2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name
= DM_NAME
;
40 static unsigned int major
= 0;
41 static unsigned int _major
= 0;
43 static DEFINE_IDR(_minor_idr
);
45 static DEFINE_SPINLOCK(_minor_lock
);
47 static void do_deferred_remove(struct work_struct
*w
);
49 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
51 static struct workqueue_struct
*deferred_remove_workqueue
;
53 atomic_t dm_global_event_nr
= ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq
);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr
);
59 wake_up(&dm_global_eventq
);
63 * One of these is allocated (on-stack) per original bio.
70 unsigned sector_count
;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
81 unsigned target_bio_nr
;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
94 struct mapped_device
*md
;
98 unsigned long start_time
;
99 spinlock_t endio_lock
;
100 struct dm_stats_aux stats_aux
;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio
;
105 void *dm_per_bio_data(struct bio
*bio
, size_t data_size
)
107 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
108 if (!tio
->inside_dm_io
)
109 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - data_size
;
110 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - offsetof(struct dm_io
, tio
) - data_size
;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data
);
114 struct bio
*dm_bio_from_per_bio_data(void *data
, size_t data_size
)
116 struct dm_io
*io
= (struct dm_io
*)((char *)data
+ data_size
);
117 if (io
->magic
== DM_IO_MAGIC
)
118 return (struct bio
*)((char *)io
+ offsetof(struct dm_io
, tio
) + offsetof(struct dm_target_io
, clone
));
119 BUG_ON(io
->magic
!= DM_TIO_MAGIC
);
120 return (struct bio
*)((char *)io
+ offsetof(struct dm_target_io
, clone
));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data
);
124 unsigned dm_bio_get_target_bio_nr(const struct bio
*bio
)
126 return container_of(bio
, struct dm_target_io
, clone
)->target_bio_nr
;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr
);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node
= DM_NUMA_NODE
;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools
{
152 struct bio_set
*io_bs
;
155 struct table_device
{
156 struct list_head list
;
158 struct dm_dev dm_dev
;
161 static struct kmem_cache
*_rq_tio_cache
;
162 static struct kmem_cache
*_rq_cache
;
165 * Bio-based DM's mempools' reserved IOs set by the user.
167 #define RESERVED_BIO_BASED_IOS 16
168 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
170 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
172 int param
= READ_ONCE(*module_param
);
173 int modified_param
= 0;
174 bool modified
= true;
177 modified_param
= min
;
178 else if (param
> max
)
179 modified_param
= max
;
184 (void)cmpxchg(module_param
, param
, modified_param
);
185 param
= modified_param
;
191 unsigned __dm_get_module_param(unsigned *module_param
,
192 unsigned def
, unsigned max
)
194 unsigned param
= READ_ONCE(*module_param
);
195 unsigned modified_param
= 0;
198 modified_param
= def
;
199 else if (param
> max
)
200 modified_param
= max
;
202 if (modified_param
) {
203 (void)cmpxchg(module_param
, param
, modified_param
);
204 param
= modified_param
;
210 unsigned dm_get_reserved_bio_based_ios(void)
212 return __dm_get_module_param(&reserved_bio_based_ios
,
213 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
217 static unsigned dm_get_numa_node(void)
219 return __dm_get_module_param_int(&dm_numa_node
,
220 DM_NUMA_NODE
, num_online_nodes() - 1);
223 static int __init
local_init(void)
227 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
231 _rq_cache
= kmem_cache_create("dm_old_clone_request", sizeof(struct request
),
232 __alignof__(struct request
), 0, NULL
);
234 goto out_free_rq_tio_cache
;
236 r
= dm_uevent_init();
238 goto out_free_rq_cache
;
240 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
241 if (!deferred_remove_workqueue
) {
243 goto out_uevent_exit
;
247 r
= register_blkdev(_major
, _name
);
249 goto out_free_workqueue
;
257 destroy_workqueue(deferred_remove_workqueue
);
261 kmem_cache_destroy(_rq_cache
);
262 out_free_rq_tio_cache
:
263 kmem_cache_destroy(_rq_tio_cache
);
268 static void local_exit(void)
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue
);
273 kmem_cache_destroy(_rq_cache
);
274 kmem_cache_destroy(_rq_tio_cache
);
275 unregister_blkdev(_major
, _name
);
280 DMINFO("cleaned up");
283 static int (*_inits
[])(void) __initdata
= {
294 static void (*_exits
[])(void) = {
305 static int __init
dm_init(void)
307 const int count
= ARRAY_SIZE(_inits
);
311 for (i
= 0; i
< count
; i
++) {
326 static void __exit
dm_exit(void)
328 int i
= ARRAY_SIZE(_exits
);
334 * Should be empty by this point.
336 idr_destroy(&_minor_idr
);
340 * Block device functions
342 int dm_deleting_md(struct mapped_device
*md
)
344 return test_bit(DMF_DELETING
, &md
->flags
);
347 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
349 struct mapped_device
*md
;
351 spin_lock(&_minor_lock
);
353 md
= bdev
->bd_disk
->private_data
;
357 if (test_bit(DMF_FREEING
, &md
->flags
) ||
358 dm_deleting_md(md
)) {
364 atomic_inc(&md
->open_count
);
366 spin_unlock(&_minor_lock
);
368 return md
? 0 : -ENXIO
;
371 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
373 struct mapped_device
*md
;
375 spin_lock(&_minor_lock
);
377 md
= disk
->private_data
;
381 if (atomic_dec_and_test(&md
->open_count
) &&
382 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
383 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
387 spin_unlock(&_minor_lock
);
390 int dm_open_count(struct mapped_device
*md
)
392 return atomic_read(&md
->open_count
);
396 * Guarantees nothing is using the device before it's deleted.
398 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
402 spin_lock(&_minor_lock
);
404 if (dm_open_count(md
)) {
407 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
408 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
411 set_bit(DMF_DELETING
, &md
->flags
);
413 spin_unlock(&_minor_lock
);
418 int dm_cancel_deferred_remove(struct mapped_device
*md
)
422 spin_lock(&_minor_lock
);
424 if (test_bit(DMF_DELETING
, &md
->flags
))
427 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
429 spin_unlock(&_minor_lock
);
434 static void do_deferred_remove(struct work_struct
*w
)
436 dm_deferred_remove();
439 sector_t
dm_get_size(struct mapped_device
*md
)
441 return get_capacity(md
->disk
);
444 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
449 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
454 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
456 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
458 return dm_get_geometry(md
, geo
);
461 static int dm_grab_bdev_for_ioctl(struct mapped_device
*md
,
462 struct block_device
**bdev
,
465 struct dm_target
*tgt
;
466 struct dm_table
*map
;
471 map
= dm_get_live_table(md
, &srcu_idx
);
472 if (!map
|| !dm_table_get_size(map
))
475 /* We only support devices that have a single target */
476 if (dm_table_get_num_targets(map
) != 1)
479 tgt
= dm_table_get_target(map
, 0);
480 if (!tgt
->type
->prepare_ioctl
)
483 if (dm_suspended_md(md
)) {
488 r
= tgt
->type
->prepare_ioctl(tgt
, bdev
, mode
);
493 dm_put_live_table(md
, srcu_idx
);
497 dm_put_live_table(md
, srcu_idx
);
498 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
505 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
506 unsigned int cmd
, unsigned long arg
)
508 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
511 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
517 * Target determined this ioctl is being issued against a
518 * subset of the parent bdev; require extra privileges.
520 if (!capable(CAP_SYS_RAWIO
)) {
522 "%s: sending ioctl %x to DM device without required privilege.",
529 r
= __blkdev_driver_ioctl(bdev
, mode
, cmd
, arg
);
535 static void start_io_acct(struct dm_io
*io
);
537 static struct dm_io
*alloc_io(struct mapped_device
*md
, struct bio
*bio
)
540 struct dm_target_io
*tio
;
543 clone
= bio_alloc_bioset(GFP_NOIO
, 0, md
->io_bs
);
547 tio
= container_of(clone
, struct dm_target_io
, clone
);
548 tio
->inside_dm_io
= true;
551 io
= container_of(tio
, struct dm_io
, tio
);
552 io
->magic
= DM_IO_MAGIC
;
554 atomic_set(&io
->io_count
, 1);
557 spin_lock_init(&io
->endio_lock
);
564 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
566 bio_put(&io
->tio
.clone
);
569 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
, struct dm_target
*ti
,
570 unsigned target_bio_nr
, gfp_t gfp_mask
)
572 struct dm_target_io
*tio
;
574 if (!ci
->io
->tio
.io
) {
575 /* the dm_target_io embedded in ci->io is available */
578 struct bio
*clone
= bio_alloc_bioset(gfp_mask
, 0, ci
->io
->md
->bs
);
582 tio
= container_of(clone
, struct dm_target_io
, clone
);
583 tio
->inside_dm_io
= false;
586 tio
->magic
= DM_TIO_MAGIC
;
589 tio
->target_bio_nr
= target_bio_nr
;
594 static void free_tio(struct dm_target_io
*tio
)
596 if (tio
->inside_dm_io
)
598 bio_put(&tio
->clone
);
601 int md_in_flight(struct mapped_device
*md
)
603 return atomic_read(&md
->pending
[READ
]) +
604 atomic_read(&md
->pending
[WRITE
]);
607 static void start_io_acct(struct dm_io
*io
)
609 struct mapped_device
*md
= io
->md
;
610 struct bio
*bio
= io
->orig_bio
;
611 int rw
= bio_data_dir(bio
);
613 io
->start_time
= jiffies
;
615 generic_start_io_acct(md
->queue
, rw
, bio_sectors(bio
), &dm_disk(md
)->part0
);
617 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
618 atomic_inc_return(&md
->pending
[rw
]));
620 if (unlikely(dm_stats_used(&md
->stats
)))
621 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
622 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
623 false, 0, &io
->stats_aux
);
626 static void end_io_acct(struct dm_io
*io
)
628 struct mapped_device
*md
= io
->md
;
629 struct bio
*bio
= io
->orig_bio
;
630 unsigned long duration
= jiffies
- io
->start_time
;
632 int rw
= bio_data_dir(bio
);
634 generic_end_io_acct(md
->queue
, rw
, &dm_disk(md
)->part0
, io
->start_time
);
636 if (unlikely(dm_stats_used(&md
->stats
)))
637 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
638 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
639 true, duration
, &io
->stats_aux
);
642 * After this is decremented the bio must not be touched if it is
645 pending
= atomic_dec_return(&md
->pending
[rw
]);
646 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
647 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
649 /* nudge anyone waiting on suspend queue */
655 * Add the bio to the list of deferred io.
657 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
661 spin_lock_irqsave(&md
->deferred_lock
, flags
);
662 bio_list_add(&md
->deferred
, bio
);
663 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
664 queue_work(md
->wq
, &md
->work
);
668 * Everyone (including functions in this file), should use this
669 * function to access the md->map field, and make sure they call
670 * dm_put_live_table() when finished.
672 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
674 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
676 return srcu_dereference(md
->map
, &md
->io_barrier
);
679 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
681 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
684 void dm_sync_table(struct mapped_device
*md
)
686 synchronize_srcu(&md
->io_barrier
);
687 synchronize_rcu_expedited();
691 * A fast alternative to dm_get_live_table/dm_put_live_table.
692 * The caller must not block between these two functions.
694 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
697 return rcu_dereference(md
->map
);
700 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
706 * Open a table device so we can use it as a map destination.
708 static int open_table_device(struct table_device
*td
, dev_t dev
,
709 struct mapped_device
*md
)
711 static char *_claim_ptr
= "I belong to device-mapper";
712 struct block_device
*bdev
;
716 BUG_ON(td
->dm_dev
.bdev
);
718 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _claim_ptr
);
720 return PTR_ERR(bdev
);
722 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
724 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
728 td
->dm_dev
.bdev
= bdev
;
729 td
->dm_dev
.dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
734 * Close a table device that we've been using.
736 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
738 if (!td
->dm_dev
.bdev
)
741 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
742 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
743 put_dax(td
->dm_dev
.dax_dev
);
744 td
->dm_dev
.bdev
= NULL
;
745 td
->dm_dev
.dax_dev
= NULL
;
748 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
750 struct table_device
*td
;
752 list_for_each_entry(td
, l
, list
)
753 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
759 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
760 struct dm_dev
**result
) {
762 struct table_device
*td
;
764 mutex_lock(&md
->table_devices_lock
);
765 td
= find_table_device(&md
->table_devices
, dev
, mode
);
767 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
769 mutex_unlock(&md
->table_devices_lock
);
773 td
->dm_dev
.mode
= mode
;
774 td
->dm_dev
.bdev
= NULL
;
776 if ((r
= open_table_device(td
, dev
, md
))) {
777 mutex_unlock(&md
->table_devices_lock
);
782 format_dev_t(td
->dm_dev
.name
, dev
);
784 refcount_set(&td
->count
, 1);
785 list_add(&td
->list
, &md
->table_devices
);
787 refcount_inc(&td
->count
);
789 mutex_unlock(&md
->table_devices_lock
);
791 *result
= &td
->dm_dev
;
794 EXPORT_SYMBOL_GPL(dm_get_table_device
);
796 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
798 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
800 mutex_lock(&md
->table_devices_lock
);
801 if (refcount_dec_and_test(&td
->count
)) {
802 close_table_device(td
, md
);
806 mutex_unlock(&md
->table_devices_lock
);
808 EXPORT_SYMBOL(dm_put_table_device
);
810 static void free_table_devices(struct list_head
*devices
)
812 struct list_head
*tmp
, *next
;
814 list_for_each_safe(tmp
, next
, devices
) {
815 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
817 DMWARN("dm_destroy: %s still exists with %d references",
818 td
->dm_dev
.name
, refcount_read(&td
->count
));
824 * Get the geometry associated with a dm device
826 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
834 * Set the geometry of a device.
836 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
838 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
840 if (geo
->start
> sz
) {
841 DMWARN("Start sector is beyond the geometry limits.");
850 static int __noflush_suspending(struct mapped_device
*md
)
852 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
856 * Decrements the number of outstanding ios that a bio has been
857 * cloned into, completing the original io if necc.
859 static void dec_pending(struct dm_io
*io
, blk_status_t error
)
862 blk_status_t io_error
;
864 struct mapped_device
*md
= io
->md
;
866 /* Push-back supersedes any I/O errors */
867 if (unlikely(error
)) {
868 spin_lock_irqsave(&io
->endio_lock
, flags
);
869 if (!(io
->status
== BLK_STS_DM_REQUEUE
&& __noflush_suspending(md
)))
871 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
874 if (atomic_dec_and_test(&io
->io_count
)) {
875 if (io
->status
== BLK_STS_DM_REQUEUE
) {
877 * Target requested pushing back the I/O.
879 spin_lock_irqsave(&md
->deferred_lock
, flags
);
880 if (__noflush_suspending(md
))
881 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
882 bio_list_add_head(&md
->deferred
, io
->orig_bio
);
884 /* noflush suspend was interrupted. */
885 io
->status
= BLK_STS_IOERR
;
886 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
889 io_error
= io
->status
;
894 if (io_error
== BLK_STS_DM_REQUEUE
)
897 if ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
) {
899 * Preflush done for flush with data, reissue
900 * without REQ_PREFLUSH.
902 bio
->bi_opf
&= ~REQ_PREFLUSH
;
905 /* done with normal IO or empty flush */
907 bio
->bi_status
= io_error
;
913 void disable_write_same(struct mapped_device
*md
)
915 struct queue_limits
*limits
= dm_get_queue_limits(md
);
917 /* device doesn't really support WRITE SAME, disable it */
918 limits
->max_write_same_sectors
= 0;
921 void disable_write_zeroes(struct mapped_device
*md
)
923 struct queue_limits
*limits
= dm_get_queue_limits(md
);
925 /* device doesn't really support WRITE ZEROES, disable it */
926 limits
->max_write_zeroes_sectors
= 0;
929 static void clone_endio(struct bio
*bio
)
931 blk_status_t error
= bio
->bi_status
;
932 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
933 struct dm_io
*io
= tio
->io
;
934 struct mapped_device
*md
= tio
->io
->md
;
935 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
937 if (unlikely(error
== BLK_STS_TARGET
) && md
->type
!= DM_TYPE_NVME_BIO_BASED
) {
938 if (bio_op(bio
) == REQ_OP_WRITE_SAME
&&
939 !bio
->bi_disk
->queue
->limits
.max_write_same_sectors
)
940 disable_write_same(md
);
941 if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
&&
942 !bio
->bi_disk
->queue
->limits
.max_write_zeroes_sectors
)
943 disable_write_zeroes(md
);
947 int r
= endio(tio
->ti
, bio
, &error
);
949 case DM_ENDIO_REQUEUE
:
950 error
= BLK_STS_DM_REQUEUE
;
954 case DM_ENDIO_INCOMPLETE
:
955 /* The target will handle the io */
958 DMWARN("unimplemented target endio return value: %d", r
);
964 dec_pending(io
, error
);
968 * Return maximum size of I/O possible at the supplied sector up to the current
971 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
973 sector_t target_offset
= dm_target_offset(ti
, sector
);
975 return ti
->len
- target_offset
;
978 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
980 sector_t len
= max_io_len_target_boundary(sector
, ti
);
981 sector_t offset
, max_len
;
984 * Does the target need to split even further?
986 if (ti
->max_io_len
) {
987 offset
= dm_target_offset(ti
, sector
);
988 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
989 max_len
= sector_div(offset
, ti
->max_io_len
);
991 max_len
= offset
& (ti
->max_io_len
- 1);
992 max_len
= ti
->max_io_len
- max_len
;
1001 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1003 if (len
> UINT_MAX
) {
1004 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1005 (unsigned long long)len
, UINT_MAX
);
1006 ti
->error
= "Maximum size of target IO is too large";
1011 * BIO based queue uses its own splitting. When multipage bvecs
1012 * is switched on, size of the incoming bio may be too big to
1013 * be handled in some targets, such as crypt.
1015 * When these targets are ready for the big bio, we can remove
1018 ti
->max_io_len
= min_t(uint32_t, len
, BIO_MAX_PAGES
* PAGE_SIZE
);
1022 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1024 static struct dm_target
*dm_dax_get_live_target(struct mapped_device
*md
,
1025 sector_t sector
, int *srcu_idx
)
1027 struct dm_table
*map
;
1028 struct dm_target
*ti
;
1030 map
= dm_get_live_table(md
, srcu_idx
);
1034 ti
= dm_table_find_target(map
, sector
);
1035 if (!dm_target_is_valid(ti
))
1041 static long dm_dax_direct_access(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1042 long nr_pages
, void **kaddr
, pfn_t
*pfn
)
1044 struct mapped_device
*md
= dax_get_private(dax_dev
);
1045 sector_t sector
= pgoff
* PAGE_SECTORS
;
1046 struct dm_target
*ti
;
1047 long len
, ret
= -EIO
;
1050 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1054 if (!ti
->type
->direct_access
)
1056 len
= max_io_len(sector
, ti
) / PAGE_SECTORS
;
1059 nr_pages
= min(len
, nr_pages
);
1060 if (ti
->type
->direct_access
)
1061 ret
= ti
->type
->direct_access(ti
, pgoff
, nr_pages
, kaddr
, pfn
);
1064 dm_put_live_table(md
, srcu_idx
);
1069 static size_t dm_dax_copy_from_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1070 void *addr
, size_t bytes
, struct iov_iter
*i
)
1072 struct mapped_device
*md
= dax_get_private(dax_dev
);
1073 sector_t sector
= pgoff
* PAGE_SECTORS
;
1074 struct dm_target
*ti
;
1078 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1082 if (!ti
->type
->dax_copy_from_iter
) {
1083 ret
= copy_from_iter(addr
, bytes
, i
);
1086 ret
= ti
->type
->dax_copy_from_iter(ti
, pgoff
, addr
, bytes
, i
);
1088 dm_put_live_table(md
, srcu_idx
);
1094 * A target may call dm_accept_partial_bio only from the map routine. It is
1095 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1097 * dm_accept_partial_bio informs the dm that the target only wants to process
1098 * additional n_sectors sectors of the bio and the rest of the data should be
1099 * sent in a next bio.
1101 * A diagram that explains the arithmetics:
1102 * +--------------------+---------------+-------+
1104 * +--------------------+---------------+-------+
1106 * <-------------- *tio->len_ptr --------------->
1107 * <------- bi_size ------->
1110 * Region 1 was already iterated over with bio_advance or similar function.
1111 * (it may be empty if the target doesn't use bio_advance)
1112 * Region 2 is the remaining bio size that the target wants to process.
1113 * (it may be empty if region 1 is non-empty, although there is no reason
1115 * The target requires that region 3 is to be sent in the next bio.
1117 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1118 * the partially processed part (the sum of regions 1+2) must be the same for all
1119 * copies of the bio.
1121 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1123 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1124 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1125 BUG_ON(bio
->bi_opf
& REQ_PREFLUSH
);
1126 BUG_ON(bi_size
> *tio
->len_ptr
);
1127 BUG_ON(n_sectors
> bi_size
);
1128 *tio
->len_ptr
-= bi_size
- n_sectors
;
1129 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1131 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1134 * The zone descriptors obtained with a zone report indicate
1135 * zone positions within the target device. The zone descriptors
1136 * must be remapped to match their position within the dm device.
1137 * A target may call dm_remap_zone_report after completion of a
1138 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1139 * from the target device mapping to the dm device.
1141 void dm_remap_zone_report(struct dm_target
*ti
, struct bio
*bio
, sector_t start
)
1143 #ifdef CONFIG_BLK_DEV_ZONED
1144 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1145 struct bio
*report_bio
= tio
->io
->orig_bio
;
1146 struct blk_zone_report_hdr
*hdr
= NULL
;
1147 struct blk_zone
*zone
;
1148 unsigned int nr_rep
= 0;
1150 struct bio_vec bvec
;
1151 struct bvec_iter iter
;
1158 * Remap the start sector of the reported zones. For sequential zones,
1159 * also remap the write pointer position.
1161 bio_for_each_segment(bvec
, report_bio
, iter
) {
1162 addr
= kmap_atomic(bvec
.bv_page
);
1164 /* Remember the report header in the first page */
1167 ofst
= sizeof(struct blk_zone_report_hdr
);
1171 /* Set zones start sector */
1172 while (hdr
->nr_zones
&& ofst
< bvec
.bv_len
) {
1174 if (zone
->start
>= start
+ ti
->len
) {
1178 zone
->start
= zone
->start
+ ti
->begin
- start
;
1179 if (zone
->type
!= BLK_ZONE_TYPE_CONVENTIONAL
) {
1180 if (zone
->cond
== BLK_ZONE_COND_FULL
)
1181 zone
->wp
= zone
->start
+ zone
->len
;
1182 else if (zone
->cond
== BLK_ZONE_COND_EMPTY
)
1183 zone
->wp
= zone
->start
;
1185 zone
->wp
= zone
->wp
+ ti
->begin
- start
;
1187 ofst
+= sizeof(struct blk_zone
);
1193 kunmap_atomic(addr
);
1200 hdr
->nr_zones
= nr_rep
;
1204 bio_advance(report_bio
, report_bio
->bi_iter
.bi_size
);
1206 #else /* !CONFIG_BLK_DEV_ZONED */
1207 bio
->bi_status
= BLK_STS_NOTSUPP
;
1210 EXPORT_SYMBOL_GPL(dm_remap_zone_report
);
1212 static blk_qc_t
__map_bio(struct dm_target_io
*tio
)
1216 struct bio
*clone
= &tio
->clone
;
1217 struct dm_io
*io
= tio
->io
;
1218 struct mapped_device
*md
= io
->md
;
1219 struct dm_target
*ti
= tio
->ti
;
1220 blk_qc_t ret
= BLK_QC_T_NONE
;
1222 clone
->bi_end_io
= clone_endio
;
1225 * Map the clone. If r == 0 we don't need to do
1226 * anything, the target has assumed ownership of
1229 atomic_inc(&io
->io_count
);
1230 sector
= clone
->bi_iter
.bi_sector
;
1232 r
= ti
->type
->map(ti
, clone
);
1234 case DM_MAPIO_SUBMITTED
:
1236 case DM_MAPIO_REMAPPED
:
1237 /* the bio has been remapped so dispatch it */
1238 trace_block_bio_remap(clone
->bi_disk
->queue
, clone
,
1239 bio_dev(io
->orig_bio
), sector
);
1240 if (md
->type
== DM_TYPE_NVME_BIO_BASED
)
1241 ret
= direct_make_request(clone
);
1243 ret
= generic_make_request(clone
);
1247 dec_pending(io
, BLK_STS_IOERR
);
1249 case DM_MAPIO_REQUEUE
:
1251 dec_pending(io
, BLK_STS_DM_REQUEUE
);
1254 DMWARN("unimplemented target map return value: %d", r
);
1261 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1263 bio
->bi_iter
.bi_sector
= sector
;
1264 bio
->bi_iter
.bi_size
= to_bytes(len
);
1268 * Creates a bio that consists of range of complete bvecs.
1270 static int clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1271 sector_t sector
, unsigned len
)
1273 struct bio
*clone
= &tio
->clone
;
1275 __bio_clone_fast(clone
, bio
);
1277 if (unlikely(bio_integrity(bio
) != NULL
)) {
1280 if (unlikely(!dm_target_has_integrity(tio
->ti
->type
) &&
1281 !dm_target_passes_integrity(tio
->ti
->type
))) {
1282 DMWARN("%s: the target %s doesn't support integrity data.",
1283 dm_device_name(tio
->io
->md
),
1284 tio
->ti
->type
->name
);
1288 r
= bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1293 if (bio_op(bio
) != REQ_OP_ZONE_REPORT
)
1294 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1295 clone
->bi_iter
.bi_size
= to_bytes(len
);
1297 if (unlikely(bio_integrity(bio
) != NULL
))
1298 bio_integrity_trim(clone
);
1303 static void alloc_multiple_bios(struct bio_list
*blist
, struct clone_info
*ci
,
1304 struct dm_target
*ti
, unsigned num_bios
)
1306 struct dm_target_io
*tio
;
1312 if (num_bios
== 1) {
1313 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1314 bio_list_add(blist
, &tio
->clone
);
1318 for (try = 0; try < 2; try++) {
1323 mutex_lock(&ci
->io
->md
->table_devices_lock
);
1324 for (bio_nr
= 0; bio_nr
< num_bios
; bio_nr
++) {
1325 tio
= alloc_tio(ci
, ti
, bio_nr
, try ? GFP_NOIO
: GFP_NOWAIT
);
1329 bio_list_add(blist
, &tio
->clone
);
1332 mutex_unlock(&ci
->io
->md
->table_devices_lock
);
1333 if (bio_nr
== num_bios
)
1336 while ((bio
= bio_list_pop(blist
))) {
1337 tio
= container_of(bio
, struct dm_target_io
, clone
);
1343 static blk_qc_t
__clone_and_map_simple_bio(struct clone_info
*ci
,
1344 struct dm_target_io
*tio
, unsigned *len
)
1346 struct bio
*clone
= &tio
->clone
;
1350 __bio_clone_fast(clone
, ci
->bio
);
1352 bio_setup_sector(clone
, ci
->sector
, *len
);
1354 return __map_bio(tio
);
1357 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1358 unsigned num_bios
, unsigned *len
)
1360 struct bio_list blist
= BIO_EMPTY_LIST
;
1362 struct dm_target_io
*tio
;
1364 alloc_multiple_bios(&blist
, ci
, ti
, num_bios
);
1366 while ((bio
= bio_list_pop(&blist
))) {
1367 tio
= container_of(bio
, struct dm_target_io
, clone
);
1368 (void) __clone_and_map_simple_bio(ci
, tio
, len
);
1372 static int __send_empty_flush(struct clone_info
*ci
)
1374 unsigned target_nr
= 0;
1375 struct dm_target
*ti
;
1377 BUG_ON(bio_has_data(ci
->bio
));
1378 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1379 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1384 static int __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1385 sector_t sector
, unsigned *len
)
1387 struct bio
*bio
= ci
->bio
;
1388 struct dm_target_io
*tio
;
1391 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1393 r
= clone_bio(tio
, bio
, sector
, *len
);
1398 (void) __map_bio(tio
);
1403 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1405 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1407 return ti
->num_discard_bios
;
1410 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1412 return ti
->num_write_same_bios
;
1415 static unsigned get_num_write_zeroes_bios(struct dm_target
*ti
)
1417 return ti
->num_write_zeroes_bios
;
1420 typedef bool (*is_split_required_fn
)(struct dm_target
*ti
);
1422 static bool is_split_required_for_discard(struct dm_target
*ti
)
1424 return ti
->split_discard_bios
;
1427 static int __send_changing_extent_only(struct clone_info
*ci
, struct dm_target
*ti
,
1428 get_num_bios_fn get_num_bios
,
1429 is_split_required_fn is_split_required
)
1435 * Even though the device advertised support for this type of
1436 * request, that does not mean every target supports it, and
1437 * reconfiguration might also have changed that since the
1438 * check was performed.
1440 num_bios
= get_num_bios
? get_num_bios(ti
) : 0;
1444 if (is_split_required
&& !is_split_required(ti
))
1445 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1447 len
= min((sector_t
)ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1449 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1452 ci
->sector_count
-= len
;
1457 static int __send_discard(struct clone_info
*ci
, struct dm_target
*ti
)
1459 return __send_changing_extent_only(ci
, ti
, get_num_discard_bios
,
1460 is_split_required_for_discard
);
1463 static int __send_write_same(struct clone_info
*ci
, struct dm_target
*ti
)
1465 return __send_changing_extent_only(ci
, ti
, get_num_write_same_bios
, NULL
);
1468 static int __send_write_zeroes(struct clone_info
*ci
, struct dm_target
*ti
)
1470 return __send_changing_extent_only(ci
, ti
, get_num_write_zeroes_bios
, NULL
);
1474 * Select the correct strategy for processing a non-flush bio.
1476 static int __split_and_process_non_flush(struct clone_info
*ci
)
1478 struct bio
*bio
= ci
->bio
;
1479 struct dm_target
*ti
;
1483 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1484 if (!dm_target_is_valid(ti
))
1487 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
))
1488 return __send_discard(ci
, ti
);
1489 else if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
1490 return __send_write_same(ci
, ti
);
1491 else if (unlikely(bio_op(bio
) == REQ_OP_WRITE_ZEROES
))
1492 return __send_write_zeroes(ci
, ti
);
1494 if (bio_op(bio
) == REQ_OP_ZONE_REPORT
)
1495 len
= ci
->sector_count
;
1497 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
),
1500 r
= __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1505 ci
->sector_count
-= len
;
1510 static void init_clone_info(struct clone_info
*ci
, struct mapped_device
*md
,
1511 struct dm_table
*map
, struct bio
*bio
)
1514 ci
->io
= alloc_io(md
, bio
);
1515 ci
->sector
= bio
->bi_iter
.bi_sector
;
1519 * Entry point to split a bio into clones and submit them to the targets.
1521 static blk_qc_t
__split_and_process_bio(struct mapped_device
*md
,
1522 struct dm_table
*map
, struct bio
*bio
)
1524 struct clone_info ci
;
1525 blk_qc_t ret
= BLK_QC_T_NONE
;
1528 if (unlikely(!map
)) {
1533 init_clone_info(&ci
, md
, map
, bio
);
1535 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1536 ci
.bio
= &ci
.io
->md
->flush_bio
;
1537 ci
.sector_count
= 0;
1538 error
= __send_empty_flush(&ci
);
1539 /* dec_pending submits any data associated with flush */
1540 } else if (bio_op(bio
) == REQ_OP_ZONE_RESET
) {
1542 ci
.sector_count
= 0;
1543 error
= __split_and_process_non_flush(&ci
);
1546 ci
.sector_count
= bio_sectors(bio
);
1547 while (ci
.sector_count
&& !error
) {
1548 error
= __split_and_process_non_flush(&ci
);
1549 if (current
->bio_list
&& ci
.sector_count
&& !error
) {
1551 * Remainder must be passed to generic_make_request()
1552 * so that it gets handled *after* bios already submitted
1553 * have been completely processed.
1554 * We take a clone of the original to store in
1555 * ci.io->orig_bio to be used by end_io_acct() and
1556 * for dec_pending to use for completion handling.
1557 * As this path is not used for REQ_OP_ZONE_REPORT,
1558 * the usage of io->orig_bio in dm_remap_zone_report()
1559 * won't be affected by this reassignment.
1561 struct bio
*b
= bio_clone_bioset(bio
, GFP_NOIO
,
1562 md
->queue
->bio_split
);
1563 ci
.io
->orig_bio
= b
;
1564 bio_advance(bio
, (bio_sectors(bio
) - ci
.sector_count
) << 9);
1566 ret
= generic_make_request(bio
);
1572 /* drop the extra reference count */
1573 dec_pending(ci
.io
, errno_to_blk_status(error
));
1578 * Optimized variant of __split_and_process_bio that leverages the
1579 * fact that targets that use it do _not_ have a need to split bios.
1581 static blk_qc_t
__process_bio(struct mapped_device
*md
,
1582 struct dm_table
*map
, struct bio
*bio
)
1584 struct clone_info ci
;
1585 blk_qc_t ret
= BLK_QC_T_NONE
;
1588 if (unlikely(!map
)) {
1593 init_clone_info(&ci
, md
, map
, bio
);
1595 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1596 ci
.bio
= &ci
.io
->md
->flush_bio
;
1597 ci
.sector_count
= 0;
1598 error
= __send_empty_flush(&ci
);
1599 /* dec_pending submits any data associated with flush */
1601 struct dm_target
*ti
= md
->immutable_target
;
1602 struct dm_target_io
*tio
;
1605 * Defend against IO still getting in during teardown
1606 * - as was seen for a time with nvme-fcloop
1608 if (unlikely(WARN_ON_ONCE(!ti
|| !dm_target_is_valid(ti
)))) {
1613 tio
= alloc_tio(&ci
, ti
, 0, GFP_NOIO
);
1615 ci
.sector_count
= bio_sectors(bio
);
1616 ret
= __clone_and_map_simple_bio(&ci
, tio
, NULL
);
1619 /* drop the extra reference count */
1620 dec_pending(ci
.io
, errno_to_blk_status(error
));
1624 typedef blk_qc_t (process_bio_fn
)(struct mapped_device
*, struct dm_table
*, struct bio
*);
1626 static blk_qc_t
__dm_make_request(struct request_queue
*q
, struct bio
*bio
,
1627 process_bio_fn process_bio
)
1629 struct mapped_device
*md
= q
->queuedata
;
1630 blk_qc_t ret
= BLK_QC_T_NONE
;
1632 struct dm_table
*map
;
1634 map
= dm_get_live_table(md
, &srcu_idx
);
1636 /* if we're suspended, we have to queue this io for later */
1637 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1638 dm_put_live_table(md
, srcu_idx
);
1640 if (!(bio
->bi_opf
& REQ_RAHEAD
))
1647 ret
= process_bio(md
, map
, bio
);
1649 dm_put_live_table(md
, srcu_idx
);
1654 * The request function that remaps the bio to one target and
1655 * splits off any remainder.
1657 static blk_qc_t
dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1659 return __dm_make_request(q
, bio
, __split_and_process_bio
);
1662 static blk_qc_t
dm_make_request_nvme(struct request_queue
*q
, struct bio
*bio
)
1664 return __dm_make_request(q
, bio
, __process_bio
);
1667 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1670 struct mapped_device
*md
= congested_data
;
1671 struct dm_table
*map
;
1673 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1674 if (dm_request_based(md
)) {
1676 * With request-based DM we only need to check the
1677 * top-level queue for congestion.
1679 r
= md
->queue
->backing_dev_info
->wb
.state
& bdi_bits
;
1681 map
= dm_get_live_table_fast(md
);
1683 r
= dm_table_any_congested(map
, bdi_bits
);
1684 dm_put_live_table_fast(md
);
1691 /*-----------------------------------------------------------------
1692 * An IDR is used to keep track of allocated minor numbers.
1693 *---------------------------------------------------------------*/
1694 static void free_minor(int minor
)
1696 spin_lock(&_minor_lock
);
1697 idr_remove(&_minor_idr
, minor
);
1698 spin_unlock(&_minor_lock
);
1702 * See if the device with a specific minor # is free.
1704 static int specific_minor(int minor
)
1708 if (minor
>= (1 << MINORBITS
))
1711 idr_preload(GFP_KERNEL
);
1712 spin_lock(&_minor_lock
);
1714 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1716 spin_unlock(&_minor_lock
);
1719 return r
== -ENOSPC
? -EBUSY
: r
;
1723 static int next_free_minor(int *minor
)
1727 idr_preload(GFP_KERNEL
);
1728 spin_lock(&_minor_lock
);
1730 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1732 spin_unlock(&_minor_lock
);
1740 static const struct block_device_operations dm_blk_dops
;
1741 static const struct dax_operations dm_dax_ops
;
1743 static void dm_wq_work(struct work_struct
*work
);
1745 static void dm_init_normal_md_queue(struct mapped_device
*md
)
1747 md
->use_blk_mq
= false;
1750 * Initialize aspects of queue that aren't relevant for blk-mq
1752 md
->queue
->backing_dev_info
->congested_fn
= dm_any_congested
;
1755 static void cleanup_mapped_device(struct mapped_device
*md
)
1758 destroy_workqueue(md
->wq
);
1759 if (md
->kworker_task
)
1760 kthread_stop(md
->kworker_task
);
1762 bioset_free(md
->bs
);
1764 bioset_free(md
->io_bs
);
1767 kill_dax(md
->dax_dev
);
1768 put_dax(md
->dax_dev
);
1773 spin_lock(&_minor_lock
);
1774 md
->disk
->private_data
= NULL
;
1775 spin_unlock(&_minor_lock
);
1776 del_gendisk(md
->disk
);
1781 blk_cleanup_queue(md
->queue
);
1783 cleanup_srcu_struct(&md
->io_barrier
);
1790 mutex_destroy(&md
->suspend_lock
);
1791 mutex_destroy(&md
->type_lock
);
1792 mutex_destroy(&md
->table_devices_lock
);
1794 dm_mq_cleanup_mapped_device(md
);
1798 * Allocate and initialise a blank device with a given minor.
1800 static struct mapped_device
*alloc_dev(int minor
)
1802 int r
, numa_node_id
= dm_get_numa_node();
1803 struct dax_device
*dax_dev
;
1804 struct mapped_device
*md
;
1807 md
= kvzalloc_node(sizeof(*md
), GFP_KERNEL
, numa_node_id
);
1809 DMWARN("unable to allocate device, out of memory.");
1813 if (!try_module_get(THIS_MODULE
))
1814 goto bad_module_get
;
1816 /* get a minor number for the dev */
1817 if (minor
== DM_ANY_MINOR
)
1818 r
= next_free_minor(&minor
);
1820 r
= specific_minor(minor
);
1824 r
= init_srcu_struct(&md
->io_barrier
);
1826 goto bad_io_barrier
;
1828 md
->numa_node_id
= numa_node_id
;
1829 md
->use_blk_mq
= dm_use_blk_mq_default();
1830 md
->init_tio_pdu
= false;
1831 md
->type
= DM_TYPE_NONE
;
1832 mutex_init(&md
->suspend_lock
);
1833 mutex_init(&md
->type_lock
);
1834 mutex_init(&md
->table_devices_lock
);
1835 spin_lock_init(&md
->deferred_lock
);
1836 atomic_set(&md
->holders
, 1);
1837 atomic_set(&md
->open_count
, 0);
1838 atomic_set(&md
->event_nr
, 0);
1839 atomic_set(&md
->uevent_seq
, 0);
1840 INIT_LIST_HEAD(&md
->uevent_list
);
1841 INIT_LIST_HEAD(&md
->table_devices
);
1842 spin_lock_init(&md
->uevent_lock
);
1844 md
->queue
= blk_alloc_queue_node(GFP_KERNEL
, numa_node_id
);
1847 md
->queue
->queuedata
= md
;
1848 md
->queue
->backing_dev_info
->congested_data
= md
;
1850 md
->disk
= alloc_disk_node(1, md
->numa_node_id
);
1854 atomic_set(&md
->pending
[0], 0);
1855 atomic_set(&md
->pending
[1], 0);
1856 init_waitqueue_head(&md
->wait
);
1857 INIT_WORK(&md
->work
, dm_wq_work
);
1858 init_waitqueue_head(&md
->eventq
);
1859 init_completion(&md
->kobj_holder
.completion
);
1860 md
->kworker_task
= NULL
;
1862 md
->disk
->major
= _major
;
1863 md
->disk
->first_minor
= minor
;
1864 md
->disk
->fops
= &dm_blk_dops
;
1865 md
->disk
->queue
= md
->queue
;
1866 md
->disk
->private_data
= md
;
1867 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1869 dax_dev
= alloc_dax(md
, md
->disk
->disk_name
, &dm_dax_ops
);
1872 md
->dax_dev
= dax_dev
;
1874 add_disk_no_queue_reg(md
->disk
);
1875 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1877 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
1881 md
->bdev
= bdget_disk(md
->disk
, 0);
1885 bio_init(&md
->flush_bio
, NULL
, 0);
1886 bio_set_dev(&md
->flush_bio
, md
->bdev
);
1887 md
->flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1889 dm_stats_init(&md
->stats
);
1891 /* Populate the mapping, nobody knows we exist yet */
1892 spin_lock(&_minor_lock
);
1893 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1894 spin_unlock(&_minor_lock
);
1896 BUG_ON(old_md
!= MINOR_ALLOCED
);
1901 cleanup_mapped_device(md
);
1905 module_put(THIS_MODULE
);
1911 static void unlock_fs(struct mapped_device
*md
);
1913 static void free_dev(struct mapped_device
*md
)
1915 int minor
= MINOR(disk_devt(md
->disk
));
1919 cleanup_mapped_device(md
);
1921 free_table_devices(&md
->table_devices
);
1922 dm_stats_cleanup(&md
->stats
);
1925 module_put(THIS_MODULE
);
1929 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1931 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
1933 if (dm_table_bio_based(t
)) {
1935 * The md may already have mempools that need changing.
1936 * If so, reload bioset because front_pad may have changed
1937 * because a different table was loaded.
1940 bioset_free(md
->bs
);
1944 bioset_free(md
->io_bs
);
1948 } else if (md
->bs
) {
1950 * There's no need to reload with request-based dm
1951 * because the size of front_pad doesn't change.
1952 * Note for future: If you are to reload bioset,
1953 * prep-ed requests in the queue may refer
1954 * to bio from the old bioset, so you must walk
1955 * through the queue to unprep.
1960 BUG_ON(!p
|| md
->bs
|| md
->io_bs
);
1964 md
->io_bs
= p
->io_bs
;
1967 /* mempool bind completed, no longer need any mempools in the table */
1968 dm_table_free_md_mempools(t
);
1972 * Bind a table to the device.
1974 static void event_callback(void *context
)
1976 unsigned long flags
;
1978 struct mapped_device
*md
= (struct mapped_device
*) context
;
1980 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1981 list_splice_init(&md
->uevent_list
, &uevents
);
1982 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1984 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1986 atomic_inc(&md
->event_nr
);
1987 wake_up(&md
->eventq
);
1988 dm_issue_global_event();
1992 * Protected by md->suspend_lock obtained by dm_swap_table().
1994 static void __set_size(struct mapped_device
*md
, sector_t size
)
1996 lockdep_assert_held(&md
->suspend_lock
);
1998 set_capacity(md
->disk
, size
);
2000 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2004 * Returns old map, which caller must destroy.
2006 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2007 struct queue_limits
*limits
)
2009 struct dm_table
*old_map
;
2010 struct request_queue
*q
= md
->queue
;
2011 bool request_based
= dm_table_request_based(t
);
2014 lockdep_assert_held(&md
->suspend_lock
);
2016 size
= dm_table_get_size(t
);
2019 * Wipe any geometry if the size of the table changed.
2021 if (size
!= dm_get_size(md
))
2022 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2024 __set_size(md
, size
);
2026 dm_table_event_callback(t
, event_callback
, md
);
2029 * The queue hasn't been stopped yet, if the old table type wasn't
2030 * for request-based during suspension. So stop it to prevent
2031 * I/O mapping before resume.
2032 * This must be done before setting the queue restrictions,
2033 * because request-based dm may be run just after the setting.
2038 if (request_based
|| md
->type
== DM_TYPE_NVME_BIO_BASED
) {
2040 * Leverage the fact that request-based DM targets and
2041 * NVMe bio based targets are immutable singletons
2042 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2043 * and __process_bio.
2045 md
->immutable_target
= dm_table_get_immutable_target(t
);
2048 __bind_mempools(md
, t
);
2050 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2051 rcu_assign_pointer(md
->map
, (void *)t
);
2052 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2054 dm_table_set_restrictions(t
, q
, limits
);
2062 * Returns unbound table for the caller to free.
2064 static struct dm_table
*__unbind(struct mapped_device
*md
)
2066 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2071 dm_table_event_callback(map
, NULL
, NULL
);
2072 RCU_INIT_POINTER(md
->map
, NULL
);
2079 * Constructor for a new device.
2081 int dm_create(int minor
, struct mapped_device
**result
)
2084 struct mapped_device
*md
;
2086 md
= alloc_dev(minor
);
2090 r
= dm_sysfs_init(md
);
2101 * Functions to manage md->type.
2102 * All are required to hold md->type_lock.
2104 void dm_lock_md_type(struct mapped_device
*md
)
2106 mutex_lock(&md
->type_lock
);
2109 void dm_unlock_md_type(struct mapped_device
*md
)
2111 mutex_unlock(&md
->type_lock
);
2114 void dm_set_md_type(struct mapped_device
*md
, enum dm_queue_mode type
)
2116 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2120 enum dm_queue_mode
dm_get_md_type(struct mapped_device
*md
)
2125 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2127 return md
->immutable_target_type
;
2131 * The queue_limits are only valid as long as you have a reference
2134 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2136 BUG_ON(!atomic_read(&md
->holders
));
2137 return &md
->queue
->limits
;
2139 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2142 * Setup the DM device's queue based on md's type
2144 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
2147 struct queue_limits limits
;
2148 enum dm_queue_mode type
= dm_get_md_type(md
);
2151 case DM_TYPE_REQUEST_BASED
:
2152 dm_init_normal_md_queue(md
);
2153 r
= dm_old_init_request_queue(md
, t
);
2155 DMERR("Cannot initialize queue for request-based mapped device");
2159 case DM_TYPE_MQ_REQUEST_BASED
:
2160 r
= dm_mq_init_request_queue(md
, t
);
2162 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2166 case DM_TYPE_BIO_BASED
:
2167 case DM_TYPE_DAX_BIO_BASED
:
2168 dm_init_normal_md_queue(md
);
2169 blk_queue_make_request(md
->queue
, dm_make_request
);
2171 case DM_TYPE_NVME_BIO_BASED
:
2172 dm_init_normal_md_queue(md
);
2173 blk_queue_make_request(md
->queue
, dm_make_request_nvme
);
2180 r
= dm_calculate_queue_limits(t
, &limits
);
2182 DMERR("Cannot calculate initial queue limits");
2185 dm_table_set_restrictions(t
, md
->queue
, &limits
);
2186 blk_register_queue(md
->disk
);
2191 struct mapped_device
*dm_get_md(dev_t dev
)
2193 struct mapped_device
*md
;
2194 unsigned minor
= MINOR(dev
);
2196 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2199 spin_lock(&_minor_lock
);
2201 md
= idr_find(&_minor_idr
, minor
);
2202 if (!md
|| md
== MINOR_ALLOCED
|| (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2203 test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2209 spin_unlock(&_minor_lock
);
2213 EXPORT_SYMBOL_GPL(dm_get_md
);
2215 void *dm_get_mdptr(struct mapped_device
*md
)
2217 return md
->interface_ptr
;
2220 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2222 md
->interface_ptr
= ptr
;
2225 void dm_get(struct mapped_device
*md
)
2227 atomic_inc(&md
->holders
);
2228 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2231 int dm_hold(struct mapped_device
*md
)
2233 spin_lock(&_minor_lock
);
2234 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2235 spin_unlock(&_minor_lock
);
2239 spin_unlock(&_minor_lock
);
2242 EXPORT_SYMBOL_GPL(dm_hold
);
2244 const char *dm_device_name(struct mapped_device
*md
)
2248 EXPORT_SYMBOL_GPL(dm_device_name
);
2250 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2252 struct dm_table
*map
;
2257 spin_lock(&_minor_lock
);
2258 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2259 set_bit(DMF_FREEING
, &md
->flags
);
2260 spin_unlock(&_minor_lock
);
2262 blk_set_queue_dying(md
->queue
);
2264 if (dm_request_based(md
) && md
->kworker_task
)
2265 kthread_flush_worker(&md
->kworker
);
2268 * Take suspend_lock so that presuspend and postsuspend methods
2269 * do not race with internal suspend.
2271 mutex_lock(&md
->suspend_lock
);
2272 map
= dm_get_live_table(md
, &srcu_idx
);
2273 if (!dm_suspended_md(md
)) {
2274 dm_table_presuspend_targets(map
);
2275 dm_table_postsuspend_targets(map
);
2277 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2278 dm_put_live_table(md
, srcu_idx
);
2279 mutex_unlock(&md
->suspend_lock
);
2282 * Rare, but there may be I/O requests still going to complete,
2283 * for example. Wait for all references to disappear.
2284 * No one should increment the reference count of the mapped_device,
2285 * after the mapped_device state becomes DMF_FREEING.
2288 while (atomic_read(&md
->holders
))
2290 else if (atomic_read(&md
->holders
))
2291 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2292 dm_device_name(md
), atomic_read(&md
->holders
));
2295 dm_table_destroy(__unbind(md
));
2299 void dm_destroy(struct mapped_device
*md
)
2301 __dm_destroy(md
, true);
2304 void dm_destroy_immediate(struct mapped_device
*md
)
2306 __dm_destroy(md
, false);
2309 void dm_put(struct mapped_device
*md
)
2311 atomic_dec(&md
->holders
);
2313 EXPORT_SYMBOL_GPL(dm_put
);
2315 static int dm_wait_for_completion(struct mapped_device
*md
, long task_state
)
2321 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2323 if (!md_in_flight(md
))
2326 if (signal_pending_state(task_state
, current
)) {
2333 finish_wait(&md
->wait
, &wait
);
2339 * Process the deferred bios
2341 static void dm_wq_work(struct work_struct
*work
)
2343 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2347 struct dm_table
*map
;
2349 map
= dm_get_live_table(md
, &srcu_idx
);
2351 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2352 spin_lock_irq(&md
->deferred_lock
);
2353 c
= bio_list_pop(&md
->deferred
);
2354 spin_unlock_irq(&md
->deferred_lock
);
2359 if (dm_request_based(md
))
2360 generic_make_request(c
);
2362 __split_and_process_bio(md
, map
, c
);
2365 dm_put_live_table(md
, srcu_idx
);
2368 static void dm_queue_flush(struct mapped_device
*md
)
2370 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2371 smp_mb__after_atomic();
2372 queue_work(md
->wq
, &md
->work
);
2376 * Swap in a new table, returning the old one for the caller to destroy.
2378 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2380 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2381 struct queue_limits limits
;
2384 mutex_lock(&md
->suspend_lock
);
2386 /* device must be suspended */
2387 if (!dm_suspended_md(md
))
2391 * If the new table has no data devices, retain the existing limits.
2392 * This helps multipath with queue_if_no_path if all paths disappear,
2393 * then new I/O is queued based on these limits, and then some paths
2396 if (dm_table_has_no_data_devices(table
)) {
2397 live_map
= dm_get_live_table_fast(md
);
2399 limits
= md
->queue
->limits
;
2400 dm_put_live_table_fast(md
);
2404 r
= dm_calculate_queue_limits(table
, &limits
);
2411 map
= __bind(md
, table
, &limits
);
2412 dm_issue_global_event();
2415 mutex_unlock(&md
->suspend_lock
);
2420 * Functions to lock and unlock any filesystem running on the
2423 static int lock_fs(struct mapped_device
*md
)
2427 WARN_ON(md
->frozen_sb
);
2429 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2430 if (IS_ERR(md
->frozen_sb
)) {
2431 r
= PTR_ERR(md
->frozen_sb
);
2432 md
->frozen_sb
= NULL
;
2436 set_bit(DMF_FROZEN
, &md
->flags
);
2441 static void unlock_fs(struct mapped_device
*md
)
2443 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2446 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2447 md
->frozen_sb
= NULL
;
2448 clear_bit(DMF_FROZEN
, &md
->flags
);
2452 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2453 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2454 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2456 * If __dm_suspend returns 0, the device is completely quiescent
2457 * now. There is no request-processing activity. All new requests
2458 * are being added to md->deferred list.
2460 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2461 unsigned suspend_flags
, long task_state
,
2462 int dmf_suspended_flag
)
2464 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2465 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2468 lockdep_assert_held(&md
->suspend_lock
);
2471 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2472 * This flag is cleared before dm_suspend returns.
2475 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2477 pr_debug("%s: suspending with flush\n", dm_device_name(md
));
2480 * This gets reverted if there's an error later and the targets
2481 * provide the .presuspend_undo hook.
2483 dm_table_presuspend_targets(map
);
2486 * Flush I/O to the device.
2487 * Any I/O submitted after lock_fs() may not be flushed.
2488 * noflush takes precedence over do_lockfs.
2489 * (lock_fs() flushes I/Os and waits for them to complete.)
2491 if (!noflush
&& do_lockfs
) {
2494 dm_table_presuspend_undo_targets(map
);
2500 * Here we must make sure that no processes are submitting requests
2501 * to target drivers i.e. no one may be executing
2502 * __split_and_process_bio. This is called from dm_request and
2505 * To get all processes out of __split_and_process_bio in dm_request,
2506 * we take the write lock. To prevent any process from reentering
2507 * __split_and_process_bio from dm_request and quiesce the thread
2508 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2509 * flush_workqueue(md->wq).
2511 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2513 synchronize_srcu(&md
->io_barrier
);
2516 * Stop md->queue before flushing md->wq in case request-based
2517 * dm defers requests to md->wq from md->queue.
2519 if (dm_request_based(md
)) {
2520 dm_stop_queue(md
->queue
);
2521 if (md
->kworker_task
)
2522 kthread_flush_worker(&md
->kworker
);
2525 flush_workqueue(md
->wq
);
2528 * At this point no more requests are entering target request routines.
2529 * We call dm_wait_for_completion to wait for all existing requests
2532 r
= dm_wait_for_completion(md
, task_state
);
2534 set_bit(dmf_suspended_flag
, &md
->flags
);
2537 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2539 synchronize_srcu(&md
->io_barrier
);
2541 /* were we interrupted ? */
2545 if (dm_request_based(md
))
2546 dm_start_queue(md
->queue
);
2549 dm_table_presuspend_undo_targets(map
);
2550 /* pushback list is already flushed, so skip flush */
2557 * We need to be able to change a mapping table under a mounted
2558 * filesystem. For example we might want to move some data in
2559 * the background. Before the table can be swapped with
2560 * dm_bind_table, dm_suspend must be called to flush any in
2561 * flight bios and ensure that any further io gets deferred.
2564 * Suspend mechanism in request-based dm.
2566 * 1. Flush all I/Os by lock_fs() if needed.
2567 * 2. Stop dispatching any I/O by stopping the request_queue.
2568 * 3. Wait for all in-flight I/Os to be completed or requeued.
2570 * To abort suspend, start the request_queue.
2572 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2574 struct dm_table
*map
= NULL
;
2578 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2580 if (dm_suspended_md(md
)) {
2585 if (dm_suspended_internally_md(md
)) {
2586 /* already internally suspended, wait for internal resume */
2587 mutex_unlock(&md
->suspend_lock
);
2588 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2594 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2596 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
2600 dm_table_postsuspend_targets(map
);
2603 mutex_unlock(&md
->suspend_lock
);
2607 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
2610 int r
= dm_table_resume_targets(map
);
2618 * Flushing deferred I/Os must be done after targets are resumed
2619 * so that mapping of targets can work correctly.
2620 * Request-based dm is queueing the deferred I/Os in its request_queue.
2622 if (dm_request_based(md
))
2623 dm_start_queue(md
->queue
);
2630 int dm_resume(struct mapped_device
*md
)
2633 struct dm_table
*map
= NULL
;
2637 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2639 if (!dm_suspended_md(md
))
2642 if (dm_suspended_internally_md(md
)) {
2643 /* already internally suspended, wait for internal resume */
2644 mutex_unlock(&md
->suspend_lock
);
2645 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2651 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2652 if (!map
|| !dm_table_get_size(map
))
2655 r
= __dm_resume(md
, map
);
2659 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2661 mutex_unlock(&md
->suspend_lock
);
2667 * Internal suspend/resume works like userspace-driven suspend. It waits
2668 * until all bios finish and prevents issuing new bios to the target drivers.
2669 * It may be used only from the kernel.
2672 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2674 struct dm_table
*map
= NULL
;
2676 lockdep_assert_held(&md
->suspend_lock
);
2678 if (md
->internal_suspend_count
++)
2679 return; /* nested internal suspend */
2681 if (dm_suspended_md(md
)) {
2682 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2683 return; /* nest suspend */
2686 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2689 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2690 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2691 * would require changing .presuspend to return an error -- avoid this
2692 * until there is a need for more elaborate variants of internal suspend.
2694 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
2695 DMF_SUSPENDED_INTERNALLY
);
2697 dm_table_postsuspend_targets(map
);
2700 static void __dm_internal_resume(struct mapped_device
*md
)
2702 BUG_ON(!md
->internal_suspend_count
);
2704 if (--md
->internal_suspend_count
)
2705 return; /* resume from nested internal suspend */
2707 if (dm_suspended_md(md
))
2708 goto done
; /* resume from nested suspend */
2711 * NOTE: existing callers don't need to call dm_table_resume_targets
2712 * (which may fail -- so best to avoid it for now by passing NULL map)
2714 (void) __dm_resume(md
, NULL
);
2717 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2718 smp_mb__after_atomic();
2719 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
2722 void dm_internal_suspend_noflush(struct mapped_device
*md
)
2724 mutex_lock(&md
->suspend_lock
);
2725 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
2726 mutex_unlock(&md
->suspend_lock
);
2728 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
2730 void dm_internal_resume(struct mapped_device
*md
)
2732 mutex_lock(&md
->suspend_lock
);
2733 __dm_internal_resume(md
);
2734 mutex_unlock(&md
->suspend_lock
);
2736 EXPORT_SYMBOL_GPL(dm_internal_resume
);
2739 * Fast variants of internal suspend/resume hold md->suspend_lock,
2740 * which prevents interaction with userspace-driven suspend.
2743 void dm_internal_suspend_fast(struct mapped_device
*md
)
2745 mutex_lock(&md
->suspend_lock
);
2746 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2749 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2750 synchronize_srcu(&md
->io_barrier
);
2751 flush_workqueue(md
->wq
);
2752 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2754 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
2756 void dm_internal_resume_fast(struct mapped_device
*md
)
2758 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2764 mutex_unlock(&md
->suspend_lock
);
2766 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
2768 /*-----------------------------------------------------------------
2769 * Event notification.
2770 *---------------------------------------------------------------*/
2771 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2774 char udev_cookie
[DM_COOKIE_LENGTH
];
2775 char *envp
[] = { udev_cookie
, NULL
};
2778 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2780 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2781 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2782 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2787 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2789 return atomic_add_return(1, &md
->uevent_seq
);
2792 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2794 return atomic_read(&md
->event_nr
);
2797 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2799 return wait_event_interruptible(md
->eventq
,
2800 (event_nr
!= atomic_read(&md
->event_nr
)));
2803 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2805 unsigned long flags
;
2807 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2808 list_add(elist
, &md
->uevent_list
);
2809 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2813 * The gendisk is only valid as long as you have a reference
2816 struct gendisk
*dm_disk(struct mapped_device
*md
)
2820 EXPORT_SYMBOL_GPL(dm_disk
);
2822 struct kobject
*dm_kobject(struct mapped_device
*md
)
2824 return &md
->kobj_holder
.kobj
;
2827 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2829 struct mapped_device
*md
;
2831 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2833 spin_lock(&_minor_lock
);
2834 if (test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2840 spin_unlock(&_minor_lock
);
2845 int dm_suspended_md(struct mapped_device
*md
)
2847 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2850 int dm_suspended_internally_md(struct mapped_device
*md
)
2852 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2855 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2857 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2860 int dm_suspended(struct dm_target
*ti
)
2862 return dm_suspended_md(dm_table_get_md(ti
->table
));
2864 EXPORT_SYMBOL_GPL(dm_suspended
);
2866 int dm_noflush_suspending(struct dm_target
*ti
)
2868 return __noflush_suspending(dm_table_get_md(ti
->table
));
2870 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2872 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, enum dm_queue_mode type
,
2873 unsigned integrity
, unsigned per_io_data_size
,
2874 unsigned min_pool_size
)
2876 struct dm_md_mempools
*pools
= kzalloc_node(sizeof(*pools
), GFP_KERNEL
, md
->numa_node_id
);
2877 unsigned int pool_size
= 0;
2878 unsigned int front_pad
, io_front_pad
;
2884 case DM_TYPE_BIO_BASED
:
2885 case DM_TYPE_DAX_BIO_BASED
:
2886 case DM_TYPE_NVME_BIO_BASED
:
2887 pool_size
= max(dm_get_reserved_bio_based_ios(), min_pool_size
);
2888 front_pad
= roundup(per_io_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
2889 io_front_pad
= roundup(front_pad
, __alignof__(struct dm_io
)) + offsetof(struct dm_io
, tio
);
2890 pools
->io_bs
= bioset_create(pool_size
, io_front_pad
, 0);
2893 if (integrity
&& bioset_integrity_create(pools
->io_bs
, pool_size
))
2896 case DM_TYPE_REQUEST_BASED
:
2897 case DM_TYPE_MQ_REQUEST_BASED
:
2898 pool_size
= max(dm_get_reserved_rq_based_ios(), min_pool_size
);
2899 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
2900 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2906 pools
->bs
= bioset_create(pool_size
, front_pad
, 0);
2910 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2916 dm_free_md_mempools(pools
);
2921 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2927 bioset_free(pools
->bs
);
2929 bioset_free(pools
->io_bs
);
2941 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
2944 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2945 struct dm_table
*table
;
2946 struct dm_target
*ti
;
2947 int ret
= -ENOTTY
, srcu_idx
;
2949 table
= dm_get_live_table(md
, &srcu_idx
);
2950 if (!table
|| !dm_table_get_size(table
))
2953 /* We only support devices that have a single target */
2954 if (dm_table_get_num_targets(table
) != 1)
2956 ti
= dm_table_get_target(table
, 0);
2959 if (!ti
->type
->iterate_devices
)
2962 ret
= ti
->type
->iterate_devices(ti
, fn
, data
);
2964 dm_put_live_table(md
, srcu_idx
);
2969 * For register / unregister we need to manually call out to every path.
2971 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
2972 sector_t start
, sector_t len
, void *data
)
2974 struct dm_pr
*pr
= data
;
2975 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
2977 if (!ops
|| !ops
->pr_register
)
2979 return ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
2982 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
2993 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
2994 if (ret
&& new_key
) {
2995 /* unregister all paths if we failed to register any path */
2996 pr
.old_key
= new_key
;
2999 pr
.fail_early
= false;
3000 dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3006 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
3009 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3010 const struct pr_ops
*ops
;
3014 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
3018 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3019 if (ops
&& ops
->pr_reserve
)
3020 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
3028 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
3030 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3031 const struct pr_ops
*ops
;
3035 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
3039 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3040 if (ops
&& ops
->pr_release
)
3041 r
= ops
->pr_release(bdev
, key
, type
);
3049 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3050 enum pr_type type
, bool abort
)
3052 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3053 const struct pr_ops
*ops
;
3057 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
3061 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3062 if (ops
&& ops
->pr_preempt
)
3063 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
3071 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
3073 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3074 const struct pr_ops
*ops
;
3078 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
3082 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3083 if (ops
&& ops
->pr_clear
)
3084 r
= ops
->pr_clear(bdev
, key
);
3092 static const struct pr_ops dm_pr_ops
= {
3093 .pr_register
= dm_pr_register
,
3094 .pr_reserve
= dm_pr_reserve
,
3095 .pr_release
= dm_pr_release
,
3096 .pr_preempt
= dm_pr_preempt
,
3097 .pr_clear
= dm_pr_clear
,
3100 static const struct block_device_operations dm_blk_dops
= {
3101 .open
= dm_blk_open
,
3102 .release
= dm_blk_close
,
3103 .ioctl
= dm_blk_ioctl
,
3104 .getgeo
= dm_blk_getgeo
,
3105 .pr_ops
= &dm_pr_ops
,
3106 .owner
= THIS_MODULE
3109 static const struct dax_operations dm_dax_ops
= {
3110 .direct_access
= dm_dax_direct_access
,
3111 .copy_from_iter
= dm_dax_copy_from_iter
,
3117 module_init(dm_init
);
3118 module_exit(dm_exit
);
3120 module_param(major
, uint
, 0);
3121 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3123 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3124 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3126 module_param(dm_numa_node
, int, S_IRUGO
| S_IWUSR
);
3127 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
3129 MODULE_DESCRIPTION(DM_NAME
" driver");
3130 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3131 MODULE_LICENSE("GPL");