Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / media / platform / vivid / vivid-kthread-cap.c
blob6ca71aabb57664182e4d80926bdf18a6778e7f11
1 /*
2 * vivid-kthread-cap.h - video/vbi capture thread support functions.
4 * Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/font.h>
27 #include <linux/mutex.h>
28 #include <linux/videodev2.h>
29 #include <linux/kthread.h>
30 #include <linux/freezer.h>
31 #include <linux/random.h>
32 #include <linux/v4l2-dv-timings.h>
33 #include <asm/div64.h>
34 #include <media/videobuf2-vmalloc.h>
35 #include <media/v4l2-dv-timings.h>
36 #include <media/v4l2-ioctl.h>
37 #include <media/v4l2-fh.h>
38 #include <media/v4l2-event.h>
39 #include <media/v4l2-rect.h>
41 #include "vivid-core.h"
42 #include "vivid-vid-common.h"
43 #include "vivid-vid-cap.h"
44 #include "vivid-vid-out.h"
45 #include "vivid-radio-common.h"
46 #include "vivid-radio-rx.h"
47 #include "vivid-radio-tx.h"
48 #include "vivid-sdr-cap.h"
49 #include "vivid-vbi-cap.h"
50 #include "vivid-vbi-out.h"
51 #include "vivid-osd.h"
52 #include "vivid-ctrls.h"
53 #include "vivid-kthread-cap.h"
55 static inline v4l2_std_id vivid_get_std_cap(const struct vivid_dev *dev)
57 if (vivid_is_sdtv_cap(dev))
58 return dev->std_cap;
59 return 0;
62 static void copy_pix(struct vivid_dev *dev, int win_y, int win_x,
63 u16 *cap, const u16 *osd)
65 u16 out;
66 int left = dev->overlay_out_left;
67 int top = dev->overlay_out_top;
68 int fb_x = win_x + left;
69 int fb_y = win_y + top;
70 int i;
72 out = *cap;
73 *cap = *osd;
74 if (dev->bitmap_out) {
75 const u8 *p = dev->bitmap_out;
76 unsigned stride = (dev->compose_out.width + 7) / 8;
78 win_x -= dev->compose_out.left;
79 win_y -= dev->compose_out.top;
80 if (!(p[stride * win_y + win_x / 8] & (1 << (win_x & 7))))
81 return;
84 for (i = 0; i < dev->clipcount_out; i++) {
85 struct v4l2_rect *r = &dev->clips_out[i].c;
87 if (fb_y >= r->top && fb_y < r->top + r->height &&
88 fb_x >= r->left && fb_x < r->left + r->width)
89 return;
91 if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_CHROMAKEY) &&
92 *osd != dev->chromakey_out)
93 return;
94 if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY) &&
95 out == dev->chromakey_out)
96 return;
97 if (dev->fmt_cap->alpha_mask) {
98 if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_GLOBAL_ALPHA) &&
99 dev->global_alpha_out)
100 return;
101 if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_LOCAL_ALPHA) &&
102 *cap & dev->fmt_cap->alpha_mask)
103 return;
104 if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_LOCAL_INV_ALPHA) &&
105 !(*cap & dev->fmt_cap->alpha_mask))
106 return;
108 *cap = out;
111 static void blend_line(struct vivid_dev *dev, unsigned y_offset, unsigned x_offset,
112 u8 *vcapbuf, const u8 *vosdbuf,
113 unsigned width, unsigned pixsize)
115 unsigned x;
117 for (x = 0; x < width; x++, vcapbuf += pixsize, vosdbuf += pixsize) {
118 copy_pix(dev, y_offset, x_offset + x,
119 (u16 *)vcapbuf, (const u16 *)vosdbuf);
123 static void scale_line(const u8 *src, u8 *dst, unsigned srcw, unsigned dstw, unsigned twopixsize)
125 /* Coarse scaling with Bresenham */
126 unsigned int_part;
127 unsigned fract_part;
128 unsigned src_x = 0;
129 unsigned error = 0;
130 unsigned x;
133 * We always combine two pixels to prevent color bleed in the packed
134 * yuv case.
136 srcw /= 2;
137 dstw /= 2;
138 int_part = srcw / dstw;
139 fract_part = srcw % dstw;
140 for (x = 0; x < dstw; x++, dst += twopixsize) {
141 memcpy(dst, src + src_x * twopixsize, twopixsize);
142 src_x += int_part;
143 error += fract_part;
144 if (error >= dstw) {
145 error -= dstw;
146 src_x++;
152 * Precalculate the rectangles needed to perform video looping:
154 * The nominal pipeline is that the video output buffer is cropped by
155 * crop_out, scaled to compose_out, overlaid with the output overlay,
156 * cropped on the capture side by crop_cap and scaled again to the video
157 * capture buffer using compose_cap.
159 * To keep things efficient we calculate the intersection of compose_out
160 * and crop_cap (since that's the only part of the video that will
161 * actually end up in the capture buffer), determine which part of the
162 * video output buffer that is and which part of the video capture buffer
163 * so we can scale the video straight from the output buffer to the capture
164 * buffer without any intermediate steps.
166 * If we need to deal with an output overlay, then there is no choice and
167 * that intermediate step still has to be taken. For the output overlay
168 * support we calculate the intersection of the framebuffer and the overlay
169 * window (which may be partially or wholly outside of the framebuffer
170 * itself) and the intersection of that with loop_vid_copy (i.e. the part of
171 * the actual looped video that will be overlaid). The result is calculated
172 * both in framebuffer coordinates (loop_fb_copy) and compose_out coordinates
173 * (loop_vid_overlay). Finally calculate the part of the capture buffer that
174 * will receive that overlaid video.
176 static void vivid_precalc_copy_rects(struct vivid_dev *dev)
178 /* Framebuffer rectangle */
179 struct v4l2_rect r_fb = {
180 0, 0, dev->display_width, dev->display_height
182 /* Overlay window rectangle in framebuffer coordinates */
183 struct v4l2_rect r_overlay = {
184 dev->overlay_out_left, dev->overlay_out_top,
185 dev->compose_out.width, dev->compose_out.height
188 v4l2_rect_intersect(&dev->loop_vid_copy, &dev->crop_cap, &dev->compose_out);
190 dev->loop_vid_out = dev->loop_vid_copy;
191 v4l2_rect_scale(&dev->loop_vid_out, &dev->compose_out, &dev->crop_out);
192 dev->loop_vid_out.left += dev->crop_out.left;
193 dev->loop_vid_out.top += dev->crop_out.top;
195 dev->loop_vid_cap = dev->loop_vid_copy;
196 v4l2_rect_scale(&dev->loop_vid_cap, &dev->crop_cap, &dev->compose_cap);
198 dprintk(dev, 1,
199 "loop_vid_copy: %dx%d@%dx%d loop_vid_out: %dx%d@%dx%d loop_vid_cap: %dx%d@%dx%d\n",
200 dev->loop_vid_copy.width, dev->loop_vid_copy.height,
201 dev->loop_vid_copy.left, dev->loop_vid_copy.top,
202 dev->loop_vid_out.width, dev->loop_vid_out.height,
203 dev->loop_vid_out.left, dev->loop_vid_out.top,
204 dev->loop_vid_cap.width, dev->loop_vid_cap.height,
205 dev->loop_vid_cap.left, dev->loop_vid_cap.top);
207 v4l2_rect_intersect(&r_overlay, &r_fb, &r_overlay);
209 /* shift r_overlay to the same origin as compose_out */
210 r_overlay.left += dev->compose_out.left - dev->overlay_out_left;
211 r_overlay.top += dev->compose_out.top - dev->overlay_out_top;
213 v4l2_rect_intersect(&dev->loop_vid_overlay, &r_overlay, &dev->loop_vid_copy);
214 dev->loop_fb_copy = dev->loop_vid_overlay;
216 /* shift dev->loop_fb_copy back again to the fb origin */
217 dev->loop_fb_copy.left -= dev->compose_out.left - dev->overlay_out_left;
218 dev->loop_fb_copy.top -= dev->compose_out.top - dev->overlay_out_top;
220 dev->loop_vid_overlay_cap = dev->loop_vid_overlay;
221 v4l2_rect_scale(&dev->loop_vid_overlay_cap, &dev->crop_cap, &dev->compose_cap);
223 dprintk(dev, 1,
224 "loop_fb_copy: %dx%d@%dx%d loop_vid_overlay: %dx%d@%dx%d loop_vid_overlay_cap: %dx%d@%dx%d\n",
225 dev->loop_fb_copy.width, dev->loop_fb_copy.height,
226 dev->loop_fb_copy.left, dev->loop_fb_copy.top,
227 dev->loop_vid_overlay.width, dev->loop_vid_overlay.height,
228 dev->loop_vid_overlay.left, dev->loop_vid_overlay.top,
229 dev->loop_vid_overlay_cap.width, dev->loop_vid_overlay_cap.height,
230 dev->loop_vid_overlay_cap.left, dev->loop_vid_overlay_cap.top);
233 static void *plane_vaddr(struct tpg_data *tpg, struct vivid_buffer *buf,
234 unsigned p, unsigned bpl[TPG_MAX_PLANES], unsigned h)
236 unsigned i;
237 void *vbuf;
239 if (p == 0 || tpg_g_buffers(tpg) > 1)
240 return vb2_plane_vaddr(&buf->vb.vb2_buf, p);
241 vbuf = vb2_plane_vaddr(&buf->vb.vb2_buf, 0);
242 for (i = 0; i < p; i++)
243 vbuf += bpl[i] * h / tpg->vdownsampling[i];
244 return vbuf;
247 static int vivid_copy_buffer(struct vivid_dev *dev, unsigned p, u8 *vcapbuf,
248 struct vivid_buffer *vid_cap_buf)
250 bool blank = dev->must_blank[vid_cap_buf->vb.vb2_buf.index];
251 struct tpg_data *tpg = &dev->tpg;
252 struct vivid_buffer *vid_out_buf = NULL;
253 unsigned vdiv = dev->fmt_out->vdownsampling[p];
254 unsigned twopixsize = tpg_g_twopixelsize(tpg, p);
255 unsigned img_width = tpg_hdiv(tpg, p, dev->compose_cap.width);
256 unsigned img_height = dev->compose_cap.height;
257 unsigned stride_cap = tpg->bytesperline[p];
258 unsigned stride_out = dev->bytesperline_out[p];
259 unsigned stride_osd = dev->display_byte_stride;
260 unsigned hmax = (img_height * tpg->perc_fill) / 100;
261 u8 *voutbuf;
262 u8 *vosdbuf = NULL;
263 unsigned y;
264 bool blend = dev->bitmap_out || dev->clipcount_out || dev->fbuf_out_flags;
265 /* Coarse scaling with Bresenham */
266 unsigned vid_out_int_part;
267 unsigned vid_out_fract_part;
268 unsigned vid_out_y = 0;
269 unsigned vid_out_error = 0;
270 unsigned vid_overlay_int_part = 0;
271 unsigned vid_overlay_fract_part = 0;
272 unsigned vid_overlay_y = 0;
273 unsigned vid_overlay_error = 0;
274 unsigned vid_cap_left = tpg_hdiv(tpg, p, dev->loop_vid_cap.left);
275 unsigned vid_cap_right;
276 bool quick;
278 vid_out_int_part = dev->loop_vid_out.height / dev->loop_vid_cap.height;
279 vid_out_fract_part = dev->loop_vid_out.height % dev->loop_vid_cap.height;
281 if (!list_empty(&dev->vid_out_active))
282 vid_out_buf = list_entry(dev->vid_out_active.next,
283 struct vivid_buffer, list);
284 if (vid_out_buf == NULL)
285 return -ENODATA;
287 vid_cap_buf->vb.field = vid_out_buf->vb.field;
289 voutbuf = plane_vaddr(tpg, vid_out_buf, p,
290 dev->bytesperline_out, dev->fmt_out_rect.height);
291 if (p < dev->fmt_out->buffers)
292 voutbuf += vid_out_buf->vb.vb2_buf.planes[p].data_offset;
293 voutbuf += tpg_hdiv(tpg, p, dev->loop_vid_out.left) +
294 (dev->loop_vid_out.top / vdiv) * stride_out;
295 vcapbuf += tpg_hdiv(tpg, p, dev->compose_cap.left) +
296 (dev->compose_cap.top / vdiv) * stride_cap;
298 if (dev->loop_vid_copy.width == 0 || dev->loop_vid_copy.height == 0) {
300 * If there is nothing to copy, then just fill the capture window
301 * with black.
303 for (y = 0; y < hmax / vdiv; y++, vcapbuf += stride_cap)
304 memcpy(vcapbuf, tpg->black_line[p], img_width);
305 return 0;
308 if (dev->overlay_out_enabled &&
309 dev->loop_vid_overlay.width && dev->loop_vid_overlay.height) {
310 vosdbuf = dev->video_vbase;
311 vosdbuf += (dev->loop_fb_copy.left * twopixsize) / 2 +
312 dev->loop_fb_copy.top * stride_osd;
313 vid_overlay_int_part = dev->loop_vid_overlay.height /
314 dev->loop_vid_overlay_cap.height;
315 vid_overlay_fract_part = dev->loop_vid_overlay.height %
316 dev->loop_vid_overlay_cap.height;
319 vid_cap_right = tpg_hdiv(tpg, p, dev->loop_vid_cap.left + dev->loop_vid_cap.width);
320 /* quick is true if no video scaling is needed */
321 quick = dev->loop_vid_out.width == dev->loop_vid_cap.width;
323 dev->cur_scaled_line = dev->loop_vid_out.height;
324 for (y = 0; y < hmax; y += vdiv, vcapbuf += stride_cap) {
325 /* osdline is true if this line requires overlay blending */
326 bool osdline = vosdbuf && y >= dev->loop_vid_overlay_cap.top &&
327 y < dev->loop_vid_overlay_cap.top + dev->loop_vid_overlay_cap.height;
330 * If this line of the capture buffer doesn't get any video, then
331 * just fill with black.
333 if (y < dev->loop_vid_cap.top ||
334 y >= dev->loop_vid_cap.top + dev->loop_vid_cap.height) {
335 memcpy(vcapbuf, tpg->black_line[p], img_width);
336 continue;
339 /* fill the left border with black */
340 if (dev->loop_vid_cap.left)
341 memcpy(vcapbuf, tpg->black_line[p], vid_cap_left);
343 /* fill the right border with black */
344 if (vid_cap_right < img_width)
345 memcpy(vcapbuf + vid_cap_right, tpg->black_line[p],
346 img_width - vid_cap_right);
348 if (quick && !osdline) {
349 memcpy(vcapbuf + vid_cap_left,
350 voutbuf + vid_out_y * stride_out,
351 tpg_hdiv(tpg, p, dev->loop_vid_cap.width));
352 goto update_vid_out_y;
354 if (dev->cur_scaled_line == vid_out_y) {
355 memcpy(vcapbuf + vid_cap_left, dev->scaled_line,
356 tpg_hdiv(tpg, p, dev->loop_vid_cap.width));
357 goto update_vid_out_y;
359 if (!osdline) {
360 scale_line(voutbuf + vid_out_y * stride_out, dev->scaled_line,
361 tpg_hdiv(tpg, p, dev->loop_vid_out.width),
362 tpg_hdiv(tpg, p, dev->loop_vid_cap.width),
363 tpg_g_twopixelsize(tpg, p));
364 } else {
366 * Offset in bytes within loop_vid_copy to the start of the
367 * loop_vid_overlay rectangle.
369 unsigned offset =
370 ((dev->loop_vid_overlay.left - dev->loop_vid_copy.left) *
371 twopixsize) / 2;
372 u8 *osd = vosdbuf + vid_overlay_y * stride_osd;
374 scale_line(voutbuf + vid_out_y * stride_out, dev->blended_line,
375 dev->loop_vid_out.width, dev->loop_vid_copy.width,
376 tpg_g_twopixelsize(tpg, p));
377 if (blend)
378 blend_line(dev, vid_overlay_y + dev->loop_vid_overlay.top,
379 dev->loop_vid_overlay.left,
380 dev->blended_line + offset, osd,
381 dev->loop_vid_overlay.width, twopixsize / 2);
382 else
383 memcpy(dev->blended_line + offset,
384 osd, (dev->loop_vid_overlay.width * twopixsize) / 2);
385 scale_line(dev->blended_line, dev->scaled_line,
386 dev->loop_vid_copy.width, dev->loop_vid_cap.width,
387 tpg_g_twopixelsize(tpg, p));
389 dev->cur_scaled_line = vid_out_y;
390 memcpy(vcapbuf + vid_cap_left, dev->scaled_line,
391 tpg_hdiv(tpg, p, dev->loop_vid_cap.width));
393 update_vid_out_y:
394 if (osdline) {
395 vid_overlay_y += vid_overlay_int_part;
396 vid_overlay_error += vid_overlay_fract_part;
397 if (vid_overlay_error >= dev->loop_vid_overlay_cap.height) {
398 vid_overlay_error -= dev->loop_vid_overlay_cap.height;
399 vid_overlay_y++;
402 vid_out_y += vid_out_int_part;
403 vid_out_error += vid_out_fract_part;
404 if (vid_out_error >= dev->loop_vid_cap.height / vdiv) {
405 vid_out_error -= dev->loop_vid_cap.height / vdiv;
406 vid_out_y++;
410 if (!blank)
411 return 0;
412 for (; y < img_height; y += vdiv, vcapbuf += stride_cap)
413 memcpy(vcapbuf, tpg->contrast_line[p], img_width);
414 return 0;
417 static void vivid_fillbuff(struct vivid_dev *dev, struct vivid_buffer *buf)
419 struct tpg_data *tpg = &dev->tpg;
420 unsigned factor = V4L2_FIELD_HAS_T_OR_B(dev->field_cap) ? 2 : 1;
421 unsigned line_height = 16 / factor;
422 bool is_tv = vivid_is_sdtv_cap(dev);
423 bool is_60hz = is_tv && (dev->std_cap & V4L2_STD_525_60);
424 unsigned p;
425 int line = 1;
426 u8 *basep[TPG_MAX_PLANES][2];
427 unsigned ms;
428 char str[100];
429 s32 gain;
430 bool is_loop = false;
432 if (dev->loop_video && dev->can_loop_video &&
433 ((vivid_is_svid_cap(dev) &&
434 !VIVID_INVALID_SIGNAL(dev->std_signal_mode)) ||
435 (vivid_is_hdmi_cap(dev) &&
436 !VIVID_INVALID_SIGNAL(dev->dv_timings_signal_mode))))
437 is_loop = true;
439 buf->vb.sequence = dev->vid_cap_seq_count;
441 * Take the timestamp now if the timestamp source is set to
442 * "Start of Exposure".
444 if (dev->tstamp_src_is_soe)
445 buf->vb.vb2_buf.timestamp = ktime_get_ns();
446 if (dev->field_cap == V4L2_FIELD_ALTERNATE) {
448 * 60 Hz standards start with the bottom field, 50 Hz standards
449 * with the top field. So if the 0-based seq_count is even,
450 * then the field is TOP for 50 Hz and BOTTOM for 60 Hz
451 * standards.
453 buf->vb.field = ((dev->vid_cap_seq_count & 1) ^ is_60hz) ?
454 V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
456 * The sequence counter counts frames, not fields. So divide
457 * by two.
459 buf->vb.sequence /= 2;
460 } else {
461 buf->vb.field = dev->field_cap;
463 tpg_s_field(tpg, buf->vb.field,
464 dev->field_cap == V4L2_FIELD_ALTERNATE);
465 tpg_s_perc_fill_blank(tpg, dev->must_blank[buf->vb.vb2_buf.index]);
467 vivid_precalc_copy_rects(dev);
469 for (p = 0; p < tpg_g_planes(tpg); p++) {
470 void *vbuf = plane_vaddr(tpg, buf, p,
471 tpg->bytesperline, tpg->buf_height);
474 * The first plane of a multiplanar format has a non-zero
475 * data_offset. This helps testing whether the application
476 * correctly supports non-zero data offsets.
478 if (p < tpg_g_buffers(tpg) && dev->fmt_cap->data_offset[p]) {
479 memset(vbuf, dev->fmt_cap->data_offset[p] & 0xff,
480 dev->fmt_cap->data_offset[p]);
481 vbuf += dev->fmt_cap->data_offset[p];
483 tpg_calc_text_basep(tpg, basep, p, vbuf);
484 if (!is_loop || vivid_copy_buffer(dev, p, vbuf, buf))
485 tpg_fill_plane_buffer(tpg, vivid_get_std_cap(dev),
486 p, vbuf);
488 dev->must_blank[buf->vb.vb2_buf.index] = false;
490 /* Updates stream time, only update at the start of a new frame. */
491 if (dev->field_cap != V4L2_FIELD_ALTERNATE ||
492 (buf->vb.sequence & 1) == 0)
493 dev->ms_vid_cap =
494 jiffies_to_msecs(jiffies - dev->jiffies_vid_cap);
496 ms = dev->ms_vid_cap;
497 if (dev->osd_mode <= 1) {
498 snprintf(str, sizeof(str), " %02d:%02d:%02d:%03d %u%s",
499 (ms / (60 * 60 * 1000)) % 24,
500 (ms / (60 * 1000)) % 60,
501 (ms / 1000) % 60,
502 ms % 1000,
503 buf->vb.sequence,
504 (dev->field_cap == V4L2_FIELD_ALTERNATE) ?
505 (buf->vb.field == V4L2_FIELD_TOP ?
506 " top" : " bottom") : "");
507 tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
509 if (dev->osd_mode == 0) {
510 snprintf(str, sizeof(str), " %dx%d, input %d ",
511 dev->src_rect.width, dev->src_rect.height, dev->input);
512 tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
514 gain = v4l2_ctrl_g_ctrl(dev->gain);
515 mutex_lock(dev->ctrl_hdl_user_vid.lock);
516 snprintf(str, sizeof(str),
517 " brightness %3d, contrast %3d, saturation %3d, hue %d ",
518 dev->brightness->cur.val,
519 dev->contrast->cur.val,
520 dev->saturation->cur.val,
521 dev->hue->cur.val);
522 tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
523 snprintf(str, sizeof(str),
524 " autogain %d, gain %3d, alpha 0x%02x ",
525 dev->autogain->cur.val, gain, dev->alpha->cur.val);
526 mutex_unlock(dev->ctrl_hdl_user_vid.lock);
527 tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
528 mutex_lock(dev->ctrl_hdl_user_aud.lock);
529 snprintf(str, sizeof(str),
530 " volume %3d, mute %d ",
531 dev->volume->cur.val, dev->mute->cur.val);
532 mutex_unlock(dev->ctrl_hdl_user_aud.lock);
533 tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
534 mutex_lock(dev->ctrl_hdl_user_gen.lock);
535 snprintf(str, sizeof(str), " int32 %d, int64 %lld, bitmask %08x ",
536 dev->int32->cur.val,
537 *dev->int64->p_cur.p_s64,
538 dev->bitmask->cur.val);
539 tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
540 snprintf(str, sizeof(str), " boolean %d, menu %s, string \"%s\" ",
541 dev->boolean->cur.val,
542 dev->menu->qmenu[dev->menu->cur.val],
543 dev->string->p_cur.p_char);
544 tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
545 snprintf(str, sizeof(str), " integer_menu %lld, value %d ",
546 dev->int_menu->qmenu_int[dev->int_menu->cur.val],
547 dev->int_menu->cur.val);
548 mutex_unlock(dev->ctrl_hdl_user_gen.lock);
549 tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
550 if (dev->button_pressed) {
551 dev->button_pressed--;
552 snprintf(str, sizeof(str), " button pressed!");
553 tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
555 if (dev->osd[0]) {
556 if (vivid_is_hdmi_cap(dev)) {
557 snprintf(str, sizeof(str),
558 " OSD \"%s\"", dev->osd);
559 tpg_gen_text(tpg, basep, line++ * line_height,
560 16, str);
562 if (dev->osd_jiffies &&
563 time_is_before_jiffies(dev->osd_jiffies + 5 * HZ)) {
564 dev->osd[0] = 0;
565 dev->osd_jiffies = 0;
571 * If "End of Frame" is specified at the timestamp source, then take
572 * the timestamp now.
574 if (!dev->tstamp_src_is_soe)
575 buf->vb.vb2_buf.timestamp = ktime_get_ns();
576 buf->vb.vb2_buf.timestamp += dev->time_wrap_offset;
580 * Return true if this pixel coordinate is a valid video pixel.
582 static bool valid_pix(struct vivid_dev *dev, int win_y, int win_x, int fb_y, int fb_x)
584 int i;
586 if (dev->bitmap_cap) {
588 * Only if the corresponding bit in the bitmap is set can
589 * the video pixel be shown. Coordinates are relative to
590 * the overlay window set by VIDIOC_S_FMT.
592 const u8 *p = dev->bitmap_cap;
593 unsigned stride = (dev->compose_cap.width + 7) / 8;
595 if (!(p[stride * win_y + win_x / 8] & (1 << (win_x & 7))))
596 return false;
599 for (i = 0; i < dev->clipcount_cap; i++) {
601 * Only if the framebuffer coordinate is not in any of the
602 * clip rectangles will be video pixel be shown.
604 struct v4l2_rect *r = &dev->clips_cap[i].c;
606 if (fb_y >= r->top && fb_y < r->top + r->height &&
607 fb_x >= r->left && fb_x < r->left + r->width)
608 return false;
610 return true;
614 * Draw the image into the overlay buffer.
615 * Note that the combination of overlay and multiplanar is not supported.
617 static void vivid_overlay(struct vivid_dev *dev, struct vivid_buffer *buf)
619 struct tpg_data *tpg = &dev->tpg;
620 unsigned pixsize = tpg_g_twopixelsize(tpg, 0) / 2;
621 void *vbase = dev->fb_vbase_cap;
622 void *vbuf = vb2_plane_vaddr(&buf->vb.vb2_buf, 0);
623 unsigned img_width = dev->compose_cap.width;
624 unsigned img_height = dev->compose_cap.height;
625 unsigned stride = tpg->bytesperline[0];
626 /* if quick is true, then valid_pix() doesn't have to be called */
627 bool quick = dev->bitmap_cap == NULL && dev->clipcount_cap == 0;
628 int x, y, w, out_x = 0;
631 * Overlay support is only supported for formats that have a twopixelsize
632 * that's >= 2. Warn and bail out if that's not the case.
634 if (WARN_ON(pixsize == 0))
635 return;
636 if ((dev->overlay_cap_field == V4L2_FIELD_TOP ||
637 dev->overlay_cap_field == V4L2_FIELD_BOTTOM) &&
638 dev->overlay_cap_field != buf->vb.field)
639 return;
641 vbuf += dev->compose_cap.left * pixsize + dev->compose_cap.top * stride;
642 x = dev->overlay_cap_left;
643 w = img_width;
644 if (x < 0) {
645 out_x = -x;
646 w = w - out_x;
647 x = 0;
648 } else {
649 w = dev->fb_cap.fmt.width - x;
650 if (w > img_width)
651 w = img_width;
653 if (w <= 0)
654 return;
655 if (dev->overlay_cap_top >= 0)
656 vbase += dev->overlay_cap_top * dev->fb_cap.fmt.bytesperline;
657 for (y = dev->overlay_cap_top;
658 y < dev->overlay_cap_top + (int)img_height;
659 y++, vbuf += stride) {
660 int px;
662 if (y < 0 || y > dev->fb_cap.fmt.height)
663 continue;
664 if (quick) {
665 memcpy(vbase + x * pixsize,
666 vbuf + out_x * pixsize, w * pixsize);
667 vbase += dev->fb_cap.fmt.bytesperline;
668 continue;
670 for (px = 0; px < w; px++) {
671 if (!valid_pix(dev, y - dev->overlay_cap_top,
672 px + out_x, y, px + x))
673 continue;
674 memcpy(vbase + (px + x) * pixsize,
675 vbuf + (px + out_x) * pixsize,
676 pixsize);
678 vbase += dev->fb_cap.fmt.bytesperline;
682 static void vivid_thread_vid_cap_tick(struct vivid_dev *dev, int dropped_bufs)
684 struct vivid_buffer *vid_cap_buf = NULL;
685 struct vivid_buffer *vbi_cap_buf = NULL;
687 dprintk(dev, 1, "Video Capture Thread Tick\n");
689 while (dropped_bufs-- > 1)
690 tpg_update_mv_count(&dev->tpg,
691 dev->field_cap == V4L2_FIELD_NONE ||
692 dev->field_cap == V4L2_FIELD_ALTERNATE);
694 /* Drop a certain percentage of buffers. */
695 if (dev->perc_dropped_buffers &&
696 prandom_u32_max(100) < dev->perc_dropped_buffers)
697 goto update_mv;
699 spin_lock(&dev->slock);
700 if (!list_empty(&dev->vid_cap_active)) {
701 vid_cap_buf = list_entry(dev->vid_cap_active.next, struct vivid_buffer, list);
702 list_del(&vid_cap_buf->list);
704 if (!list_empty(&dev->vbi_cap_active)) {
705 if (dev->field_cap != V4L2_FIELD_ALTERNATE ||
706 (dev->vbi_cap_seq_count & 1)) {
707 vbi_cap_buf = list_entry(dev->vbi_cap_active.next,
708 struct vivid_buffer, list);
709 list_del(&vbi_cap_buf->list);
712 spin_unlock(&dev->slock);
714 if (!vid_cap_buf && !vbi_cap_buf)
715 goto update_mv;
717 if (vid_cap_buf) {
718 /* Fill buffer */
719 vivid_fillbuff(dev, vid_cap_buf);
720 dprintk(dev, 1, "filled buffer %d\n",
721 vid_cap_buf->vb.vb2_buf.index);
723 /* Handle overlay */
724 if (dev->overlay_cap_owner && dev->fb_cap.base &&
725 dev->fb_cap.fmt.pixelformat == dev->fmt_cap->fourcc)
726 vivid_overlay(dev, vid_cap_buf);
728 vb2_buffer_done(&vid_cap_buf->vb.vb2_buf, dev->dqbuf_error ?
729 VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
730 dprintk(dev, 2, "vid_cap buffer %d done\n",
731 vid_cap_buf->vb.vb2_buf.index);
734 if (vbi_cap_buf) {
735 if (dev->stream_sliced_vbi_cap)
736 vivid_sliced_vbi_cap_process(dev, vbi_cap_buf);
737 else
738 vivid_raw_vbi_cap_process(dev, vbi_cap_buf);
739 vb2_buffer_done(&vbi_cap_buf->vb.vb2_buf, dev->dqbuf_error ?
740 VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
741 dprintk(dev, 2, "vbi_cap %d done\n",
742 vbi_cap_buf->vb.vb2_buf.index);
744 dev->dqbuf_error = false;
746 update_mv:
747 /* Update the test pattern movement counters */
748 tpg_update_mv_count(&dev->tpg, dev->field_cap == V4L2_FIELD_NONE ||
749 dev->field_cap == V4L2_FIELD_ALTERNATE);
752 static int vivid_thread_vid_cap(void *data)
754 struct vivid_dev *dev = data;
755 u64 numerators_since_start;
756 u64 buffers_since_start;
757 u64 next_jiffies_since_start;
758 unsigned long jiffies_since_start;
759 unsigned long cur_jiffies;
760 unsigned wait_jiffies;
761 unsigned numerator;
762 unsigned denominator;
763 int dropped_bufs;
765 dprintk(dev, 1, "Video Capture Thread Start\n");
767 set_freezable();
769 /* Resets frame counters */
770 dev->cap_seq_offset = 0;
771 dev->cap_seq_count = 0;
772 dev->cap_seq_resync = false;
773 dev->jiffies_vid_cap = jiffies;
775 for (;;) {
776 try_to_freeze();
777 if (kthread_should_stop())
778 break;
780 mutex_lock(&dev->mutex);
781 cur_jiffies = jiffies;
782 if (dev->cap_seq_resync) {
783 dev->jiffies_vid_cap = cur_jiffies;
784 dev->cap_seq_offset = dev->cap_seq_count + 1;
785 dev->cap_seq_count = 0;
786 dev->cap_seq_resync = false;
788 numerator = dev->timeperframe_vid_cap.numerator;
789 denominator = dev->timeperframe_vid_cap.denominator;
791 if (dev->field_cap == V4L2_FIELD_ALTERNATE)
792 denominator *= 2;
794 /* Calculate the number of jiffies since we started streaming */
795 jiffies_since_start = cur_jiffies - dev->jiffies_vid_cap;
796 /* Get the number of buffers streamed since the start */
797 buffers_since_start = (u64)jiffies_since_start * denominator +
798 (HZ * numerator) / 2;
799 do_div(buffers_since_start, HZ * numerator);
802 * After more than 0xf0000000 (rounded down to a multiple of
803 * 'jiffies-per-day' to ease jiffies_to_msecs calculation)
804 * jiffies have passed since we started streaming reset the
805 * counters and keep track of the sequence offset.
807 if (jiffies_since_start > JIFFIES_RESYNC) {
808 dev->jiffies_vid_cap = cur_jiffies;
809 dev->cap_seq_offset = buffers_since_start;
810 buffers_since_start = 0;
812 dropped_bufs = buffers_since_start + dev->cap_seq_offset - dev->cap_seq_count;
813 dev->cap_seq_count = buffers_since_start + dev->cap_seq_offset;
814 dev->vid_cap_seq_count = dev->cap_seq_count - dev->vid_cap_seq_start;
815 dev->vbi_cap_seq_count = dev->cap_seq_count - dev->vbi_cap_seq_start;
817 vivid_thread_vid_cap_tick(dev, dropped_bufs);
820 * Calculate the number of 'numerators' streamed since we started,
821 * including the current buffer.
823 numerators_since_start = ++buffers_since_start * numerator;
825 /* And the number of jiffies since we started */
826 jiffies_since_start = jiffies - dev->jiffies_vid_cap;
828 mutex_unlock(&dev->mutex);
831 * Calculate when that next buffer is supposed to start
832 * in jiffies since we started streaming.
834 next_jiffies_since_start = numerators_since_start * HZ +
835 denominator / 2;
836 do_div(next_jiffies_since_start, denominator);
837 /* If it is in the past, then just schedule asap */
838 if (next_jiffies_since_start < jiffies_since_start)
839 next_jiffies_since_start = jiffies_since_start;
841 wait_jiffies = next_jiffies_since_start - jiffies_since_start;
842 schedule_timeout_interruptible(wait_jiffies ? wait_jiffies : 1);
844 dprintk(dev, 1, "Video Capture Thread End\n");
845 return 0;
848 static void vivid_grab_controls(struct vivid_dev *dev, bool grab)
850 v4l2_ctrl_grab(dev->ctrl_has_crop_cap, grab);
851 v4l2_ctrl_grab(dev->ctrl_has_compose_cap, grab);
852 v4l2_ctrl_grab(dev->ctrl_has_scaler_cap, grab);
855 int vivid_start_generating_vid_cap(struct vivid_dev *dev, bool *pstreaming)
857 dprintk(dev, 1, "%s\n", __func__);
859 if (dev->kthread_vid_cap) {
860 u32 seq_count = dev->cap_seq_count + dev->seq_wrap * 128;
862 if (pstreaming == &dev->vid_cap_streaming)
863 dev->vid_cap_seq_start = seq_count;
864 else
865 dev->vbi_cap_seq_start = seq_count;
866 *pstreaming = true;
867 return 0;
870 /* Resets frame counters */
871 tpg_init_mv_count(&dev->tpg);
873 dev->vid_cap_seq_start = dev->seq_wrap * 128;
874 dev->vbi_cap_seq_start = dev->seq_wrap * 128;
876 dev->kthread_vid_cap = kthread_run(vivid_thread_vid_cap, dev,
877 "%s-vid-cap", dev->v4l2_dev.name);
879 if (IS_ERR(dev->kthread_vid_cap)) {
880 v4l2_err(&dev->v4l2_dev, "kernel_thread() failed\n");
881 return PTR_ERR(dev->kthread_vid_cap);
883 *pstreaming = true;
884 vivid_grab_controls(dev, true);
886 dprintk(dev, 1, "returning from %s\n", __func__);
887 return 0;
890 void vivid_stop_generating_vid_cap(struct vivid_dev *dev, bool *pstreaming)
892 dprintk(dev, 1, "%s\n", __func__);
894 if (dev->kthread_vid_cap == NULL)
895 return;
897 *pstreaming = false;
898 if (pstreaming == &dev->vid_cap_streaming) {
899 /* Release all active buffers */
900 while (!list_empty(&dev->vid_cap_active)) {
901 struct vivid_buffer *buf;
903 buf = list_entry(dev->vid_cap_active.next,
904 struct vivid_buffer, list);
905 list_del(&buf->list);
906 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
907 dprintk(dev, 2, "vid_cap buffer %d done\n",
908 buf->vb.vb2_buf.index);
912 if (pstreaming == &dev->vbi_cap_streaming) {
913 while (!list_empty(&dev->vbi_cap_active)) {
914 struct vivid_buffer *buf;
916 buf = list_entry(dev->vbi_cap_active.next,
917 struct vivid_buffer, list);
918 list_del(&buf->list);
919 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
920 dprintk(dev, 2, "vbi_cap buffer %d done\n",
921 buf->vb.vb2_buf.index);
925 if (dev->vid_cap_streaming || dev->vbi_cap_streaming)
926 return;
928 /* shutdown control thread */
929 vivid_grab_controls(dev, false);
930 mutex_unlock(&dev->mutex);
931 kthread_stop(dev->kthread_vid_cap);
932 dev->kthread_vid_cap = NULL;
933 mutex_lock(&dev->mutex);