assert_held(&md->suspend_lock);
1998 set_capacity(md->disk, size);
2000 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2004 * Returns old map, which caller must destroy.
2006 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2007 struct queue_limits *limits)
2009 struct dm_table *old_map;
2010 struct request_queue *q = md->queue;
2011 bool request_based = dm_table_request_based(t);
2012 sector_t size;
2014 lockdep_assert_held(&md->suspend_lock);
2016 size = dm_table_get_size(t);
2019 * Wipe any geometry if the size of the table changed.
2021 if (size != dm_get_size(md))
2022 memset(&md->geometry, 0, sizeof(md->geometry));
2024 __set_size(md, size);
2026 dm_table_event_callback(t, event_callback, md);
2029 * The queue hasn't been stopped yet, if the old table type wasn't
2030 * for request-based during suspension. So stop it to prevent
2031 * I/O mapping before resume.
2032 * This must be done before setting the queue restrictions,
2033 * because request-based dm may be run just after the setting.
2035 if (request_based)
2036 dm_stop_queue(q);
2038 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2040 * Leverage the fact that request-based DM targets and
2041 * NVMe bio based targets are immutable singletons
2042 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2043 * and __process_bio.
2045 md->immutable_target = dm_table_get_immutable_target(t);
2048 __bind_mempools(md, t);
2050 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2051 rcu_assign_pointer(md->map, (void *)t);
2052 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2054 dm_table_set_restrictions(t, q, limits);
2055 if (old_map)
2056 dm_sync_table(md);
2058 return old_map;
2062 * Returns unbound table for the caller to free.
2064 static struct dm_table *__unbind(struct mapped_device *md)
2066 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2068 if (!map)
2069 return NULL;
2071 dm_table_event_callback(map, NULL, NULL);
2072 RCU_INIT_POINTER(md->map, NULL);
2073 dm_sync_table(md);
2075 return map;
2079 * Constructor for a new device.
2081 int dm_create(int minor, struct mapped_device **result)
2083 int r;
2084 struct mapped_device *md;
2086 md = alloc_dev(minor);
2087 if (!md)
2088 return -ENXIO;
2090 r = dm_sysfs_init(md);
2091 if (r) {
2092 free_dev(md);
2093 return r;
2096 *result = md;
2097 return 0;
2101 * Functions to manage md->type.
2102 * All are required to hold md->type_lock.
2104 void dm_lock_md_type(struct mapped_device *md)
2106 mutex_lock(&md->type_lock);
2109 void dm_unlock_md_type(struct mapped_device *md)
2111 mutex_unlock(&md->type_lock);
2114 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2116 BUG_ON(!mutex_is_locked(&md->type_lock));
2117 md->type = type;
2120 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2122 return md->type;
2125 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2127 return md->immutable_target_type;
2131 * The queue_limits are only valid as long as you have a reference
2132 * count on 'md'.
2134 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2136 BUG_ON(!atomic_read(&md->holders));
2137 return &md->queue->limits;
2139 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2142 * Setup the DM device's queue based on md's type
2144 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2146 int r;
2147 struct queue_limits limits;
2148 enum dm_queue_mode type = dm_get_md_type(md);
2150 switch (type) {
2151 case DM_TYPE_REQUEST_BASED:
2152 dm_init_normal_md_queue(md);
2153 r = dm_old_init_request_queue(md, t);
2154 if (r) {
2155 DMERR("Cannot initialize queue for request-based mapped device");
2156 return r;
2158 break;
2159 case DM_TYPE_MQ_REQUEST_BASED:
2160 r = dm_mq_init_request_queue(md, t);
2161 if (r) {
2162 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2163 return r;
2165 break;
2166 case DM_TYPE_BIO_BASED:
2167 case DM_TYPE_DAX_BIO_BASED:
2168 dm_init_normal_md_queue(md);
2169 blk_queue_make_request(md->queue, dm_make_request);
2170 break;
2171 case DM_TYPE_NVME_BIO_BASED:
2172 dm_init_normal_md_queue(md);
2173 blk_queue_make_request(md->queue, dm_make_request_nvme);
2174 break;
2175 case DM_TYPE_NONE:
2176 WARN_ON_ONCE(true);
2177 break;
2180 r = dm_calculate_queue_limits(t, &limits);
2181 if (r) {
2182 DMERR("Cannot calculate initial queue limits");
2183 return r;
2185 dm_table_set_restrictions(t, md->queue, &limits);
2186 blk_register_queue(md->disk);
2188 return 0;
2191 struct mapped_device *dm_get_md(dev_t dev)
2193 struct mapped_device *md;
2194 unsigned minor = MINOR(dev);
2196 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2197 return NULL;
2199 spin_lock(&_minor_lock);
2201 md = idr_find(&_minor_idr, minor);
2202 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2203 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2204 md = NULL;
2205 goto out;
2207 dm_get(md);
2208 out:
2209 spin_unlock(&_minor_lock);
2211 return md;
2213 EXPORT_SYMBOL_GPL(dm_get_md);
2215 void *dm_get_mdptr(struct mapped_device *md)
2217 return md->interface_ptr;
2220 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2222 md->interface_ptr = ptr;
2225 void dm_get(struct mapped_device *md)
2227 atomic_inc(&md->holders);
2228 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2231 int dm_hold(struct mapped_device *md)
2233 spin_lock(&_minor_lock);
2234 if (test_bit(DMF_FREEING, &md->flags)) {
2235 spin_unlock(&_minor_lock);
2236 return -EBUSY;
2238 dm_get(md);
2239 spin_unlock(&_minor_lock);
2240 return 0;
2242 EXPORT_SYMBOL_GPL(dm_hold);
2244 const char *dm_device_name(struct mapped_device *md)
2246 return md->name;
2248 EXPORT_SYMBOL_GPL(dm_device_name);
2250 static void __dm_destroy(struct mapped_device *md, bool wait)
2252 struct dm_table *map;
2253 int srcu_idx;
2255 might_sleep();
2257 spin_lock(&_minor_lock);
2258 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2259 set_bit(DMF_FREEING, &md->flags);
2260 spin_unlock(&_minor_lock);
2262 blk_set_queue_dying(md->queue);
2264 if (dm_request_based(md) && md->kworker_task)
2265 kthread_flush_worker(&md->kworker);
2268 * Take suspend_lock so that presuspend and postsuspend methods
2269 * do not race with internal suspend.
2271 mutex_lock(&md->suspend_lock);
2272 map = dm_get_live_table(md, &srcu_idx);
2273 if (!dm_suspended_md(md)) {
2274 dm_table_presuspend_targets(map);
2275 dm_table_postsuspend_targets(map);
2277 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2278 dm_put_live_table(md, srcu_idx);
2279 mutex_unlock(&md->suspend_lock);
2282 * Rare, but there may be I/O requests still going to complete,
2283 * for example. Wait for all references to disappear.
2284 * No one should increment the reference count of the mapped_device,
2285 * after the mapped_device state becomes DMF_FREEING.
2287 if (wait)
2288 while (atomic_read(&md->holders))
2289 msleep(1);
2290 else if (atomic_read(&md->holders))
2291 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2292 dm_device_name(md), atomic_read(&md->holders));
2294 dm_sysfs_exit(md);
2295 dm_table_destroy(__unbind(md));
2296 free_dev(md);
2299 void dm_destroy(struct mapped_device *md)
2301 __dm_destroy(md, true);
2304 void dm_destroy_immediate(struct mapped_device *md)
2306 __dm_destroy(md, false);
2309 void dm_put(struct mapped_device *md)
2311 atomic_dec(&md->holders);
2313 EXPORT_SYMBOL_GPL(dm_put);
2315 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2317 int r = 0;
2318 DEFINE_WAIT(wait);
2320 while (1) {
2321 prepare_to_wait(&md->wait, &wait, task_state);
2323 if (!md_in_flight(md))
2324 break;
2326 if (signal_pending_state(task_state, current)) {
2327 r = -EINTR;
2328 break;
2331 io_schedule();
2333 finish_wait(&md->wait, &wait);
2335 return r;
2339 * Process the deferred bios
2341 static void dm_wq_work(struct work_struct *work)
2343 struct mapped_device *md = container_of(work, struct mapped_device,
2344 work);
2345 struct bio *c;
2346 int srcu_idx;
2347 struct dm_table *map;
2349 map = dm_get_live_table(md, &srcu_idx);
2351 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2352 spin_lock_irq(&md->deferred_lock);
2353 c = bio_list_pop(&md->deferred);
2354 spin_unlock_irq(&md->deferred_lock);
2356 if (!c)
2357 break;
2359 if (dm_request_based(md))
2360 generic_make_request(c);
2361 else
2362 __split_and_process_bio(md, map, c);
2365 dm_put_live_table(md, srcu_idx);
2368 static void dm_queue_flush(struct mapped_device *md)
2370 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2371 smp_mb__after_atomic();
2372 queue_work(md->wq, &md->work);
2376 * Swap in a new table, returning the old one for the caller to destroy.
2378 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2380 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2381 struct queue_limits limits;
2382 int r;
2384 mutex_lock(&md->suspend_lock);
2386 /* device must be suspended */
2387 if (!dm_suspended_md(md))
2388 goto out;
2391 * If the new table has no data devices, retain the existing limits.
2392 * This helps multipath with queue_if_no_path if all paths disappear,
2393 * then new I/O is queued based on these limits, and then some paths
2394 * reappear.
2396 if (dm_table_has_no_data_devices(table)) {
2397 live_map = dm_get_live_table_fast(md);
2398 if (live_map)
2399 limits = md->queue->limits;
2400 dm_put_live_table_fast(md);
2403 if (!live_map) {
2404 r = dm_calculate_queue_limits(table, &limits);
2405 if (r) {
2406 map = ERR_PTR(r);
2407 goto out;
2411 map = __bind(md, table, &limits);
2412 dm_issue_global_event();
2414 out:
2415 mutex_unlock(&md->suspend_lock);
2416 return map;
2420 * Functions to lock and unlock any filesystem running on the
2421 * device.
2423 static int lock_fs(struct mapped_device *md)
2425 int r;
2427 WARN_ON(md->frozen_sb);
2429 md->frozen_sb = freeze_bdev(md->bdev);
2430 if (IS_ERR(md->frozen_sb)) {
2431 r = PTR_ERR(md->frozen_sb);
2432 md->frozen_sb = NULL;
2433 return r;
2436 set_bit(DMF_FROZEN, &md->flags);
2438 return 0;
2441 static void unlock_fs(struct mapped_device *md)
2443 if (!test_bit(DMF_FROZEN, &md->flags))
2444 return;
2446 thaw_bdev(md->bdev, md->frozen_sb);
2447 md->frozen_sb = NULL;
2448 clear_bit(DMF_FROZEN, &md->flags);
2452 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2453 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2454 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2456 * If __dm_suspend returns 0, the device is completely quiescent
2457 * now. There is no request-processing activity. All new requests
2458 * are being added to md->deferred list.
2460 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2461 unsigned suspend_flags, long task_state,
2462 int dmf_suspended_flag)
2464 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2465 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2466 int r;
2468 lockdep_assert_held(&md->suspend_lock);
2471 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2472 * This flag is cleared before dm_suspend returns.
2474 if (noflush)
2475 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2476 else
2477 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2480 * This gets reverted if there's an error later and the targets
2481 * provide the .presuspend_undo hook.
2483 dm_table_presuspend_targets(map);
2486 * Flush I/O to the device.
2487 * Any I/O submitted after lock_fs() may not be flushed.
2488 * noflush takes precedence over do_lockfs.
2489 * (lock_fs() flushes I/Os and waits for them to complete.)
2491 if (!noflush && do_lockfs) {
2492 r = lock_fs(md);
2493 if (r) {
2494 dm_table_presuspend_undo_targets(map);
2495 return r;
2500 * Here we must make sure that no processes are submitting requests
2501 * to target drivers i.e. no one may be executing
2502 * __split_and_process_bio. This is called from dm_request and
2503 * dm_wq_work.
2505 * To get all processes out of __split_and_process_bio in dm_request,
2506 * we take the write lock. To prevent any process from reentering
2507 * __split_and_process_bio from dm_request and quiesce the thread
2508 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2509 * flush_workqueue(md->wq).
2511 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2512 if (map)
2513 synchronize_srcu(&md->io_barrier);
2516 * Stop md->queue before flushing md->wq in case request-based
2517 * dm defers requests to md->wq from md->queue.
2519 if (dm_request_based(md)) {
2520 dm_stop_queue(md->queue);
2521 if (md->kworker_task)
2522 kthread_flush_worker(&md->kworker);
2525 flush_workqueue(md->wq);
2528 * At this point no more requests are entering target request routines.
2529 * We call dm_wait_for_completion to wait for all existing requests
2530 * to finish.
2532 r = dm_wait_for_completion(md, task_state);
2533 if (!r)
2534 set_bit(dmf_suspended_flag, &md->flags);
2536 if (noflush)
2537 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2538 if (map)
2539 synchronize_srcu(&md->io_barrier);
2541 /* were we interrupted ? */
2542 if (r < 0) {
2543 dm_queue_flush(md);
2545 if (dm_request_based(md))
2546 dm_start_queue(md->queue);
2548 unlock_fs(md);
2549 dm_table_presuspend_undo_targets(map);
2550 /* pushback list is already flushed, so skip flush */
2553 return r;
2557 * We need to be able to change a mapping table under a mounted
2558 * filesystem. For example we might want to move some data in
2559 * the background. Before the table can be swapped with
2560 * dm_bind_table, dm_suspend must be called to flush any in
2561 * flight bios and ensure that any further io gets deferred.
2564 * Suspend mechanism in request-based dm.
2566 * 1. Flush all I/Os by lock_fs() if needed.
2567 * 2. Stop dispatching any I/O by stopping the request_queue.
2568 * 3. Wait for all in-flight I/Os to be completed or requeued.
2570 * To abort suspend, start the request_queue.
2572 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2574 struct dm_table *map = NULL;
2575 int r = 0;
2577 retry:
2578 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2580 if (dm_suspended_md(md)) {
2581 r = -EINVAL;
2582 goto out_unlock;
2585 if (dm_suspended_internally_md(md)) {
2586 /* already internally suspended, wait for internal resume */
2587 mutex_unlock(&md->suspend_lock);
2588 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2589 if (r)
2590 return r;
2591 goto retry;
2594 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2596 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2597 if (r)
2598 goto out_unlock;
2600 dm_table_postsuspend_targets(map);
2602 out_unlock:
2603 mutex_unlock(&md->suspend_lock);
2604 return r;
2607 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2609 if (map) {
2610 int r = dm_table_resume_targets(map);
2611 if (r)
2612 return r;
2615 dm_queue_flush(md);
2618 * Flushing deferred I/Os must be done after targets are resumed
2619 * so that mapping of targets can work correctly.
2620 * Request-based dm is queueing the deferred I/Os in its request_queue.
2622 if (dm_request_based(md))
2623 dm_start_queue(md->queue);
2625 unlock_fs(md);
2627 return 0;
2630 int dm_resume(struct mapped_device *md)
2632 int r;
2633 struct dm_table *map = NULL;
2635 retry:
2636 r = -EINVAL;
2637 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2639 if (!dm_suspended_md(md))
2640 goto out;
2642 if (dm_suspended_internally_md(md)) {
2643 /* already internally suspended, wait for internal resume */
2644 mutex_unlock(&md->suspend_lock);
2645 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2646 if (r)
2647 return r;
2648 goto retry;
2651 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2652 if (!map || !dm_table_get_size(map))
2653 goto out;
2655 r = __dm_resume(md, map);
2656 if (r)
2657 goto out;
2659 clear_bit(DMF_SUSPENDED, &md->flags);
2660 out:
2661 mutex_unlock(&md->suspend_lock);
2663 return r;
2667 * Internal suspend/resume works like userspace-driven suspend. It waits
2668 * until all bios finish and prevents issuing new bios to the target drivers.
2669 * It may be used only from the kernel.
2672 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2674 struct dm_table *map = NULL;
2676 lockdep_assert_held(&md->suspend_lock);
2678 if (md->internal_suspend_count++)
2679 return; /* nested internal suspend */
2681 if (dm_suspended_md(md)) {
2682 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2683 return; /* nest suspend */
2686 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2689 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2690 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2691 * would require changing .presuspend to return an error -- avoid this
2692 * until there is a need for more elaborate variants of internal suspend.
2694 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2695 DMF_SUSPENDED_INTERNALLY);
2697 dm_table_postsuspend_targets(map);
2700 static void __dm_internal_resume(struct mapped_device *md)
2702 BUG_ON(!md->internal_suspend_count);
2704 if (--md->internal_suspend_count)
2705 return; /* resume from nested internal suspend */
2707 if (dm_suspended_md(md))
2708 goto done; /* resume from nested suspend */
2711 * NOTE: existing callers don't need to call dm_table_resume_targets
2712 * (which may fail -- so best to avoid it for now by passing NULL map)
2714 (void) __dm_resume(md, NULL);
2716 done:
2717 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2718 smp_mb__after_atomic();
2719 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2722 void dm_internal_suspend_noflush(struct mapped_device *md)
2724 mutex_lock(&md->suspend_lock);
2725 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2726 mutex_unlock(&md->suspend_lock);
2728 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2730 void dm_internal_resume(struct mapped_device *md)
2732 mutex_lock(&md->suspend_lock);
2733 __dm_internal_resume(md);
2734 mutex_unlock(&md->suspend_lock);
2736 EXPORT_SYMBOL_GPL(dm_internal_resume);
2739 * Fast variants of internal suspend/resume hold md->suspend_lock,
2740 * which prevents interaction with userspace-driven suspend.
2743 void dm_internal_suspend_fast(struct mapped_device *md)
2745 mutex_lock(&md->suspend_lock);
2746 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2747 return;
2749 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2750 synchronize_srcu(&md->io_barrier);
2751 flush_workqueue(md->wq);
2752 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2754 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2756 void dm_internal_resume_fast(struct mapped_device *md)
2758 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2759 goto done;
2761 dm_queue_flush(md);
2763 done:
2764 mutex_unlock(&md->suspend_lock);
2766 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2768 /*-----------------------------------------------------------------
2769 * Event notification.
2770 *---------------------------------------------------------------*/
2771 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2772 unsigned cookie)
2774 char udev_cookie[DM_COOKIE_LENGTH];
2775 char *envp[] = { udev_cookie, NULL };
2777 if (!cookie)
2778 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2779 else {
2780 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2781 DM_COOKIE_ENV_VAR_NAME, cookie);
2782 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2783 action, envp);
2787 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2789 return atomic_add_return(1, &md->uevent_seq);
2792 uint32_t dm_get_event_nr(struct mapped_device *md)
2794 return atomic_read(&md->event_nr);
2797 int dm_wait_event(struct mapped_device *md, int event_nr)
2799 return wait_event_interruptible(md->eventq,
2800 (event_nr != atomic_read(&md->event_nr)));
2803 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2805 unsigned long flags;
2807 spin_lock_irqsave(&md->uevent_lock, flags);
2808 list_add(elist, &md->uevent_list);
2809 spin_unlock_irqrestore(&md->uevent_lock, flags);
2813 * The gendisk is only valid as long as you have a reference
2814 * count on 'md'.
2816 struct gendisk *dm_disk(struct mapped_device *md)
2818 return md->disk;
2820 EXPORT_SYMBOL_GPL(dm_disk);
2822 struct kobject *dm_kobject(struct mapped_device *md)
2824 return &md->kobj_holder.kobj;
2827 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2829 struct mapped_device *md;
2831 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2833 spin_lock(&_minor_lock);
2834 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2835 md = NULL;
2836 goto out;
2838 dm_get(md);
2839 out:
2840 spin_unlock(&_minor_lock);
2842 return md;
2845 int dm_suspended_md(struct mapped_device *md)
2847 return test_bit(DMF_SUSPENDED, &md->flags);
2850 int dm_suspended_internally_md(struct mapped_device *md)
2852 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2855 int dm_test_deferred_remove_flag(struct mapped_device *md)
2857 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2860 int dm_suspended(struct dm_target *ti)
2862 return dm_suspended_md(dm_table_get_md(ti->table));
2864 EXPORT_SYMBOL_GPL(dm_suspended);
2866 int dm_noflush_suspending(struct dm_target *ti)
2868 return __noflush_suspending(dm_table_get_md(ti->table));
2870 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2872 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2873 unsigned integrity, unsigned per_io_data_size,
2874 unsigned min_pool_size)
2876 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2877 unsigned int pool_size = 0;
2878 unsigned int front_pad, io_front_pad;
2880 if (!pools)
2881 return NULL;
2883 switch (type) {
2884 case DM_TYPE_BIO_BASED:
2885 case DM_TYPE_DAX_BIO_BASED:
2886 case DM_TYPE_NVME_BIO_BASED:
2887 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2888 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2889 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2890 pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2891 if (!pools->io_bs)
2892 goto out;
2893 if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2894 goto out;
2895 break;
2896 case DM_TYPE_REQUEST_BASED:
2897 case DM_TYPE_MQ_REQUEST_BASED:
2898 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2899 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2900 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2901 break;
2902 default:
2903 BUG();
2906 pools->bs = bioset_create(pool_size, front_pad, 0);
2907 if (!pools->bs)
2908 goto out;
2910 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2911 goto out;
2913 return pools;
2915 out:
2916 dm_free_md_mempools(pools);
2918 return NULL;
2921 void dm_free_md_mempools(struct dm_md_mempools *pools)
2923 if (!pools)
2924 return;
2926 if (pools->bs)
2927 bioset_free(pools->bs);
2928 if (pools->io_bs)
2929 bioset_free(pools->io_bs);
2931 kfree(pools);
2934 struct dm_pr {
2935 u64 old_key;
2936 u64 new_key;
2937 u32 flags;
2938 bool fail_early;
2941 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2942 void *data)
2944 struct mapped_device *md = bdev->bd_disk->private_data;
2945 struct dm_table *table;
2946 struct dm_target *ti;
2947 int ret = -ENOTTY, srcu_idx;
2949 table = dm_get_live_table(md, &srcu_idx);
2950 if (!table || !dm_table_get_size(table))
2951 goto out;
2953 /* We only support devices that have a single target */
2954 if (dm_table_get_num_targets(table) != 1)
2955 goto out;
2956 ti = dm_table_get_target(table, 0);
2958 ret = -EINVAL;
2959 if (!ti->type->iterate_devices)
2960 goto out;
2962 ret = ti->type->iterate_devices(ti, fn, data);
2963 out:
2964 dm_put_live_table(md, srcu_idx);
2965 return ret;
2969 * For register / unregister we need to manually call out to every path.
2971 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2972 sector_t start, sector_t len, void *data)
2974 struct dm_pr *pr = data;
2975 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2977 if (!ops || !ops->pr_register)
2978 return -EOPNOTSUPP;
2979 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2982 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2983 u32 flags)
2985 struct dm_pr pr = {
2986 .old_key = old_key,
2987 .new_key = new_key,
2988 .flags = flags,
2989 .fail_early = true,
2991 int ret;
2993 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2994 if (ret && new_key) {
2995 /* unregister all paths if we failed to register any path */
2996 pr.old_key = new_key;
2997 pr.new_key = 0;
2998 pr.flags = 0;
2999 pr.fail_early = false;
3000 dm_call_pr(bdev, __dm_pr_register, &pr);
3003 return ret;
3006 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3007 u32 flags)
3009 struct mapped_device *md = bdev->bd_disk->private_data;
3010 const struct pr_ops *ops;
3011 fmode_t mode;
3012 int r;
3014 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3015 if (r < 0)
3016 return r;
3018 ops = bdev->bd_disk->fops->pr_ops;
3019 if (ops && ops->pr_reserve)
3020 r = ops->pr_reserve(bdev, key, type, flags);
3021 else
3022 r = -EOPNOTSUPP;
3024 bdput(bdev);
3025 return r;
3028 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3030 struct mapped_device *md = bdev->bd_disk->private_data;
3031 const struct pr_ops *ops;
3032 fmode_t mode;
3033 int r;
3035 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3036 if (r < 0)
3037 return r;
3039 ops = bdev->bd_disk->fops->pr_ops;
3040 if (ops && ops->pr_release)
3041 r = ops->pr_release(bdev, key, type);
3042 else
3043 r = -EOPNOTSUPP;
3045 bdput(bdev);
3046 return r;
3049 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3050 enum pr_type type, bool abort)
3052 struct mapped_device *md = bdev->bd_disk->private_data;
3053 const struct pr_ops *ops;
3054 fmode_t mode;
3055 int r;
3057 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3058 if (r < 0)
3059 return r;
3061 ops = bdev->bd_disk->fops->pr_ops;
3062 if (ops && ops->pr_preempt)
3063 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3064 else
3065 r = -EOPNOTSUPP;
3067 bdput(bdev);
3068 return r;
3071 static int dm_pr_clear(struct block_device *bdev, u64 key)
3073 struct mapped_device *md = bdev->bd_disk->private_data;
3074 const struct pr_ops *ops;
3075 fmode_t mode;
3076 int r;
3078 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3079 if (r < 0)
3080 return r;
3082 ops = bdev->bd_disk->fops->pr_ops;
3083 if (ops && ops->pr_clear)
3084 r = ops->pr_clear(bdev, key);
3085 else
3086 r = -EOPNOTSUPP;
3088 bdput(bdev);
3089 return r;
3092 static const struct pr_ops dm_pr_ops = {
3093 .pr_register = dm_pr_register,
3094 .pr_reserve = dm_pr_reserve,
3095 .pr_release = dm_pr_release,
3096 .pr_preempt = dm_pr_preempt,
3097 .pr_clear = dm_pr_clear,
3100 static const struct block_device_operations dm_blk_dops = {
3101 .open = dm_blk_open,
3102 .release = dm_blk_close,
3103 .ioctl = dm_blk_ioctl,
3104 .getgeo = dm_blk_getgeo,
3105 .pr_ops = &dm_pr_ops,
3106 .owner = THIS_MODULE
3109 static const struct dax_operations dm_dax_ops = {
3110 .direct_access = dm_dax_direct_access,
3111 .copy_from_iter = dm_dax_copy_from_iter,
3115 * module hooks
3117 module_init(dm_init);
3118 module_exit(dm_exit);
3120 module_param(major, uint, 0);
3121 MODULE_PARM_DESC(major, "The major number of the device mapper");
3123 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3124 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3126 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3127 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3129 MODULE_DESCRIPTION(DM_NAME " driver");
3130 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3131 MODULE_LICENSE("GPL");