2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4 * Copyright (C) 2003-2007 Micronas
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 only, as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * To obtain the license, point your browser to
17 * http://www.gnu.org/copyleft/gpl.html
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/i2c.h>
27 #include <asm/div64.h>
29 #include <media/dvb_frontend.h>
31 #include "drxd_firm.h"
33 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
34 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
38 #define DRX_I2C_RMW 0x10
39 #define DRX_I2C_BROADCAST 0x20
40 #define DRX_I2C_CLEARCRC 0x80
41 #define DRX_I2C_SINGLE_MASTER 0xC0
42 #define DRX_I2C_MODEFLAGS 0xC0
43 #define DRX_I2C_FLAGS 0xF0
45 #define DEFAULT_LOCK_TIMEOUT 1100
47 #define DRX_CHANNEL_AUTO 0
48 #define DRX_CHANNEL_HIGH 1
49 #define DRX_CHANNEL_LOW 2
51 #define DRX_LOCK_MPEG 1
52 #define DRX_LOCK_FEC 2
53 #define DRX_LOCK_DEMOD 4
55 /****************************************************************************/
64 DRXD_UNINITIALIZED
= 0,
77 OM_DVBT_Diversity_Front
,
82 enum AGC_CTRL_MODE ctrlMode
;
83 u16 outputLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
84 u16 settleLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
85 u16 minOutputLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
86 u16 maxOutputLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
87 u16 speed
; /* range [0, ... , 1023], 1/n of fullscale range */
109 IFFILTER_DISCRETE
= 1
113 struct dvb_frontend frontend
;
114 struct dvb_frontend_ops ops
;
115 struct dtv_frontend_properties props
;
117 const struct firmware
*fw
;
120 struct i2c_adapter
*i2c
;
122 struct drxd_config config
;
129 u16 hi_cfg_timing_div
;
130 u16 hi_cfg_bridge_delay
;
131 u16 hi_cfg_wakeup_key
;
134 u16 intermediate_freq
;
137 enum CSCDState cscd_state
;
138 enum CDrxdState drxd_state
;
141 s16 osc_clock_deviation
;
142 u16 expected_sys_clock_freq
;
149 struct SCfgAgc if_agc_cfg
;
150 struct SCfgAgc rf_agc_cfg
;
152 struct SNoiseCal noise_cal
;
155 u32 org_fe_fs_add_incr
;
156 u16 current_fe_if_incr
;
159 u16 m_FeAgRegAgAgcSio
;
161 u16 m_EcOcRegOcModeLop
;
162 u16 m_EcOcRegSncSncLvl
;
163 u8
*m_InitAtomicRead
;
175 u8
*m_InitDiversityFront
;
176 u8
*m_InitDiversityEnd
;
177 u8
*m_DisableDiversity
;
178 u8
*m_StartDiversityFront
;
179 u8
*m_StartDiversityEnd
;
181 u8
*m_DiversityDelay8MHZ
;
182 u8
*m_DiversityDelay6MHZ
;
185 u32 microcode_length
;
192 enum app_env app_env_default
;
193 enum app_env app_env_diversity
;
197 /****************************************************************************/
198 /* I2C **********************************************************************/
199 /****************************************************************************/
201 static int i2c_write(struct i2c_adapter
*adap
, u8 adr
, u8
* data
, int len
)
203 struct i2c_msg msg
= {.addr
= adr
, .flags
= 0, .buf
= data
, .len
= len
};
205 if (i2c_transfer(adap
, &msg
, 1) != 1)
210 static int i2c_read(struct i2c_adapter
*adap
,
211 u8 adr
, u8
*msg
, int len
, u8
*answ
, int alen
)
213 struct i2c_msg msgs
[2] = {
215 .addr
= adr
, .flags
= 0,
216 .buf
= msg
, .len
= len
218 .addr
= adr
, .flags
= I2C_M_RD
,
219 .buf
= answ
, .len
= alen
222 if (i2c_transfer(adap
, msgs
, 2) != 2)
227 static inline u32
MulDiv32(u32 a
, u32 b
, u32 c
)
231 tmp64
= (u64
)a
* (u64
)b
;
237 static int Read16(struct drxd_state
*state
, u32 reg
, u16
*data
, u8 flags
)
239 u8 adr
= state
->config
.demod_address
;
240 u8 mm1
[4] = { reg
& 0xff, (reg
>> 16) & 0xff,
241 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff
244 if (i2c_read(state
->i2c
, adr
, mm1
, 4, mm2
, 2) < 0)
247 *data
= mm2
[0] | (mm2
[1] << 8);
248 return mm2
[0] | (mm2
[1] << 8);
251 static int Read32(struct drxd_state
*state
, u32 reg
, u32
*data
, u8 flags
)
253 u8 adr
= state
->config
.demod_address
;
254 u8 mm1
[4] = { reg
& 0xff, (reg
>> 16) & 0xff,
255 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff
259 if (i2c_read(state
->i2c
, adr
, mm1
, 4, mm2
, 4) < 0)
263 mm2
[0] | (mm2
[1] << 8) | (mm2
[2] << 16) | (mm2
[3] << 24);
267 static int Write16(struct drxd_state
*state
, u32 reg
, u16 data
, u8 flags
)
269 u8 adr
= state
->config
.demod_address
;
270 u8 mm
[6] = { reg
& 0xff, (reg
>> 16) & 0xff,
271 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff,
272 data
& 0xff, (data
>> 8) & 0xff
275 if (i2c_write(state
->i2c
, adr
, mm
, 6) < 0)
280 static int Write32(struct drxd_state
*state
, u32 reg
, u32 data
, u8 flags
)
282 u8 adr
= state
->config
.demod_address
;
283 u8 mm
[8] = { reg
& 0xff, (reg
>> 16) & 0xff,
284 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff,
285 data
& 0xff, (data
>> 8) & 0xff,
286 (data
>> 16) & 0xff, (data
>> 24) & 0xff
289 if (i2c_write(state
->i2c
, adr
, mm
, 8) < 0)
294 static int write_chunk(struct drxd_state
*state
,
295 u32 reg
, u8
*data
, u32 len
, u8 flags
)
297 u8 adr
= state
->config
.demod_address
;
298 u8 mm
[CHUNK_SIZE
+ 4] = { reg
& 0xff, (reg
>> 16) & 0xff,
299 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff
303 for (i
= 0; i
< len
; i
++)
305 if (i2c_write(state
->i2c
, adr
, mm
, 4 + len
) < 0) {
306 printk(KERN_ERR
"error in write_chunk\n");
312 static int WriteBlock(struct drxd_state
*state
,
313 u32 Address
, u16 BlockSize
, u8
*pBlock
, u8 Flags
)
315 while (BlockSize
> 0) {
316 u16 Chunk
= BlockSize
> CHUNK_SIZE
? CHUNK_SIZE
: BlockSize
;
318 if (write_chunk(state
, Address
, pBlock
, Chunk
, Flags
) < 0)
321 Address
+= (Chunk
>> 1);
327 static int WriteTable(struct drxd_state
*state
, u8
* pTable
)
336 u32 Address
= pTable
[0] | (pTable
[1] << 8) |
337 (pTable
[2] << 16) | (pTable
[3] << 24);
339 if (Address
== 0xFFFFFFFF)
341 pTable
+= sizeof(u32
);
343 Length
= pTable
[0] | (pTable
[1] << 8);
344 pTable
+= sizeof(u16
);
347 status
= WriteBlock(state
, Address
, Length
* 2, pTable
, 0);
348 pTable
+= (Length
* 2);
353 /****************************************************************************/
354 /****************************************************************************/
355 /****************************************************************************/
357 static int ResetCEFR(struct drxd_state
*state
)
359 return WriteTable(state
, state
->m_ResetCEFR
);
362 static int InitCP(struct drxd_state
*state
)
364 return WriteTable(state
, state
->m_InitCP
);
367 static int InitCE(struct drxd_state
*state
)
370 enum app_env AppEnv
= state
->app_env_default
;
373 status
= WriteTable(state
, state
->m_InitCE
);
377 if (state
->operation_mode
== OM_DVBT_Diversity_Front
||
378 state
->operation_mode
== OM_DVBT_Diversity_End
) {
379 AppEnv
= state
->app_env_diversity
;
381 if (AppEnv
== APPENV_STATIC
) {
382 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0000, 0);
385 } else if (AppEnv
== APPENV_PORTABLE
) {
386 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0001, 0);
389 } else if (AppEnv
== APPENV_MOBILE
&& state
->type_A
) {
390 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0002, 0);
393 } else if (AppEnv
== APPENV_MOBILE
&& !state
->type_A
) {
394 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0006, 0);
400 status
= Write16(state
, B_CE_REG_COMM_EXEC__A
, 0x0001, 0);
407 static int StopOC(struct drxd_state
*state
)
411 u16 ocModeLop
= state
->m_EcOcRegOcModeLop
;
416 /* Store output configuration */
417 status
= Read16(state
, EC_OC_REG_SNC_ISC_LVL__A
, &ocSyncLvl
, 0);
420 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
421 state
->m_EcOcRegSncSncLvl
= ocSyncLvl
;
422 /* m_EcOcRegOcModeLop = ocModeLop; */
424 /* Flush FIFO (byte-boundary) at fixed rate */
425 status
= Read16(state
, EC_OC_REG_RCN_MAP_LOP__A
, &dtoIncLop
, 0);
428 status
= Read16(state
, EC_OC_REG_RCN_MAP_HIP__A
, &dtoIncHip
, 0);
431 status
= Write16(state
, EC_OC_REG_DTO_INC_LOP__A
, dtoIncLop
, 0);
434 status
= Write16(state
, EC_OC_REG_DTO_INC_HIP__A
, dtoIncHip
, 0);
437 ocModeLop
&= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M
);
438 ocModeLop
|= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC
;
439 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, ocModeLop
, 0);
442 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_HOLD
, 0);
447 /* Output pins to '0' */
448 status
= Write16(state
, EC_OC_REG_OCR_MPG_UOS__A
, EC_OC_REG_OCR_MPG_UOS__M
, 0);
452 /* Force the OC out of sync */
453 ocSyncLvl
&= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M
);
454 status
= Write16(state
, EC_OC_REG_SNC_ISC_LVL__A
, ocSyncLvl
, 0);
457 ocModeLop
&= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M
);
458 ocModeLop
|= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE
;
459 ocModeLop
|= 0x2; /* Magically-out-of-sync */
460 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, ocModeLop
, 0);
463 status
= Write16(state
, EC_OC_REG_COMM_INT_STA__A
, 0x0, 0);
466 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_ACTIVE
, 0);
474 static int StartOC(struct drxd_state
*state
)
480 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_HOLD
, 0);
484 /* Restore output configuration */
485 status
= Write16(state
, EC_OC_REG_SNC_ISC_LVL__A
, state
->m_EcOcRegSncSncLvl
, 0);
488 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, state
->m_EcOcRegOcModeLop
, 0);
492 /* Output pins active again */
493 status
= Write16(state
, EC_OC_REG_OCR_MPG_UOS__A
, EC_OC_REG_OCR_MPG_UOS_INIT
, 0);
498 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_ACTIVE
, 0);
505 static int InitEQ(struct drxd_state
*state
)
507 return WriteTable(state
, state
->m_InitEQ
);
510 static int InitEC(struct drxd_state
*state
)
512 return WriteTable(state
, state
->m_InitEC
);
515 static int InitSC(struct drxd_state
*state
)
517 return WriteTable(state
, state
->m_InitSC
);
520 static int InitAtomicRead(struct drxd_state
*state
)
522 return WriteTable(state
, state
->m_InitAtomicRead
);
525 static int CorrectSysClockDeviation(struct drxd_state
*state
);
527 static int DRX_GetLockStatus(struct drxd_state
*state
, u32
* pLockStatus
)
530 const u16 mpeg_lock_mask
= (SC_RA_RAM_LOCK_MPEG__M
|
531 SC_RA_RAM_LOCK_FEC__M
|
532 SC_RA_RAM_LOCK_DEMOD__M
);
533 const u16 fec_lock_mask
= (SC_RA_RAM_LOCK_FEC__M
|
534 SC_RA_RAM_LOCK_DEMOD__M
);
535 const u16 demod_lock_mask
= SC_RA_RAM_LOCK_DEMOD__M
;
541 status
= Read16(state
, SC_RA_RAM_LOCK__A
, &ScRaRamLock
, 0x0000);
543 printk(KERN_ERR
"Can't read SC_RA_RAM_LOCK__A status = %08x\n", status
);
547 if (state
->drxd_state
!= DRXD_STARTED
)
550 if ((ScRaRamLock
& mpeg_lock_mask
) == mpeg_lock_mask
) {
551 *pLockStatus
|= DRX_LOCK_MPEG
;
552 CorrectSysClockDeviation(state
);
555 if ((ScRaRamLock
& fec_lock_mask
) == fec_lock_mask
)
556 *pLockStatus
|= DRX_LOCK_FEC
;
558 if ((ScRaRamLock
& demod_lock_mask
) == demod_lock_mask
)
559 *pLockStatus
|= DRX_LOCK_DEMOD
;
563 /****************************************************************************/
565 static int SetCfgIfAgc(struct drxd_state
*state
, struct SCfgAgc
*cfg
)
569 if (cfg
->outputLevel
> DRXD_FE_CTRL_MAX
)
572 if (cfg
->ctrlMode
== AGC_CTRL_USER
) {
574 u16 FeAgRegPm1AgcWri
;
575 u16 FeAgRegAgModeLop
;
577 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &FeAgRegAgModeLop
, 0);
580 FeAgRegAgModeLop
&= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M
);
581 FeAgRegAgModeLop
|= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC
;
582 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, FeAgRegAgModeLop
, 0);
586 FeAgRegPm1AgcWri
= (u16
) (cfg
->outputLevel
&
587 FE_AG_REG_PM1_AGC_WRI__M
);
588 status
= Write16(state
, FE_AG_REG_PM1_AGC_WRI__A
, FeAgRegPm1AgcWri
, 0);
592 } else if (cfg
->ctrlMode
== AGC_CTRL_AUTO
) {
593 if (((cfg
->maxOutputLevel
) < (cfg
->minOutputLevel
)) ||
594 ((cfg
->maxOutputLevel
) > DRXD_FE_CTRL_MAX
) ||
595 ((cfg
->speed
) > DRXD_FE_CTRL_MAX
) ||
596 ((cfg
->settleLevel
) > DRXD_FE_CTRL_MAX
)
600 u16 FeAgRegAgModeLop
;
601 u16 FeAgRegEgcSetLvl
;
606 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &FeAgRegAgModeLop
, 0);
609 FeAgRegAgModeLop
&= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M
);
611 FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC
;
612 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, FeAgRegAgModeLop
, 0);
616 /* == Settle level == */
618 FeAgRegEgcSetLvl
= (u16
) ((cfg
->settleLevel
>> 1) &
619 FE_AG_REG_EGC_SET_LVL__M
);
620 status
= Write16(state
, FE_AG_REG_EGC_SET_LVL__A
, FeAgRegEgcSetLvl
, 0);
626 slope
= (u16
) ((cfg
->maxOutputLevel
-
627 cfg
->minOutputLevel
) / 2);
628 offset
= (u16
) ((cfg
->maxOutputLevel
+
629 cfg
->minOutputLevel
) / 2 - 511);
631 status
= Write16(state
, FE_AG_REG_GC1_AGC_RIC__A
, slope
, 0);
634 status
= Write16(state
, FE_AG_REG_GC1_AGC_OFF__A
, offset
, 0);
640 const u16 maxRur
= 8;
641 static const u16 slowIncrDecLUT
[] = {
643 static const u16 fastIncrDecLUT
[] = {
651 u16 fineSteps
= (DRXD_FE_CTRL_MAX
+ 1) /
653 u16 fineSpeed
= (u16
) (cfg
->speed
-
657 u16 invRurCount
= (u16
) (cfg
->speed
/
660 if (invRurCount
> maxRur
) {
662 fineSpeed
+= fineSteps
;
664 rurCount
= maxRur
- invRurCount
;
669 (2^(fineSpeed/fineSteps))
670 => range[default...2*default>
672 (2^(fineSpeed/fineSteps))
676 fastIncrDecLUT
[fineSpeed
/
680 slowIncrDecLUT
[fineSpeed
/
684 status
= Write16(state
, FE_AG_REG_EGC_RUR_CNT__A
, rurCount
, 0);
687 status
= Write16(state
, FE_AG_REG_EGC_FAS_INC__A
, fastIncrDec
, 0);
690 status
= Write16(state
, FE_AG_REG_EGC_FAS_DEC__A
, fastIncrDec
, 0);
693 status
= Write16(state
, FE_AG_REG_EGC_SLO_INC__A
, slowIncrDec
, 0);
696 status
= Write16(state
, FE_AG_REG_EGC_SLO_DEC__A
, slowIncrDec
, 0);
704 /* No OFF mode for IF control */
710 static int SetCfgRfAgc(struct drxd_state
*state
, struct SCfgAgc
*cfg
)
714 if (cfg
->outputLevel
> DRXD_FE_CTRL_MAX
)
717 if (cfg
->ctrlMode
== AGC_CTRL_USER
) {
720 u16 level
= (cfg
->outputLevel
);
722 if (level
== DRXD_FE_CTRL_MAX
)
725 status
= Write16(state
, FE_AG_REG_PM2_AGC_WRI__A
, level
, 0x0000);
731 /* Powerdown PD2, WRI source */
732 state
->m_FeAgRegAgPwd
&= ~(FE_AG_REG_AG_PWD_PWD_PD2__M
);
733 state
->m_FeAgRegAgPwd
|=
734 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE
;
735 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, state
->m_FeAgRegAgPwd
, 0x0000);
739 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
742 AgModeLop
&= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M
|
743 FE_AG_REG_AG_MODE_LOP_MODE_E__M
));
744 AgModeLop
|= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC
|
745 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC
);
746 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
750 /* enable AGC2 pin */
752 u16 FeAgRegAgAgcSio
= 0;
753 status
= Read16(state
, FE_AG_REG_AG_AGC_SIO__A
, &FeAgRegAgAgcSio
, 0x0000);
757 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M
);
759 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT
;
760 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, FeAgRegAgAgcSio
, 0x0000);
766 } else if (cfg
->ctrlMode
== AGC_CTRL_AUTO
) {
771 /* Automatic control */
772 /* Powerup PD2, AGC2 as output, TGC source */
773 (state
->m_FeAgRegAgPwd
) &=
774 ~(FE_AG_REG_AG_PWD_PWD_PD2__M
);
775 (state
->m_FeAgRegAgPwd
) |=
776 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE
;
777 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, (state
->m_FeAgRegAgPwd
), 0x0000);
781 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
784 AgModeLop
&= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M
|
785 FE_AG_REG_AG_MODE_LOP_MODE_E__M
));
786 AgModeLop
|= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC
|
787 FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC
);
788 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
792 level
= (((cfg
->settleLevel
) >> 4) &
793 FE_AG_REG_TGC_SET_LVL__M
);
794 status
= Write16(state
, FE_AG_REG_TGC_SET_LVL__A
, level
, 0x0000);
798 /* Min/max: don't care */
802 /* enable AGC2 pin */
804 u16 FeAgRegAgAgcSio
= 0;
805 status
= Read16(state
, FE_AG_REG_AG_AGC_SIO__A
, &FeAgRegAgAgcSio
, 0x0000);
809 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M
);
811 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT
;
812 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, FeAgRegAgAgcSio
, 0x0000);
822 /* No RF AGC control */
823 /* Powerdown PD2, AGC2 as output, WRI source */
824 (state
->m_FeAgRegAgPwd
) &=
825 ~(FE_AG_REG_AG_PWD_PWD_PD2__M
);
826 (state
->m_FeAgRegAgPwd
) |=
827 FE_AG_REG_AG_PWD_PWD_PD2_ENABLE
;
828 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, (state
->m_FeAgRegAgPwd
), 0x0000);
832 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
835 AgModeLop
&= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M
|
836 FE_AG_REG_AG_MODE_LOP_MODE_E__M
));
837 AgModeLop
|= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC
|
838 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC
);
839 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
843 /* set FeAgRegAgAgcSio AGC2 (RF) as input */
845 u16 FeAgRegAgAgcSio
= 0;
846 status
= Read16(state
, FE_AG_REG_AG_AGC_SIO__A
, &FeAgRegAgAgcSio
, 0x0000);
850 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M
);
852 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT
;
853 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, FeAgRegAgAgcSio
, 0x0000);
862 static int ReadIFAgc(struct drxd_state
*state
, u32
* pValue
)
867 if (state
->if_agc_cfg
.ctrlMode
!= AGC_CTRL_OFF
) {
869 status
= Read16(state
, FE_AG_REG_GC1_AGC_DAT__A
, &Value
, 0);
870 Value
&= FE_AG_REG_GC1_AGC_DAT__M
;
882 u32 R1
= state
->if_agc_cfg
.R1
;
883 u32 R2
= state
->if_agc_cfg
.R2
;
884 u32 R3
= state
->if_agc_cfg
.R3
;
886 u32 Vmax
, Rpar
, Vmin
, Vout
;
888 if (R2
== 0 && (R1
== 0 || R3
== 0))
891 Vmax
= (3300 * R2
) / (R1
+ R2
);
892 Rpar
= (R2
* R3
) / (R3
+ R2
);
893 Vmin
= (3300 * Rpar
) / (R1
+ Rpar
);
894 Vout
= Vmin
+ ((Vmax
- Vmin
) * Value
) / 1024;
902 static int load_firmware(struct drxd_state
*state
, const char *fw_name
)
904 const struct firmware
*fw
;
906 if (request_firmware(&fw
, fw_name
, state
->dev
) < 0) {
907 printk(KERN_ERR
"drxd: firmware load failure [%s]\n", fw_name
);
911 state
->microcode
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
912 if (!state
->microcode
) {
913 release_firmware(fw
);
917 state
->microcode_length
= fw
->size
;
918 release_firmware(fw
);
922 static int DownloadMicrocode(struct drxd_state
*state
,
923 const u8
*pMCImage
, u32 Length
)
932 pSrc
= (u8
*) pMCImage
;
933 /* We're not using Flags */
934 /* Flags = (pSrc[0] << 8) | pSrc[1]; */
936 offset
+= sizeof(u16
);
937 nBlocks
= (pSrc
[0] << 8) | pSrc
[1];
939 offset
+= sizeof(u16
);
941 for (i
= 0; i
< nBlocks
; i
++) {
942 Address
= (pSrc
[0] << 24) | (pSrc
[1] << 16) |
943 (pSrc
[2] << 8) | pSrc
[3];
945 offset
+= sizeof(u32
);
947 BlockSize
= ((pSrc
[0] << 8) | pSrc
[1]) * sizeof(u16
);
949 offset
+= sizeof(u16
);
951 /* We're not using Flags */
952 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
954 offset
+= sizeof(u16
);
956 /* We're not using BlockCRC */
957 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
959 offset
+= sizeof(u16
);
961 status
= WriteBlock(state
, Address
, BlockSize
,
962 pSrc
, DRX_I2C_CLEARCRC
);
972 static int HI_Command(struct drxd_state
*state
, u16 cmd
, u16
* pResult
)
977 status
= Write16(state
, HI_RA_RAM_SRV_CMD__A
, cmd
, 0);
983 if (nrRetries
> DRXD_MAX_RETRIES
) {
987 status
= Read16(state
, HI_RA_RAM_SRV_CMD__A
, NULL
, 0);
988 } while (status
!= 0);
991 status
= Read16(state
, HI_RA_RAM_SRV_RES__A
, pResult
, 0);
995 static int HI_CfgCommand(struct drxd_state
*state
)
999 mutex_lock(&state
->mutex
);
1000 Write16(state
, HI_RA_RAM_SRV_CFG_KEY__A
, HI_RA_RAM_SRV_RST_KEY_ACT
, 0);
1001 Write16(state
, HI_RA_RAM_SRV_CFG_DIV__A
, state
->hi_cfg_timing_div
, 0);
1002 Write16(state
, HI_RA_RAM_SRV_CFG_BDL__A
, state
->hi_cfg_bridge_delay
, 0);
1003 Write16(state
, HI_RA_RAM_SRV_CFG_WUP__A
, state
->hi_cfg_wakeup_key
, 0);
1004 Write16(state
, HI_RA_RAM_SRV_CFG_ACT__A
, state
->hi_cfg_ctrl
, 0);
1006 Write16(state
, HI_RA_RAM_SRV_CFG_KEY__A
, HI_RA_RAM_SRV_RST_KEY_ACT
, 0);
1008 if ((state
->hi_cfg_ctrl
& HI_RA_RAM_SRV_CFG_ACT_PWD_EXE
) ==
1009 HI_RA_RAM_SRV_CFG_ACT_PWD_EXE
)
1010 status
= Write16(state
, HI_RA_RAM_SRV_CMD__A
,
1011 HI_RA_RAM_SRV_CMD_CONFIG
, 0);
1013 status
= HI_Command(state
, HI_RA_RAM_SRV_CMD_CONFIG
, NULL
);
1014 mutex_unlock(&state
->mutex
);
1018 static int InitHI(struct drxd_state
*state
)
1020 state
->hi_cfg_wakeup_key
= (state
->chip_adr
);
1021 /* port/bridge/power down ctrl */
1022 state
->hi_cfg_ctrl
= HI_RA_RAM_SRV_CFG_ACT_SLV0_ON
;
1023 return HI_CfgCommand(state
);
1026 static int HI_ResetCommand(struct drxd_state
*state
)
1030 mutex_lock(&state
->mutex
);
1031 status
= Write16(state
, HI_RA_RAM_SRV_RST_KEY__A
,
1032 HI_RA_RAM_SRV_RST_KEY_ACT
, 0);
1034 status
= HI_Command(state
, HI_RA_RAM_SRV_CMD_RESET
, NULL
);
1035 mutex_unlock(&state
->mutex
);
1040 static int DRX_ConfigureI2CBridge(struct drxd_state
*state
, int bEnableBridge
)
1042 state
->hi_cfg_ctrl
&= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M
);
1044 state
->hi_cfg_ctrl
|= HI_RA_RAM_SRV_CFG_ACT_BRD_ON
;
1046 state
->hi_cfg_ctrl
|= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF
;
1048 return HI_CfgCommand(state
);
1051 #define HI_TR_WRITE 0x9
1052 #define HI_TR_READ 0xA
1053 #define HI_TR_READ_WRITE 0xB
1054 #define HI_TR_BROADCAST 0x4
1057 static int AtomicReadBlock(struct drxd_state
*state
,
1058 u32 Addr
, u16 DataSize
, u8
*pData
, u8 Flags
)
1063 /* Parameter check */
1064 if ((!pData
) || ((DataSize
& 1) != 0))
1067 mutex_lock(&state
->mutex
);
1070 /* Instruct HI to read n bytes */
1071 /* TODO use proper names forthese egisters */
1072 status
= Write16(state
, HI_RA_RAM_SRV_CFG_KEY__A
, (HI_TR_FUNC_ADDR
& 0xFFFF), 0);
1075 status
= Write16(state
, HI_RA_RAM_SRV_CFG_DIV__A
, (u16
) (Addr
>> 16), 0);
1078 status
= Write16(state
, HI_RA_RAM_SRV_CFG_BDL__A
, (u16
) (Addr
& 0xFFFF), 0);
1081 status
= Write16(state
, HI_RA_RAM_SRV_CFG_WUP__A
, (u16
) ((DataSize
/ 2) - 1), 0);
1084 status
= Write16(state
, HI_RA_RAM_SRV_CFG_ACT__A
, HI_TR_READ
, 0);
1088 status
= HI_Command(state
, HI_RA_RAM_SRV_CMD_EXECUTE
, 0);
1095 for (i
= 0; i
< (DataSize
/ 2); i
+= 1) {
1098 status
= Read16(state
, (HI_RA_RAM_USR_BEGIN__A
+ i
),
1102 pData
[2 * i
] = (u8
) (word
& 0xFF);
1103 pData
[(2 * i
) + 1] = (u8
) (word
>> 8);
1106 mutex_unlock(&state
->mutex
);
1110 static int AtomicReadReg32(struct drxd_state
*state
,
1111 u32 Addr
, u32
*pData
, u8 Flags
)
1113 u8 buf
[sizeof(u32
)];
1118 status
= AtomicReadBlock(state
, Addr
, sizeof(u32
), buf
, Flags
);
1119 *pData
= (((u32
) buf
[0]) << 0) +
1120 (((u32
) buf
[1]) << 8) +
1121 (((u32
) buf
[2]) << 16) + (((u32
) buf
[3]) << 24);
1126 static int StopAllProcessors(struct drxd_state
*state
)
1128 return Write16(state
, HI_COMM_EXEC__A
,
1129 SC_COMM_EXEC_CTL_STOP
, DRX_I2C_BROADCAST
);
1132 static int EnableAndResetMB(struct drxd_state
*state
)
1134 if (state
->type_A
) {
1135 /* disable? monitor bus observe @ EC_OC */
1136 Write16(state
, EC_OC_REG_OC_MON_SIO__A
, 0x0000, 0x0000);
1139 /* do inverse broadcast, followed by explicit write to HI */
1140 Write16(state
, HI_COMM_MB__A
, 0x0000, DRX_I2C_BROADCAST
);
1141 Write16(state
, HI_COMM_MB__A
, 0x0000, 0x0000);
1145 static int InitCC(struct drxd_state
*state
)
1147 if (state
->osc_clock_freq
== 0 ||
1148 state
->osc_clock_freq
> 20000 ||
1149 (state
->osc_clock_freq
% 4000) != 0) {
1150 printk(KERN_ERR
"invalid osc frequency %d\n", state
->osc_clock_freq
);
1154 Write16(state
, CC_REG_OSC_MODE__A
, CC_REG_OSC_MODE_M20
, 0);
1155 Write16(state
, CC_REG_PLL_MODE__A
, CC_REG_PLL_MODE_BYPASS_PLL
|
1156 CC_REG_PLL_MODE_PUMP_CUR_12
, 0);
1157 Write16(state
, CC_REG_REF_DIVIDE__A
, state
->osc_clock_freq
/ 4000, 0);
1158 Write16(state
, CC_REG_PWD_MODE__A
, CC_REG_PWD_MODE_DOWN_PLL
, 0);
1159 Write16(state
, CC_REG_UPDATE__A
, CC_REG_UPDATE_KEY
, 0);
1164 static int ResetECOD(struct drxd_state
*state
)
1169 status
= Write16(state
, EC_OD_REG_SYNC__A
, 0x0664, 0);
1171 status
= Write16(state
, B_EC_OD_REG_SYNC__A
, 0x0664, 0);
1174 status
= WriteTable(state
, state
->m_ResetECRAM
);
1176 status
= Write16(state
, EC_OD_REG_COMM_EXEC__A
, 0x0001, 0);
1180 /* Configure PGA switch */
1182 static int SetCfgPga(struct drxd_state
*state
, int pgaSwitch
)
1191 status
= Read16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
1194 AgModeLop
&= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M
));
1195 AgModeLop
|= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC
;
1196 status
= Write16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
1201 status
= Read16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, &AgModeHip
, 0x0000);
1204 AgModeHip
&= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M
));
1205 AgModeHip
|= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC
;
1206 status
= Write16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, AgModeHip
, 0x0000);
1210 /* enable fine and coarse gain, enable AAF,
1212 status
= Write16(state
, B_FE_AG_REG_AG_PGA_MODE__A
, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN
, 0x0000);
1216 /* PGA off, bypass */
1219 status
= Read16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
1222 AgModeLop
&= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M
));
1223 AgModeLop
|= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC
;
1224 status
= Write16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
1229 status
= Read16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, &AgModeHip
, 0x0000);
1232 AgModeHip
&= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M
));
1233 AgModeHip
|= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC
;
1234 status
= Write16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, AgModeHip
, 0x0000);
1238 /* disable fine and coarse gain, enable AAF,
1240 status
= Write16(state
, B_FE_AG_REG_AG_PGA_MODE__A
, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN
, 0x0000);
1248 static int InitFE(struct drxd_state
*state
)
1253 status
= WriteTable(state
, state
->m_InitFE_1
);
1257 if (state
->type_A
) {
1258 status
= Write16(state
, FE_AG_REG_AG_PGA_MODE__A
,
1259 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN
,
1263 status
= SetCfgPga(state
, 0);
1266 Write16(state
, B_FE_AG_REG_AG_PGA_MODE__A
,
1267 B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN
,
1273 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, state
->m_FeAgRegAgAgcSio
, 0x0000);
1276 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, state
->m_FeAgRegAgPwd
, 0x0000);
1280 status
= WriteTable(state
, state
->m_InitFE_2
);
1289 static int InitFT(struct drxd_state
*state
)
1292 norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1295 return Write16(state
, FT_REG_COMM_EXEC__A
, 0x0001, 0x0000);
1298 static int SC_WaitForReady(struct drxd_state
*state
)
1302 for (i
= 0; i
< DRXD_MAX_RETRIES
; i
+= 1) {
1303 int status
= Read16(state
, SC_RA_RAM_CMD__A
, NULL
, 0);
1310 static int SC_SendCommand(struct drxd_state
*state
, u16 cmd
)
1312 int status
= 0, ret
;
1315 Write16(state
, SC_RA_RAM_CMD__A
, cmd
, 0);
1316 SC_WaitForReady(state
);
1318 ret
= Read16(state
, SC_RA_RAM_CMD_ADDR__A
, &errCode
, 0);
1320 if (ret
< 0 || errCode
== 0xFFFF) {
1321 printk(KERN_ERR
"Command Error\n");
1328 static int SC_ProcStartCommand(struct drxd_state
*state
,
1329 u16 subCmd
, u16 param0
, u16 param1
)
1331 int ret
, status
= 0;
1334 mutex_lock(&state
->mutex
);
1336 ret
= Read16(state
, SC_COMM_EXEC__A
, &scExec
, 0);
1337 if (ret
< 0 || scExec
!= 1) {
1341 SC_WaitForReady(state
);
1342 Write16(state
, SC_RA_RAM_CMD_ADDR__A
, subCmd
, 0);
1343 Write16(state
, SC_RA_RAM_PARAM1__A
, param1
, 0);
1344 Write16(state
, SC_RA_RAM_PARAM0__A
, param0
, 0);
1346 SC_SendCommand(state
, SC_RA_RAM_CMD_PROC_START
);
1348 mutex_unlock(&state
->mutex
);
1352 static int SC_SetPrefParamCommand(struct drxd_state
*state
,
1353 u16 subCmd
, u16 param0
, u16 param1
)
1357 mutex_lock(&state
->mutex
);
1359 status
= SC_WaitForReady(state
);
1362 status
= Write16(state
, SC_RA_RAM_CMD_ADDR__A
, subCmd
, 0);
1365 status
= Write16(state
, SC_RA_RAM_PARAM1__A
, param1
, 0);
1368 status
= Write16(state
, SC_RA_RAM_PARAM0__A
, param0
, 0);
1372 status
= SC_SendCommand(state
, SC_RA_RAM_CMD_SET_PREF_PARAM
);
1376 mutex_unlock(&state
->mutex
);
1381 static int SC_GetOpParamCommand(struct drxd_state
*state
, u16
* result
)
1385 mutex_lock(&state
->mutex
);
1387 status
= SC_WaitForReady(state
);
1390 status
= SC_SendCommand(state
, SC_RA_RAM_CMD_GET_OP_PARAM
);
1393 status
= Read16(state
, SC_RA_RAM_PARAM0__A
, result
, 0);
1397 mutex_unlock(&state
->mutex
);
1402 static int ConfigureMPEGOutput(struct drxd_state
*state
, int bEnableOutput
)
1407 u16 EcOcRegIprInvMpg
= 0;
1408 u16 EcOcRegOcModeLop
= 0;
1409 u16 EcOcRegOcModeHip
= 0;
1410 u16 EcOcRegOcMpgSio
= 0;
1412 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1414 if (state
->operation_mode
== OM_DVBT_Diversity_Front
) {
1415 if (bEnableOutput
) {
1417 B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR
;
1419 EcOcRegOcMpgSio
|= EC_OC_REG_OC_MPG_SIO__M
;
1421 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE
;
1423 EcOcRegOcModeLop
= state
->m_EcOcRegOcModeLop
;
1426 EcOcRegOcMpgSio
&= (~(EC_OC_REG_OC_MPG_SIO__M
));
1428 EcOcRegOcMpgSio
|= EC_OC_REG_OC_MPG_SIO__M
;
1430 /* Don't Insert RS Byte */
1431 if (state
->insert_rs_byte
) {
1433 (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M
));
1435 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M
);
1437 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE
;
1440 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE
;
1442 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M
);
1444 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE
;
1447 /* Mode = Parallel */
1448 if (state
->enable_parallel
)
1450 (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M
));
1453 EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL
;
1456 /* EcOcRegIprInvMpg |= 0x00FF; */
1457 EcOcRegIprInvMpg
&= (~(0x00FF));
1459 /* Invert Error ( we don't use the pin ) */
1460 /* EcOcRegIprInvMpg |= 0x0100; */
1461 EcOcRegIprInvMpg
&= (~(0x0100));
1463 /* Invert Start ( we don't use the pin ) */
1464 /* EcOcRegIprInvMpg |= 0x0200; */
1465 EcOcRegIprInvMpg
&= (~(0x0200));
1467 /* Invert Valid ( we don't use the pin ) */
1468 /* EcOcRegIprInvMpg |= 0x0400; */
1469 EcOcRegIprInvMpg
&= (~(0x0400));
1472 /* EcOcRegIprInvMpg |= 0x0800; */
1473 EcOcRegIprInvMpg
&= (~(0x0800));
1475 /* EcOcRegOcModeLop =0x05; */
1476 status
= Write16(state
, EC_OC_REG_IPR_INV_MPG__A
, EcOcRegIprInvMpg
, 0);
1479 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, EcOcRegOcModeLop
, 0);
1482 status
= Write16(state
, EC_OC_REG_OC_MODE_HIP__A
, EcOcRegOcModeHip
, 0x0000);
1485 status
= Write16(state
, EC_OC_REG_OC_MPG_SIO__A
, EcOcRegOcMpgSio
, 0);
1492 static int SetDeviceTypeId(struct drxd_state
*state
)
1498 status
= Read16(state
, CC_REG_JTAGID_L__A
, &deviceId
, 0);
1501 /* TODO: why twice? */
1502 status
= Read16(state
, CC_REG_JTAGID_L__A
, &deviceId
, 0);
1505 printk(KERN_INFO
"drxd: deviceId = %04x\n", deviceId
);
1509 state
->diversity
= 0;
1510 if (deviceId
== 0) { /* on A2 only 3975 available */
1512 printk(KERN_INFO
"DRX3975D-A2\n");
1515 printk(KERN_INFO
"DRX397%dD-B1\n", deviceId
);
1518 state
->diversity
= 1;
1525 state
->diversity
= 1;
1540 /* Init Table selection */
1541 state
->m_InitAtomicRead
= DRXD_InitAtomicRead
;
1542 state
->m_InitSC
= DRXD_InitSC
;
1543 state
->m_ResetECRAM
= DRXD_ResetECRAM
;
1544 if (state
->type_A
) {
1545 state
->m_ResetCEFR
= DRXD_ResetCEFR
;
1546 state
->m_InitFE_1
= DRXD_InitFEA2_1
;
1547 state
->m_InitFE_2
= DRXD_InitFEA2_2
;
1548 state
->m_InitCP
= DRXD_InitCPA2
;
1549 state
->m_InitCE
= DRXD_InitCEA2
;
1550 state
->m_InitEQ
= DRXD_InitEQA2
;
1551 state
->m_InitEC
= DRXD_InitECA2
;
1552 if (load_firmware(state
, DRX_FW_FILENAME_A2
))
1555 state
->m_ResetCEFR
= NULL
;
1556 state
->m_InitFE_1
= DRXD_InitFEB1_1
;
1557 state
->m_InitFE_2
= DRXD_InitFEB1_2
;
1558 state
->m_InitCP
= DRXD_InitCPB1
;
1559 state
->m_InitCE
= DRXD_InitCEB1
;
1560 state
->m_InitEQ
= DRXD_InitEQB1
;
1561 state
->m_InitEC
= DRXD_InitECB1
;
1562 if (load_firmware(state
, DRX_FW_FILENAME_B1
))
1565 if (state
->diversity
) {
1566 state
->m_InitDiversityFront
= DRXD_InitDiversityFront
;
1567 state
->m_InitDiversityEnd
= DRXD_InitDiversityEnd
;
1568 state
->m_DisableDiversity
= DRXD_DisableDiversity
;
1569 state
->m_StartDiversityFront
= DRXD_StartDiversityFront
;
1570 state
->m_StartDiversityEnd
= DRXD_StartDiversityEnd
;
1571 state
->m_DiversityDelay8MHZ
= DRXD_DiversityDelay8MHZ
;
1572 state
->m_DiversityDelay6MHZ
= DRXD_DiversityDelay6MHZ
;
1574 state
->m_InitDiversityFront
= NULL
;
1575 state
->m_InitDiversityEnd
= NULL
;
1576 state
->m_DisableDiversity
= NULL
;
1577 state
->m_StartDiversityFront
= NULL
;
1578 state
->m_StartDiversityEnd
= NULL
;
1579 state
->m_DiversityDelay8MHZ
= NULL
;
1580 state
->m_DiversityDelay6MHZ
= NULL
;
1586 static int CorrectSysClockDeviation(struct drxd_state
*state
)
1592 u32 sysClockInHz
= 0;
1593 u32 sysClockFreq
= 0; /* in kHz */
1594 s16 oscClockDeviation
;
1598 /* Retrieve bandwidth and incr, sanity check */
1600 /* These accesses should be AtomicReadReg32, but that
1601 causes trouble (at least for diversity */
1602 status
= Read32(state
, LC_RA_RAM_IFINCR_NOM_L__A
, ((u32
*) &nomincr
), 0);
1605 status
= Read32(state
, FE_IF_REG_INCR0__A
, (u32
*) &incr
, 0);
1609 if (state
->type_A
) {
1610 if ((nomincr
- incr
< -500) || (nomincr
- incr
> 500))
1613 if ((nomincr
- incr
< -2000) || (nomincr
- incr
> 2000))
1617 switch (state
->props
.bandwidth_hz
) {
1619 bandwidth
= DRXD_BANDWIDTH_8MHZ_IN_HZ
;
1622 bandwidth
= DRXD_BANDWIDTH_7MHZ_IN_HZ
;
1625 bandwidth
= DRXD_BANDWIDTH_6MHZ_IN_HZ
;
1632 /* Compute new sysclock value
1633 sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1635 sysClockInHz
= MulDiv32(incr
, bandwidth
, 1 << 21);
1636 sysClockFreq
= (u32
) (sysClockInHz
/ 1000);
1638 if ((sysClockInHz
% 1000) > 500)
1641 /* Compute clock deviation in ppm */
1642 oscClockDeviation
= (u16
) ((((s32
) (sysClockFreq
) -
1644 (state
->expected_sys_clock_freq
)) *
1647 (state
->expected_sys_clock_freq
));
1649 Diff
= oscClockDeviation
- state
->osc_clock_deviation
;
1650 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1651 if (Diff
>= -200 && Diff
<= 200) {
1652 state
->sys_clock_freq
= (u16
) sysClockFreq
;
1653 if (oscClockDeviation
!= state
->osc_clock_deviation
) {
1654 if (state
->config
.osc_deviation
) {
1655 state
->config
.osc_deviation(state
->priv
,
1658 state
->osc_clock_deviation
=
1662 /* switch OFF SRMM scan in SC */
1663 status
= Write16(state
, SC_RA_RAM_SAMPLE_RATE_COUNT__A
, DRXD_OSCDEV_DONT_SCAN
, 0);
1666 /* overrule FE_IF internal value for
1667 proper re-locking */
1668 status
= Write16(state
, SC_RA_RAM_IF_SAVE__AX
, state
->current_fe_if_incr
, 0);
1671 state
->cscd_state
= CSCD_SAVED
;
1678 static int DRX_Stop(struct drxd_state
*state
)
1682 if (state
->drxd_state
!= DRXD_STARTED
)
1686 if (state
->cscd_state
!= CSCD_SAVED
) {
1688 status
= DRX_GetLockStatus(state
, &lock
);
1693 status
= StopOC(state
);
1697 state
->drxd_state
= DRXD_STOPPED
;
1699 status
= ConfigureMPEGOutput(state
, 0);
1703 if (state
->type_A
) {
1704 /* Stop relevant processors off the device */
1705 status
= Write16(state
, EC_OD_REG_COMM_EXEC__A
, 0x0000, 0x0000);
1709 status
= Write16(state
, SC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1712 status
= Write16(state
, LC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1716 /* Stop all processors except HI & CC & FE */
1717 status
= Write16(state
, B_SC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1720 status
= Write16(state
, B_LC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1723 status
= Write16(state
, B_FT_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1726 status
= Write16(state
, B_CP_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1729 status
= Write16(state
, B_CE_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1732 status
= Write16(state
, B_EQ_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1735 status
= Write16(state
, EC_OD_REG_COMM_EXEC__A
, 0x0000, 0);
1744 #if 0 /* Currently unused */
1745 static int SetOperationMode(struct drxd_state
*state
, int oMode
)
1750 if (state
->drxd_state
!= DRXD_STOPPED
) {
1755 if (oMode
== state
->operation_mode
) {
1760 if (oMode
!= OM_Default
&& !state
->diversity
) {
1766 case OM_DVBT_Diversity_Front
:
1767 status
= WriteTable(state
, state
->m_InitDiversityFront
);
1769 case OM_DVBT_Diversity_End
:
1770 status
= WriteTable(state
, state
->m_InitDiversityEnd
);
1773 /* We need to check how to
1774 get DRXD out of diversity */
1776 status
= WriteTable(state
, state
->m_DisableDiversity
);
1782 state
->operation_mode
= oMode
;
1787 static int StartDiversity(struct drxd_state
*state
)
1793 if (state
->operation_mode
== OM_DVBT_Diversity_Front
) {
1794 status
= WriteTable(state
, state
->m_StartDiversityFront
);
1797 } else if (state
->operation_mode
== OM_DVBT_Diversity_End
) {
1798 status
= WriteTable(state
, state
->m_StartDiversityEnd
);
1801 if (state
->props
.bandwidth_hz
== 8000000) {
1802 status
= WriteTable(state
, state
->m_DiversityDelay8MHZ
);
1806 status
= WriteTable(state
, state
->m_DiversityDelay6MHZ
);
1811 status
= Read16(state
, B_EQ_REG_RC_SEL_CAR__A
, &rcControl
, 0);
1814 rcControl
&= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M
);
1815 rcControl
|= B_EQ_REG_RC_SEL_CAR_DIV_ON
|
1816 /* combining enabled */
1817 B_EQ_REG_RC_SEL_CAR_MEAS_A_CC
|
1818 B_EQ_REG_RC_SEL_CAR_PASS_A_CC
|
1819 B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC
;
1820 status
= Write16(state
, B_EQ_REG_RC_SEL_CAR__A
, rcControl
, 0);
1828 static int SetFrequencyShift(struct drxd_state
*state
,
1829 u32 offsetFreq
, int channelMirrored
)
1831 int negativeShift
= (state
->tuner_mirrors
== channelMirrored
);
1833 /* Handle all mirroring
1835 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1836 * feFsRegAddInc to 28 bits below
1837 * (if the result before masking is more than 28 bits, this means
1838 * that the ADC is mirroring.
1839 * The masking is in fact the aliasing of the ADC)
1843 /* Compute register value, unsigned computation */
1844 state
->fe_fs_add_incr
= MulDiv32(state
->intermediate_freq
+
1846 1 << 28, state
->sys_clock_freq
);
1847 /* Remove integer part */
1848 state
->fe_fs_add_incr
&= 0x0FFFFFFFL
;
1850 state
->fe_fs_add_incr
= ((1 << 28) - state
->fe_fs_add_incr
);
1852 /* Save the frequency shift without tunerOffset compensation
1853 for CtrlGetChannel. */
1854 state
->org_fe_fs_add_incr
= MulDiv32(state
->intermediate_freq
,
1855 1 << 28, state
->sys_clock_freq
);
1856 /* Remove integer part */
1857 state
->org_fe_fs_add_incr
&= 0x0FFFFFFFL
;
1859 state
->org_fe_fs_add_incr
= ((1L << 28) -
1860 state
->org_fe_fs_add_incr
);
1862 return Write32(state
, FE_FS_REG_ADD_INC_LOP__A
,
1863 state
->fe_fs_add_incr
, 0);
1866 static int SetCfgNoiseCalibration(struct drxd_state
*state
,
1867 struct SNoiseCal
*noiseCal
)
1873 status
= Read16(state
, SC_RA_RAM_BE_OPT_ENA__A
, &beOptEna
, 0);
1876 if (noiseCal
->cpOpt
) {
1877 beOptEna
|= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT
);
1879 beOptEna
&= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT
);
1880 status
= Write16(state
, CP_REG_AC_NEXP_OFFS__A
, noiseCal
->cpNexpOfs
, 0);
1884 status
= Write16(state
, SC_RA_RAM_BE_OPT_ENA__A
, beOptEna
, 0);
1888 if (!state
->type_A
) {
1889 status
= Write16(state
, B_SC_RA_RAM_CO_TD_CAL_2K__A
, noiseCal
->tdCal2k
, 0);
1892 status
= Write16(state
, B_SC_RA_RAM_CO_TD_CAL_8K__A
, noiseCal
->tdCal8k
, 0);
1901 static int DRX_Start(struct drxd_state
*state
, s32 off
)
1903 struct dtv_frontend_properties
*p
= &state
->props
;
1906 u16 transmissionParams
= 0;
1907 u16 operationMode
= 0;
1908 u16 qpskTdTpsPwr
= 0;
1909 u16 qam16TdTpsPwr
= 0;
1910 u16 qam64TdTpsPwr
= 0;
1913 int mirrorFreqSpect
;
1915 u16 qpskSnCeGain
= 0;
1916 u16 qam16SnCeGain
= 0;
1917 u16 qam64SnCeGain
= 0;
1918 u16 qpskIsGainMan
= 0;
1919 u16 qam16IsGainMan
= 0;
1920 u16 qam64IsGainMan
= 0;
1921 u16 qpskIsGainExp
= 0;
1922 u16 qam16IsGainExp
= 0;
1923 u16 qam64IsGainExp
= 0;
1924 u16 bandwidthParam
= 0;
1927 off
= (off
- 500) / 1000;
1929 off
= (off
+ 500) / 1000;
1932 if (state
->drxd_state
!= DRXD_STOPPED
)
1934 status
= ResetECOD(state
);
1937 if (state
->type_A
) {
1938 status
= InitSC(state
);
1942 status
= InitFT(state
);
1945 status
= InitCP(state
);
1948 status
= InitCE(state
);
1951 status
= InitEQ(state
);
1954 status
= InitSC(state
);
1959 /* Restore current IF & RF AGC settings */
1961 status
= SetCfgIfAgc(state
, &state
->if_agc_cfg
);
1964 status
= SetCfgRfAgc(state
, &state
->rf_agc_cfg
);
1968 mirrorFreqSpect
= (state
->props
.inversion
== INVERSION_ON
);
1970 switch (p
->transmission_mode
) {
1971 default: /* Not set, detect it automatically */
1972 operationMode
|= SC_RA_RAM_OP_AUTO_MODE__M
;
1973 /* try first guess DRX_FFTMODE_8K */
1975 case TRANSMISSION_MODE_8K
:
1976 transmissionParams
|= SC_RA_RAM_OP_PARAM_MODE_8K
;
1977 if (state
->type_A
) {
1978 status
= Write16(state
, EC_SB_REG_TR_MODE__A
, EC_SB_REG_TR_MODE_8K
, 0x0000);
1986 case TRANSMISSION_MODE_2K
:
1987 transmissionParams
|= SC_RA_RAM_OP_PARAM_MODE_2K
;
1988 if (state
->type_A
) {
1989 status
= Write16(state
, EC_SB_REG_TR_MODE__A
, EC_SB_REG_TR_MODE_2K
, 0x0000);
1999 switch (p
->guard_interval
) {
2000 case GUARD_INTERVAL_1_4
:
2001 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_4
;
2003 case GUARD_INTERVAL_1_8
:
2004 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_8
;
2006 case GUARD_INTERVAL_1_16
:
2007 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_16
;
2009 case GUARD_INTERVAL_1_32
:
2010 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_32
;
2012 default: /* Not set, detect it automatically */
2013 operationMode
|= SC_RA_RAM_OP_AUTO_GUARD__M
;
2014 /* try first guess 1/4 */
2015 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_4
;
2019 switch (p
->hierarchy
) {
2021 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_A1
;
2022 if (state
->type_A
) {
2023 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0001, 0x0000);
2026 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0001, 0x0000);
2030 qpskTdTpsPwr
= EQ_TD_TPS_PWR_UNKNOWN
;
2031 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHA1
;
2032 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHA1
;
2035 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE
;
2037 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE
;
2039 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE
;
2042 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE
;
2044 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE
;
2046 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE
;
2051 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_A2
;
2052 if (state
->type_A
) {
2053 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0002, 0x0000);
2056 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0002, 0x0000);
2060 qpskTdTpsPwr
= EQ_TD_TPS_PWR_UNKNOWN
;
2061 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHA2
;
2062 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHA2
;
2065 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE
;
2067 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE
;
2069 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE
;
2072 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE
;
2074 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE
;
2076 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE
;
2080 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_A4
;
2081 if (state
->type_A
) {
2082 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0003, 0x0000);
2085 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0003, 0x0000);
2089 qpskTdTpsPwr
= EQ_TD_TPS_PWR_UNKNOWN
;
2090 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHA4
;
2091 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHA4
;
2094 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE
;
2096 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE
;
2098 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE
;
2101 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE
;
2103 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE
;
2105 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE
;
2108 case HIERARCHY_AUTO
:
2110 /* Not set, detect it automatically, start with none */
2111 operationMode
|= SC_RA_RAM_OP_AUTO_HIER__M
;
2112 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_NO
;
2113 if (state
->type_A
) {
2114 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0000, 0x0000);
2117 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0000, 0x0000);
2121 qpskTdTpsPwr
= EQ_TD_TPS_PWR_QPSK
;
2122 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHAN
;
2123 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHAN
;
2126 SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE
;
2128 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE
;
2130 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE
;
2133 SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE
;
2135 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE
;
2137 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE
;
2144 switch (p
->modulation
) {
2146 operationMode
|= SC_RA_RAM_OP_AUTO_CONST__M
;
2147 /* try first guess DRX_CONSTELLATION_QAM64 */
2150 transmissionParams
|= SC_RA_RAM_OP_PARAM_CONST_QAM64
;
2151 if (state
->type_A
) {
2152 status
= Write16(state
, EQ_REG_OT_CONST__A
, 0x0002, 0x0000);
2155 status
= Write16(state
, EC_SB_REG_CONST__A
, EC_SB_REG_CONST_64QAM
, 0x0000);
2158 status
= Write16(state
, EC_SB_REG_SCALE_MSB__A
, 0x0020, 0x0000);
2161 status
= Write16(state
, EC_SB_REG_SCALE_BIT2__A
, 0x0008, 0x0000);
2164 status
= Write16(state
, EC_SB_REG_SCALE_LSB__A
, 0x0002, 0x0000);
2168 status
= Write16(state
, EQ_REG_TD_TPS_PWR_OFS__A
, qam64TdTpsPwr
, 0x0000);
2171 status
= Write16(state
, EQ_REG_SN_CEGAIN__A
, qam64SnCeGain
, 0x0000);
2174 status
= Write16(state
, EQ_REG_IS_GAIN_MAN__A
, qam64IsGainMan
, 0x0000);
2177 status
= Write16(state
, EQ_REG_IS_GAIN_EXP__A
, qam64IsGainExp
, 0x0000);
2183 transmissionParams
|= SC_RA_RAM_OP_PARAM_CONST_QPSK
;
2184 if (state
->type_A
) {
2185 status
= Write16(state
, EQ_REG_OT_CONST__A
, 0x0000, 0x0000);
2188 status
= Write16(state
, EC_SB_REG_CONST__A
, EC_SB_REG_CONST_QPSK
, 0x0000);
2191 status
= Write16(state
, EC_SB_REG_SCALE_MSB__A
, 0x0010, 0x0000);
2194 status
= Write16(state
, EC_SB_REG_SCALE_BIT2__A
, 0x0000, 0x0000);
2197 status
= Write16(state
, EC_SB_REG_SCALE_LSB__A
, 0x0000, 0x0000);
2201 status
= Write16(state
, EQ_REG_TD_TPS_PWR_OFS__A
, qpskTdTpsPwr
, 0x0000);
2204 status
= Write16(state
, EQ_REG_SN_CEGAIN__A
, qpskSnCeGain
, 0x0000);
2207 status
= Write16(state
, EQ_REG_IS_GAIN_MAN__A
, qpskIsGainMan
, 0x0000);
2210 status
= Write16(state
, EQ_REG_IS_GAIN_EXP__A
, qpskIsGainExp
, 0x0000);
2217 transmissionParams
|= SC_RA_RAM_OP_PARAM_CONST_QAM16
;
2218 if (state
->type_A
) {
2219 status
= Write16(state
, EQ_REG_OT_CONST__A
, 0x0001, 0x0000);
2222 status
= Write16(state
, EC_SB_REG_CONST__A
, EC_SB_REG_CONST_16QAM
, 0x0000);
2225 status
= Write16(state
, EC_SB_REG_SCALE_MSB__A
, 0x0010, 0x0000);
2228 status
= Write16(state
, EC_SB_REG_SCALE_BIT2__A
, 0x0004, 0x0000);
2231 status
= Write16(state
, EC_SB_REG_SCALE_LSB__A
, 0x0000, 0x0000);
2235 status
= Write16(state
, EQ_REG_TD_TPS_PWR_OFS__A
, qam16TdTpsPwr
, 0x0000);
2238 status
= Write16(state
, EQ_REG_SN_CEGAIN__A
, qam16SnCeGain
, 0x0000);
2241 status
= Write16(state
, EQ_REG_IS_GAIN_MAN__A
, qam16IsGainMan
, 0x0000);
2244 status
= Write16(state
, EQ_REG_IS_GAIN_EXP__A
, qam16IsGainExp
, 0x0000);
2254 switch (DRX_CHANNEL_HIGH
) {
2256 case DRX_CHANNEL_AUTO
:
2257 case DRX_CHANNEL_LOW
:
2258 transmissionParams
|= SC_RA_RAM_OP_PARAM_PRIO_LO
;
2259 status
= Write16(state
, EC_SB_REG_PRIOR__A
, EC_SB_REG_PRIOR_LO
, 0x0000);
2263 case DRX_CHANNEL_HIGH
:
2264 transmissionParams
|= SC_RA_RAM_OP_PARAM_PRIO_HI
;
2265 status
= Write16(state
, EC_SB_REG_PRIOR__A
, EC_SB_REG_PRIOR_HI
, 0x0000);
2272 switch (p
->code_rate_HP
) {
2274 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_1_2
;
2275 if (state
->type_A
) {
2276 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C1_2
, 0x0000);
2282 operationMode
|= SC_RA_RAM_OP_AUTO_RATE__M
;
2285 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_2_3
;
2286 if (state
->type_A
) {
2287 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C2_3
, 0x0000);
2293 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_3_4
;
2294 if (state
->type_A
) {
2295 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C3_4
, 0x0000);
2301 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_5_6
;
2302 if (state
->type_A
) {
2303 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C5_6
, 0x0000);
2309 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_7_8
;
2310 if (state
->type_A
) {
2311 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C7_8
, 0x0000);
2320 /* First determine real bandwidth (Hz) */
2321 /* Also set delay for impulse noise cruncher (only A2) */
2322 /* Also set parameters for EC_OC fix, note
2323 EC_OC_REG_TMD_HIL_MAR is changed
2324 by SC for fix for some 8K,1/8 guard but is restored by
2327 switch (p
->bandwidth_hz
) {
2329 p
->bandwidth_hz
= 8000000;
2332 /* (64/7)*(8/8)*1000000 */
2333 bandwidth
= DRXD_BANDWIDTH_8MHZ_IN_HZ
;
2336 status
= Write16(state
,
2337 FE_AG_REG_IND_DEL__A
, 50, 0x0000);
2340 /* (64/7)*(7/8)*1000000 */
2341 bandwidth
= DRXD_BANDWIDTH_7MHZ_IN_HZ
;
2342 bandwidthParam
= 0x4807; /*binary:0100 1000 0000 0111 */
2343 status
= Write16(state
,
2344 FE_AG_REG_IND_DEL__A
, 59, 0x0000);
2347 /* (64/7)*(6/8)*1000000 */
2348 bandwidth
= DRXD_BANDWIDTH_6MHZ_IN_HZ
;
2349 bandwidthParam
= 0x0F07; /*binary: 0000 1111 0000 0111 */
2350 status
= Write16(state
,
2351 FE_AG_REG_IND_DEL__A
, 71, 0x0000);
2359 status
= Write16(state
, SC_RA_RAM_BAND__A
, bandwidthParam
, 0x0000);
2365 status
= Read16(state
, SC_RA_RAM_CONFIG__A
, &sc_config
, 0);
2369 /* enable SLAVE mode in 2k 1/32 to
2370 prevent timing change glitches */
2371 if ((p
->transmission_mode
== TRANSMISSION_MODE_2K
) &&
2372 (p
->guard_interval
== GUARD_INTERVAL_1_32
)) {
2374 sc_config
|= SC_RA_RAM_CONFIG_SLAVE__M
;
2377 sc_config
&= ~SC_RA_RAM_CONFIG_SLAVE__M
;
2379 status
= Write16(state
, SC_RA_RAM_CONFIG__A
, sc_config
, 0);
2384 status
= SetCfgNoiseCalibration(state
, &state
->noise_cal
);
2388 if (state
->cscd_state
== CSCD_INIT
) {
2389 /* switch on SRMM scan in SC */
2390 status
= Write16(state
, SC_RA_RAM_SAMPLE_RATE_COUNT__A
, DRXD_OSCDEV_DO_SCAN
, 0x0000);
2393 /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2394 state
->cscd_state
= CSCD_SET
;
2397 /* Now compute FE_IF_REG_INCR */
2398 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2399 ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2400 feIfIncr
= MulDiv32(state
->sys_clock_freq
* 1000,
2401 (1ULL << 21), bandwidth
) - (1 << 23);
2402 status
= Write16(state
, FE_IF_REG_INCR0__A
, (u16
) (feIfIncr
& FE_IF_REG_INCR0__M
), 0x0000);
2405 status
= Write16(state
, FE_IF_REG_INCR1__A
, (u16
) ((feIfIncr
>> FE_IF_REG_INCR0__W
) & FE_IF_REG_INCR1__M
), 0x0000);
2408 /* Bandwidth setting done */
2410 /* Mirror & frequency offset */
2411 SetFrequencyShift(state
, off
, mirrorFreqSpect
);
2413 /* Start SC, write channel settings to SC */
2415 /* Enable SC after setting all other parameters */
2416 status
= Write16(state
, SC_COMM_STATE__A
, 0, 0x0000);
2419 status
= Write16(state
, SC_COMM_EXEC__A
, 1, 0x0000);
2423 /* Write SC parameter registers, operation mode */
2425 operationMode
= (SC_RA_RAM_OP_AUTO_MODE__M
|
2426 SC_RA_RAM_OP_AUTO_GUARD__M
|
2427 SC_RA_RAM_OP_AUTO_CONST__M
|
2428 SC_RA_RAM_OP_AUTO_HIER__M
|
2429 SC_RA_RAM_OP_AUTO_RATE__M
);
2431 status
= SC_SetPrefParamCommand(state
, 0x0000, transmissionParams
, operationMode
);
2435 /* Start correct processes to get in lock */
2436 status
= SC_ProcStartCommand(state
, SC_RA_RAM_PROC_LOCKTRACK
, SC_RA_RAM_SW_EVENT_RUN_NMASK__M
, SC_RA_RAM_LOCKTRACK_MIN
);
2440 status
= StartOC(state
);
2444 if (state
->operation_mode
!= OM_Default
) {
2445 status
= StartDiversity(state
);
2450 state
->drxd_state
= DRXD_STARTED
;
2456 static int CDRXD(struct drxd_state
*state
, u32 IntermediateFrequency
)
2458 u32 ulRfAgcOutputLevel
= 0xffffffff;
2459 u32 ulRfAgcSettleLevel
= 528; /* Optimum value for MT2060 */
2460 u32 ulRfAgcMinLevel
= 0; /* Currently unused */
2461 u32 ulRfAgcMaxLevel
= DRXD_FE_CTRL_MAX
; /* Currently unused */
2462 u32 ulRfAgcSpeed
= 0; /* Currently unused */
2463 u32 ulRfAgcMode
= 0; /*2; Off */
2464 u32 ulRfAgcR1
= 820;
2465 u32 ulRfAgcR2
= 2200;
2466 u32 ulRfAgcR3
= 150;
2467 u32 ulIfAgcMode
= 0; /* Auto */
2468 u32 ulIfAgcOutputLevel
= 0xffffffff;
2469 u32 ulIfAgcSettleLevel
= 0xffffffff;
2470 u32 ulIfAgcMinLevel
= 0xffffffff;
2471 u32 ulIfAgcMaxLevel
= 0xffffffff;
2472 u32 ulIfAgcSpeed
= 0xffffffff;
2473 u32 ulIfAgcR1
= 820;
2474 u32 ulIfAgcR2
= 2200;
2475 u32 ulIfAgcR3
= 150;
2476 u32 ulClock
= state
->config
.clock
;
2477 u32 ulSerialMode
= 0;
2478 u32 ulEcOcRegOcModeLop
= 4; /* Dynamic DTO source */
2479 u32 ulHiI2cDelay
= HI_I2C_DELAY
;
2480 u32 ulHiI2cBridgeDelay
= HI_I2C_BRIDGE_DELAY
;
2481 u32 ulHiI2cPatch
= 0;
2482 u32 ulEnvironment
= APPENV_PORTABLE
;
2483 u32 ulEnvironmentDiversity
= APPENV_MOBILE
;
2484 u32 ulIFFilter
= IFFILTER_SAW
;
2486 state
->if_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2487 state
->if_agc_cfg
.outputLevel
= 0;
2488 state
->if_agc_cfg
.settleLevel
= 140;
2489 state
->if_agc_cfg
.minOutputLevel
= 0;
2490 state
->if_agc_cfg
.maxOutputLevel
= 1023;
2491 state
->if_agc_cfg
.speed
= 904;
2493 if (ulIfAgcMode
== 1 && ulIfAgcOutputLevel
<= DRXD_FE_CTRL_MAX
) {
2494 state
->if_agc_cfg
.ctrlMode
= AGC_CTRL_USER
;
2495 state
->if_agc_cfg
.outputLevel
= (u16
) (ulIfAgcOutputLevel
);
2498 if (ulIfAgcMode
== 0 &&
2499 ulIfAgcSettleLevel
<= DRXD_FE_CTRL_MAX
&&
2500 ulIfAgcMinLevel
<= DRXD_FE_CTRL_MAX
&&
2501 ulIfAgcMaxLevel
<= DRXD_FE_CTRL_MAX
&&
2502 ulIfAgcSpeed
<= DRXD_FE_CTRL_MAX
) {
2503 state
->if_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2504 state
->if_agc_cfg
.settleLevel
= (u16
) (ulIfAgcSettleLevel
);
2505 state
->if_agc_cfg
.minOutputLevel
= (u16
) (ulIfAgcMinLevel
);
2506 state
->if_agc_cfg
.maxOutputLevel
= (u16
) (ulIfAgcMaxLevel
);
2507 state
->if_agc_cfg
.speed
= (u16
) (ulIfAgcSpeed
);
2510 state
->if_agc_cfg
.R1
= (u16
) (ulIfAgcR1
);
2511 state
->if_agc_cfg
.R2
= (u16
) (ulIfAgcR2
);
2512 state
->if_agc_cfg
.R3
= (u16
) (ulIfAgcR3
);
2514 state
->rf_agc_cfg
.R1
= (u16
) (ulRfAgcR1
);
2515 state
->rf_agc_cfg
.R2
= (u16
) (ulRfAgcR2
);
2516 state
->rf_agc_cfg
.R3
= (u16
) (ulRfAgcR3
);
2518 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2519 /* rest of the RFAgcCfg structure currently unused */
2520 if (ulRfAgcMode
== 1 && ulRfAgcOutputLevel
<= DRXD_FE_CTRL_MAX
) {
2521 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_USER
;
2522 state
->rf_agc_cfg
.outputLevel
= (u16
) (ulRfAgcOutputLevel
);
2525 if (ulRfAgcMode
== 0 &&
2526 ulRfAgcSettleLevel
<= DRXD_FE_CTRL_MAX
&&
2527 ulRfAgcMinLevel
<= DRXD_FE_CTRL_MAX
&&
2528 ulRfAgcMaxLevel
<= DRXD_FE_CTRL_MAX
&&
2529 ulRfAgcSpeed
<= DRXD_FE_CTRL_MAX
) {
2530 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2531 state
->rf_agc_cfg
.settleLevel
= (u16
) (ulRfAgcSettleLevel
);
2532 state
->rf_agc_cfg
.minOutputLevel
= (u16
) (ulRfAgcMinLevel
);
2533 state
->rf_agc_cfg
.maxOutputLevel
= (u16
) (ulRfAgcMaxLevel
);
2534 state
->rf_agc_cfg
.speed
= (u16
) (ulRfAgcSpeed
);
2537 if (ulRfAgcMode
== 2)
2538 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_OFF
;
2540 if (ulEnvironment
<= 2)
2541 state
->app_env_default
= (enum app_env
)
2543 if (ulEnvironmentDiversity
<= 2)
2544 state
->app_env_diversity
= (enum app_env
)
2545 (ulEnvironmentDiversity
);
2547 if (ulIFFilter
== IFFILTER_DISCRETE
) {
2548 /* discrete filter */
2549 state
->noise_cal
.cpOpt
= 0;
2550 state
->noise_cal
.cpNexpOfs
= 40;
2551 state
->noise_cal
.tdCal2k
= -40;
2552 state
->noise_cal
.tdCal8k
= -24;
2555 state
->noise_cal
.cpOpt
= 1;
2556 state
->noise_cal
.cpNexpOfs
= 0;
2557 state
->noise_cal
.tdCal2k
= -21;
2558 state
->noise_cal
.tdCal8k
= -24;
2560 state
->m_EcOcRegOcModeLop
= (u16
) (ulEcOcRegOcModeLop
);
2562 state
->chip_adr
= (state
->config
.demod_address
<< 1) | 1;
2563 switch (ulHiI2cPatch
) {
2565 state
->m_HiI2cPatch
= DRXD_HiI2cPatch_1
;
2568 state
->m_HiI2cPatch
= DRXD_HiI2cPatch_3
;
2571 state
->m_HiI2cPatch
= NULL
;
2574 /* modify tuner and clock attributes */
2575 state
->intermediate_freq
= (u16
) (IntermediateFrequency
/ 1000);
2576 /* expected system clock frequency in kHz */
2577 state
->expected_sys_clock_freq
= 48000;
2578 /* real system clock frequency in kHz */
2579 state
->sys_clock_freq
= 48000;
2580 state
->osc_clock_freq
= (u16
) ulClock
;
2581 state
->osc_clock_deviation
= 0;
2582 state
->cscd_state
= CSCD_INIT
;
2583 state
->drxd_state
= DRXD_UNINITIALIZED
;
2587 state
->tuner_mirrors
= 0;
2589 /* modify MPEG output attributes */
2590 state
->insert_rs_byte
= state
->config
.insert_rs_byte
;
2591 state
->enable_parallel
= (ulSerialMode
!= 1);
2593 /* Timing div, 250ns/Psys */
2594 /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2596 state
->hi_cfg_timing_div
= (u16
) ((state
->sys_clock_freq
/ 1000) *
2597 ulHiI2cDelay
) / 1000;
2598 /* Bridge delay, uses oscilator clock */
2599 /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2600 state
->hi_cfg_bridge_delay
= (u16
) ((state
->osc_clock_freq
/ 1000) *
2601 ulHiI2cBridgeDelay
) / 1000;
2603 state
->m_FeAgRegAgPwd
= DRXD_DEF_AG_PWD_CONSUMER
;
2604 /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2605 state
->m_FeAgRegAgAgcSio
= DRXD_DEF_AG_AGC_SIO
;
2609 static int DRXD_init(struct drxd_state
*state
, const u8
*fw
, u32 fw_size
)
2614 if (state
->init_done
)
2617 CDRXD(state
, state
->config
.IF
? state
->config
.IF
: 36000000);
2620 state
->operation_mode
= OM_Default
;
2622 status
= SetDeviceTypeId(state
);
2626 /* Apply I2c address patch to B1 */
2627 if (!state
->type_A
&& state
->m_HiI2cPatch
) {
2628 status
= WriteTable(state
, state
->m_HiI2cPatch
);
2633 if (state
->type_A
) {
2634 /* HI firmware patch for UIO readout,
2635 avoid clearing of result register */
2636 status
= Write16(state
, 0x43012D, 0x047f, 0);
2641 status
= HI_ResetCommand(state
);
2645 status
= StopAllProcessors(state
);
2648 status
= InitCC(state
);
2652 state
->osc_clock_deviation
= 0;
2654 if (state
->config
.osc_deviation
)
2655 state
->osc_clock_deviation
=
2656 state
->config
.osc_deviation(state
->priv
, 0, 0);
2658 /* Handle clock deviation */
2660 s32 devA
= (s32
) (state
->osc_clock_deviation
) *
2661 (s32
) (state
->expected_sys_clock_freq
);
2662 /* deviation in kHz */
2663 s32 deviation
= (devA
/ (1000000L));
2664 /* rounding, signed */
2669 if ((devB
* (devA
% 1000000L) > 1000000L)) {
2671 deviation
+= (devB
/ 2);
2674 state
->sys_clock_freq
=
2675 (u16
) ((state
->expected_sys_clock_freq
) +
2678 status
= InitHI(state
);
2681 status
= InitAtomicRead(state
);
2685 status
= EnableAndResetMB(state
);
2688 if (state
->type_A
) {
2689 status
= ResetCEFR(state
);
2694 status
= DownloadMicrocode(state
, fw
, fw_size
);
2698 status
= DownloadMicrocode(state
, state
->microcode
, state
->microcode_length
);
2704 state
->m_FeAgRegAgPwd
= DRXD_DEF_AG_PWD_PRO
;
2705 SetCfgPga(state
, 0); /* PGA = 0 dB */
2707 state
->m_FeAgRegAgPwd
= DRXD_DEF_AG_PWD_CONSUMER
;
2710 state
->m_FeAgRegAgAgcSio
= DRXD_DEF_AG_AGC_SIO
;
2712 status
= InitFE(state
);
2715 status
= InitFT(state
);
2718 status
= InitCP(state
);
2721 status
= InitCE(state
);
2724 status
= InitEQ(state
);
2727 status
= InitEC(state
);
2730 status
= InitSC(state
);
2734 status
= SetCfgIfAgc(state
, &state
->if_agc_cfg
);
2737 status
= SetCfgRfAgc(state
, &state
->rf_agc_cfg
);
2741 state
->cscd_state
= CSCD_INIT
;
2742 status
= Write16(state
, SC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
2745 status
= Write16(state
, LC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
2749 driverVersion
= (((VERSION_MAJOR
/ 10) << 4) +
2750 (VERSION_MAJOR
% 10)) << 24;
2751 driverVersion
+= (((VERSION_MINOR
/ 10) << 4) +
2752 (VERSION_MINOR
% 10)) << 16;
2753 driverVersion
+= ((VERSION_PATCH
/ 1000) << 12) +
2754 ((VERSION_PATCH
/ 100) << 8) +
2755 ((VERSION_PATCH
/ 10) << 4) + (VERSION_PATCH
% 10);
2757 status
= Write32(state
, SC_RA_RAM_DRIVER_VERSION__AX
, driverVersion
, 0);
2761 status
= StopOC(state
);
2765 state
->drxd_state
= DRXD_STOPPED
;
2766 state
->init_done
= 1;
2772 static int DRXD_status(struct drxd_state
*state
, u32
*pLockStatus
)
2774 DRX_GetLockStatus(state
, pLockStatus
);
2776 /*if (*pLockStatus&DRX_LOCK_MPEG) */
2777 if (*pLockStatus
& DRX_LOCK_FEC
) {
2778 ConfigureMPEGOutput(state
, 1);
2779 /* Get status again, in case we have MPEG lock now */
2780 /*DRX_GetLockStatus(state, pLockStatus); */
2786 /****************************************************************************/
2787 /****************************************************************************/
2788 /****************************************************************************/
2790 static int drxd_read_signal_strength(struct dvb_frontend
*fe
, u16
* strength
)
2792 struct drxd_state
*state
= fe
->demodulator_priv
;
2796 res
= ReadIFAgc(state
, &value
);
2800 *strength
= 0xffff - (value
<< 4);
2804 static int drxd_read_status(struct dvb_frontend
*fe
, enum fe_status
*status
)
2806 struct drxd_state
*state
= fe
->demodulator_priv
;
2809 DRXD_status(state
, &lock
);
2811 /* No MPEG lock in V255 firmware, bug ? */
2813 if (lock
& DRX_LOCK_MPEG
)
2814 *status
|= FE_HAS_LOCK
;
2816 if (lock
& DRX_LOCK_FEC
)
2817 *status
|= FE_HAS_LOCK
;
2819 if (lock
& DRX_LOCK_FEC
)
2820 *status
|= FE_HAS_VITERBI
| FE_HAS_SYNC
;
2821 if (lock
& DRX_LOCK_DEMOD
)
2822 *status
|= FE_HAS_CARRIER
| FE_HAS_SIGNAL
;
2827 static int drxd_init(struct dvb_frontend
*fe
)
2829 struct drxd_state
*state
= fe
->demodulator_priv
;
2831 return DRXD_init(state
, NULL
, 0);
2834 static int drxd_config_i2c(struct dvb_frontend
*fe
, int onoff
)
2836 struct drxd_state
*state
= fe
->demodulator_priv
;
2838 if (state
->config
.disable_i2c_gate_ctrl
== 1)
2841 return DRX_ConfigureI2CBridge(state
, onoff
);
2844 static int drxd_get_tune_settings(struct dvb_frontend
*fe
,
2845 struct dvb_frontend_tune_settings
*sets
)
2847 sets
->min_delay_ms
= 10000;
2848 sets
->max_drift
= 0;
2849 sets
->step_size
= 0;
2853 static int drxd_read_ber(struct dvb_frontend
*fe
, u32
* ber
)
2859 static int drxd_read_snr(struct dvb_frontend
*fe
, u16
* snr
)
2865 static int drxd_read_ucblocks(struct dvb_frontend
*fe
, u32
* ucblocks
)
2871 static int drxd_sleep(struct dvb_frontend
*fe
)
2873 struct drxd_state
*state
= fe
->demodulator_priv
;
2875 ConfigureMPEGOutput(state
, 0);
2879 static int drxd_i2c_gate_ctrl(struct dvb_frontend
*fe
, int enable
)
2881 return drxd_config_i2c(fe
, enable
);
2884 static int drxd_set_frontend(struct dvb_frontend
*fe
)
2886 struct dtv_frontend_properties
*p
= &fe
->dtv_property_cache
;
2887 struct drxd_state
*state
= fe
->demodulator_priv
;
2893 if (fe
->ops
.tuner_ops
.set_params
) {
2894 fe
->ops
.tuner_ops
.set_params(fe
);
2895 if (fe
->ops
.i2c_gate_ctrl
)
2896 fe
->ops
.i2c_gate_ctrl(fe
, 0);
2901 return DRX_Start(state
, off
);
2904 static void drxd_release(struct dvb_frontend
*fe
)
2906 struct drxd_state
*state
= fe
->demodulator_priv
;
2911 static const struct dvb_frontend_ops drxd_ops
= {
2912 .delsys
= { SYS_DVBT
},
2914 .name
= "Micronas DRXD DVB-T",
2915 .frequency_min
= 47125000,
2916 .frequency_max
= 855250000,
2917 .frequency_stepsize
= 166667,
2918 .frequency_tolerance
= 0,
2919 .caps
= FE_CAN_FEC_1_2
| FE_CAN_FEC_2_3
|
2920 FE_CAN_FEC_3_4
| FE_CAN_FEC_5_6
| FE_CAN_FEC_7_8
|
2922 FE_CAN_QAM_16
| FE_CAN_QAM_64
|
2924 FE_CAN_TRANSMISSION_MODE_AUTO
|
2925 FE_CAN_GUARD_INTERVAL_AUTO
|
2926 FE_CAN_HIERARCHY_AUTO
| FE_CAN_RECOVER
| FE_CAN_MUTE_TS
},
2928 .release
= drxd_release
,
2930 .sleep
= drxd_sleep
,
2931 .i2c_gate_ctrl
= drxd_i2c_gate_ctrl
,
2933 .set_frontend
= drxd_set_frontend
,
2934 .get_tune_settings
= drxd_get_tune_settings
,
2936 .read_status
= drxd_read_status
,
2937 .read_ber
= drxd_read_ber
,
2938 .read_signal_strength
= drxd_read_signal_strength
,
2939 .read_snr
= drxd_read_snr
,
2940 .read_ucblocks
= drxd_read_ucblocks
,
2943 struct dvb_frontend
*drxd_attach(const struct drxd_config
*config
,
2944 void *priv
, struct i2c_adapter
*i2c
,
2947 struct drxd_state
*state
= NULL
;
2949 state
= kzalloc(sizeof(*state
), GFP_KERNEL
);
2953 state
->ops
= drxd_ops
;
2955 state
->config
= *config
;
2959 mutex_init(&state
->mutex
);
2961 if (Read16(state
, 0, NULL
, 0) < 0)
2964 state
->frontend
.ops
= drxd_ops
;
2965 state
->frontend
.demodulator_priv
= state
;
2966 ConfigureMPEGOutput(state
, 0);
2967 /* add few initialization to allow gate control */
2968 CDRXD(state
, state
->config
.IF
? state
->config
.IF
: 36000000);
2971 return &state
->frontend
;
2974 printk(KERN_ERR
"drxd: not found\n");
2978 EXPORT_SYMBOL(drxd_attach
);
2980 MODULE_DESCRIPTION("DRXD driver");
2981 MODULE_AUTHOR("Micronas");
2982 MODULE_LICENSE("GPL");