2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
41 #include <trace/events/block.h>
45 #include "md-bitmap.h"
47 #define UNSUPPORTED_MDDEV_FLAGS \
48 ((1L << MD_HAS_JOURNAL) | \
49 (1L << MD_JOURNAL_CLEAN) | \
50 (1L << MD_HAS_PPL) | \
51 (1L << MD_HAS_MULTIPLE_PPLS))
54 * Number of guaranteed r1bios in case of extreme VM load:
56 #define NR_RAID1_BIOS 256
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
68 #define IO_MADE_GOOD ((struct bio *)2)
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
76 static int max_queued_requests
= 1024;
78 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
);
79 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
);
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
87 * for resync bio, r1bio pointer can be retrieved from the per-bio
88 * 'struct resync_pages'.
90 static inline struct r1bio
*get_resync_r1bio(struct bio
*bio
)
92 return get_resync_pages(bio
)->raid_bio
;
95 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
97 struct pool_info
*pi
= data
;
98 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
100 /* allocate a r1bio with room for raid_disks entries in the bios array */
101 return kzalloc(size
, gfp_flags
);
104 static void r1bio_pool_free(void *r1_bio
, void *data
)
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
116 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
118 struct pool_info
*pi
= data
;
119 struct r1bio
*r1_bio
;
123 struct resync_pages
*rps
;
125 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
129 rps
= kmalloc(sizeof(struct resync_pages
) * pi
->raid_disks
,
135 * Allocate bios : 1 for reading, n-1 for writing
137 for (j
= pi
->raid_disks
; j
-- ; ) {
138 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
141 r1_bio
->bios
[j
] = bio
;
144 * Allocate RESYNC_PAGES data pages and attach them to
146 * If this is a user-requested check/repair, allocate
147 * RESYNC_PAGES for each bio.
149 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
150 need_pages
= pi
->raid_disks
;
153 for (j
= 0; j
< pi
->raid_disks
; j
++) {
154 struct resync_pages
*rp
= &rps
[j
];
156 bio
= r1_bio
->bios
[j
];
158 if (j
< need_pages
) {
159 if (resync_alloc_pages(rp
, gfp_flags
))
162 memcpy(rp
, &rps
[0], sizeof(*rp
));
163 resync_get_all_pages(rp
);
166 rp
->raid_bio
= r1_bio
;
167 bio
->bi_private
= rp
;
170 r1_bio
->master_bio
= NULL
;
176 resync_free_pages(&rps
[j
]);
179 while (++j
< pi
->raid_disks
)
180 bio_put(r1_bio
->bios
[j
]);
184 r1bio_pool_free(r1_bio
, data
);
188 static void r1buf_pool_free(void *__r1_bio
, void *data
)
190 struct pool_info
*pi
= data
;
192 struct r1bio
*r1bio
= __r1_bio
;
193 struct resync_pages
*rp
= NULL
;
195 for (i
= pi
->raid_disks
; i
--; ) {
196 rp
= get_resync_pages(r1bio
->bios
[i
]);
197 resync_free_pages(rp
);
198 bio_put(r1bio
->bios
[i
]);
201 /* resync pages array stored in the 1st bio's .bi_private */
204 r1bio_pool_free(r1bio
, data
);
207 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
211 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
212 struct bio
**bio
= r1_bio
->bios
+ i
;
213 if (!BIO_SPECIAL(*bio
))
219 static void free_r1bio(struct r1bio
*r1_bio
)
221 struct r1conf
*conf
= r1_bio
->mddev
->private;
223 put_all_bios(conf
, r1_bio
);
224 mempool_free(r1_bio
, conf
->r1bio_pool
);
227 static void put_buf(struct r1bio
*r1_bio
)
229 struct r1conf
*conf
= r1_bio
->mddev
->private;
230 sector_t sect
= r1_bio
->sector
;
233 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
234 struct bio
*bio
= r1_bio
->bios
[i
];
236 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
239 mempool_free(r1_bio
, conf
->r1buf_pool
);
241 lower_barrier(conf
, sect
);
244 static void reschedule_retry(struct r1bio
*r1_bio
)
247 struct mddev
*mddev
= r1_bio
->mddev
;
248 struct r1conf
*conf
= mddev
->private;
251 idx
= sector_to_idx(r1_bio
->sector
);
252 spin_lock_irqsave(&conf
->device_lock
, flags
);
253 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
254 atomic_inc(&conf
->nr_queued
[idx
]);
255 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
257 wake_up(&conf
->wait_barrier
);
258 md_wakeup_thread(mddev
->thread
);
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
266 static void call_bio_endio(struct r1bio
*r1_bio
)
268 struct bio
*bio
= r1_bio
->master_bio
;
269 struct r1conf
*conf
= r1_bio
->mddev
->private;
271 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
272 bio
->bi_status
= BLK_STS_IOERR
;
276 * Wake up any possible resync thread that waits for the device
279 allow_barrier(conf
, r1_bio
->sector
);
282 static void raid_end_bio_io(struct r1bio
*r1_bio
)
284 struct bio
*bio
= r1_bio
->master_bio
;
286 /* if nobody has done the final endio yet, do it now */
287 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
290 (unsigned long long) bio
->bi_iter
.bi_sector
,
291 (unsigned long long) bio_end_sector(bio
) - 1);
293 call_bio_endio(r1_bio
);
299 * Update disk head position estimator based on IRQ completion info.
301 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
303 struct r1conf
*conf
= r1_bio
->mddev
->private;
305 conf
->mirrors
[disk
].head_position
=
306 r1_bio
->sector
+ (r1_bio
->sectors
);
310 * Find the disk number which triggered given bio
312 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
315 struct r1conf
*conf
= r1_bio
->mddev
->private;
316 int raid_disks
= conf
->raid_disks
;
318 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
319 if (r1_bio
->bios
[mirror
] == bio
)
322 BUG_ON(mirror
== raid_disks
* 2);
323 update_head_pos(mirror
, r1_bio
);
328 static void raid1_end_read_request(struct bio
*bio
)
330 int uptodate
= !bio
->bi_status
;
331 struct r1bio
*r1_bio
= bio
->bi_private
;
332 struct r1conf
*conf
= r1_bio
->mddev
->private;
333 struct md_rdev
*rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
336 * this branch is our 'one mirror IO has finished' event handler:
338 update_head_pos(r1_bio
->read_disk
, r1_bio
);
341 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
342 else if (test_bit(FailFast
, &rdev
->flags
) &&
343 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
344 /* This was a fail-fast read so we definitely
348 /* If all other devices have failed, we want to return
349 * the error upwards rather than fail the last device.
350 * Here we redefine "uptodate" to mean "Don't want to retry"
353 spin_lock_irqsave(&conf
->device_lock
, flags
);
354 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
355 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
356 test_bit(In_sync
, &rdev
->flags
)))
358 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
362 raid_end_bio_io(r1_bio
);
363 rdev_dec_pending(rdev
, conf
->mddev
);
368 char b
[BDEVNAME_SIZE
];
369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
371 bdevname(rdev
->bdev
, b
),
372 (unsigned long long)r1_bio
->sector
);
373 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
374 reschedule_retry(r1_bio
);
375 /* don't drop the reference on read_disk yet */
379 static void close_write(struct r1bio
*r1_bio
)
381 /* it really is the end of this request */
382 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
383 bio_free_pages(r1_bio
->behind_master_bio
);
384 bio_put(r1_bio
->behind_master_bio
);
385 r1_bio
->behind_master_bio
= NULL
;
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
390 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
391 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
392 md_write_end(r1_bio
->mddev
);
395 static void r1_bio_write_done(struct r1bio
*r1_bio
)
397 if (!atomic_dec_and_test(&r1_bio
->remaining
))
400 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
401 reschedule_retry(r1_bio
);
404 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
405 reschedule_retry(r1_bio
);
407 raid_end_bio_io(r1_bio
);
411 static void raid1_end_write_request(struct bio
*bio
)
413 struct r1bio
*r1_bio
= bio
->bi_private
;
414 int behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
415 struct r1conf
*conf
= r1_bio
->mddev
->private;
416 struct bio
*to_put
= NULL
;
417 int mirror
= find_bio_disk(r1_bio
, bio
);
418 struct md_rdev
*rdev
= conf
->mirrors
[mirror
].rdev
;
421 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
424 * 'one mirror IO has finished' event handler:
426 if (bio
->bi_status
&& !discard_error
) {
427 set_bit(WriteErrorSeen
, &rdev
->flags
);
428 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
429 set_bit(MD_RECOVERY_NEEDED
, &
430 conf
->mddev
->recovery
);
432 if (test_bit(FailFast
, &rdev
->flags
) &&
433 (bio
->bi_opf
& MD_FAILFAST
) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly
, &rdev
->flags
)) {
436 md_error(r1_bio
->mddev
, rdev
);
437 if (!test_bit(Faulty
, &rdev
->flags
))
438 /* This is the only remaining device,
439 * We need to retry the write without
442 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
444 /* Finished with this branch */
445 r1_bio
->bios
[mirror
] = NULL
;
449 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
464 r1_bio
->bios
[mirror
] = NULL
;
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
474 if (test_bit(In_sync
, &rdev
->flags
) &&
475 !test_bit(Faulty
, &rdev
->flags
))
476 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
478 /* Maybe we can clear some bad blocks. */
479 if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
480 &first_bad
, &bad_sectors
) && !discard_error
) {
481 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
482 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
487 if (test_bit(WriteMostly
, &rdev
->flags
))
488 atomic_dec(&r1_bio
->behind_remaining
);
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
497 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
498 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
501 struct bio
*mbio
= r1_bio
->master_bio
;
502 pr_debug("raid1: behind end write sectors"
504 (unsigned long long) mbio
->bi_iter
.bi_sector
,
505 (unsigned long long) bio_end_sector(mbio
) - 1);
506 call_bio_endio(r1_bio
);
510 if (r1_bio
->bios
[mirror
] == NULL
)
511 rdev_dec_pending(rdev
, conf
->mddev
);
514 * Let's see if all mirrored write operations have finished
517 r1_bio_write_done(r1_bio
);
523 static sector_t
align_to_barrier_unit_end(sector_t start_sector
,
528 WARN_ON(sectors
== 0);
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
533 len
= round_up(start_sector
+ 1, BARRIER_UNIT_SECTOR_SIZE
) -
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
554 * The rdev for the device selected will have nr_pending incremented.
556 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
558 const sector_t this_sector
= r1_bio
->sector
;
560 int best_good_sectors
;
561 int best_disk
, best_dist_disk
, best_pending_disk
;
565 unsigned int min_pending
;
566 struct md_rdev
*rdev
;
568 int choose_next_idle
;
572 * Check if we can balance. We can balance on the whole
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
577 sectors
= r1_bio
->sectors
;
580 best_dist
= MaxSector
;
581 best_pending_disk
= -1;
582 min_pending
= UINT_MAX
;
583 best_good_sectors
= 0;
585 choose_next_idle
= 0;
586 clear_bit(R1BIO_FailFast
, &r1_bio
->state
);
588 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
589 (mddev_is_clustered(conf
->mddev
) &&
590 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
591 this_sector
+ sectors
)))
596 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
600 unsigned int pending
;
603 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
604 if (r1_bio
->bios
[disk
] == IO_BLOCKED
606 || test_bit(Faulty
, &rdev
->flags
))
608 if (!test_bit(In_sync
, &rdev
->flags
) &&
609 rdev
->recovery_offset
< this_sector
+ sectors
)
611 if (test_bit(WriteMostly
, &rdev
->flags
)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
614 if (best_dist_disk
< 0) {
615 if (is_badblock(rdev
, this_sector
, sectors
,
616 &first_bad
, &bad_sectors
)) {
617 if (first_bad
<= this_sector
)
618 /* Cannot use this */
620 best_good_sectors
= first_bad
- this_sector
;
622 best_good_sectors
= sectors
;
623 best_dist_disk
= disk
;
624 best_pending_disk
= disk
;
628 /* This is a reasonable device to use. It might
631 if (is_badblock(rdev
, this_sector
, sectors
,
632 &first_bad
, &bad_sectors
)) {
633 if (best_dist
< MaxSector
)
634 /* already have a better device */
636 if (first_bad
<= this_sector
) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
641 bad_sectors
-= (this_sector
- first_bad
);
642 if (choose_first
&& sectors
> bad_sectors
)
643 sectors
= bad_sectors
;
644 if (best_good_sectors
> sectors
)
645 best_good_sectors
= sectors
;
648 sector_t good_sectors
= first_bad
- this_sector
;
649 if (good_sectors
> best_good_sectors
) {
650 best_good_sectors
= good_sectors
;
658 if ((sectors
> best_good_sectors
) && (best_disk
>= 0))
660 best_good_sectors
= sectors
;
664 /* At least two disks to choose from so failfast is OK */
665 set_bit(R1BIO_FailFast
, &r1_bio
->state
);
667 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
668 has_nonrot_disk
|= nonrot
;
669 pending
= atomic_read(&rdev
->nr_pending
);
670 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
675 /* Don't change to another disk for sequential reads */
676 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
678 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
679 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
683 * If buffered sequential IO size exceeds optimal
684 * iosize, check if there is idle disk. If yes, choose
685 * the idle disk. read_balance could already choose an
686 * idle disk before noticing it's a sequential IO in
687 * this disk. This doesn't matter because this disk
688 * will idle, next time it will be utilized after the
689 * first disk has IO size exceeds optimal iosize. In
690 * this way, iosize of the first disk will be optimal
691 * iosize at least. iosize of the second disk might be
692 * small, but not a big deal since when the second disk
693 * starts IO, the first disk is likely still busy.
695 if (nonrot
&& opt_iosize
> 0 &&
696 mirror
->seq_start
!= MaxSector
&&
697 mirror
->next_seq_sect
> opt_iosize
&&
698 mirror
->next_seq_sect
- opt_iosize
>=
700 choose_next_idle
= 1;
706 if (choose_next_idle
)
709 if (min_pending
> pending
) {
710 min_pending
= pending
;
711 best_pending_disk
= disk
;
714 if (dist
< best_dist
) {
716 best_dist_disk
= disk
;
721 * If all disks are rotational, choose the closest disk. If any disk is
722 * non-rotational, choose the disk with less pending request even the
723 * disk is rotational, which might/might not be optimal for raids with
724 * mixed ratation/non-rotational disks depending on workload.
726 if (best_disk
== -1) {
727 if (has_nonrot_disk
|| min_pending
== 0)
728 best_disk
= best_pending_disk
;
730 best_disk
= best_dist_disk
;
733 if (best_disk
>= 0) {
734 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
737 atomic_inc(&rdev
->nr_pending
);
738 sectors
= best_good_sectors
;
740 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
741 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
743 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
746 *max_sectors
= sectors
;
751 static int raid1_congested(struct mddev
*mddev
, int bits
)
753 struct r1conf
*conf
= mddev
->private;
756 if ((bits
& (1 << WB_async_congested
)) &&
757 conf
->pending_count
>= max_queued_requests
)
761 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
762 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
763 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
764 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
768 /* Note the '|| 1' - when read_balance prefers
769 * non-congested targets, it can be removed
771 if ((bits
& (1 << WB_async_congested
)) || 1)
772 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
774 ret
&= bdi_congested(q
->backing_dev_info
, bits
);
781 static void flush_bio_list(struct r1conf
*conf
, struct bio
*bio
)
783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 bitmap_unplug(conf
->mddev
->bitmap
);
785 wake_up(&conf
->wait_barrier
);
787 while (bio
) { /* submit pending writes */
788 struct bio
*next
= bio
->bi_next
;
789 struct md_rdev
*rdev
= (void *)bio
->bi_disk
;
791 bio_set_dev(bio
, rdev
->bdev
);
792 if (test_bit(Faulty
, &rdev
->flags
)) {
794 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
795 !blk_queue_discard(bio
->bi_disk
->queue
)))
799 generic_make_request(bio
);
804 static void flush_pending_writes(struct r1conf
*conf
)
806 /* Any writes that have been queued but are awaiting
807 * bitmap updates get flushed here.
809 spin_lock_irq(&conf
->device_lock
);
811 if (conf
->pending_bio_list
.head
) {
812 struct blk_plug plug
;
815 bio
= bio_list_get(&conf
->pending_bio_list
);
816 conf
->pending_count
= 0;
817 spin_unlock_irq(&conf
->device_lock
);
820 * As this is called in a wait_event() loop (see freeze_array),
821 * current->state might be TASK_UNINTERRUPTIBLE which will
822 * cause a warning when we prepare to wait again. As it is
823 * rare that this path is taken, it is perfectly safe to force
824 * us to go around the wait_event() loop again, so the warning
825 * is a false-positive. Silence the warning by resetting
828 __set_current_state(TASK_RUNNING
);
829 blk_start_plug(&plug
);
830 flush_bio_list(conf
, bio
);
831 blk_finish_plug(&plug
);
833 spin_unlock_irq(&conf
->device_lock
);
837 * Sometimes we need to suspend IO while we do something else,
838 * either some resync/recovery, or reconfigure the array.
839 * To do this we raise a 'barrier'.
840 * The 'barrier' is a counter that can be raised multiple times
841 * to count how many activities are happening which preclude
843 * We can only raise the barrier if there is no pending IO.
844 * i.e. if nr_pending == 0.
845 * We choose only to raise the barrier if no-one is waiting for the
846 * barrier to go down. This means that as soon as an IO request
847 * is ready, no other operations which require a barrier will start
848 * until the IO request has had a chance.
850 * So: regular IO calls 'wait_barrier'. When that returns there
851 * is no backgroup IO happening, It must arrange to call
852 * allow_barrier when it has finished its IO.
853 * backgroup IO calls must call raise_barrier. Once that returns
854 * there is no normal IO happeing. It must arrange to call
855 * lower_barrier when the particular background IO completes.
857 static void raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
859 int idx
= sector_to_idx(sector_nr
);
861 spin_lock_irq(&conf
->resync_lock
);
863 /* Wait until no block IO is waiting */
864 wait_event_lock_irq(conf
->wait_barrier
,
865 !atomic_read(&conf
->nr_waiting
[idx
]),
868 /* block any new IO from starting */
869 atomic_inc(&conf
->barrier
[idx
]);
871 * In raise_barrier() we firstly increase conf->barrier[idx] then
872 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
873 * increase conf->nr_pending[idx] then check conf->barrier[idx].
874 * A memory barrier here to make sure conf->nr_pending[idx] won't
875 * be fetched before conf->barrier[idx] is increased. Otherwise
876 * there will be a race between raise_barrier() and _wait_barrier().
878 smp_mb__after_atomic();
880 /* For these conditions we must wait:
881 * A: while the array is in frozen state
882 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
883 * existing in corresponding I/O barrier bucket.
884 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
885 * max resync count which allowed on current I/O barrier bucket.
887 wait_event_lock_irq(conf
->wait_barrier
,
888 !conf
->array_frozen
&&
889 !atomic_read(&conf
->nr_pending
[idx
]) &&
890 atomic_read(&conf
->barrier
[idx
]) < RESYNC_DEPTH
,
893 atomic_inc(&conf
->nr_sync_pending
);
894 spin_unlock_irq(&conf
->resync_lock
);
897 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
)
899 int idx
= sector_to_idx(sector_nr
);
901 BUG_ON(atomic_read(&conf
->barrier
[idx
]) <= 0);
903 atomic_dec(&conf
->barrier
[idx
]);
904 atomic_dec(&conf
->nr_sync_pending
);
905 wake_up(&conf
->wait_barrier
);
908 static void _wait_barrier(struct r1conf
*conf
, int idx
)
911 * We need to increase conf->nr_pending[idx] very early here,
912 * then raise_barrier() can be blocked when it waits for
913 * conf->nr_pending[idx] to be 0. Then we can avoid holding
914 * conf->resync_lock when there is no barrier raised in same
915 * barrier unit bucket. Also if the array is frozen, I/O
916 * should be blocked until array is unfrozen.
918 atomic_inc(&conf
->nr_pending
[idx
]);
920 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
921 * check conf->barrier[idx]. In raise_barrier() we firstly increase
922 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
923 * barrier is necessary here to make sure conf->barrier[idx] won't be
924 * fetched before conf->nr_pending[idx] is increased. Otherwise there
925 * will be a race between _wait_barrier() and raise_barrier().
927 smp_mb__after_atomic();
930 * Don't worry about checking two atomic_t variables at same time
931 * here. If during we check conf->barrier[idx], the array is
932 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
933 * 0, it is safe to return and make the I/O continue. Because the
934 * array is frozen, all I/O returned here will eventually complete
935 * or be queued, no race will happen. See code comment in
938 if (!READ_ONCE(conf
->array_frozen
) &&
939 !atomic_read(&conf
->barrier
[idx
]))
943 * After holding conf->resync_lock, conf->nr_pending[idx]
944 * should be decreased before waiting for barrier to drop.
945 * Otherwise, we may encounter a race condition because
946 * raise_barrer() might be waiting for conf->nr_pending[idx]
947 * to be 0 at same time.
949 spin_lock_irq(&conf
->resync_lock
);
950 atomic_inc(&conf
->nr_waiting
[idx
]);
951 atomic_dec(&conf
->nr_pending
[idx
]);
953 * In case freeze_array() is waiting for
954 * get_unqueued_pending() == extra
956 wake_up(&conf
->wait_barrier
);
957 /* Wait for the barrier in same barrier unit bucket to drop. */
958 wait_event_lock_irq(conf
->wait_barrier
,
959 !conf
->array_frozen
&&
960 !atomic_read(&conf
->barrier
[idx
]),
962 atomic_inc(&conf
->nr_pending
[idx
]);
963 atomic_dec(&conf
->nr_waiting
[idx
]);
964 spin_unlock_irq(&conf
->resync_lock
);
967 static void wait_read_barrier(struct r1conf
*conf
, sector_t sector_nr
)
969 int idx
= sector_to_idx(sector_nr
);
972 * Very similar to _wait_barrier(). The difference is, for read
973 * I/O we don't need wait for sync I/O, but if the whole array
974 * is frozen, the read I/O still has to wait until the array is
975 * unfrozen. Since there is no ordering requirement with
976 * conf->barrier[idx] here, memory barrier is unnecessary as well.
978 atomic_inc(&conf
->nr_pending
[idx
]);
980 if (!READ_ONCE(conf
->array_frozen
))
983 spin_lock_irq(&conf
->resync_lock
);
984 atomic_inc(&conf
->nr_waiting
[idx
]);
985 atomic_dec(&conf
->nr_pending
[idx
]);
987 * In case freeze_array() is waiting for
988 * get_unqueued_pending() == extra
990 wake_up(&conf
->wait_barrier
);
991 /* Wait for array to be unfrozen */
992 wait_event_lock_irq(conf
->wait_barrier
,
995 atomic_inc(&conf
->nr_pending
[idx
]);
996 atomic_dec(&conf
->nr_waiting
[idx
]);
997 spin_unlock_irq(&conf
->resync_lock
);
1000 static void wait_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1002 int idx
= sector_to_idx(sector_nr
);
1004 _wait_barrier(conf
, idx
);
1007 static void _allow_barrier(struct r1conf
*conf
, int idx
)
1009 atomic_dec(&conf
->nr_pending
[idx
]);
1010 wake_up(&conf
->wait_barrier
);
1013 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1015 int idx
= sector_to_idx(sector_nr
);
1017 _allow_barrier(conf
, idx
);
1020 /* conf->resync_lock should be held */
1021 static int get_unqueued_pending(struct r1conf
*conf
)
1025 ret
= atomic_read(&conf
->nr_sync_pending
);
1026 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
1027 ret
+= atomic_read(&conf
->nr_pending
[idx
]) -
1028 atomic_read(&conf
->nr_queued
[idx
]);
1033 static void freeze_array(struct r1conf
*conf
, int extra
)
1035 /* Stop sync I/O and normal I/O and wait for everything to
1037 * This is called in two situations:
1038 * 1) management command handlers (reshape, remove disk, quiesce).
1039 * 2) one normal I/O request failed.
1041 * After array_frozen is set to 1, new sync IO will be blocked at
1042 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1043 * or wait_read_barrier(). The flying I/Os will either complete or be
1044 * queued. When everything goes quite, there are only queued I/Os left.
1046 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1047 * barrier bucket index which this I/O request hits. When all sync and
1048 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1049 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1050 * in handle_read_error(), we may call freeze_array() before trying to
1051 * fix the read error. In this case, the error read I/O is not queued,
1052 * so get_unqueued_pending() == 1.
1054 * Therefore before this function returns, we need to wait until
1055 * get_unqueued_pendings(conf) gets equal to extra. For
1056 * normal I/O context, extra is 1, in rested situations extra is 0.
1058 spin_lock_irq(&conf
->resync_lock
);
1059 conf
->array_frozen
= 1;
1060 raid1_log(conf
->mddev
, "wait freeze");
1061 wait_event_lock_irq_cmd(
1063 get_unqueued_pending(conf
) == extra
,
1065 flush_pending_writes(conf
));
1066 spin_unlock_irq(&conf
->resync_lock
);
1068 static void unfreeze_array(struct r1conf
*conf
)
1070 /* reverse the effect of the freeze */
1071 spin_lock_irq(&conf
->resync_lock
);
1072 conf
->array_frozen
= 0;
1073 spin_unlock_irq(&conf
->resync_lock
);
1074 wake_up(&conf
->wait_barrier
);
1077 static void alloc_behind_master_bio(struct r1bio
*r1_bio
,
1080 int size
= bio
->bi_iter
.bi_size
;
1081 unsigned vcnt
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1083 struct bio
*behind_bio
= NULL
;
1085 behind_bio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, r1_bio
->mddev
);
1089 /* discard op, we don't support writezero/writesame yet */
1090 if (!bio_has_data(bio
)) {
1091 behind_bio
->bi_iter
.bi_size
= size
;
1095 while (i
< vcnt
&& size
) {
1097 int len
= min_t(int, PAGE_SIZE
, size
);
1099 page
= alloc_page(GFP_NOIO
);
1100 if (unlikely(!page
))
1103 bio_add_page(behind_bio
, page
, len
, 0);
1109 bio_copy_data(behind_bio
, bio
);
1111 r1_bio
->behind_master_bio
= behind_bio
;
1112 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1117 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1118 bio
->bi_iter
.bi_size
);
1119 bio_free_pages(behind_bio
);
1120 bio_put(behind_bio
);
1123 struct raid1_plug_cb
{
1124 struct blk_plug_cb cb
;
1125 struct bio_list pending
;
1129 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1131 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1133 struct mddev
*mddev
= plug
->cb
.data
;
1134 struct r1conf
*conf
= mddev
->private;
1137 if (from_schedule
|| current
->bio_list
) {
1138 spin_lock_irq(&conf
->device_lock
);
1139 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1140 conf
->pending_count
+= plug
->pending_cnt
;
1141 spin_unlock_irq(&conf
->device_lock
);
1142 wake_up(&conf
->wait_barrier
);
1143 md_wakeup_thread(mddev
->thread
);
1148 /* we aren't scheduling, so we can do the write-out directly. */
1149 bio
= bio_list_get(&plug
->pending
);
1150 flush_bio_list(conf
, bio
);
1154 static void init_r1bio(struct r1bio
*r1_bio
, struct mddev
*mddev
, struct bio
*bio
)
1156 r1_bio
->master_bio
= bio
;
1157 r1_bio
->sectors
= bio_sectors(bio
);
1159 r1_bio
->mddev
= mddev
;
1160 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1163 static inline struct r1bio
*
1164 alloc_r1bio(struct mddev
*mddev
, struct bio
*bio
)
1166 struct r1conf
*conf
= mddev
->private;
1167 struct r1bio
*r1_bio
;
1169 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1170 /* Ensure no bio records IO_BLOCKED */
1171 memset(r1_bio
->bios
, 0, conf
->raid_disks
* sizeof(r1_bio
->bios
[0]));
1172 init_r1bio(r1_bio
, mddev
, bio
);
1176 static void raid1_read_request(struct mddev
*mddev
, struct bio
*bio
,
1177 int max_read_sectors
, struct r1bio
*r1_bio
)
1179 struct r1conf
*conf
= mddev
->private;
1180 struct raid1_info
*mirror
;
1181 struct bio
*read_bio
;
1182 struct bitmap
*bitmap
= mddev
->bitmap
;
1183 const int op
= bio_op(bio
);
1184 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1187 bool print_msg
= !!r1_bio
;
1188 char b
[BDEVNAME_SIZE
];
1191 * If r1_bio is set, we are blocking the raid1d thread
1192 * so there is a tiny risk of deadlock. So ask for
1193 * emergency memory if needed.
1195 gfp_t gfp
= r1_bio
? (GFP_NOIO
| __GFP_HIGH
) : GFP_NOIO
;
1198 /* Need to get the block device name carefully */
1199 struct md_rdev
*rdev
;
1201 rdev
= rcu_dereference(conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1203 bdevname(rdev
->bdev
, b
);
1210 * Still need barrier for READ in case that whole
1213 wait_read_barrier(conf
, bio
->bi_iter
.bi_sector
);
1216 r1_bio
= alloc_r1bio(mddev
, bio
);
1218 init_r1bio(r1_bio
, mddev
, bio
);
1219 r1_bio
->sectors
= max_read_sectors
;
1222 * make_request() can abort the operation when read-ahead is being
1223 * used and no empty request is available.
1225 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1228 /* couldn't find anywhere to read from */
1230 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1233 (unsigned long long)r1_bio
->sector
);
1235 raid_end_bio_io(r1_bio
);
1238 mirror
= conf
->mirrors
+ rdisk
;
1241 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1243 (unsigned long long)r1_bio
->sector
,
1244 bdevname(mirror
->rdev
->bdev
, b
));
1246 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1249 * Reading from a write-mostly device must take care not to
1250 * over-take any writes that are 'behind'
1252 raid1_log(mddev
, "wait behind writes");
1253 wait_event(bitmap
->behind_wait
,
1254 atomic_read(&bitmap
->behind_writes
) == 0);
1257 if (max_sectors
< bio_sectors(bio
)) {
1258 struct bio
*split
= bio_split(bio
, max_sectors
,
1259 gfp
, conf
->bio_split
);
1260 bio_chain(split
, bio
);
1261 generic_make_request(bio
);
1263 r1_bio
->master_bio
= bio
;
1264 r1_bio
->sectors
= max_sectors
;
1267 r1_bio
->read_disk
= rdisk
;
1269 read_bio
= bio_clone_fast(bio
, gfp
, mddev
->bio_set
);
1271 r1_bio
->bios
[rdisk
] = read_bio
;
1273 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1274 mirror
->rdev
->data_offset
;
1275 bio_set_dev(read_bio
, mirror
->rdev
->bdev
);
1276 read_bio
->bi_end_io
= raid1_end_read_request
;
1277 bio_set_op_attrs(read_bio
, op
, do_sync
);
1278 if (test_bit(FailFast
, &mirror
->rdev
->flags
) &&
1279 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
1280 read_bio
->bi_opf
|= MD_FAILFAST
;
1281 read_bio
->bi_private
= r1_bio
;
1284 trace_block_bio_remap(read_bio
->bi_disk
->queue
, read_bio
,
1285 disk_devt(mddev
->gendisk
), r1_bio
->sector
);
1287 generic_make_request(read_bio
);
1290 static void raid1_write_request(struct mddev
*mddev
, struct bio
*bio
,
1291 int max_write_sectors
)
1293 struct r1conf
*conf
= mddev
->private;
1294 struct r1bio
*r1_bio
;
1296 struct bitmap
*bitmap
= mddev
->bitmap
;
1297 unsigned long flags
;
1298 struct md_rdev
*blocked_rdev
;
1299 struct blk_plug_cb
*cb
;
1300 struct raid1_plug_cb
*plug
= NULL
;
1304 if (mddev_is_clustered(mddev
) &&
1305 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1306 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))) {
1310 prepare_to_wait(&conf
->wait_barrier
,
1312 if (!md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1313 bio
->bi_iter
.bi_sector
,
1314 bio_end_sector(bio
)))
1318 finish_wait(&conf
->wait_barrier
, &w
);
1322 * Register the new request and wait if the reconstruction
1323 * thread has put up a bar for new requests.
1324 * Continue immediately if no resync is active currently.
1326 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1328 r1_bio
= alloc_r1bio(mddev
, bio
);
1329 r1_bio
->sectors
= max_write_sectors
;
1331 if (conf
->pending_count
>= max_queued_requests
) {
1332 md_wakeup_thread(mddev
->thread
);
1333 raid1_log(mddev
, "wait queued");
1334 wait_event(conf
->wait_barrier
,
1335 conf
->pending_count
< max_queued_requests
);
1337 /* first select target devices under rcu_lock and
1338 * inc refcount on their rdev. Record them by setting
1340 * If there are known/acknowledged bad blocks on any device on
1341 * which we have seen a write error, we want to avoid writing those
1343 * This potentially requires several writes to write around
1344 * the bad blocks. Each set of writes gets it's own r1bio
1345 * with a set of bios attached.
1348 disks
= conf
->raid_disks
* 2;
1350 blocked_rdev
= NULL
;
1352 max_sectors
= r1_bio
->sectors
;
1353 for (i
= 0; i
< disks
; i
++) {
1354 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1355 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1356 atomic_inc(&rdev
->nr_pending
);
1357 blocked_rdev
= rdev
;
1360 r1_bio
->bios
[i
] = NULL
;
1361 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1362 if (i
< conf
->raid_disks
)
1363 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1367 atomic_inc(&rdev
->nr_pending
);
1368 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1373 is_bad
= is_badblock(rdev
, r1_bio
->sector
, max_sectors
,
1374 &first_bad
, &bad_sectors
);
1376 /* mustn't write here until the bad block is
1378 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1379 blocked_rdev
= rdev
;
1382 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1383 /* Cannot write here at all */
1384 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1385 if (bad_sectors
< max_sectors
)
1386 /* mustn't write more than bad_sectors
1387 * to other devices yet
1389 max_sectors
= bad_sectors
;
1390 rdev_dec_pending(rdev
, mddev
);
1391 /* We don't set R1BIO_Degraded as that
1392 * only applies if the disk is
1393 * missing, so it might be re-added,
1394 * and we want to know to recover this
1396 * In this case the device is here,
1397 * and the fact that this chunk is not
1398 * in-sync is recorded in the bad
1404 int good_sectors
= first_bad
- r1_bio
->sector
;
1405 if (good_sectors
< max_sectors
)
1406 max_sectors
= good_sectors
;
1409 r1_bio
->bios
[i
] = bio
;
1413 if (unlikely(blocked_rdev
)) {
1414 /* Wait for this device to become unblocked */
1417 for (j
= 0; j
< i
; j
++)
1418 if (r1_bio
->bios
[j
])
1419 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1421 allow_barrier(conf
, bio
->bi_iter
.bi_sector
);
1422 raid1_log(mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1423 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1424 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1428 if (max_sectors
< bio_sectors(bio
)) {
1429 struct bio
*split
= bio_split(bio
, max_sectors
,
1430 GFP_NOIO
, conf
->bio_split
);
1431 bio_chain(split
, bio
);
1432 generic_make_request(bio
);
1434 r1_bio
->master_bio
= bio
;
1435 r1_bio
->sectors
= max_sectors
;
1438 atomic_set(&r1_bio
->remaining
, 1);
1439 atomic_set(&r1_bio
->behind_remaining
, 0);
1443 for (i
= 0; i
< disks
; i
++) {
1444 struct bio
*mbio
= NULL
;
1445 if (!r1_bio
->bios
[i
])
1451 * Not if there are too many, or cannot
1452 * allocate memory, or a reader on WriteMostly
1453 * is waiting for behind writes to flush */
1455 (atomic_read(&bitmap
->behind_writes
)
1456 < mddev
->bitmap_info
.max_write_behind
) &&
1457 !waitqueue_active(&bitmap
->behind_wait
)) {
1458 alloc_behind_master_bio(r1_bio
, bio
);
1461 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1463 test_bit(R1BIO_BehindIO
,
1468 if (r1_bio
->behind_master_bio
)
1469 mbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
1470 GFP_NOIO
, mddev
->bio_set
);
1472 mbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1474 if (r1_bio
->behind_master_bio
) {
1475 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1476 atomic_inc(&r1_bio
->behind_remaining
);
1479 r1_bio
->bios
[i
] = mbio
;
1481 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1482 conf
->mirrors
[i
].rdev
->data_offset
);
1483 bio_set_dev(mbio
, conf
->mirrors
[i
].rdev
->bdev
);
1484 mbio
->bi_end_io
= raid1_end_write_request
;
1485 mbio
->bi_opf
= bio_op(bio
) | (bio
->bi_opf
& (REQ_SYNC
| REQ_FUA
));
1486 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
) &&
1487 !test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
) &&
1488 conf
->raid_disks
- mddev
->degraded
> 1)
1489 mbio
->bi_opf
|= MD_FAILFAST
;
1490 mbio
->bi_private
= r1_bio
;
1492 atomic_inc(&r1_bio
->remaining
);
1495 trace_block_bio_remap(mbio
->bi_disk
->queue
,
1496 mbio
, disk_devt(mddev
->gendisk
),
1498 /* flush_pending_writes() needs access to the rdev so...*/
1499 mbio
->bi_disk
= (void *)conf
->mirrors
[i
].rdev
;
1501 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1503 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1507 bio_list_add(&plug
->pending
, mbio
);
1508 plug
->pending_cnt
++;
1510 spin_lock_irqsave(&conf
->device_lock
, flags
);
1511 bio_list_add(&conf
->pending_bio_list
, mbio
);
1512 conf
->pending_count
++;
1513 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1514 md_wakeup_thread(mddev
->thread
);
1518 r1_bio_write_done(r1_bio
);
1520 /* In case raid1d snuck in to freeze_array */
1521 wake_up(&conf
->wait_barrier
);
1524 static bool raid1_make_request(struct mddev
*mddev
, struct bio
*bio
)
1528 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1529 md_flush_request(mddev
, bio
);
1534 * There is a limit to the maximum size, but
1535 * the read/write handler might find a lower limit
1536 * due to bad blocks. To avoid multiple splits,
1537 * we pass the maximum number of sectors down
1538 * and let the lower level perform the split.
1540 sectors
= align_to_barrier_unit_end(
1541 bio
->bi_iter
.bi_sector
, bio_sectors(bio
));
1543 if (bio_data_dir(bio
) == READ
)
1544 raid1_read_request(mddev
, bio
, sectors
, NULL
);
1546 if (!md_write_start(mddev
,bio
))
1548 raid1_write_request(mddev
, bio
, sectors
);
1553 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1555 struct r1conf
*conf
= mddev
->private;
1558 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1559 conf
->raid_disks
- mddev
->degraded
);
1561 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1562 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1563 seq_printf(seq
, "%s",
1564 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1567 seq_printf(seq
, "]");
1570 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1572 char b
[BDEVNAME_SIZE
];
1573 struct r1conf
*conf
= mddev
->private;
1574 unsigned long flags
;
1577 * If it is not operational, then we have already marked it as dead
1578 * else if it is the last working disks, ignore the error, let the
1579 * next level up know.
1580 * else mark the drive as failed
1582 spin_lock_irqsave(&conf
->device_lock
, flags
);
1583 if (test_bit(In_sync
, &rdev
->flags
)
1584 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1586 * Don't fail the drive, act as though we were just a
1587 * normal single drive.
1588 * However don't try a recovery from this drive as
1589 * it is very likely to fail.
1591 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1592 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1595 set_bit(Blocked
, &rdev
->flags
);
1596 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1598 set_bit(Faulty
, &rdev
->flags
);
1600 set_bit(Faulty
, &rdev
->flags
);
1601 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1603 * if recovery is running, make sure it aborts.
1605 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1606 set_mask_bits(&mddev
->sb_flags
, 0,
1607 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1608 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1609 "md/raid1:%s: Operation continuing on %d devices.\n",
1610 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1611 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1614 static void print_conf(struct r1conf
*conf
)
1618 pr_debug("RAID1 conf printout:\n");
1620 pr_debug("(!conf)\n");
1623 pr_debug(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1627 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1628 char b
[BDEVNAME_SIZE
];
1629 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1631 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1632 i
, !test_bit(In_sync
, &rdev
->flags
),
1633 !test_bit(Faulty
, &rdev
->flags
),
1634 bdevname(rdev
->bdev
,b
));
1639 static void close_sync(struct r1conf
*conf
)
1643 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++) {
1644 _wait_barrier(conf
, idx
);
1645 _allow_barrier(conf
, idx
);
1648 mempool_destroy(conf
->r1buf_pool
);
1649 conf
->r1buf_pool
= NULL
;
1652 static int raid1_spare_active(struct mddev
*mddev
)
1655 struct r1conf
*conf
= mddev
->private;
1657 unsigned long flags
;
1660 * Find all failed disks within the RAID1 configuration
1661 * and mark them readable.
1662 * Called under mddev lock, so rcu protection not needed.
1663 * device_lock used to avoid races with raid1_end_read_request
1664 * which expects 'In_sync' flags and ->degraded to be consistent.
1666 spin_lock_irqsave(&conf
->device_lock
, flags
);
1667 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1668 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1669 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1671 && !test_bit(Candidate
, &repl
->flags
)
1672 && repl
->recovery_offset
== MaxSector
1673 && !test_bit(Faulty
, &repl
->flags
)
1674 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1675 /* replacement has just become active */
1677 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1680 /* Replaced device not technically
1681 * faulty, but we need to be sure
1682 * it gets removed and never re-added
1684 set_bit(Faulty
, &rdev
->flags
);
1685 sysfs_notify_dirent_safe(
1690 && rdev
->recovery_offset
== MaxSector
1691 && !test_bit(Faulty
, &rdev
->flags
)
1692 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1694 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1697 mddev
->degraded
-= count
;
1698 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1704 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1706 struct r1conf
*conf
= mddev
->private;
1709 struct raid1_info
*p
;
1711 int last
= conf
->raid_disks
- 1;
1713 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1716 if (md_integrity_add_rdev(rdev
, mddev
))
1719 if (rdev
->raid_disk
>= 0)
1720 first
= last
= rdev
->raid_disk
;
1723 * find the disk ... but prefer rdev->saved_raid_disk
1726 if (rdev
->saved_raid_disk
>= 0 &&
1727 rdev
->saved_raid_disk
>= first
&&
1728 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1729 first
= last
= rdev
->saved_raid_disk
;
1731 for (mirror
= first
; mirror
<= last
; mirror
++) {
1732 p
= conf
->mirrors
+mirror
;
1736 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1737 rdev
->data_offset
<< 9);
1739 p
->head_position
= 0;
1740 rdev
->raid_disk
= mirror
;
1742 /* As all devices are equivalent, we don't need a full recovery
1743 * if this was recently any drive of the array
1745 if (rdev
->saved_raid_disk
< 0)
1747 rcu_assign_pointer(p
->rdev
, rdev
);
1750 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1751 p
[conf
->raid_disks
].rdev
== NULL
) {
1752 /* Add this device as a replacement */
1753 clear_bit(In_sync
, &rdev
->flags
);
1754 set_bit(Replacement
, &rdev
->flags
);
1755 rdev
->raid_disk
= mirror
;
1758 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1762 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1763 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1768 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1770 struct r1conf
*conf
= mddev
->private;
1772 int number
= rdev
->raid_disk
;
1773 struct raid1_info
*p
= conf
->mirrors
+ number
;
1775 if (rdev
!= p
->rdev
)
1776 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1779 if (rdev
== p
->rdev
) {
1780 if (test_bit(In_sync
, &rdev
->flags
) ||
1781 atomic_read(&rdev
->nr_pending
)) {
1785 /* Only remove non-faulty devices if recovery
1788 if (!test_bit(Faulty
, &rdev
->flags
) &&
1789 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1790 mddev
->degraded
< conf
->raid_disks
) {
1795 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1797 if (atomic_read(&rdev
->nr_pending
)) {
1798 /* lost the race, try later */
1804 if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1805 /* We just removed a device that is being replaced.
1806 * Move down the replacement. We drain all IO before
1807 * doing this to avoid confusion.
1809 struct md_rdev
*repl
=
1810 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1811 freeze_array(conf
, 0);
1812 if (atomic_read(&repl
->nr_pending
)) {
1813 /* It means that some queued IO of retry_list
1814 * hold repl. Thus, we cannot set replacement
1815 * as NULL, avoiding rdev NULL pointer
1816 * dereference in sync_request_write and
1817 * handle_write_finished.
1820 unfreeze_array(conf
);
1823 clear_bit(Replacement
, &repl
->flags
);
1825 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1826 unfreeze_array(conf
);
1829 clear_bit(WantReplacement
, &rdev
->flags
);
1830 err
= md_integrity_register(mddev
);
1838 static void end_sync_read(struct bio
*bio
)
1840 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1842 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1845 * we have read a block, now it needs to be re-written,
1846 * or re-read if the read failed.
1847 * We don't do much here, just schedule handling by raid1d
1849 if (!bio
->bi_status
)
1850 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1852 if (atomic_dec_and_test(&r1_bio
->remaining
))
1853 reschedule_retry(r1_bio
);
1856 static void end_sync_write(struct bio
*bio
)
1858 int uptodate
= !bio
->bi_status
;
1859 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1860 struct mddev
*mddev
= r1_bio
->mddev
;
1861 struct r1conf
*conf
= mddev
->private;
1864 struct md_rdev
*rdev
= conf
->mirrors
[find_bio_disk(r1_bio
, bio
)].rdev
;
1867 sector_t sync_blocks
= 0;
1868 sector_t s
= r1_bio
->sector
;
1869 long sectors_to_go
= r1_bio
->sectors
;
1870 /* make sure these bits doesn't get cleared. */
1872 bitmap_end_sync(mddev
->bitmap
, s
,
1875 sectors_to_go
-= sync_blocks
;
1876 } while (sectors_to_go
> 0);
1877 set_bit(WriteErrorSeen
, &rdev
->flags
);
1878 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1879 set_bit(MD_RECOVERY_NEEDED
, &
1881 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1882 } else if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
1883 &first_bad
, &bad_sectors
) &&
1884 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1887 &first_bad
, &bad_sectors
)
1889 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1891 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1892 int s
= r1_bio
->sectors
;
1893 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1894 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1895 reschedule_retry(r1_bio
);
1898 md_done_sync(mddev
, s
, uptodate
);
1903 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1904 int sectors
, struct page
*page
, int rw
)
1906 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
1910 set_bit(WriteErrorSeen
, &rdev
->flags
);
1911 if (!test_and_set_bit(WantReplacement
,
1913 set_bit(MD_RECOVERY_NEEDED
, &
1914 rdev
->mddev
->recovery
);
1916 /* need to record an error - either for the block or the device */
1917 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1918 md_error(rdev
->mddev
, rdev
);
1922 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1924 /* Try some synchronous reads of other devices to get
1925 * good data, much like with normal read errors. Only
1926 * read into the pages we already have so we don't
1927 * need to re-issue the read request.
1928 * We don't need to freeze the array, because being in an
1929 * active sync request, there is no normal IO, and
1930 * no overlapping syncs.
1931 * We don't need to check is_badblock() again as we
1932 * made sure that anything with a bad block in range
1933 * will have bi_end_io clear.
1935 struct mddev
*mddev
= r1_bio
->mddev
;
1936 struct r1conf
*conf
= mddev
->private;
1937 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1938 struct page
**pages
= get_resync_pages(bio
)->pages
;
1939 sector_t sect
= r1_bio
->sector
;
1940 int sectors
= r1_bio
->sectors
;
1942 struct md_rdev
*rdev
;
1944 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
1945 if (test_bit(FailFast
, &rdev
->flags
)) {
1946 /* Don't try recovering from here - just fail it
1947 * ... unless it is the last working device of course */
1948 md_error(mddev
, rdev
);
1949 if (test_bit(Faulty
, &rdev
->flags
))
1950 /* Don't try to read from here, but make sure
1951 * put_buf does it's thing
1953 bio
->bi_end_io
= end_sync_write
;
1958 int d
= r1_bio
->read_disk
;
1962 if (s
> (PAGE_SIZE
>>9))
1965 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1966 /* No rcu protection needed here devices
1967 * can only be removed when no resync is
1968 * active, and resync is currently active
1970 rdev
= conf
->mirrors
[d
].rdev
;
1971 if (sync_page_io(rdev
, sect
, s
<<9,
1973 REQ_OP_READ
, 0, false)) {
1979 if (d
== conf
->raid_disks
* 2)
1981 } while (!success
&& d
!= r1_bio
->read_disk
);
1984 char b
[BDEVNAME_SIZE
];
1986 /* Cannot read from anywhere, this block is lost.
1987 * Record a bad block on each device. If that doesn't
1988 * work just disable and interrupt the recovery.
1989 * Don't fail devices as that won't really help.
1991 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1992 mdname(mddev
), bio_devname(bio
, b
),
1993 (unsigned long long)r1_bio
->sector
);
1994 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1995 rdev
= conf
->mirrors
[d
].rdev
;
1996 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1998 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2002 conf
->recovery_disabled
=
2003 mddev
->recovery_disabled
;
2004 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2005 md_done_sync(mddev
, r1_bio
->sectors
, 0);
2017 /* write it back and re-read */
2018 while (d
!= r1_bio
->read_disk
) {
2020 d
= conf
->raid_disks
* 2;
2022 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2024 rdev
= conf
->mirrors
[d
].rdev
;
2025 if (r1_sync_page_io(rdev
, sect
, s
,
2028 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
2029 rdev_dec_pending(rdev
, mddev
);
2033 while (d
!= r1_bio
->read_disk
) {
2035 d
= conf
->raid_disks
* 2;
2037 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2039 rdev
= conf
->mirrors
[d
].rdev
;
2040 if (r1_sync_page_io(rdev
, sect
, s
,
2043 atomic_add(s
, &rdev
->corrected_errors
);
2049 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
2054 static void process_checks(struct r1bio
*r1_bio
)
2056 /* We have read all readable devices. If we haven't
2057 * got the block, then there is no hope left.
2058 * If we have, then we want to do a comparison
2059 * and skip the write if everything is the same.
2060 * If any blocks failed to read, then we need to
2061 * attempt an over-write
2063 struct mddev
*mddev
= r1_bio
->mddev
;
2064 struct r1conf
*conf
= mddev
->private;
2069 /* Fix variable parts of all bios */
2070 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
2071 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2072 blk_status_t status
;
2073 struct bio
*b
= r1_bio
->bios
[i
];
2074 struct resync_pages
*rp
= get_resync_pages(b
);
2075 if (b
->bi_end_io
!= end_sync_read
)
2077 /* fixup the bio for reuse, but preserve errno */
2078 status
= b
->bi_status
;
2080 b
->bi_status
= status
;
2081 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
2082 conf
->mirrors
[i
].rdev
->data_offset
;
2083 bio_set_dev(b
, conf
->mirrors
[i
].rdev
->bdev
);
2084 b
->bi_end_io
= end_sync_read
;
2085 rp
->raid_bio
= r1_bio
;
2088 /* initialize bvec table again */
2089 md_bio_reset_resync_pages(b
, rp
, r1_bio
->sectors
<< 9);
2091 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
2092 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
2093 !r1_bio
->bios
[primary
]->bi_status
) {
2094 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
2095 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
2098 r1_bio
->read_disk
= primary
;
2099 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2101 struct bio
*pbio
= r1_bio
->bios
[primary
];
2102 struct bio
*sbio
= r1_bio
->bios
[i
];
2103 blk_status_t status
= sbio
->bi_status
;
2104 struct page
**ppages
= get_resync_pages(pbio
)->pages
;
2105 struct page
**spages
= get_resync_pages(sbio
)->pages
;
2107 int page_len
[RESYNC_PAGES
] = { 0 };
2109 if (sbio
->bi_end_io
!= end_sync_read
)
2111 /* Now we can 'fixup' the error value */
2112 sbio
->bi_status
= 0;
2114 bio_for_each_segment_all(bi
, sbio
, j
)
2115 page_len
[j
] = bi
->bv_len
;
2118 for (j
= vcnt
; j
-- ; ) {
2119 if (memcmp(page_address(ppages
[j
]),
2120 page_address(spages
[j
]),
2127 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2128 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2130 /* No need to write to this device. */
2131 sbio
->bi_end_io
= NULL
;
2132 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2136 bio_copy_data(sbio
, pbio
);
2140 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2142 struct r1conf
*conf
= mddev
->private;
2144 int disks
= conf
->raid_disks
* 2;
2147 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2148 /* ouch - failed to read all of that. */
2149 if (!fix_sync_read_error(r1_bio
))
2152 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2153 process_checks(r1_bio
);
2158 atomic_set(&r1_bio
->remaining
, 1);
2159 for (i
= 0; i
< disks
; i
++) {
2160 wbio
= r1_bio
->bios
[i
];
2161 if (wbio
->bi_end_io
== NULL
||
2162 (wbio
->bi_end_io
== end_sync_read
&&
2163 (i
== r1_bio
->read_disk
||
2164 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2166 if (test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2169 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2170 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
))
2171 wbio
->bi_opf
|= MD_FAILFAST
;
2173 wbio
->bi_end_io
= end_sync_write
;
2174 atomic_inc(&r1_bio
->remaining
);
2175 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2177 generic_make_request(wbio
);
2180 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2181 /* if we're here, all write(s) have completed, so clean up */
2182 int s
= r1_bio
->sectors
;
2183 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2184 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2185 reschedule_retry(r1_bio
);
2188 md_done_sync(mddev
, s
, 1);
2194 * This is a kernel thread which:
2196 * 1. Retries failed read operations on working mirrors.
2197 * 2. Updates the raid superblock when problems encounter.
2198 * 3. Performs writes following reads for array synchronising.
2201 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2202 sector_t sect
, int sectors
)
2204 struct mddev
*mddev
= conf
->mddev
;
2210 struct md_rdev
*rdev
;
2212 if (s
> (PAGE_SIZE
>>9))
2220 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2222 (test_bit(In_sync
, &rdev
->flags
) ||
2223 (!test_bit(Faulty
, &rdev
->flags
) &&
2224 rdev
->recovery_offset
>= sect
+ s
)) &&
2225 is_badblock(rdev
, sect
, s
,
2226 &first_bad
, &bad_sectors
) == 0) {
2227 atomic_inc(&rdev
->nr_pending
);
2229 if (sync_page_io(rdev
, sect
, s
<<9,
2230 conf
->tmppage
, REQ_OP_READ
, 0, false))
2232 rdev_dec_pending(rdev
, mddev
);
2238 if (d
== conf
->raid_disks
* 2)
2240 } while (!success
&& d
!= read_disk
);
2243 /* Cannot read from anywhere - mark it bad */
2244 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2245 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2246 md_error(mddev
, rdev
);
2249 /* write it back and re-read */
2251 while (d
!= read_disk
) {
2253 d
= conf
->raid_disks
* 2;
2256 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2258 !test_bit(Faulty
, &rdev
->flags
)) {
2259 atomic_inc(&rdev
->nr_pending
);
2261 r1_sync_page_io(rdev
, sect
, s
,
2262 conf
->tmppage
, WRITE
);
2263 rdev_dec_pending(rdev
, mddev
);
2268 while (d
!= read_disk
) {
2269 char b
[BDEVNAME_SIZE
];
2271 d
= conf
->raid_disks
* 2;
2274 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2276 !test_bit(Faulty
, &rdev
->flags
)) {
2277 atomic_inc(&rdev
->nr_pending
);
2279 if (r1_sync_page_io(rdev
, sect
, s
,
2280 conf
->tmppage
, READ
)) {
2281 atomic_add(s
, &rdev
->corrected_errors
);
2282 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2284 (unsigned long long)(sect
+
2286 bdevname(rdev
->bdev
, b
));
2288 rdev_dec_pending(rdev
, mddev
);
2297 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2299 struct mddev
*mddev
= r1_bio
->mddev
;
2300 struct r1conf
*conf
= mddev
->private;
2301 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2303 /* bio has the data to be written to device 'i' where
2304 * we just recently had a write error.
2305 * We repeatedly clone the bio and trim down to one block,
2306 * then try the write. Where the write fails we record
2308 * It is conceivable that the bio doesn't exactly align with
2309 * blocks. We must handle this somehow.
2311 * We currently own a reference on the rdev.
2317 int sect_to_write
= r1_bio
->sectors
;
2320 if (rdev
->badblocks
.shift
< 0)
2323 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2324 bdev_logical_block_size(rdev
->bdev
) >> 9);
2325 sector
= r1_bio
->sector
;
2326 sectors
= ((sector
+ block_sectors
)
2327 & ~(sector_t
)(block_sectors
- 1))
2330 while (sect_to_write
) {
2332 if (sectors
> sect_to_write
)
2333 sectors
= sect_to_write
;
2334 /* Write at 'sector' for 'sectors'*/
2336 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2337 wbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
2341 wbio
= bio_clone_fast(r1_bio
->master_bio
, GFP_NOIO
,
2345 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2346 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2347 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2349 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2350 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2351 bio_set_dev(wbio
, rdev
->bdev
);
2353 if (submit_bio_wait(wbio
) < 0)
2355 ok
= rdev_set_badblocks(rdev
, sector
,
2360 sect_to_write
-= sectors
;
2362 sectors
= block_sectors
;
2367 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2370 int s
= r1_bio
->sectors
;
2371 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2372 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2373 struct bio
*bio
= r1_bio
->bios
[m
];
2374 if (bio
->bi_end_io
== NULL
)
2376 if (!bio
->bi_status
&&
2377 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2378 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2380 if (bio
->bi_status
&&
2381 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2382 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2383 md_error(conf
->mddev
, rdev
);
2387 md_done_sync(conf
->mddev
, s
, 1);
2390 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2395 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2396 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2397 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2398 rdev_clear_badblocks(rdev
,
2400 r1_bio
->sectors
, 0);
2401 rdev_dec_pending(rdev
, conf
->mddev
);
2402 } else if (r1_bio
->bios
[m
] != NULL
) {
2403 /* This drive got a write error. We need to
2404 * narrow down and record precise write
2408 if (!narrow_write_error(r1_bio
, m
)) {
2409 md_error(conf
->mddev
,
2410 conf
->mirrors
[m
].rdev
);
2411 /* an I/O failed, we can't clear the bitmap */
2412 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2414 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2418 spin_lock_irq(&conf
->device_lock
);
2419 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2420 idx
= sector_to_idx(r1_bio
->sector
);
2421 atomic_inc(&conf
->nr_queued
[idx
]);
2422 spin_unlock_irq(&conf
->device_lock
);
2424 * In case freeze_array() is waiting for condition
2425 * get_unqueued_pending() == extra to be true.
2427 wake_up(&conf
->wait_barrier
);
2428 md_wakeup_thread(conf
->mddev
->thread
);
2430 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2431 close_write(r1_bio
);
2432 raid_end_bio_io(r1_bio
);
2436 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2438 struct mddev
*mddev
= conf
->mddev
;
2440 struct md_rdev
*rdev
;
2441 sector_t bio_sector
;
2443 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2444 /* we got a read error. Maybe the drive is bad. Maybe just
2445 * the block and we can fix it.
2446 * We freeze all other IO, and try reading the block from
2447 * other devices. When we find one, we re-write
2448 * and check it that fixes the read error.
2449 * This is all done synchronously while the array is
2453 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2454 bio_sector
= conf
->mirrors
[r1_bio
->read_disk
].rdev
->data_offset
+ r1_bio
->sector
;
2456 r1_bio
->bios
[r1_bio
->read_disk
] = NULL
;
2458 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
2460 && !test_bit(FailFast
, &rdev
->flags
)) {
2461 freeze_array(conf
, 1);
2462 fix_read_error(conf
, r1_bio
->read_disk
,
2463 r1_bio
->sector
, r1_bio
->sectors
);
2464 unfreeze_array(conf
);
2466 r1_bio
->bios
[r1_bio
->read_disk
] = IO_BLOCKED
;
2469 rdev_dec_pending(rdev
, conf
->mddev
);
2470 allow_barrier(conf
, r1_bio
->sector
);
2471 bio
= r1_bio
->master_bio
;
2473 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2475 raid1_read_request(mddev
, bio
, r1_bio
->sectors
, r1_bio
);
2478 static void raid1d(struct md_thread
*thread
)
2480 struct mddev
*mddev
= thread
->mddev
;
2481 struct r1bio
*r1_bio
;
2482 unsigned long flags
;
2483 struct r1conf
*conf
= mddev
->private;
2484 struct list_head
*head
= &conf
->retry_list
;
2485 struct blk_plug plug
;
2488 md_check_recovery(mddev
);
2490 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2491 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2493 spin_lock_irqsave(&conf
->device_lock
, flags
);
2494 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
))
2495 list_splice_init(&conf
->bio_end_io_list
, &tmp
);
2496 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2497 while (!list_empty(&tmp
)) {
2498 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2500 list_del(&r1_bio
->retry_list
);
2501 idx
= sector_to_idx(r1_bio
->sector
);
2502 atomic_dec(&conf
->nr_queued
[idx
]);
2503 if (mddev
->degraded
)
2504 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2505 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2506 close_write(r1_bio
);
2507 raid_end_bio_io(r1_bio
);
2511 blk_start_plug(&plug
);
2514 flush_pending_writes(conf
);
2516 spin_lock_irqsave(&conf
->device_lock
, flags
);
2517 if (list_empty(head
)) {
2518 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2521 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2522 list_del(head
->prev
);
2523 idx
= sector_to_idx(r1_bio
->sector
);
2524 atomic_dec(&conf
->nr_queued
[idx
]);
2525 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2527 mddev
= r1_bio
->mddev
;
2528 conf
= mddev
->private;
2529 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2530 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2531 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2532 handle_sync_write_finished(conf
, r1_bio
);
2534 sync_request_write(mddev
, r1_bio
);
2535 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2536 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2537 handle_write_finished(conf
, r1_bio
);
2538 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2539 handle_read_error(conf
, r1_bio
);
2544 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2545 md_check_recovery(mddev
);
2547 blk_finish_plug(&plug
);
2550 static int init_resync(struct r1conf
*conf
)
2554 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2555 BUG_ON(conf
->r1buf_pool
);
2556 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2558 if (!conf
->r1buf_pool
)
2563 static struct r1bio
*raid1_alloc_init_r1buf(struct r1conf
*conf
)
2565 struct r1bio
*r1bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2566 struct resync_pages
*rps
;
2570 for (i
= conf
->poolinfo
->raid_disks
; i
--; ) {
2571 bio
= r1bio
->bios
[i
];
2572 rps
= bio
->bi_private
;
2574 bio
->bi_private
= rps
;
2576 r1bio
->master_bio
= NULL
;
2581 * perform a "sync" on one "block"
2583 * We need to make sure that no normal I/O request - particularly write
2584 * requests - conflict with active sync requests.
2586 * This is achieved by tracking pending requests and a 'barrier' concept
2587 * that can be installed to exclude normal IO requests.
2590 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2593 struct r1conf
*conf
= mddev
->private;
2594 struct r1bio
*r1_bio
;
2596 sector_t max_sector
, nr_sectors
;
2600 int write_targets
= 0, read_targets
= 0;
2601 sector_t sync_blocks
;
2602 int still_degraded
= 0;
2603 int good_sectors
= RESYNC_SECTORS
;
2604 int min_bad
= 0; /* number of sectors that are bad in all devices */
2605 int idx
= sector_to_idx(sector_nr
);
2608 if (!conf
->r1buf_pool
)
2609 if (init_resync(conf
))
2612 max_sector
= mddev
->dev_sectors
;
2613 if (sector_nr
>= max_sector
) {
2614 /* If we aborted, we need to abort the
2615 * sync on the 'current' bitmap chunk (there will
2616 * only be one in raid1 resync.
2617 * We can find the current addess in mddev->curr_resync
2619 if (mddev
->curr_resync
< max_sector
) /* aborted */
2620 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2622 else /* completed sync */
2625 bitmap_close_sync(mddev
->bitmap
);
2628 if (mddev_is_clustered(mddev
)) {
2629 conf
->cluster_sync_low
= 0;
2630 conf
->cluster_sync_high
= 0;
2635 if (mddev
->bitmap
== NULL
&&
2636 mddev
->recovery_cp
== MaxSector
&&
2637 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2638 conf
->fullsync
== 0) {
2640 return max_sector
- sector_nr
;
2642 /* before building a request, check if we can skip these blocks..
2643 * This call the bitmap_start_sync doesn't actually record anything
2645 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2646 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2647 /* We can skip this block, and probably several more */
2653 * If there is non-resync activity waiting for a turn, then let it
2654 * though before starting on this new sync request.
2656 if (atomic_read(&conf
->nr_waiting
[idx
]))
2657 schedule_timeout_uninterruptible(1);
2659 /* we are incrementing sector_nr below. To be safe, we check against
2660 * sector_nr + two times RESYNC_SECTORS
2663 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2664 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2665 r1_bio
= raid1_alloc_init_r1buf(conf
);
2667 raise_barrier(conf
, sector_nr
);
2671 * If we get a correctably read error during resync or recovery,
2672 * we might want to read from a different device. So we
2673 * flag all drives that could conceivably be read from for READ,
2674 * and any others (which will be non-In_sync devices) for WRITE.
2675 * If a read fails, we try reading from something else for which READ
2679 r1_bio
->mddev
= mddev
;
2680 r1_bio
->sector
= sector_nr
;
2682 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2683 /* make sure good_sectors won't go across barrier unit boundary */
2684 good_sectors
= align_to_barrier_unit_end(sector_nr
, good_sectors
);
2686 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2687 struct md_rdev
*rdev
;
2688 bio
= r1_bio
->bios
[i
];
2690 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2692 test_bit(Faulty
, &rdev
->flags
)) {
2693 if (i
< conf
->raid_disks
)
2695 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2696 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2697 bio
->bi_end_io
= end_sync_write
;
2700 /* may need to read from here */
2701 sector_t first_bad
= MaxSector
;
2704 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2705 &first_bad
, &bad_sectors
)) {
2706 if (first_bad
> sector_nr
)
2707 good_sectors
= first_bad
- sector_nr
;
2709 bad_sectors
-= (sector_nr
- first_bad
);
2711 min_bad
> bad_sectors
)
2712 min_bad
= bad_sectors
;
2715 if (sector_nr
< first_bad
) {
2716 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2723 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2724 bio
->bi_end_io
= end_sync_read
;
2726 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2727 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2728 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2730 * The device is suitable for reading (InSync),
2731 * but has bad block(s) here. Let's try to correct them,
2732 * if we are doing resync or repair. Otherwise, leave
2733 * this device alone for this sync request.
2735 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2736 bio
->bi_end_io
= end_sync_write
;
2740 if (bio
->bi_end_io
) {
2741 atomic_inc(&rdev
->nr_pending
);
2742 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2743 bio_set_dev(bio
, rdev
->bdev
);
2744 if (test_bit(FailFast
, &rdev
->flags
))
2745 bio
->bi_opf
|= MD_FAILFAST
;
2751 r1_bio
->read_disk
= disk
;
2753 if (read_targets
== 0 && min_bad
> 0) {
2754 /* These sectors are bad on all InSync devices, so we
2755 * need to mark them bad on all write targets
2758 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2759 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2760 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2761 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2765 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2770 /* Cannot record the badblocks, so need to
2772 * If there are multiple read targets, could just
2773 * fail the really bad ones ???
2775 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2776 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2782 if (min_bad
> 0 && min_bad
< good_sectors
) {
2783 /* only resync enough to reach the next bad->good
2785 good_sectors
= min_bad
;
2788 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2789 /* extra read targets are also write targets */
2790 write_targets
+= read_targets
-1;
2792 if (write_targets
== 0 || read_targets
== 0) {
2793 /* There is nowhere to write, so all non-sync
2794 * drives must be failed - so we are finished
2798 max_sector
= sector_nr
+ min_bad
;
2799 rv
= max_sector
- sector_nr
;
2805 if (max_sector
> mddev
->resync_max
)
2806 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2807 if (max_sector
> sector_nr
+ good_sectors
)
2808 max_sector
= sector_nr
+ good_sectors
;
2813 int len
= PAGE_SIZE
;
2814 if (sector_nr
+ (len
>>9) > max_sector
)
2815 len
= (max_sector
- sector_nr
) << 9;
2818 if (sync_blocks
== 0) {
2819 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2820 &sync_blocks
, still_degraded
) &&
2822 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2824 if ((len
>> 9) > sync_blocks
)
2825 len
= sync_blocks
<<9;
2828 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2829 struct resync_pages
*rp
;
2831 bio
= r1_bio
->bios
[i
];
2832 rp
= get_resync_pages(bio
);
2833 if (bio
->bi_end_io
) {
2834 page
= resync_fetch_page(rp
, page_idx
);
2837 * won't fail because the vec table is big
2838 * enough to hold all these pages
2840 bio_add_page(bio
, page
, len
, 0);
2843 nr_sectors
+= len
>>9;
2844 sector_nr
+= len
>>9;
2845 sync_blocks
-= (len
>>9);
2846 } while (++page_idx
< RESYNC_PAGES
);
2848 r1_bio
->sectors
= nr_sectors
;
2850 if (mddev_is_clustered(mddev
) &&
2851 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2852 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2853 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2854 /* Send resync message */
2855 md_cluster_ops
->resync_info_update(mddev
,
2856 conf
->cluster_sync_low
,
2857 conf
->cluster_sync_high
);
2860 /* For a user-requested sync, we read all readable devices and do a
2863 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2864 atomic_set(&r1_bio
->remaining
, read_targets
);
2865 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2866 bio
= r1_bio
->bios
[i
];
2867 if (bio
->bi_end_io
== end_sync_read
) {
2869 md_sync_acct_bio(bio
, nr_sectors
);
2870 if (read_targets
== 1)
2871 bio
->bi_opf
&= ~MD_FAILFAST
;
2872 generic_make_request(bio
);
2876 atomic_set(&r1_bio
->remaining
, 1);
2877 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2878 md_sync_acct_bio(bio
, nr_sectors
);
2879 if (read_targets
== 1)
2880 bio
->bi_opf
&= ~MD_FAILFAST
;
2881 generic_make_request(bio
);
2887 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2892 return mddev
->dev_sectors
;
2895 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2897 struct r1conf
*conf
;
2899 struct raid1_info
*disk
;
2900 struct md_rdev
*rdev
;
2903 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2907 conf
->nr_pending
= kcalloc(BARRIER_BUCKETS_NR
,
2908 sizeof(atomic_t
), GFP_KERNEL
);
2909 if (!conf
->nr_pending
)
2912 conf
->nr_waiting
= kcalloc(BARRIER_BUCKETS_NR
,
2913 sizeof(atomic_t
), GFP_KERNEL
);
2914 if (!conf
->nr_waiting
)
2917 conf
->nr_queued
= kcalloc(BARRIER_BUCKETS_NR
,
2918 sizeof(atomic_t
), GFP_KERNEL
);
2919 if (!conf
->nr_queued
)
2922 conf
->barrier
= kcalloc(BARRIER_BUCKETS_NR
,
2923 sizeof(atomic_t
), GFP_KERNEL
);
2927 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2928 * mddev
->raid_disks
* 2,
2933 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2937 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2938 if (!conf
->poolinfo
)
2940 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2941 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2944 if (!conf
->r1bio_pool
)
2947 conf
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0, 0);
2948 if (!conf
->bio_split
)
2951 conf
->poolinfo
->mddev
= mddev
;
2954 spin_lock_init(&conf
->device_lock
);
2955 rdev_for_each(rdev
, mddev
) {
2956 int disk_idx
= rdev
->raid_disk
;
2957 if (disk_idx
>= mddev
->raid_disks
2960 if (test_bit(Replacement
, &rdev
->flags
))
2961 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2963 disk
= conf
->mirrors
+ disk_idx
;
2968 disk
->head_position
= 0;
2969 disk
->seq_start
= MaxSector
;
2971 conf
->raid_disks
= mddev
->raid_disks
;
2972 conf
->mddev
= mddev
;
2973 INIT_LIST_HEAD(&conf
->retry_list
);
2974 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
2976 spin_lock_init(&conf
->resync_lock
);
2977 init_waitqueue_head(&conf
->wait_barrier
);
2979 bio_list_init(&conf
->pending_bio_list
);
2980 conf
->pending_count
= 0;
2981 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2984 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2986 disk
= conf
->mirrors
+ i
;
2988 if (i
< conf
->raid_disks
&&
2989 disk
[conf
->raid_disks
].rdev
) {
2990 /* This slot has a replacement. */
2992 /* No original, just make the replacement
2993 * a recovering spare
2996 disk
[conf
->raid_disks
].rdev
;
2997 disk
[conf
->raid_disks
].rdev
= NULL
;
2998 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2999 /* Original is not in_sync - bad */
3004 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3005 disk
->head_position
= 0;
3007 (disk
->rdev
->saved_raid_disk
< 0))
3013 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
3021 mempool_destroy(conf
->r1bio_pool
);
3022 kfree(conf
->mirrors
);
3023 safe_put_page(conf
->tmppage
);
3024 kfree(conf
->poolinfo
);
3025 kfree(conf
->nr_pending
);
3026 kfree(conf
->nr_waiting
);
3027 kfree(conf
->nr_queued
);
3028 kfree(conf
->barrier
);
3029 if (conf
->bio_split
)
3030 bioset_free(conf
->bio_split
);
3033 return ERR_PTR(err
);
3036 static void raid1_free(struct mddev
*mddev
, void *priv
);
3037 static int raid1_run(struct mddev
*mddev
)
3039 struct r1conf
*conf
;
3041 struct md_rdev
*rdev
;
3043 bool discard_supported
= false;
3045 if (mddev
->level
!= 1) {
3046 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3047 mdname(mddev
), mddev
->level
);
3050 if (mddev
->reshape_position
!= MaxSector
) {
3051 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3055 if (mddev_init_writes_pending(mddev
) < 0)
3058 * copy the already verified devices into our private RAID1
3059 * bookkeeping area. [whatever we allocate in run(),
3060 * should be freed in raid1_free()]
3062 if (mddev
->private == NULL
)
3063 conf
= setup_conf(mddev
);
3065 conf
= mddev
->private;
3068 return PTR_ERR(conf
);
3071 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3072 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3075 rdev_for_each(rdev
, mddev
) {
3076 if (!mddev
->gendisk
)
3078 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3079 rdev
->data_offset
<< 9);
3080 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3081 discard_supported
= true;
3084 mddev
->degraded
= 0;
3085 for (i
=0; i
< conf
->raid_disks
; i
++)
3086 if (conf
->mirrors
[i
].rdev
== NULL
||
3087 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
3088 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
3091 if (conf
->raid_disks
- mddev
->degraded
== 1)
3092 mddev
->recovery_cp
= MaxSector
;
3094 if (mddev
->recovery_cp
!= MaxSector
)
3095 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3097 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3098 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3102 * Ok, everything is just fine now
3104 mddev
->thread
= conf
->thread
;
3105 conf
->thread
= NULL
;
3106 mddev
->private = conf
;
3107 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3109 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
3112 if (discard_supported
)
3113 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3116 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3120 ret
= md_integrity_register(mddev
);
3122 md_unregister_thread(&mddev
->thread
);
3123 raid1_free(mddev
, conf
);
3128 static void raid1_free(struct mddev
*mddev
, void *priv
)
3130 struct r1conf
*conf
= priv
;
3132 mempool_destroy(conf
->r1bio_pool
);
3133 kfree(conf
->mirrors
);
3134 safe_put_page(conf
->tmppage
);
3135 kfree(conf
->poolinfo
);
3136 kfree(conf
->nr_pending
);
3137 kfree(conf
->nr_waiting
);
3138 kfree(conf
->nr_queued
);
3139 kfree(conf
->barrier
);
3140 if (conf
->bio_split
)
3141 bioset_free(conf
->bio_split
);
3145 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3147 /* no resync is happening, and there is enough space
3148 * on all devices, so we can resize.
3149 * We need to make sure resync covers any new space.
3150 * If the array is shrinking we should possibly wait until
3151 * any io in the removed space completes, but it hardly seems
3154 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3155 if (mddev
->external_size
&&
3156 mddev
->array_sectors
> newsize
)
3158 if (mddev
->bitmap
) {
3159 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3163 md_set_array_sectors(mddev
, newsize
);
3164 if (sectors
> mddev
->dev_sectors
&&
3165 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3166 mddev
->recovery_cp
= mddev
->dev_sectors
;
3167 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3169 mddev
->dev_sectors
= sectors
;
3170 mddev
->resync_max_sectors
= sectors
;
3174 static int raid1_reshape(struct mddev
*mddev
)
3177 * 1/ resize the r1bio_pool
3178 * 2/ resize conf->mirrors
3180 * We allocate a new r1bio_pool if we can.
3181 * Then raise a device barrier and wait until all IO stops.
3182 * Then resize conf->mirrors and swap in the new r1bio pool.
3184 * At the same time, we "pack" the devices so that all the missing
3185 * devices have the higher raid_disk numbers.
3187 mempool_t
*newpool
, *oldpool
;
3188 struct pool_info
*newpoolinfo
;
3189 struct raid1_info
*newmirrors
;
3190 struct r1conf
*conf
= mddev
->private;
3191 int cnt
, raid_disks
;
3192 unsigned long flags
;
3195 /* Cannot change chunk_size, layout, or level */
3196 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3197 mddev
->layout
!= mddev
->new_layout
||
3198 mddev
->level
!= mddev
->new_level
) {
3199 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3200 mddev
->new_layout
= mddev
->layout
;
3201 mddev
->new_level
= mddev
->level
;
3205 if (!mddev_is_clustered(mddev
))
3206 md_allow_write(mddev
);
3208 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3210 if (raid_disks
< conf
->raid_disks
) {
3212 for (d
= 0; d
< conf
->raid_disks
; d
++)
3213 if (conf
->mirrors
[d
].rdev
)
3215 if (cnt
> raid_disks
)
3219 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3222 newpoolinfo
->mddev
= mddev
;
3223 newpoolinfo
->raid_disks
= raid_disks
* 2;
3225 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3226 r1bio_pool_free
, newpoolinfo
);
3231 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3235 mempool_destroy(newpool
);
3239 freeze_array(conf
, 0);
3241 /* ok, everything is stopped */
3242 oldpool
= conf
->r1bio_pool
;
3243 conf
->r1bio_pool
= newpool
;
3245 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3246 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3247 if (rdev
&& rdev
->raid_disk
!= d2
) {
3248 sysfs_unlink_rdev(mddev
, rdev
);
3249 rdev
->raid_disk
= d2
;
3250 sysfs_unlink_rdev(mddev
, rdev
);
3251 if (sysfs_link_rdev(mddev
, rdev
))
3252 pr_warn("md/raid1:%s: cannot register rd%d\n",
3253 mdname(mddev
), rdev
->raid_disk
);
3256 newmirrors
[d2
++].rdev
= rdev
;
3258 kfree(conf
->mirrors
);
3259 conf
->mirrors
= newmirrors
;
3260 kfree(conf
->poolinfo
);
3261 conf
->poolinfo
= newpoolinfo
;
3263 spin_lock_irqsave(&conf
->device_lock
, flags
);
3264 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3265 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3266 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3267 mddev
->delta_disks
= 0;
3269 unfreeze_array(conf
);
3271 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3272 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3273 md_wakeup_thread(mddev
->thread
);
3275 mempool_destroy(oldpool
);
3279 static void raid1_quiesce(struct mddev
*mddev
, int quiesce
)
3281 struct r1conf
*conf
= mddev
->private;
3284 freeze_array(conf
, 0);
3286 unfreeze_array(conf
);
3289 static void *raid1_takeover(struct mddev
*mddev
)
3291 /* raid1 can take over:
3292 * raid5 with 2 devices, any layout or chunk size
3294 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3295 struct r1conf
*conf
;
3296 mddev
->new_level
= 1;
3297 mddev
->new_layout
= 0;
3298 mddev
->new_chunk_sectors
= 0;
3299 conf
= setup_conf(mddev
);
3300 if (!IS_ERR(conf
)) {
3301 /* Array must appear to be quiesced */
3302 conf
->array_frozen
= 1;
3303 mddev_clear_unsupported_flags(mddev
,
3304 UNSUPPORTED_MDDEV_FLAGS
);
3308 return ERR_PTR(-EINVAL
);
3311 static struct md_personality raid1_personality
=
3315 .owner
= THIS_MODULE
,
3316 .make_request
= raid1_make_request
,
3319 .status
= raid1_status
,
3320 .error_handler
= raid1_error
,
3321 .hot_add_disk
= raid1_add_disk
,
3322 .hot_remove_disk
= raid1_remove_disk
,
3323 .spare_active
= raid1_spare_active
,
3324 .sync_request
= raid1_sync_request
,
3325 .resize
= raid1_resize
,
3327 .check_reshape
= raid1_reshape
,
3328 .quiesce
= raid1_quiesce
,
3329 .takeover
= raid1_takeover
,
3330 .congested
= raid1_congested
,
3333 static int __init
raid_init(void)
3335 return register_md_personality(&raid1_personality
);
3338 static void raid_exit(void)
3340 unregister_md_personality(&raid1_personality
);
3343 module_init(raid_init
);
3344 module_exit(raid_exit
);
3345 MODULE_LICENSE("GPL");
3346 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3347 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3348 MODULE_ALIAS("md-raid1");
3349 MODULE_ALIAS("md-level-1");
3351 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);