Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / md / raid5-cache.c
blob3c65f52b68f533397d6c8304d7f2ed9ff9025de9
1 /*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "md-bitmap.h"
27 #include "raid5-log.h"
30 * metadata/data stored in disk with 4k size unit (a block) regardless
31 * underneath hardware sector size. only works with PAGE_SIZE == 4096
33 #define BLOCK_SECTORS (8)
34 #define BLOCK_SECTOR_SHIFT (3)
37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
39 * In write through mode, the reclaim runs every log->max_free_space.
40 * This can prevent the recovery scans for too long
42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
45 /* wake up reclaim thread periodically */
46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47 /* start flush with these full stripes */
48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
49 /* reclaim stripes in groups */
50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
53 * We only need 2 bios per I/O unit to make progress, but ensure we
54 * have a few more available to not get too tight.
56 #define R5L_POOL_SIZE 4
58 static char *r5c_journal_mode_str[] = {"write-through",
59 "write-back"};
61 * raid5 cache state machine
63 * With the RAID cache, each stripe works in two phases:
64 * - caching phase
65 * - writing-out phase
67 * These two phases are controlled by bit STRIPE_R5C_CACHING:
68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
71 * When there is no journal, or the journal is in write-through mode,
72 * the stripe is always in writing-out phase.
74 * For write-back journal, the stripe is sent to caching phase on write
75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76 * the write-out phase by clearing STRIPE_R5C_CACHING.
78 * Stripes in caching phase do not write the raid disks. Instead, all
79 * writes are committed from the log device. Therefore, a stripe in
80 * caching phase handles writes as:
81 * - write to log device
82 * - return IO
84 * Stripes in writing-out phase handle writes as:
85 * - calculate parity
86 * - write pending data and parity to journal
87 * - write data and parity to raid disks
88 * - return IO for pending writes
91 struct r5l_log {
92 struct md_rdev *rdev;
94 u32 uuid_checksum;
96 sector_t device_size; /* log device size, round to
97 * BLOCK_SECTORS */
98 sector_t max_free_space; /* reclaim run if free space is at
99 * this size */
101 sector_t last_checkpoint; /* log tail. where recovery scan
102 * starts from */
103 u64 last_cp_seq; /* log tail sequence */
105 sector_t log_start; /* log head. where new data appends */
106 u64 seq; /* log head sequence */
108 sector_t next_checkpoint;
110 struct mutex io_mutex;
111 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
113 spinlock_t io_list_lock;
114 struct list_head running_ios; /* io_units which are still running,
115 * and have not yet been completely
116 * written to the log */
117 struct list_head io_end_ios; /* io_units which have been completely
118 * written to the log but not yet written
119 * to the RAID */
120 struct list_head flushing_ios; /* io_units which are waiting for log
121 * cache flush */
122 struct list_head finished_ios; /* io_units which settle down in log disk */
123 struct bio flush_bio;
125 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
127 struct kmem_cache *io_kc;
128 mempool_t *io_pool;
129 struct bio_set *bs;
130 mempool_t *meta_pool;
132 struct md_thread *reclaim_thread;
133 unsigned long reclaim_target; /* number of space that need to be
134 * reclaimed. if it's 0, reclaim spaces
135 * used by io_units which are in
136 * IO_UNIT_STRIPE_END state (eg, reclaim
137 * dones't wait for specific io_unit
138 * switching to IO_UNIT_STRIPE_END
139 * state) */
140 wait_queue_head_t iounit_wait;
142 struct list_head no_space_stripes; /* pending stripes, log has no space */
143 spinlock_t no_space_stripes_lock;
145 bool need_cache_flush;
147 /* for r5c_cache */
148 enum r5c_journal_mode r5c_journal_mode;
150 /* all stripes in r5cache, in the order of seq at sh->log_start */
151 struct list_head stripe_in_journal_list;
153 spinlock_t stripe_in_journal_lock;
154 atomic_t stripe_in_journal_count;
156 /* to submit async io_units, to fulfill ordering of flush */
157 struct work_struct deferred_io_work;
158 /* to disable write back during in degraded mode */
159 struct work_struct disable_writeback_work;
161 /* to for chunk_aligned_read in writeback mode, details below */
162 spinlock_t tree_lock;
163 struct radix_tree_root big_stripe_tree;
167 * Enable chunk_aligned_read() with write back cache.
169 * Each chunk may contain more than one stripe (for example, a 256kB
170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172 * For each big_stripe, we count how many stripes of this big_stripe
173 * are in the write back cache. These data are tracked in a radix tree
174 * (big_stripe_tree). We use radix_tree item pointer as the counter.
175 * r5c_tree_index() is used to calculate keys for the radix tree.
177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178 * big_stripe of each chunk in the tree. If this big_stripe is in the
179 * tree, chunk_aligned_read() aborts. This look up is protected by
180 * rcu_read_lock().
182 * It is necessary to remember whether a stripe is counted in
183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185 * two flags are set, the stripe is counted in big_stripe_tree. This
186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187 * r5c_try_caching_write(); and moving clear_bit of
188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189 * r5c_finish_stripe_write_out().
193 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194 * So it is necessary to left shift the counter by 2 bits before using it
195 * as data pointer of the tree.
197 #define R5C_RADIX_COUNT_SHIFT 2
200 * calculate key for big_stripe_tree
202 * sect: align_bi->bi_iter.bi_sector or sh->sector
204 static inline sector_t r5c_tree_index(struct r5conf *conf,
205 sector_t sect)
207 sector_t offset;
209 offset = sector_div(sect, conf->chunk_sectors);
210 return sect;
214 * an IO range starts from a meta data block and end at the next meta data
215 * block. The io unit's the meta data block tracks data/parity followed it. io
216 * unit is written to log disk with normal write, as we always flush log disk
217 * first and then start move data to raid disks, there is no requirement to
218 * write io unit with FLUSH/FUA
220 struct r5l_io_unit {
221 struct r5l_log *log;
223 struct page *meta_page; /* store meta block */
224 int meta_offset; /* current offset in meta_page */
226 struct bio *current_bio;/* current_bio accepting new data */
228 atomic_t pending_stripe;/* how many stripes not flushed to raid */
229 u64 seq; /* seq number of the metablock */
230 sector_t log_start; /* where the io_unit starts */
231 sector_t log_end; /* where the io_unit ends */
232 struct list_head log_sibling; /* log->running_ios */
233 struct list_head stripe_list; /* stripes added to the io_unit */
235 int state;
236 bool need_split_bio;
237 struct bio *split_bio;
239 unsigned int has_flush:1; /* include flush request */
240 unsigned int has_fua:1; /* include fua request */
241 unsigned int has_null_flush:1; /* include null flush request */
242 unsigned int has_flush_payload:1; /* include flush payload */
244 * io isn't sent yet, flush/fua request can only be submitted till it's
245 * the first IO in running_ios list
247 unsigned int io_deferred:1;
249 struct bio_list flush_barriers; /* size == 0 flush bios */
252 /* r5l_io_unit state */
253 enum r5l_io_unit_state {
254 IO_UNIT_RUNNING = 0, /* accepting new IO */
255 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
256 * don't accepting new bio */
257 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
258 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
261 bool r5c_is_writeback(struct r5l_log *log)
263 return (log != NULL &&
264 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
267 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
269 start += inc;
270 if (start >= log->device_size)
271 start = start - log->device_size;
272 return start;
275 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
276 sector_t end)
278 if (end >= start)
279 return end - start;
280 else
281 return end + log->device_size - start;
284 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
286 sector_t used_size;
288 used_size = r5l_ring_distance(log, log->last_checkpoint,
289 log->log_start);
291 return log->device_size > used_size + size;
294 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
295 enum r5l_io_unit_state state)
297 if (WARN_ON(io->state >= state))
298 return;
299 io->state = state;
302 static void
303 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
305 struct bio *wbi, *wbi2;
307 wbi = dev->written;
308 dev->written = NULL;
309 while (wbi && wbi->bi_iter.bi_sector <
310 dev->sector + STRIPE_SECTORS) {
311 wbi2 = r5_next_bio(wbi, dev->sector);
312 md_write_end(conf->mddev);
313 bio_endio(wbi);
314 wbi = wbi2;
318 void r5c_handle_cached_data_endio(struct r5conf *conf,
319 struct stripe_head *sh, int disks)
321 int i;
323 for (i = sh->disks; i--; ) {
324 if (sh->dev[i].written) {
325 set_bit(R5_UPTODATE, &sh->dev[i].flags);
326 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
327 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
328 STRIPE_SECTORS,
329 !test_bit(STRIPE_DEGRADED, &sh->state),
335 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
337 /* Check whether we should flush some stripes to free up stripe cache */
338 void r5c_check_stripe_cache_usage(struct r5conf *conf)
340 int total_cached;
342 if (!r5c_is_writeback(conf->log))
343 return;
345 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
346 atomic_read(&conf->r5c_cached_full_stripes);
349 * The following condition is true for either of the following:
350 * - stripe cache pressure high:
351 * total_cached > 3/4 min_nr_stripes ||
352 * empty_inactive_list_nr > 0
353 * - stripe cache pressure moderate:
354 * total_cached > 1/2 min_nr_stripes
356 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
357 atomic_read(&conf->empty_inactive_list_nr) > 0)
358 r5l_wake_reclaim(conf->log, 0);
362 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
363 * stripes in the cache
365 void r5c_check_cached_full_stripe(struct r5conf *conf)
367 if (!r5c_is_writeback(conf->log))
368 return;
371 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
372 * or a full stripe (chunk size / 4k stripes).
374 if (atomic_read(&conf->r5c_cached_full_stripes) >=
375 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
376 conf->chunk_sectors >> STRIPE_SHIFT))
377 r5l_wake_reclaim(conf->log, 0);
381 * Total log space (in sectors) needed to flush all data in cache
383 * To avoid deadlock due to log space, it is necessary to reserve log
384 * space to flush critical stripes (stripes that occupying log space near
385 * last_checkpoint). This function helps check how much log space is
386 * required to flush all cached stripes.
388 * To reduce log space requirements, two mechanisms are used to give cache
389 * flush higher priorities:
390 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
391 * stripes ALREADY in journal can be flushed w/o pending writes;
392 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
393 * can be delayed (r5l_add_no_space_stripe).
395 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
396 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
397 * pages of journal space. For stripes that has not passed 1, flushing it
398 * requires (conf->raid_disks + 1) pages of journal space. There are at
399 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
400 * required to flush all cached stripes (in pages) is:
402 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
403 * (group_cnt + 1) * (raid_disks + 1)
404 * or
405 * (stripe_in_journal_count) * (max_degraded + 1) +
406 * (group_cnt + 1) * (raid_disks - max_degraded)
408 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
410 struct r5l_log *log = conf->log;
412 if (!r5c_is_writeback(log))
413 return 0;
415 return BLOCK_SECTORS *
416 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
417 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
421 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
423 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
424 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
425 * device is less than 2x of reclaim_required_space.
427 static inline void r5c_update_log_state(struct r5l_log *log)
429 struct r5conf *conf = log->rdev->mddev->private;
430 sector_t free_space;
431 sector_t reclaim_space;
432 bool wake_reclaim = false;
434 if (!r5c_is_writeback(log))
435 return;
437 free_space = r5l_ring_distance(log, log->log_start,
438 log->last_checkpoint);
439 reclaim_space = r5c_log_required_to_flush_cache(conf);
440 if (free_space < 2 * reclaim_space)
441 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
442 else {
443 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
444 wake_reclaim = true;
445 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
447 if (free_space < 3 * reclaim_space)
448 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
449 else
450 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
452 if (wake_reclaim)
453 r5l_wake_reclaim(log, 0);
457 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
458 * This function should only be called in write-back mode.
460 void r5c_make_stripe_write_out(struct stripe_head *sh)
462 struct r5conf *conf = sh->raid_conf;
463 struct r5l_log *log = conf->log;
465 BUG_ON(!r5c_is_writeback(log));
467 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
468 clear_bit(STRIPE_R5C_CACHING, &sh->state);
470 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
471 atomic_inc(&conf->preread_active_stripes);
474 static void r5c_handle_data_cached(struct stripe_head *sh)
476 int i;
478 for (i = sh->disks; i--; )
479 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
480 set_bit(R5_InJournal, &sh->dev[i].flags);
481 clear_bit(R5_LOCKED, &sh->dev[i].flags);
483 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
487 * this journal write must contain full parity,
488 * it may also contain some data pages
490 static void r5c_handle_parity_cached(struct stripe_head *sh)
492 int i;
494 for (i = sh->disks; i--; )
495 if (test_bit(R5_InJournal, &sh->dev[i].flags))
496 set_bit(R5_Wantwrite, &sh->dev[i].flags);
500 * Setting proper flags after writing (or flushing) data and/or parity to the
501 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
503 static void r5c_finish_cache_stripe(struct stripe_head *sh)
505 struct r5l_log *log = sh->raid_conf->log;
507 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
508 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
510 * Set R5_InJournal for parity dev[pd_idx]. This means
511 * all data AND parity in the journal. For RAID 6, it is
512 * NOT necessary to set the flag for dev[qd_idx], as the
513 * two parities are written out together.
515 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
516 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
517 r5c_handle_data_cached(sh);
518 } else {
519 r5c_handle_parity_cached(sh);
520 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
524 static void r5l_io_run_stripes(struct r5l_io_unit *io)
526 struct stripe_head *sh, *next;
528 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
529 list_del_init(&sh->log_list);
531 r5c_finish_cache_stripe(sh);
533 set_bit(STRIPE_HANDLE, &sh->state);
534 raid5_release_stripe(sh);
538 static void r5l_log_run_stripes(struct r5l_log *log)
540 struct r5l_io_unit *io, *next;
542 lockdep_assert_held(&log->io_list_lock);
544 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
545 /* don't change list order */
546 if (io->state < IO_UNIT_IO_END)
547 break;
549 list_move_tail(&io->log_sibling, &log->finished_ios);
550 r5l_io_run_stripes(io);
554 static void r5l_move_to_end_ios(struct r5l_log *log)
556 struct r5l_io_unit *io, *next;
558 lockdep_assert_held(&log->io_list_lock);
560 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
561 /* don't change list order */
562 if (io->state < IO_UNIT_IO_END)
563 break;
564 list_move_tail(&io->log_sibling, &log->io_end_ios);
568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
569 static void r5l_log_endio(struct bio *bio)
571 struct r5l_io_unit *io = bio->bi_private;
572 struct r5l_io_unit *io_deferred;
573 struct r5l_log *log = io->log;
574 unsigned long flags;
575 bool has_null_flush;
576 bool has_flush_payload;
578 if (bio->bi_status)
579 md_error(log->rdev->mddev, log->rdev);
581 bio_put(bio);
582 mempool_free(io->meta_page, log->meta_pool);
584 spin_lock_irqsave(&log->io_list_lock, flags);
585 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
588 * if the io doesn't not have null_flush or flush payload,
589 * it is not safe to access it after releasing io_list_lock.
590 * Therefore, it is necessary to check the condition with
591 * the lock held.
593 has_null_flush = io->has_null_flush;
594 has_flush_payload = io->has_flush_payload;
596 if (log->need_cache_flush && !list_empty(&io->stripe_list))
597 r5l_move_to_end_ios(log);
598 else
599 r5l_log_run_stripes(log);
600 if (!list_empty(&log->running_ios)) {
602 * FLUSH/FUA io_unit is deferred because of ordering, now we
603 * can dispatch it
605 io_deferred = list_first_entry(&log->running_ios,
606 struct r5l_io_unit, log_sibling);
607 if (io_deferred->io_deferred)
608 schedule_work(&log->deferred_io_work);
611 spin_unlock_irqrestore(&log->io_list_lock, flags);
613 if (log->need_cache_flush)
614 md_wakeup_thread(log->rdev->mddev->thread);
616 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
617 if (has_null_flush) {
618 struct bio *bi;
620 WARN_ON(bio_list_empty(&io->flush_barriers));
621 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
622 bio_endio(bi);
623 if (atomic_dec_and_test(&io->pending_stripe)) {
624 __r5l_stripe_write_finished(io);
625 return;
629 /* decrease pending_stripe for flush payload */
630 if (has_flush_payload)
631 if (atomic_dec_and_test(&io->pending_stripe))
632 __r5l_stripe_write_finished(io);
635 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
637 unsigned long flags;
639 spin_lock_irqsave(&log->io_list_lock, flags);
640 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
641 spin_unlock_irqrestore(&log->io_list_lock, flags);
644 * In case of journal device failures, submit_bio will get error
645 * and calls endio, then active stripes will continue write
646 * process. Therefore, it is not necessary to check Faulty bit
647 * of journal device here.
649 * We can't check split_bio after current_bio is submitted. If
650 * io->split_bio is null, after current_bio is submitted, current_bio
651 * might already be completed and the io_unit is freed. We submit
652 * split_bio first to avoid the issue.
654 if (io->split_bio) {
655 if (io->has_flush)
656 io->split_bio->bi_opf |= REQ_PREFLUSH;
657 if (io->has_fua)
658 io->split_bio->bi_opf |= REQ_FUA;
659 submit_bio(io->split_bio);
662 if (io->has_flush)
663 io->current_bio->bi_opf |= REQ_PREFLUSH;
664 if (io->has_fua)
665 io->current_bio->bi_opf |= REQ_FUA;
666 submit_bio(io->current_bio);
669 /* deferred io_unit will be dispatched here */
670 static void r5l_submit_io_async(struct work_struct *work)
672 struct r5l_log *log = container_of(work, struct r5l_log,
673 deferred_io_work);
674 struct r5l_io_unit *io = NULL;
675 unsigned long flags;
677 spin_lock_irqsave(&log->io_list_lock, flags);
678 if (!list_empty(&log->running_ios)) {
679 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
680 log_sibling);
681 if (!io->io_deferred)
682 io = NULL;
683 else
684 io->io_deferred = 0;
686 spin_unlock_irqrestore(&log->io_list_lock, flags);
687 if (io)
688 r5l_do_submit_io(log, io);
691 static void r5c_disable_writeback_async(struct work_struct *work)
693 struct r5l_log *log = container_of(work, struct r5l_log,
694 disable_writeback_work);
695 struct mddev *mddev = log->rdev->mddev;
696 struct r5conf *conf = mddev->private;
697 int locked = 0;
699 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
700 return;
701 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
702 mdname(mddev));
704 /* wait superblock change before suspend */
705 wait_event(mddev->sb_wait,
706 conf->log == NULL ||
707 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
708 (locked = mddev_trylock(mddev))));
709 if (locked) {
710 mddev_suspend(mddev);
711 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
712 mddev_resume(mddev);
713 mddev_unlock(mddev);
717 static void r5l_submit_current_io(struct r5l_log *log)
719 struct r5l_io_unit *io = log->current_io;
720 struct bio *bio;
721 struct r5l_meta_block *block;
722 unsigned long flags;
723 u32 crc;
724 bool do_submit = true;
726 if (!io)
727 return;
729 block = page_address(io->meta_page);
730 block->meta_size = cpu_to_le32(io->meta_offset);
731 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
732 block->checksum = cpu_to_le32(crc);
733 bio = io->current_bio;
735 log->current_io = NULL;
736 spin_lock_irqsave(&log->io_list_lock, flags);
737 if (io->has_flush || io->has_fua) {
738 if (io != list_first_entry(&log->running_ios,
739 struct r5l_io_unit, log_sibling)) {
740 io->io_deferred = 1;
741 do_submit = false;
744 spin_unlock_irqrestore(&log->io_list_lock, flags);
745 if (do_submit)
746 r5l_do_submit_io(log, io);
749 static struct bio *r5l_bio_alloc(struct r5l_log *log)
751 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
753 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
754 bio_set_dev(bio, log->rdev->bdev);
755 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
757 return bio;
760 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
762 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
764 r5c_update_log_state(log);
766 * If we filled up the log device start from the beginning again,
767 * which will require a new bio.
769 * Note: for this to work properly the log size needs to me a multiple
770 * of BLOCK_SECTORS.
772 if (log->log_start == 0)
773 io->need_split_bio = true;
775 io->log_end = log->log_start;
778 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
780 struct r5l_io_unit *io;
781 struct r5l_meta_block *block;
783 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
784 if (!io)
785 return NULL;
786 memset(io, 0, sizeof(*io));
788 io->log = log;
789 INIT_LIST_HEAD(&io->log_sibling);
790 INIT_LIST_HEAD(&io->stripe_list);
791 bio_list_init(&io->flush_barriers);
792 io->state = IO_UNIT_RUNNING;
794 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
795 block = page_address(io->meta_page);
796 clear_page(block);
797 block->magic = cpu_to_le32(R5LOG_MAGIC);
798 block->version = R5LOG_VERSION;
799 block->seq = cpu_to_le64(log->seq);
800 block->position = cpu_to_le64(log->log_start);
802 io->log_start = log->log_start;
803 io->meta_offset = sizeof(struct r5l_meta_block);
804 io->seq = log->seq++;
806 io->current_bio = r5l_bio_alloc(log);
807 io->current_bio->bi_end_io = r5l_log_endio;
808 io->current_bio->bi_private = io;
809 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
811 r5_reserve_log_entry(log, io);
813 spin_lock_irq(&log->io_list_lock);
814 list_add_tail(&io->log_sibling, &log->running_ios);
815 spin_unlock_irq(&log->io_list_lock);
817 return io;
820 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
822 if (log->current_io &&
823 log->current_io->meta_offset + payload_size > PAGE_SIZE)
824 r5l_submit_current_io(log);
826 if (!log->current_io) {
827 log->current_io = r5l_new_meta(log);
828 if (!log->current_io)
829 return -ENOMEM;
832 return 0;
835 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
836 sector_t location,
837 u32 checksum1, u32 checksum2,
838 bool checksum2_valid)
840 struct r5l_io_unit *io = log->current_io;
841 struct r5l_payload_data_parity *payload;
843 payload = page_address(io->meta_page) + io->meta_offset;
844 payload->header.type = cpu_to_le16(type);
845 payload->header.flags = cpu_to_le16(0);
846 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
847 (PAGE_SHIFT - 9));
848 payload->location = cpu_to_le64(location);
849 payload->checksum[0] = cpu_to_le32(checksum1);
850 if (checksum2_valid)
851 payload->checksum[1] = cpu_to_le32(checksum2);
853 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
854 sizeof(__le32) * (1 + !!checksum2_valid);
857 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
859 struct r5l_io_unit *io = log->current_io;
861 if (io->need_split_bio) {
862 BUG_ON(io->split_bio);
863 io->split_bio = io->current_bio;
864 io->current_bio = r5l_bio_alloc(log);
865 bio_chain(io->current_bio, io->split_bio);
866 io->need_split_bio = false;
869 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
870 BUG();
872 r5_reserve_log_entry(log, io);
875 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
877 struct mddev *mddev = log->rdev->mddev;
878 struct r5conf *conf = mddev->private;
879 struct r5l_io_unit *io;
880 struct r5l_payload_flush *payload;
881 int meta_size;
884 * payload_flush requires extra writes to the journal.
885 * To avoid handling the extra IO in quiesce, just skip
886 * flush_payload
888 if (conf->quiesce)
889 return;
891 mutex_lock(&log->io_mutex);
892 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
894 if (r5l_get_meta(log, meta_size)) {
895 mutex_unlock(&log->io_mutex);
896 return;
899 /* current implementation is one stripe per flush payload */
900 io = log->current_io;
901 payload = page_address(io->meta_page) + io->meta_offset;
902 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
903 payload->header.flags = cpu_to_le16(0);
904 payload->size = cpu_to_le32(sizeof(__le64));
905 payload->flush_stripes[0] = cpu_to_le64(sect);
906 io->meta_offset += meta_size;
907 /* multiple flush payloads count as one pending_stripe */
908 if (!io->has_flush_payload) {
909 io->has_flush_payload = 1;
910 atomic_inc(&io->pending_stripe);
912 mutex_unlock(&log->io_mutex);
915 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
916 int data_pages, int parity_pages)
918 int i;
919 int meta_size;
920 int ret;
921 struct r5l_io_unit *io;
923 meta_size =
924 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
925 * data_pages) +
926 sizeof(struct r5l_payload_data_parity) +
927 sizeof(__le32) * parity_pages;
929 ret = r5l_get_meta(log, meta_size);
930 if (ret)
931 return ret;
933 io = log->current_io;
935 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
936 io->has_flush = 1;
938 for (i = 0; i < sh->disks; i++) {
939 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
940 test_bit(R5_InJournal, &sh->dev[i].flags))
941 continue;
942 if (i == sh->pd_idx || i == sh->qd_idx)
943 continue;
944 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
945 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
946 io->has_fua = 1;
948 * we need to flush journal to make sure recovery can
949 * reach the data with fua flag
951 io->has_flush = 1;
953 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
954 raid5_compute_blocknr(sh, i, 0),
955 sh->dev[i].log_checksum, 0, false);
956 r5l_append_payload_page(log, sh->dev[i].page);
959 if (parity_pages == 2) {
960 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
961 sh->sector, sh->dev[sh->pd_idx].log_checksum,
962 sh->dev[sh->qd_idx].log_checksum, true);
963 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
964 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
965 } else if (parity_pages == 1) {
966 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
967 sh->sector, sh->dev[sh->pd_idx].log_checksum,
968 0, false);
969 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
970 } else /* Just writing data, not parity, in caching phase */
971 BUG_ON(parity_pages != 0);
973 list_add_tail(&sh->log_list, &io->stripe_list);
974 atomic_inc(&io->pending_stripe);
975 sh->log_io = io;
977 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
978 return 0;
980 if (sh->log_start == MaxSector) {
981 BUG_ON(!list_empty(&sh->r5c));
982 sh->log_start = io->log_start;
983 spin_lock_irq(&log->stripe_in_journal_lock);
984 list_add_tail(&sh->r5c,
985 &log->stripe_in_journal_list);
986 spin_unlock_irq(&log->stripe_in_journal_lock);
987 atomic_inc(&log->stripe_in_journal_count);
989 return 0;
992 /* add stripe to no_space_stripes, and then wake up reclaim */
993 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
994 struct stripe_head *sh)
996 spin_lock(&log->no_space_stripes_lock);
997 list_add_tail(&sh->log_list, &log->no_space_stripes);
998 spin_unlock(&log->no_space_stripes_lock);
1002 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
1003 * data from log to raid disks), so we shouldn't wait for reclaim here
1005 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
1007 struct r5conf *conf = sh->raid_conf;
1008 int write_disks = 0;
1009 int data_pages, parity_pages;
1010 int reserve;
1011 int i;
1012 int ret = 0;
1013 bool wake_reclaim = false;
1015 if (!log)
1016 return -EAGAIN;
1017 /* Don't support stripe batch */
1018 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1019 test_bit(STRIPE_SYNCING, &sh->state)) {
1020 /* the stripe is written to log, we start writing it to raid */
1021 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1022 return -EAGAIN;
1025 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1027 for (i = 0; i < sh->disks; i++) {
1028 void *addr;
1030 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1031 test_bit(R5_InJournal, &sh->dev[i].flags))
1032 continue;
1034 write_disks++;
1035 /* checksum is already calculated in last run */
1036 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1037 continue;
1038 addr = kmap_atomic(sh->dev[i].page);
1039 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1040 addr, PAGE_SIZE);
1041 kunmap_atomic(addr);
1043 parity_pages = 1 + !!(sh->qd_idx >= 0);
1044 data_pages = write_disks - parity_pages;
1046 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1048 * The stripe must enter state machine again to finish the write, so
1049 * don't delay.
1051 clear_bit(STRIPE_DELAYED, &sh->state);
1052 atomic_inc(&sh->count);
1054 mutex_lock(&log->io_mutex);
1055 /* meta + data */
1056 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1058 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1059 if (!r5l_has_free_space(log, reserve)) {
1060 r5l_add_no_space_stripe(log, sh);
1061 wake_reclaim = true;
1062 } else {
1063 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1064 if (ret) {
1065 spin_lock_irq(&log->io_list_lock);
1066 list_add_tail(&sh->log_list,
1067 &log->no_mem_stripes);
1068 spin_unlock_irq(&log->io_list_lock);
1071 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1073 * log space critical, do not process stripes that are
1074 * not in cache yet (sh->log_start == MaxSector).
1076 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1077 sh->log_start == MaxSector) {
1078 r5l_add_no_space_stripe(log, sh);
1079 wake_reclaim = true;
1080 reserve = 0;
1081 } else if (!r5l_has_free_space(log, reserve)) {
1082 if (sh->log_start == log->last_checkpoint)
1083 BUG();
1084 else
1085 r5l_add_no_space_stripe(log, sh);
1086 } else {
1087 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1088 if (ret) {
1089 spin_lock_irq(&log->io_list_lock);
1090 list_add_tail(&sh->log_list,
1091 &log->no_mem_stripes);
1092 spin_unlock_irq(&log->io_list_lock);
1097 mutex_unlock(&log->io_mutex);
1098 if (wake_reclaim)
1099 r5l_wake_reclaim(log, reserve);
1100 return 0;
1103 void r5l_write_stripe_run(struct r5l_log *log)
1105 if (!log)
1106 return;
1107 mutex_lock(&log->io_mutex);
1108 r5l_submit_current_io(log);
1109 mutex_unlock(&log->io_mutex);
1112 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1114 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1116 * in write through (journal only)
1117 * we flush log disk cache first, then write stripe data to
1118 * raid disks. So if bio is finished, the log disk cache is
1119 * flushed already. The recovery guarantees we can recovery
1120 * the bio from log disk, so we don't need to flush again
1122 if (bio->bi_iter.bi_size == 0) {
1123 bio_endio(bio);
1124 return 0;
1126 bio->bi_opf &= ~REQ_PREFLUSH;
1127 } else {
1128 /* write back (with cache) */
1129 if (bio->bi_iter.bi_size == 0) {
1130 mutex_lock(&log->io_mutex);
1131 r5l_get_meta(log, 0);
1132 bio_list_add(&log->current_io->flush_barriers, bio);
1133 log->current_io->has_flush = 1;
1134 log->current_io->has_null_flush = 1;
1135 atomic_inc(&log->current_io->pending_stripe);
1136 r5l_submit_current_io(log);
1137 mutex_unlock(&log->io_mutex);
1138 return 0;
1141 return -EAGAIN;
1144 /* This will run after log space is reclaimed */
1145 static void r5l_run_no_space_stripes(struct r5l_log *log)
1147 struct stripe_head *sh;
1149 spin_lock(&log->no_space_stripes_lock);
1150 while (!list_empty(&log->no_space_stripes)) {
1151 sh = list_first_entry(&log->no_space_stripes,
1152 struct stripe_head, log_list);
1153 list_del_init(&sh->log_list);
1154 set_bit(STRIPE_HANDLE, &sh->state);
1155 raid5_release_stripe(sh);
1157 spin_unlock(&log->no_space_stripes_lock);
1161 * calculate new last_checkpoint
1162 * for write through mode, returns log->next_checkpoint
1163 * for write back, returns log_start of first sh in stripe_in_journal_list
1165 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1167 struct stripe_head *sh;
1168 struct r5l_log *log = conf->log;
1169 sector_t new_cp;
1170 unsigned long flags;
1172 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1173 return log->next_checkpoint;
1175 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1176 if (list_empty(&conf->log->stripe_in_journal_list)) {
1177 /* all stripes flushed */
1178 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1179 return log->next_checkpoint;
1181 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1182 struct stripe_head, r5c);
1183 new_cp = sh->log_start;
1184 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1185 return new_cp;
1188 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1190 struct r5conf *conf = log->rdev->mddev->private;
1192 return r5l_ring_distance(log, log->last_checkpoint,
1193 r5c_calculate_new_cp(conf));
1196 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1198 struct stripe_head *sh;
1200 lockdep_assert_held(&log->io_list_lock);
1202 if (!list_empty(&log->no_mem_stripes)) {
1203 sh = list_first_entry(&log->no_mem_stripes,
1204 struct stripe_head, log_list);
1205 list_del_init(&sh->log_list);
1206 set_bit(STRIPE_HANDLE, &sh->state);
1207 raid5_release_stripe(sh);
1211 static bool r5l_complete_finished_ios(struct r5l_log *log)
1213 struct r5l_io_unit *io, *next;
1214 bool found = false;
1216 lockdep_assert_held(&log->io_list_lock);
1218 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1219 /* don't change list order */
1220 if (io->state < IO_UNIT_STRIPE_END)
1221 break;
1223 log->next_checkpoint = io->log_start;
1225 list_del(&io->log_sibling);
1226 mempool_free(io, log->io_pool);
1227 r5l_run_no_mem_stripe(log);
1229 found = true;
1232 return found;
1235 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1237 struct r5l_log *log = io->log;
1238 struct r5conf *conf = log->rdev->mddev->private;
1239 unsigned long flags;
1241 spin_lock_irqsave(&log->io_list_lock, flags);
1242 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1244 if (!r5l_complete_finished_ios(log)) {
1245 spin_unlock_irqrestore(&log->io_list_lock, flags);
1246 return;
1249 if (r5l_reclaimable_space(log) > log->max_free_space ||
1250 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1251 r5l_wake_reclaim(log, 0);
1253 spin_unlock_irqrestore(&log->io_list_lock, flags);
1254 wake_up(&log->iounit_wait);
1257 void r5l_stripe_write_finished(struct stripe_head *sh)
1259 struct r5l_io_unit *io;
1261 io = sh->log_io;
1262 sh->log_io = NULL;
1264 if (io && atomic_dec_and_test(&io->pending_stripe))
1265 __r5l_stripe_write_finished(io);
1268 static void r5l_log_flush_endio(struct bio *bio)
1270 struct r5l_log *log = container_of(bio, struct r5l_log,
1271 flush_bio);
1272 unsigned long flags;
1273 struct r5l_io_unit *io;
1275 if (bio->bi_status)
1276 md_error(log->rdev->mddev, log->rdev);
1278 spin_lock_irqsave(&log->io_list_lock, flags);
1279 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1280 r5l_io_run_stripes(io);
1281 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1282 spin_unlock_irqrestore(&log->io_list_lock, flags);
1286 * Starting dispatch IO to raid.
1287 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1288 * broken meta in the middle of a log causes recovery can't find meta at the
1289 * head of log. If operations require meta at the head persistent in log, we
1290 * must make sure meta before it persistent in log too. A case is:
1292 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1293 * data/parity must be persistent in log before we do the write to raid disks.
1295 * The solution is we restrictly maintain io_unit list order. In this case, we
1296 * only write stripes of an io_unit to raid disks till the io_unit is the first
1297 * one whose data/parity is in log.
1299 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1301 bool do_flush;
1303 if (!log || !log->need_cache_flush)
1304 return;
1306 spin_lock_irq(&log->io_list_lock);
1307 /* flush bio is running */
1308 if (!list_empty(&log->flushing_ios)) {
1309 spin_unlock_irq(&log->io_list_lock);
1310 return;
1312 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1313 do_flush = !list_empty(&log->flushing_ios);
1314 spin_unlock_irq(&log->io_list_lock);
1316 if (!do_flush)
1317 return;
1318 bio_reset(&log->flush_bio);
1319 bio_set_dev(&log->flush_bio, log->rdev->bdev);
1320 log->flush_bio.bi_end_io = r5l_log_flush_endio;
1321 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1322 submit_bio(&log->flush_bio);
1325 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1326 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1327 sector_t end)
1329 struct block_device *bdev = log->rdev->bdev;
1330 struct mddev *mddev;
1332 r5l_write_super(log, end);
1334 if (!blk_queue_discard(bdev_get_queue(bdev)))
1335 return;
1337 mddev = log->rdev->mddev;
1339 * Discard could zero data, so before discard we must make sure
1340 * superblock is updated to new log tail. Updating superblock (either
1341 * directly call md_update_sb() or depend on md thread) must hold
1342 * reconfig mutex. On the other hand, raid5_quiesce is called with
1343 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1344 * for all IO finish, hence waitting for reclaim thread, while reclaim
1345 * thread is calling this function and waitting for reconfig mutex. So
1346 * there is a deadlock. We workaround this issue with a trylock.
1347 * FIXME: we could miss discard if we can't take reconfig mutex
1349 set_mask_bits(&mddev->sb_flags, 0,
1350 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1351 if (!mddev_trylock(mddev))
1352 return;
1353 md_update_sb(mddev, 1);
1354 mddev_unlock(mddev);
1356 /* discard IO error really doesn't matter, ignore it */
1357 if (log->last_checkpoint < end) {
1358 blkdev_issue_discard(bdev,
1359 log->last_checkpoint + log->rdev->data_offset,
1360 end - log->last_checkpoint, GFP_NOIO, 0);
1361 } else {
1362 blkdev_issue_discard(bdev,
1363 log->last_checkpoint + log->rdev->data_offset,
1364 log->device_size - log->last_checkpoint,
1365 GFP_NOIO, 0);
1366 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1367 GFP_NOIO, 0);
1372 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1373 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1375 * must hold conf->device_lock
1377 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1379 BUG_ON(list_empty(&sh->lru));
1380 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1381 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1384 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1385 * raid5_release_stripe() while holding conf->device_lock
1387 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1388 lockdep_assert_held(&conf->device_lock);
1390 list_del_init(&sh->lru);
1391 atomic_inc(&sh->count);
1393 set_bit(STRIPE_HANDLE, &sh->state);
1394 atomic_inc(&conf->active_stripes);
1395 r5c_make_stripe_write_out(sh);
1397 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1398 atomic_inc(&conf->r5c_flushing_partial_stripes);
1399 else
1400 atomic_inc(&conf->r5c_flushing_full_stripes);
1401 raid5_release_stripe(sh);
1405 * if num == 0, flush all full stripes
1406 * if num > 0, flush all full stripes. If less than num full stripes are
1407 * flushed, flush some partial stripes until totally num stripes are
1408 * flushed or there is no more cached stripes.
1410 void r5c_flush_cache(struct r5conf *conf, int num)
1412 int count;
1413 struct stripe_head *sh, *next;
1415 lockdep_assert_held(&conf->device_lock);
1416 if (!conf->log)
1417 return;
1419 count = 0;
1420 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1421 r5c_flush_stripe(conf, sh);
1422 count++;
1425 if (count >= num)
1426 return;
1427 list_for_each_entry_safe(sh, next,
1428 &conf->r5c_partial_stripe_list, lru) {
1429 r5c_flush_stripe(conf, sh);
1430 if (++count >= num)
1431 break;
1435 static void r5c_do_reclaim(struct r5conf *conf)
1437 struct r5l_log *log = conf->log;
1438 struct stripe_head *sh;
1439 int count = 0;
1440 unsigned long flags;
1441 int total_cached;
1442 int stripes_to_flush;
1443 int flushing_partial, flushing_full;
1445 if (!r5c_is_writeback(log))
1446 return;
1448 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1449 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1450 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1451 atomic_read(&conf->r5c_cached_full_stripes) -
1452 flushing_full - flushing_partial;
1454 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1455 atomic_read(&conf->empty_inactive_list_nr) > 0)
1457 * if stripe cache pressure high, flush all full stripes and
1458 * some partial stripes
1460 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1461 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1462 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1463 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1465 * if stripe cache pressure moderate, or if there is many full
1466 * stripes,flush all full stripes
1468 stripes_to_flush = 0;
1469 else
1470 /* no need to flush */
1471 stripes_to_flush = -1;
1473 if (stripes_to_flush >= 0) {
1474 spin_lock_irqsave(&conf->device_lock, flags);
1475 r5c_flush_cache(conf, stripes_to_flush);
1476 spin_unlock_irqrestore(&conf->device_lock, flags);
1479 /* if log space is tight, flush stripes on stripe_in_journal_list */
1480 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1481 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1482 spin_lock(&conf->device_lock);
1483 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1485 * stripes on stripe_in_journal_list could be in any
1486 * state of the stripe_cache state machine. In this
1487 * case, we only want to flush stripe on
1488 * r5c_cached_full/partial_stripes. The following
1489 * condition makes sure the stripe is on one of the
1490 * two lists.
1492 if (!list_empty(&sh->lru) &&
1493 !test_bit(STRIPE_HANDLE, &sh->state) &&
1494 atomic_read(&sh->count) == 0) {
1495 r5c_flush_stripe(conf, sh);
1496 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1497 break;
1500 spin_unlock(&conf->device_lock);
1501 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1504 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1505 r5l_run_no_space_stripes(log);
1507 md_wakeup_thread(conf->mddev->thread);
1510 static void r5l_do_reclaim(struct r5l_log *log)
1512 struct r5conf *conf = log->rdev->mddev->private;
1513 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1514 sector_t reclaimable;
1515 sector_t next_checkpoint;
1516 bool write_super;
1518 spin_lock_irq(&log->io_list_lock);
1519 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1520 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1522 * move proper io_unit to reclaim list. We should not change the order.
1523 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1524 * shouldn't reuse space of an unreclaimable io_unit
1526 while (1) {
1527 reclaimable = r5l_reclaimable_space(log);
1528 if (reclaimable >= reclaim_target ||
1529 (list_empty(&log->running_ios) &&
1530 list_empty(&log->io_end_ios) &&
1531 list_empty(&log->flushing_ios) &&
1532 list_empty(&log->finished_ios)))
1533 break;
1535 md_wakeup_thread(log->rdev->mddev->thread);
1536 wait_event_lock_irq(log->iounit_wait,
1537 r5l_reclaimable_space(log) > reclaimable,
1538 log->io_list_lock);
1541 next_checkpoint = r5c_calculate_new_cp(conf);
1542 spin_unlock_irq(&log->io_list_lock);
1544 if (reclaimable == 0 || !write_super)
1545 return;
1548 * write_super will flush cache of each raid disk. We must write super
1549 * here, because the log area might be reused soon and we don't want to
1550 * confuse recovery
1552 r5l_write_super_and_discard_space(log, next_checkpoint);
1554 mutex_lock(&log->io_mutex);
1555 log->last_checkpoint = next_checkpoint;
1556 r5c_update_log_state(log);
1557 mutex_unlock(&log->io_mutex);
1559 r5l_run_no_space_stripes(log);
1562 static void r5l_reclaim_thread(struct md_thread *thread)
1564 struct mddev *mddev = thread->mddev;
1565 struct r5conf *conf = mddev->private;
1566 struct r5l_log *log = conf->log;
1568 if (!log)
1569 return;
1570 r5c_do_reclaim(conf);
1571 r5l_do_reclaim(log);
1574 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1576 unsigned long target;
1577 unsigned long new = (unsigned long)space; /* overflow in theory */
1579 if (!log)
1580 return;
1581 do {
1582 target = log->reclaim_target;
1583 if (new < target)
1584 return;
1585 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1586 md_wakeup_thread(log->reclaim_thread);
1589 void r5l_quiesce(struct r5l_log *log, int quiesce)
1591 struct mddev *mddev;
1593 if (quiesce) {
1594 /* make sure r5l_write_super_and_discard_space exits */
1595 mddev = log->rdev->mddev;
1596 wake_up(&mddev->sb_wait);
1597 kthread_park(log->reclaim_thread->tsk);
1598 r5l_wake_reclaim(log, MaxSector);
1599 r5l_do_reclaim(log);
1600 } else
1601 kthread_unpark(log->reclaim_thread->tsk);
1604 bool r5l_log_disk_error(struct r5conf *conf)
1606 struct r5l_log *log;
1607 bool ret;
1608 /* don't allow write if journal disk is missing */
1609 rcu_read_lock();
1610 log = rcu_dereference(conf->log);
1612 if (!log)
1613 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1614 else
1615 ret = test_bit(Faulty, &log->rdev->flags);
1616 rcu_read_unlock();
1617 return ret;
1620 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1622 struct r5l_recovery_ctx {
1623 struct page *meta_page; /* current meta */
1624 sector_t meta_total_blocks; /* total size of current meta and data */
1625 sector_t pos; /* recovery position */
1626 u64 seq; /* recovery position seq */
1627 int data_parity_stripes; /* number of data_parity stripes */
1628 int data_only_stripes; /* number of data_only stripes */
1629 struct list_head cached_list;
1632 * read ahead page pool (ra_pool)
1633 * in recovery, log is read sequentially. It is not efficient to
1634 * read every page with sync_page_io(). The read ahead page pool
1635 * reads multiple pages with one IO, so further log read can
1636 * just copy data from the pool.
1638 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1639 sector_t pool_offset; /* offset of first page in the pool */
1640 int total_pages; /* total allocated pages */
1641 int valid_pages; /* pages with valid data */
1642 struct bio *ra_bio; /* bio to do the read ahead */
1645 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1646 struct r5l_recovery_ctx *ctx)
1648 struct page *page;
1650 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1651 if (!ctx->ra_bio)
1652 return -ENOMEM;
1654 ctx->valid_pages = 0;
1655 ctx->total_pages = 0;
1656 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1657 page = alloc_page(GFP_KERNEL);
1659 if (!page)
1660 break;
1661 ctx->ra_pool[ctx->total_pages] = page;
1662 ctx->total_pages += 1;
1665 if (ctx->total_pages == 0) {
1666 bio_put(ctx->ra_bio);
1667 return -ENOMEM;
1670 ctx->pool_offset = 0;
1671 return 0;
1674 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1675 struct r5l_recovery_ctx *ctx)
1677 int i;
1679 for (i = 0; i < ctx->total_pages; ++i)
1680 put_page(ctx->ra_pool[i]);
1681 bio_put(ctx->ra_bio);
1685 * fetch ctx->valid_pages pages from offset
1686 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1687 * However, if the offset is close to the end of the journal device,
1688 * ctx->valid_pages could be smaller than ctx->total_pages
1690 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1691 struct r5l_recovery_ctx *ctx,
1692 sector_t offset)
1694 bio_reset(ctx->ra_bio);
1695 bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1696 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1697 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1699 ctx->valid_pages = 0;
1700 ctx->pool_offset = offset;
1702 while (ctx->valid_pages < ctx->total_pages) {
1703 bio_add_page(ctx->ra_bio,
1704 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1705 ctx->valid_pages += 1;
1707 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1709 if (offset == 0) /* reached end of the device */
1710 break;
1713 return submit_bio_wait(ctx->ra_bio);
1717 * try read a page from the read ahead page pool, if the page is not in the
1718 * pool, call r5l_recovery_fetch_ra_pool
1720 static int r5l_recovery_read_page(struct r5l_log *log,
1721 struct r5l_recovery_ctx *ctx,
1722 struct page *page,
1723 sector_t offset)
1725 int ret;
1727 if (offset < ctx->pool_offset ||
1728 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1729 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1730 if (ret)
1731 return ret;
1734 BUG_ON(offset < ctx->pool_offset ||
1735 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1737 memcpy(page_address(page),
1738 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1739 BLOCK_SECTOR_SHIFT]),
1740 PAGE_SIZE);
1741 return 0;
1744 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1745 struct r5l_recovery_ctx *ctx)
1747 struct page *page = ctx->meta_page;
1748 struct r5l_meta_block *mb;
1749 u32 crc, stored_crc;
1750 int ret;
1752 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1753 if (ret != 0)
1754 return ret;
1756 mb = page_address(page);
1757 stored_crc = le32_to_cpu(mb->checksum);
1758 mb->checksum = 0;
1760 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1761 le64_to_cpu(mb->seq) != ctx->seq ||
1762 mb->version != R5LOG_VERSION ||
1763 le64_to_cpu(mb->position) != ctx->pos)
1764 return -EINVAL;
1766 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1767 if (stored_crc != crc)
1768 return -EINVAL;
1770 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1771 return -EINVAL;
1773 ctx->meta_total_blocks = BLOCK_SECTORS;
1775 return 0;
1778 static void
1779 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1780 struct page *page,
1781 sector_t pos, u64 seq)
1783 struct r5l_meta_block *mb;
1785 mb = page_address(page);
1786 clear_page(mb);
1787 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1788 mb->version = R5LOG_VERSION;
1789 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1790 mb->seq = cpu_to_le64(seq);
1791 mb->position = cpu_to_le64(pos);
1794 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1795 u64 seq)
1797 struct page *page;
1798 struct r5l_meta_block *mb;
1800 page = alloc_page(GFP_KERNEL);
1801 if (!page)
1802 return -ENOMEM;
1803 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1804 mb = page_address(page);
1805 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1806 mb, PAGE_SIZE));
1807 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1808 REQ_SYNC | REQ_FUA, false)) {
1809 __free_page(page);
1810 return -EIO;
1812 __free_page(page);
1813 return 0;
1817 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1818 * to mark valid (potentially not flushed) data in the journal.
1820 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1821 * so there should not be any mismatch here.
1823 static void r5l_recovery_load_data(struct r5l_log *log,
1824 struct stripe_head *sh,
1825 struct r5l_recovery_ctx *ctx,
1826 struct r5l_payload_data_parity *payload,
1827 sector_t log_offset)
1829 struct mddev *mddev = log->rdev->mddev;
1830 struct r5conf *conf = mddev->private;
1831 int dd_idx;
1833 raid5_compute_sector(conf,
1834 le64_to_cpu(payload->location), 0,
1835 &dd_idx, sh);
1836 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1837 sh->dev[dd_idx].log_checksum =
1838 le32_to_cpu(payload->checksum[0]);
1839 ctx->meta_total_blocks += BLOCK_SECTORS;
1841 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1842 set_bit(STRIPE_R5C_CACHING, &sh->state);
1845 static void r5l_recovery_load_parity(struct r5l_log *log,
1846 struct stripe_head *sh,
1847 struct r5l_recovery_ctx *ctx,
1848 struct r5l_payload_data_parity *payload,
1849 sector_t log_offset)
1851 struct mddev *mddev = log->rdev->mddev;
1852 struct r5conf *conf = mddev->private;
1854 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1855 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1856 sh->dev[sh->pd_idx].log_checksum =
1857 le32_to_cpu(payload->checksum[0]);
1858 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1860 if (sh->qd_idx >= 0) {
1861 r5l_recovery_read_page(
1862 log, ctx, sh->dev[sh->qd_idx].page,
1863 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1864 sh->dev[sh->qd_idx].log_checksum =
1865 le32_to_cpu(payload->checksum[1]);
1866 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1868 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1871 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1873 int i;
1875 sh->state = 0;
1876 sh->log_start = MaxSector;
1877 for (i = sh->disks; i--; )
1878 sh->dev[i].flags = 0;
1881 static void
1882 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1883 struct stripe_head *sh,
1884 struct r5l_recovery_ctx *ctx)
1886 struct md_rdev *rdev, *rrdev;
1887 int disk_index;
1888 int data_count = 0;
1890 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1891 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1892 continue;
1893 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1894 continue;
1895 data_count++;
1899 * stripes that only have parity must have been flushed
1900 * before the crash that we are now recovering from, so
1901 * there is nothing more to recovery.
1903 if (data_count == 0)
1904 goto out;
1906 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1907 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1908 continue;
1910 /* in case device is broken */
1911 rcu_read_lock();
1912 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1913 if (rdev) {
1914 atomic_inc(&rdev->nr_pending);
1915 rcu_read_unlock();
1916 sync_page_io(rdev, sh->sector, PAGE_SIZE,
1917 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1918 false);
1919 rdev_dec_pending(rdev, rdev->mddev);
1920 rcu_read_lock();
1922 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1923 if (rrdev) {
1924 atomic_inc(&rrdev->nr_pending);
1925 rcu_read_unlock();
1926 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1927 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1928 false);
1929 rdev_dec_pending(rrdev, rrdev->mddev);
1930 rcu_read_lock();
1932 rcu_read_unlock();
1934 ctx->data_parity_stripes++;
1935 out:
1936 r5l_recovery_reset_stripe(sh);
1939 static struct stripe_head *
1940 r5c_recovery_alloc_stripe(struct r5conf *conf,
1941 sector_t stripe_sect)
1943 struct stripe_head *sh;
1945 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1946 if (!sh)
1947 return NULL; /* no more stripe available */
1949 r5l_recovery_reset_stripe(sh);
1951 return sh;
1954 static struct stripe_head *
1955 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1957 struct stripe_head *sh;
1959 list_for_each_entry(sh, list, lru)
1960 if (sh->sector == sect)
1961 return sh;
1962 return NULL;
1965 static void
1966 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1967 struct r5l_recovery_ctx *ctx)
1969 struct stripe_head *sh, *next;
1971 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1972 r5l_recovery_reset_stripe(sh);
1973 list_del_init(&sh->lru);
1974 raid5_release_stripe(sh);
1978 static void
1979 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1980 struct r5l_recovery_ctx *ctx)
1982 struct stripe_head *sh, *next;
1984 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1985 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1986 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1987 list_del_init(&sh->lru);
1988 raid5_release_stripe(sh);
1992 /* if matches return 0; otherwise return -EINVAL */
1993 static int
1994 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1995 struct r5l_recovery_ctx *ctx,
1996 struct page *page,
1997 sector_t log_offset, __le32 log_checksum)
1999 void *addr;
2000 u32 checksum;
2002 r5l_recovery_read_page(log, ctx, page, log_offset);
2003 addr = kmap_atomic(page);
2004 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
2005 kunmap_atomic(addr);
2006 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
2010 * before loading data to stripe cache, we need verify checksum for all data,
2011 * if there is mismatch for any data page, we drop all data in the mata block
2013 static int
2014 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2015 struct r5l_recovery_ctx *ctx)
2017 struct mddev *mddev = log->rdev->mddev;
2018 struct r5conf *conf = mddev->private;
2019 struct r5l_meta_block *mb = page_address(ctx->meta_page);
2020 sector_t mb_offset = sizeof(struct r5l_meta_block);
2021 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2022 struct page *page;
2023 struct r5l_payload_data_parity *payload;
2024 struct r5l_payload_flush *payload_flush;
2026 page = alloc_page(GFP_KERNEL);
2027 if (!page)
2028 return -ENOMEM;
2030 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2031 payload = (void *)mb + mb_offset;
2032 payload_flush = (void *)mb + mb_offset;
2034 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2035 if (r5l_recovery_verify_data_checksum(
2036 log, ctx, page, log_offset,
2037 payload->checksum[0]) < 0)
2038 goto mismatch;
2039 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2040 if (r5l_recovery_verify_data_checksum(
2041 log, ctx, page, log_offset,
2042 payload->checksum[0]) < 0)
2043 goto mismatch;
2044 if (conf->max_degraded == 2 && /* q for RAID 6 */
2045 r5l_recovery_verify_data_checksum(
2046 log, ctx, page,
2047 r5l_ring_add(log, log_offset,
2048 BLOCK_SECTORS),
2049 payload->checksum[1]) < 0)
2050 goto mismatch;
2051 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2052 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2053 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2054 goto mismatch;
2056 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2057 mb_offset += sizeof(struct r5l_payload_flush) +
2058 le32_to_cpu(payload_flush->size);
2059 } else {
2060 /* DATA or PARITY payload */
2061 log_offset = r5l_ring_add(log, log_offset,
2062 le32_to_cpu(payload->size));
2063 mb_offset += sizeof(struct r5l_payload_data_parity) +
2064 sizeof(__le32) *
2065 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2070 put_page(page);
2071 return 0;
2073 mismatch:
2074 put_page(page);
2075 return -EINVAL;
2079 * Analyze all data/parity pages in one meta block
2080 * Returns:
2081 * 0 for success
2082 * -EINVAL for unknown playload type
2083 * -EAGAIN for checksum mismatch of data page
2084 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2086 static int
2087 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2088 struct r5l_recovery_ctx *ctx,
2089 struct list_head *cached_stripe_list)
2091 struct mddev *mddev = log->rdev->mddev;
2092 struct r5conf *conf = mddev->private;
2093 struct r5l_meta_block *mb;
2094 struct r5l_payload_data_parity *payload;
2095 struct r5l_payload_flush *payload_flush;
2096 int mb_offset;
2097 sector_t log_offset;
2098 sector_t stripe_sect;
2099 struct stripe_head *sh;
2100 int ret;
2103 * for mismatch in data blocks, we will drop all data in this mb, but
2104 * we will still read next mb for other data with FLUSH flag, as
2105 * io_unit could finish out of order.
2107 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2108 if (ret == -EINVAL)
2109 return -EAGAIN;
2110 else if (ret)
2111 return ret; /* -ENOMEM duo to alloc_page() failed */
2113 mb = page_address(ctx->meta_page);
2114 mb_offset = sizeof(struct r5l_meta_block);
2115 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2117 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2118 int dd;
2120 payload = (void *)mb + mb_offset;
2121 payload_flush = (void *)mb + mb_offset;
2123 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2124 int i, count;
2126 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2127 for (i = 0; i < count; ++i) {
2128 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2129 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2130 stripe_sect);
2131 if (sh) {
2132 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2133 r5l_recovery_reset_stripe(sh);
2134 list_del_init(&sh->lru);
2135 raid5_release_stripe(sh);
2139 mb_offset += sizeof(struct r5l_payload_flush) +
2140 le32_to_cpu(payload_flush->size);
2141 continue;
2144 /* DATA or PARITY payload */
2145 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2146 raid5_compute_sector(
2147 conf, le64_to_cpu(payload->location), 0, &dd,
2148 NULL)
2149 : le64_to_cpu(payload->location);
2151 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2152 stripe_sect);
2154 if (!sh) {
2155 sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
2157 * cannot get stripe from raid5_get_active_stripe
2158 * try replay some stripes
2160 if (!sh) {
2161 r5c_recovery_replay_stripes(
2162 cached_stripe_list, ctx);
2163 sh = r5c_recovery_alloc_stripe(
2164 conf, stripe_sect);
2166 if (!sh) {
2167 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2168 mdname(mddev),
2169 conf->min_nr_stripes * 2);
2170 raid5_set_cache_size(mddev,
2171 conf->min_nr_stripes * 2);
2172 sh = r5c_recovery_alloc_stripe(conf,
2173 stripe_sect);
2175 if (!sh) {
2176 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2177 mdname(mddev));
2178 return -ENOMEM;
2180 list_add_tail(&sh->lru, cached_stripe_list);
2183 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2184 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2185 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2186 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2187 list_move_tail(&sh->lru, cached_stripe_list);
2189 r5l_recovery_load_data(log, sh, ctx, payload,
2190 log_offset);
2191 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2192 r5l_recovery_load_parity(log, sh, ctx, payload,
2193 log_offset);
2194 else
2195 return -EINVAL;
2197 log_offset = r5l_ring_add(log, log_offset,
2198 le32_to_cpu(payload->size));
2200 mb_offset += sizeof(struct r5l_payload_data_parity) +
2201 sizeof(__le32) *
2202 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2205 return 0;
2209 * Load the stripe into cache. The stripe will be written out later by
2210 * the stripe cache state machine.
2212 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2213 struct stripe_head *sh)
2215 struct r5dev *dev;
2216 int i;
2218 for (i = sh->disks; i--; ) {
2219 dev = sh->dev + i;
2220 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2221 set_bit(R5_InJournal, &dev->flags);
2222 set_bit(R5_UPTODATE, &dev->flags);
2228 * Scan through the log for all to-be-flushed data
2230 * For stripes with data and parity, namely Data-Parity stripe
2231 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2233 * For stripes with only data, namely Data-Only stripe
2234 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2236 * For a stripe, if we see data after parity, we should discard all previous
2237 * data and parity for this stripe, as these data are already flushed to
2238 * the array.
2240 * At the end of the scan, we return the new journal_tail, which points to
2241 * first data-only stripe on the journal device, or next invalid meta block.
2243 static int r5c_recovery_flush_log(struct r5l_log *log,
2244 struct r5l_recovery_ctx *ctx)
2246 struct stripe_head *sh;
2247 int ret = 0;
2249 /* scan through the log */
2250 while (1) {
2251 if (r5l_recovery_read_meta_block(log, ctx))
2252 break;
2254 ret = r5c_recovery_analyze_meta_block(log, ctx,
2255 &ctx->cached_list);
2257 * -EAGAIN means mismatch in data block, in this case, we still
2258 * try scan the next metablock
2260 if (ret && ret != -EAGAIN)
2261 break; /* ret == -EINVAL or -ENOMEM */
2262 ctx->seq++;
2263 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2266 if (ret == -ENOMEM) {
2267 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2268 return ret;
2271 /* replay data-parity stripes */
2272 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2274 /* load data-only stripes to stripe cache */
2275 list_for_each_entry(sh, &ctx->cached_list, lru) {
2276 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2277 r5c_recovery_load_one_stripe(log, sh);
2278 ctx->data_only_stripes++;
2281 return 0;
2285 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2286 * log will start here. but we can't let superblock point to last valid
2287 * meta block. The log might looks like:
2288 * | meta 1| meta 2| meta 3|
2289 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2290 * superblock points to meta 1, we write a new valid meta 2n. if crash
2291 * happens again, new recovery will start from meta 1. Since meta 2n is
2292 * valid now, recovery will think meta 3 is valid, which is wrong.
2293 * The solution is we create a new meta in meta2 with its seq == meta
2294 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2295 * will not think meta 3 is a valid meta, because its seq doesn't match
2299 * Before recovery, the log looks like the following
2301 * ---------------------------------------------
2302 * | valid log | invalid log |
2303 * ---------------------------------------------
2305 * |- log->last_checkpoint
2306 * |- log->last_cp_seq
2308 * Now we scan through the log until we see invalid entry
2310 * ---------------------------------------------
2311 * | valid log | invalid log |
2312 * ---------------------------------------------
2313 * ^ ^
2314 * |- log->last_checkpoint |- ctx->pos
2315 * |- log->last_cp_seq |- ctx->seq
2317 * From this point, we need to increase seq number by 10 to avoid
2318 * confusing next recovery.
2320 * ---------------------------------------------
2321 * | valid log | invalid log |
2322 * ---------------------------------------------
2323 * ^ ^
2324 * |- log->last_checkpoint |- ctx->pos+1
2325 * |- log->last_cp_seq |- ctx->seq+10001
2327 * However, it is not safe to start the state machine yet, because data only
2328 * parities are not yet secured in RAID. To save these data only parities, we
2329 * rewrite them from seq+11.
2331 * -----------------------------------------------------------------
2332 * | valid log | data only stripes | invalid log |
2333 * -----------------------------------------------------------------
2334 * ^ ^
2335 * |- log->last_checkpoint |- ctx->pos+n
2336 * |- log->last_cp_seq |- ctx->seq+10000+n
2338 * If failure happens again during this process, the recovery can safe start
2339 * again from log->last_checkpoint.
2341 * Once data only stripes are rewritten to journal, we move log_tail
2343 * -----------------------------------------------------------------
2344 * | old log | data only stripes | invalid log |
2345 * -----------------------------------------------------------------
2346 * ^ ^
2347 * |- log->last_checkpoint |- ctx->pos+n
2348 * |- log->last_cp_seq |- ctx->seq+10000+n
2350 * Then we can safely start the state machine. If failure happens from this
2351 * point on, the recovery will start from new log->last_checkpoint.
2353 static int
2354 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2355 struct r5l_recovery_ctx *ctx)
2357 struct stripe_head *sh;
2358 struct mddev *mddev = log->rdev->mddev;
2359 struct page *page;
2360 sector_t next_checkpoint = MaxSector;
2362 page = alloc_page(GFP_KERNEL);
2363 if (!page) {
2364 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2365 mdname(mddev));
2366 return -ENOMEM;
2369 WARN_ON(list_empty(&ctx->cached_list));
2371 list_for_each_entry(sh, &ctx->cached_list, lru) {
2372 struct r5l_meta_block *mb;
2373 int i;
2374 int offset;
2375 sector_t write_pos;
2377 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2378 r5l_recovery_create_empty_meta_block(log, page,
2379 ctx->pos, ctx->seq);
2380 mb = page_address(page);
2381 offset = le32_to_cpu(mb->meta_size);
2382 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2384 for (i = sh->disks; i--; ) {
2385 struct r5dev *dev = &sh->dev[i];
2386 struct r5l_payload_data_parity *payload;
2387 void *addr;
2389 if (test_bit(R5_InJournal, &dev->flags)) {
2390 payload = (void *)mb + offset;
2391 payload->header.type = cpu_to_le16(
2392 R5LOG_PAYLOAD_DATA);
2393 payload->size = cpu_to_le32(BLOCK_SECTORS);
2394 payload->location = cpu_to_le64(
2395 raid5_compute_blocknr(sh, i, 0));
2396 addr = kmap_atomic(dev->page);
2397 payload->checksum[0] = cpu_to_le32(
2398 crc32c_le(log->uuid_checksum, addr,
2399 PAGE_SIZE));
2400 kunmap_atomic(addr);
2401 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2402 dev->page, REQ_OP_WRITE, 0, false);
2403 write_pos = r5l_ring_add(log, write_pos,
2404 BLOCK_SECTORS);
2405 offset += sizeof(__le32) +
2406 sizeof(struct r5l_payload_data_parity);
2410 mb->meta_size = cpu_to_le32(offset);
2411 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2412 mb, PAGE_SIZE));
2413 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2414 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2415 sh->log_start = ctx->pos;
2416 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2417 atomic_inc(&log->stripe_in_journal_count);
2418 ctx->pos = write_pos;
2419 ctx->seq += 1;
2420 next_checkpoint = sh->log_start;
2422 log->next_checkpoint = next_checkpoint;
2423 __free_page(page);
2424 return 0;
2427 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2428 struct r5l_recovery_ctx *ctx)
2430 struct mddev *mddev = log->rdev->mddev;
2431 struct r5conf *conf = mddev->private;
2432 struct stripe_head *sh, *next;
2434 if (ctx->data_only_stripes == 0)
2435 return;
2437 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2439 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2440 r5c_make_stripe_write_out(sh);
2441 set_bit(STRIPE_HANDLE, &sh->state);
2442 list_del_init(&sh->lru);
2443 raid5_release_stripe(sh);
2446 /* reuse conf->wait_for_quiescent in recovery */
2447 wait_event(conf->wait_for_quiescent,
2448 atomic_read(&conf->active_stripes) == 0);
2450 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2453 static int r5l_recovery_log(struct r5l_log *log)
2455 struct mddev *mddev = log->rdev->mddev;
2456 struct r5l_recovery_ctx *ctx;
2457 int ret;
2458 sector_t pos;
2460 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2461 if (!ctx)
2462 return -ENOMEM;
2464 ctx->pos = log->last_checkpoint;
2465 ctx->seq = log->last_cp_seq;
2466 INIT_LIST_HEAD(&ctx->cached_list);
2467 ctx->meta_page = alloc_page(GFP_KERNEL);
2469 if (!ctx->meta_page) {
2470 ret = -ENOMEM;
2471 goto meta_page;
2474 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2475 ret = -ENOMEM;
2476 goto ra_pool;
2479 ret = r5c_recovery_flush_log(log, ctx);
2481 if (ret)
2482 goto error;
2484 pos = ctx->pos;
2485 ctx->seq += 10000;
2487 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2488 pr_info("md/raid:%s: starting from clean shutdown\n",
2489 mdname(mddev));
2490 else
2491 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2492 mdname(mddev), ctx->data_only_stripes,
2493 ctx->data_parity_stripes);
2495 if (ctx->data_only_stripes == 0) {
2496 log->next_checkpoint = ctx->pos;
2497 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2498 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2499 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2500 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2501 mdname(mddev));
2502 ret = -EIO;
2503 goto error;
2506 log->log_start = ctx->pos;
2507 log->seq = ctx->seq;
2508 log->last_checkpoint = pos;
2509 r5l_write_super(log, pos);
2511 r5c_recovery_flush_data_only_stripes(log, ctx);
2512 ret = 0;
2513 error:
2514 r5l_recovery_free_ra_pool(log, ctx);
2515 ra_pool:
2516 __free_page(ctx->meta_page);
2517 meta_page:
2518 kfree(ctx);
2519 return ret;
2522 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2524 struct mddev *mddev = log->rdev->mddev;
2526 log->rdev->journal_tail = cp;
2527 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2530 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2532 struct r5conf *conf;
2533 int ret;
2535 ret = mddev_lock(mddev);
2536 if (ret)
2537 return ret;
2539 conf = mddev->private;
2540 if (!conf || !conf->log) {
2541 mddev_unlock(mddev);
2542 return 0;
2545 switch (conf->log->r5c_journal_mode) {
2546 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2547 ret = snprintf(
2548 page, PAGE_SIZE, "[%s] %s\n",
2549 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2550 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2551 break;
2552 case R5C_JOURNAL_MODE_WRITE_BACK:
2553 ret = snprintf(
2554 page, PAGE_SIZE, "%s [%s]\n",
2555 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2556 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2557 break;
2558 default:
2559 ret = 0;
2561 mddev_unlock(mddev);
2562 return ret;
2566 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2568 * @mode as defined in 'enum r5c_journal_mode'.
2571 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2573 struct r5conf *conf;
2575 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2576 mode > R5C_JOURNAL_MODE_WRITE_BACK)
2577 return -EINVAL;
2579 conf = mddev->private;
2580 if (!conf || !conf->log)
2581 return -ENODEV;
2583 if (raid5_calc_degraded(conf) > 0 &&
2584 mode == R5C_JOURNAL_MODE_WRITE_BACK)
2585 return -EINVAL;
2587 mddev_suspend(mddev);
2588 conf->log->r5c_journal_mode = mode;
2589 mddev_resume(mddev);
2591 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2592 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2593 return 0;
2595 EXPORT_SYMBOL(r5c_journal_mode_set);
2597 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2598 const char *page, size_t length)
2600 int mode = ARRAY_SIZE(r5c_journal_mode_str);
2601 size_t len = length;
2602 int ret;
2604 if (len < 2)
2605 return -EINVAL;
2607 if (page[len - 1] == '\n')
2608 len--;
2610 while (mode--)
2611 if (strlen(r5c_journal_mode_str[mode]) == len &&
2612 !strncmp(page, r5c_journal_mode_str[mode], len))
2613 break;
2614 ret = mddev_lock(mddev);
2615 if (ret)
2616 return ret;
2617 ret = r5c_journal_mode_set(mddev, mode);
2618 mddev_unlock(mddev);
2619 return ret ?: length;
2622 struct md_sysfs_entry
2623 r5c_journal_mode = __ATTR(journal_mode, 0644,
2624 r5c_journal_mode_show, r5c_journal_mode_store);
2627 * Try handle write operation in caching phase. This function should only
2628 * be called in write-back mode.
2630 * If all outstanding writes can be handled in caching phase, returns 0
2631 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2632 * and returns -EAGAIN
2634 int r5c_try_caching_write(struct r5conf *conf,
2635 struct stripe_head *sh,
2636 struct stripe_head_state *s,
2637 int disks)
2639 struct r5l_log *log = conf->log;
2640 int i;
2641 struct r5dev *dev;
2642 int to_cache = 0;
2643 void **pslot;
2644 sector_t tree_index;
2645 int ret;
2646 uintptr_t refcount;
2648 BUG_ON(!r5c_is_writeback(log));
2650 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2652 * There are two different scenarios here:
2653 * 1. The stripe has some data cached, and it is sent to
2654 * write-out phase for reclaim
2655 * 2. The stripe is clean, and this is the first write
2657 * For 1, return -EAGAIN, so we continue with
2658 * handle_stripe_dirtying().
2660 * For 2, set STRIPE_R5C_CACHING and continue with caching
2661 * write.
2664 /* case 1: anything injournal or anything in written */
2665 if (s->injournal > 0 || s->written > 0)
2666 return -EAGAIN;
2667 /* case 2 */
2668 set_bit(STRIPE_R5C_CACHING, &sh->state);
2672 * When run in degraded mode, array is set to write-through mode.
2673 * This check helps drain pending write safely in the transition to
2674 * write-through mode.
2676 * When a stripe is syncing, the write is also handled in write
2677 * through mode.
2679 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2680 r5c_make_stripe_write_out(sh);
2681 return -EAGAIN;
2684 for (i = disks; i--; ) {
2685 dev = &sh->dev[i];
2686 /* if non-overwrite, use writing-out phase */
2687 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2688 !test_bit(R5_InJournal, &dev->flags)) {
2689 r5c_make_stripe_write_out(sh);
2690 return -EAGAIN;
2694 /* if the stripe is not counted in big_stripe_tree, add it now */
2695 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2696 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2697 tree_index = r5c_tree_index(conf, sh->sector);
2698 spin_lock(&log->tree_lock);
2699 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2700 tree_index);
2701 if (pslot) {
2702 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2703 pslot, &log->tree_lock) >>
2704 R5C_RADIX_COUNT_SHIFT;
2705 radix_tree_replace_slot(
2706 &log->big_stripe_tree, pslot,
2707 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2708 } else {
2710 * this radix_tree_insert can fail safely, so no
2711 * need to call radix_tree_preload()
2713 ret = radix_tree_insert(
2714 &log->big_stripe_tree, tree_index,
2715 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2716 if (ret) {
2717 spin_unlock(&log->tree_lock);
2718 r5c_make_stripe_write_out(sh);
2719 return -EAGAIN;
2722 spin_unlock(&log->tree_lock);
2725 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2726 * counted in the radix tree
2728 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2729 atomic_inc(&conf->r5c_cached_partial_stripes);
2732 for (i = disks; i--; ) {
2733 dev = &sh->dev[i];
2734 if (dev->towrite) {
2735 set_bit(R5_Wantwrite, &dev->flags);
2736 set_bit(R5_Wantdrain, &dev->flags);
2737 set_bit(R5_LOCKED, &dev->flags);
2738 to_cache++;
2742 if (to_cache) {
2743 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2745 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2746 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2747 * r5c_handle_data_cached()
2749 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2752 return 0;
2756 * free extra pages (orig_page) we allocated for prexor
2758 void r5c_release_extra_page(struct stripe_head *sh)
2760 struct r5conf *conf = sh->raid_conf;
2761 int i;
2762 bool using_disk_info_extra_page;
2764 using_disk_info_extra_page =
2765 sh->dev[0].orig_page == conf->disks[0].extra_page;
2767 for (i = sh->disks; i--; )
2768 if (sh->dev[i].page != sh->dev[i].orig_page) {
2769 struct page *p = sh->dev[i].orig_page;
2771 sh->dev[i].orig_page = sh->dev[i].page;
2772 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2774 if (!using_disk_info_extra_page)
2775 put_page(p);
2778 if (using_disk_info_extra_page) {
2779 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2780 md_wakeup_thread(conf->mddev->thread);
2784 void r5c_use_extra_page(struct stripe_head *sh)
2786 struct r5conf *conf = sh->raid_conf;
2787 int i;
2788 struct r5dev *dev;
2790 for (i = sh->disks; i--; ) {
2791 dev = &sh->dev[i];
2792 if (dev->orig_page != dev->page)
2793 put_page(dev->orig_page);
2794 dev->orig_page = conf->disks[i].extra_page;
2799 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2800 * stripe is committed to RAID disks.
2802 void r5c_finish_stripe_write_out(struct r5conf *conf,
2803 struct stripe_head *sh,
2804 struct stripe_head_state *s)
2806 struct r5l_log *log = conf->log;
2807 int i;
2808 int do_wakeup = 0;
2809 sector_t tree_index;
2810 void **pslot;
2811 uintptr_t refcount;
2813 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2814 return;
2816 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2817 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2819 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2820 return;
2822 for (i = sh->disks; i--; ) {
2823 clear_bit(R5_InJournal, &sh->dev[i].flags);
2824 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2825 do_wakeup = 1;
2829 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2830 * We updated R5_InJournal, so we also update s->injournal.
2832 s->injournal = 0;
2834 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2835 if (atomic_dec_and_test(&conf->pending_full_writes))
2836 md_wakeup_thread(conf->mddev->thread);
2838 if (do_wakeup)
2839 wake_up(&conf->wait_for_overlap);
2841 spin_lock_irq(&log->stripe_in_journal_lock);
2842 list_del_init(&sh->r5c);
2843 spin_unlock_irq(&log->stripe_in_journal_lock);
2844 sh->log_start = MaxSector;
2846 atomic_dec(&log->stripe_in_journal_count);
2847 r5c_update_log_state(log);
2849 /* stop counting this stripe in big_stripe_tree */
2850 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2851 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2852 tree_index = r5c_tree_index(conf, sh->sector);
2853 spin_lock(&log->tree_lock);
2854 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2855 tree_index);
2856 BUG_ON(pslot == NULL);
2857 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2858 pslot, &log->tree_lock) >>
2859 R5C_RADIX_COUNT_SHIFT;
2860 if (refcount == 1)
2861 radix_tree_delete(&log->big_stripe_tree, tree_index);
2862 else
2863 radix_tree_replace_slot(
2864 &log->big_stripe_tree, pslot,
2865 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2866 spin_unlock(&log->tree_lock);
2869 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2870 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2871 atomic_dec(&conf->r5c_flushing_partial_stripes);
2872 atomic_dec(&conf->r5c_cached_partial_stripes);
2875 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2876 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2877 atomic_dec(&conf->r5c_flushing_full_stripes);
2878 atomic_dec(&conf->r5c_cached_full_stripes);
2881 r5l_append_flush_payload(log, sh->sector);
2882 /* stripe is flused to raid disks, we can do resync now */
2883 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2884 set_bit(STRIPE_HANDLE, &sh->state);
2887 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2889 struct r5conf *conf = sh->raid_conf;
2890 int pages = 0;
2891 int reserve;
2892 int i;
2893 int ret = 0;
2895 BUG_ON(!log);
2897 for (i = 0; i < sh->disks; i++) {
2898 void *addr;
2900 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2901 continue;
2902 addr = kmap_atomic(sh->dev[i].page);
2903 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2904 addr, PAGE_SIZE);
2905 kunmap_atomic(addr);
2906 pages++;
2908 WARN_ON(pages == 0);
2911 * The stripe must enter state machine again to call endio, so
2912 * don't delay.
2914 clear_bit(STRIPE_DELAYED, &sh->state);
2915 atomic_inc(&sh->count);
2917 mutex_lock(&log->io_mutex);
2918 /* meta + data */
2919 reserve = (1 + pages) << (PAGE_SHIFT - 9);
2921 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2922 sh->log_start == MaxSector)
2923 r5l_add_no_space_stripe(log, sh);
2924 else if (!r5l_has_free_space(log, reserve)) {
2925 if (sh->log_start == log->last_checkpoint)
2926 BUG();
2927 else
2928 r5l_add_no_space_stripe(log, sh);
2929 } else {
2930 ret = r5l_log_stripe(log, sh, pages, 0);
2931 if (ret) {
2932 spin_lock_irq(&log->io_list_lock);
2933 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2934 spin_unlock_irq(&log->io_list_lock);
2938 mutex_unlock(&log->io_mutex);
2939 return 0;
2942 /* check whether this big stripe is in write back cache. */
2943 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2945 struct r5l_log *log = conf->log;
2946 sector_t tree_index;
2947 void *slot;
2949 if (!log)
2950 return false;
2952 WARN_ON_ONCE(!rcu_read_lock_held());
2953 tree_index = r5c_tree_index(conf, sect);
2954 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2955 return slot != NULL;
2958 static int r5l_load_log(struct r5l_log *log)
2960 struct md_rdev *rdev = log->rdev;
2961 struct page *page;
2962 struct r5l_meta_block *mb;
2963 sector_t cp = log->rdev->journal_tail;
2964 u32 stored_crc, expected_crc;
2965 bool create_super = false;
2966 int ret = 0;
2968 /* Make sure it's valid */
2969 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2970 cp = 0;
2971 page = alloc_page(GFP_KERNEL);
2972 if (!page)
2973 return -ENOMEM;
2975 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2976 ret = -EIO;
2977 goto ioerr;
2979 mb = page_address(page);
2981 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2982 mb->version != R5LOG_VERSION) {
2983 create_super = true;
2984 goto create;
2986 stored_crc = le32_to_cpu(mb->checksum);
2987 mb->checksum = 0;
2988 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2989 if (stored_crc != expected_crc) {
2990 create_super = true;
2991 goto create;
2993 if (le64_to_cpu(mb->position) != cp) {
2994 create_super = true;
2995 goto create;
2997 create:
2998 if (create_super) {
2999 log->last_cp_seq = prandom_u32();
3000 cp = 0;
3001 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3003 * Make sure super points to correct address. Log might have
3004 * data very soon. If super hasn't correct log tail address,
3005 * recovery can't find the log
3007 r5l_write_super(log, cp);
3008 } else
3009 log->last_cp_seq = le64_to_cpu(mb->seq);
3011 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3012 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3013 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3014 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3015 log->last_checkpoint = cp;
3017 __free_page(page);
3019 if (create_super) {
3020 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3021 log->seq = log->last_cp_seq + 1;
3022 log->next_checkpoint = cp;
3023 } else
3024 ret = r5l_recovery_log(log);
3026 r5c_update_log_state(log);
3027 return ret;
3028 ioerr:
3029 __free_page(page);
3030 return ret;
3033 int r5l_start(struct r5l_log *log)
3035 int ret;
3037 if (!log)
3038 return 0;
3040 ret = r5l_load_log(log);
3041 if (ret) {
3042 struct mddev *mddev = log->rdev->mddev;
3043 struct r5conf *conf = mddev->private;
3045 r5l_exit_log(conf);
3047 return ret;
3050 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3052 struct r5conf *conf = mddev->private;
3053 struct r5l_log *log = conf->log;
3055 if (!log)
3056 return;
3058 if ((raid5_calc_degraded(conf) > 0 ||
3059 test_bit(Journal, &rdev->flags)) &&
3060 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3061 schedule_work(&log->disable_writeback_work);
3064 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3066 struct request_queue *q = bdev_get_queue(rdev->bdev);
3067 struct r5l_log *log;
3068 char b[BDEVNAME_SIZE];
3070 pr_debug("md/raid:%s: using device %s as journal\n",
3071 mdname(conf->mddev), bdevname(rdev->bdev, b));
3073 if (PAGE_SIZE != 4096)
3074 return -EINVAL;
3077 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3078 * raid_disks r5l_payload_data_parity.
3080 * Write journal and cache does not work for very big array
3081 * (raid_disks > 203)
3083 if (sizeof(struct r5l_meta_block) +
3084 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3085 conf->raid_disks) > PAGE_SIZE) {
3086 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3087 mdname(conf->mddev), conf->raid_disks);
3088 return -EINVAL;
3091 log = kzalloc(sizeof(*log), GFP_KERNEL);
3092 if (!log)
3093 return -ENOMEM;
3094 log->rdev = rdev;
3096 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3098 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3099 sizeof(rdev->mddev->uuid));
3101 mutex_init(&log->io_mutex);
3103 spin_lock_init(&log->io_list_lock);
3104 INIT_LIST_HEAD(&log->running_ios);
3105 INIT_LIST_HEAD(&log->io_end_ios);
3106 INIT_LIST_HEAD(&log->flushing_ios);
3107 INIT_LIST_HEAD(&log->finished_ios);
3108 bio_init(&log->flush_bio, NULL, 0);
3110 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3111 if (!log->io_kc)
3112 goto io_kc;
3114 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3115 if (!log->io_pool)
3116 goto io_pool;
3118 log->bs = bioset_create(R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3119 if (!log->bs)
3120 goto io_bs;
3122 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3123 if (!log->meta_pool)
3124 goto out_mempool;
3126 spin_lock_init(&log->tree_lock);
3127 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3129 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3130 log->rdev->mddev, "reclaim");
3131 if (!log->reclaim_thread)
3132 goto reclaim_thread;
3133 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3135 init_waitqueue_head(&log->iounit_wait);
3137 INIT_LIST_HEAD(&log->no_mem_stripes);
3139 INIT_LIST_HEAD(&log->no_space_stripes);
3140 spin_lock_init(&log->no_space_stripes_lock);
3142 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3143 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3145 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3146 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3147 spin_lock_init(&log->stripe_in_journal_lock);
3148 atomic_set(&log->stripe_in_journal_count, 0);
3150 rcu_assign_pointer(conf->log, log);
3152 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3153 return 0;
3155 rcu_assign_pointer(conf->log, NULL);
3156 md_unregister_thread(&log->reclaim_thread);
3157 reclaim_thread:
3158 mempool_destroy(log->meta_pool);
3159 out_mempool:
3160 bioset_free(log->bs);
3161 io_bs:
3162 mempool_destroy(log->io_pool);
3163 io_pool:
3164 kmem_cache_destroy(log->io_kc);
3165 io_kc:
3166 kfree(log);
3167 return -EINVAL;
3170 void r5l_exit_log(struct r5conf *conf)
3172 struct r5l_log *log = conf->log;
3174 conf->log = NULL;
3175 synchronize_rcu();
3177 /* Ensure disable_writeback_work wakes up and exits */
3178 wake_up(&conf->mddev->sb_wait);
3179 flush_work(&log->disable_writeback_work);
3180 md_unregister_thread(&log->reclaim_thread);
3181 mempool_destroy(log->meta_pool);
3182 bioset_free(log->bs);
3183 mempool_destroy(log->io_pool);
3184 kmem_cache_destroy(log->io_kc);
3185 kfree(log);