2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
73 static bool devices_handle_discard_safely
= false;
74 module_param(devices_handle_discard_safely
, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely
,
76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct
*raid5_wq
;
79 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
81 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
82 return &conf
->stripe_hashtbl
[hash
];
85 static inline int stripe_hash_locks_hash(sector_t sect
)
87 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
90 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
92 spin_lock_irq(conf
->hash_locks
+ hash
);
93 spin_lock(&conf
->device_lock
);
96 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
98 spin_unlock(&conf
->device_lock
);
99 spin_unlock_irq(conf
->hash_locks
+ hash
);
102 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
105 spin_lock_irq(conf
->hash_locks
);
106 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
107 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
108 spin_lock(&conf
->device_lock
);
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
114 spin_unlock(&conf
->device_lock
);
115 for (i
= NR_STRIPE_HASH_LOCKS
- 1; i
; i
--)
116 spin_unlock(conf
->hash_locks
+ i
);
117 spin_unlock_irq(conf
->hash_locks
);
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head
*sh
)
124 /* ddf always start from first device */
126 /* md starts just after Q block */
127 if (sh
->qd_idx
== sh
->disks
- 1)
130 return sh
->qd_idx
+ 1;
132 static inline int raid6_next_disk(int disk
, int raid_disks
)
135 return (disk
< raid_disks
) ? disk
: 0;
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
143 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
144 int *count
, int syndrome_disks
)
150 if (idx
== sh
->pd_idx
)
151 return syndrome_disks
;
152 if (idx
== sh
->qd_idx
)
153 return syndrome_disks
+ 1;
159 static void print_raid5_conf (struct r5conf
*conf
);
161 static int stripe_operations_active(struct stripe_head
*sh
)
163 return sh
->check_state
|| sh
->reconstruct_state
||
164 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
165 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
168 static bool stripe_is_lowprio(struct stripe_head
*sh
)
170 return (test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) &&
172 !test_bit(STRIPE_R5C_CACHING
, &sh
->state
);
175 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
177 struct r5conf
*conf
= sh
->raid_conf
;
178 struct r5worker_group
*group
;
180 int i
, cpu
= sh
->cpu
;
182 if (!cpu_online(cpu
)) {
183 cpu
= cpumask_any(cpu_online_mask
);
187 if (list_empty(&sh
->lru
)) {
188 struct r5worker_group
*group
;
189 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
190 if (stripe_is_lowprio(sh
))
191 list_add_tail(&sh
->lru
, &group
->loprio_list
);
193 list_add_tail(&sh
->lru
, &group
->handle_list
);
194 group
->stripes_cnt
++;
198 if (conf
->worker_cnt_per_group
== 0) {
199 md_wakeup_thread(conf
->mddev
->thread
);
203 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
205 group
->workers
[0].working
= true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
209 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
210 /* wakeup more workers */
211 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
212 if (group
->workers
[i
].working
== false) {
213 group
->workers
[i
].working
= true;
214 queue_work_on(sh
->cpu
, raid5_wq
,
215 &group
->workers
[i
].work
);
221 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
222 struct list_head
*temp_inactive_list
)
225 int injournal
= 0; /* number of date pages with R5_InJournal */
227 BUG_ON(!list_empty(&sh
->lru
));
228 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
230 if (r5c_is_writeback(conf
->log
))
231 for (i
= sh
->disks
; i
--; )
232 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
241 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) ||
242 (conf
->quiesce
&& r5c_is_writeback(conf
->log
) &&
243 !test_bit(STRIPE_HANDLE
, &sh
->state
) && injournal
!= 0)) {
244 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
245 r5c_make_stripe_write_out(sh
);
246 set_bit(STRIPE_HANDLE
, &sh
->state
);
249 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
250 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
252 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
253 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
254 sh
->bm_seq
- conf
->seq_write
> 0)
255 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
257 clear_bit(STRIPE_DELAYED
, &sh
->state
);
258 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
259 if (conf
->worker_cnt_per_group
== 0) {
260 if (stripe_is_lowprio(sh
))
261 list_add_tail(&sh
->lru
,
264 list_add_tail(&sh
->lru
,
267 raid5_wakeup_stripe_thread(sh
);
271 md_wakeup_thread(conf
->mddev
->thread
);
273 BUG_ON(stripe_operations_active(sh
));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
275 if (atomic_dec_return(&conf
->preread_active_stripes
)
277 md_wakeup_thread(conf
->mddev
->thread
);
278 atomic_dec(&conf
->active_stripes
);
279 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
280 if (!r5c_is_writeback(conf
->log
))
281 list_add_tail(&sh
->lru
, temp_inactive_list
);
283 WARN_ON(test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
));
285 list_add_tail(&sh
->lru
, temp_inactive_list
);
286 else if (injournal
== conf
->raid_disks
- conf
->max_degraded
) {
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
))
289 atomic_inc(&conf
->r5c_cached_full_stripes
);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
291 atomic_dec(&conf
->r5c_cached_partial_stripes
);
292 list_add_tail(&sh
->lru
, &conf
->r5c_full_stripe_list
);
293 r5c_check_cached_full_stripe(conf
);
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
300 list_add_tail(&sh
->lru
, &conf
->r5c_partial_stripe_list
);
306 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
307 struct list_head
*temp_inactive_list
)
309 if (atomic_dec_and_test(&sh
->count
))
310 do_release_stripe(conf
, sh
, temp_inactive_list
);
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
320 static void release_inactive_stripe_list(struct r5conf
*conf
,
321 struct list_head
*temp_inactive_list
,
325 bool do_wakeup
= false;
328 if (hash
== NR_STRIPE_HASH_LOCKS
) {
329 size
= NR_STRIPE_HASH_LOCKS
;
330 hash
= NR_STRIPE_HASH_LOCKS
- 1;
334 struct list_head
*list
= &temp_inactive_list
[size
- 1];
337 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 * remove stripes from the list
340 if (!list_empty_careful(list
)) {
341 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
342 if (list_empty(conf
->inactive_list
+ hash
) &&
344 atomic_dec(&conf
->empty_inactive_list_nr
);
345 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
347 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
354 wake_up(&conf
->wait_for_stripe
);
355 if (atomic_read(&conf
->active_stripes
) == 0)
356 wake_up(&conf
->wait_for_quiescent
);
357 if (conf
->retry_read_aligned
)
358 md_wakeup_thread(conf
->mddev
->thread
);
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf
*conf
,
364 struct list_head
*temp_inactive_list
)
366 struct stripe_head
*sh
, *t
;
368 struct llist_node
*head
;
370 head
= llist_del_all(&conf
->released_stripes
);
371 head
= llist_reverse_order(head
);
372 llist_for_each_entry_safe(sh
, t
, head
, release_list
) {
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
383 hash
= sh
->hash_lock_index
;
384 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
391 void raid5_release_stripe(struct stripe_head
*sh
)
393 struct r5conf
*conf
= sh
->raid_conf
;
395 struct list_head list
;
399 /* Avoid release_list until the last reference.
401 if (atomic_add_unless(&sh
->count
, -1, 1))
404 if (unlikely(!conf
->mddev
->thread
) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
407 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
409 md_wakeup_thread(conf
->mddev
->thread
);
412 local_irq_save(flags
);
413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
414 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
415 INIT_LIST_HEAD(&list
);
416 hash
= sh
->hash_lock_index
;
417 do_release_stripe(conf
, sh
, &list
);
418 spin_unlock(&conf
->device_lock
);
419 release_inactive_stripe_list(conf
, &list
, hash
);
421 local_irq_restore(flags
);
424 static inline void remove_hash(struct stripe_head
*sh
)
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh
->sector
);
429 hlist_del_init(&sh
->hash
);
432 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
434 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh
->sector
);
439 hlist_add_head(&sh
->hash
, hp
);
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
445 struct stripe_head
*sh
= NULL
;
446 struct list_head
*first
;
448 if (list_empty(conf
->inactive_list
+ hash
))
450 first
= (conf
->inactive_list
+ hash
)->next
;
451 sh
= list_entry(first
, struct stripe_head
, lru
);
452 list_del_init(first
);
454 atomic_inc(&conf
->active_stripes
);
455 BUG_ON(hash
!= sh
->hash_lock_index
);
456 if (list_empty(conf
->inactive_list
+ hash
))
457 atomic_inc(&conf
->empty_inactive_list_nr
);
462 static void shrink_buffers(struct stripe_head
*sh
)
466 int num
= sh
->raid_conf
->pool_size
;
468 for (i
= 0; i
< num
; i
++) {
469 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
473 sh
->dev
[i
].page
= NULL
;
478 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
481 int num
= sh
->raid_conf
->pool_size
;
483 for (i
= 0; i
< num
; i
++) {
486 if (!(page
= alloc_page(gfp
))) {
489 sh
->dev
[i
].page
= page
;
490 sh
->dev
[i
].orig_page
= page
;
496 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
497 struct stripe_head
*sh
);
499 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
501 struct r5conf
*conf
= sh
->raid_conf
;
504 BUG_ON(atomic_read(&sh
->count
) != 0);
505 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
506 BUG_ON(stripe_operations_active(sh
));
507 BUG_ON(sh
->batch_head
);
509 pr_debug("init_stripe called, stripe %llu\n",
510 (unsigned long long)sector
);
512 seq
= read_seqcount_begin(&conf
->gen_lock
);
513 sh
->generation
= conf
->generation
- previous
;
514 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
516 stripe_set_idx(sector
, conf
, previous
, sh
);
519 for (i
= sh
->disks
; i
--; ) {
520 struct r5dev
*dev
= &sh
->dev
[i
];
522 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
523 test_bit(R5_LOCKED
, &dev
->flags
)) {
524 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
525 (unsigned long long)sh
->sector
, i
, dev
->toread
,
526 dev
->read
, dev
->towrite
, dev
->written
,
527 test_bit(R5_LOCKED
, &dev
->flags
));
531 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
533 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
535 sh
->overwrite_disks
= 0;
536 insert_hash(conf
, sh
);
537 sh
->cpu
= smp_processor_id();
538 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
541 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
544 struct stripe_head
*sh
;
546 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
547 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
548 if (sh
->sector
== sector
&& sh
->generation
== generation
)
550 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
555 * Need to check if array has failed when deciding whether to:
557 * - remove non-faulty devices
560 * This determination is simple when no reshape is happening.
561 * However if there is a reshape, we need to carefully check
562 * both the before and after sections.
563 * This is because some failed devices may only affect one
564 * of the two sections, and some non-in_sync devices may
565 * be insync in the section most affected by failed devices.
567 int raid5_calc_degraded(struct r5conf
*conf
)
569 int degraded
, degraded2
;
574 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
575 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
576 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
577 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
578 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
580 else if (test_bit(In_sync
, &rdev
->flags
))
583 /* not in-sync or faulty.
584 * If the reshape increases the number of devices,
585 * this is being recovered by the reshape, so
586 * this 'previous' section is not in_sync.
587 * If the number of devices is being reduced however,
588 * the device can only be part of the array if
589 * we are reverting a reshape, so this section will
592 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
596 if (conf
->raid_disks
== conf
->previous_raid_disks
)
600 for (i
= 0; i
< conf
->raid_disks
; i
++) {
601 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
602 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
603 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
604 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
606 else if (test_bit(In_sync
, &rdev
->flags
))
609 /* not in-sync or faulty.
610 * If reshape increases the number of devices, this
611 * section has already been recovered, else it
612 * almost certainly hasn't.
614 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
618 if (degraded2
> degraded
)
623 static int has_failed(struct r5conf
*conf
)
627 if (conf
->mddev
->reshape_position
== MaxSector
)
628 return conf
->mddev
->degraded
> conf
->max_degraded
;
630 degraded
= raid5_calc_degraded(conf
);
631 if (degraded
> conf
->max_degraded
)
637 raid5_get_active_stripe(struct r5conf
*conf
, sector_t sector
,
638 int previous
, int noblock
, int noquiesce
)
640 struct stripe_head
*sh
;
641 int hash
= stripe_hash_locks_hash(sector
);
642 int inc_empty_inactive_list_flag
;
644 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
646 spin_lock_irq(conf
->hash_locks
+ hash
);
649 wait_event_lock_irq(conf
->wait_for_quiescent
,
650 conf
->quiesce
== 0 || noquiesce
,
651 *(conf
->hash_locks
+ hash
));
652 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
654 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
655 sh
= get_free_stripe(conf
, hash
);
656 if (!sh
&& !test_bit(R5_DID_ALLOC
,
658 set_bit(R5_ALLOC_MORE
,
661 if (noblock
&& sh
== NULL
)
664 r5c_check_stripe_cache_usage(conf
);
666 set_bit(R5_INACTIVE_BLOCKED
,
668 r5l_wake_reclaim(conf
->log
, 0);
670 conf
->wait_for_stripe
,
671 !list_empty(conf
->inactive_list
+ hash
) &&
672 (atomic_read(&conf
->active_stripes
)
673 < (conf
->max_nr_stripes
* 3 / 4)
674 || !test_bit(R5_INACTIVE_BLOCKED
,
675 &conf
->cache_state
)),
676 *(conf
->hash_locks
+ hash
));
677 clear_bit(R5_INACTIVE_BLOCKED
,
680 init_stripe(sh
, sector
, previous
);
681 atomic_inc(&sh
->count
);
683 } else if (!atomic_inc_not_zero(&sh
->count
)) {
684 spin_lock(&conf
->device_lock
);
685 if (!atomic_read(&sh
->count
)) {
686 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
687 atomic_inc(&conf
->active_stripes
);
688 BUG_ON(list_empty(&sh
->lru
) &&
689 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
690 inc_empty_inactive_list_flag
= 0;
691 if (!list_empty(conf
->inactive_list
+ hash
))
692 inc_empty_inactive_list_flag
= 1;
693 list_del_init(&sh
->lru
);
694 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
695 atomic_inc(&conf
->empty_inactive_list_nr
);
697 sh
->group
->stripes_cnt
--;
701 atomic_inc(&sh
->count
);
702 spin_unlock(&conf
->device_lock
);
704 } while (sh
== NULL
);
706 spin_unlock_irq(conf
->hash_locks
+ hash
);
710 static bool is_full_stripe_write(struct stripe_head
*sh
)
712 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
713 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
716 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
719 spin_lock_irq(&sh2
->stripe_lock
);
720 spin_lock_nested(&sh1
->stripe_lock
, 1);
722 spin_lock_irq(&sh1
->stripe_lock
);
723 spin_lock_nested(&sh2
->stripe_lock
, 1);
727 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
729 spin_unlock(&sh1
->stripe_lock
);
730 spin_unlock_irq(&sh2
->stripe_lock
);
733 /* Only freshly new full stripe normal write stripe can be added to a batch list */
734 static bool stripe_can_batch(struct stripe_head
*sh
)
736 struct r5conf
*conf
= sh
->raid_conf
;
738 if (conf
->log
|| raid5_has_ppl(conf
))
740 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
741 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
742 is_full_stripe_write(sh
);
745 /* we only do back search */
746 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
748 struct stripe_head
*head
;
749 sector_t head_sector
, tmp_sec
;
752 int inc_empty_inactive_list_flag
;
754 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
755 tmp_sec
= sh
->sector
;
756 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
758 head_sector
= sh
->sector
- STRIPE_SECTORS
;
760 hash
= stripe_hash_locks_hash(head_sector
);
761 spin_lock_irq(conf
->hash_locks
+ hash
);
762 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
763 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
764 spin_lock(&conf
->device_lock
);
765 if (!atomic_read(&head
->count
)) {
766 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
767 atomic_inc(&conf
->active_stripes
);
768 BUG_ON(list_empty(&head
->lru
) &&
769 !test_bit(STRIPE_EXPANDING
, &head
->state
));
770 inc_empty_inactive_list_flag
= 0;
771 if (!list_empty(conf
->inactive_list
+ hash
))
772 inc_empty_inactive_list_flag
= 1;
773 list_del_init(&head
->lru
);
774 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
775 atomic_inc(&conf
->empty_inactive_list_nr
);
777 head
->group
->stripes_cnt
--;
781 atomic_inc(&head
->count
);
782 spin_unlock(&conf
->device_lock
);
784 spin_unlock_irq(conf
->hash_locks
+ hash
);
788 if (!stripe_can_batch(head
))
791 lock_two_stripes(head
, sh
);
792 /* clear_batch_ready clear the flag */
793 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
800 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
802 if (head
->dev
[dd_idx
].towrite
->bi_opf
!= sh
->dev
[dd_idx
].towrite
->bi_opf
||
803 bio_op(head
->dev
[dd_idx
].towrite
) != bio_op(sh
->dev
[dd_idx
].towrite
))
806 if (head
->batch_head
) {
807 spin_lock(&head
->batch_head
->batch_lock
);
808 /* This batch list is already running */
809 if (!stripe_can_batch(head
)) {
810 spin_unlock(&head
->batch_head
->batch_lock
);
814 * We must assign batch_head of this stripe within the
815 * batch_lock, otherwise clear_batch_ready of batch head
816 * stripe could clear BATCH_READY bit of this stripe and
817 * this stripe->batch_head doesn't get assigned, which
818 * could confuse clear_batch_ready for this stripe
820 sh
->batch_head
= head
->batch_head
;
823 * at this point, head's BATCH_READY could be cleared, but we
824 * can still add the stripe to batch list
826 list_add(&sh
->batch_list
, &head
->batch_list
);
827 spin_unlock(&head
->batch_head
->batch_lock
);
829 head
->batch_head
= head
;
830 sh
->batch_head
= head
->batch_head
;
831 spin_lock(&head
->batch_lock
);
832 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
833 spin_unlock(&head
->batch_lock
);
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
837 if (atomic_dec_return(&conf
->preread_active_stripes
)
839 md_wakeup_thread(conf
->mddev
->thread
);
841 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
842 int seq
= sh
->bm_seq
;
843 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
844 sh
->batch_head
->bm_seq
> seq
)
845 seq
= sh
->batch_head
->bm_seq
;
846 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
847 sh
->batch_head
->bm_seq
= seq
;
850 atomic_inc(&sh
->count
);
852 unlock_two_stripes(head
, sh
);
854 raid5_release_stripe(head
);
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
860 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
862 sector_t progress
= conf
->reshape_progress
;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
868 if (progress
== MaxSector
)
870 if (sh
->generation
== conf
->generation
- 1)
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
878 static void dispatch_bio_list(struct bio_list
*tmp
)
882 while ((bio
= bio_list_pop(tmp
)))
883 generic_make_request(bio
);
886 static int cmp_stripe(void *priv
, struct list_head
*a
, struct list_head
*b
)
888 const struct r5pending_data
*da
= list_entry(a
,
889 struct r5pending_data
, sibling
);
890 const struct r5pending_data
*db
= list_entry(b
,
891 struct r5pending_data
, sibling
);
892 if (da
->sector
> db
->sector
)
894 if (da
->sector
< db
->sector
)
899 static void dispatch_defer_bios(struct r5conf
*conf
, int target
,
900 struct bio_list
*list
)
902 struct r5pending_data
*data
;
903 struct list_head
*first
, *next
= NULL
;
906 if (conf
->pending_data_cnt
== 0)
909 list_sort(NULL
, &conf
->pending_list
, cmp_stripe
);
911 first
= conf
->pending_list
.next
;
913 /* temporarily move the head */
914 if (conf
->next_pending_data
)
915 list_move_tail(&conf
->pending_list
,
916 &conf
->next_pending_data
->sibling
);
918 while (!list_empty(&conf
->pending_list
)) {
919 data
= list_first_entry(&conf
->pending_list
,
920 struct r5pending_data
, sibling
);
921 if (&data
->sibling
== first
)
922 first
= data
->sibling
.next
;
923 next
= data
->sibling
.next
;
925 bio_list_merge(list
, &data
->bios
);
926 list_move(&data
->sibling
, &conf
->free_list
);
931 conf
->pending_data_cnt
-= cnt
;
932 BUG_ON(conf
->pending_data_cnt
< 0 || cnt
< target
);
934 if (next
!= &conf
->pending_list
)
935 conf
->next_pending_data
= list_entry(next
,
936 struct r5pending_data
, sibling
);
938 conf
->next_pending_data
= NULL
;
939 /* list isn't empty */
940 if (first
!= &conf
->pending_list
)
941 list_move_tail(&conf
->pending_list
, first
);
944 static void flush_deferred_bios(struct r5conf
*conf
)
946 struct bio_list tmp
= BIO_EMPTY_LIST
;
948 if (conf
->pending_data_cnt
== 0)
951 spin_lock(&conf
->pending_bios_lock
);
952 dispatch_defer_bios(conf
, conf
->pending_data_cnt
, &tmp
);
953 BUG_ON(conf
->pending_data_cnt
!= 0);
954 spin_unlock(&conf
->pending_bios_lock
);
956 dispatch_bio_list(&tmp
);
959 static void defer_issue_bios(struct r5conf
*conf
, sector_t sector
,
960 struct bio_list
*bios
)
962 struct bio_list tmp
= BIO_EMPTY_LIST
;
963 struct r5pending_data
*ent
;
965 spin_lock(&conf
->pending_bios_lock
);
966 ent
= list_first_entry(&conf
->free_list
, struct r5pending_data
,
968 list_move_tail(&ent
->sibling
, &conf
->pending_list
);
969 ent
->sector
= sector
;
970 bio_list_init(&ent
->bios
);
971 bio_list_merge(&ent
->bios
, bios
);
972 conf
->pending_data_cnt
++;
973 if (conf
->pending_data_cnt
>= PENDING_IO_MAX
)
974 dispatch_defer_bios(conf
, PENDING_IO_ONE_FLUSH
, &tmp
);
976 spin_unlock(&conf
->pending_bios_lock
);
978 dispatch_bio_list(&tmp
);
982 raid5_end_read_request(struct bio
*bi
);
984 raid5_end_write_request(struct bio
*bi
);
986 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
988 struct r5conf
*conf
= sh
->raid_conf
;
989 int i
, disks
= sh
->disks
;
990 struct stripe_head
*head_sh
= sh
;
991 struct bio_list pending_bios
= BIO_EMPTY_LIST
;
996 if (log_stripe(sh
, s
) == 0)
999 should_defer
= conf
->batch_bio_dispatch
&& conf
->group_cnt
;
1001 for (i
= disks
; i
--; ) {
1002 int op
, op_flags
= 0;
1003 int replace_only
= 0;
1004 struct bio
*bi
, *rbi
;
1005 struct md_rdev
*rdev
, *rrdev
= NULL
;
1008 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
1010 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
1012 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1013 op
= REQ_OP_DISCARD
;
1014 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
1016 else if (test_and_clear_bit(R5_WantReplace
,
1017 &sh
->dev
[i
].flags
)) {
1022 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
1023 op_flags
|= REQ_SYNC
;
1026 bi
= &sh
->dev
[i
].req
;
1027 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
1030 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
1031 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1032 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1037 if (op_is_write(op
)) {
1041 /* We raced and saw duplicates */
1044 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
1049 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
1052 atomic_inc(&rdev
->nr_pending
);
1053 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
1056 atomic_inc(&rrdev
->nr_pending
);
1059 /* We have already checked bad blocks for reads. Now
1060 * need to check for writes. We never accept write errors
1061 * on the replacement, so we don't to check rrdev.
1063 while (op_is_write(op
) && rdev
&&
1064 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1067 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
1068 &first_bad
, &bad_sectors
);
1073 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1074 if (!conf
->mddev
->external
&&
1075 conf
->mddev
->sb_flags
) {
1076 /* It is very unlikely, but we might
1077 * still need to write out the
1078 * bad block log - better give it
1080 md_check_recovery(conf
->mddev
);
1083 * Because md_wait_for_blocked_rdev
1084 * will dec nr_pending, we must
1085 * increment it first.
1087 atomic_inc(&rdev
->nr_pending
);
1088 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
1090 /* Acknowledged bad block - skip the write */
1091 rdev_dec_pending(rdev
, conf
->mddev
);
1097 if (s
->syncing
|| s
->expanding
|| s
->expanded
1099 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1101 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1103 bio_set_dev(bi
, rdev
->bdev
);
1104 bio_set_op_attrs(bi
, op
, op_flags
);
1105 bi
->bi_end_io
= op_is_write(op
)
1106 ? raid5_end_write_request
1107 : raid5_end_read_request
;
1108 bi
->bi_private
= sh
;
1110 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1111 __func__
, (unsigned long long)sh
->sector
,
1113 atomic_inc(&sh
->count
);
1115 atomic_inc(&head_sh
->count
);
1116 if (use_new_offset(conf
, sh
))
1117 bi
->bi_iter
.bi_sector
= (sh
->sector
1118 + rdev
->new_data_offset
);
1120 bi
->bi_iter
.bi_sector
= (sh
->sector
1121 + rdev
->data_offset
);
1122 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1123 bi
->bi_opf
|= REQ_NOMERGE
;
1125 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1126 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1128 if (!op_is_write(op
) &&
1129 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
1131 * issuing read for a page in journal, this
1132 * must be preparing for prexor in rmw; read
1133 * the data into orig_page
1135 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].orig_page
;
1137 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1139 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1140 bi
->bi_io_vec
[0].bv_offset
= 0;
1141 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1143 * If this is discard request, set bi_vcnt 0. We don't
1144 * want to confuse SCSI because SCSI will replace payload
1146 if (op
== REQ_OP_DISCARD
)
1149 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1151 if (conf
->mddev
->gendisk
)
1152 trace_block_bio_remap(bi
->bi_disk
->queue
,
1153 bi
, disk_devt(conf
->mddev
->gendisk
),
1155 if (should_defer
&& op_is_write(op
))
1156 bio_list_add(&pending_bios
, bi
);
1158 generic_make_request(bi
);
1161 if (s
->syncing
|| s
->expanding
|| s
->expanded
1163 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1165 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1167 bio_set_dev(rbi
, rrdev
->bdev
);
1168 bio_set_op_attrs(rbi
, op
, op_flags
);
1169 BUG_ON(!op_is_write(op
));
1170 rbi
->bi_end_io
= raid5_end_write_request
;
1171 rbi
->bi_private
= sh
;
1173 pr_debug("%s: for %llu schedule op %d on "
1174 "replacement disc %d\n",
1175 __func__
, (unsigned long long)sh
->sector
,
1177 atomic_inc(&sh
->count
);
1179 atomic_inc(&head_sh
->count
);
1180 if (use_new_offset(conf
, sh
))
1181 rbi
->bi_iter
.bi_sector
= (sh
->sector
1182 + rrdev
->new_data_offset
);
1184 rbi
->bi_iter
.bi_sector
= (sh
->sector
1185 + rrdev
->data_offset
);
1186 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1187 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1188 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1190 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1191 rbi
->bi_io_vec
[0].bv_offset
= 0;
1192 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1194 * If this is discard request, set bi_vcnt 0. We don't
1195 * want to confuse SCSI because SCSI will replace payload
1197 if (op
== REQ_OP_DISCARD
)
1199 if (conf
->mddev
->gendisk
)
1200 trace_block_bio_remap(rbi
->bi_disk
->queue
,
1201 rbi
, disk_devt(conf
->mddev
->gendisk
),
1203 if (should_defer
&& op_is_write(op
))
1204 bio_list_add(&pending_bios
, rbi
);
1206 generic_make_request(rbi
);
1208 if (!rdev
&& !rrdev
) {
1209 if (op_is_write(op
))
1210 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1211 pr_debug("skip op %d on disc %d for sector %llu\n",
1212 bi
->bi_opf
, i
, (unsigned long long)sh
->sector
);
1213 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1214 set_bit(STRIPE_HANDLE
, &sh
->state
);
1217 if (!head_sh
->batch_head
)
1219 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1225 if (should_defer
&& !bio_list_empty(&pending_bios
))
1226 defer_issue_bios(conf
, head_sh
->sector
, &pending_bios
);
1229 static struct dma_async_tx_descriptor
*
1230 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1231 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1232 struct stripe_head
*sh
, int no_skipcopy
)
1235 struct bvec_iter iter
;
1236 struct page
*bio_page
;
1238 struct async_submit_ctl submit
;
1239 enum async_tx_flags flags
= 0;
1241 if (bio
->bi_iter
.bi_sector
>= sector
)
1242 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1244 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1247 flags
|= ASYNC_TX_FENCE
;
1248 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1250 bio_for_each_segment(bvl
, bio
, iter
) {
1251 int len
= bvl
.bv_len
;
1255 if (page_offset
< 0) {
1256 b_offset
= -page_offset
;
1257 page_offset
+= b_offset
;
1261 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1262 clen
= STRIPE_SIZE
- page_offset
;
1267 b_offset
+= bvl
.bv_offset
;
1268 bio_page
= bvl
.bv_page
;
1270 if (sh
->raid_conf
->skip_copy
&&
1271 b_offset
== 0 && page_offset
== 0 &&
1272 clen
== STRIPE_SIZE
&&
1276 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1277 b_offset
, clen
, &submit
);
1279 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1280 page_offset
, clen
, &submit
);
1282 /* chain the operations */
1283 submit
.depend_tx
= tx
;
1285 if (clen
< len
) /* hit end of page */
1293 static void ops_complete_biofill(void *stripe_head_ref
)
1295 struct stripe_head
*sh
= stripe_head_ref
;
1298 pr_debug("%s: stripe %llu\n", __func__
,
1299 (unsigned long long)sh
->sector
);
1301 /* clear completed biofills */
1302 for (i
= sh
->disks
; i
--; ) {
1303 struct r5dev
*dev
= &sh
->dev
[i
];
1305 /* acknowledge completion of a biofill operation */
1306 /* and check if we need to reply to a read request,
1307 * new R5_Wantfill requests are held off until
1308 * !STRIPE_BIOFILL_RUN
1310 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1311 struct bio
*rbi
, *rbi2
;
1316 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1317 dev
->sector
+ STRIPE_SECTORS
) {
1318 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1324 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1326 set_bit(STRIPE_HANDLE
, &sh
->state
);
1327 raid5_release_stripe(sh
);
1330 static void ops_run_biofill(struct stripe_head
*sh
)
1332 struct dma_async_tx_descriptor
*tx
= NULL
;
1333 struct async_submit_ctl submit
;
1336 BUG_ON(sh
->batch_head
);
1337 pr_debug("%s: stripe %llu\n", __func__
,
1338 (unsigned long long)sh
->sector
);
1340 for (i
= sh
->disks
; i
--; ) {
1341 struct r5dev
*dev
= &sh
->dev
[i
];
1342 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1344 spin_lock_irq(&sh
->stripe_lock
);
1345 dev
->read
= rbi
= dev
->toread
;
1347 spin_unlock_irq(&sh
->stripe_lock
);
1348 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1349 dev
->sector
+ STRIPE_SECTORS
) {
1350 tx
= async_copy_data(0, rbi
, &dev
->page
,
1351 dev
->sector
, tx
, sh
, 0);
1352 rbi
= r5_next_bio(rbi
, dev
->sector
);
1357 atomic_inc(&sh
->count
);
1358 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1359 async_trigger_callback(&submit
);
1362 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1369 tgt
= &sh
->dev
[target
];
1370 set_bit(R5_UPTODATE
, &tgt
->flags
);
1371 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1372 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1375 static void ops_complete_compute(void *stripe_head_ref
)
1377 struct stripe_head
*sh
= stripe_head_ref
;
1379 pr_debug("%s: stripe %llu\n", __func__
,
1380 (unsigned long long)sh
->sector
);
1382 /* mark the computed target(s) as uptodate */
1383 mark_target_uptodate(sh
, sh
->ops
.target
);
1384 mark_target_uptodate(sh
, sh
->ops
.target2
);
1386 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1387 if (sh
->check_state
== check_state_compute_run
)
1388 sh
->check_state
= check_state_compute_result
;
1389 set_bit(STRIPE_HANDLE
, &sh
->state
);
1390 raid5_release_stripe(sh
);
1393 /* return a pointer to the address conversion region of the scribble buffer */
1394 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1395 struct raid5_percpu
*percpu
, int i
)
1399 addr
= flex_array_get(percpu
->scribble
, i
);
1400 return addr
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1403 /* return a pointer to the address conversion region of the scribble buffer */
1404 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1408 addr
= flex_array_get(percpu
->scribble
, i
);
1412 static struct dma_async_tx_descriptor
*
1413 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1415 int disks
= sh
->disks
;
1416 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1417 int target
= sh
->ops
.target
;
1418 struct r5dev
*tgt
= &sh
->dev
[target
];
1419 struct page
*xor_dest
= tgt
->page
;
1421 struct dma_async_tx_descriptor
*tx
;
1422 struct async_submit_ctl submit
;
1425 BUG_ON(sh
->batch_head
);
1427 pr_debug("%s: stripe %llu block: %d\n",
1428 __func__
, (unsigned long long)sh
->sector
, target
);
1429 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1431 for (i
= disks
; i
--; )
1433 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1435 atomic_inc(&sh
->count
);
1437 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1438 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1439 if (unlikely(count
== 1))
1440 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1442 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1447 /* set_syndrome_sources - populate source buffers for gen_syndrome
1448 * @srcs - (struct page *) array of size sh->disks
1449 * @sh - stripe_head to parse
1451 * Populates srcs in proper layout order for the stripe and returns the
1452 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1453 * destination buffer is recorded in srcs[count] and the Q destination
1454 * is recorded in srcs[count+1]].
1456 static int set_syndrome_sources(struct page
**srcs
,
1457 struct stripe_head
*sh
,
1460 int disks
= sh
->disks
;
1461 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1462 int d0_idx
= raid6_d0(sh
);
1466 for (i
= 0; i
< disks
; i
++)
1472 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1473 struct r5dev
*dev
= &sh
->dev
[i
];
1475 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1476 (srctype
== SYNDROME_SRC_ALL
) ||
1477 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1478 (test_bit(R5_Wantdrain
, &dev
->flags
) ||
1479 test_bit(R5_InJournal
, &dev
->flags
))) ||
1480 (srctype
== SYNDROME_SRC_WRITTEN
&&
1482 test_bit(R5_InJournal
, &dev
->flags
)))) {
1483 if (test_bit(R5_InJournal
, &dev
->flags
))
1484 srcs
[slot
] = sh
->dev
[i
].orig_page
;
1486 srcs
[slot
] = sh
->dev
[i
].page
;
1488 i
= raid6_next_disk(i
, disks
);
1489 } while (i
!= d0_idx
);
1491 return syndrome_disks
;
1494 static struct dma_async_tx_descriptor
*
1495 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1497 int disks
= sh
->disks
;
1498 struct page
**blocks
= to_addr_page(percpu
, 0);
1500 int qd_idx
= sh
->qd_idx
;
1501 struct dma_async_tx_descriptor
*tx
;
1502 struct async_submit_ctl submit
;
1508 BUG_ON(sh
->batch_head
);
1509 if (sh
->ops
.target
< 0)
1510 target
= sh
->ops
.target2
;
1511 else if (sh
->ops
.target2
< 0)
1512 target
= sh
->ops
.target
;
1514 /* we should only have one valid target */
1517 pr_debug("%s: stripe %llu block: %d\n",
1518 __func__
, (unsigned long long)sh
->sector
, target
);
1520 tgt
= &sh
->dev
[target
];
1521 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1524 atomic_inc(&sh
->count
);
1526 if (target
== qd_idx
) {
1527 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1528 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1529 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1530 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1531 ops_complete_compute
, sh
,
1532 to_addr_conv(sh
, percpu
, 0));
1533 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1535 /* Compute any data- or p-drive using XOR */
1537 for (i
= disks
; i
-- ; ) {
1538 if (i
== target
|| i
== qd_idx
)
1540 blocks
[count
++] = sh
->dev
[i
].page
;
1543 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1544 NULL
, ops_complete_compute
, sh
,
1545 to_addr_conv(sh
, percpu
, 0));
1546 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1552 static struct dma_async_tx_descriptor
*
1553 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1555 int i
, count
, disks
= sh
->disks
;
1556 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1557 int d0_idx
= raid6_d0(sh
);
1558 int faila
= -1, failb
= -1;
1559 int target
= sh
->ops
.target
;
1560 int target2
= sh
->ops
.target2
;
1561 struct r5dev
*tgt
= &sh
->dev
[target
];
1562 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1563 struct dma_async_tx_descriptor
*tx
;
1564 struct page
**blocks
= to_addr_page(percpu
, 0);
1565 struct async_submit_ctl submit
;
1567 BUG_ON(sh
->batch_head
);
1568 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1569 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1570 BUG_ON(target
< 0 || target2
< 0);
1571 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1572 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1574 /* we need to open-code set_syndrome_sources to handle the
1575 * slot number conversion for 'faila' and 'failb'
1577 for (i
= 0; i
< disks
; i
++)
1582 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1584 blocks
[slot
] = sh
->dev
[i
].page
;
1590 i
= raid6_next_disk(i
, disks
);
1591 } while (i
!= d0_idx
);
1593 BUG_ON(faila
== failb
);
1596 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1597 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1599 atomic_inc(&sh
->count
);
1601 if (failb
== syndrome_disks
+1) {
1602 /* Q disk is one of the missing disks */
1603 if (faila
== syndrome_disks
) {
1604 /* Missing P+Q, just recompute */
1605 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1606 ops_complete_compute
, sh
,
1607 to_addr_conv(sh
, percpu
, 0));
1608 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1609 STRIPE_SIZE
, &submit
);
1613 int qd_idx
= sh
->qd_idx
;
1615 /* Missing D+Q: recompute D from P, then recompute Q */
1616 if (target
== qd_idx
)
1617 data_target
= target2
;
1619 data_target
= target
;
1622 for (i
= disks
; i
-- ; ) {
1623 if (i
== data_target
|| i
== qd_idx
)
1625 blocks
[count
++] = sh
->dev
[i
].page
;
1627 dest
= sh
->dev
[data_target
].page
;
1628 init_async_submit(&submit
,
1629 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1631 to_addr_conv(sh
, percpu
, 0));
1632 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1635 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1636 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1637 ops_complete_compute
, sh
,
1638 to_addr_conv(sh
, percpu
, 0));
1639 return async_gen_syndrome(blocks
, 0, count
+2,
1640 STRIPE_SIZE
, &submit
);
1643 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1644 ops_complete_compute
, sh
,
1645 to_addr_conv(sh
, percpu
, 0));
1646 if (failb
== syndrome_disks
) {
1647 /* We're missing D+P. */
1648 return async_raid6_datap_recov(syndrome_disks
+2,
1652 /* We're missing D+D. */
1653 return async_raid6_2data_recov(syndrome_disks
+2,
1654 STRIPE_SIZE
, faila
, failb
,
1660 static void ops_complete_prexor(void *stripe_head_ref
)
1662 struct stripe_head
*sh
= stripe_head_ref
;
1664 pr_debug("%s: stripe %llu\n", __func__
,
1665 (unsigned long long)sh
->sector
);
1667 if (r5c_is_writeback(sh
->raid_conf
->log
))
1669 * raid5-cache write back uses orig_page during prexor.
1670 * After prexor, it is time to free orig_page
1672 r5c_release_extra_page(sh
);
1675 static struct dma_async_tx_descriptor
*
1676 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1677 struct dma_async_tx_descriptor
*tx
)
1679 int disks
= sh
->disks
;
1680 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1681 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1682 struct async_submit_ctl submit
;
1684 /* existing parity data subtracted */
1685 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1687 BUG_ON(sh
->batch_head
);
1688 pr_debug("%s: stripe %llu\n", __func__
,
1689 (unsigned long long)sh
->sector
);
1691 for (i
= disks
; i
--; ) {
1692 struct r5dev
*dev
= &sh
->dev
[i
];
1693 /* Only process blocks that are known to be uptodate */
1694 if (test_bit(R5_InJournal
, &dev
->flags
))
1695 xor_srcs
[count
++] = dev
->orig_page
;
1696 else if (test_bit(R5_Wantdrain
, &dev
->flags
))
1697 xor_srcs
[count
++] = dev
->page
;
1700 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1701 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1702 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1707 static struct dma_async_tx_descriptor
*
1708 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1709 struct dma_async_tx_descriptor
*tx
)
1711 struct page
**blocks
= to_addr_page(percpu
, 0);
1713 struct async_submit_ctl submit
;
1715 pr_debug("%s: stripe %llu\n", __func__
,
1716 (unsigned long long)sh
->sector
);
1718 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1720 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1721 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1722 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1727 static struct dma_async_tx_descriptor
*
1728 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1730 struct r5conf
*conf
= sh
->raid_conf
;
1731 int disks
= sh
->disks
;
1733 struct stripe_head
*head_sh
= sh
;
1735 pr_debug("%s: stripe %llu\n", __func__
,
1736 (unsigned long long)sh
->sector
);
1738 for (i
= disks
; i
--; ) {
1743 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1749 * clear R5_InJournal, so when rewriting a page in
1750 * journal, it is not skipped by r5l_log_stripe()
1752 clear_bit(R5_InJournal
, &dev
->flags
);
1753 spin_lock_irq(&sh
->stripe_lock
);
1754 chosen
= dev
->towrite
;
1755 dev
->towrite
= NULL
;
1756 sh
->overwrite_disks
= 0;
1757 BUG_ON(dev
->written
);
1758 wbi
= dev
->written
= chosen
;
1759 spin_unlock_irq(&sh
->stripe_lock
);
1760 WARN_ON(dev
->page
!= dev
->orig_page
);
1762 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1763 dev
->sector
+ STRIPE_SECTORS
) {
1764 if (wbi
->bi_opf
& REQ_FUA
)
1765 set_bit(R5_WantFUA
, &dev
->flags
);
1766 if (wbi
->bi_opf
& REQ_SYNC
)
1767 set_bit(R5_SyncIO
, &dev
->flags
);
1768 if (bio_op(wbi
) == REQ_OP_DISCARD
)
1769 set_bit(R5_Discard
, &dev
->flags
);
1771 tx
= async_copy_data(1, wbi
, &dev
->page
,
1772 dev
->sector
, tx
, sh
,
1773 r5c_is_writeback(conf
->log
));
1774 if (dev
->page
!= dev
->orig_page
&&
1775 !r5c_is_writeback(conf
->log
)) {
1776 set_bit(R5_SkipCopy
, &dev
->flags
);
1777 clear_bit(R5_UPTODATE
, &dev
->flags
);
1778 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1781 wbi
= r5_next_bio(wbi
, dev
->sector
);
1784 if (head_sh
->batch_head
) {
1785 sh
= list_first_entry(&sh
->batch_list
,
1798 static void ops_complete_reconstruct(void *stripe_head_ref
)
1800 struct stripe_head
*sh
= stripe_head_ref
;
1801 int disks
= sh
->disks
;
1802 int pd_idx
= sh
->pd_idx
;
1803 int qd_idx
= sh
->qd_idx
;
1805 bool fua
= false, sync
= false, discard
= false;
1807 pr_debug("%s: stripe %llu\n", __func__
,
1808 (unsigned long long)sh
->sector
);
1810 for (i
= disks
; i
--; ) {
1811 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1812 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1813 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1816 for (i
= disks
; i
--; ) {
1817 struct r5dev
*dev
= &sh
->dev
[i
];
1819 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1820 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
)) {
1821 set_bit(R5_UPTODATE
, &dev
->flags
);
1822 if (test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
1823 set_bit(R5_Expanded
, &dev
->flags
);
1826 set_bit(R5_WantFUA
, &dev
->flags
);
1828 set_bit(R5_SyncIO
, &dev
->flags
);
1832 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1833 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1834 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1835 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1837 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1838 sh
->reconstruct_state
= reconstruct_state_result
;
1841 set_bit(STRIPE_HANDLE
, &sh
->state
);
1842 raid5_release_stripe(sh
);
1846 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1847 struct dma_async_tx_descriptor
*tx
)
1849 int disks
= sh
->disks
;
1850 struct page
**xor_srcs
;
1851 struct async_submit_ctl submit
;
1852 int count
, pd_idx
= sh
->pd_idx
, i
;
1853 struct page
*xor_dest
;
1855 unsigned long flags
;
1857 struct stripe_head
*head_sh
= sh
;
1860 pr_debug("%s: stripe %llu\n", __func__
,
1861 (unsigned long long)sh
->sector
);
1863 for (i
= 0; i
< sh
->disks
; i
++) {
1866 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1869 if (i
>= sh
->disks
) {
1870 atomic_inc(&sh
->count
);
1871 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1872 ops_complete_reconstruct(sh
);
1877 xor_srcs
= to_addr_page(percpu
, j
);
1878 /* check if prexor is active which means only process blocks
1879 * that are part of a read-modify-write (written)
1881 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1883 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1884 for (i
= disks
; i
--; ) {
1885 struct r5dev
*dev
= &sh
->dev
[i
];
1886 if (head_sh
->dev
[i
].written
||
1887 test_bit(R5_InJournal
, &head_sh
->dev
[i
].flags
))
1888 xor_srcs
[count
++] = dev
->page
;
1891 xor_dest
= sh
->dev
[pd_idx
].page
;
1892 for (i
= disks
; i
--; ) {
1893 struct r5dev
*dev
= &sh
->dev
[i
];
1895 xor_srcs
[count
++] = dev
->page
;
1899 /* 1/ if we prexor'd then the dest is reused as a source
1900 * 2/ if we did not prexor then we are redoing the parity
1901 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1902 * for the synchronous xor case
1904 last_stripe
= !head_sh
->batch_head
||
1905 list_first_entry(&sh
->batch_list
,
1906 struct stripe_head
, batch_list
) == head_sh
;
1908 flags
= ASYNC_TX_ACK
|
1909 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1911 atomic_inc(&head_sh
->count
);
1912 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1913 to_addr_conv(sh
, percpu
, j
));
1915 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1916 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1917 to_addr_conv(sh
, percpu
, j
));
1920 if (unlikely(count
== 1))
1921 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1923 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1926 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1933 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1934 struct dma_async_tx_descriptor
*tx
)
1936 struct async_submit_ctl submit
;
1937 struct page
**blocks
;
1938 int count
, i
, j
= 0;
1939 struct stripe_head
*head_sh
= sh
;
1942 unsigned long txflags
;
1944 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1946 for (i
= 0; i
< sh
->disks
; i
++) {
1947 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1949 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1952 if (i
>= sh
->disks
) {
1953 atomic_inc(&sh
->count
);
1954 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1955 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1956 ops_complete_reconstruct(sh
);
1961 blocks
= to_addr_page(percpu
, j
);
1963 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1964 synflags
= SYNDROME_SRC_WRITTEN
;
1965 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1967 synflags
= SYNDROME_SRC_ALL
;
1968 txflags
= ASYNC_TX_ACK
;
1971 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1972 last_stripe
= !head_sh
->batch_head
||
1973 list_first_entry(&sh
->batch_list
,
1974 struct stripe_head
, batch_list
) == head_sh
;
1977 atomic_inc(&head_sh
->count
);
1978 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1979 head_sh
, to_addr_conv(sh
, percpu
, j
));
1981 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1982 to_addr_conv(sh
, percpu
, j
));
1983 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1986 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1992 static void ops_complete_check(void *stripe_head_ref
)
1994 struct stripe_head
*sh
= stripe_head_ref
;
1996 pr_debug("%s: stripe %llu\n", __func__
,
1997 (unsigned long long)sh
->sector
);
1999 sh
->check_state
= check_state_check_result
;
2000 set_bit(STRIPE_HANDLE
, &sh
->state
);
2001 raid5_release_stripe(sh
);
2004 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
2006 int disks
= sh
->disks
;
2007 int pd_idx
= sh
->pd_idx
;
2008 int qd_idx
= sh
->qd_idx
;
2009 struct page
*xor_dest
;
2010 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
2011 struct dma_async_tx_descriptor
*tx
;
2012 struct async_submit_ctl submit
;
2016 pr_debug("%s: stripe %llu\n", __func__
,
2017 (unsigned long long)sh
->sector
);
2019 BUG_ON(sh
->batch_head
);
2021 xor_dest
= sh
->dev
[pd_idx
].page
;
2022 xor_srcs
[count
++] = xor_dest
;
2023 for (i
= disks
; i
--; ) {
2024 if (i
== pd_idx
|| i
== qd_idx
)
2026 xor_srcs
[count
++] = sh
->dev
[i
].page
;
2029 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
2030 to_addr_conv(sh
, percpu
, 0));
2031 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
2032 &sh
->ops
.zero_sum_result
, &submit
);
2034 atomic_inc(&sh
->count
);
2035 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
2036 tx
= async_trigger_callback(&submit
);
2039 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
2041 struct page
**srcs
= to_addr_page(percpu
, 0);
2042 struct async_submit_ctl submit
;
2045 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
2046 (unsigned long long)sh
->sector
, checkp
);
2048 BUG_ON(sh
->batch_head
);
2049 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
2053 atomic_inc(&sh
->count
);
2054 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
2055 sh
, to_addr_conv(sh
, percpu
, 0));
2056 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
2057 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
2060 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
2062 int overlap_clear
= 0, i
, disks
= sh
->disks
;
2063 struct dma_async_tx_descriptor
*tx
= NULL
;
2064 struct r5conf
*conf
= sh
->raid_conf
;
2065 int level
= conf
->level
;
2066 struct raid5_percpu
*percpu
;
2070 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2071 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
2072 ops_run_biofill(sh
);
2076 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
2078 tx
= ops_run_compute5(sh
, percpu
);
2080 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
2081 tx
= ops_run_compute6_1(sh
, percpu
);
2083 tx
= ops_run_compute6_2(sh
, percpu
);
2085 /* terminate the chain if reconstruct is not set to be run */
2086 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
2090 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
2092 tx
= ops_run_prexor5(sh
, percpu
, tx
);
2094 tx
= ops_run_prexor6(sh
, percpu
, tx
);
2097 if (test_bit(STRIPE_OP_PARTIAL_PARITY
, &ops_request
))
2098 tx
= ops_run_partial_parity(sh
, percpu
, tx
);
2100 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
2101 tx
= ops_run_biodrain(sh
, tx
);
2105 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
2107 ops_run_reconstruct5(sh
, percpu
, tx
);
2109 ops_run_reconstruct6(sh
, percpu
, tx
);
2112 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
2113 if (sh
->check_state
== check_state_run
)
2114 ops_run_check_p(sh
, percpu
);
2115 else if (sh
->check_state
== check_state_run_q
)
2116 ops_run_check_pq(sh
, percpu
, 0);
2117 else if (sh
->check_state
== check_state_run_pq
)
2118 ops_run_check_pq(sh
, percpu
, 1);
2123 if (overlap_clear
&& !sh
->batch_head
)
2124 for (i
= disks
; i
--; ) {
2125 struct r5dev
*dev
= &sh
->dev
[i
];
2126 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2127 wake_up(&sh
->raid_conf
->wait_for_overlap
);
2132 static void free_stripe(struct kmem_cache
*sc
, struct stripe_head
*sh
)
2135 __free_page(sh
->ppl_page
);
2136 kmem_cache_free(sc
, sh
);
2139 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
,
2140 int disks
, struct r5conf
*conf
)
2142 struct stripe_head
*sh
;
2145 sh
= kmem_cache_zalloc(sc
, gfp
);
2147 spin_lock_init(&sh
->stripe_lock
);
2148 spin_lock_init(&sh
->batch_lock
);
2149 INIT_LIST_HEAD(&sh
->batch_list
);
2150 INIT_LIST_HEAD(&sh
->lru
);
2151 INIT_LIST_HEAD(&sh
->r5c
);
2152 INIT_LIST_HEAD(&sh
->log_list
);
2153 atomic_set(&sh
->count
, 1);
2154 sh
->raid_conf
= conf
;
2155 sh
->log_start
= MaxSector
;
2156 for (i
= 0; i
< disks
; i
++) {
2157 struct r5dev
*dev
= &sh
->dev
[i
];
2159 bio_init(&dev
->req
, &dev
->vec
, 1);
2160 bio_init(&dev
->rreq
, &dev
->rvec
, 1);
2163 if (raid5_has_ppl(conf
)) {
2164 sh
->ppl_page
= alloc_page(gfp
);
2165 if (!sh
->ppl_page
) {
2166 free_stripe(sc
, sh
);
2173 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
2175 struct stripe_head
*sh
;
2177 sh
= alloc_stripe(conf
->slab_cache
, gfp
, conf
->pool_size
, conf
);
2181 if (grow_buffers(sh
, gfp
)) {
2183 free_stripe(conf
->slab_cache
, sh
);
2186 sh
->hash_lock_index
=
2187 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2188 /* we just created an active stripe so... */
2189 atomic_inc(&conf
->active_stripes
);
2191 raid5_release_stripe(sh
);
2192 conf
->max_nr_stripes
++;
2196 static int grow_stripes(struct r5conf
*conf
, int num
)
2198 struct kmem_cache
*sc
;
2199 size_t namelen
= sizeof(conf
->cache_name
[0]);
2200 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2202 if (conf
->mddev
->gendisk
)
2203 snprintf(conf
->cache_name
[0], namelen
,
2204 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2206 snprintf(conf
->cache_name
[0], namelen
,
2207 "raid%d-%p", conf
->level
, conf
->mddev
);
2208 snprintf(conf
->cache_name
[1], namelen
, "%.27s-alt", conf
->cache_name
[0]);
2210 conf
->active_name
= 0;
2211 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2212 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2216 conf
->slab_cache
= sc
;
2217 conf
->pool_size
= devs
;
2219 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2226 * scribble_len - return the required size of the scribble region
2227 * @num - total number of disks in the array
2229 * The size must be enough to contain:
2230 * 1/ a struct page pointer for each device in the array +2
2231 * 2/ room to convert each entry in (1) to its corresponding dma
2232 * (dma_map_page()) or page (page_address()) address.
2234 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2235 * calculate over all devices (not just the data blocks), using zeros in place
2236 * of the P and Q blocks.
2238 static struct flex_array
*scribble_alloc(int num
, int cnt
, gfp_t flags
)
2240 struct flex_array
*ret
;
2243 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
2244 ret
= flex_array_alloc(len
, cnt
, flags
);
2247 /* always prealloc all elements, so no locking is required */
2248 if (flex_array_prealloc(ret
, 0, cnt
, flags
)) {
2249 flex_array_free(ret
);
2255 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2261 * Never shrink. And mddev_suspend() could deadlock if this is called
2262 * from raid5d. In that case, scribble_disks and scribble_sectors
2263 * should equal to new_disks and new_sectors
2265 if (conf
->scribble_disks
>= new_disks
&&
2266 conf
->scribble_sectors
>= new_sectors
)
2268 mddev_suspend(conf
->mddev
);
2270 for_each_present_cpu(cpu
) {
2271 struct raid5_percpu
*percpu
;
2272 struct flex_array
*scribble
;
2274 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2275 scribble
= scribble_alloc(new_disks
,
2276 new_sectors
/ STRIPE_SECTORS
,
2280 flex_array_free(percpu
->scribble
);
2281 percpu
->scribble
= scribble
;
2288 mddev_resume(conf
->mddev
);
2290 conf
->scribble_disks
= new_disks
;
2291 conf
->scribble_sectors
= new_sectors
;
2296 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2298 /* Make all the stripes able to hold 'newsize' devices.
2299 * New slots in each stripe get 'page' set to a new page.
2301 * This happens in stages:
2302 * 1/ create a new kmem_cache and allocate the required number of
2304 * 2/ gather all the old stripe_heads and transfer the pages across
2305 * to the new stripe_heads. This will have the side effect of
2306 * freezing the array as once all stripe_heads have been collected,
2307 * no IO will be possible. Old stripe heads are freed once their
2308 * pages have been transferred over, and the old kmem_cache is
2309 * freed when all stripes are done.
2310 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2311 * we simple return a failure status - no need to clean anything up.
2312 * 4/ allocate new pages for the new slots in the new stripe_heads.
2313 * If this fails, we don't bother trying the shrink the
2314 * stripe_heads down again, we just leave them as they are.
2315 * As each stripe_head is processed the new one is released into
2318 * Once step2 is started, we cannot afford to wait for a write,
2319 * so we use GFP_NOIO allocations.
2321 struct stripe_head
*osh
, *nsh
;
2322 LIST_HEAD(newstripes
);
2323 struct disk_info
*ndisks
;
2325 struct kmem_cache
*sc
;
2329 md_allow_write(conf
->mddev
);
2332 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2333 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2338 /* Need to ensure auto-resizing doesn't interfere */
2339 mutex_lock(&conf
->cache_size_mutex
);
2341 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2342 nsh
= alloc_stripe(sc
, GFP_KERNEL
, newsize
, conf
);
2346 list_add(&nsh
->lru
, &newstripes
);
2349 /* didn't get enough, give up */
2350 while (!list_empty(&newstripes
)) {
2351 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2352 list_del(&nsh
->lru
);
2353 free_stripe(sc
, nsh
);
2355 kmem_cache_destroy(sc
);
2356 mutex_unlock(&conf
->cache_size_mutex
);
2359 /* Step 2 - Must use GFP_NOIO now.
2360 * OK, we have enough stripes, start collecting inactive
2361 * stripes and copying them over
2365 list_for_each_entry(nsh
, &newstripes
, lru
) {
2366 lock_device_hash_lock(conf
, hash
);
2367 wait_event_cmd(conf
->wait_for_stripe
,
2368 !list_empty(conf
->inactive_list
+ hash
),
2369 unlock_device_hash_lock(conf
, hash
),
2370 lock_device_hash_lock(conf
, hash
));
2371 osh
= get_free_stripe(conf
, hash
);
2372 unlock_device_hash_lock(conf
, hash
);
2374 for(i
=0; i
<conf
->pool_size
; i
++) {
2375 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2376 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2378 nsh
->hash_lock_index
= hash
;
2379 free_stripe(conf
->slab_cache
, osh
);
2381 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2382 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2387 kmem_cache_destroy(conf
->slab_cache
);
2390 * At this point, we are holding all the stripes so the array
2391 * is completely stalled, so now is a good time to resize
2392 * conf->disks and the scribble region
2394 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
2396 for (i
= 0; i
< conf
->pool_size
; i
++)
2397 ndisks
[i
] = conf
->disks
[i
];
2399 for (i
= conf
->pool_size
; i
< newsize
; i
++) {
2400 ndisks
[i
].extra_page
= alloc_page(GFP_NOIO
);
2401 if (!ndisks
[i
].extra_page
)
2406 for (i
= conf
->pool_size
; i
< newsize
; i
++)
2407 if (ndisks
[i
].extra_page
)
2408 put_page(ndisks
[i
].extra_page
);
2412 conf
->disks
= ndisks
;
2417 mutex_unlock(&conf
->cache_size_mutex
);
2419 conf
->slab_cache
= sc
;
2420 conf
->active_name
= 1-conf
->active_name
;
2422 /* Step 4, return new stripes to service */
2423 while(!list_empty(&newstripes
)) {
2424 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2425 list_del_init(&nsh
->lru
);
2427 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2428 if (nsh
->dev
[i
].page
== NULL
) {
2429 struct page
*p
= alloc_page(GFP_NOIO
);
2430 nsh
->dev
[i
].page
= p
;
2431 nsh
->dev
[i
].orig_page
= p
;
2435 raid5_release_stripe(nsh
);
2437 /* critical section pass, GFP_NOIO no longer needed */
2440 conf
->pool_size
= newsize
;
2444 static int drop_one_stripe(struct r5conf
*conf
)
2446 struct stripe_head
*sh
;
2447 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2449 spin_lock_irq(conf
->hash_locks
+ hash
);
2450 sh
= get_free_stripe(conf
, hash
);
2451 spin_unlock_irq(conf
->hash_locks
+ hash
);
2454 BUG_ON(atomic_read(&sh
->count
));
2456 free_stripe(conf
->slab_cache
, sh
);
2457 atomic_dec(&conf
->active_stripes
);
2458 conf
->max_nr_stripes
--;
2462 static void shrink_stripes(struct r5conf
*conf
)
2464 while (conf
->max_nr_stripes
&&
2465 drop_one_stripe(conf
))
2468 kmem_cache_destroy(conf
->slab_cache
);
2469 conf
->slab_cache
= NULL
;
2472 static void raid5_end_read_request(struct bio
* bi
)
2474 struct stripe_head
*sh
= bi
->bi_private
;
2475 struct r5conf
*conf
= sh
->raid_conf
;
2476 int disks
= sh
->disks
, i
;
2477 char b
[BDEVNAME_SIZE
];
2478 struct md_rdev
*rdev
= NULL
;
2481 for (i
=0 ; i
<disks
; i
++)
2482 if (bi
== &sh
->dev
[i
].req
)
2485 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2486 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2493 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2494 /* If replacement finished while this request was outstanding,
2495 * 'replacement' might be NULL already.
2496 * In that case it moved down to 'rdev'.
2497 * rdev is not removed until all requests are finished.
2499 rdev
= conf
->disks
[i
].replacement
;
2501 rdev
= conf
->disks
[i
].rdev
;
2503 if (use_new_offset(conf
, sh
))
2504 s
= sh
->sector
+ rdev
->new_data_offset
;
2506 s
= sh
->sector
+ rdev
->data_offset
;
2507 if (!bi
->bi_status
) {
2508 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2509 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2510 /* Note that this cannot happen on a
2511 * replacement device. We just fail those on
2514 pr_info_ratelimited(
2515 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2516 mdname(conf
->mddev
), STRIPE_SECTORS
,
2517 (unsigned long long)s
,
2518 bdevname(rdev
->bdev
, b
));
2519 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2520 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2521 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2522 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2523 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2525 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
2527 * end read for a page in journal, this
2528 * must be preparing for prexor in rmw
2530 set_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2532 if (atomic_read(&rdev
->read_errors
))
2533 atomic_set(&rdev
->read_errors
, 0);
2535 const char *bdn
= bdevname(rdev
->bdev
, b
);
2539 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2540 atomic_inc(&rdev
->read_errors
);
2541 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2542 pr_warn_ratelimited(
2543 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2544 mdname(conf
->mddev
),
2545 (unsigned long long)s
,
2547 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2549 pr_warn_ratelimited(
2550 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2551 mdname(conf
->mddev
),
2552 (unsigned long long)s
,
2554 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2557 pr_warn_ratelimited(
2558 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2559 mdname(conf
->mddev
),
2560 (unsigned long long)s
,
2562 } else if (atomic_read(&rdev
->read_errors
)
2563 > conf
->max_nr_stripes
)
2564 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2565 mdname(conf
->mddev
), bdn
);
2568 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2569 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2572 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2573 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2574 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2576 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2578 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2579 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2581 && test_bit(In_sync
, &rdev
->flags
)
2582 && rdev_set_badblocks(
2583 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2584 md_error(conf
->mddev
, rdev
);
2587 rdev_dec_pending(rdev
, conf
->mddev
);
2589 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2590 set_bit(STRIPE_HANDLE
, &sh
->state
);
2591 raid5_release_stripe(sh
);
2594 static void raid5_end_write_request(struct bio
*bi
)
2596 struct stripe_head
*sh
= bi
->bi_private
;
2597 struct r5conf
*conf
= sh
->raid_conf
;
2598 int disks
= sh
->disks
, i
;
2599 struct md_rdev
*uninitialized_var(rdev
);
2602 int replacement
= 0;
2604 for (i
= 0 ; i
< disks
; i
++) {
2605 if (bi
== &sh
->dev
[i
].req
) {
2606 rdev
= conf
->disks
[i
].rdev
;
2609 if (bi
== &sh
->dev
[i
].rreq
) {
2610 rdev
= conf
->disks
[i
].replacement
;
2614 /* rdev was removed and 'replacement'
2615 * replaced it. rdev is not removed
2616 * until all requests are finished.
2618 rdev
= conf
->disks
[i
].rdev
;
2622 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2623 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2633 md_error(conf
->mddev
, rdev
);
2634 else if (is_badblock(rdev
, sh
->sector
,
2636 &first_bad
, &bad_sectors
))
2637 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2639 if (bi
->bi_status
) {
2640 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2641 set_bit(WriteErrorSeen
, &rdev
->flags
);
2642 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2643 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2644 set_bit(MD_RECOVERY_NEEDED
,
2645 &rdev
->mddev
->recovery
);
2646 } else if (is_badblock(rdev
, sh
->sector
,
2648 &first_bad
, &bad_sectors
)) {
2649 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2650 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2651 /* That was a successful write so make
2652 * sure it looks like we already did
2655 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2658 rdev_dec_pending(rdev
, conf
->mddev
);
2660 if (sh
->batch_head
&& bi
->bi_status
&& !replacement
)
2661 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2664 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2665 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2666 set_bit(STRIPE_HANDLE
, &sh
->state
);
2667 raid5_release_stripe(sh
);
2669 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2670 raid5_release_stripe(sh
->batch_head
);
2673 static void raid5_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2675 char b
[BDEVNAME_SIZE
];
2676 struct r5conf
*conf
= mddev
->private;
2677 unsigned long flags
;
2678 pr_debug("raid456: error called\n");
2680 spin_lock_irqsave(&conf
->device_lock
, flags
);
2681 set_bit(Faulty
, &rdev
->flags
);
2682 clear_bit(In_sync
, &rdev
->flags
);
2683 mddev
->degraded
= raid5_calc_degraded(conf
);
2684 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2685 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2687 set_bit(Blocked
, &rdev
->flags
);
2688 set_mask_bits(&mddev
->sb_flags
, 0,
2689 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
2690 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691 "md/raid:%s: Operation continuing on %d devices.\n",
2693 bdevname(rdev
->bdev
, b
),
2695 conf
->raid_disks
- mddev
->degraded
);
2696 r5c_update_on_rdev_error(mddev
, rdev
);
2700 * Input: a 'big' sector number,
2701 * Output: index of the data and parity disk, and the sector # in them.
2703 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2704 int previous
, int *dd_idx
,
2705 struct stripe_head
*sh
)
2707 sector_t stripe
, stripe2
;
2708 sector_t chunk_number
;
2709 unsigned int chunk_offset
;
2712 sector_t new_sector
;
2713 int algorithm
= previous
? conf
->prev_algo
2715 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2716 : conf
->chunk_sectors
;
2717 int raid_disks
= previous
? conf
->previous_raid_disks
2719 int data_disks
= raid_disks
- conf
->max_degraded
;
2721 /* First compute the information on this sector */
2724 * Compute the chunk number and the sector offset inside the chunk
2726 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2727 chunk_number
= r_sector
;
2730 * Compute the stripe number
2732 stripe
= chunk_number
;
2733 *dd_idx
= sector_div(stripe
, data_disks
);
2736 * Select the parity disk based on the user selected algorithm.
2738 pd_idx
= qd_idx
= -1;
2739 switch(conf
->level
) {
2741 pd_idx
= data_disks
;
2744 switch (algorithm
) {
2745 case ALGORITHM_LEFT_ASYMMETRIC
:
2746 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2747 if (*dd_idx
>= pd_idx
)
2750 case ALGORITHM_RIGHT_ASYMMETRIC
:
2751 pd_idx
= sector_div(stripe2
, raid_disks
);
2752 if (*dd_idx
>= pd_idx
)
2755 case ALGORITHM_LEFT_SYMMETRIC
:
2756 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2757 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2759 case ALGORITHM_RIGHT_SYMMETRIC
:
2760 pd_idx
= sector_div(stripe2
, raid_disks
);
2761 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2763 case ALGORITHM_PARITY_0
:
2767 case ALGORITHM_PARITY_N
:
2768 pd_idx
= data_disks
;
2776 switch (algorithm
) {
2777 case ALGORITHM_LEFT_ASYMMETRIC
:
2778 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2779 qd_idx
= pd_idx
+ 1;
2780 if (pd_idx
== raid_disks
-1) {
2781 (*dd_idx
)++; /* Q D D D P */
2783 } else if (*dd_idx
>= pd_idx
)
2784 (*dd_idx
) += 2; /* D D P Q D */
2786 case ALGORITHM_RIGHT_ASYMMETRIC
:
2787 pd_idx
= sector_div(stripe2
, raid_disks
);
2788 qd_idx
= pd_idx
+ 1;
2789 if (pd_idx
== raid_disks
-1) {
2790 (*dd_idx
)++; /* Q D D D P */
2792 } else if (*dd_idx
>= pd_idx
)
2793 (*dd_idx
) += 2; /* D D P Q D */
2795 case ALGORITHM_LEFT_SYMMETRIC
:
2796 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2797 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2798 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2800 case ALGORITHM_RIGHT_SYMMETRIC
:
2801 pd_idx
= sector_div(stripe2
, raid_disks
);
2802 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2803 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2806 case ALGORITHM_PARITY_0
:
2811 case ALGORITHM_PARITY_N
:
2812 pd_idx
= data_disks
;
2813 qd_idx
= data_disks
+ 1;
2816 case ALGORITHM_ROTATING_ZERO_RESTART
:
2817 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2818 * of blocks for computing Q is different.
2820 pd_idx
= sector_div(stripe2
, raid_disks
);
2821 qd_idx
= pd_idx
+ 1;
2822 if (pd_idx
== raid_disks
-1) {
2823 (*dd_idx
)++; /* Q D D D P */
2825 } else if (*dd_idx
>= pd_idx
)
2826 (*dd_idx
) += 2; /* D D P Q D */
2830 case ALGORITHM_ROTATING_N_RESTART
:
2831 /* Same a left_asymmetric, by first stripe is
2832 * D D D P Q rather than
2836 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2837 qd_idx
= pd_idx
+ 1;
2838 if (pd_idx
== raid_disks
-1) {
2839 (*dd_idx
)++; /* Q D D D P */
2841 } else if (*dd_idx
>= pd_idx
)
2842 (*dd_idx
) += 2; /* D D P Q D */
2846 case ALGORITHM_ROTATING_N_CONTINUE
:
2847 /* Same as left_symmetric but Q is before P */
2848 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2849 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2850 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2854 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2855 /* RAID5 left_asymmetric, with Q on last device */
2856 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2857 if (*dd_idx
>= pd_idx
)
2859 qd_idx
= raid_disks
- 1;
2862 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2863 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2864 if (*dd_idx
>= pd_idx
)
2866 qd_idx
= raid_disks
- 1;
2869 case ALGORITHM_LEFT_SYMMETRIC_6
:
2870 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2871 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2872 qd_idx
= raid_disks
- 1;
2875 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2876 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2877 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2878 qd_idx
= raid_disks
- 1;
2881 case ALGORITHM_PARITY_0_6
:
2884 qd_idx
= raid_disks
- 1;
2894 sh
->pd_idx
= pd_idx
;
2895 sh
->qd_idx
= qd_idx
;
2896 sh
->ddf_layout
= ddf_layout
;
2899 * Finally, compute the new sector number
2901 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2905 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2907 struct r5conf
*conf
= sh
->raid_conf
;
2908 int raid_disks
= sh
->disks
;
2909 int data_disks
= raid_disks
- conf
->max_degraded
;
2910 sector_t new_sector
= sh
->sector
, check
;
2911 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2912 : conf
->chunk_sectors
;
2913 int algorithm
= previous
? conf
->prev_algo
2917 sector_t chunk_number
;
2918 int dummy1
, dd_idx
= i
;
2920 struct stripe_head sh2
;
2922 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2923 stripe
= new_sector
;
2925 if (i
== sh
->pd_idx
)
2927 switch(conf
->level
) {
2930 switch (algorithm
) {
2931 case ALGORITHM_LEFT_ASYMMETRIC
:
2932 case ALGORITHM_RIGHT_ASYMMETRIC
:
2936 case ALGORITHM_LEFT_SYMMETRIC
:
2937 case ALGORITHM_RIGHT_SYMMETRIC
:
2940 i
-= (sh
->pd_idx
+ 1);
2942 case ALGORITHM_PARITY_0
:
2945 case ALGORITHM_PARITY_N
:
2952 if (i
== sh
->qd_idx
)
2953 return 0; /* It is the Q disk */
2954 switch (algorithm
) {
2955 case ALGORITHM_LEFT_ASYMMETRIC
:
2956 case ALGORITHM_RIGHT_ASYMMETRIC
:
2957 case ALGORITHM_ROTATING_ZERO_RESTART
:
2958 case ALGORITHM_ROTATING_N_RESTART
:
2959 if (sh
->pd_idx
== raid_disks
-1)
2960 i
--; /* Q D D D P */
2961 else if (i
> sh
->pd_idx
)
2962 i
-= 2; /* D D P Q D */
2964 case ALGORITHM_LEFT_SYMMETRIC
:
2965 case ALGORITHM_RIGHT_SYMMETRIC
:
2966 if (sh
->pd_idx
== raid_disks
-1)
2967 i
--; /* Q D D D P */
2972 i
-= (sh
->pd_idx
+ 2);
2975 case ALGORITHM_PARITY_0
:
2978 case ALGORITHM_PARITY_N
:
2980 case ALGORITHM_ROTATING_N_CONTINUE
:
2981 /* Like left_symmetric, but P is before Q */
2982 if (sh
->pd_idx
== 0)
2983 i
--; /* P D D D Q */
2988 i
-= (sh
->pd_idx
+ 1);
2991 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2992 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2996 case ALGORITHM_LEFT_SYMMETRIC_6
:
2997 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2999 i
+= data_disks
+ 1;
3000 i
-= (sh
->pd_idx
+ 1);
3002 case ALGORITHM_PARITY_0_6
:
3011 chunk_number
= stripe
* data_disks
+ i
;
3012 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
3014 check
= raid5_compute_sector(conf
, r_sector
,
3015 previous
, &dummy1
, &sh2
);
3016 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
3017 || sh2
.qd_idx
!= sh
->qd_idx
) {
3018 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019 mdname(conf
->mddev
));
3026 * There are cases where we want handle_stripe_dirtying() and
3027 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3029 * This function checks whether we want to delay the towrite. Specifically,
3030 * we delay the towrite when:
3032 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3033 * stripe has data in journal (for other devices).
3035 * In this case, when reading data for the non-overwrite dev, it is
3036 * necessary to handle complex rmw of write back cache (prexor with
3037 * orig_page, and xor with page). To keep read path simple, we would
3038 * like to flush data in journal to RAID disks first, so complex rmw
3039 * is handled in the write patch (handle_stripe_dirtying).
3041 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3043 * It is important to be able to flush all stripes in raid5-cache.
3044 * Therefore, we need reserve some space on the journal device for
3045 * these flushes. If flush operation includes pending writes to the
3046 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047 * for the flush out. If we exclude these pending writes from flush
3048 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3049 * Therefore, excluding pending writes in these cases enables more
3050 * efficient use of the journal device.
3052 * Note: To make sure the stripe makes progress, we only delay
3053 * towrite for stripes with data already in journal (injournal > 0).
3054 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055 * no_space_stripes list.
3057 * 3. during journal failure
3058 * In journal failure, we try to flush all cached data to raid disks
3059 * based on data in stripe cache. The array is read-only to upper
3060 * layers, so we would skip all pending writes.
3063 static inline bool delay_towrite(struct r5conf
*conf
,
3065 struct stripe_head_state
*s
)
3068 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3069 !test_bit(R5_Insync
, &dev
->flags
) && s
->injournal
)
3072 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
3076 if (s
->log_failed
&& s
->injournal
)
3082 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3083 int rcw
, int expand
)
3085 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
3086 struct r5conf
*conf
= sh
->raid_conf
;
3087 int level
= conf
->level
;
3091 * In some cases, handle_stripe_dirtying initially decided to
3092 * run rmw and allocates extra page for prexor. However, rcw is
3093 * cheaper later on. We need to free the extra page now,
3094 * because we won't be able to do that in ops_complete_prexor().
3096 r5c_release_extra_page(sh
);
3098 for (i
= disks
; i
--; ) {
3099 struct r5dev
*dev
= &sh
->dev
[i
];
3101 if (dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) {
3102 set_bit(R5_LOCKED
, &dev
->flags
);
3103 set_bit(R5_Wantdrain
, &dev
->flags
);
3105 clear_bit(R5_UPTODATE
, &dev
->flags
);
3107 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
3108 set_bit(R5_LOCKED
, &dev
->flags
);
3112 /* if we are not expanding this is a proper write request, and
3113 * there will be bios with new data to be drained into the
3118 /* False alarm, nothing to do */
3120 sh
->reconstruct_state
= reconstruct_state_drain_run
;
3121 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
3123 sh
->reconstruct_state
= reconstruct_state_run
;
3125 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
3127 if (s
->locked
+ conf
->max_degraded
== disks
)
3128 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3129 atomic_inc(&conf
->pending_full_writes
);
3131 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
3132 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
3133 BUG_ON(level
== 6 &&
3134 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
3135 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
3137 for (i
= disks
; i
--; ) {
3138 struct r5dev
*dev
= &sh
->dev
[i
];
3139 if (i
== pd_idx
|| i
== qd_idx
)
3143 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3144 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3145 set_bit(R5_Wantdrain
, &dev
->flags
);
3146 set_bit(R5_LOCKED
, &dev
->flags
);
3147 clear_bit(R5_UPTODATE
, &dev
->flags
);
3149 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
3150 set_bit(R5_LOCKED
, &dev
->flags
);
3155 /* False alarm - nothing to do */
3157 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
3158 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
3159 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
3160 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
3163 /* keep the parity disk(s) locked while asynchronous operations
3166 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
3167 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3171 int qd_idx
= sh
->qd_idx
;
3172 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
3174 set_bit(R5_LOCKED
, &dev
->flags
);
3175 clear_bit(R5_UPTODATE
, &dev
->flags
);
3179 if (raid5_has_ppl(sh
->raid_conf
) && sh
->ppl_page
&&
3180 test_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
) &&
3181 !test_bit(STRIPE_FULL_WRITE
, &sh
->state
) &&
3182 test_bit(R5_Insync
, &sh
->dev
[pd_idx
].flags
))
3183 set_bit(STRIPE_OP_PARTIAL_PARITY
, &s
->ops_request
);
3185 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3186 __func__
, (unsigned long long)sh
->sector
,
3187 s
->locked
, s
->ops_request
);
3191 * Each stripe/dev can have one or more bion attached.
3192 * toread/towrite point to the first in a chain.
3193 * The bi_next chain must be in order.
3195 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
3196 int forwrite
, int previous
)
3199 struct r5conf
*conf
= sh
->raid_conf
;
3202 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3203 (unsigned long long)bi
->bi_iter
.bi_sector
,
3204 (unsigned long long)sh
->sector
);
3206 spin_lock_irq(&sh
->stripe_lock
);
3207 /* Don't allow new IO added to stripes in batch list */
3211 bip
= &sh
->dev
[dd_idx
].towrite
;
3215 bip
= &sh
->dev
[dd_idx
].toread
;
3216 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
3217 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
3219 bip
= & (*bip
)->bi_next
;
3221 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
3224 if (forwrite
&& raid5_has_ppl(conf
)) {
3226 * With PPL only writes to consecutive data chunks within a
3227 * stripe are allowed because for a single stripe_head we can
3228 * only have one PPL entry at a time, which describes one data
3229 * range. Not really an overlap, but wait_for_overlap can be
3230 * used to handle this.
3238 for (i
= 0; i
< sh
->disks
; i
++) {
3239 if (i
!= sh
->pd_idx
&&
3240 (i
== dd_idx
|| sh
->dev
[i
].towrite
)) {
3241 sector
= sh
->dev
[i
].sector
;
3242 if (count
== 0 || sector
< first
)
3250 if (first
+ conf
->chunk_sectors
* (count
- 1) != last
)
3254 if (!forwrite
|| previous
)
3255 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
3257 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
3261 bio_inc_remaining(bi
);
3262 md_write_inc(conf
->mddev
, bi
);
3265 /* check if page is covered */
3266 sector_t sector
= sh
->dev
[dd_idx
].sector
;
3267 for (bi
=sh
->dev
[dd_idx
].towrite
;
3268 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
3269 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3270 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3271 if (bio_end_sector(bi
) >= sector
)
3272 sector
= bio_end_sector(bi
);
3274 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3275 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3276 sh
->overwrite_disks
++;
3279 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3280 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3281 (unsigned long long)sh
->sector
, dd_idx
);
3283 if (conf
->mddev
->bitmap
&& firstwrite
) {
3284 /* Cannot hold spinlock over bitmap_startwrite,
3285 * but must ensure this isn't added to a batch until
3286 * we have added to the bitmap and set bm_seq.
3287 * So set STRIPE_BITMAP_PENDING to prevent
3289 * If multiple add_stripe_bio() calls race here they
3290 * much all set STRIPE_BITMAP_PENDING. So only the first one
3291 * to complete "bitmap_startwrite" gets to set
3292 * STRIPE_BIT_DELAY. This is important as once a stripe
3293 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3296 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3297 spin_unlock_irq(&sh
->stripe_lock
);
3298 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3300 spin_lock_irq(&sh
->stripe_lock
);
3301 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3302 if (!sh
->batch_head
) {
3303 sh
->bm_seq
= conf
->seq_flush
+1;
3304 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3307 spin_unlock_irq(&sh
->stripe_lock
);
3309 if (stripe_can_batch(sh
))
3310 stripe_add_to_batch_list(conf
, sh
);
3314 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3315 spin_unlock_irq(&sh
->stripe_lock
);
3319 static void end_reshape(struct r5conf
*conf
);
3321 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3322 struct stripe_head
*sh
)
3324 int sectors_per_chunk
=
3325 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3327 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3328 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3330 raid5_compute_sector(conf
,
3331 stripe
* (disks
- conf
->max_degraded
)
3332 *sectors_per_chunk
+ chunk_offset
,
3338 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3339 struct stripe_head_state
*s
, int disks
)
3342 BUG_ON(sh
->batch_head
);
3343 for (i
= disks
; i
--; ) {
3347 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3348 struct md_rdev
*rdev
;
3350 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3351 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
3352 !test_bit(Faulty
, &rdev
->flags
))
3353 atomic_inc(&rdev
->nr_pending
);
3358 if (!rdev_set_badblocks(
3362 md_error(conf
->mddev
, rdev
);
3363 rdev_dec_pending(rdev
, conf
->mddev
);
3366 spin_lock_irq(&sh
->stripe_lock
);
3367 /* fail all writes first */
3368 bi
= sh
->dev
[i
].towrite
;
3369 sh
->dev
[i
].towrite
= NULL
;
3370 sh
->overwrite_disks
= 0;
3371 spin_unlock_irq(&sh
->stripe_lock
);
3375 log_stripe_write_finished(sh
);
3377 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3378 wake_up(&conf
->wait_for_overlap
);
3380 while (bi
&& bi
->bi_iter
.bi_sector
<
3381 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3382 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3384 md_write_end(conf
->mddev
);
3389 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3390 STRIPE_SECTORS
, 0, 0);
3392 /* and fail all 'written' */
3393 bi
= sh
->dev
[i
].written
;
3394 sh
->dev
[i
].written
= NULL
;
3395 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3396 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3397 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3400 if (bi
) bitmap_end
= 1;
3401 while (bi
&& bi
->bi_iter
.bi_sector
<
3402 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3403 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3405 md_write_end(conf
->mddev
);
3410 /* fail any reads if this device is non-operational and
3411 * the data has not reached the cache yet.
3413 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3414 s
->failed
> conf
->max_degraded
&&
3415 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3416 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3417 spin_lock_irq(&sh
->stripe_lock
);
3418 bi
= sh
->dev
[i
].toread
;
3419 sh
->dev
[i
].toread
= NULL
;
3420 spin_unlock_irq(&sh
->stripe_lock
);
3421 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3422 wake_up(&conf
->wait_for_overlap
);
3425 while (bi
&& bi
->bi_iter
.bi_sector
<
3426 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3427 struct bio
*nextbi
=
3428 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3435 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3436 STRIPE_SECTORS
, 0, 0);
3437 /* If we were in the middle of a write the parity block might
3438 * still be locked - so just clear all R5_LOCKED flags
3440 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3445 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3446 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3447 md_wakeup_thread(conf
->mddev
->thread
);
3451 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3452 struct stripe_head_state
*s
)
3457 BUG_ON(sh
->batch_head
);
3458 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3459 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3460 wake_up(&conf
->wait_for_overlap
);
3463 /* There is nothing more to do for sync/check/repair.
3464 * Don't even need to abort as that is handled elsewhere
3465 * if needed, and not always wanted e.g. if there is a known
3467 * For recover/replace we need to record a bad block on all
3468 * non-sync devices, or abort the recovery
3470 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3471 /* During recovery devices cannot be removed, so
3472 * locking and refcounting of rdevs is not needed
3475 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3476 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3478 && !test_bit(Faulty
, &rdev
->flags
)
3479 && !test_bit(In_sync
, &rdev
->flags
)
3480 && !rdev_set_badblocks(rdev
, sh
->sector
,
3483 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3485 && !test_bit(Faulty
, &rdev
->flags
)
3486 && !test_bit(In_sync
, &rdev
->flags
)
3487 && !rdev_set_badblocks(rdev
, sh
->sector
,
3493 conf
->recovery_disabled
=
3494 conf
->mddev
->recovery_disabled
;
3496 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3499 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3501 struct md_rdev
*rdev
;
3505 rdev
= rcu_dereference(sh
->raid_conf
->disks
[disk_idx
].replacement
);
3507 && !test_bit(Faulty
, &rdev
->flags
)
3508 && !test_bit(In_sync
, &rdev
->flags
)
3509 && (rdev
->recovery_offset
<= sh
->sector
3510 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3516 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3517 int disk_idx
, int disks
)
3519 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3520 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3521 &sh
->dev
[s
->failed_num
[1]] };
3525 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3526 test_bit(R5_UPTODATE
, &dev
->flags
))
3527 /* No point reading this as we already have it or have
3528 * decided to get it.
3533 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3534 /* We need this block to directly satisfy a request */
3537 if (s
->syncing
|| s
->expanding
||
3538 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3539 /* When syncing, or expanding we read everything.
3540 * When replacing, we need the replaced block.
3544 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3545 (s
->failed
>= 2 && fdev
[1]->toread
))
3546 /* If we want to read from a failed device, then
3547 * we need to actually read every other device.
3551 /* Sometimes neither read-modify-write nor reconstruct-write
3552 * cycles can work. In those cases we read every block we
3553 * can. Then the parity-update is certain to have enough to
3555 * This can only be a problem when we need to write something,
3556 * and some device has failed. If either of those tests
3557 * fail we need look no further.
3559 if (!s
->failed
|| !s
->to_write
)
3562 if (test_bit(R5_Insync
, &dev
->flags
) &&
3563 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3564 /* Pre-reads at not permitted until after short delay
3565 * to gather multiple requests. However if this
3566 * device is no Insync, the block could only be computed
3567 * and there is no need to delay that.
3571 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3572 if (fdev
[i
]->towrite
&&
3573 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3574 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3575 /* If we have a partial write to a failed
3576 * device, then we will need to reconstruct
3577 * the content of that device, so all other
3578 * devices must be read.
3583 /* If we are forced to do a reconstruct-write, either because
3584 * the current RAID6 implementation only supports that, or
3585 * because parity cannot be trusted and we are currently
3586 * recovering it, there is extra need to be careful.
3587 * If one of the devices that we would need to read, because
3588 * it is not being overwritten (and maybe not written at all)
3589 * is missing/faulty, then we need to read everything we can.
3591 if (sh
->raid_conf
->level
!= 6 &&
3592 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3593 /* reconstruct-write isn't being forced */
3595 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3596 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3597 s
->failed_num
[i
] != sh
->qd_idx
&&
3598 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3599 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3606 /* fetch_block - checks the given member device to see if its data needs
3607 * to be read or computed to satisfy a request.
3609 * Returns 1 when no more member devices need to be checked, otherwise returns
3610 * 0 to tell the loop in handle_stripe_fill to continue
3612 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3613 int disk_idx
, int disks
)
3615 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3617 /* is the data in this block needed, and can we get it? */
3618 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3619 /* we would like to get this block, possibly by computing it,
3620 * otherwise read it if the backing disk is insync
3622 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3623 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3624 BUG_ON(sh
->batch_head
);
3627 * In the raid6 case if the only non-uptodate disk is P
3628 * then we already trusted P to compute the other failed
3629 * drives. It is safe to compute rather than re-read P.
3630 * In other cases we only compute blocks from failed
3631 * devices, otherwise check/repair might fail to detect
3632 * a real inconsistency.
3635 if ((s
->uptodate
== disks
- 1) &&
3636 ((sh
->qd_idx
>= 0 && sh
->pd_idx
== disk_idx
) ||
3637 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3638 disk_idx
== s
->failed_num
[1])))) {
3639 /* have disk failed, and we're requested to fetch it;
3642 pr_debug("Computing stripe %llu block %d\n",
3643 (unsigned long long)sh
->sector
, disk_idx
);
3644 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3645 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3646 set_bit(R5_Wantcompute
, &dev
->flags
);
3647 sh
->ops
.target
= disk_idx
;
3648 sh
->ops
.target2
= -1; /* no 2nd target */
3650 /* Careful: from this point on 'uptodate' is in the eye
3651 * of raid_run_ops which services 'compute' operations
3652 * before writes. R5_Wantcompute flags a block that will
3653 * be R5_UPTODATE by the time it is needed for a
3654 * subsequent operation.
3658 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3659 /* Computing 2-failure is *very* expensive; only
3660 * do it if failed >= 2
3663 for (other
= disks
; other
--; ) {
3664 if (other
== disk_idx
)
3666 if (!test_bit(R5_UPTODATE
,
3667 &sh
->dev
[other
].flags
))
3671 pr_debug("Computing stripe %llu blocks %d,%d\n",
3672 (unsigned long long)sh
->sector
,
3674 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3675 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3676 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3677 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3678 sh
->ops
.target
= disk_idx
;
3679 sh
->ops
.target2
= other
;
3683 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3684 set_bit(R5_LOCKED
, &dev
->flags
);
3685 set_bit(R5_Wantread
, &dev
->flags
);
3687 pr_debug("Reading block %d (sync=%d)\n",
3688 disk_idx
, s
->syncing
);
3696 * handle_stripe_fill - read or compute data to satisfy pending requests.
3698 static void handle_stripe_fill(struct stripe_head
*sh
,
3699 struct stripe_head_state
*s
,
3704 /* look for blocks to read/compute, skip this if a compute
3705 * is already in flight, or if the stripe contents are in the
3706 * midst of changing due to a write
3708 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3709 !sh
->reconstruct_state
) {
3712 * For degraded stripe with data in journal, do not handle
3713 * read requests yet, instead, flush the stripe to raid
3714 * disks first, this avoids handling complex rmw of write
3715 * back cache (prexor with orig_page, and then xor with
3716 * page) in the read path
3718 if (s
->injournal
&& s
->failed
) {
3719 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
3720 r5c_make_stripe_write_out(sh
);
3724 for (i
= disks
; i
--; )
3725 if (fetch_block(sh
, s
, i
, disks
))
3729 set_bit(STRIPE_HANDLE
, &sh
->state
);
3732 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3733 unsigned long handle_flags
);
3734 /* handle_stripe_clean_event
3735 * any written block on an uptodate or failed drive can be returned.
3736 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3737 * never LOCKED, so we don't need to test 'failed' directly.
3739 static void handle_stripe_clean_event(struct r5conf
*conf
,
3740 struct stripe_head
*sh
, int disks
)
3744 int discard_pending
= 0;
3745 struct stripe_head
*head_sh
= sh
;
3746 bool do_endio
= false;
3748 for (i
= disks
; i
--; )
3749 if (sh
->dev
[i
].written
) {
3751 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3752 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3753 test_bit(R5_Discard
, &dev
->flags
) ||
3754 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3755 /* We can return any write requests */
3756 struct bio
*wbi
, *wbi2
;
3757 pr_debug("Return write for disc %d\n", i
);
3758 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3759 clear_bit(R5_UPTODATE
, &dev
->flags
);
3760 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3761 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3766 dev
->page
= dev
->orig_page
;
3768 dev
->written
= NULL
;
3769 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3770 dev
->sector
+ STRIPE_SECTORS
) {
3771 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3772 md_write_end(conf
->mddev
);
3776 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3778 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3780 if (head_sh
->batch_head
) {
3781 sh
= list_first_entry(&sh
->batch_list
,
3784 if (sh
!= head_sh
) {
3791 } else if (test_bit(R5_Discard
, &dev
->flags
))
3792 discard_pending
= 1;
3795 log_stripe_write_finished(sh
);
3797 if (!discard_pending
&&
3798 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3800 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3801 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3802 if (sh
->qd_idx
>= 0) {
3803 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3804 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3806 /* now that discard is done we can proceed with any sync */
3807 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3809 * SCSI discard will change some bio fields and the stripe has
3810 * no updated data, so remove it from hash list and the stripe
3811 * will be reinitialized
3814 hash
= sh
->hash_lock_index
;
3815 spin_lock_irq(conf
->hash_locks
+ hash
);
3817 spin_unlock_irq(conf
->hash_locks
+ hash
);
3818 if (head_sh
->batch_head
) {
3819 sh
= list_first_entry(&sh
->batch_list
,
3820 struct stripe_head
, batch_list
);
3826 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3827 set_bit(STRIPE_HANDLE
, &sh
->state
);
3831 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3832 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3833 md_wakeup_thread(conf
->mddev
->thread
);
3835 if (head_sh
->batch_head
&& do_endio
)
3836 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3840 * For RMW in write back cache, we need extra page in prexor to store the
3841 * old data. This page is stored in dev->orig_page.
3843 * This function checks whether we have data for prexor. The exact logic
3845 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3847 static inline bool uptodate_for_rmw(struct r5dev
*dev
)
3849 return (test_bit(R5_UPTODATE
, &dev
->flags
)) &&
3850 (!test_bit(R5_InJournal
, &dev
->flags
) ||
3851 test_bit(R5_OrigPageUPTDODATE
, &dev
->flags
));
3854 static int handle_stripe_dirtying(struct r5conf
*conf
,
3855 struct stripe_head
*sh
,
3856 struct stripe_head_state
*s
,
3859 int rmw
= 0, rcw
= 0, i
;
3860 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3862 /* Check whether resync is now happening or should start.
3863 * If yes, then the array is dirty (after unclean shutdown or
3864 * initial creation), so parity in some stripes might be inconsistent.
3865 * In this case, we need to always do reconstruct-write, to ensure
3866 * that in case of drive failure or read-error correction, we
3867 * generate correct data from the parity.
3869 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3870 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3872 /* Calculate the real rcw later - for now make it
3873 * look like rcw is cheaper
3876 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3877 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3878 (unsigned long long)sh
->sector
);
3879 } else for (i
= disks
; i
--; ) {
3880 /* would I have to read this buffer for read_modify_write */
3881 struct r5dev
*dev
= &sh
->dev
[i
];
3882 if (((dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) ||
3883 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3884 test_bit(R5_InJournal
, &dev
->flags
)) &&
3885 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3886 !(uptodate_for_rmw(dev
) ||
3887 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3888 if (test_bit(R5_Insync
, &dev
->flags
))
3891 rmw
+= 2*disks
; /* cannot read it */
3893 /* Would I have to read this buffer for reconstruct_write */
3894 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3895 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3896 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3897 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3898 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3899 if (test_bit(R5_Insync
, &dev
->flags
))
3906 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3907 (unsigned long long)sh
->sector
, sh
->state
, rmw
, rcw
);
3908 set_bit(STRIPE_HANDLE
, &sh
->state
);
3909 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_PREFER_RMW
)) && rmw
> 0) {
3910 /* prefer read-modify-write, but need to get some data */
3911 if (conf
->mddev
->queue
)
3912 blk_add_trace_msg(conf
->mddev
->queue
,
3913 "raid5 rmw %llu %d",
3914 (unsigned long long)sh
->sector
, rmw
);
3915 for (i
= disks
; i
--; ) {
3916 struct r5dev
*dev
= &sh
->dev
[i
];
3917 if (test_bit(R5_InJournal
, &dev
->flags
) &&
3918 dev
->page
== dev
->orig_page
&&
3919 !test_bit(R5_LOCKED
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3920 /* alloc page for prexor */
3921 struct page
*p
= alloc_page(GFP_NOIO
);
3929 * alloc_page() failed, try use
3930 * disk_info->extra_page
3932 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE
,
3933 &conf
->cache_state
)) {
3934 r5c_use_extra_page(sh
);
3938 /* extra_page in use, add to delayed_list */
3939 set_bit(STRIPE_DELAYED
, &sh
->state
);
3940 s
->waiting_extra_page
= 1;
3945 for (i
= disks
; i
--; ) {
3946 struct r5dev
*dev
= &sh
->dev
[i
];
3947 if (((dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) ||
3948 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3949 test_bit(R5_InJournal
, &dev
->flags
)) &&
3950 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3951 !(uptodate_for_rmw(dev
) ||
3952 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3953 test_bit(R5_Insync
, &dev
->flags
)) {
3954 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3956 pr_debug("Read_old block %d for r-m-w\n",
3958 set_bit(R5_LOCKED
, &dev
->flags
);
3959 set_bit(R5_Wantread
, &dev
->flags
);
3962 set_bit(STRIPE_DELAYED
, &sh
->state
);
3963 set_bit(STRIPE_HANDLE
, &sh
->state
);
3968 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_PREFER_RMW
)) && rcw
> 0) {
3969 /* want reconstruct write, but need to get some data */
3972 for (i
= disks
; i
--; ) {
3973 struct r5dev
*dev
= &sh
->dev
[i
];
3974 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3975 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3976 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3977 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3978 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3980 if (test_bit(R5_Insync
, &dev
->flags
) &&
3981 test_bit(STRIPE_PREREAD_ACTIVE
,
3983 pr_debug("Read_old block "
3984 "%d for Reconstruct\n", i
);
3985 set_bit(R5_LOCKED
, &dev
->flags
);
3986 set_bit(R5_Wantread
, &dev
->flags
);
3990 set_bit(STRIPE_DELAYED
, &sh
->state
);
3991 set_bit(STRIPE_HANDLE
, &sh
->state
);
3995 if (rcw
&& conf
->mddev
->queue
)
3996 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
3997 (unsigned long long)sh
->sector
,
3998 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
4001 if (rcw
> disks
&& rmw
> disks
&&
4002 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4003 set_bit(STRIPE_DELAYED
, &sh
->state
);
4005 /* now if nothing is locked, and if we have enough data,
4006 * we can start a write request
4008 /* since handle_stripe can be called at any time we need to handle the
4009 * case where a compute block operation has been submitted and then a
4010 * subsequent call wants to start a write request. raid_run_ops only
4011 * handles the case where compute block and reconstruct are requested
4012 * simultaneously. If this is not the case then new writes need to be
4013 * held off until the compute completes.
4015 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
4016 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
4017 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
4018 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
4022 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
4023 struct stripe_head_state
*s
, int disks
)
4025 struct r5dev
*dev
= NULL
;
4027 BUG_ON(sh
->batch_head
);
4028 set_bit(STRIPE_HANDLE
, &sh
->state
);
4030 switch (sh
->check_state
) {
4031 case check_state_idle
:
4032 /* start a new check operation if there are no failures */
4033 if (s
->failed
== 0) {
4034 BUG_ON(s
->uptodate
!= disks
);
4035 sh
->check_state
= check_state_run
;
4036 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
4037 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
4041 dev
= &sh
->dev
[s
->failed_num
[0]];
4043 case check_state_compute_result
:
4044 sh
->check_state
= check_state_idle
;
4046 dev
= &sh
->dev
[sh
->pd_idx
];
4048 /* check that a write has not made the stripe insync */
4049 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
4052 /* either failed parity check, or recovery is happening */
4053 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
4054 BUG_ON(s
->uptodate
!= disks
);
4056 set_bit(R5_LOCKED
, &dev
->flags
);
4058 set_bit(R5_Wantwrite
, &dev
->flags
);
4060 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
4061 set_bit(STRIPE_INSYNC
, &sh
->state
);
4063 case check_state_run
:
4064 break; /* we will be called again upon completion */
4065 case check_state_check_result
:
4066 sh
->check_state
= check_state_idle
;
4068 /* if a failure occurred during the check operation, leave
4069 * STRIPE_INSYNC not set and let the stripe be handled again
4074 /* handle a successful check operation, if parity is correct
4075 * we are done. Otherwise update the mismatch count and repair
4076 * parity if !MD_RECOVERY_CHECK
4078 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
4079 /* parity is correct (on disc,
4080 * not in buffer any more)
4082 set_bit(STRIPE_INSYNC
, &sh
->state
);
4084 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
4085 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
)) {
4086 /* don't try to repair!! */
4087 set_bit(STRIPE_INSYNC
, &sh
->state
);
4088 pr_warn_ratelimited("%s: mismatch sector in range "
4089 "%llu-%llu\n", mdname(conf
->mddev
),
4090 (unsigned long long) sh
->sector
,
4091 (unsigned long long) sh
->sector
+
4094 sh
->check_state
= check_state_compute_run
;
4095 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
4096 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
4097 set_bit(R5_Wantcompute
,
4098 &sh
->dev
[sh
->pd_idx
].flags
);
4099 sh
->ops
.target
= sh
->pd_idx
;
4100 sh
->ops
.target2
= -1;
4105 case check_state_compute_run
:
4108 pr_err("%s: unknown check_state: %d sector: %llu\n",
4109 __func__
, sh
->check_state
,
4110 (unsigned long long) sh
->sector
);
4115 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
4116 struct stripe_head_state
*s
,
4119 int pd_idx
= sh
->pd_idx
;
4120 int qd_idx
= sh
->qd_idx
;
4123 BUG_ON(sh
->batch_head
);
4124 set_bit(STRIPE_HANDLE
, &sh
->state
);
4126 BUG_ON(s
->failed
> 2);
4128 /* Want to check and possibly repair P and Q.
4129 * However there could be one 'failed' device, in which
4130 * case we can only check one of them, possibly using the
4131 * other to generate missing data
4134 switch (sh
->check_state
) {
4135 case check_state_idle
:
4136 /* start a new check operation if there are < 2 failures */
4137 if (s
->failed
== s
->q_failed
) {
4138 /* The only possible failed device holds Q, so it
4139 * makes sense to check P (If anything else were failed,
4140 * we would have used P to recreate it).
4142 sh
->check_state
= check_state_run
;
4144 if (!s
->q_failed
&& s
->failed
< 2) {
4145 /* Q is not failed, and we didn't use it to generate
4146 * anything, so it makes sense to check it
4148 if (sh
->check_state
== check_state_run
)
4149 sh
->check_state
= check_state_run_pq
;
4151 sh
->check_state
= check_state_run_q
;
4154 /* discard potentially stale zero_sum_result */
4155 sh
->ops
.zero_sum_result
= 0;
4157 if (sh
->check_state
== check_state_run
) {
4158 /* async_xor_zero_sum destroys the contents of P */
4159 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
4162 if (sh
->check_state
>= check_state_run
&&
4163 sh
->check_state
<= check_state_run_pq
) {
4164 /* async_syndrome_zero_sum preserves P and Q, so
4165 * no need to mark them !uptodate here
4167 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
4171 /* we have 2-disk failure */
4172 BUG_ON(s
->failed
!= 2);
4174 case check_state_compute_result
:
4175 sh
->check_state
= check_state_idle
;
4177 /* check that a write has not made the stripe insync */
4178 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
4181 /* now write out any block on a failed drive,
4182 * or P or Q if they were recomputed
4184 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
4185 if (s
->failed
== 2) {
4186 dev
= &sh
->dev
[s
->failed_num
[1]];
4188 set_bit(R5_LOCKED
, &dev
->flags
);
4189 set_bit(R5_Wantwrite
, &dev
->flags
);
4191 if (s
->failed
>= 1) {
4192 dev
= &sh
->dev
[s
->failed_num
[0]];
4194 set_bit(R5_LOCKED
, &dev
->flags
);
4195 set_bit(R5_Wantwrite
, &dev
->flags
);
4197 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
4198 dev
= &sh
->dev
[pd_idx
];
4200 set_bit(R5_LOCKED
, &dev
->flags
);
4201 set_bit(R5_Wantwrite
, &dev
->flags
);
4203 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4204 dev
= &sh
->dev
[qd_idx
];
4206 set_bit(R5_LOCKED
, &dev
->flags
);
4207 set_bit(R5_Wantwrite
, &dev
->flags
);
4209 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
4211 set_bit(STRIPE_INSYNC
, &sh
->state
);
4213 case check_state_run
:
4214 case check_state_run_q
:
4215 case check_state_run_pq
:
4216 break; /* we will be called again upon completion */
4217 case check_state_check_result
:
4218 sh
->check_state
= check_state_idle
;
4220 /* handle a successful check operation, if parity is correct
4221 * we are done. Otherwise update the mismatch count and repair
4222 * parity if !MD_RECOVERY_CHECK
4224 if (sh
->ops
.zero_sum_result
== 0) {
4225 /* both parities are correct */
4227 set_bit(STRIPE_INSYNC
, &sh
->state
);
4229 /* in contrast to the raid5 case we can validate
4230 * parity, but still have a failure to write
4233 sh
->check_state
= check_state_compute_result
;
4234 /* Returning at this point means that we may go
4235 * off and bring p and/or q uptodate again so
4236 * we make sure to check zero_sum_result again
4237 * to verify if p or q need writeback
4241 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
4242 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
)) {
4243 /* don't try to repair!! */
4244 set_bit(STRIPE_INSYNC
, &sh
->state
);
4245 pr_warn_ratelimited("%s: mismatch sector in range "
4246 "%llu-%llu\n", mdname(conf
->mddev
),
4247 (unsigned long long) sh
->sector
,
4248 (unsigned long long) sh
->sector
+
4251 int *target
= &sh
->ops
.target
;
4253 sh
->ops
.target
= -1;
4254 sh
->ops
.target2
= -1;
4255 sh
->check_state
= check_state_compute_run
;
4256 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
4257 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
4258 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
4259 set_bit(R5_Wantcompute
,
4260 &sh
->dev
[pd_idx
].flags
);
4262 target
= &sh
->ops
.target2
;
4265 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4266 set_bit(R5_Wantcompute
,
4267 &sh
->dev
[qd_idx
].flags
);
4274 case check_state_compute_run
:
4277 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4278 __func__
, sh
->check_state
,
4279 (unsigned long long) sh
->sector
);
4284 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
4288 /* We have read all the blocks in this stripe and now we need to
4289 * copy some of them into a target stripe for expand.
4291 struct dma_async_tx_descriptor
*tx
= NULL
;
4292 BUG_ON(sh
->batch_head
);
4293 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4294 for (i
= 0; i
< sh
->disks
; i
++)
4295 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
4297 struct stripe_head
*sh2
;
4298 struct async_submit_ctl submit
;
4300 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
4301 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
4303 sh2
= raid5_get_active_stripe(conf
, s
, 0, 1, 1);
4305 /* so far only the early blocks of this stripe
4306 * have been requested. When later blocks
4307 * get requested, we will try again
4310 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
4311 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
4312 /* must have already done this block */
4313 raid5_release_stripe(sh2
);
4317 /* place all the copies on one channel */
4318 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
4319 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
4320 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
4323 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
4324 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
4325 for (j
= 0; j
< conf
->raid_disks
; j
++)
4326 if (j
!= sh2
->pd_idx
&&
4328 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
4330 if (j
== conf
->raid_disks
) {
4331 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
4332 set_bit(STRIPE_HANDLE
, &sh2
->state
);
4334 raid5_release_stripe(sh2
);
4337 /* done submitting copies, wait for them to complete */
4338 async_tx_quiesce(&tx
);
4342 * handle_stripe - do things to a stripe.
4344 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4345 * state of various bits to see what needs to be done.
4347 * return some read requests which now have data
4348 * return some write requests which are safely on storage
4349 * schedule a read on some buffers
4350 * schedule a write of some buffers
4351 * return confirmation of parity correctness
4355 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4357 struct r5conf
*conf
= sh
->raid_conf
;
4358 int disks
= sh
->disks
;
4361 int do_recovery
= 0;
4363 memset(s
, 0, sizeof(*s
));
4365 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4366 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4367 s
->failed_num
[0] = -1;
4368 s
->failed_num
[1] = -1;
4369 s
->log_failed
= r5l_log_disk_error(conf
);
4371 /* Now to look around and see what can be done */
4373 for (i
=disks
; i
--; ) {
4374 struct md_rdev
*rdev
;
4381 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4383 dev
->toread
, dev
->towrite
, dev
->written
);
4384 /* maybe we can reply to a read
4386 * new wantfill requests are only permitted while
4387 * ops_complete_biofill is guaranteed to be inactive
4389 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4390 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4391 set_bit(R5_Wantfill
, &dev
->flags
);
4393 /* now count some things */
4394 if (test_bit(R5_LOCKED
, &dev
->flags
))
4396 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4398 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4400 BUG_ON(s
->compute
> 2);
4403 if (test_bit(R5_Wantfill
, &dev
->flags
))
4405 else if (dev
->toread
)
4409 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4414 /* Prefer to use the replacement for reads, but only
4415 * if it is recovered enough and has no bad blocks.
4417 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4418 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4419 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4420 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4421 &first_bad
, &bad_sectors
))
4422 set_bit(R5_ReadRepl
, &dev
->flags
);
4424 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4425 set_bit(R5_NeedReplace
, &dev
->flags
);
4427 clear_bit(R5_NeedReplace
, &dev
->flags
);
4428 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4429 clear_bit(R5_ReadRepl
, &dev
->flags
);
4431 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4434 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4435 &first_bad
, &bad_sectors
);
4436 if (s
->blocked_rdev
== NULL
4437 && (test_bit(Blocked
, &rdev
->flags
)
4440 set_bit(BlockedBadBlocks
,
4442 s
->blocked_rdev
= rdev
;
4443 atomic_inc(&rdev
->nr_pending
);
4446 clear_bit(R5_Insync
, &dev
->flags
);
4450 /* also not in-sync */
4451 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4452 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4453 /* treat as in-sync, but with a read error
4454 * which we can now try to correct
4456 set_bit(R5_Insync
, &dev
->flags
);
4457 set_bit(R5_ReadError
, &dev
->flags
);
4459 } else if (test_bit(In_sync
, &rdev
->flags
))
4460 set_bit(R5_Insync
, &dev
->flags
);
4461 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4462 /* in sync if before recovery_offset */
4463 set_bit(R5_Insync
, &dev
->flags
);
4464 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4465 test_bit(R5_Expanded
, &dev
->flags
))
4466 /* If we've reshaped into here, we assume it is Insync.
4467 * We will shortly update recovery_offset to make
4470 set_bit(R5_Insync
, &dev
->flags
);
4472 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4473 /* This flag does not apply to '.replacement'
4474 * only to .rdev, so make sure to check that*/
4475 struct md_rdev
*rdev2
= rcu_dereference(
4476 conf
->disks
[i
].rdev
);
4478 clear_bit(R5_Insync
, &dev
->flags
);
4479 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4480 s
->handle_bad_blocks
= 1;
4481 atomic_inc(&rdev2
->nr_pending
);
4483 clear_bit(R5_WriteError
, &dev
->flags
);
4485 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4486 /* This flag does not apply to '.replacement'
4487 * only to .rdev, so make sure to check that*/
4488 struct md_rdev
*rdev2
= rcu_dereference(
4489 conf
->disks
[i
].rdev
);
4490 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4491 s
->handle_bad_blocks
= 1;
4492 atomic_inc(&rdev2
->nr_pending
);
4494 clear_bit(R5_MadeGood
, &dev
->flags
);
4496 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4497 struct md_rdev
*rdev2
= rcu_dereference(
4498 conf
->disks
[i
].replacement
);
4499 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4500 s
->handle_bad_blocks
= 1;
4501 atomic_inc(&rdev2
->nr_pending
);
4503 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4505 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4506 /* The ReadError flag will just be confusing now */
4507 clear_bit(R5_ReadError
, &dev
->flags
);
4508 clear_bit(R5_ReWrite
, &dev
->flags
);
4510 if (test_bit(R5_ReadError
, &dev
->flags
))
4511 clear_bit(R5_Insync
, &dev
->flags
);
4512 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4514 s
->failed_num
[s
->failed
] = i
;
4516 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4520 if (test_bit(R5_InJournal
, &dev
->flags
))
4522 if (test_bit(R5_InJournal
, &dev
->flags
) && dev
->written
)
4525 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4526 /* If there is a failed device being replaced,
4527 * we must be recovering.
4528 * else if we are after recovery_cp, we must be syncing
4529 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4530 * else we can only be replacing
4531 * sync and recovery both need to read all devices, and so
4532 * use the same flag.
4535 sh
->sector
>= conf
->mddev
->recovery_cp
||
4536 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4544 static int clear_batch_ready(struct stripe_head
*sh
)
4546 /* Return '1' if this is a member of batch, or
4547 * '0' if it is a lone stripe or a head which can now be
4550 struct stripe_head
*tmp
;
4551 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4552 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4553 spin_lock(&sh
->stripe_lock
);
4554 if (!sh
->batch_head
) {
4555 spin_unlock(&sh
->stripe_lock
);
4560 * this stripe could be added to a batch list before we check
4561 * BATCH_READY, skips it
4563 if (sh
->batch_head
!= sh
) {
4564 spin_unlock(&sh
->stripe_lock
);
4567 spin_lock(&sh
->batch_lock
);
4568 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4569 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4570 spin_unlock(&sh
->batch_lock
);
4571 spin_unlock(&sh
->stripe_lock
);
4574 * BATCH_READY is cleared, no new stripes can be added.
4575 * batch_list can be accessed without lock
4580 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4581 unsigned long handle_flags
)
4583 struct stripe_head
*sh
, *next
;
4587 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4589 list_del_init(&sh
->batch_list
);
4591 WARN_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4592 (1 << STRIPE_SYNCING
) |
4593 (1 << STRIPE_REPLACED
) |
4594 (1 << STRIPE_DELAYED
) |
4595 (1 << STRIPE_BIT_DELAY
) |
4596 (1 << STRIPE_FULL_WRITE
) |
4597 (1 << STRIPE_BIOFILL_RUN
) |
4598 (1 << STRIPE_COMPUTE_RUN
) |
4599 (1 << STRIPE_OPS_REQ_PENDING
) |
4600 (1 << STRIPE_DISCARD
) |
4601 (1 << STRIPE_BATCH_READY
) |
4602 (1 << STRIPE_BATCH_ERR
) |
4603 (1 << STRIPE_BITMAP_PENDING
)),
4604 "stripe state: %lx\n", sh
->state
);
4605 WARN_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4606 (1 << STRIPE_REPLACED
)),
4607 "head stripe state: %lx\n", head_sh
->state
);
4609 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4610 (1 << STRIPE_PREREAD_ACTIVE
) |
4611 (1 << STRIPE_DEGRADED
) |
4612 (1 << STRIPE_ON_UNPLUG_LIST
)),
4613 head_sh
->state
& (1 << STRIPE_INSYNC
));
4615 sh
->check_state
= head_sh
->check_state
;
4616 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4617 for (i
= 0; i
< sh
->disks
; i
++) {
4618 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4620 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4621 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4623 spin_lock_irq(&sh
->stripe_lock
);
4624 sh
->batch_head
= NULL
;
4625 spin_unlock_irq(&sh
->stripe_lock
);
4626 if (handle_flags
== 0 ||
4627 sh
->state
& handle_flags
)
4628 set_bit(STRIPE_HANDLE
, &sh
->state
);
4629 raid5_release_stripe(sh
);
4631 spin_lock_irq(&head_sh
->stripe_lock
);
4632 head_sh
->batch_head
= NULL
;
4633 spin_unlock_irq(&head_sh
->stripe_lock
);
4634 for (i
= 0; i
< head_sh
->disks
; i
++)
4635 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4637 if (head_sh
->state
& handle_flags
)
4638 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4641 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4644 static void handle_stripe(struct stripe_head
*sh
)
4646 struct stripe_head_state s
;
4647 struct r5conf
*conf
= sh
->raid_conf
;
4650 int disks
= sh
->disks
;
4651 struct r5dev
*pdev
, *qdev
;
4653 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4654 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4655 /* already being handled, ensure it gets handled
4656 * again when current action finishes */
4657 set_bit(STRIPE_HANDLE
, &sh
->state
);
4661 if (clear_batch_ready(sh
) ) {
4662 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4666 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4667 break_stripe_batch_list(sh
, 0);
4669 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4670 spin_lock(&sh
->stripe_lock
);
4672 * Cannot process 'sync' concurrently with 'discard'.
4673 * Flush data in r5cache before 'sync'.
4675 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) &&
4676 !test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
) &&
4677 !test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4678 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4679 set_bit(STRIPE_SYNCING
, &sh
->state
);
4680 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4681 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4683 spin_unlock(&sh
->stripe_lock
);
4685 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4687 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4688 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4689 (unsigned long long)sh
->sector
, sh
->state
,
4690 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4691 sh
->check_state
, sh
->reconstruct_state
);
4693 analyse_stripe(sh
, &s
);
4695 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4698 if (s
.handle_bad_blocks
||
4699 test_bit(MD_SB_CHANGE_PENDING
, &conf
->mddev
->sb_flags
)) {
4700 set_bit(STRIPE_HANDLE
, &sh
->state
);
4704 if (unlikely(s
.blocked_rdev
)) {
4705 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4706 s
.replacing
|| s
.to_write
|| s
.written
) {
4707 set_bit(STRIPE_HANDLE
, &sh
->state
);
4710 /* There is nothing for the blocked_rdev to block */
4711 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4712 s
.blocked_rdev
= NULL
;
4715 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4716 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4717 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4720 pr_debug("locked=%d uptodate=%d to_read=%d"
4721 " to_write=%d failed=%d failed_num=%d,%d\n",
4722 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4723 s
.failed_num
[0], s
.failed_num
[1]);
4725 * check if the array has lost more than max_degraded devices and,
4726 * if so, some requests might need to be failed.
4728 * When journal device failed (log_failed), we will only process
4729 * the stripe if there is data need write to raid disks
4731 if (s
.failed
> conf
->max_degraded
||
4732 (s
.log_failed
&& s
.injournal
== 0)) {
4733 sh
->check_state
= 0;
4734 sh
->reconstruct_state
= 0;
4735 break_stripe_batch_list(sh
, 0);
4736 if (s
.to_read
+s
.to_write
+s
.written
)
4737 handle_failed_stripe(conf
, sh
, &s
, disks
);
4738 if (s
.syncing
+ s
.replacing
)
4739 handle_failed_sync(conf
, sh
, &s
);
4742 /* Now we check to see if any write operations have recently
4746 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4748 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4749 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4750 sh
->reconstruct_state
= reconstruct_state_idle
;
4752 /* All the 'written' buffers and the parity block are ready to
4753 * be written back to disk
4755 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4756 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4757 BUG_ON(sh
->qd_idx
>= 0 &&
4758 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4759 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4760 for (i
= disks
; i
--; ) {
4761 struct r5dev
*dev
= &sh
->dev
[i
];
4762 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4763 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4764 dev
->written
|| test_bit(R5_InJournal
,
4766 pr_debug("Writing block %d\n", i
);
4767 set_bit(R5_Wantwrite
, &dev
->flags
);
4772 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4773 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4775 set_bit(STRIPE_INSYNC
, &sh
->state
);
4778 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4779 s
.dec_preread_active
= 1;
4783 * might be able to return some write requests if the parity blocks
4784 * are safe, or on a failed drive
4786 pdev
= &sh
->dev
[sh
->pd_idx
];
4787 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4788 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4789 qdev
= &sh
->dev
[sh
->qd_idx
];
4790 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4791 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4795 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4796 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4797 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4798 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4799 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4800 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4801 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4802 test_bit(R5_Discard
, &qdev
->flags
))))))
4803 handle_stripe_clean_event(conf
, sh
, disks
);
4806 r5c_handle_cached_data_endio(conf
, sh
, disks
);
4807 log_stripe_write_finished(sh
);
4809 /* Now we might consider reading some blocks, either to check/generate
4810 * parity, or to satisfy requests
4811 * or to load a block that is being partially written.
4813 if (s
.to_read
|| s
.non_overwrite
4814 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4815 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4818 handle_stripe_fill(sh
, &s
, disks
);
4821 * When the stripe finishes full journal write cycle (write to journal
4822 * and raid disk), this is the clean up procedure so it is ready for
4825 r5c_finish_stripe_write_out(conf
, sh
, &s
);
4828 * Now to consider new write requests, cache write back and what else,
4829 * if anything should be read. We do not handle new writes when:
4830 * 1/ A 'write' operation (copy+xor) is already in flight.
4831 * 2/ A 'check' operation is in flight, as it may clobber the parity
4833 * 3/ A r5c cache log write is in flight.
4836 if (!sh
->reconstruct_state
&& !sh
->check_state
&& !sh
->log_io
) {
4837 if (!r5c_is_writeback(conf
->log
)) {
4839 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4840 } else { /* write back cache */
4843 /* First, try handle writes in caching phase */
4845 ret
= r5c_try_caching_write(conf
, sh
, &s
,
4848 * If caching phase failed: ret == -EAGAIN
4850 * stripe under reclaim: !caching && injournal
4852 * fall back to handle_stripe_dirtying()
4854 if (ret
== -EAGAIN
||
4855 /* stripe under reclaim: !caching && injournal */
4856 (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
4858 ret
= handle_stripe_dirtying(conf
, sh
, &s
,
4866 /* maybe we need to check and possibly fix the parity for this stripe
4867 * Any reads will already have been scheduled, so we just see if enough
4868 * data is available. The parity check is held off while parity
4869 * dependent operations are in flight.
4871 if (sh
->check_state
||
4872 (s
.syncing
&& s
.locked
== 0 &&
4873 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4874 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4875 if (conf
->level
== 6)
4876 handle_parity_checks6(conf
, sh
, &s
, disks
);
4878 handle_parity_checks5(conf
, sh
, &s
, disks
);
4881 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4882 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4883 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4884 /* Write out to replacement devices where possible */
4885 for (i
= 0; i
< conf
->raid_disks
; i
++)
4886 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4887 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4888 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4889 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4893 set_bit(STRIPE_INSYNC
, &sh
->state
);
4894 set_bit(STRIPE_REPLACED
, &sh
->state
);
4896 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4897 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4898 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4899 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4900 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4901 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4902 wake_up(&conf
->wait_for_overlap
);
4905 /* If the failed drives are just a ReadError, then we might need
4906 * to progress the repair/check process
4908 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4909 for (i
= 0; i
< s
.failed
; i
++) {
4910 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4911 if (test_bit(R5_ReadError
, &dev
->flags
)
4912 && !test_bit(R5_LOCKED
, &dev
->flags
)
4913 && test_bit(R5_UPTODATE
, &dev
->flags
)
4915 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4916 set_bit(R5_Wantwrite
, &dev
->flags
);
4917 set_bit(R5_ReWrite
, &dev
->flags
);
4918 set_bit(R5_LOCKED
, &dev
->flags
);
4921 /* let's read it back */
4922 set_bit(R5_Wantread
, &dev
->flags
);
4923 set_bit(R5_LOCKED
, &dev
->flags
);
4929 /* Finish reconstruct operations initiated by the expansion process */
4930 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4931 struct stripe_head
*sh_src
4932 = raid5_get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4933 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4934 /* sh cannot be written until sh_src has been read.
4935 * so arrange for sh to be delayed a little
4937 set_bit(STRIPE_DELAYED
, &sh
->state
);
4938 set_bit(STRIPE_HANDLE
, &sh
->state
);
4939 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4941 atomic_inc(&conf
->preread_active_stripes
);
4942 raid5_release_stripe(sh_src
);
4946 raid5_release_stripe(sh_src
);
4948 sh
->reconstruct_state
= reconstruct_state_idle
;
4949 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4950 for (i
= conf
->raid_disks
; i
--; ) {
4951 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4952 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4957 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4958 !sh
->reconstruct_state
) {
4959 /* Need to write out all blocks after computing parity */
4960 sh
->disks
= conf
->raid_disks
;
4961 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4962 schedule_reconstruction(sh
, &s
, 1, 1);
4963 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4964 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4965 atomic_dec(&conf
->reshape_stripes
);
4966 wake_up(&conf
->wait_for_overlap
);
4967 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4970 if (s
.expanding
&& s
.locked
== 0 &&
4971 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4972 handle_stripe_expansion(conf
, sh
);
4975 /* wait for this device to become unblocked */
4976 if (unlikely(s
.blocked_rdev
)) {
4977 if (conf
->mddev
->external
)
4978 md_wait_for_blocked_rdev(s
.blocked_rdev
,
4981 /* Internal metadata will immediately
4982 * be written by raid5d, so we don't
4983 * need to wait here.
4985 rdev_dec_pending(s
.blocked_rdev
,
4989 if (s
.handle_bad_blocks
)
4990 for (i
= disks
; i
--; ) {
4991 struct md_rdev
*rdev
;
4992 struct r5dev
*dev
= &sh
->dev
[i
];
4993 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
4994 /* We own a safe reference to the rdev */
4995 rdev
= conf
->disks
[i
].rdev
;
4996 if (!rdev_set_badblocks(rdev
, sh
->sector
,
4998 md_error(conf
->mddev
, rdev
);
4999 rdev_dec_pending(rdev
, conf
->mddev
);
5001 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
5002 rdev
= conf
->disks
[i
].rdev
;
5003 rdev_clear_badblocks(rdev
, sh
->sector
,
5005 rdev_dec_pending(rdev
, conf
->mddev
);
5007 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
5008 rdev
= conf
->disks
[i
].replacement
;
5010 /* rdev have been moved down */
5011 rdev
= conf
->disks
[i
].rdev
;
5012 rdev_clear_badblocks(rdev
, sh
->sector
,
5014 rdev_dec_pending(rdev
, conf
->mddev
);
5019 raid_run_ops(sh
, s
.ops_request
);
5023 if (s
.dec_preread_active
) {
5024 /* We delay this until after ops_run_io so that if make_request
5025 * is waiting on a flush, it won't continue until the writes
5026 * have actually been submitted.
5028 atomic_dec(&conf
->preread_active_stripes
);
5029 if (atomic_read(&conf
->preread_active_stripes
) <
5031 md_wakeup_thread(conf
->mddev
->thread
);
5034 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
5037 static void raid5_activate_delayed(struct r5conf
*conf
)
5039 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
5040 while (!list_empty(&conf
->delayed_list
)) {
5041 struct list_head
*l
= conf
->delayed_list
.next
;
5042 struct stripe_head
*sh
;
5043 sh
= list_entry(l
, struct stripe_head
, lru
);
5045 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5046 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5047 atomic_inc(&conf
->preread_active_stripes
);
5048 list_add_tail(&sh
->lru
, &conf
->hold_list
);
5049 raid5_wakeup_stripe_thread(sh
);
5054 static void activate_bit_delay(struct r5conf
*conf
,
5055 struct list_head
*temp_inactive_list
)
5057 /* device_lock is held */
5058 struct list_head head
;
5059 list_add(&head
, &conf
->bitmap_list
);
5060 list_del_init(&conf
->bitmap_list
);
5061 while (!list_empty(&head
)) {
5062 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
5064 list_del_init(&sh
->lru
);
5065 atomic_inc(&sh
->count
);
5066 hash
= sh
->hash_lock_index
;
5067 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
5071 static int raid5_congested(struct mddev
*mddev
, int bits
)
5073 struct r5conf
*conf
= mddev
->private;
5075 /* No difference between reads and writes. Just check
5076 * how busy the stripe_cache is
5079 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
5082 /* Also checks whether there is pressure on r5cache log space */
5083 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
5087 if (atomic_read(&conf
->empty_inactive_list_nr
))
5093 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
5095 struct r5conf
*conf
= mddev
->private;
5096 sector_t sector
= bio
->bi_iter
.bi_sector
;
5097 unsigned int chunk_sectors
;
5098 unsigned int bio_sectors
= bio_sectors(bio
);
5100 WARN_ON_ONCE(bio
->bi_partno
);
5102 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5103 return chunk_sectors
>=
5104 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
5108 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5109 * later sampled by raid5d.
5111 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
5113 unsigned long flags
;
5115 spin_lock_irqsave(&conf
->device_lock
, flags
);
5117 bi
->bi_next
= conf
->retry_read_aligned_list
;
5118 conf
->retry_read_aligned_list
= bi
;
5120 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5121 md_wakeup_thread(conf
->mddev
->thread
);
5124 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
,
5125 unsigned int *offset
)
5129 bi
= conf
->retry_read_aligned
;
5131 *offset
= conf
->retry_read_offset
;
5132 conf
->retry_read_aligned
= NULL
;
5135 bi
= conf
->retry_read_aligned_list
;
5137 conf
->retry_read_aligned_list
= bi
->bi_next
;
5146 * The "raid5_align_endio" should check if the read succeeded and if it
5147 * did, call bio_endio on the original bio (having bio_put the new bio
5149 * If the read failed..
5151 static void raid5_align_endio(struct bio
*bi
)
5153 struct bio
* raid_bi
= bi
->bi_private
;
5154 struct mddev
*mddev
;
5155 struct r5conf
*conf
;
5156 struct md_rdev
*rdev
;
5157 blk_status_t error
= bi
->bi_status
;
5161 rdev
= (void*)raid_bi
->bi_next
;
5162 raid_bi
->bi_next
= NULL
;
5163 mddev
= rdev
->mddev
;
5164 conf
= mddev
->private;
5166 rdev_dec_pending(rdev
, conf
->mddev
);
5170 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5171 wake_up(&conf
->wait_for_quiescent
);
5175 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5177 add_bio_to_retry(raid_bi
, conf
);
5180 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
5182 struct r5conf
*conf
= mddev
->private;
5184 struct bio
* align_bi
;
5185 struct md_rdev
*rdev
;
5186 sector_t end_sector
;
5188 if (!in_chunk_boundary(mddev
, raid_bio
)) {
5189 pr_debug("%s: non aligned\n", __func__
);
5193 * use bio_clone_fast to make a copy of the bio
5195 align_bi
= bio_clone_fast(raid_bio
, GFP_NOIO
, mddev
->bio_set
);
5199 * set bi_end_io to a new function, and set bi_private to the
5202 align_bi
->bi_end_io
= raid5_align_endio
;
5203 align_bi
->bi_private
= raid_bio
;
5207 align_bi
->bi_iter
.bi_sector
=
5208 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
5211 end_sector
= bio_end_sector(align_bi
);
5213 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
5214 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
5215 rdev
->recovery_offset
< end_sector
) {
5216 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
5218 (test_bit(Faulty
, &rdev
->flags
) ||
5219 !(test_bit(In_sync
, &rdev
->flags
) ||
5220 rdev
->recovery_offset
>= end_sector
)))
5224 if (r5c_big_stripe_cached(conf
, align_bi
->bi_iter
.bi_sector
)) {
5234 atomic_inc(&rdev
->nr_pending
);
5236 raid_bio
->bi_next
= (void*)rdev
;
5237 bio_set_dev(align_bi
, rdev
->bdev
);
5238 bio_clear_flag(align_bi
, BIO_SEG_VALID
);
5240 if (is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
5241 bio_sectors(align_bi
),
5242 &first_bad
, &bad_sectors
)) {
5244 rdev_dec_pending(rdev
, mddev
);
5248 /* No reshape active, so we can trust rdev->data_offset */
5249 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
5251 spin_lock_irq(&conf
->device_lock
);
5252 wait_event_lock_irq(conf
->wait_for_quiescent
,
5255 atomic_inc(&conf
->active_aligned_reads
);
5256 spin_unlock_irq(&conf
->device_lock
);
5259 trace_block_bio_remap(align_bi
->bi_disk
->queue
,
5260 align_bi
, disk_devt(mddev
->gendisk
),
5261 raid_bio
->bi_iter
.bi_sector
);
5262 generic_make_request(align_bi
);
5271 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
5274 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
5275 unsigned chunk_sects
= mddev
->chunk_sectors
;
5276 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
5278 if (sectors
< bio_sectors(raid_bio
)) {
5279 struct r5conf
*conf
= mddev
->private;
5280 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, conf
->bio_split
);
5281 bio_chain(split
, raid_bio
);
5282 generic_make_request(raid_bio
);
5286 if (!raid5_read_one_chunk(mddev
, raid_bio
))
5292 /* __get_priority_stripe - get the next stripe to process
5294 * Full stripe writes are allowed to pass preread active stripes up until
5295 * the bypass_threshold is exceeded. In general the bypass_count
5296 * increments when the handle_list is handled before the hold_list; however, it
5297 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5298 * stripe with in flight i/o. The bypass_count will be reset when the
5299 * head of the hold_list has changed, i.e. the head was promoted to the
5302 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
5304 struct stripe_head
*sh
, *tmp
;
5305 struct list_head
*handle_list
= NULL
;
5306 struct r5worker_group
*wg
;
5307 bool second_try
= !r5c_is_writeback(conf
->log
) &&
5308 !r5l_log_disk_error(conf
);
5309 bool try_loprio
= test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
) ||
5310 r5l_log_disk_error(conf
);
5315 if (conf
->worker_cnt_per_group
== 0) {
5316 handle_list
= try_loprio
? &conf
->loprio_list
:
5318 } else if (group
!= ANY_GROUP
) {
5319 handle_list
= try_loprio
? &conf
->worker_groups
[group
].loprio_list
:
5320 &conf
->worker_groups
[group
].handle_list
;
5321 wg
= &conf
->worker_groups
[group
];
5324 for (i
= 0; i
< conf
->group_cnt
; i
++) {
5325 handle_list
= try_loprio
? &conf
->worker_groups
[i
].loprio_list
:
5326 &conf
->worker_groups
[i
].handle_list
;
5327 wg
= &conf
->worker_groups
[i
];
5328 if (!list_empty(handle_list
))
5333 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5335 list_empty(handle_list
) ? "empty" : "busy",
5336 list_empty(&conf
->hold_list
) ? "empty" : "busy",
5337 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
5339 if (!list_empty(handle_list
)) {
5340 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
5342 if (list_empty(&conf
->hold_list
))
5343 conf
->bypass_count
= 0;
5344 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
5345 if (conf
->hold_list
.next
== conf
->last_hold
)
5346 conf
->bypass_count
++;
5348 conf
->last_hold
= conf
->hold_list
.next
;
5349 conf
->bypass_count
-= conf
->bypass_threshold
;
5350 if (conf
->bypass_count
< 0)
5351 conf
->bypass_count
= 0;
5354 } else if (!list_empty(&conf
->hold_list
) &&
5355 ((conf
->bypass_threshold
&&
5356 conf
->bypass_count
> conf
->bypass_threshold
) ||
5357 atomic_read(&conf
->pending_full_writes
) == 0)) {
5359 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
5360 if (conf
->worker_cnt_per_group
== 0 ||
5361 group
== ANY_GROUP
||
5362 !cpu_online(tmp
->cpu
) ||
5363 cpu_to_group(tmp
->cpu
) == group
) {
5370 conf
->bypass_count
-= conf
->bypass_threshold
;
5371 if (conf
->bypass_count
< 0)
5372 conf
->bypass_count
= 0;
5381 try_loprio
= !try_loprio
;
5389 list_del_init(&sh
->lru
);
5390 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
5394 struct raid5_plug_cb
{
5395 struct blk_plug_cb cb
;
5396 struct list_head list
;
5397 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
5400 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
5402 struct raid5_plug_cb
*cb
= container_of(
5403 blk_cb
, struct raid5_plug_cb
, cb
);
5404 struct stripe_head
*sh
;
5405 struct mddev
*mddev
= cb
->cb
.data
;
5406 struct r5conf
*conf
= mddev
->private;
5410 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
5411 spin_lock_irq(&conf
->device_lock
);
5412 while (!list_empty(&cb
->list
)) {
5413 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
5414 list_del_init(&sh
->lru
);
5416 * avoid race release_stripe_plug() sees
5417 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5418 * is still in our list
5420 smp_mb__before_atomic();
5421 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5423 * STRIPE_ON_RELEASE_LIST could be set here. In that
5424 * case, the count is always > 1 here
5426 hash
= sh
->hash_lock_index
;
5427 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5430 spin_unlock_irq(&conf
->device_lock
);
5432 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5433 NR_STRIPE_HASH_LOCKS
);
5435 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5439 static void release_stripe_plug(struct mddev
*mddev
,
5440 struct stripe_head
*sh
)
5442 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5443 raid5_unplug
, mddev
,
5444 sizeof(struct raid5_plug_cb
));
5445 struct raid5_plug_cb
*cb
;
5448 raid5_release_stripe(sh
);
5452 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5454 if (cb
->list
.next
== NULL
) {
5456 INIT_LIST_HEAD(&cb
->list
);
5457 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5458 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5461 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5462 list_add_tail(&sh
->lru
, &cb
->list
);
5464 raid5_release_stripe(sh
);
5467 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5469 struct r5conf
*conf
= mddev
->private;
5470 sector_t logical_sector
, last_sector
;
5471 struct stripe_head
*sh
;
5474 if (mddev
->reshape_position
!= MaxSector
)
5475 /* Skip discard while reshape is happening */
5478 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5479 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
5483 stripe_sectors
= conf
->chunk_sectors
*
5484 (conf
->raid_disks
- conf
->max_degraded
);
5485 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5487 sector_div(last_sector
, stripe_sectors
);
5489 logical_sector
*= conf
->chunk_sectors
;
5490 last_sector
*= conf
->chunk_sectors
;
5492 for (; logical_sector
< last_sector
;
5493 logical_sector
+= STRIPE_SECTORS
) {
5497 sh
= raid5_get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5498 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5499 TASK_UNINTERRUPTIBLE
);
5500 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5501 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5502 raid5_release_stripe(sh
);
5506 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5507 spin_lock_irq(&sh
->stripe_lock
);
5508 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5509 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5511 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5512 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5513 spin_unlock_irq(&sh
->stripe_lock
);
5514 raid5_release_stripe(sh
);
5519 set_bit(STRIPE_DISCARD
, &sh
->state
);
5520 finish_wait(&conf
->wait_for_overlap
, &w
);
5521 sh
->overwrite_disks
= 0;
5522 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5523 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5525 sh
->dev
[d
].towrite
= bi
;
5526 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5527 bio_inc_remaining(bi
);
5528 md_write_inc(mddev
, bi
);
5529 sh
->overwrite_disks
++;
5531 spin_unlock_irq(&sh
->stripe_lock
);
5532 if (conf
->mddev
->bitmap
) {
5534 d
< conf
->raid_disks
- conf
->max_degraded
;
5536 bitmap_startwrite(mddev
->bitmap
,
5540 sh
->bm_seq
= conf
->seq_flush
+ 1;
5541 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5544 set_bit(STRIPE_HANDLE
, &sh
->state
);
5545 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5546 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5547 atomic_inc(&conf
->preread_active_stripes
);
5548 release_stripe_plug(mddev
, sh
);
5554 static bool raid5_make_request(struct mddev
*mddev
, struct bio
* bi
)
5556 struct r5conf
*conf
= mddev
->private;
5558 sector_t new_sector
;
5559 sector_t logical_sector
, last_sector
;
5560 struct stripe_head
*sh
;
5561 const int rw
= bio_data_dir(bi
);
5564 bool do_flush
= false;
5566 if (unlikely(bi
->bi_opf
& REQ_PREFLUSH
)) {
5567 int ret
= log_handle_flush_request(conf
, bi
);
5571 if (ret
== -ENODEV
) {
5572 md_flush_request(mddev
, bi
);
5575 /* ret == -EAGAIN, fallback */
5577 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5578 * we need to flush journal device
5580 do_flush
= bi
->bi_opf
& REQ_PREFLUSH
;
5583 if (!md_write_start(mddev
, bi
))
5586 * If array is degraded, better not do chunk aligned read because
5587 * later we might have to read it again in order to reconstruct
5588 * data on failed drives.
5590 if (rw
== READ
&& mddev
->degraded
== 0 &&
5591 mddev
->reshape_position
== MaxSector
) {
5592 bi
= chunk_aligned_read(mddev
, bi
);
5597 if (unlikely(bio_op(bi
) == REQ_OP_DISCARD
)) {
5598 make_discard_request(mddev
, bi
);
5599 md_write_end(mddev
);
5603 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5604 last_sector
= bio_end_sector(bi
);
5607 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5608 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5614 seq
= read_seqcount_begin(&conf
->gen_lock
);
5617 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5618 TASK_UNINTERRUPTIBLE
);
5619 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5620 /* spinlock is needed as reshape_progress may be
5621 * 64bit on a 32bit platform, and so it might be
5622 * possible to see a half-updated value
5623 * Of course reshape_progress could change after
5624 * the lock is dropped, so once we get a reference
5625 * to the stripe that we think it is, we will have
5628 spin_lock_irq(&conf
->device_lock
);
5629 if (mddev
->reshape_backwards
5630 ? logical_sector
< conf
->reshape_progress
5631 : logical_sector
>= conf
->reshape_progress
) {
5634 if (mddev
->reshape_backwards
5635 ? logical_sector
< conf
->reshape_safe
5636 : logical_sector
>= conf
->reshape_safe
) {
5637 spin_unlock_irq(&conf
->device_lock
);
5643 spin_unlock_irq(&conf
->device_lock
);
5646 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5649 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5650 (unsigned long long)new_sector
,
5651 (unsigned long long)logical_sector
);
5653 sh
= raid5_get_active_stripe(conf
, new_sector
, previous
,
5654 (bi
->bi_opf
& REQ_RAHEAD
), 0);
5656 if (unlikely(previous
)) {
5657 /* expansion might have moved on while waiting for a
5658 * stripe, so we must do the range check again.
5659 * Expansion could still move past after this
5660 * test, but as we are holding a reference to
5661 * 'sh', we know that if that happens,
5662 * STRIPE_EXPANDING will get set and the expansion
5663 * won't proceed until we finish with the stripe.
5666 spin_lock_irq(&conf
->device_lock
);
5667 if (mddev
->reshape_backwards
5668 ? logical_sector
>= conf
->reshape_progress
5669 : logical_sector
< conf
->reshape_progress
)
5670 /* mismatch, need to try again */
5672 spin_unlock_irq(&conf
->device_lock
);
5674 raid5_release_stripe(sh
);
5680 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5681 /* Might have got the wrong stripe_head
5684 raid5_release_stripe(sh
);
5688 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5689 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5690 /* Stripe is busy expanding or
5691 * add failed due to overlap. Flush everything
5694 md_wakeup_thread(mddev
->thread
);
5695 raid5_release_stripe(sh
);
5701 set_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
);
5702 /* we only need flush for one stripe */
5706 set_bit(STRIPE_HANDLE
, &sh
->state
);
5707 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5708 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5709 (bi
->bi_opf
& REQ_SYNC
) &&
5710 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5711 atomic_inc(&conf
->preread_active_stripes
);
5712 release_stripe_plug(mddev
, sh
);
5714 /* cannot get stripe for read-ahead, just give-up */
5715 bi
->bi_status
= BLK_STS_IOERR
;
5719 finish_wait(&conf
->wait_for_overlap
, &w
);
5722 md_write_end(mddev
);
5727 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5729 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5731 /* reshaping is quite different to recovery/resync so it is
5732 * handled quite separately ... here.
5734 * On each call to sync_request, we gather one chunk worth of
5735 * destination stripes and flag them as expanding.
5736 * Then we find all the source stripes and request reads.
5737 * As the reads complete, handle_stripe will copy the data
5738 * into the destination stripe and release that stripe.
5740 struct r5conf
*conf
= mddev
->private;
5741 struct stripe_head
*sh
;
5742 struct md_rdev
*rdev
;
5743 sector_t first_sector
, last_sector
;
5744 int raid_disks
= conf
->previous_raid_disks
;
5745 int data_disks
= raid_disks
- conf
->max_degraded
;
5746 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5749 sector_t writepos
, readpos
, safepos
;
5750 sector_t stripe_addr
;
5751 int reshape_sectors
;
5752 struct list_head stripes
;
5755 if (sector_nr
== 0) {
5756 /* If restarting in the middle, skip the initial sectors */
5757 if (mddev
->reshape_backwards
&&
5758 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5759 sector_nr
= raid5_size(mddev
, 0, 0)
5760 - conf
->reshape_progress
;
5761 } else if (mddev
->reshape_backwards
&&
5762 conf
->reshape_progress
== MaxSector
) {
5763 /* shouldn't happen, but just in case, finish up.*/
5764 sector_nr
= MaxSector
;
5765 } else if (!mddev
->reshape_backwards
&&
5766 conf
->reshape_progress
> 0)
5767 sector_nr
= conf
->reshape_progress
;
5768 sector_div(sector_nr
, new_data_disks
);
5770 mddev
->curr_resync_completed
= sector_nr
;
5771 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5778 /* We need to process a full chunk at a time.
5779 * If old and new chunk sizes differ, we need to process the
5783 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5785 /* We update the metadata at least every 10 seconds, or when
5786 * the data about to be copied would over-write the source of
5787 * the data at the front of the range. i.e. one new_stripe
5788 * along from reshape_progress new_maps to after where
5789 * reshape_safe old_maps to
5791 writepos
= conf
->reshape_progress
;
5792 sector_div(writepos
, new_data_disks
);
5793 readpos
= conf
->reshape_progress
;
5794 sector_div(readpos
, data_disks
);
5795 safepos
= conf
->reshape_safe
;
5796 sector_div(safepos
, data_disks
);
5797 if (mddev
->reshape_backwards
) {
5798 BUG_ON(writepos
< reshape_sectors
);
5799 writepos
-= reshape_sectors
;
5800 readpos
+= reshape_sectors
;
5801 safepos
+= reshape_sectors
;
5803 writepos
+= reshape_sectors
;
5804 /* readpos and safepos are worst-case calculations.
5805 * A negative number is overly pessimistic, and causes
5806 * obvious problems for unsigned storage. So clip to 0.
5808 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5809 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5812 /* Having calculated the 'writepos' possibly use it
5813 * to set 'stripe_addr' which is where we will write to.
5815 if (mddev
->reshape_backwards
) {
5816 BUG_ON(conf
->reshape_progress
== 0);
5817 stripe_addr
= writepos
;
5818 BUG_ON((mddev
->dev_sectors
&
5819 ~((sector_t
)reshape_sectors
- 1))
5820 - reshape_sectors
- stripe_addr
5823 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5824 stripe_addr
= sector_nr
;
5827 /* 'writepos' is the most advanced device address we might write.
5828 * 'readpos' is the least advanced device address we might read.
5829 * 'safepos' is the least address recorded in the metadata as having
5831 * If there is a min_offset_diff, these are adjusted either by
5832 * increasing the safepos/readpos if diff is negative, or
5833 * increasing writepos if diff is positive.
5834 * If 'readpos' is then behind 'writepos', there is no way that we can
5835 * ensure safety in the face of a crash - that must be done by userspace
5836 * making a backup of the data. So in that case there is no particular
5837 * rush to update metadata.
5838 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5839 * update the metadata to advance 'safepos' to match 'readpos' so that
5840 * we can be safe in the event of a crash.
5841 * So we insist on updating metadata if safepos is behind writepos and
5842 * readpos is beyond writepos.
5843 * In any case, update the metadata every 10 seconds.
5844 * Maybe that number should be configurable, but I'm not sure it is
5845 * worth it.... maybe it could be a multiple of safemode_delay???
5847 if (conf
->min_offset_diff
< 0) {
5848 safepos
+= -conf
->min_offset_diff
;
5849 readpos
+= -conf
->min_offset_diff
;
5851 writepos
+= conf
->min_offset_diff
;
5853 if ((mddev
->reshape_backwards
5854 ? (safepos
> writepos
&& readpos
< writepos
)
5855 : (safepos
< writepos
&& readpos
> writepos
)) ||
5856 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5857 /* Cannot proceed until we've updated the superblock... */
5858 wait_event(conf
->wait_for_overlap
,
5859 atomic_read(&conf
->reshape_stripes
)==0
5860 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5861 if (atomic_read(&conf
->reshape_stripes
) != 0)
5863 mddev
->reshape_position
= conf
->reshape_progress
;
5864 mddev
->curr_resync_completed
= sector_nr
;
5865 if (!mddev
->reshape_backwards
)
5866 /* Can update recovery_offset */
5867 rdev_for_each(rdev
, mddev
)
5868 if (rdev
->raid_disk
>= 0 &&
5869 !test_bit(Journal
, &rdev
->flags
) &&
5870 !test_bit(In_sync
, &rdev
->flags
) &&
5871 rdev
->recovery_offset
< sector_nr
)
5872 rdev
->recovery_offset
= sector_nr
;
5874 conf
->reshape_checkpoint
= jiffies
;
5875 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
5876 md_wakeup_thread(mddev
->thread
);
5877 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
5878 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5879 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5881 spin_lock_irq(&conf
->device_lock
);
5882 conf
->reshape_safe
= mddev
->reshape_position
;
5883 spin_unlock_irq(&conf
->device_lock
);
5884 wake_up(&conf
->wait_for_overlap
);
5885 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5888 INIT_LIST_HEAD(&stripes
);
5889 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5891 int skipped_disk
= 0;
5892 sh
= raid5_get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5893 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5894 atomic_inc(&conf
->reshape_stripes
);
5895 /* If any of this stripe is beyond the end of the old
5896 * array, then we need to zero those blocks
5898 for (j
=sh
->disks
; j
--;) {
5900 if (j
== sh
->pd_idx
)
5902 if (conf
->level
== 6 &&
5905 s
= raid5_compute_blocknr(sh
, j
, 0);
5906 if (s
< raid5_size(mddev
, 0, 0)) {
5910 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5911 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5912 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5914 if (!skipped_disk
) {
5915 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5916 set_bit(STRIPE_HANDLE
, &sh
->state
);
5918 list_add(&sh
->lru
, &stripes
);
5920 spin_lock_irq(&conf
->device_lock
);
5921 if (mddev
->reshape_backwards
)
5922 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5924 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5925 spin_unlock_irq(&conf
->device_lock
);
5926 /* Ok, those stripe are ready. We can start scheduling
5927 * reads on the source stripes.
5928 * The source stripes are determined by mapping the first and last
5929 * block on the destination stripes.
5932 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5935 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5936 * new_data_disks
- 1),
5938 if (last_sector
>= mddev
->dev_sectors
)
5939 last_sector
= mddev
->dev_sectors
- 1;
5940 while (first_sector
<= last_sector
) {
5941 sh
= raid5_get_active_stripe(conf
, first_sector
, 1, 0, 1);
5942 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5943 set_bit(STRIPE_HANDLE
, &sh
->state
);
5944 raid5_release_stripe(sh
);
5945 first_sector
+= STRIPE_SECTORS
;
5947 /* Now that the sources are clearly marked, we can release
5948 * the destination stripes
5950 while (!list_empty(&stripes
)) {
5951 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5952 list_del_init(&sh
->lru
);
5953 raid5_release_stripe(sh
);
5955 /* If this takes us to the resync_max point where we have to pause,
5956 * then we need to write out the superblock.
5958 sector_nr
+= reshape_sectors
;
5959 retn
= reshape_sectors
;
5961 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
5962 (sector_nr
- mddev
->curr_resync_completed
) * 2
5963 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5964 /* Cannot proceed until we've updated the superblock... */
5965 wait_event(conf
->wait_for_overlap
,
5966 atomic_read(&conf
->reshape_stripes
) == 0
5967 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5968 if (atomic_read(&conf
->reshape_stripes
) != 0)
5970 mddev
->reshape_position
= conf
->reshape_progress
;
5971 mddev
->curr_resync_completed
= sector_nr
;
5972 if (!mddev
->reshape_backwards
)
5973 /* Can update recovery_offset */
5974 rdev_for_each(rdev
, mddev
)
5975 if (rdev
->raid_disk
>= 0 &&
5976 !test_bit(Journal
, &rdev
->flags
) &&
5977 !test_bit(In_sync
, &rdev
->flags
) &&
5978 rdev
->recovery_offset
< sector_nr
)
5979 rdev
->recovery_offset
= sector_nr
;
5980 conf
->reshape_checkpoint
= jiffies
;
5981 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
5982 md_wakeup_thread(mddev
->thread
);
5983 wait_event(mddev
->sb_wait
,
5984 !test_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
)
5985 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5986 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5988 spin_lock_irq(&conf
->device_lock
);
5989 conf
->reshape_safe
= mddev
->reshape_position
;
5990 spin_unlock_irq(&conf
->device_lock
);
5991 wake_up(&conf
->wait_for_overlap
);
5992 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5998 static inline sector_t
raid5_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
6001 struct r5conf
*conf
= mddev
->private;
6002 struct stripe_head
*sh
;
6003 sector_t max_sector
= mddev
->dev_sectors
;
6004 sector_t sync_blocks
;
6005 int still_degraded
= 0;
6008 if (sector_nr
>= max_sector
) {
6009 /* just being told to finish up .. nothing much to do */
6011 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
6016 if (mddev
->curr_resync
< max_sector
) /* aborted */
6017 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
6019 else /* completed sync */
6021 bitmap_close_sync(mddev
->bitmap
);
6026 /* Allow raid5_quiesce to complete */
6027 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
6029 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
6030 return reshape_request(mddev
, sector_nr
, skipped
);
6032 /* No need to check resync_max as we never do more than one
6033 * stripe, and as resync_max will always be on a chunk boundary,
6034 * if the check in md_do_sync didn't fire, there is no chance
6035 * of overstepping resync_max here
6038 /* if there is too many failed drives and we are trying
6039 * to resync, then assert that we are finished, because there is
6040 * nothing we can do.
6042 if (mddev
->degraded
>= conf
->max_degraded
&&
6043 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
6044 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
6048 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
6050 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
6051 sync_blocks
>= STRIPE_SECTORS
) {
6052 /* we can skip this block, and probably more */
6053 sync_blocks
/= STRIPE_SECTORS
;
6055 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
6058 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, false);
6060 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 1, 0);
6062 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 0, 0);
6063 /* make sure we don't swamp the stripe cache if someone else
6064 * is trying to get access
6066 schedule_timeout_uninterruptible(1);
6068 /* Need to check if array will still be degraded after recovery/resync
6069 * Note in case of > 1 drive failures it's possible we're rebuilding
6070 * one drive while leaving another faulty drive in array.
6073 for (i
= 0; i
< conf
->raid_disks
; i
++) {
6074 struct md_rdev
*rdev
= READ_ONCE(conf
->disks
[i
].rdev
);
6076 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
6081 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
6083 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
6084 set_bit(STRIPE_HANDLE
, &sh
->state
);
6086 raid5_release_stripe(sh
);
6088 return STRIPE_SECTORS
;
6091 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
,
6092 unsigned int offset
)
6094 /* We may not be able to submit a whole bio at once as there
6095 * may not be enough stripe_heads available.
6096 * We cannot pre-allocate enough stripe_heads as we may need
6097 * more than exist in the cache (if we allow ever large chunks).
6098 * So we do one stripe head at a time and record in
6099 * ->bi_hw_segments how many have been done.
6101 * We *know* that this entire raid_bio is in one chunk, so
6102 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6104 struct stripe_head
*sh
;
6106 sector_t sector
, logical_sector
, last_sector
;
6110 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
6111 ~((sector_t
)STRIPE_SECTORS
-1);
6112 sector
= raid5_compute_sector(conf
, logical_sector
,
6114 last_sector
= bio_end_sector(raid_bio
);
6116 for (; logical_sector
< last_sector
;
6117 logical_sector
+= STRIPE_SECTORS
,
6118 sector
+= STRIPE_SECTORS
,
6122 /* already done this stripe */
6125 sh
= raid5_get_active_stripe(conf
, sector
, 0, 1, 1);
6128 /* failed to get a stripe - must wait */
6129 conf
->retry_read_aligned
= raid_bio
;
6130 conf
->retry_read_offset
= scnt
;
6134 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
6135 raid5_release_stripe(sh
);
6136 conf
->retry_read_aligned
= raid_bio
;
6137 conf
->retry_read_offset
= scnt
;
6141 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
6143 raid5_release_stripe(sh
);
6147 bio_endio(raid_bio
);
6149 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
6150 wake_up(&conf
->wait_for_quiescent
);
6154 static int handle_active_stripes(struct r5conf
*conf
, int group
,
6155 struct r5worker
*worker
,
6156 struct list_head
*temp_inactive_list
)
6158 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
6159 int i
, batch_size
= 0, hash
;
6160 bool release_inactive
= false;
6162 while (batch_size
< MAX_STRIPE_BATCH
&&
6163 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
6164 batch
[batch_size
++] = sh
;
6166 if (batch_size
== 0) {
6167 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6168 if (!list_empty(temp_inactive_list
+ i
))
6170 if (i
== NR_STRIPE_HASH_LOCKS
) {
6171 spin_unlock_irq(&conf
->device_lock
);
6172 log_flush_stripe_to_raid(conf
);
6173 spin_lock_irq(&conf
->device_lock
);
6176 release_inactive
= true;
6178 spin_unlock_irq(&conf
->device_lock
);
6180 release_inactive_stripe_list(conf
, temp_inactive_list
,
6181 NR_STRIPE_HASH_LOCKS
);
6183 r5l_flush_stripe_to_raid(conf
->log
);
6184 if (release_inactive
) {
6185 spin_lock_irq(&conf
->device_lock
);
6189 for (i
= 0; i
< batch_size
; i
++)
6190 handle_stripe(batch
[i
]);
6191 log_write_stripe_run(conf
);
6195 spin_lock_irq(&conf
->device_lock
);
6196 for (i
= 0; i
< batch_size
; i
++) {
6197 hash
= batch
[i
]->hash_lock_index
;
6198 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
6203 static void raid5_do_work(struct work_struct
*work
)
6205 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
6206 struct r5worker_group
*group
= worker
->group
;
6207 struct r5conf
*conf
= group
->conf
;
6208 struct mddev
*mddev
= conf
->mddev
;
6209 int group_id
= group
- conf
->worker_groups
;
6211 struct blk_plug plug
;
6213 pr_debug("+++ raid5worker active\n");
6215 blk_start_plug(&plug
);
6217 spin_lock_irq(&conf
->device_lock
);
6219 int batch_size
, released
;
6221 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
6223 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
6224 worker
->temp_inactive_list
);
6225 worker
->working
= false;
6226 if (!batch_size
&& !released
)
6228 handled
+= batch_size
;
6229 wait_event_lock_irq(mddev
->sb_wait
,
6230 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
),
6233 pr_debug("%d stripes handled\n", handled
);
6235 spin_unlock_irq(&conf
->device_lock
);
6237 flush_deferred_bios(conf
);
6239 r5l_flush_stripe_to_raid(conf
->log
);
6241 async_tx_issue_pending_all();
6242 blk_finish_plug(&plug
);
6244 pr_debug("--- raid5worker inactive\n");
6248 * This is our raid5 kernel thread.
6250 * We scan the hash table for stripes which can be handled now.
6251 * During the scan, completed stripes are saved for us by the interrupt
6252 * handler, so that they will not have to wait for our next wakeup.
6254 static void raid5d(struct md_thread
*thread
)
6256 struct mddev
*mddev
= thread
->mddev
;
6257 struct r5conf
*conf
= mddev
->private;
6259 struct blk_plug plug
;
6261 pr_debug("+++ raid5d active\n");
6263 md_check_recovery(mddev
);
6265 blk_start_plug(&plug
);
6267 spin_lock_irq(&conf
->device_lock
);
6270 int batch_size
, released
;
6271 unsigned int offset
;
6273 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
6275 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6278 !list_empty(&conf
->bitmap_list
)) {
6279 /* Now is a good time to flush some bitmap updates */
6281 spin_unlock_irq(&conf
->device_lock
);
6282 bitmap_unplug(mddev
->bitmap
);
6283 spin_lock_irq(&conf
->device_lock
);
6284 conf
->seq_write
= conf
->seq_flush
;
6285 activate_bit_delay(conf
, conf
->temp_inactive_list
);
6287 raid5_activate_delayed(conf
);
6289 while ((bio
= remove_bio_from_retry(conf
, &offset
))) {
6291 spin_unlock_irq(&conf
->device_lock
);
6292 ok
= retry_aligned_read(conf
, bio
, offset
);
6293 spin_lock_irq(&conf
->device_lock
);
6299 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
6300 conf
->temp_inactive_list
);
6301 if (!batch_size
&& !released
)
6303 handled
+= batch_size
;
6305 if (mddev
->sb_flags
& ~(1 << MD_SB_CHANGE_PENDING
)) {
6306 spin_unlock_irq(&conf
->device_lock
);
6307 md_check_recovery(mddev
);
6308 spin_lock_irq(&conf
->device_lock
);
6311 pr_debug("%d stripes handled\n", handled
);
6313 spin_unlock_irq(&conf
->device_lock
);
6314 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
6315 mutex_trylock(&conf
->cache_size_mutex
)) {
6316 grow_one_stripe(conf
, __GFP_NOWARN
);
6317 /* Set flag even if allocation failed. This helps
6318 * slow down allocation requests when mem is short
6320 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6321 mutex_unlock(&conf
->cache_size_mutex
);
6324 flush_deferred_bios(conf
);
6326 r5l_flush_stripe_to_raid(conf
->log
);
6328 async_tx_issue_pending_all();
6329 blk_finish_plug(&plug
);
6331 pr_debug("--- raid5d inactive\n");
6335 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
6337 struct r5conf
*conf
;
6339 spin_lock(&mddev
->lock
);
6340 conf
= mddev
->private;
6342 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
6343 spin_unlock(&mddev
->lock
);
6348 raid5_set_cache_size(struct mddev
*mddev
, int size
)
6350 struct r5conf
*conf
= mddev
->private;
6352 if (size
<= 16 || size
> 32768)
6355 conf
->min_nr_stripes
= size
;
6356 mutex_lock(&conf
->cache_size_mutex
);
6357 while (size
< conf
->max_nr_stripes
&&
6358 drop_one_stripe(conf
))
6360 mutex_unlock(&conf
->cache_size_mutex
);
6362 md_allow_write(mddev
);
6364 mutex_lock(&conf
->cache_size_mutex
);
6365 while (size
> conf
->max_nr_stripes
)
6366 if (!grow_one_stripe(conf
, GFP_KERNEL
))
6368 mutex_unlock(&conf
->cache_size_mutex
);
6372 EXPORT_SYMBOL(raid5_set_cache_size
);
6375 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
6377 struct r5conf
*conf
;
6381 if (len
>= PAGE_SIZE
)
6383 if (kstrtoul(page
, 10, &new))
6385 err
= mddev_lock(mddev
);
6388 conf
= mddev
->private;
6392 err
= raid5_set_cache_size(mddev
, new);
6393 mddev_unlock(mddev
);
6398 static struct md_sysfs_entry
6399 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
6400 raid5_show_stripe_cache_size
,
6401 raid5_store_stripe_cache_size
);
6404 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
6406 struct r5conf
*conf
= mddev
->private;
6408 return sprintf(page
, "%d\n", conf
->rmw_level
);
6414 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6416 struct r5conf
*conf
= mddev
->private;
6422 if (len
>= PAGE_SIZE
)
6425 if (kstrtoul(page
, 10, &new))
6428 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6431 if (new != PARITY_DISABLE_RMW
&&
6432 new != PARITY_ENABLE_RMW
&&
6433 new != PARITY_PREFER_RMW
)
6436 conf
->rmw_level
= new;
6440 static struct md_sysfs_entry
6441 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6442 raid5_show_rmw_level
,
6443 raid5_store_rmw_level
);
6447 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6449 struct r5conf
*conf
;
6451 spin_lock(&mddev
->lock
);
6452 conf
= mddev
->private;
6454 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6455 spin_unlock(&mddev
->lock
);
6460 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6462 struct r5conf
*conf
;
6466 if (len
>= PAGE_SIZE
)
6468 if (kstrtoul(page
, 10, &new))
6471 err
= mddev_lock(mddev
);
6474 conf
= mddev
->private;
6477 else if (new > conf
->min_nr_stripes
)
6480 conf
->bypass_threshold
= new;
6481 mddev_unlock(mddev
);
6485 static struct md_sysfs_entry
6486 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6488 raid5_show_preread_threshold
,
6489 raid5_store_preread_threshold
);
6492 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6494 struct r5conf
*conf
;
6496 spin_lock(&mddev
->lock
);
6497 conf
= mddev
->private;
6499 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6500 spin_unlock(&mddev
->lock
);
6505 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6507 struct r5conf
*conf
;
6511 if (len
>= PAGE_SIZE
)
6513 if (kstrtoul(page
, 10, &new))
6517 err
= mddev_lock(mddev
);
6520 conf
= mddev
->private;
6523 else if (new != conf
->skip_copy
) {
6524 mddev_suspend(mddev
);
6525 conf
->skip_copy
= new;
6527 mddev
->queue
->backing_dev_info
->capabilities
|=
6528 BDI_CAP_STABLE_WRITES
;
6530 mddev
->queue
->backing_dev_info
->capabilities
&=
6531 ~BDI_CAP_STABLE_WRITES
;
6532 mddev_resume(mddev
);
6534 mddev_unlock(mddev
);
6538 static struct md_sysfs_entry
6539 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6540 raid5_show_skip_copy
,
6541 raid5_store_skip_copy
);
6544 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6546 struct r5conf
*conf
= mddev
->private;
6548 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6553 static struct md_sysfs_entry
6554 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6557 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6559 struct r5conf
*conf
;
6561 spin_lock(&mddev
->lock
);
6562 conf
= mddev
->private;
6564 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6565 spin_unlock(&mddev
->lock
);
6569 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6571 int *worker_cnt_per_group
,
6572 struct r5worker_group
**worker_groups
);
6574 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6576 struct r5conf
*conf
;
6579 struct r5worker_group
*new_groups
, *old_groups
;
6580 int group_cnt
, worker_cnt_per_group
;
6582 if (len
>= PAGE_SIZE
)
6584 if (kstrtouint(page
, 10, &new))
6586 /* 8192 should be big enough */
6590 err
= mddev_lock(mddev
);
6593 conf
= mddev
->private;
6596 else if (new != conf
->worker_cnt_per_group
) {
6597 mddev_suspend(mddev
);
6599 old_groups
= conf
->worker_groups
;
6601 flush_workqueue(raid5_wq
);
6603 err
= alloc_thread_groups(conf
, new,
6604 &group_cnt
, &worker_cnt_per_group
,
6607 spin_lock_irq(&conf
->device_lock
);
6608 conf
->group_cnt
= group_cnt
;
6609 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6610 conf
->worker_groups
= new_groups
;
6611 spin_unlock_irq(&conf
->device_lock
);
6614 kfree(old_groups
[0].workers
);
6617 mddev_resume(mddev
);
6619 mddev_unlock(mddev
);
6624 static struct md_sysfs_entry
6625 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6626 raid5_show_group_thread_cnt
,
6627 raid5_store_group_thread_cnt
);
6629 static struct attribute
*raid5_attrs
[] = {
6630 &raid5_stripecache_size
.attr
,
6631 &raid5_stripecache_active
.attr
,
6632 &raid5_preread_bypass_threshold
.attr
,
6633 &raid5_group_thread_cnt
.attr
,
6634 &raid5_skip_copy
.attr
,
6635 &raid5_rmw_level
.attr
,
6636 &r5c_journal_mode
.attr
,
6639 static struct attribute_group raid5_attrs_group
= {
6641 .attrs
= raid5_attrs
,
6644 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6646 int *worker_cnt_per_group
,
6647 struct r5worker_group
**worker_groups
)
6651 struct r5worker
*workers
;
6653 *worker_cnt_per_group
= cnt
;
6656 *worker_groups
= NULL
;
6659 *group_cnt
= num_possible_nodes();
6660 size
= sizeof(struct r5worker
) * cnt
;
6661 workers
= kzalloc(size
* *group_cnt
, GFP_NOIO
);
6662 *worker_groups
= kzalloc(sizeof(struct r5worker_group
) *
6663 *group_cnt
, GFP_NOIO
);
6664 if (!*worker_groups
|| !workers
) {
6666 kfree(*worker_groups
);
6670 for (i
= 0; i
< *group_cnt
; i
++) {
6671 struct r5worker_group
*group
;
6673 group
= &(*worker_groups
)[i
];
6674 INIT_LIST_HEAD(&group
->handle_list
);
6675 INIT_LIST_HEAD(&group
->loprio_list
);
6677 group
->workers
= workers
+ i
* cnt
;
6679 for (j
= 0; j
< cnt
; j
++) {
6680 struct r5worker
*worker
= group
->workers
+ j
;
6681 worker
->group
= group
;
6682 INIT_WORK(&worker
->work
, raid5_do_work
);
6684 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6685 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6692 static void free_thread_groups(struct r5conf
*conf
)
6694 if (conf
->worker_groups
)
6695 kfree(conf
->worker_groups
[0].workers
);
6696 kfree(conf
->worker_groups
);
6697 conf
->worker_groups
= NULL
;
6701 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6703 struct r5conf
*conf
= mddev
->private;
6706 sectors
= mddev
->dev_sectors
;
6708 /* size is defined by the smallest of previous and new size */
6709 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6711 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
6712 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
6713 return sectors
* (raid_disks
- conf
->max_degraded
);
6716 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6718 safe_put_page(percpu
->spare_page
);
6719 if (percpu
->scribble
)
6720 flex_array_free(percpu
->scribble
);
6721 percpu
->spare_page
= NULL
;
6722 percpu
->scribble
= NULL
;
6725 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6727 if (conf
->level
== 6 && !percpu
->spare_page
)
6728 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6729 if (!percpu
->scribble
)
6730 percpu
->scribble
= scribble_alloc(max(conf
->raid_disks
,
6731 conf
->previous_raid_disks
),
6732 max(conf
->chunk_sectors
,
6733 conf
->prev_chunk_sectors
)
6737 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
6738 free_scratch_buffer(conf
, percpu
);
6745 static int raid456_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
6747 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6749 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6753 static void raid5_free_percpu(struct r5conf
*conf
)
6758 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6759 free_percpu(conf
->percpu
);
6762 static void free_conf(struct r5conf
*conf
)
6768 unregister_shrinker(&conf
->shrinker
);
6769 free_thread_groups(conf
);
6770 shrink_stripes(conf
);
6771 raid5_free_percpu(conf
);
6772 for (i
= 0; i
< conf
->pool_size
; i
++)
6773 if (conf
->disks
[i
].extra_page
)
6774 put_page(conf
->disks
[i
].extra_page
);
6776 if (conf
->bio_split
)
6777 bioset_free(conf
->bio_split
);
6778 kfree(conf
->stripe_hashtbl
);
6779 kfree(conf
->pending_data
);
6783 static int raid456_cpu_up_prepare(unsigned int cpu
, struct hlist_node
*node
)
6785 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6786 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6788 if (alloc_scratch_buffer(conf
, percpu
)) {
6789 pr_warn("%s: failed memory allocation for cpu%u\n",
6796 static int raid5_alloc_percpu(struct r5conf
*conf
)
6800 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6804 err
= cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6806 conf
->scribble_disks
= max(conf
->raid_disks
,
6807 conf
->previous_raid_disks
);
6808 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
6809 conf
->prev_chunk_sectors
);
6814 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6815 struct shrink_control
*sc
)
6817 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6818 unsigned long ret
= SHRINK_STOP
;
6820 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6822 while (ret
< sc
->nr_to_scan
&&
6823 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6824 if (drop_one_stripe(conf
) == 0) {
6830 mutex_unlock(&conf
->cache_size_mutex
);
6835 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6836 struct shrink_control
*sc
)
6838 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6840 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6841 /* unlikely, but not impossible */
6843 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6846 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6848 struct r5conf
*conf
;
6849 int raid_disk
, memory
, max_disks
;
6850 struct md_rdev
*rdev
;
6851 struct disk_info
*disk
;
6854 int group_cnt
, worker_cnt_per_group
;
6855 struct r5worker_group
*new_group
;
6857 if (mddev
->new_level
!= 5
6858 && mddev
->new_level
!= 4
6859 && mddev
->new_level
!= 6) {
6860 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6861 mdname(mddev
), mddev
->new_level
);
6862 return ERR_PTR(-EIO
);
6864 if ((mddev
->new_level
== 5
6865 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6866 (mddev
->new_level
== 6
6867 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6868 pr_warn("md/raid:%s: layout %d not supported\n",
6869 mdname(mddev
), mddev
->new_layout
);
6870 return ERR_PTR(-EIO
);
6872 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6873 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6874 mdname(mddev
), mddev
->raid_disks
);
6875 return ERR_PTR(-EINVAL
);
6878 if (!mddev
->new_chunk_sectors
||
6879 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6880 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6881 pr_warn("md/raid:%s: invalid chunk size %d\n",
6882 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6883 return ERR_PTR(-EINVAL
);
6886 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6889 INIT_LIST_HEAD(&conf
->free_list
);
6890 INIT_LIST_HEAD(&conf
->pending_list
);
6891 conf
->pending_data
= kzalloc(sizeof(struct r5pending_data
) *
6892 PENDING_IO_MAX
, GFP_KERNEL
);
6893 if (!conf
->pending_data
)
6895 for (i
= 0; i
< PENDING_IO_MAX
; i
++)
6896 list_add(&conf
->pending_data
[i
].sibling
, &conf
->free_list
);
6897 /* Don't enable multi-threading by default*/
6898 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
6900 conf
->group_cnt
= group_cnt
;
6901 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6902 conf
->worker_groups
= new_group
;
6905 spin_lock_init(&conf
->device_lock
);
6906 seqcount_init(&conf
->gen_lock
);
6907 mutex_init(&conf
->cache_size_mutex
);
6908 init_waitqueue_head(&conf
->wait_for_quiescent
);
6909 init_waitqueue_head(&conf
->wait_for_stripe
);
6910 init_waitqueue_head(&conf
->wait_for_overlap
);
6911 INIT_LIST_HEAD(&conf
->handle_list
);
6912 INIT_LIST_HEAD(&conf
->loprio_list
);
6913 INIT_LIST_HEAD(&conf
->hold_list
);
6914 INIT_LIST_HEAD(&conf
->delayed_list
);
6915 INIT_LIST_HEAD(&conf
->bitmap_list
);
6916 init_llist_head(&conf
->released_stripes
);
6917 atomic_set(&conf
->active_stripes
, 0);
6918 atomic_set(&conf
->preread_active_stripes
, 0);
6919 atomic_set(&conf
->active_aligned_reads
, 0);
6920 spin_lock_init(&conf
->pending_bios_lock
);
6921 conf
->batch_bio_dispatch
= true;
6922 rdev_for_each(rdev
, mddev
) {
6923 if (test_bit(Journal
, &rdev
->flags
))
6925 if (blk_queue_nonrot(bdev_get_queue(rdev
->bdev
))) {
6926 conf
->batch_bio_dispatch
= false;
6931 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6932 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6934 conf
->raid_disks
= mddev
->raid_disks
;
6935 if (mddev
->reshape_position
== MaxSector
)
6936 conf
->previous_raid_disks
= mddev
->raid_disks
;
6938 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6939 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6941 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
6947 for (i
= 0; i
< max_disks
; i
++) {
6948 conf
->disks
[i
].extra_page
= alloc_page(GFP_KERNEL
);
6949 if (!conf
->disks
[i
].extra_page
)
6953 conf
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0, 0);
6954 if (!conf
->bio_split
)
6956 conf
->mddev
= mddev
;
6958 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6961 /* We init hash_locks[0] separately to that it can be used
6962 * as the reference lock in the spin_lock_nest_lock() call
6963 * in lock_all_device_hash_locks_irq in order to convince
6964 * lockdep that we know what we are doing.
6966 spin_lock_init(conf
->hash_locks
);
6967 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6968 spin_lock_init(conf
->hash_locks
+ i
);
6970 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6971 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
6973 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6974 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
6976 atomic_set(&conf
->r5c_cached_full_stripes
, 0);
6977 INIT_LIST_HEAD(&conf
->r5c_full_stripe_list
);
6978 atomic_set(&conf
->r5c_cached_partial_stripes
, 0);
6979 INIT_LIST_HEAD(&conf
->r5c_partial_stripe_list
);
6980 atomic_set(&conf
->r5c_flushing_full_stripes
, 0);
6981 atomic_set(&conf
->r5c_flushing_partial_stripes
, 0);
6983 conf
->level
= mddev
->new_level
;
6984 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6985 if (raid5_alloc_percpu(conf
) != 0)
6988 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
6990 rdev_for_each(rdev
, mddev
) {
6991 raid_disk
= rdev
->raid_disk
;
6992 if (raid_disk
>= max_disks
6993 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
6995 disk
= conf
->disks
+ raid_disk
;
6997 if (test_bit(Replacement
, &rdev
->flags
)) {
6998 if (disk
->replacement
)
7000 disk
->replacement
= rdev
;
7007 if (test_bit(In_sync
, &rdev
->flags
)) {
7008 char b
[BDEVNAME_SIZE
];
7009 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7010 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
7011 } else if (rdev
->saved_raid_disk
!= raid_disk
)
7012 /* Cannot rely on bitmap to complete recovery */
7016 conf
->level
= mddev
->new_level
;
7017 if (conf
->level
== 6) {
7018 conf
->max_degraded
= 2;
7019 if (raid6_call
.xor_syndrome
)
7020 conf
->rmw_level
= PARITY_ENABLE_RMW
;
7022 conf
->rmw_level
= PARITY_DISABLE_RMW
;
7024 conf
->max_degraded
= 1;
7025 conf
->rmw_level
= PARITY_ENABLE_RMW
;
7027 conf
->algorithm
= mddev
->new_layout
;
7028 conf
->reshape_progress
= mddev
->reshape_position
;
7029 if (conf
->reshape_progress
!= MaxSector
) {
7030 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
7031 conf
->prev_algo
= mddev
->layout
;
7033 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7034 conf
->prev_algo
= conf
->algorithm
;
7037 conf
->min_nr_stripes
= NR_STRIPES
;
7038 if (mddev
->reshape_position
!= MaxSector
) {
7039 int stripes
= max_t(int,
7040 ((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4,
7041 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4);
7042 conf
->min_nr_stripes
= max(NR_STRIPES
, stripes
);
7043 if (conf
->min_nr_stripes
!= NR_STRIPES
)
7044 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7045 mdname(mddev
), conf
->min_nr_stripes
);
7047 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
7048 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
7049 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
7050 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
7051 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7052 mdname(mddev
), memory
);
7055 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev
), memory
);
7057 * Losing a stripe head costs more than the time to refill it,
7058 * it reduces the queue depth and so can hurt throughput.
7059 * So set it rather large, scaled by number of devices.
7061 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
7062 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
7063 conf
->shrinker
.count_objects
= raid5_cache_count
;
7064 conf
->shrinker
.batch
= 128;
7065 conf
->shrinker
.flags
= 0;
7066 if (register_shrinker(&conf
->shrinker
)) {
7067 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7072 sprintf(pers_name
, "raid%d", mddev
->new_level
);
7073 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
7074 if (!conf
->thread
) {
7075 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7085 return ERR_PTR(-EIO
);
7087 return ERR_PTR(-ENOMEM
);
7090 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
7093 case ALGORITHM_PARITY_0
:
7094 if (raid_disk
< max_degraded
)
7097 case ALGORITHM_PARITY_N
:
7098 if (raid_disk
>= raid_disks
- max_degraded
)
7101 case ALGORITHM_PARITY_0_6
:
7102 if (raid_disk
== 0 ||
7103 raid_disk
== raid_disks
- 1)
7106 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7107 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7108 case ALGORITHM_LEFT_SYMMETRIC_6
:
7109 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7110 if (raid_disk
== raid_disks
- 1)
7116 static int raid5_run(struct mddev
*mddev
)
7118 struct r5conf
*conf
;
7119 int working_disks
= 0;
7120 int dirty_parity_disks
= 0;
7121 struct md_rdev
*rdev
;
7122 struct md_rdev
*journal_dev
= NULL
;
7123 sector_t reshape_offset
= 0;
7125 long long min_offset_diff
= 0;
7128 if (mddev_init_writes_pending(mddev
) < 0)
7131 if (mddev
->recovery_cp
!= MaxSector
)
7132 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7135 rdev_for_each(rdev
, mddev
) {
7138 if (test_bit(Journal
, &rdev
->flags
)) {
7142 if (rdev
->raid_disk
< 0)
7144 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
7146 min_offset_diff
= diff
;
7148 } else if (mddev
->reshape_backwards
&&
7149 diff
< min_offset_diff
)
7150 min_offset_diff
= diff
;
7151 else if (!mddev
->reshape_backwards
&&
7152 diff
> min_offset_diff
)
7153 min_offset_diff
= diff
;
7156 if ((test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) || journal_dev
) &&
7157 (mddev
->bitmap_info
.offset
|| mddev
->bitmap_info
.file
)) {
7158 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7163 if (mddev
->reshape_position
!= MaxSector
) {
7164 /* Check that we can continue the reshape.
7165 * Difficulties arise if the stripe we would write to
7166 * next is at or after the stripe we would read from next.
7167 * For a reshape that changes the number of devices, this
7168 * is only possible for a very short time, and mdadm makes
7169 * sure that time appears to have past before assembling
7170 * the array. So we fail if that time hasn't passed.
7171 * For a reshape that keeps the number of devices the same
7172 * mdadm must be monitoring the reshape can keeping the
7173 * critical areas read-only and backed up. It will start
7174 * the array in read-only mode, so we check for that.
7176 sector_t here_new
, here_old
;
7178 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
7183 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7188 if (mddev
->new_level
!= mddev
->level
) {
7189 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7193 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
7194 /* reshape_position must be on a new-stripe boundary, and one
7195 * further up in new geometry must map after here in old
7197 * If the chunk sizes are different, then as we perform reshape
7198 * in units of the largest of the two, reshape_position needs
7199 * be a multiple of the largest chunk size times new data disks.
7201 here_new
= mddev
->reshape_position
;
7202 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
7203 new_data_disks
= mddev
->raid_disks
- max_degraded
;
7204 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
7205 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7209 reshape_offset
= here_new
* chunk_sectors
;
7210 /* here_new is the stripe we will write to */
7211 here_old
= mddev
->reshape_position
;
7212 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
7213 /* here_old is the first stripe that we might need to read
7215 if (mddev
->delta_disks
== 0) {
7216 /* We cannot be sure it is safe to start an in-place
7217 * reshape. It is only safe if user-space is monitoring
7218 * and taking constant backups.
7219 * mdadm always starts a situation like this in
7220 * readonly mode so it can take control before
7221 * allowing any writes. So just check for that.
7223 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
7224 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
7225 /* not really in-place - so OK */;
7226 else if (mddev
->ro
== 0) {
7227 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7231 } else if (mddev
->reshape_backwards
7232 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
7233 here_old
* chunk_sectors
)
7234 : (here_new
* chunk_sectors
>=
7235 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
7236 /* Reading from the same stripe as writing to - bad */
7237 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7241 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev
));
7242 /* OK, we should be able to continue; */
7244 BUG_ON(mddev
->level
!= mddev
->new_level
);
7245 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
7246 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
7247 BUG_ON(mddev
->delta_disks
!= 0);
7250 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) &&
7251 test_bit(MD_HAS_PPL
, &mddev
->flags
)) {
7252 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7254 clear_bit(MD_HAS_PPL
, &mddev
->flags
);
7255 clear_bit(MD_HAS_MULTIPLE_PPLS
, &mddev
->flags
);
7258 if (mddev
->private == NULL
)
7259 conf
= setup_conf(mddev
);
7261 conf
= mddev
->private;
7264 return PTR_ERR(conf
);
7266 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
)) {
7268 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7271 set_disk_ro(mddev
->gendisk
, 1);
7272 } else if (mddev
->recovery_cp
== MaxSector
)
7273 set_bit(MD_JOURNAL_CLEAN
, &mddev
->flags
);
7276 conf
->min_offset_diff
= min_offset_diff
;
7277 mddev
->thread
= conf
->thread
;
7278 conf
->thread
= NULL
;
7279 mddev
->private = conf
;
7281 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
7283 rdev
= conf
->disks
[i
].rdev
;
7284 if (!rdev
&& conf
->disks
[i
].replacement
) {
7285 /* The replacement is all we have yet */
7286 rdev
= conf
->disks
[i
].replacement
;
7287 conf
->disks
[i
].replacement
= NULL
;
7288 clear_bit(Replacement
, &rdev
->flags
);
7289 conf
->disks
[i
].rdev
= rdev
;
7293 if (conf
->disks
[i
].replacement
&&
7294 conf
->reshape_progress
!= MaxSector
) {
7295 /* replacements and reshape simply do not mix. */
7296 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7299 if (test_bit(In_sync
, &rdev
->flags
)) {
7303 /* This disc is not fully in-sync. However if it
7304 * just stored parity (beyond the recovery_offset),
7305 * when we don't need to be concerned about the
7306 * array being dirty.
7307 * When reshape goes 'backwards', we never have
7308 * partially completed devices, so we only need
7309 * to worry about reshape going forwards.
7311 /* Hack because v0.91 doesn't store recovery_offset properly. */
7312 if (mddev
->major_version
== 0 &&
7313 mddev
->minor_version
> 90)
7314 rdev
->recovery_offset
= reshape_offset
;
7316 if (rdev
->recovery_offset
< reshape_offset
) {
7317 /* We need to check old and new layout */
7318 if (!only_parity(rdev
->raid_disk
,
7321 conf
->max_degraded
))
7324 if (!only_parity(rdev
->raid_disk
,
7326 conf
->previous_raid_disks
,
7327 conf
->max_degraded
))
7329 dirty_parity_disks
++;
7333 * 0 for a fully functional array, 1 or 2 for a degraded array.
7335 mddev
->degraded
= raid5_calc_degraded(conf
);
7337 if (has_failed(conf
)) {
7338 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7339 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
7343 /* device size must be a multiple of chunk size */
7344 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
7345 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
7347 if (mddev
->degraded
> dirty_parity_disks
&&
7348 mddev
->recovery_cp
!= MaxSector
) {
7349 if (test_bit(MD_HAS_PPL
, &mddev
->flags
))
7350 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7352 else if (mddev
->ok_start_degraded
)
7353 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7356 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7362 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7363 mdname(mddev
), conf
->level
,
7364 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
7367 print_raid5_conf(conf
);
7369 if (conf
->reshape_progress
!= MaxSector
) {
7370 conf
->reshape_safe
= conf
->reshape_progress
;
7371 atomic_set(&conf
->reshape_stripes
, 0);
7372 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7373 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7374 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7375 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7376 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7380 /* Ok, everything is just fine now */
7381 if (mddev
->to_remove
== &raid5_attrs_group
)
7382 mddev
->to_remove
= NULL
;
7383 else if (mddev
->kobj
.sd
&&
7384 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
7385 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7387 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7391 /* read-ahead size must cover two whole stripes, which
7392 * is 2 * (datadisks) * chunksize where 'n' is the
7393 * number of raid devices
7395 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
7396 int stripe
= data_disks
*
7397 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
7398 if (mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
7399 mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
7401 chunk_size
= mddev
->chunk_sectors
<< 9;
7402 blk_queue_io_min(mddev
->queue
, chunk_size
);
7403 blk_queue_io_opt(mddev
->queue
, chunk_size
*
7404 (conf
->raid_disks
- conf
->max_degraded
));
7405 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
7407 * We can only discard a whole stripe. It doesn't make sense to
7408 * discard data disk but write parity disk
7410 stripe
= stripe
* PAGE_SIZE
;
7411 /* Round up to power of 2, as discard handling
7412 * currently assumes that */
7413 while ((stripe
-1) & stripe
)
7414 stripe
= (stripe
| (stripe
-1)) + 1;
7415 mddev
->queue
->limits
.discard_alignment
= stripe
;
7416 mddev
->queue
->limits
.discard_granularity
= stripe
;
7418 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
7419 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
7421 rdev_for_each(rdev
, mddev
) {
7422 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7423 rdev
->data_offset
<< 9);
7424 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7425 rdev
->new_data_offset
<< 9);
7429 * zeroing is required, otherwise data
7430 * could be lost. Consider a scenario: discard a stripe
7431 * (the stripe could be inconsistent if
7432 * discard_zeroes_data is 0); write one disk of the
7433 * stripe (the stripe could be inconsistent again
7434 * depending on which disks are used to calculate
7435 * parity); the disk is broken; The stripe data of this
7438 * We only allow DISCARD if the sysadmin has confirmed that
7439 * only safe devices are in use by setting a module parameter.
7440 * A better idea might be to turn DISCARD into WRITE_ZEROES
7441 * requests, as that is required to be safe.
7443 if (devices_handle_discard_safely
&&
7444 mddev
->queue
->limits
.max_discard_sectors
>= (stripe
>> 9) &&
7445 mddev
->queue
->limits
.discard_granularity
>= stripe
)
7446 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
7449 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
7452 blk_queue_max_hw_sectors(mddev
->queue
, UINT_MAX
);
7455 if (log_init(conf
, journal_dev
, raid5_has_ppl(conf
)))
7460 md_unregister_thread(&mddev
->thread
);
7461 print_raid5_conf(conf
);
7463 mddev
->private = NULL
;
7464 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev
));
7468 static void raid5_free(struct mddev
*mddev
, void *priv
)
7470 struct r5conf
*conf
= priv
;
7473 mddev
->to_remove
= &raid5_attrs_group
;
7476 static void raid5_status(struct seq_file
*seq
, struct mddev
*mddev
)
7478 struct r5conf
*conf
= mddev
->private;
7481 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7482 conf
->chunk_sectors
/ 2, mddev
->layout
);
7483 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7485 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7486 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
7487 seq_printf (seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
7490 seq_printf (seq
, "]");
7493 static void print_raid5_conf (struct r5conf
*conf
)
7496 struct disk_info
*tmp
;
7498 pr_debug("RAID conf printout:\n");
7500 pr_debug("(conf==NULL)\n");
7503 pr_debug(" --- level:%d rd:%d wd:%d\n", conf
->level
,
7505 conf
->raid_disks
- conf
->mddev
->degraded
);
7507 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7508 char b
[BDEVNAME_SIZE
];
7509 tmp
= conf
->disks
+ i
;
7511 pr_debug(" disk %d, o:%d, dev:%s\n",
7512 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7513 bdevname(tmp
->rdev
->bdev
, b
));
7517 static int raid5_spare_active(struct mddev
*mddev
)
7520 struct r5conf
*conf
= mddev
->private;
7521 struct disk_info
*tmp
;
7523 unsigned long flags
;
7525 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7526 tmp
= conf
->disks
+ i
;
7527 if (tmp
->replacement
7528 && tmp
->replacement
->recovery_offset
== MaxSector
7529 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7530 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7531 /* Replacement has just become active. */
7533 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7536 /* Replaced device not technically faulty,
7537 * but we need to be sure it gets removed
7538 * and never re-added.
7540 set_bit(Faulty
, &tmp
->rdev
->flags
);
7541 sysfs_notify_dirent_safe(
7542 tmp
->rdev
->sysfs_state
);
7544 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7545 } else if (tmp
->rdev
7546 && tmp
->rdev
->recovery_offset
== MaxSector
7547 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7548 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7550 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7553 spin_lock_irqsave(&conf
->device_lock
, flags
);
7554 mddev
->degraded
= raid5_calc_degraded(conf
);
7555 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7556 print_raid5_conf(conf
);
7560 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7562 struct r5conf
*conf
= mddev
->private;
7564 int number
= rdev
->raid_disk
;
7565 struct md_rdev
**rdevp
;
7566 struct disk_info
*p
= conf
->disks
+ number
;
7568 print_raid5_conf(conf
);
7569 if (test_bit(Journal
, &rdev
->flags
) && conf
->log
) {
7571 * we can't wait pending write here, as this is called in
7572 * raid5d, wait will deadlock.
7573 * neilb: there is no locking about new writes here,
7574 * so this cannot be safe.
7576 if (atomic_read(&conf
->active_stripes
) ||
7577 atomic_read(&conf
->r5c_cached_full_stripes
) ||
7578 atomic_read(&conf
->r5c_cached_partial_stripes
)) {
7584 if (rdev
== p
->rdev
)
7586 else if (rdev
== p
->replacement
)
7587 rdevp
= &p
->replacement
;
7591 if (number
>= conf
->raid_disks
&&
7592 conf
->reshape_progress
== MaxSector
)
7593 clear_bit(In_sync
, &rdev
->flags
);
7595 if (test_bit(In_sync
, &rdev
->flags
) ||
7596 atomic_read(&rdev
->nr_pending
)) {
7600 /* Only remove non-faulty devices if recovery
7603 if (!test_bit(Faulty
, &rdev
->flags
) &&
7604 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7605 !has_failed(conf
) &&
7606 (!p
->replacement
|| p
->replacement
== rdev
) &&
7607 number
< conf
->raid_disks
) {
7612 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
7614 if (atomic_read(&rdev
->nr_pending
)) {
7615 /* lost the race, try later */
7621 err
= log_modify(conf
, rdev
, false);
7625 if (p
->replacement
) {
7626 /* We must have just cleared 'rdev' */
7627 p
->rdev
= p
->replacement
;
7628 clear_bit(Replacement
, &p
->replacement
->flags
);
7629 smp_mb(); /* Make sure other CPUs may see both as identical
7630 * but will never see neither - if they are careful
7632 p
->replacement
= NULL
;
7635 err
= log_modify(conf
, p
->rdev
, true);
7638 clear_bit(WantReplacement
, &rdev
->flags
);
7641 print_raid5_conf(conf
);
7645 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7647 struct r5conf
*conf
= mddev
->private;
7650 struct disk_info
*p
;
7652 int last
= conf
->raid_disks
- 1;
7654 if (test_bit(Journal
, &rdev
->flags
)) {
7658 rdev
->raid_disk
= 0;
7660 * The array is in readonly mode if journal is missing, so no
7661 * write requests running. We should be safe
7663 log_init(conf
, rdev
, false);
7666 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7669 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7670 /* no point adding a device */
7673 if (rdev
->raid_disk
>= 0)
7674 first
= last
= rdev
->raid_disk
;
7677 * find the disk ... but prefer rdev->saved_raid_disk
7680 if (rdev
->saved_raid_disk
>= 0 &&
7681 rdev
->saved_raid_disk
>= first
&&
7682 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7683 first
= rdev
->saved_raid_disk
;
7685 for (disk
= first
; disk
<= last
; disk
++) {
7686 p
= conf
->disks
+ disk
;
7687 if (p
->rdev
== NULL
) {
7688 clear_bit(In_sync
, &rdev
->flags
);
7689 rdev
->raid_disk
= disk
;
7690 if (rdev
->saved_raid_disk
!= disk
)
7692 rcu_assign_pointer(p
->rdev
, rdev
);
7694 err
= log_modify(conf
, rdev
, true);
7699 for (disk
= first
; disk
<= last
; disk
++) {
7700 p
= conf
->disks
+ disk
;
7701 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7702 p
->replacement
== NULL
) {
7703 clear_bit(In_sync
, &rdev
->flags
);
7704 set_bit(Replacement
, &rdev
->flags
);
7705 rdev
->raid_disk
= disk
;
7708 rcu_assign_pointer(p
->replacement
, rdev
);
7713 print_raid5_conf(conf
);
7717 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7719 /* no resync is happening, and there is enough space
7720 * on all devices, so we can resize.
7721 * We need to make sure resync covers any new space.
7722 * If the array is shrinking we should possibly wait until
7723 * any io in the removed space completes, but it hardly seems
7727 struct r5conf
*conf
= mddev
->private;
7729 if (conf
->log
|| raid5_has_ppl(conf
))
7731 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7732 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7733 if (mddev
->external_size
&&
7734 mddev
->array_sectors
> newsize
)
7736 if (mddev
->bitmap
) {
7737 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7741 md_set_array_sectors(mddev
, newsize
);
7742 if (sectors
> mddev
->dev_sectors
&&
7743 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7744 mddev
->recovery_cp
= mddev
->dev_sectors
;
7745 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7747 mddev
->dev_sectors
= sectors
;
7748 mddev
->resync_max_sectors
= sectors
;
7752 static int check_stripe_cache(struct mddev
*mddev
)
7754 /* Can only proceed if there are plenty of stripe_heads.
7755 * We need a minimum of one full stripe,, and for sensible progress
7756 * it is best to have about 4 times that.
7757 * If we require 4 times, then the default 256 4K stripe_heads will
7758 * allow for chunk sizes up to 256K, which is probably OK.
7759 * If the chunk size is greater, user-space should request more
7760 * stripe_heads first.
7762 struct r5conf
*conf
= mddev
->private;
7763 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7764 > conf
->min_nr_stripes
||
7765 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7766 > conf
->min_nr_stripes
) {
7767 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7769 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7776 static int check_reshape(struct mddev
*mddev
)
7778 struct r5conf
*conf
= mddev
->private;
7780 if (conf
->log
|| raid5_has_ppl(conf
))
7782 if (mddev
->delta_disks
== 0 &&
7783 mddev
->new_layout
== mddev
->layout
&&
7784 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7785 return 0; /* nothing to do */
7786 if (has_failed(conf
))
7788 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7789 /* We might be able to shrink, but the devices must
7790 * be made bigger first.
7791 * For raid6, 4 is the minimum size.
7792 * Otherwise 2 is the minimum
7795 if (mddev
->level
== 6)
7797 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7801 if (!check_stripe_cache(mddev
))
7804 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7805 mddev
->delta_disks
> 0)
7806 if (resize_chunks(conf
,
7807 conf
->previous_raid_disks
7808 + max(0, mddev
->delta_disks
),
7809 max(mddev
->new_chunk_sectors
,
7810 mddev
->chunk_sectors
)
7814 if (conf
->previous_raid_disks
+ mddev
->delta_disks
<= conf
->pool_size
)
7815 return 0; /* never bother to shrink */
7816 return resize_stripes(conf
, (conf
->previous_raid_disks
7817 + mddev
->delta_disks
));
7820 static int raid5_start_reshape(struct mddev
*mddev
)
7822 struct r5conf
*conf
= mddev
->private;
7823 struct md_rdev
*rdev
;
7825 unsigned long flags
;
7827 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7830 if (!check_stripe_cache(mddev
))
7833 if (has_failed(conf
))
7836 rdev_for_each(rdev
, mddev
) {
7837 if (!test_bit(In_sync
, &rdev
->flags
)
7838 && !test_bit(Faulty
, &rdev
->flags
))
7842 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7843 /* Not enough devices even to make a degraded array
7848 /* Refuse to reduce size of the array. Any reductions in
7849 * array size must be through explicit setting of array_size
7852 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7853 < mddev
->array_sectors
) {
7854 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7859 atomic_set(&conf
->reshape_stripes
, 0);
7860 spin_lock_irq(&conf
->device_lock
);
7861 write_seqcount_begin(&conf
->gen_lock
);
7862 conf
->previous_raid_disks
= conf
->raid_disks
;
7863 conf
->raid_disks
+= mddev
->delta_disks
;
7864 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7865 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7866 conf
->prev_algo
= conf
->algorithm
;
7867 conf
->algorithm
= mddev
->new_layout
;
7869 /* Code that selects data_offset needs to see the generation update
7870 * if reshape_progress has been set - so a memory barrier needed.
7873 if (mddev
->reshape_backwards
)
7874 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7876 conf
->reshape_progress
= 0;
7877 conf
->reshape_safe
= conf
->reshape_progress
;
7878 write_seqcount_end(&conf
->gen_lock
);
7879 spin_unlock_irq(&conf
->device_lock
);
7881 /* Now make sure any requests that proceeded on the assumption
7882 * the reshape wasn't running - like Discard or Read - have
7885 mddev_suspend(mddev
);
7886 mddev_resume(mddev
);
7888 /* Add some new drives, as many as will fit.
7889 * We know there are enough to make the newly sized array work.
7890 * Don't add devices if we are reducing the number of
7891 * devices in the array. This is because it is not possible
7892 * to correctly record the "partially reconstructed" state of
7893 * such devices during the reshape and confusion could result.
7895 if (mddev
->delta_disks
>= 0) {
7896 rdev_for_each(rdev
, mddev
)
7897 if (rdev
->raid_disk
< 0 &&
7898 !test_bit(Faulty
, &rdev
->flags
)) {
7899 if (raid5_add_disk(mddev
, rdev
) == 0) {
7901 >= conf
->previous_raid_disks
)
7902 set_bit(In_sync
, &rdev
->flags
);
7904 rdev
->recovery_offset
= 0;
7906 if (sysfs_link_rdev(mddev
, rdev
))
7907 /* Failure here is OK */;
7909 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7910 && !test_bit(Faulty
, &rdev
->flags
)) {
7911 /* This is a spare that was manually added */
7912 set_bit(In_sync
, &rdev
->flags
);
7915 /* When a reshape changes the number of devices,
7916 * ->degraded is measured against the larger of the
7917 * pre and post number of devices.
7919 spin_lock_irqsave(&conf
->device_lock
, flags
);
7920 mddev
->degraded
= raid5_calc_degraded(conf
);
7921 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7923 mddev
->raid_disks
= conf
->raid_disks
;
7924 mddev
->reshape_position
= conf
->reshape_progress
;
7925 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
7927 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7928 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7929 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7930 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7931 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7932 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7934 if (!mddev
->sync_thread
) {
7935 mddev
->recovery
= 0;
7936 spin_lock_irq(&conf
->device_lock
);
7937 write_seqcount_begin(&conf
->gen_lock
);
7938 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7939 mddev
->new_chunk_sectors
=
7940 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7941 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7942 rdev_for_each(rdev
, mddev
)
7943 rdev
->new_data_offset
= rdev
->data_offset
;
7945 conf
->generation
--;
7946 conf
->reshape_progress
= MaxSector
;
7947 mddev
->reshape_position
= MaxSector
;
7948 write_seqcount_end(&conf
->gen_lock
);
7949 spin_unlock_irq(&conf
->device_lock
);
7952 conf
->reshape_checkpoint
= jiffies
;
7953 md_wakeup_thread(mddev
->sync_thread
);
7954 md_new_event(mddev
);
7958 /* This is called from the reshape thread and should make any
7959 * changes needed in 'conf'
7961 static void end_reshape(struct r5conf
*conf
)
7964 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
7965 struct md_rdev
*rdev
;
7967 spin_lock_irq(&conf
->device_lock
);
7968 conf
->previous_raid_disks
= conf
->raid_disks
;
7969 md_finish_reshape(conf
->mddev
);
7971 conf
->reshape_progress
= MaxSector
;
7972 conf
->mddev
->reshape_position
= MaxSector
;
7973 rdev_for_each(rdev
, conf
->mddev
)
7974 if (rdev
->raid_disk
>= 0 &&
7975 !test_bit(Journal
, &rdev
->flags
) &&
7976 !test_bit(In_sync
, &rdev
->flags
))
7977 rdev
->recovery_offset
= MaxSector
;
7978 spin_unlock_irq(&conf
->device_lock
);
7979 wake_up(&conf
->wait_for_overlap
);
7981 /* read-ahead size must cover two whole stripes, which is
7982 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7984 if (conf
->mddev
->queue
) {
7985 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
7986 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
7988 if (conf
->mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
7989 conf
->mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
7994 /* This is called from the raid5d thread with mddev_lock held.
7995 * It makes config changes to the device.
7997 static void raid5_finish_reshape(struct mddev
*mddev
)
7999 struct r5conf
*conf
= mddev
->private;
8001 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
8003 if (mddev
->delta_disks
<= 0) {
8005 spin_lock_irq(&conf
->device_lock
);
8006 mddev
->degraded
= raid5_calc_degraded(conf
);
8007 spin_unlock_irq(&conf
->device_lock
);
8008 for (d
= conf
->raid_disks
;
8009 d
< conf
->raid_disks
- mddev
->delta_disks
;
8011 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
8013 clear_bit(In_sync
, &rdev
->flags
);
8014 rdev
= conf
->disks
[d
].replacement
;
8016 clear_bit(In_sync
, &rdev
->flags
);
8019 mddev
->layout
= conf
->algorithm
;
8020 mddev
->chunk_sectors
= conf
->chunk_sectors
;
8021 mddev
->reshape_position
= MaxSector
;
8022 mddev
->delta_disks
= 0;
8023 mddev
->reshape_backwards
= 0;
8027 static void raid5_quiesce(struct mddev
*mddev
, int quiesce
)
8029 struct r5conf
*conf
= mddev
->private;
8032 /* stop all writes */
8033 lock_all_device_hash_locks_irq(conf
);
8034 /* '2' tells resync/reshape to pause so that all
8035 * active stripes can drain
8037 r5c_flush_cache(conf
, INT_MAX
);
8039 wait_event_cmd(conf
->wait_for_quiescent
,
8040 atomic_read(&conf
->active_stripes
) == 0 &&
8041 atomic_read(&conf
->active_aligned_reads
) == 0,
8042 unlock_all_device_hash_locks_irq(conf
),
8043 lock_all_device_hash_locks_irq(conf
));
8045 unlock_all_device_hash_locks_irq(conf
);
8046 /* allow reshape to continue */
8047 wake_up(&conf
->wait_for_overlap
);
8049 /* re-enable writes */
8050 lock_all_device_hash_locks_irq(conf
);
8052 wake_up(&conf
->wait_for_quiescent
);
8053 wake_up(&conf
->wait_for_overlap
);
8054 unlock_all_device_hash_locks_irq(conf
);
8056 log_quiesce(conf
, quiesce
);
8059 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
8061 struct r0conf
*raid0_conf
= mddev
->private;
8064 /* for raid0 takeover only one zone is supported */
8065 if (raid0_conf
->nr_strip_zones
> 1) {
8066 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8068 return ERR_PTR(-EINVAL
);
8071 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
8072 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
8073 mddev
->dev_sectors
= sectors
;
8074 mddev
->new_level
= level
;
8075 mddev
->new_layout
= ALGORITHM_PARITY_N
;
8076 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
8077 mddev
->raid_disks
+= 1;
8078 mddev
->delta_disks
= 1;
8079 /* make sure it will be not marked as dirty */
8080 mddev
->recovery_cp
= MaxSector
;
8082 return setup_conf(mddev
);
8085 static void *raid5_takeover_raid1(struct mddev
*mddev
)
8090 if (mddev
->raid_disks
!= 2 ||
8091 mddev
->degraded
> 1)
8092 return ERR_PTR(-EINVAL
);
8094 /* Should check if there are write-behind devices? */
8096 chunksect
= 64*2; /* 64K by default */
8098 /* The array must be an exact multiple of chunksize */
8099 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
8102 if ((chunksect
<<9) < STRIPE_SIZE
)
8103 /* array size does not allow a suitable chunk size */
8104 return ERR_PTR(-EINVAL
);
8106 mddev
->new_level
= 5;
8107 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
8108 mddev
->new_chunk_sectors
= chunksect
;
8110 ret
= setup_conf(mddev
);
8112 mddev_clear_unsupported_flags(mddev
,
8113 UNSUPPORTED_MDDEV_FLAGS
);
8117 static void *raid5_takeover_raid6(struct mddev
*mddev
)
8121 switch (mddev
->layout
) {
8122 case ALGORITHM_LEFT_ASYMMETRIC_6
:
8123 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
8125 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
8126 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
8128 case ALGORITHM_LEFT_SYMMETRIC_6
:
8129 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
8131 case ALGORITHM_RIGHT_SYMMETRIC_6
:
8132 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
8134 case ALGORITHM_PARITY_0_6
:
8135 new_layout
= ALGORITHM_PARITY_0
;
8137 case ALGORITHM_PARITY_N
:
8138 new_layout
= ALGORITHM_PARITY_N
;
8141 return ERR_PTR(-EINVAL
);
8143 mddev
->new_level
= 5;
8144 mddev
->new_layout
= new_layout
;
8145 mddev
->delta_disks
= -1;
8146 mddev
->raid_disks
-= 1;
8147 return setup_conf(mddev
);
8150 static int raid5_check_reshape(struct mddev
*mddev
)
8152 /* For a 2-drive array, the layout and chunk size can be changed
8153 * immediately as not restriping is needed.
8154 * For larger arrays we record the new value - after validation
8155 * to be used by a reshape pass.
8157 struct r5conf
*conf
= mddev
->private;
8158 int new_chunk
= mddev
->new_chunk_sectors
;
8160 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
8162 if (new_chunk
> 0) {
8163 if (!is_power_of_2(new_chunk
))
8165 if (new_chunk
< (PAGE_SIZE
>>9))
8167 if (mddev
->array_sectors
& (new_chunk
-1))
8168 /* not factor of array size */
8172 /* They look valid */
8174 if (mddev
->raid_disks
== 2) {
8175 /* can make the change immediately */
8176 if (mddev
->new_layout
>= 0) {
8177 conf
->algorithm
= mddev
->new_layout
;
8178 mddev
->layout
= mddev
->new_layout
;
8180 if (new_chunk
> 0) {
8181 conf
->chunk_sectors
= new_chunk
;
8182 mddev
->chunk_sectors
= new_chunk
;
8184 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
8185 md_wakeup_thread(mddev
->thread
);
8187 return check_reshape(mddev
);
8190 static int raid6_check_reshape(struct mddev
*mddev
)
8192 int new_chunk
= mddev
->new_chunk_sectors
;
8194 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
8196 if (new_chunk
> 0) {
8197 if (!is_power_of_2(new_chunk
))
8199 if (new_chunk
< (PAGE_SIZE
>> 9))
8201 if (mddev
->array_sectors
& (new_chunk
-1))
8202 /* not factor of array size */
8206 /* They look valid */
8207 return check_reshape(mddev
);
8210 static void *raid5_takeover(struct mddev
*mddev
)
8212 /* raid5 can take over:
8213 * raid0 - if there is only one strip zone - make it a raid4 layout
8214 * raid1 - if there are two drives. We need to know the chunk size
8215 * raid4 - trivial - just use a raid4 layout.
8216 * raid6 - Providing it is a *_6 layout
8218 if (mddev
->level
== 0)
8219 return raid45_takeover_raid0(mddev
, 5);
8220 if (mddev
->level
== 1)
8221 return raid5_takeover_raid1(mddev
);
8222 if (mddev
->level
== 4) {
8223 mddev
->new_layout
= ALGORITHM_PARITY_N
;
8224 mddev
->new_level
= 5;
8225 return setup_conf(mddev
);
8227 if (mddev
->level
== 6)
8228 return raid5_takeover_raid6(mddev
);
8230 return ERR_PTR(-EINVAL
);
8233 static void *raid4_takeover(struct mddev
*mddev
)
8235 /* raid4 can take over:
8236 * raid0 - if there is only one strip zone
8237 * raid5 - if layout is right
8239 if (mddev
->level
== 0)
8240 return raid45_takeover_raid0(mddev
, 4);
8241 if (mddev
->level
== 5 &&
8242 mddev
->layout
== ALGORITHM_PARITY_N
) {
8243 mddev
->new_layout
= 0;
8244 mddev
->new_level
= 4;
8245 return setup_conf(mddev
);
8247 return ERR_PTR(-EINVAL
);
8250 static struct md_personality raid5_personality
;
8252 static void *raid6_takeover(struct mddev
*mddev
)
8254 /* Currently can only take over a raid5. We map the
8255 * personality to an equivalent raid6 personality
8256 * with the Q block at the end.
8260 if (mddev
->pers
!= &raid5_personality
)
8261 return ERR_PTR(-EINVAL
);
8262 if (mddev
->degraded
> 1)
8263 return ERR_PTR(-EINVAL
);
8264 if (mddev
->raid_disks
> 253)
8265 return ERR_PTR(-EINVAL
);
8266 if (mddev
->raid_disks
< 3)
8267 return ERR_PTR(-EINVAL
);
8269 switch (mddev
->layout
) {
8270 case ALGORITHM_LEFT_ASYMMETRIC
:
8271 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
8273 case ALGORITHM_RIGHT_ASYMMETRIC
:
8274 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
8276 case ALGORITHM_LEFT_SYMMETRIC
:
8277 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
8279 case ALGORITHM_RIGHT_SYMMETRIC
:
8280 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
8282 case ALGORITHM_PARITY_0
:
8283 new_layout
= ALGORITHM_PARITY_0_6
;
8285 case ALGORITHM_PARITY_N
:
8286 new_layout
= ALGORITHM_PARITY_N
;
8289 return ERR_PTR(-EINVAL
);
8291 mddev
->new_level
= 6;
8292 mddev
->new_layout
= new_layout
;
8293 mddev
->delta_disks
= 1;
8294 mddev
->raid_disks
+= 1;
8295 return setup_conf(mddev
);
8298 static int raid5_change_consistency_policy(struct mddev
*mddev
, const char *buf
)
8300 struct r5conf
*conf
;
8303 err
= mddev_lock(mddev
);
8306 conf
= mddev
->private;
8308 mddev_unlock(mddev
);
8312 if (strncmp(buf
, "ppl", 3) == 0) {
8313 /* ppl only works with RAID 5 */
8314 if (!raid5_has_ppl(conf
) && conf
->level
== 5) {
8315 err
= log_init(conf
, NULL
, true);
8317 err
= resize_stripes(conf
, conf
->pool_size
);
8323 } else if (strncmp(buf
, "resync", 6) == 0) {
8324 if (raid5_has_ppl(conf
)) {
8325 mddev_suspend(mddev
);
8327 mddev_resume(mddev
);
8328 err
= resize_stripes(conf
, conf
->pool_size
);
8329 } else if (test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
) &&
8330 r5l_log_disk_error(conf
)) {
8331 bool journal_dev_exists
= false;
8332 struct md_rdev
*rdev
;
8334 rdev_for_each(rdev
, mddev
)
8335 if (test_bit(Journal
, &rdev
->flags
)) {
8336 journal_dev_exists
= true;
8340 if (!journal_dev_exists
) {
8341 mddev_suspend(mddev
);
8342 clear_bit(MD_HAS_JOURNAL
, &mddev
->flags
);
8343 mddev_resume(mddev
);
8344 } else /* need remove journal device first */
8353 md_update_sb(mddev
, 1);
8355 mddev_unlock(mddev
);
8360 static int raid5_start(struct mddev
*mddev
)
8362 struct r5conf
*conf
= mddev
->private;
8364 return r5l_start(conf
->log
);
8367 static struct md_personality raid6_personality
=
8371 .owner
= THIS_MODULE
,
8372 .make_request
= raid5_make_request
,
8374 .start
= raid5_start
,
8376 .status
= raid5_status
,
8377 .error_handler
= raid5_error
,
8378 .hot_add_disk
= raid5_add_disk
,
8379 .hot_remove_disk
= raid5_remove_disk
,
8380 .spare_active
= raid5_spare_active
,
8381 .sync_request
= raid5_sync_request
,
8382 .resize
= raid5_resize
,
8384 .check_reshape
= raid6_check_reshape
,
8385 .start_reshape
= raid5_start_reshape
,
8386 .finish_reshape
= raid5_finish_reshape
,
8387 .quiesce
= raid5_quiesce
,
8388 .takeover
= raid6_takeover
,
8389 .congested
= raid5_congested
,
8390 .change_consistency_policy
= raid5_change_consistency_policy
,
8392 static struct md_personality raid5_personality
=
8396 .owner
= THIS_MODULE
,
8397 .make_request
= raid5_make_request
,
8399 .start
= raid5_start
,
8401 .status
= raid5_status
,
8402 .error_handler
= raid5_error
,
8403 .hot_add_disk
= raid5_add_disk
,
8404 .hot_remove_disk
= raid5_remove_disk
,
8405 .spare_active
= raid5_spare_active
,
8406 .sync_request
= raid5_sync_request
,
8407 .resize
= raid5_resize
,
8409 .check_reshape
= raid5_check_reshape
,
8410 .start_reshape
= raid5_start_reshape
,
8411 .finish_reshape
= raid5_finish_reshape
,
8412 .quiesce
= raid5_quiesce
,
8413 .takeover
= raid5_takeover
,
8414 .congested
= raid5_congested
,
8415 .change_consistency_policy
= raid5_change_consistency_policy
,
8418 static struct md_personality raid4_personality
=
8422 .owner
= THIS_MODULE
,
8423 .make_request
= raid5_make_request
,
8425 .start
= raid5_start
,
8427 .status
= raid5_status
,
8428 .error_handler
= raid5_error
,
8429 .hot_add_disk
= raid5_add_disk
,
8430 .hot_remove_disk
= raid5_remove_disk
,
8431 .spare_active
= raid5_spare_active
,
8432 .sync_request
= raid5_sync_request
,
8433 .resize
= raid5_resize
,
8435 .check_reshape
= raid5_check_reshape
,
8436 .start_reshape
= raid5_start_reshape
,
8437 .finish_reshape
= raid5_finish_reshape
,
8438 .quiesce
= raid5_quiesce
,
8439 .takeover
= raid4_takeover
,
8440 .congested
= raid5_congested
,
8441 .change_consistency_policy
= raid5_change_consistency_policy
,
8444 static int __init
raid5_init(void)
8448 raid5_wq
= alloc_workqueue("raid5wq",
8449 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
8453 ret
= cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE
,
8455 raid456_cpu_up_prepare
,
8458 destroy_workqueue(raid5_wq
);
8461 register_md_personality(&raid6_personality
);
8462 register_md_personality(&raid5_personality
);
8463 register_md_personality(&raid4_personality
);
8467 static void raid5_exit(void)
8469 unregister_md_personality(&raid6_personality
);
8470 unregister_md_personality(&raid5_personality
);
8471 unregister_md_personality(&raid4_personality
);
8472 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE
);
8473 destroy_workqueue(raid5_wq
);
8476 module_init(raid5_init
);
8477 module_exit(raid5_exit
);
8478 MODULE_LICENSE("GPL");
8479 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8480 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8481 MODULE_ALIAS("md-raid5");
8482 MODULE_ALIAS("md-raid4");
8483 MODULE_ALIAS("md-level-5");
8484 MODULE_ALIAS("md-level-4");
8485 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8486 MODULE_ALIAS("md-raid6");
8487 MODULE_ALIAS("md-level-6");
8489 /* This used to be two separate modules, they were: */
8490 MODULE_ALIAS("raid5");
8491 MODULE_ALIAS("raid6");