Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / media / i2c / smiapp / smiapp-core.c
blob3b7ace395ee6d1b077c3b5809ebfd01ad870c2f6
1 /*
2 * drivers/media/i2c/smiapp/smiapp-core.c
4 * Generic driver for SMIA/SMIA++ compliant camera modules
6 * Copyright (C) 2010--2012 Nokia Corporation
7 * Contact: Sakari Ailus <sakari.ailus@iki.fi>
9 * Based on smiapp driver by Vimarsh Zutshi
10 * Based on jt8ev1.c by Vimarsh Zutshi
11 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * version 2 as published by the Free Software Foundation.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/smiapp.h>
34 #include <linux/v4l2-mediabus.h>
35 #include <media/v4l2-fwnode.h>
36 #include <media/v4l2-device.h>
38 #include "smiapp.h"
40 #define SMIAPP_ALIGN_DIM(dim, flags) \
41 ((flags) & V4L2_SEL_FLAG_GE \
42 ? ALIGN((dim), 2) \
43 : (dim) & ~1)
46 * smiapp_module_idents - supported camera modules
48 static const struct smiapp_module_ident smiapp_module_idents[] = {
49 SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
50 SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
51 SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
52 SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
53 SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
54 SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
55 SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
56 SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
57 SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
58 SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
59 SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
64 * Dynamic Capability Identification
68 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
70 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
71 u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
72 unsigned int i;
73 int pixel_count = 0;
74 int line_count = 0;
75 int rval;
77 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
78 &fmt_model_type);
79 if (rval)
80 return rval;
82 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
83 &fmt_model_subtype);
84 if (rval)
85 return rval;
87 ncol_desc = (fmt_model_subtype
88 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
89 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
90 nrow_desc = fmt_model_subtype
91 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
93 dev_dbg(&client->dev, "format_model_type %s\n",
94 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
95 ? "2 byte" :
96 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
97 ? "4 byte" : "is simply bad");
99 for (i = 0; i < ncol_desc + nrow_desc; i++) {
100 u32 desc;
101 u32 pixelcode;
102 u32 pixels;
103 char *which;
104 char *what;
105 u32 reg;
107 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
108 reg = SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i);
109 rval = smiapp_read(sensor, reg, &desc);
110 if (rval)
111 return rval;
113 pixelcode =
114 (desc
115 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
116 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
117 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
118 } else if (fmt_model_type
119 == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
120 reg = SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i);
121 rval = smiapp_read(sensor, reg, &desc);
122 if (rval)
123 return rval;
125 pixelcode =
126 (desc
127 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
128 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
129 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
130 } else {
131 dev_dbg(&client->dev,
132 "invalid frame format model type %d\n",
133 fmt_model_type);
134 return -EINVAL;
137 if (i < ncol_desc)
138 which = "columns";
139 else
140 which = "rows";
142 switch (pixelcode) {
143 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
144 what = "embedded";
145 break;
146 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
147 what = "dummy";
148 break;
149 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
150 what = "black";
151 break;
152 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
153 what = "dark";
154 break;
155 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
156 what = "visible";
157 break;
158 default:
159 what = "invalid";
160 break;
163 dev_dbg(&client->dev,
164 "0x%8.8x %s pixels: %d %s (pixelcode %u)\n", reg,
165 what, pixels, which, pixelcode);
167 if (i < ncol_desc) {
168 if (pixelcode ==
169 SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE)
170 sensor->visible_pixel_start = pixel_count;
171 pixel_count += pixels;
172 continue;
175 /* Handle row descriptors */
176 switch (pixelcode) {
177 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
178 if (sensor->embedded_end)
179 break;
180 sensor->embedded_start = line_count;
181 sensor->embedded_end = line_count + pixels;
182 break;
183 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
184 sensor->image_start = line_count;
185 break;
187 line_count += pixels;
190 if (sensor->embedded_end > sensor->image_start) {
191 dev_dbg(&client->dev,
192 "adjusting image start line to %u (was %u)\n",
193 sensor->embedded_end, sensor->image_start);
194 sensor->image_start = sensor->embedded_end;
197 dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
198 sensor->embedded_start, sensor->embedded_end);
199 dev_dbg(&client->dev, "image data starts at line %d\n",
200 sensor->image_start);
202 return 0;
205 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
207 struct smiapp_pll *pll = &sensor->pll;
208 int rval;
210 rval = smiapp_write(
211 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
212 if (rval < 0)
213 return rval;
215 rval = smiapp_write(
216 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
217 if (rval < 0)
218 return rval;
220 rval = smiapp_write(
221 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
222 if (rval < 0)
223 return rval;
225 rval = smiapp_write(
226 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
227 if (rval < 0)
228 return rval;
230 /* Lane op clock ratio does not apply here. */
231 rval = smiapp_write(
232 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
233 DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
234 if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
235 return rval;
237 rval = smiapp_write(
238 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
239 if (rval < 0)
240 return rval;
242 return smiapp_write(
243 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
246 static int smiapp_pll_try(struct smiapp_sensor *sensor,
247 struct smiapp_pll *pll)
249 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
250 struct smiapp_pll_limits lim = {
251 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
252 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
253 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
254 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
255 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
256 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
257 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
258 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
260 .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
261 .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
262 .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
263 .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
264 .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
265 .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
266 .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
267 .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
269 .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
270 .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
271 .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
272 .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
273 .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
274 .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
275 .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
276 .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
278 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
279 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
282 return smiapp_pll_calculate(&client->dev, &lim, pll);
285 static int smiapp_pll_update(struct smiapp_sensor *sensor)
287 struct smiapp_pll *pll = &sensor->pll;
288 int rval;
290 pll->binning_horizontal = sensor->binning_horizontal;
291 pll->binning_vertical = sensor->binning_vertical;
292 pll->link_freq =
293 sensor->link_freq->qmenu_int[sensor->link_freq->val];
294 pll->scale_m = sensor->scale_m;
295 pll->bits_per_pixel = sensor->csi_format->compressed;
297 rval = smiapp_pll_try(sensor, pll);
298 if (rval < 0)
299 return rval;
301 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
302 pll->pixel_rate_pixel_array);
303 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
305 return 0;
311 * V4L2 Controls handling
315 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
317 struct v4l2_ctrl *ctrl = sensor->exposure;
318 int max;
320 max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
321 + sensor->vblank->val
322 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
324 __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
328 * Order matters.
330 * 1. Bits-per-pixel, descending.
331 * 2. Bits-per-pixel compressed, descending.
332 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
333 * orders must be defined.
335 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
336 { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GRBG, },
337 { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_RGGB, },
338 { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_BGGR, },
339 { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GBRG, },
340 { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GRBG, },
341 { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_RGGB, },
342 { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_BGGR, },
343 { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GBRG, },
344 { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
345 { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
346 { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
347 { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
348 { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
349 { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
350 { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
351 { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
352 { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
353 { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
354 { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
355 { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
356 { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
357 { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
358 { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
359 { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
362 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
364 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
365 - (unsigned long)smiapp_csi_data_formats) \
366 / sizeof(*smiapp_csi_data_formats))
368 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
370 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
371 int flip = 0;
373 if (sensor->hflip) {
374 if (sensor->hflip->val)
375 flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
377 if (sensor->vflip->val)
378 flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
381 flip ^= sensor->hvflip_inv_mask;
383 dev_dbg(&client->dev, "flip %d\n", flip);
384 return sensor->default_pixel_order ^ flip;
387 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
389 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
390 unsigned int csi_format_idx =
391 to_csi_format_idx(sensor->csi_format) & ~3;
392 unsigned int internal_csi_format_idx =
393 to_csi_format_idx(sensor->internal_csi_format) & ~3;
394 unsigned int pixel_order = smiapp_pixel_order(sensor);
396 sensor->mbus_frame_fmts =
397 sensor->default_mbus_frame_fmts << pixel_order;
398 sensor->csi_format =
399 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
400 sensor->internal_csi_format =
401 &smiapp_csi_data_formats[internal_csi_format_idx
402 + pixel_order];
404 BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
405 >= ARRAY_SIZE(smiapp_csi_data_formats));
407 dev_dbg(&client->dev, "new pixel order %s\n",
408 pixel_order_str[pixel_order]);
411 static const char * const smiapp_test_patterns[] = {
412 "Disabled",
413 "Solid Colour",
414 "Eight Vertical Colour Bars",
415 "Colour Bars With Fade to Grey",
416 "Pseudorandom Sequence (PN9)",
419 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
421 struct smiapp_sensor *sensor =
422 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
423 ->sensor;
424 u32 orient = 0;
425 int exposure;
426 int rval;
428 switch (ctrl->id) {
429 case V4L2_CID_ANALOGUE_GAIN:
430 return smiapp_write(
431 sensor,
432 SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
434 case V4L2_CID_EXPOSURE:
435 return smiapp_write(
436 sensor,
437 SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
439 case V4L2_CID_HFLIP:
440 case V4L2_CID_VFLIP:
441 if (sensor->streaming)
442 return -EBUSY;
444 if (sensor->hflip->val)
445 orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
447 if (sensor->vflip->val)
448 orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
450 orient ^= sensor->hvflip_inv_mask;
451 rval = smiapp_write(sensor, SMIAPP_REG_U8_IMAGE_ORIENTATION,
452 orient);
453 if (rval < 0)
454 return rval;
456 smiapp_update_mbus_formats(sensor);
458 return 0;
460 case V4L2_CID_VBLANK:
461 exposure = sensor->exposure->val;
463 __smiapp_update_exposure_limits(sensor);
465 if (exposure > sensor->exposure->maximum) {
466 sensor->exposure->val = sensor->exposure->maximum;
467 rval = smiapp_set_ctrl(sensor->exposure);
468 if (rval < 0)
469 return rval;
472 return smiapp_write(
473 sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
474 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
475 + ctrl->val);
477 case V4L2_CID_HBLANK:
478 return smiapp_write(
479 sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
480 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
481 + ctrl->val);
483 case V4L2_CID_LINK_FREQ:
484 if (sensor->streaming)
485 return -EBUSY;
487 return smiapp_pll_update(sensor);
489 case V4L2_CID_TEST_PATTERN: {
490 unsigned int i;
492 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
493 v4l2_ctrl_activate(
494 sensor->test_data[i],
495 ctrl->val ==
496 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
498 return smiapp_write(
499 sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
502 case V4L2_CID_TEST_PATTERN_RED:
503 return smiapp_write(
504 sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
506 case V4L2_CID_TEST_PATTERN_GREENR:
507 return smiapp_write(
508 sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
510 case V4L2_CID_TEST_PATTERN_BLUE:
511 return smiapp_write(
512 sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
514 case V4L2_CID_TEST_PATTERN_GREENB:
515 return smiapp_write(
516 sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
518 case V4L2_CID_PIXEL_RATE:
519 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
520 return 0;
522 default:
523 return -EINVAL;
527 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
528 .s_ctrl = smiapp_set_ctrl,
531 static int smiapp_init_controls(struct smiapp_sensor *sensor)
533 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
534 int rval;
536 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
537 if (rval)
538 return rval;
540 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
542 sensor->analog_gain = v4l2_ctrl_new_std(
543 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
544 V4L2_CID_ANALOGUE_GAIN,
545 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
546 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
547 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
548 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
550 /* Exposure limits will be updated soon, use just something here. */
551 sensor->exposure = v4l2_ctrl_new_std(
552 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
553 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
555 sensor->hflip = v4l2_ctrl_new_std(
556 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
557 V4L2_CID_HFLIP, 0, 1, 1, 0);
558 sensor->vflip = v4l2_ctrl_new_std(
559 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
560 V4L2_CID_VFLIP, 0, 1, 1, 0);
562 sensor->vblank = v4l2_ctrl_new_std(
563 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
564 V4L2_CID_VBLANK, 0, 1, 1, 0);
566 if (sensor->vblank)
567 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
569 sensor->hblank = v4l2_ctrl_new_std(
570 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
571 V4L2_CID_HBLANK, 0, 1, 1, 0);
573 if (sensor->hblank)
574 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
576 sensor->pixel_rate_parray = v4l2_ctrl_new_std(
577 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
578 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
580 v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
581 &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
582 ARRAY_SIZE(smiapp_test_patterns) - 1,
583 0, 0, smiapp_test_patterns);
585 if (sensor->pixel_array->ctrl_handler.error) {
586 dev_err(&client->dev,
587 "pixel array controls initialization failed (%d)\n",
588 sensor->pixel_array->ctrl_handler.error);
589 return sensor->pixel_array->ctrl_handler.error;
592 sensor->pixel_array->sd.ctrl_handler =
593 &sensor->pixel_array->ctrl_handler;
595 v4l2_ctrl_cluster(2, &sensor->hflip);
597 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
598 if (rval)
599 return rval;
601 sensor->src->ctrl_handler.lock = &sensor->mutex;
603 sensor->pixel_rate_csi = v4l2_ctrl_new_std(
604 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
605 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
607 if (sensor->src->ctrl_handler.error) {
608 dev_err(&client->dev,
609 "src controls initialization failed (%d)\n",
610 sensor->src->ctrl_handler.error);
611 return sensor->src->ctrl_handler.error;
614 sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
616 return 0;
620 * For controls that require information on available media bus codes
621 * and linke frequencies.
623 static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
625 unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
626 sensor->csi_format->compressed - sensor->compressed_min_bpp];
627 unsigned int max, i;
629 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
630 int max_value = (1 << sensor->csi_format->width) - 1;
632 sensor->test_data[i] = v4l2_ctrl_new_std(
633 &sensor->pixel_array->ctrl_handler,
634 &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
635 0, max_value, 1, max_value);
638 for (max = 0; sensor->hwcfg->op_sys_clock[max + 1]; max++);
640 sensor->link_freq = v4l2_ctrl_new_int_menu(
641 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
642 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
643 __ffs(*valid_link_freqs), sensor->hwcfg->op_sys_clock);
645 return sensor->src->ctrl_handler.error;
648 static void smiapp_free_controls(struct smiapp_sensor *sensor)
650 unsigned int i;
652 for (i = 0; i < sensor->ssds_used; i++)
653 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
656 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
657 unsigned int n)
659 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
660 unsigned int i;
661 u32 val;
662 int rval;
664 for (i = 0; i < n; i++) {
665 rval = smiapp_read(
666 sensor, smiapp_reg_limits[limit[i]].addr, &val);
667 if (rval)
668 return rval;
669 sensor->limits[limit[i]] = val;
670 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
671 smiapp_reg_limits[limit[i]].addr,
672 smiapp_reg_limits[limit[i]].what, val, val);
675 return 0;
678 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
680 unsigned int i;
681 int rval;
683 for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
684 rval = smiapp_get_limits(sensor, &i, 1);
685 if (rval < 0)
686 return rval;
689 if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
690 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
692 return 0;
695 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
697 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
698 static u32 const limits[] = {
699 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
700 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
701 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
702 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
703 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
704 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
705 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
707 static u32 const limits_replace[] = {
708 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
709 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
710 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
711 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
712 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
713 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
714 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
716 unsigned int i;
717 int rval;
719 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
720 SMIAPP_BINNING_CAPABILITY_NO) {
721 for (i = 0; i < ARRAY_SIZE(limits); i++)
722 sensor->limits[limits[i]] =
723 sensor->limits[limits_replace[i]];
725 return 0;
728 rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
729 if (rval < 0)
730 return rval;
733 * Sanity check whether the binning limits are valid. If not,
734 * use the non-binning ones.
736 if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
737 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
738 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
739 return 0;
741 for (i = 0; i < ARRAY_SIZE(limits); i++) {
742 dev_dbg(&client->dev,
743 "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
744 smiapp_reg_limits[limits[i]].addr,
745 smiapp_reg_limits[limits[i]].what,
746 sensor->limits[limits_replace[i]],
747 sensor->limits[limits_replace[i]]);
748 sensor->limits[limits[i]] =
749 sensor->limits[limits_replace[i]];
752 return 0;
755 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
757 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
758 struct smiapp_pll *pll = &sensor->pll;
759 u8 compressed_max_bpp = 0;
760 unsigned int type, n;
761 unsigned int i, pixel_order;
762 int rval;
764 rval = smiapp_read(
765 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
766 if (rval)
767 return rval;
769 dev_dbg(&client->dev, "data_format_model_type %d\n", type);
771 rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
772 &pixel_order);
773 if (rval)
774 return rval;
776 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
777 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
778 return -EINVAL;
781 dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
782 pixel_order_str[pixel_order]);
784 switch (type) {
785 case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
786 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
787 break;
788 case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
789 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
790 break;
791 default:
792 return -EINVAL;
795 sensor->default_pixel_order = pixel_order;
796 sensor->mbus_frame_fmts = 0;
798 for (i = 0; i < n; i++) {
799 unsigned int fmt, j;
801 rval = smiapp_read(
802 sensor,
803 SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
804 if (rval)
805 return rval;
807 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
808 i, fmt >> 8, (u8)fmt);
810 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
811 const struct smiapp_csi_data_format *f =
812 &smiapp_csi_data_formats[j];
814 if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
815 continue;
817 if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
818 continue;
820 dev_dbg(&client->dev, "jolly good! %d\n", j);
822 sensor->default_mbus_frame_fmts |= 1 << j;
826 /* Figure out which BPP values can be used with which formats. */
827 pll->binning_horizontal = 1;
828 pll->binning_vertical = 1;
829 pll->scale_m = sensor->scale_m;
831 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
832 sensor->compressed_min_bpp =
833 min(smiapp_csi_data_formats[i].compressed,
834 sensor->compressed_min_bpp);
835 compressed_max_bpp =
836 max(smiapp_csi_data_formats[i].compressed,
837 compressed_max_bpp);
840 sensor->valid_link_freqs = devm_kcalloc(
841 &client->dev,
842 compressed_max_bpp - sensor->compressed_min_bpp + 1,
843 sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
844 if (!sensor->valid_link_freqs)
845 return -ENOMEM;
847 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
848 const struct smiapp_csi_data_format *f =
849 &smiapp_csi_data_formats[i];
850 unsigned long *valid_link_freqs =
851 &sensor->valid_link_freqs[
852 f->compressed - sensor->compressed_min_bpp];
853 unsigned int j;
855 if (!(sensor->default_mbus_frame_fmts & 1 << i))
856 continue;
858 pll->bits_per_pixel = f->compressed;
860 for (j = 0; sensor->hwcfg->op_sys_clock[j]; j++) {
861 pll->link_freq = sensor->hwcfg->op_sys_clock[j];
863 rval = smiapp_pll_try(sensor, pll);
864 dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
865 pll->link_freq, pll->bits_per_pixel,
866 rval ? "not ok" : "ok");
867 if (rval)
868 continue;
870 set_bit(j, valid_link_freqs);
873 if (!*valid_link_freqs) {
874 dev_info(&client->dev,
875 "no valid link frequencies for %u bpp\n",
876 f->compressed);
877 sensor->default_mbus_frame_fmts &= ~BIT(i);
878 continue;
881 if (!sensor->csi_format
882 || f->width > sensor->csi_format->width
883 || (f->width == sensor->csi_format->width
884 && f->compressed > sensor->csi_format->compressed)) {
885 sensor->csi_format = f;
886 sensor->internal_csi_format = f;
890 if (!sensor->csi_format) {
891 dev_err(&client->dev, "no supported mbus code found\n");
892 return -EINVAL;
895 smiapp_update_mbus_formats(sensor);
897 return 0;
900 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
902 struct v4l2_ctrl *vblank = sensor->vblank;
903 struct v4l2_ctrl *hblank = sensor->hblank;
904 int min, max;
906 min = max_t(int,
907 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
908 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
909 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
910 max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
911 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
913 __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
915 min = max_t(int,
916 sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
917 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
918 sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
919 max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
920 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
922 __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
924 __smiapp_update_exposure_limits(sensor);
927 static int smiapp_update_mode(struct smiapp_sensor *sensor)
929 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
930 unsigned int binning_mode;
931 int rval;
933 /* Binning has to be set up here; it affects limits */
934 if (sensor->binning_horizontal == 1 &&
935 sensor->binning_vertical == 1) {
936 binning_mode = 0;
937 } else {
938 u8 binning_type =
939 (sensor->binning_horizontal << 4)
940 | sensor->binning_vertical;
942 rval = smiapp_write(
943 sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
944 if (rval < 0)
945 return rval;
947 binning_mode = 1;
949 rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
950 if (rval < 0)
951 return rval;
953 /* Get updated limits due to binning */
954 rval = smiapp_get_limits_binning(sensor);
955 if (rval < 0)
956 return rval;
958 rval = smiapp_pll_update(sensor);
959 if (rval < 0)
960 return rval;
962 /* Output from pixel array, including blanking */
963 smiapp_update_blanking(sensor);
965 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
966 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
968 dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
969 sensor->pll.pixel_rate_pixel_array /
970 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
971 + sensor->hblank->val) *
972 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
973 + sensor->vblank->val) / 100));
975 return 0;
980 * SMIA++ NVM handling
983 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
984 unsigned char *nvm)
986 u32 i, s, p, np, v;
987 int rval = 0, rval2;
989 np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
990 for (p = 0; p < np; p++) {
991 rval = smiapp_write(
992 sensor,
993 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
994 if (rval)
995 goto out;
997 rval = smiapp_write(sensor,
998 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
999 SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
1000 SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
1001 if (rval)
1002 goto out;
1004 for (i = 0; i < 1000; i++) {
1005 rval = smiapp_read(
1006 sensor,
1007 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
1009 if (rval)
1010 goto out;
1012 if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
1013 break;
1015 if (--i == 0) {
1016 rval = -ETIMEDOUT;
1017 goto out;
1022 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
1023 rval = smiapp_read(
1024 sensor,
1025 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
1026 &v);
1027 if (rval)
1028 goto out;
1030 *nvm++ = v;
1034 out:
1035 rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
1036 if (rval < 0)
1037 return rval;
1038 else
1039 return rval2;
1044 * SMIA++ CCI address control
1047 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
1049 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1050 int rval;
1051 u32 val;
1053 client->addr = sensor->hwcfg->i2c_addr_dfl;
1055 rval = smiapp_write(sensor,
1056 SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
1057 sensor->hwcfg->i2c_addr_alt << 1);
1058 if (rval)
1059 return rval;
1061 client->addr = sensor->hwcfg->i2c_addr_alt;
1063 /* verify addr change went ok */
1064 rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
1065 if (rval)
1066 return rval;
1068 if (val != sensor->hwcfg->i2c_addr_alt << 1)
1069 return -ENODEV;
1071 return 0;
1076 * SMIA++ Mode Control
1079 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
1081 struct smiapp_flash_strobe_parms *strobe_setup;
1082 unsigned int ext_freq = sensor->hwcfg->ext_clk;
1083 u32 tmp;
1084 u32 strobe_adjustment;
1085 u32 strobe_width_high_rs;
1086 int rval;
1088 strobe_setup = sensor->hwcfg->strobe_setup;
1091 * How to calculate registers related to strobe length. Please
1092 * do not change, or if you do at least know what you're
1093 * doing. :-)
1095 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1097 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1098 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
1100 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1101 * flash_strobe_adjustment E N, [1 - 0xff]
1103 * The formula above is written as below to keep it on one
1104 * line:
1106 * l / 10^6 = w / e * a
1108 * Let's mark w * a by x:
1110 * x = w * a
1112 * Thus, we get:
1114 * x = l * e / 10^6
1116 * The strobe width must be at least as long as requested,
1117 * thus rounding upwards is needed.
1119 * x = (l * e + 10^6 - 1) / 10^6
1120 * -----------------------------
1122 * Maximum possible accuracy is wanted at all times. Thus keep
1123 * a as small as possible.
1125 * Calculate a, assuming maximum w, with rounding upwards:
1127 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1128 * -------------------------------------
1130 * Thus, we also get w, with that a, with rounding upwards:
1132 * w = (x + a - 1) / a
1133 * -------------------
1135 * To get limits:
1137 * x E [1, (2^16 - 1) * (2^8 - 1)]
1139 * Substituting maximum x to the original formula (with rounding),
1140 * the maximum l is thus
1142 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1144 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1145 * --------------------------------------------------
1147 * flash_strobe_length must be clamped between 1 and
1148 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1150 * Then,
1152 * flash_strobe_adjustment = ((flash_strobe_length *
1153 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1155 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1156 * EXTCLK freq + 10^6 - 1) / 10^6 +
1157 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1159 tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1160 1000000 + 1, ext_freq);
1161 strobe_setup->strobe_width_high_us =
1162 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1164 tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1165 1000000 - 1), 1000000ULL);
1166 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1167 strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1168 strobe_adjustment;
1170 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1171 strobe_setup->mode);
1172 if (rval < 0)
1173 goto out;
1175 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1176 strobe_adjustment);
1177 if (rval < 0)
1178 goto out;
1180 rval = smiapp_write(
1181 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1182 strobe_width_high_rs);
1183 if (rval < 0)
1184 goto out;
1186 rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1187 strobe_setup->strobe_delay);
1188 if (rval < 0)
1189 goto out;
1191 rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1192 strobe_setup->stobe_start_point);
1193 if (rval < 0)
1194 goto out;
1196 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1197 strobe_setup->trigger);
1199 out:
1200 sensor->hwcfg->strobe_setup->trigger = 0;
1202 return rval;
1205 /* -----------------------------------------------------------------------------
1206 * Power management
1209 static int smiapp_power_on(struct device *dev)
1211 struct i2c_client *client = to_i2c_client(dev);
1212 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1213 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1215 * The sub-device related to the I2C device is always the
1216 * source one, i.e. ssds[0].
1218 struct smiapp_sensor *sensor =
1219 container_of(ssd, struct smiapp_sensor, ssds[0]);
1220 unsigned int sleep;
1221 int rval;
1223 rval = regulator_enable(sensor->vana);
1224 if (rval) {
1225 dev_err(&client->dev, "failed to enable vana regulator\n");
1226 return rval;
1228 usleep_range(1000, 1000);
1230 rval = clk_prepare_enable(sensor->ext_clk);
1231 if (rval < 0) {
1232 dev_dbg(&client->dev, "failed to enable xclk\n");
1233 goto out_xclk_fail;
1235 usleep_range(1000, 1000);
1237 gpiod_set_value(sensor->xshutdown, 1);
1239 sleep = SMIAPP_RESET_DELAY(sensor->hwcfg->ext_clk);
1240 usleep_range(sleep, sleep);
1242 mutex_lock(&sensor->mutex);
1244 sensor->active = true;
1247 * Failures to respond to the address change command have been noticed.
1248 * Those failures seem to be caused by the sensor requiring a longer
1249 * boot time than advertised. An additional 10ms delay seems to work
1250 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1251 * unnecessary. The failures need to be investigated to find a proper
1252 * fix, and a delay will likely need to be added here if the I2C write
1253 * retry hack is reverted before the root cause of the boot time issue
1254 * is found.
1257 if (sensor->hwcfg->i2c_addr_alt) {
1258 rval = smiapp_change_cci_addr(sensor);
1259 if (rval) {
1260 dev_err(&client->dev, "cci address change error\n");
1261 goto out_cci_addr_fail;
1265 rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1266 SMIAPP_SOFTWARE_RESET);
1267 if (rval < 0) {
1268 dev_err(&client->dev, "software reset failed\n");
1269 goto out_cci_addr_fail;
1272 if (sensor->hwcfg->i2c_addr_alt) {
1273 rval = smiapp_change_cci_addr(sensor);
1274 if (rval) {
1275 dev_err(&client->dev, "cci address change error\n");
1276 goto out_cci_addr_fail;
1280 rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1281 SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1282 if (rval) {
1283 dev_err(&client->dev, "compression mode set failed\n");
1284 goto out_cci_addr_fail;
1287 rval = smiapp_write(
1288 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1289 sensor->hwcfg->ext_clk / (1000000 / (1 << 8)));
1290 if (rval) {
1291 dev_err(&client->dev, "extclk frequency set failed\n");
1292 goto out_cci_addr_fail;
1295 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1296 sensor->hwcfg->lanes - 1);
1297 if (rval) {
1298 dev_err(&client->dev, "csi lane mode set failed\n");
1299 goto out_cci_addr_fail;
1302 rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1303 SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1304 if (rval) {
1305 dev_err(&client->dev, "fast standby set failed\n");
1306 goto out_cci_addr_fail;
1309 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1310 sensor->hwcfg->csi_signalling_mode);
1311 if (rval) {
1312 dev_err(&client->dev, "csi signalling mode set failed\n");
1313 goto out_cci_addr_fail;
1316 /* DPHY control done by sensor based on requested link rate */
1317 rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1318 SMIAPP_DPHY_CTRL_UI);
1319 if (rval < 0)
1320 goto out_cci_addr_fail;
1322 rval = smiapp_call_quirk(sensor, post_poweron);
1323 if (rval) {
1324 dev_err(&client->dev, "post_poweron quirks failed\n");
1325 goto out_cci_addr_fail;
1328 /* Are we still initialising...? If not, proceed with control setup. */
1329 if (sensor->pixel_array) {
1330 rval = __v4l2_ctrl_handler_setup(
1331 &sensor->pixel_array->ctrl_handler);
1332 if (rval)
1333 goto out_cci_addr_fail;
1335 rval = __v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1336 if (rval)
1337 goto out_cci_addr_fail;
1339 rval = smiapp_update_mode(sensor);
1340 if (rval < 0)
1341 goto out_cci_addr_fail;
1344 mutex_unlock(&sensor->mutex);
1346 return 0;
1348 out_cci_addr_fail:
1349 mutex_unlock(&sensor->mutex);
1350 gpiod_set_value(sensor->xshutdown, 0);
1351 clk_disable_unprepare(sensor->ext_clk);
1353 out_xclk_fail:
1354 regulator_disable(sensor->vana);
1356 return rval;
1359 static int smiapp_power_off(struct device *dev)
1361 struct i2c_client *client = to_i2c_client(dev);
1362 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1363 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1364 struct smiapp_sensor *sensor =
1365 container_of(ssd, struct smiapp_sensor, ssds[0]);
1367 mutex_lock(&sensor->mutex);
1370 * Currently power/clock to lens are enable/disabled separately
1371 * but they are essentially the same signals. So if the sensor is
1372 * powered off while the lens is powered on the sensor does not
1373 * really see a power off and next time the cci address change
1374 * will fail. So do a soft reset explicitly here.
1376 if (sensor->hwcfg->i2c_addr_alt)
1377 smiapp_write(sensor,
1378 SMIAPP_REG_U8_SOFTWARE_RESET,
1379 SMIAPP_SOFTWARE_RESET);
1381 sensor->active = false;
1383 mutex_unlock(&sensor->mutex);
1385 gpiod_set_value(sensor->xshutdown, 0);
1386 clk_disable_unprepare(sensor->ext_clk);
1387 usleep_range(5000, 5000);
1388 regulator_disable(sensor->vana);
1389 sensor->streaming = false;
1391 return 0;
1394 /* -----------------------------------------------------------------------------
1395 * Video stream management
1398 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1400 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1401 int rval;
1403 mutex_lock(&sensor->mutex);
1405 rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1406 (sensor->csi_format->width << 8) |
1407 sensor->csi_format->compressed);
1408 if (rval)
1409 goto out;
1411 rval = smiapp_pll_configure(sensor);
1412 if (rval)
1413 goto out;
1415 /* Analog crop start coordinates */
1416 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1417 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1418 if (rval < 0)
1419 goto out;
1421 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1422 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1423 if (rval < 0)
1424 goto out;
1426 /* Analog crop end coordinates */
1427 rval = smiapp_write(
1428 sensor, SMIAPP_REG_U16_X_ADDR_END,
1429 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1430 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1431 if (rval < 0)
1432 goto out;
1434 rval = smiapp_write(
1435 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1436 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1437 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1438 if (rval < 0)
1439 goto out;
1442 * Output from pixel array, including blanking, is set using
1443 * controls below. No need to set here.
1446 /* Digital crop */
1447 if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1448 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1449 rval = smiapp_write(
1450 sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1451 sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1452 if (rval < 0)
1453 goto out;
1455 rval = smiapp_write(
1456 sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1457 sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1458 if (rval < 0)
1459 goto out;
1461 rval = smiapp_write(
1462 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1463 sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1464 if (rval < 0)
1465 goto out;
1467 rval = smiapp_write(
1468 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1469 sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1470 if (rval < 0)
1471 goto out;
1474 /* Scaling */
1475 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1476 != SMIAPP_SCALING_CAPABILITY_NONE) {
1477 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1478 sensor->scaling_mode);
1479 if (rval < 0)
1480 goto out;
1482 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1483 sensor->scale_m);
1484 if (rval < 0)
1485 goto out;
1488 /* Output size from sensor */
1489 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1490 sensor->src->crop[SMIAPP_PAD_SRC].width);
1491 if (rval < 0)
1492 goto out;
1493 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1494 sensor->src->crop[SMIAPP_PAD_SRC].height);
1495 if (rval < 0)
1496 goto out;
1498 if ((sensor->limits[SMIAPP_LIMIT_FLASH_MODE_CAPABILITY] &
1499 (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1500 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1501 sensor->hwcfg->strobe_setup != NULL &&
1502 sensor->hwcfg->strobe_setup->trigger != 0) {
1503 rval = smiapp_setup_flash_strobe(sensor);
1504 if (rval)
1505 goto out;
1508 rval = smiapp_call_quirk(sensor, pre_streamon);
1509 if (rval) {
1510 dev_err(&client->dev, "pre_streamon quirks failed\n");
1511 goto out;
1514 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1515 SMIAPP_MODE_SELECT_STREAMING);
1517 out:
1518 mutex_unlock(&sensor->mutex);
1520 return rval;
1523 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1525 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1526 int rval;
1528 mutex_lock(&sensor->mutex);
1529 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1530 SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1531 if (rval)
1532 goto out;
1534 rval = smiapp_call_quirk(sensor, post_streamoff);
1535 if (rval)
1536 dev_err(&client->dev, "post_streamoff quirks failed\n");
1538 out:
1539 mutex_unlock(&sensor->mutex);
1540 return rval;
1543 /* -----------------------------------------------------------------------------
1544 * V4L2 subdev video operations
1547 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1549 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1550 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1551 int rval;
1553 if (sensor->streaming == enable)
1554 return 0;
1556 if (enable) {
1557 rval = pm_runtime_get_sync(&client->dev);
1558 if (rval < 0) {
1559 if (rval != -EBUSY && rval != -EAGAIN)
1560 pm_runtime_set_active(&client->dev);
1561 pm_runtime_put(&client->dev);
1562 return rval;
1565 sensor->streaming = true;
1567 rval = smiapp_start_streaming(sensor);
1568 if (rval < 0)
1569 sensor->streaming = false;
1570 } else {
1571 rval = smiapp_stop_streaming(sensor);
1572 sensor->streaming = false;
1573 pm_runtime_mark_last_busy(&client->dev);
1574 pm_runtime_put_autosuspend(&client->dev);
1577 return rval;
1580 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1581 struct v4l2_subdev_pad_config *cfg,
1582 struct v4l2_subdev_mbus_code_enum *code)
1584 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1585 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1586 unsigned int i;
1587 int idx = -1;
1588 int rval = -EINVAL;
1590 mutex_lock(&sensor->mutex);
1592 dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1593 subdev->name, code->pad, code->index);
1595 if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1596 if (code->index)
1597 goto out;
1599 code->code = sensor->internal_csi_format->code;
1600 rval = 0;
1601 goto out;
1604 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1605 if (sensor->mbus_frame_fmts & (1 << i))
1606 idx++;
1608 if (idx == code->index) {
1609 code->code = smiapp_csi_data_formats[i].code;
1610 dev_err(&client->dev, "found index %d, i %d, code %x\n",
1611 code->index, i, code->code);
1612 rval = 0;
1613 break;
1617 out:
1618 mutex_unlock(&sensor->mutex);
1620 return rval;
1623 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1624 unsigned int pad)
1626 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1628 if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1629 return sensor->csi_format->code;
1630 else
1631 return sensor->internal_csi_format->code;
1634 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1635 struct v4l2_subdev_pad_config *cfg,
1636 struct v4l2_subdev_format *fmt)
1638 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1640 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1641 fmt->format = *v4l2_subdev_get_try_format(subdev, cfg,
1642 fmt->pad);
1643 } else {
1644 struct v4l2_rect *r;
1646 if (fmt->pad == ssd->source_pad)
1647 r = &ssd->crop[ssd->source_pad];
1648 else
1649 r = &ssd->sink_fmt;
1651 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1652 fmt->format.width = r->width;
1653 fmt->format.height = r->height;
1654 fmt->format.field = V4L2_FIELD_NONE;
1657 return 0;
1660 static int smiapp_get_format(struct v4l2_subdev *subdev,
1661 struct v4l2_subdev_pad_config *cfg,
1662 struct v4l2_subdev_format *fmt)
1664 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1665 int rval;
1667 mutex_lock(&sensor->mutex);
1668 rval = __smiapp_get_format(subdev, cfg, fmt);
1669 mutex_unlock(&sensor->mutex);
1671 return rval;
1674 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1675 struct v4l2_subdev_pad_config *cfg,
1676 struct v4l2_rect **crops,
1677 struct v4l2_rect **comps, int which)
1679 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1680 unsigned int i;
1682 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1683 if (crops)
1684 for (i = 0; i < subdev->entity.num_pads; i++)
1685 crops[i] = &ssd->crop[i];
1686 if (comps)
1687 *comps = &ssd->compose;
1688 } else {
1689 if (crops) {
1690 for (i = 0; i < subdev->entity.num_pads; i++) {
1691 crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
1692 BUG_ON(!crops[i]);
1695 if (comps) {
1696 *comps = v4l2_subdev_get_try_compose(subdev, cfg,
1697 SMIAPP_PAD_SINK);
1698 BUG_ON(!*comps);
1703 /* Changes require propagation only on sink pad. */
1704 static void smiapp_propagate(struct v4l2_subdev *subdev,
1705 struct v4l2_subdev_pad_config *cfg, int which,
1706 int target)
1708 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1709 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1710 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1712 smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);
1714 switch (target) {
1715 case V4L2_SEL_TGT_CROP:
1716 comp->width = crops[SMIAPP_PAD_SINK]->width;
1717 comp->height = crops[SMIAPP_PAD_SINK]->height;
1718 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1719 if (ssd == sensor->scaler) {
1720 sensor->scale_m =
1721 sensor->limits[
1722 SMIAPP_LIMIT_SCALER_N_MIN];
1723 sensor->scaling_mode =
1724 SMIAPP_SCALING_MODE_NONE;
1725 } else if (ssd == sensor->binner) {
1726 sensor->binning_horizontal = 1;
1727 sensor->binning_vertical = 1;
1730 /* Fall through */
1731 case V4L2_SEL_TGT_COMPOSE:
1732 *crops[SMIAPP_PAD_SRC] = *comp;
1733 break;
1734 default:
1735 BUG();
1739 static const struct smiapp_csi_data_format
1740 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1742 unsigned int i;
1744 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1745 if (sensor->mbus_frame_fmts & (1 << i)
1746 && smiapp_csi_data_formats[i].code == code)
1747 return &smiapp_csi_data_formats[i];
1750 return sensor->csi_format;
1753 static int smiapp_set_format_source(struct v4l2_subdev *subdev,
1754 struct v4l2_subdev_pad_config *cfg,
1755 struct v4l2_subdev_format *fmt)
1757 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1758 const struct smiapp_csi_data_format *csi_format,
1759 *old_csi_format = sensor->csi_format;
1760 unsigned long *valid_link_freqs;
1761 u32 code = fmt->format.code;
1762 unsigned int i;
1763 int rval;
1765 rval = __smiapp_get_format(subdev, cfg, fmt);
1766 if (rval)
1767 return rval;
1770 * Media bus code is changeable on src subdev's source pad. On
1771 * other source pads we just get format here.
1773 if (subdev != &sensor->src->sd)
1774 return 0;
1776 csi_format = smiapp_validate_csi_data_format(sensor, code);
1778 fmt->format.code = csi_format->code;
1780 if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1781 return 0;
1783 sensor->csi_format = csi_format;
1785 if (csi_format->width != old_csi_format->width)
1786 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1787 __v4l2_ctrl_modify_range(
1788 sensor->test_data[i], 0,
1789 (1 << csi_format->width) - 1, 1, 0);
1791 if (csi_format->compressed == old_csi_format->compressed)
1792 return 0;
1794 valid_link_freqs =
1795 &sensor->valid_link_freqs[sensor->csi_format->compressed
1796 - sensor->compressed_min_bpp];
1798 __v4l2_ctrl_modify_range(
1799 sensor->link_freq, 0,
1800 __fls(*valid_link_freqs), ~*valid_link_freqs,
1801 __ffs(*valid_link_freqs));
1803 return smiapp_pll_update(sensor);
1806 static int smiapp_set_format(struct v4l2_subdev *subdev,
1807 struct v4l2_subdev_pad_config *cfg,
1808 struct v4l2_subdev_format *fmt)
1810 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1811 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1812 struct v4l2_rect *crops[SMIAPP_PADS];
1814 mutex_lock(&sensor->mutex);
1816 if (fmt->pad == ssd->source_pad) {
1817 int rval;
1819 rval = smiapp_set_format_source(subdev, cfg, fmt);
1821 mutex_unlock(&sensor->mutex);
1823 return rval;
1826 /* Sink pad. Width and height are changeable here. */
1827 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1828 fmt->format.width &= ~1;
1829 fmt->format.height &= ~1;
1830 fmt->format.field = V4L2_FIELD_NONE;
1832 fmt->format.width =
1833 clamp(fmt->format.width,
1834 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1835 sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1836 fmt->format.height =
1837 clamp(fmt->format.height,
1838 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1839 sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1841 smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
1843 crops[ssd->sink_pad]->left = 0;
1844 crops[ssd->sink_pad]->top = 0;
1845 crops[ssd->sink_pad]->width = fmt->format.width;
1846 crops[ssd->sink_pad]->height = fmt->format.height;
1847 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1848 ssd->sink_fmt = *crops[ssd->sink_pad];
1849 smiapp_propagate(subdev, cfg, fmt->which,
1850 V4L2_SEL_TGT_CROP);
1852 mutex_unlock(&sensor->mutex);
1854 return 0;
1858 * Calculate goodness of scaled image size compared to expected image
1859 * size and flags provided.
1861 #define SCALING_GOODNESS 100000
1862 #define SCALING_GOODNESS_EXTREME 100000000
1863 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1864 int h, int ask_h, u32 flags)
1866 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1867 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1868 int val = 0;
1870 w &= ~1;
1871 ask_w &= ~1;
1872 h &= ~1;
1873 ask_h &= ~1;
1875 if (flags & V4L2_SEL_FLAG_GE) {
1876 if (w < ask_w)
1877 val -= SCALING_GOODNESS;
1878 if (h < ask_h)
1879 val -= SCALING_GOODNESS;
1882 if (flags & V4L2_SEL_FLAG_LE) {
1883 if (w > ask_w)
1884 val -= SCALING_GOODNESS;
1885 if (h > ask_h)
1886 val -= SCALING_GOODNESS;
1889 val -= abs(w - ask_w);
1890 val -= abs(h - ask_h);
1892 if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1893 val -= SCALING_GOODNESS_EXTREME;
1895 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1896 w, ask_h, h, ask_h, val);
1898 return val;
1901 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1902 struct v4l2_subdev_pad_config *cfg,
1903 struct v4l2_subdev_selection *sel,
1904 struct v4l2_rect **crops,
1905 struct v4l2_rect *comp)
1907 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1908 unsigned int i;
1909 unsigned int binh = 1, binv = 1;
1910 int best = scaling_goodness(
1911 subdev,
1912 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1913 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1915 for (i = 0; i < sensor->nbinning_subtypes; i++) {
1916 int this = scaling_goodness(
1917 subdev,
1918 crops[SMIAPP_PAD_SINK]->width
1919 / sensor->binning_subtypes[i].horizontal,
1920 sel->r.width,
1921 crops[SMIAPP_PAD_SINK]->height
1922 / sensor->binning_subtypes[i].vertical,
1923 sel->r.height, sel->flags);
1925 if (this > best) {
1926 binh = sensor->binning_subtypes[i].horizontal;
1927 binv = sensor->binning_subtypes[i].vertical;
1928 best = this;
1931 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1932 sensor->binning_vertical = binv;
1933 sensor->binning_horizontal = binh;
1936 sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1937 sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1941 * Calculate best scaling ratio and mode for given output resolution.
1943 * Try all of these: horizontal ratio, vertical ratio and smallest
1944 * size possible (horizontally).
1946 * Also try whether horizontal scaler or full scaler gives a better
1947 * result.
1949 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1950 struct v4l2_subdev_pad_config *cfg,
1951 struct v4l2_subdev_selection *sel,
1952 struct v4l2_rect **crops,
1953 struct v4l2_rect *comp)
1955 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1956 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1957 u32 min, max, a, b, max_m;
1958 u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1959 int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1960 u32 try[4];
1961 u32 ntry = 0;
1962 unsigned int i;
1963 int best = INT_MIN;
1965 sel->r.width = min_t(unsigned int, sel->r.width,
1966 crops[SMIAPP_PAD_SINK]->width);
1967 sel->r.height = min_t(unsigned int, sel->r.height,
1968 crops[SMIAPP_PAD_SINK]->height);
1970 a = crops[SMIAPP_PAD_SINK]->width
1971 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1972 b = crops[SMIAPP_PAD_SINK]->height
1973 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1974 max_m = crops[SMIAPP_PAD_SINK]->width
1975 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1976 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1978 a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1979 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1980 b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1981 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1982 max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1983 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1985 dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1987 min = min(max_m, min(a, b));
1988 max = min(max_m, max(a, b));
1990 try[ntry] = min;
1991 ntry++;
1992 if (min != max) {
1993 try[ntry] = max;
1994 ntry++;
1996 if (max != max_m) {
1997 try[ntry] = min + 1;
1998 ntry++;
1999 if (min != max) {
2000 try[ntry] = max + 1;
2001 ntry++;
2005 for (i = 0; i < ntry; i++) {
2006 int this = scaling_goodness(
2007 subdev,
2008 crops[SMIAPP_PAD_SINK]->width
2009 / try[i]
2010 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2011 sel->r.width,
2012 crops[SMIAPP_PAD_SINK]->height,
2013 sel->r.height,
2014 sel->flags);
2016 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
2018 if (this > best) {
2019 scale_m = try[i];
2020 mode = SMIAPP_SCALING_MODE_HORIZONTAL;
2021 best = this;
2024 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2025 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2026 continue;
2028 this = scaling_goodness(
2029 subdev, crops[SMIAPP_PAD_SINK]->width
2030 / try[i]
2031 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2032 sel->r.width,
2033 crops[SMIAPP_PAD_SINK]->height
2034 / try[i]
2035 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2036 sel->r.height,
2037 sel->flags);
2039 if (this > best) {
2040 scale_m = try[i];
2041 mode = SMIAPP_SCALING_MODE_BOTH;
2042 best = this;
2046 sel->r.width =
2047 (crops[SMIAPP_PAD_SINK]->width
2048 / scale_m
2049 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
2050 if (mode == SMIAPP_SCALING_MODE_BOTH)
2051 sel->r.height =
2052 (crops[SMIAPP_PAD_SINK]->height
2053 / scale_m
2054 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
2055 & ~1;
2056 else
2057 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
2059 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2060 sensor->scale_m = scale_m;
2061 sensor->scaling_mode = mode;
2064 /* We're only called on source pads. This function sets scaling. */
2065 static int smiapp_set_compose(struct v4l2_subdev *subdev,
2066 struct v4l2_subdev_pad_config *cfg,
2067 struct v4l2_subdev_selection *sel)
2069 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2070 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2071 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2073 smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2075 sel->r.top = 0;
2076 sel->r.left = 0;
2078 if (ssd == sensor->binner)
2079 smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
2080 else
2081 smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);
2083 *comp = sel->r;
2084 smiapp_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_COMPOSE);
2086 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2087 return smiapp_update_mode(sensor);
2089 return 0;
2092 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
2093 struct v4l2_subdev_selection *sel)
2095 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2096 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2098 /* We only implement crop in three places. */
2099 switch (sel->target) {
2100 case V4L2_SEL_TGT_CROP:
2101 case V4L2_SEL_TGT_CROP_BOUNDS:
2102 if (ssd == sensor->pixel_array
2103 && sel->pad == SMIAPP_PA_PAD_SRC)
2104 return 0;
2105 if (ssd == sensor->src
2106 && sel->pad == SMIAPP_PAD_SRC)
2107 return 0;
2108 if (ssd == sensor->scaler
2109 && sel->pad == SMIAPP_PAD_SINK
2110 && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2111 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2112 return 0;
2113 return -EINVAL;
2114 case V4L2_SEL_TGT_NATIVE_SIZE:
2115 if (ssd == sensor->pixel_array
2116 && sel->pad == SMIAPP_PA_PAD_SRC)
2117 return 0;
2118 return -EINVAL;
2119 case V4L2_SEL_TGT_COMPOSE:
2120 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2121 if (sel->pad == ssd->source_pad)
2122 return -EINVAL;
2123 if (ssd == sensor->binner)
2124 return 0;
2125 if (ssd == sensor->scaler
2126 && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2127 != SMIAPP_SCALING_CAPABILITY_NONE)
2128 return 0;
2129 /* Fall through */
2130 default:
2131 return -EINVAL;
2135 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2136 struct v4l2_subdev_pad_config *cfg,
2137 struct v4l2_subdev_selection *sel)
2139 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2140 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2141 struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2142 struct v4l2_rect _r;
2144 smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
2146 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2147 if (sel->pad == ssd->sink_pad)
2148 src_size = &ssd->sink_fmt;
2149 else
2150 src_size = &ssd->compose;
2151 } else {
2152 if (sel->pad == ssd->sink_pad) {
2153 _r.left = 0;
2154 _r.top = 0;
2155 _r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2156 ->width;
2157 _r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2158 ->height;
2159 src_size = &_r;
2160 } else {
2161 src_size = v4l2_subdev_get_try_compose(
2162 subdev, cfg, ssd->sink_pad);
2166 if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2167 sel->r.left = 0;
2168 sel->r.top = 0;
2171 sel->r.width = min(sel->r.width, src_size->width);
2172 sel->r.height = min(sel->r.height, src_size->height);
2174 sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2175 sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2177 *crops[sel->pad] = sel->r;
2179 if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2180 smiapp_propagate(subdev, cfg, sel->which,
2181 V4L2_SEL_TGT_CROP);
2183 return 0;
2186 static void smiapp_get_native_size(struct smiapp_subdev *ssd,
2187 struct v4l2_rect *r)
2189 r->top = 0;
2190 r->left = 0;
2191 r->width = ssd->sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2192 r->height = ssd->sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2195 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2196 struct v4l2_subdev_pad_config *cfg,
2197 struct v4l2_subdev_selection *sel)
2199 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2200 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2201 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2202 struct v4l2_rect sink_fmt;
2203 int ret;
2205 ret = __smiapp_sel_supported(subdev, sel);
2206 if (ret)
2207 return ret;
2209 smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2211 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2212 sink_fmt = ssd->sink_fmt;
2213 } else {
2214 struct v4l2_mbus_framefmt *fmt =
2215 v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
2217 sink_fmt.left = 0;
2218 sink_fmt.top = 0;
2219 sink_fmt.width = fmt->width;
2220 sink_fmt.height = fmt->height;
2223 switch (sel->target) {
2224 case V4L2_SEL_TGT_CROP_BOUNDS:
2225 case V4L2_SEL_TGT_NATIVE_SIZE:
2226 if (ssd == sensor->pixel_array)
2227 smiapp_get_native_size(ssd, &sel->r);
2228 else if (sel->pad == ssd->sink_pad)
2229 sel->r = sink_fmt;
2230 else
2231 sel->r = *comp;
2232 break;
2233 case V4L2_SEL_TGT_CROP:
2234 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2235 sel->r = *crops[sel->pad];
2236 break;
2237 case V4L2_SEL_TGT_COMPOSE:
2238 sel->r = *comp;
2239 break;
2242 return 0;
2245 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2246 struct v4l2_subdev_pad_config *cfg,
2247 struct v4l2_subdev_selection *sel)
2249 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2250 int rval;
2252 mutex_lock(&sensor->mutex);
2253 rval = __smiapp_get_selection(subdev, cfg, sel);
2254 mutex_unlock(&sensor->mutex);
2256 return rval;
2258 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2259 struct v4l2_subdev_pad_config *cfg,
2260 struct v4l2_subdev_selection *sel)
2262 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2263 int ret;
2265 ret = __smiapp_sel_supported(subdev, sel);
2266 if (ret)
2267 return ret;
2269 mutex_lock(&sensor->mutex);
2271 sel->r.left = max(0, sel->r.left & ~1);
2272 sel->r.top = max(0, sel->r.top & ~1);
2273 sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2274 sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2276 sel->r.width = max_t(unsigned int,
2277 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2278 sel->r.width);
2279 sel->r.height = max_t(unsigned int,
2280 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2281 sel->r.height);
2283 switch (sel->target) {
2284 case V4L2_SEL_TGT_CROP:
2285 ret = smiapp_set_crop(subdev, cfg, sel);
2286 break;
2287 case V4L2_SEL_TGT_COMPOSE:
2288 ret = smiapp_set_compose(subdev, cfg, sel);
2289 break;
2290 default:
2291 ret = -EINVAL;
2294 mutex_unlock(&sensor->mutex);
2295 return ret;
2298 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2300 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2302 *frames = sensor->frame_skip;
2303 return 0;
2306 static int smiapp_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2308 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2310 *lines = sensor->image_start;
2312 return 0;
2315 /* -----------------------------------------------------------------------------
2316 * sysfs attributes
2319 static ssize_t
2320 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2321 char *buf)
2323 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2324 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2325 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2326 unsigned int nbytes;
2328 if (!sensor->dev_init_done)
2329 return -EBUSY;
2331 if (!sensor->nvm_size) {
2332 int rval;
2334 /* NVM not read yet - read it now */
2335 sensor->nvm_size = sensor->hwcfg->nvm_size;
2337 rval = pm_runtime_get_sync(&client->dev);
2338 if (rval < 0) {
2339 if (rval != -EBUSY && rval != -EAGAIN)
2340 pm_runtime_set_active(&client->dev);
2341 pm_runtime_put(&client->dev);
2342 return -ENODEV;
2345 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2346 dev_err(&client->dev, "nvm read failed\n");
2347 return -ENODEV;
2350 pm_runtime_mark_last_busy(&client->dev);
2351 pm_runtime_put_autosuspend(&client->dev);
2354 * NVM is still way below a PAGE_SIZE, so we can safely
2355 * assume this for now.
2357 nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2358 memcpy(buf, sensor->nvm, nbytes);
2360 return nbytes;
2362 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2364 static ssize_t
2365 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2366 char *buf)
2368 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2369 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2370 struct smiapp_module_info *minfo = &sensor->minfo;
2372 return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2373 minfo->manufacturer_id, minfo->model_id,
2374 minfo->revision_number_major) + 1;
2377 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2379 /* -----------------------------------------------------------------------------
2380 * V4L2 subdev core operations
2383 static int smiapp_identify_module(struct smiapp_sensor *sensor)
2385 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2386 struct smiapp_module_info *minfo = &sensor->minfo;
2387 unsigned int i;
2388 int rval = 0;
2390 minfo->name = SMIAPP_NAME;
2392 /* Module info */
2393 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2394 &minfo->manufacturer_id);
2395 if (!rval)
2396 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2397 &minfo->model_id);
2398 if (!rval)
2399 rval = smiapp_read_8only(sensor,
2400 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2401 &minfo->revision_number_major);
2402 if (!rval)
2403 rval = smiapp_read_8only(sensor,
2404 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2405 &minfo->revision_number_minor);
2406 if (!rval)
2407 rval = smiapp_read_8only(sensor,
2408 SMIAPP_REG_U8_MODULE_DATE_YEAR,
2409 &minfo->module_year);
2410 if (!rval)
2411 rval = smiapp_read_8only(sensor,
2412 SMIAPP_REG_U8_MODULE_DATE_MONTH,
2413 &minfo->module_month);
2414 if (!rval)
2415 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2416 &minfo->module_day);
2418 /* Sensor info */
2419 if (!rval)
2420 rval = smiapp_read_8only(sensor,
2421 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2422 &minfo->sensor_manufacturer_id);
2423 if (!rval)
2424 rval = smiapp_read_8only(sensor,
2425 SMIAPP_REG_U16_SENSOR_MODEL_ID,
2426 &minfo->sensor_model_id);
2427 if (!rval)
2428 rval = smiapp_read_8only(sensor,
2429 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2430 &minfo->sensor_revision_number);
2431 if (!rval)
2432 rval = smiapp_read_8only(sensor,
2433 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2434 &minfo->sensor_firmware_version);
2436 /* SMIA */
2437 if (!rval)
2438 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2439 &minfo->smia_version);
2440 if (!rval)
2441 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2442 &minfo->smiapp_version);
2444 if (rval) {
2445 dev_err(&client->dev, "sensor detection failed\n");
2446 return -ENODEV;
2449 dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2450 minfo->manufacturer_id, minfo->model_id);
2452 dev_dbg(&client->dev,
2453 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2454 minfo->revision_number_major, minfo->revision_number_minor,
2455 minfo->module_year, minfo->module_month, minfo->module_day);
2457 dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2458 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2460 dev_dbg(&client->dev,
2461 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2462 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2464 dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2465 minfo->smia_version, minfo->smiapp_version);
2468 * Some modules have bad data in the lvalues below. Hope the
2469 * rvalues have better stuff. The lvalues are module
2470 * parameters whereas the rvalues are sensor parameters.
2472 if (!minfo->manufacturer_id && !minfo->model_id) {
2473 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2474 minfo->model_id = minfo->sensor_model_id;
2475 minfo->revision_number_major = minfo->sensor_revision_number;
2478 for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2479 if (smiapp_module_idents[i].manufacturer_id
2480 != minfo->manufacturer_id)
2481 continue;
2482 if (smiapp_module_idents[i].model_id != minfo->model_id)
2483 continue;
2484 if (smiapp_module_idents[i].flags
2485 & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2486 if (smiapp_module_idents[i].revision_number_major
2487 < minfo->revision_number_major)
2488 continue;
2489 } else {
2490 if (smiapp_module_idents[i].revision_number_major
2491 != minfo->revision_number_major)
2492 continue;
2495 minfo->name = smiapp_module_idents[i].name;
2496 minfo->quirk = smiapp_module_idents[i].quirk;
2497 break;
2500 if (i >= ARRAY_SIZE(smiapp_module_idents))
2501 dev_warn(&client->dev,
2502 "no quirks for this module; let's hope it's fully compliant\n");
2504 dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2505 minfo->name, minfo->manufacturer_id, minfo->model_id,
2506 minfo->revision_number_major);
2508 return 0;
2511 static const struct v4l2_subdev_ops smiapp_ops;
2512 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2513 static const struct media_entity_operations smiapp_entity_ops;
2515 static int smiapp_register_subdev(struct smiapp_sensor *sensor,
2516 struct smiapp_subdev *ssd,
2517 struct smiapp_subdev *sink_ssd,
2518 u16 source_pad, u16 sink_pad, u32 link_flags)
2520 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2521 int rval;
2523 if (!sink_ssd)
2524 return 0;
2526 rval = media_entity_pads_init(&ssd->sd.entity,
2527 ssd->npads, ssd->pads);
2528 if (rval) {
2529 dev_err(&client->dev,
2530 "media_entity_pads_init failed\n");
2531 return rval;
2534 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2535 &ssd->sd);
2536 if (rval) {
2537 dev_err(&client->dev,
2538 "v4l2_device_register_subdev failed\n");
2539 return rval;
2542 rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2543 &sink_ssd->sd.entity, sink_pad,
2544 link_flags);
2545 if (rval) {
2546 dev_err(&client->dev,
2547 "media_create_pad_link failed\n");
2548 v4l2_device_unregister_subdev(&ssd->sd);
2549 return rval;
2552 return 0;
2555 static void smiapp_unregistered(struct v4l2_subdev *subdev)
2557 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2558 unsigned int i;
2560 for (i = 1; i < sensor->ssds_used; i++)
2561 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2564 static int smiapp_registered(struct v4l2_subdev *subdev)
2566 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2567 int rval;
2569 if (sensor->scaler) {
2570 rval = smiapp_register_subdev(
2571 sensor, sensor->binner, sensor->scaler,
2572 SMIAPP_PAD_SRC, SMIAPP_PAD_SINK,
2573 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2574 if (rval < 0)
2575 return rval;
2578 rval = smiapp_register_subdev(
2579 sensor, sensor->pixel_array, sensor->binner,
2580 SMIAPP_PA_PAD_SRC, SMIAPP_PAD_SINK,
2581 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2582 if (rval)
2583 goto out_err;
2585 return 0;
2587 out_err:
2588 smiapp_unregistered(subdev);
2590 return rval;
2593 static void smiapp_cleanup(struct smiapp_sensor *sensor)
2595 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2597 device_remove_file(&client->dev, &dev_attr_nvm);
2598 device_remove_file(&client->dev, &dev_attr_ident);
2600 smiapp_free_controls(sensor);
2603 static void smiapp_create_subdev(struct smiapp_sensor *sensor,
2604 struct smiapp_subdev *ssd, const char *name,
2605 unsigned short num_pads)
2607 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2609 if (!ssd)
2610 return;
2612 if (ssd != sensor->src)
2613 v4l2_subdev_init(&ssd->sd, &smiapp_ops);
2615 ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2616 ssd->sensor = sensor;
2618 ssd->npads = num_pads;
2619 ssd->source_pad = num_pads - 1;
2621 snprintf(ssd->sd.name,
2622 sizeof(ssd->sd.name), "%s %s %d-%4.4x", sensor->minfo.name,
2623 name, i2c_adapter_id(client->adapter), client->addr);
2625 smiapp_get_native_size(ssd, &ssd->sink_fmt);
2627 ssd->compose.width = ssd->sink_fmt.width;
2628 ssd->compose.height = ssd->sink_fmt.height;
2629 ssd->crop[ssd->source_pad] = ssd->compose;
2630 ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2631 if (ssd != sensor->pixel_array) {
2632 ssd->crop[ssd->sink_pad] = ssd->compose;
2633 ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2636 ssd->sd.entity.ops = &smiapp_entity_ops;
2638 if (ssd == sensor->src)
2639 return;
2641 ssd->sd.internal_ops = &smiapp_internal_ops;
2642 ssd->sd.owner = THIS_MODULE;
2643 ssd->sd.dev = &client->dev;
2644 v4l2_set_subdevdata(&ssd->sd, client);
2647 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2649 struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2650 struct smiapp_sensor *sensor = ssd->sensor;
2651 unsigned int i;
2653 mutex_lock(&sensor->mutex);
2655 for (i = 0; i < ssd->npads; i++) {
2656 struct v4l2_mbus_framefmt *try_fmt =
2657 v4l2_subdev_get_try_format(sd, fh->pad, i);
2658 struct v4l2_rect *try_crop =
2659 v4l2_subdev_get_try_crop(sd, fh->pad, i);
2660 struct v4l2_rect *try_comp;
2662 smiapp_get_native_size(ssd, try_crop);
2664 try_fmt->width = try_crop->width;
2665 try_fmt->height = try_crop->height;
2666 try_fmt->code = sensor->internal_csi_format->code;
2667 try_fmt->field = V4L2_FIELD_NONE;
2669 if (ssd != sensor->pixel_array)
2670 continue;
2672 try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
2673 *try_comp = *try_crop;
2676 mutex_unlock(&sensor->mutex);
2678 return 0;
2681 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2682 .s_stream = smiapp_set_stream,
2685 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2686 .enum_mbus_code = smiapp_enum_mbus_code,
2687 .get_fmt = smiapp_get_format,
2688 .set_fmt = smiapp_set_format,
2689 .get_selection = smiapp_get_selection,
2690 .set_selection = smiapp_set_selection,
2693 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2694 .g_skip_frames = smiapp_get_skip_frames,
2695 .g_skip_top_lines = smiapp_get_skip_top_lines,
2698 static const struct v4l2_subdev_ops smiapp_ops = {
2699 .video = &smiapp_video_ops,
2700 .pad = &smiapp_pad_ops,
2701 .sensor = &smiapp_sensor_ops,
2704 static const struct media_entity_operations smiapp_entity_ops = {
2705 .link_validate = v4l2_subdev_link_validate,
2708 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2709 .registered = smiapp_registered,
2710 .unregistered = smiapp_unregistered,
2711 .open = smiapp_open,
2714 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2715 .open = smiapp_open,
2718 /* -----------------------------------------------------------------------------
2719 * I2C Driver
2722 static int __maybe_unused smiapp_suspend(struct device *dev)
2724 struct i2c_client *client = to_i2c_client(dev);
2725 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2726 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2727 bool streaming = sensor->streaming;
2728 int rval;
2730 rval = pm_runtime_get_sync(dev);
2731 if (rval < 0) {
2732 if (rval != -EBUSY && rval != -EAGAIN)
2733 pm_runtime_set_active(&client->dev);
2734 pm_runtime_put(dev);
2735 return -EAGAIN;
2738 if (sensor->streaming)
2739 smiapp_stop_streaming(sensor);
2741 /* save state for resume */
2742 sensor->streaming = streaming;
2744 return 0;
2747 static int __maybe_unused smiapp_resume(struct device *dev)
2749 struct i2c_client *client = to_i2c_client(dev);
2750 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2751 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2752 int rval = 0;
2754 pm_runtime_put(dev);
2756 if (sensor->streaming)
2757 rval = smiapp_start_streaming(sensor);
2759 return rval;
2762 static struct smiapp_hwconfig *smiapp_get_hwconfig(struct device *dev)
2764 struct smiapp_hwconfig *hwcfg;
2765 struct v4l2_fwnode_endpoint *bus_cfg;
2766 struct fwnode_handle *ep;
2767 struct fwnode_handle *fwnode = dev_fwnode(dev);
2768 int i;
2769 int rval;
2771 if (!fwnode)
2772 return dev->platform_data;
2774 ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
2775 if (!ep)
2776 return NULL;
2778 bus_cfg = v4l2_fwnode_endpoint_alloc_parse(ep);
2779 if (IS_ERR(bus_cfg))
2780 goto out_err;
2782 hwcfg = devm_kzalloc(dev, sizeof(*hwcfg), GFP_KERNEL);
2783 if (!hwcfg)
2784 goto out_err;
2786 switch (bus_cfg->bus_type) {
2787 case V4L2_MBUS_CSI2:
2788 hwcfg->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
2789 hwcfg->lanes = bus_cfg->bus.mipi_csi2.num_data_lanes;
2790 break;
2791 case V4L2_MBUS_CCP2:
2792 hwcfg->csi_signalling_mode = (bus_cfg->bus.mipi_csi1.strobe) ?
2793 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
2794 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
2795 hwcfg->lanes = 1;
2796 break;
2797 default:
2798 dev_err(dev, "unsupported bus %u\n", bus_cfg->bus_type);
2799 goto out_err;
2802 dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
2804 /* NVM size is not mandatory */
2805 fwnode_property_read_u32(fwnode, "nokia,nvm-size", &hwcfg->nvm_size);
2807 rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
2808 &hwcfg->ext_clk);
2809 if (rval)
2810 dev_info(dev, "can't get clock-frequency\n");
2812 dev_dbg(dev, "nvm %d, clk %d, mode %d\n",
2813 hwcfg->nvm_size, hwcfg->ext_clk, hwcfg->csi_signalling_mode);
2815 if (!bus_cfg->nr_of_link_frequencies) {
2816 dev_warn(dev, "no link frequencies defined\n");
2817 goto out_err;
2820 hwcfg->op_sys_clock = devm_kcalloc(
2821 dev, bus_cfg->nr_of_link_frequencies + 1 /* guardian */,
2822 sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
2823 if (!hwcfg->op_sys_clock)
2824 goto out_err;
2826 for (i = 0; i < bus_cfg->nr_of_link_frequencies; i++) {
2827 hwcfg->op_sys_clock[i] = bus_cfg->link_frequencies[i];
2828 dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
2831 v4l2_fwnode_endpoint_free(bus_cfg);
2832 fwnode_handle_put(ep);
2833 return hwcfg;
2835 out_err:
2836 v4l2_fwnode_endpoint_free(bus_cfg);
2837 fwnode_handle_put(ep);
2838 return NULL;
2841 static int smiapp_probe(struct i2c_client *client,
2842 const struct i2c_device_id *devid)
2844 struct smiapp_sensor *sensor;
2845 struct smiapp_hwconfig *hwcfg = smiapp_get_hwconfig(&client->dev);
2846 unsigned int i;
2847 int rval;
2849 if (hwcfg == NULL)
2850 return -ENODEV;
2852 sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2853 if (sensor == NULL)
2854 return -ENOMEM;
2856 sensor->hwcfg = hwcfg;
2857 mutex_init(&sensor->mutex);
2858 sensor->src = &sensor->ssds[sensor->ssds_used];
2860 v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2861 sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2863 sensor->vana = devm_regulator_get(&client->dev, "vana");
2864 if (IS_ERR(sensor->vana)) {
2865 dev_err(&client->dev, "could not get regulator for vana\n");
2866 return PTR_ERR(sensor->vana);
2869 sensor->ext_clk = devm_clk_get(&client->dev, NULL);
2870 if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
2871 dev_info(&client->dev, "no clock defined, continuing...\n");
2872 sensor->ext_clk = NULL;
2873 } else if (IS_ERR(sensor->ext_clk)) {
2874 dev_err(&client->dev, "could not get clock (%ld)\n",
2875 PTR_ERR(sensor->ext_clk));
2876 return -EPROBE_DEFER;
2879 if (sensor->ext_clk) {
2880 if (sensor->hwcfg->ext_clk) {
2881 unsigned long rate;
2883 rval = clk_set_rate(sensor->ext_clk,
2884 sensor->hwcfg->ext_clk);
2885 if (rval < 0) {
2886 dev_err(&client->dev,
2887 "unable to set clock freq to %u\n",
2888 sensor->hwcfg->ext_clk);
2889 return rval;
2892 rate = clk_get_rate(sensor->ext_clk);
2893 if (rate != sensor->hwcfg->ext_clk) {
2894 dev_err(&client->dev,
2895 "can't set clock freq, asked for %u but got %lu\n",
2896 sensor->hwcfg->ext_clk, rate);
2897 return rval;
2899 } else {
2900 sensor->hwcfg->ext_clk = clk_get_rate(sensor->ext_clk);
2901 dev_dbg(&client->dev, "obtained clock freq %u\n",
2902 sensor->hwcfg->ext_clk);
2904 } else if (sensor->hwcfg->ext_clk) {
2905 dev_dbg(&client->dev, "assuming clock freq %u\n",
2906 sensor->hwcfg->ext_clk);
2907 } else {
2908 dev_err(&client->dev, "unable to obtain clock freq\n");
2909 return -EINVAL;
2912 sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown",
2913 GPIOD_OUT_LOW);
2914 if (IS_ERR(sensor->xshutdown))
2915 return PTR_ERR(sensor->xshutdown);
2917 rval = smiapp_power_on(&client->dev);
2918 if (rval < 0)
2919 return rval;
2921 rval = smiapp_identify_module(sensor);
2922 if (rval) {
2923 rval = -ENODEV;
2924 goto out_power_off;
2927 rval = smiapp_get_all_limits(sensor);
2928 if (rval) {
2929 rval = -ENODEV;
2930 goto out_power_off;
2933 rval = smiapp_read_frame_fmt(sensor);
2934 if (rval) {
2935 rval = -ENODEV;
2936 goto out_power_off;
2940 * Handle Sensor Module orientation on the board.
2942 * The application of H-FLIP and V-FLIP on the sensor is modified by
2943 * the sensor orientation on the board.
2945 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2946 * both H-FLIP and V-FLIP for normal operation which also implies
2947 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2948 * controls will need to be internally inverted.
2950 * Rotation also changes the bayer pattern.
2952 if (sensor->hwcfg->module_board_orient ==
2953 SMIAPP_MODULE_BOARD_ORIENT_180)
2954 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2955 SMIAPP_IMAGE_ORIENTATION_VFLIP;
2957 rval = smiapp_call_quirk(sensor, limits);
2958 if (rval) {
2959 dev_err(&client->dev, "limits quirks failed\n");
2960 goto out_power_off;
2963 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2964 u32 val;
2966 rval = smiapp_read(sensor,
2967 SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2968 if (rval < 0) {
2969 rval = -ENODEV;
2970 goto out_power_off;
2972 sensor->nbinning_subtypes = min_t(u8, val,
2973 SMIAPP_BINNING_SUBTYPES);
2975 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2976 rval = smiapp_read(
2977 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2978 if (rval < 0) {
2979 rval = -ENODEV;
2980 goto out_power_off;
2982 sensor->binning_subtypes[i] =
2983 *(struct smiapp_binning_subtype *)&val;
2985 dev_dbg(&client->dev, "binning %xx%x\n",
2986 sensor->binning_subtypes[i].horizontal,
2987 sensor->binning_subtypes[i].vertical);
2990 sensor->binning_horizontal = 1;
2991 sensor->binning_vertical = 1;
2993 if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2994 dev_err(&client->dev, "sysfs ident entry creation failed\n");
2995 rval = -ENOENT;
2996 goto out_power_off;
2998 /* SMIA++ NVM initialization - it will be read from the sensor
2999 * when it is first requested by userspace.
3001 if (sensor->minfo.smiapp_version && sensor->hwcfg->nvm_size) {
3002 sensor->nvm = devm_kzalloc(&client->dev,
3003 sensor->hwcfg->nvm_size, GFP_KERNEL);
3004 if (sensor->nvm == NULL) {
3005 rval = -ENOMEM;
3006 goto out_cleanup;
3009 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3010 dev_err(&client->dev, "sysfs nvm entry failed\n");
3011 rval = -EBUSY;
3012 goto out_cleanup;
3016 /* We consider this as profile 0 sensor if any of these are zero. */
3017 if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
3018 !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
3019 !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
3020 !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
3021 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
3022 } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
3023 != SMIAPP_SCALING_CAPABILITY_NONE) {
3024 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
3025 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
3026 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
3027 else
3028 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
3029 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3030 sensor->ssds_used++;
3031 } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
3032 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3033 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3034 sensor->ssds_used++;
3036 sensor->binner = &sensor->ssds[sensor->ssds_used];
3037 sensor->ssds_used++;
3038 sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3039 sensor->ssds_used++;
3041 sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
3043 /* prepare PLL configuration input values */
3044 sensor->pll.bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
3045 sensor->pll.csi2.lanes = sensor->hwcfg->lanes;
3046 sensor->pll.ext_clk_freq_hz = sensor->hwcfg->ext_clk;
3047 sensor->pll.scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
3048 /* Profile 0 sensors have no separate OP clock branch. */
3049 if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
3050 sensor->pll.flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
3052 smiapp_create_subdev(sensor, sensor->scaler, "scaler", 2);
3053 smiapp_create_subdev(sensor, sensor->binner, "binner", 2);
3054 smiapp_create_subdev(sensor, sensor->pixel_array, "pixel_array", 1);
3056 dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
3058 sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3060 rval = smiapp_init_controls(sensor);
3061 if (rval < 0)
3062 goto out_cleanup;
3064 rval = smiapp_call_quirk(sensor, init);
3065 if (rval)
3066 goto out_cleanup;
3068 rval = smiapp_get_mbus_formats(sensor);
3069 if (rval) {
3070 rval = -ENODEV;
3071 goto out_cleanup;
3074 rval = smiapp_init_late_controls(sensor);
3075 if (rval) {
3076 rval = -ENODEV;
3077 goto out_cleanup;
3080 mutex_lock(&sensor->mutex);
3081 rval = smiapp_update_mode(sensor);
3082 mutex_unlock(&sensor->mutex);
3083 if (rval) {
3084 dev_err(&client->dev, "update mode failed\n");
3085 goto out_cleanup;
3088 sensor->streaming = false;
3089 sensor->dev_init_done = true;
3091 rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3092 sensor->src->pads);
3093 if (rval < 0)
3094 goto out_media_entity_cleanup;
3096 rval = v4l2_async_register_subdev_sensor_common(&sensor->src->sd);
3097 if (rval < 0)
3098 goto out_media_entity_cleanup;
3100 pm_runtime_set_active(&client->dev);
3101 pm_runtime_get_noresume(&client->dev);
3102 pm_runtime_enable(&client->dev);
3103 pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3104 pm_runtime_use_autosuspend(&client->dev);
3105 pm_runtime_put_autosuspend(&client->dev);
3107 return 0;
3109 out_media_entity_cleanup:
3110 media_entity_cleanup(&sensor->src->sd.entity);
3112 out_cleanup:
3113 smiapp_cleanup(sensor);
3115 out_power_off:
3116 smiapp_power_off(&client->dev);
3118 return rval;
3121 static int smiapp_remove(struct i2c_client *client)
3123 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3124 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
3125 unsigned int i;
3127 v4l2_async_unregister_subdev(subdev);
3129 pm_runtime_disable(&client->dev);
3130 if (!pm_runtime_status_suspended(&client->dev))
3131 smiapp_power_off(&client->dev);
3132 pm_runtime_set_suspended(&client->dev);
3134 for (i = 0; i < sensor->ssds_used; i++) {
3135 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3136 media_entity_cleanup(&sensor->ssds[i].sd.entity);
3138 smiapp_cleanup(sensor);
3140 return 0;
3143 static const struct of_device_id smiapp_of_table[] = {
3144 { .compatible = "nokia,smia" },
3145 { },
3147 MODULE_DEVICE_TABLE(of, smiapp_of_table);
3149 static const struct i2c_device_id smiapp_id_table[] = {
3150 { SMIAPP_NAME, 0 },
3151 { },
3153 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
3155 static const struct dev_pm_ops smiapp_pm_ops = {
3156 SET_SYSTEM_SLEEP_PM_OPS(smiapp_suspend, smiapp_resume)
3157 SET_RUNTIME_PM_OPS(smiapp_power_off, smiapp_power_on, NULL)
3160 static struct i2c_driver smiapp_i2c_driver = {
3161 .driver = {
3162 .of_match_table = smiapp_of_table,
3163 .name = SMIAPP_NAME,
3164 .pm = &smiapp_pm_ops,
3166 .probe = smiapp_probe,
3167 .remove = smiapp_remove,
3168 .id_table = smiapp_id_table,
3171 module_i2c_driver(smiapp_i2c_driver);
3173 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
3174 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
3175 MODULE_LICENSE("GPL");