Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / media / platform / vivid / vivid-sdr-cap.c
blobebd7b9c4dd830ec3c78a88f90abbb5a84ce55926
1 /*
2 * vivid-sdr-cap.c - software defined radio support functions.
4 * Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
20 #include <linux/errno.h>
21 #include <linux/kernel.h>
22 #include <linux/delay.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/math64.h>
26 #include <linux/videodev2.h>
27 #include <linux/v4l2-dv-timings.h>
28 #include <media/v4l2-common.h>
29 #include <media/v4l2-event.h>
30 #include <media/v4l2-dv-timings.h>
31 #include <linux/fixp-arith.h>
33 #include "vivid-core.h"
34 #include "vivid-ctrls.h"
35 #include "vivid-sdr-cap.h"
37 /* stream formats */
38 struct vivid_format {
39 u32 pixelformat;
40 u32 buffersize;
43 /* format descriptions for capture and preview */
44 static const struct vivid_format formats[] = {
46 .pixelformat = V4L2_SDR_FMT_CU8,
47 .buffersize = SDR_CAP_SAMPLES_PER_BUF * 2,
48 }, {
49 .pixelformat = V4L2_SDR_FMT_CS8,
50 .buffersize = SDR_CAP_SAMPLES_PER_BUF * 2,
54 static const struct v4l2_frequency_band bands_adc[] = {
56 .tuner = 0,
57 .type = V4L2_TUNER_ADC,
58 .index = 0,
59 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
60 .rangelow = 300000,
61 .rangehigh = 300000,
64 .tuner = 0,
65 .type = V4L2_TUNER_ADC,
66 .index = 1,
67 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
68 .rangelow = 900001,
69 .rangehigh = 2800000,
72 .tuner = 0,
73 .type = V4L2_TUNER_ADC,
74 .index = 2,
75 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
76 .rangelow = 3200000,
77 .rangehigh = 3200000,
81 /* ADC band midpoints */
82 #define BAND_ADC_0 ((bands_adc[0].rangehigh + bands_adc[1].rangelow) / 2)
83 #define BAND_ADC_1 ((bands_adc[1].rangehigh + bands_adc[2].rangelow) / 2)
85 static const struct v4l2_frequency_band bands_fm[] = {
87 .tuner = 1,
88 .type = V4L2_TUNER_RF,
89 .index = 0,
90 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
91 .rangelow = 50000000,
92 .rangehigh = 2000000000,
96 static void vivid_thread_sdr_cap_tick(struct vivid_dev *dev)
98 struct vivid_buffer *sdr_cap_buf = NULL;
100 dprintk(dev, 1, "SDR Capture Thread Tick\n");
102 /* Drop a certain percentage of buffers. */
103 if (dev->perc_dropped_buffers &&
104 prandom_u32_max(100) < dev->perc_dropped_buffers)
105 return;
107 spin_lock(&dev->slock);
108 if (!list_empty(&dev->sdr_cap_active)) {
109 sdr_cap_buf = list_entry(dev->sdr_cap_active.next,
110 struct vivid_buffer, list);
111 list_del(&sdr_cap_buf->list);
113 spin_unlock(&dev->slock);
115 if (sdr_cap_buf) {
116 sdr_cap_buf->vb.sequence = dev->sdr_cap_seq_count;
117 vivid_sdr_cap_process(dev, sdr_cap_buf);
118 sdr_cap_buf->vb.vb2_buf.timestamp =
119 ktime_get_ns() + dev->time_wrap_offset;
120 vb2_buffer_done(&sdr_cap_buf->vb.vb2_buf, dev->dqbuf_error ?
121 VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
122 dev->dqbuf_error = false;
126 static int vivid_thread_sdr_cap(void *data)
128 struct vivid_dev *dev = data;
129 u64 samples_since_start;
130 u64 buffers_since_start;
131 u64 next_jiffies_since_start;
132 unsigned long jiffies_since_start;
133 unsigned long cur_jiffies;
134 unsigned wait_jiffies;
136 dprintk(dev, 1, "SDR Capture Thread Start\n");
138 set_freezable();
140 /* Resets frame counters */
141 dev->sdr_cap_seq_offset = 0;
142 if (dev->seq_wrap)
143 dev->sdr_cap_seq_offset = 0xffffff80U;
144 dev->jiffies_sdr_cap = jiffies;
145 dev->sdr_cap_seq_resync = false;
147 for (;;) {
148 try_to_freeze();
149 if (kthread_should_stop())
150 break;
152 mutex_lock(&dev->mutex);
153 cur_jiffies = jiffies;
154 if (dev->sdr_cap_seq_resync) {
155 dev->jiffies_sdr_cap = cur_jiffies;
156 dev->sdr_cap_seq_offset = dev->sdr_cap_seq_count + 1;
157 dev->sdr_cap_seq_count = 0;
158 dev->sdr_cap_seq_resync = false;
160 /* Calculate the number of jiffies since we started streaming */
161 jiffies_since_start = cur_jiffies - dev->jiffies_sdr_cap;
162 /* Get the number of buffers streamed since the start */
163 buffers_since_start =
164 (u64)jiffies_since_start * dev->sdr_adc_freq +
165 (HZ * SDR_CAP_SAMPLES_PER_BUF) / 2;
166 do_div(buffers_since_start, HZ * SDR_CAP_SAMPLES_PER_BUF);
169 * After more than 0xf0000000 (rounded down to a multiple of
170 * 'jiffies-per-day' to ease jiffies_to_msecs calculation)
171 * jiffies have passed since we started streaming reset the
172 * counters and keep track of the sequence offset.
174 if (jiffies_since_start > JIFFIES_RESYNC) {
175 dev->jiffies_sdr_cap = cur_jiffies;
176 dev->sdr_cap_seq_offset = buffers_since_start;
177 buffers_since_start = 0;
179 dev->sdr_cap_seq_count =
180 buffers_since_start + dev->sdr_cap_seq_offset;
182 vivid_thread_sdr_cap_tick(dev);
183 mutex_unlock(&dev->mutex);
186 * Calculate the number of samples streamed since we started,
187 * not including the current buffer.
189 samples_since_start = buffers_since_start * SDR_CAP_SAMPLES_PER_BUF;
191 /* And the number of jiffies since we started */
192 jiffies_since_start = jiffies - dev->jiffies_sdr_cap;
194 /* Increase by the number of samples in one buffer */
195 samples_since_start += SDR_CAP_SAMPLES_PER_BUF;
197 * Calculate when that next buffer is supposed to start
198 * in jiffies since we started streaming.
200 next_jiffies_since_start = samples_since_start * HZ +
201 dev->sdr_adc_freq / 2;
202 do_div(next_jiffies_since_start, dev->sdr_adc_freq);
203 /* If it is in the past, then just schedule asap */
204 if (next_jiffies_since_start < jiffies_since_start)
205 next_jiffies_since_start = jiffies_since_start;
207 wait_jiffies = next_jiffies_since_start - jiffies_since_start;
208 schedule_timeout_interruptible(wait_jiffies ? wait_jiffies : 1);
210 dprintk(dev, 1, "SDR Capture Thread End\n");
211 return 0;
214 static int sdr_cap_queue_setup(struct vb2_queue *vq,
215 unsigned *nbuffers, unsigned *nplanes,
216 unsigned sizes[], struct device *alloc_devs[])
218 /* 2 = max 16-bit sample returned */
219 sizes[0] = SDR_CAP_SAMPLES_PER_BUF * 2;
220 *nplanes = 1;
221 return 0;
224 static int sdr_cap_buf_prepare(struct vb2_buffer *vb)
226 struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue);
227 unsigned size = SDR_CAP_SAMPLES_PER_BUF * 2;
229 dprintk(dev, 1, "%s\n", __func__);
231 if (dev->buf_prepare_error) {
233 * Error injection: test what happens if buf_prepare() returns
234 * an error.
236 dev->buf_prepare_error = false;
237 return -EINVAL;
239 if (vb2_plane_size(vb, 0) < size) {
240 dprintk(dev, 1, "%s data will not fit into plane (%lu < %u)\n",
241 __func__, vb2_plane_size(vb, 0), size);
242 return -EINVAL;
244 vb2_set_plane_payload(vb, 0, size);
246 return 0;
249 static void sdr_cap_buf_queue(struct vb2_buffer *vb)
251 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
252 struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue);
253 struct vivid_buffer *buf = container_of(vbuf, struct vivid_buffer, vb);
255 dprintk(dev, 1, "%s\n", __func__);
257 spin_lock(&dev->slock);
258 list_add_tail(&buf->list, &dev->sdr_cap_active);
259 spin_unlock(&dev->slock);
262 static int sdr_cap_start_streaming(struct vb2_queue *vq, unsigned count)
264 struct vivid_dev *dev = vb2_get_drv_priv(vq);
265 int err = 0;
267 dprintk(dev, 1, "%s\n", __func__);
268 dev->sdr_cap_seq_count = 0;
269 if (dev->start_streaming_error) {
270 dev->start_streaming_error = false;
271 err = -EINVAL;
272 } else if (dev->kthread_sdr_cap == NULL) {
273 dev->kthread_sdr_cap = kthread_run(vivid_thread_sdr_cap, dev,
274 "%s-sdr-cap", dev->v4l2_dev.name);
276 if (IS_ERR(dev->kthread_sdr_cap)) {
277 v4l2_err(&dev->v4l2_dev, "kernel_thread() failed\n");
278 err = PTR_ERR(dev->kthread_sdr_cap);
279 dev->kthread_sdr_cap = NULL;
282 if (err) {
283 struct vivid_buffer *buf, *tmp;
285 list_for_each_entry_safe(buf, tmp, &dev->sdr_cap_active, list) {
286 list_del(&buf->list);
287 vb2_buffer_done(&buf->vb.vb2_buf,
288 VB2_BUF_STATE_QUEUED);
291 return err;
294 /* abort streaming and wait for last buffer */
295 static void sdr_cap_stop_streaming(struct vb2_queue *vq)
297 struct vivid_dev *dev = vb2_get_drv_priv(vq);
299 if (dev->kthread_sdr_cap == NULL)
300 return;
302 while (!list_empty(&dev->sdr_cap_active)) {
303 struct vivid_buffer *buf;
305 buf = list_entry(dev->sdr_cap_active.next,
306 struct vivid_buffer, list);
307 list_del(&buf->list);
308 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
311 /* shutdown control thread */
312 mutex_unlock(&dev->mutex);
313 kthread_stop(dev->kthread_sdr_cap);
314 dev->kthread_sdr_cap = NULL;
315 mutex_lock(&dev->mutex);
318 const struct vb2_ops vivid_sdr_cap_qops = {
319 .queue_setup = sdr_cap_queue_setup,
320 .buf_prepare = sdr_cap_buf_prepare,
321 .buf_queue = sdr_cap_buf_queue,
322 .start_streaming = sdr_cap_start_streaming,
323 .stop_streaming = sdr_cap_stop_streaming,
324 .wait_prepare = vb2_ops_wait_prepare,
325 .wait_finish = vb2_ops_wait_finish,
328 int vivid_sdr_enum_freq_bands(struct file *file, void *fh,
329 struct v4l2_frequency_band *band)
331 switch (band->tuner) {
332 case 0:
333 if (band->index >= ARRAY_SIZE(bands_adc))
334 return -EINVAL;
335 *band = bands_adc[band->index];
336 return 0;
337 case 1:
338 if (band->index >= ARRAY_SIZE(bands_fm))
339 return -EINVAL;
340 *band = bands_fm[band->index];
341 return 0;
342 default:
343 return -EINVAL;
347 int vivid_sdr_g_frequency(struct file *file, void *fh,
348 struct v4l2_frequency *vf)
350 struct vivid_dev *dev = video_drvdata(file);
352 switch (vf->tuner) {
353 case 0:
354 vf->frequency = dev->sdr_adc_freq;
355 vf->type = V4L2_TUNER_ADC;
356 return 0;
357 case 1:
358 vf->frequency = dev->sdr_fm_freq;
359 vf->type = V4L2_TUNER_RF;
360 return 0;
361 default:
362 return -EINVAL;
366 int vivid_sdr_s_frequency(struct file *file, void *fh,
367 const struct v4l2_frequency *vf)
369 struct vivid_dev *dev = video_drvdata(file);
370 unsigned freq = vf->frequency;
371 unsigned band;
373 switch (vf->tuner) {
374 case 0:
375 if (vf->type != V4L2_TUNER_ADC)
376 return -EINVAL;
377 if (freq < BAND_ADC_0)
378 band = 0;
379 else if (freq < BAND_ADC_1)
380 band = 1;
381 else
382 band = 2;
384 freq = clamp_t(unsigned, freq,
385 bands_adc[band].rangelow,
386 bands_adc[band].rangehigh);
388 if (vb2_is_streaming(&dev->vb_sdr_cap_q) &&
389 freq != dev->sdr_adc_freq) {
390 /* resync the thread's timings */
391 dev->sdr_cap_seq_resync = true;
393 dev->sdr_adc_freq = freq;
394 return 0;
395 case 1:
396 if (vf->type != V4L2_TUNER_RF)
397 return -EINVAL;
398 dev->sdr_fm_freq = clamp_t(unsigned, freq,
399 bands_fm[0].rangelow,
400 bands_fm[0].rangehigh);
401 return 0;
402 default:
403 return -EINVAL;
407 int vivid_sdr_g_tuner(struct file *file, void *fh, struct v4l2_tuner *vt)
409 switch (vt->index) {
410 case 0:
411 strlcpy(vt->name, "ADC", sizeof(vt->name));
412 vt->type = V4L2_TUNER_ADC;
413 vt->capability =
414 V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
415 vt->rangelow = bands_adc[0].rangelow;
416 vt->rangehigh = bands_adc[2].rangehigh;
417 return 0;
418 case 1:
419 strlcpy(vt->name, "RF", sizeof(vt->name));
420 vt->type = V4L2_TUNER_RF;
421 vt->capability =
422 V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
423 vt->rangelow = bands_fm[0].rangelow;
424 vt->rangehigh = bands_fm[0].rangehigh;
425 return 0;
426 default:
427 return -EINVAL;
431 int vivid_sdr_s_tuner(struct file *file, void *fh, const struct v4l2_tuner *vt)
433 if (vt->index > 1)
434 return -EINVAL;
435 return 0;
438 int vidioc_enum_fmt_sdr_cap(struct file *file, void *fh, struct v4l2_fmtdesc *f)
440 if (f->index >= ARRAY_SIZE(formats))
441 return -EINVAL;
442 f->pixelformat = formats[f->index].pixelformat;
443 return 0;
446 int vidioc_g_fmt_sdr_cap(struct file *file, void *fh, struct v4l2_format *f)
448 struct vivid_dev *dev = video_drvdata(file);
450 f->fmt.sdr.pixelformat = dev->sdr_pixelformat;
451 f->fmt.sdr.buffersize = dev->sdr_buffersize;
452 memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
453 return 0;
456 int vidioc_s_fmt_sdr_cap(struct file *file, void *fh, struct v4l2_format *f)
458 struct vivid_dev *dev = video_drvdata(file);
459 struct vb2_queue *q = &dev->vb_sdr_cap_q;
460 int i;
462 if (vb2_is_busy(q))
463 return -EBUSY;
465 memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
466 for (i = 0; i < ARRAY_SIZE(formats); i++) {
467 if (formats[i].pixelformat == f->fmt.sdr.pixelformat) {
468 dev->sdr_pixelformat = formats[i].pixelformat;
469 dev->sdr_buffersize = formats[i].buffersize;
470 f->fmt.sdr.buffersize = formats[i].buffersize;
471 return 0;
474 dev->sdr_pixelformat = formats[0].pixelformat;
475 dev->sdr_buffersize = formats[0].buffersize;
476 f->fmt.sdr.pixelformat = formats[0].pixelformat;
477 f->fmt.sdr.buffersize = formats[0].buffersize;
478 return 0;
481 int vidioc_try_fmt_sdr_cap(struct file *file, void *fh, struct v4l2_format *f)
483 int i;
485 memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
486 for (i = 0; i < ARRAY_SIZE(formats); i++) {
487 if (formats[i].pixelformat == f->fmt.sdr.pixelformat) {
488 f->fmt.sdr.buffersize = formats[i].buffersize;
489 return 0;
492 f->fmt.sdr.pixelformat = formats[0].pixelformat;
493 f->fmt.sdr.buffersize = formats[0].buffersize;
494 return 0;
497 #define FIXP_N (15)
498 #define FIXP_FRAC (1 << FIXP_N)
499 #define FIXP_2PI ((int)(2 * 3.141592653589 * FIXP_FRAC))
500 #define M_100000PI (3.14159 * 100000)
502 void vivid_sdr_cap_process(struct vivid_dev *dev, struct vivid_buffer *buf)
504 u8 *vbuf = vb2_plane_vaddr(&buf->vb.vb2_buf, 0);
505 unsigned long i;
506 unsigned long plane_size = vb2_plane_size(&buf->vb.vb2_buf, 0);
507 s64 s64tmp;
508 s32 src_phase_step;
509 s32 mod_phase_step;
510 s32 fixp_i;
511 s32 fixp_q;
513 /* calculate phase step */
514 #define BEEP_FREQ 1000 /* 1kHz beep */
515 src_phase_step = DIV_ROUND_CLOSEST(FIXP_2PI * BEEP_FREQ,
516 dev->sdr_adc_freq);
518 for (i = 0; i < plane_size; i += 2) {
519 mod_phase_step = fixp_cos32_rad(dev->sdr_fixp_src_phase,
520 FIXP_2PI) >> (31 - FIXP_N);
522 dev->sdr_fixp_src_phase += src_phase_step;
523 s64tmp = (s64) mod_phase_step * dev->sdr_fm_deviation;
524 dev->sdr_fixp_mod_phase += div_s64(s64tmp, M_100000PI);
527 * Transfer phase angle to [0, 2xPI] in order to avoid variable
528 * overflow and make it suitable for cosine implementation
529 * used, which does not support negative angles.
531 dev->sdr_fixp_src_phase %= FIXP_2PI;
532 dev->sdr_fixp_mod_phase %= FIXP_2PI;
534 if (dev->sdr_fixp_mod_phase < 0)
535 dev->sdr_fixp_mod_phase += FIXP_2PI;
537 fixp_i = fixp_cos32_rad(dev->sdr_fixp_mod_phase, FIXP_2PI);
538 fixp_q = fixp_sin32_rad(dev->sdr_fixp_mod_phase, FIXP_2PI);
540 /* Normalize fraction values represented with 32 bit precision
541 * to fixed point representation with FIXP_N bits */
542 fixp_i >>= (31 - FIXP_N);
543 fixp_q >>= (31 - FIXP_N);
545 switch (dev->sdr_pixelformat) {
546 case V4L2_SDR_FMT_CU8:
547 /* convert 'fixp float' to u8 [0, +255] */
548 /* u8 = X * 127.5 + 127.5; X is float [-1.0, +1.0] */
549 fixp_i = fixp_i * 1275 + FIXP_FRAC * 1275;
550 fixp_q = fixp_q * 1275 + FIXP_FRAC * 1275;
551 *vbuf++ = DIV_ROUND_CLOSEST(fixp_i, FIXP_FRAC * 10);
552 *vbuf++ = DIV_ROUND_CLOSEST(fixp_q, FIXP_FRAC * 10);
553 break;
554 case V4L2_SDR_FMT_CS8:
555 /* convert 'fixp float' to s8 [-128, +127] */
556 /* s8 = X * 127.5 - 0.5; X is float [-1.0, +1.0] */
557 fixp_i = fixp_i * 1275 - FIXP_FRAC * 5;
558 fixp_q = fixp_q * 1275 - FIXP_FRAC * 5;
559 *vbuf++ = DIV_ROUND_CLOSEST(fixp_i, FIXP_FRAC * 10);
560 *vbuf++ = DIV_ROUND_CLOSEST(fixp_q, FIXP_FRAC * 10);
561 break;
562 default:
563 break;