2 * vsp1_video.c -- R-Car VSP1 Video Node
4 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/v4l2-mediabus.h>
19 #include <linux/videodev2.h>
20 #include <linux/wait.h>
22 #include <media/media-entity.h>
23 #include <media/v4l2-dev.h>
24 #include <media/v4l2-fh.h>
25 #include <media/v4l2-ioctl.h>
26 #include <media/v4l2-subdev.h>
27 #include <media/videobuf2-v4l2.h>
28 #include <media/videobuf2-dma-contig.h>
33 #include "vsp1_entity.h"
36 #include "vsp1_pipe.h"
37 #include "vsp1_rwpf.h"
39 #include "vsp1_video.h"
41 #define VSP1_VIDEO_DEF_FORMAT V4L2_PIX_FMT_YUYV
42 #define VSP1_VIDEO_DEF_WIDTH 1024
43 #define VSP1_VIDEO_DEF_HEIGHT 768
45 #define VSP1_VIDEO_MIN_WIDTH 2U
46 #define VSP1_VIDEO_MAX_WIDTH 8190U
47 #define VSP1_VIDEO_MIN_HEIGHT 2U
48 #define VSP1_VIDEO_MAX_HEIGHT 8190U
50 /* -----------------------------------------------------------------------------
54 static struct v4l2_subdev
*
55 vsp1_video_remote_subdev(struct media_pad
*local
, u32
*pad
)
57 struct media_pad
*remote
;
59 remote
= media_entity_remote_pad(local
);
60 if (!remote
|| !is_media_entity_v4l2_subdev(remote
->entity
))
66 return media_entity_to_v4l2_subdev(remote
->entity
);
69 static int vsp1_video_verify_format(struct vsp1_video
*video
)
71 struct v4l2_subdev_format fmt
;
72 struct v4l2_subdev
*subdev
;
75 subdev
= vsp1_video_remote_subdev(&video
->pad
, &fmt
.pad
);
79 fmt
.which
= V4L2_SUBDEV_FORMAT_ACTIVE
;
80 ret
= v4l2_subdev_call(subdev
, pad
, get_fmt
, NULL
, &fmt
);
82 return ret
== -ENOIOCTLCMD
? -EINVAL
: ret
;
84 if (video
->rwpf
->fmtinfo
->mbus
!= fmt
.format
.code
||
85 video
->rwpf
->format
.height
!= fmt
.format
.height
||
86 video
->rwpf
->format
.width
!= fmt
.format
.width
)
92 static int __vsp1_video_try_format(struct vsp1_video
*video
,
93 struct v4l2_pix_format_mplane
*pix
,
94 const struct vsp1_format_info
**fmtinfo
)
96 static const u32 xrgb_formats
[][2] = {
97 { V4L2_PIX_FMT_RGB444
, V4L2_PIX_FMT_XRGB444
},
98 { V4L2_PIX_FMT_RGB555
, V4L2_PIX_FMT_XRGB555
},
99 { V4L2_PIX_FMT_BGR32
, V4L2_PIX_FMT_XBGR32
},
100 { V4L2_PIX_FMT_RGB32
, V4L2_PIX_FMT_XRGB32
},
103 const struct vsp1_format_info
*info
;
104 unsigned int width
= pix
->width
;
105 unsigned int height
= pix
->height
;
109 * Backward compatibility: replace deprecated RGB formats by their XRGB
110 * equivalent. This selects the format older userspace applications want
111 * while still exposing the new format.
113 for (i
= 0; i
< ARRAY_SIZE(xrgb_formats
); ++i
) {
114 if (xrgb_formats
[i
][0] == pix
->pixelformat
) {
115 pix
->pixelformat
= xrgb_formats
[i
][1];
121 * Retrieve format information and select the default format if the
122 * requested format isn't supported.
124 info
= vsp1_get_format_info(video
->vsp1
, pix
->pixelformat
);
126 info
= vsp1_get_format_info(video
->vsp1
, VSP1_VIDEO_DEF_FORMAT
);
128 pix
->pixelformat
= info
->fourcc
;
129 pix
->colorspace
= V4L2_COLORSPACE_SRGB
;
130 pix
->field
= V4L2_FIELD_NONE
;
132 if (info
->fourcc
== V4L2_PIX_FMT_HSV24
||
133 info
->fourcc
== V4L2_PIX_FMT_HSV32
)
134 pix
->hsv_enc
= V4L2_HSV_ENC_256
;
136 memset(pix
->reserved
, 0, sizeof(pix
->reserved
));
138 /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
139 width
= round_down(width
, info
->hsub
);
140 height
= round_down(height
, info
->vsub
);
142 /* Clamp the width and height. */
143 pix
->width
= clamp(width
, VSP1_VIDEO_MIN_WIDTH
, VSP1_VIDEO_MAX_WIDTH
);
144 pix
->height
= clamp(height
, VSP1_VIDEO_MIN_HEIGHT
,
145 VSP1_VIDEO_MAX_HEIGHT
);
148 * Compute and clamp the stride and image size. While not documented in
149 * the datasheet, strides not aligned to a multiple of 128 bytes result
150 * in image corruption.
152 for (i
= 0; i
< min(info
->planes
, 2U); ++i
) {
153 unsigned int hsub
= i
> 0 ? info
->hsub
: 1;
154 unsigned int vsub
= i
> 0 ? info
->vsub
: 1;
155 unsigned int align
= 128;
158 bpl
= clamp_t(unsigned int, pix
->plane_fmt
[i
].bytesperline
,
159 pix
->width
/ hsub
* info
->bpp
[i
] / 8,
160 round_down(65535U, align
));
162 pix
->plane_fmt
[i
].bytesperline
= round_up(bpl
, align
);
163 pix
->plane_fmt
[i
].sizeimage
= pix
->plane_fmt
[i
].bytesperline
164 * pix
->height
/ vsub
;
167 if (info
->planes
== 3) {
168 /* The second and third planes must have the same stride. */
169 pix
->plane_fmt
[2].bytesperline
= pix
->plane_fmt
[1].bytesperline
;
170 pix
->plane_fmt
[2].sizeimage
= pix
->plane_fmt
[1].sizeimage
;
173 pix
->num_planes
= info
->planes
;
181 /* -----------------------------------------------------------------------------
182 * VSP1 Partition Algorithm support
186 * vsp1_video_calculate_partition - Calculate the active partition output window
188 * @pipe: the pipeline
189 * @partition: partition that will hold the calculated values
190 * @div_size: pre-determined maximum partition division size
191 * @index: partition index
193 static void vsp1_video_calculate_partition(struct vsp1_pipeline
*pipe
,
194 struct vsp1_partition
*partition
,
195 unsigned int div_size
,
198 const struct v4l2_mbus_framefmt
*format
;
199 struct vsp1_partition_window window
;
200 unsigned int modulus
;
203 * Partitions are computed on the size before rotation, use the format
206 format
= vsp1_entity_get_pad_format(&pipe
->output
->entity
,
207 pipe
->output
->entity
.config
,
210 /* A single partition simply processes the output size in full. */
211 if (pipe
->partitions
<= 1) {
213 window
.width
= format
->width
;
215 vsp1_pipeline_propagate_partition(pipe
, partition
, index
,
220 /* Initialise the partition with sane starting conditions. */
221 window
.left
= index
* div_size
;
222 window
.width
= div_size
;
224 modulus
= format
->width
% div_size
;
227 * We need to prevent the last partition from being smaller than the
228 * *minimum* width of the hardware capabilities.
230 * If the modulus is less than half of the partition size,
231 * the penultimate partition is reduced to half, which is added
232 * to the final partition: |1234|1234|1234|12|341|
233 * to prevents this: |1234|1234|1234|1234|1|.
237 * pipe->partitions is 1 based, whilst index is a 0 based index.
238 * Normalise this locally.
240 unsigned int partitions
= pipe
->partitions
- 1;
242 if (modulus
< div_size
/ 2) {
243 if (index
== partitions
- 1) {
244 /* Halve the penultimate partition. */
245 window
.width
= div_size
/ 2;
246 } else if (index
== partitions
) {
247 /* Increase the final partition. */
248 window
.width
= (div_size
/ 2) + modulus
;
249 window
.left
-= div_size
/ 2;
251 } else if (index
== partitions
) {
252 window
.width
= modulus
;
256 vsp1_pipeline_propagate_partition(pipe
, partition
, index
, &window
);
259 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline
*pipe
)
261 struct vsp1_device
*vsp1
= pipe
->output
->entity
.vsp1
;
262 const struct v4l2_mbus_framefmt
*format
;
263 struct vsp1_entity
*entity
;
264 unsigned int div_size
;
268 * Partitions are computed on the size before rotation, use the format
271 format
= vsp1_entity_get_pad_format(&pipe
->output
->entity
,
272 pipe
->output
->entity
.config
,
274 div_size
= format
->width
;
277 * Only Gen3 hardware requires image partitioning, Gen2 will operate
278 * with a single partition that covers the whole output.
280 if (vsp1
->info
->gen
== 3) {
281 list_for_each_entry(entity
, &pipe
->entities
, list_pipe
) {
282 unsigned int entity_max
;
284 if (!entity
->ops
->max_width
)
287 entity_max
= entity
->ops
->max_width(entity
, pipe
);
289 div_size
= min(div_size
, entity_max
);
293 pipe
->partitions
= DIV_ROUND_UP(format
->width
, div_size
);
294 pipe
->part_table
= kcalloc(pipe
->partitions
, sizeof(*pipe
->part_table
),
296 if (!pipe
->part_table
)
299 for (i
= 0; i
< pipe
->partitions
; ++i
)
300 vsp1_video_calculate_partition(pipe
, &pipe
->part_table
[i
],
306 /* -----------------------------------------------------------------------------
307 * Pipeline Management
311 * vsp1_video_complete_buffer - Complete the current buffer
312 * @video: the video node
314 * This function completes the current buffer by filling its sequence number,
315 * time stamp and payload size, and hands it back to the videobuf core.
317 * When operating in DU output mode (deep pipeline to the DU through the LIF),
318 * the VSP1 needs to constantly supply frames to the display. In that case, if
319 * no other buffer is queued, reuse the one that has just been processed instead
320 * of handing it back to the videobuf core.
322 * Return the next queued buffer or NULL if the queue is empty.
324 static struct vsp1_vb2_buffer
*
325 vsp1_video_complete_buffer(struct vsp1_video
*video
)
327 struct vsp1_pipeline
*pipe
= video
->rwpf
->pipe
;
328 struct vsp1_vb2_buffer
*next
= NULL
;
329 struct vsp1_vb2_buffer
*done
;
333 spin_lock_irqsave(&video
->irqlock
, flags
);
335 if (list_empty(&video
->irqqueue
)) {
336 spin_unlock_irqrestore(&video
->irqlock
, flags
);
340 done
= list_first_entry(&video
->irqqueue
,
341 struct vsp1_vb2_buffer
, queue
);
343 /* In DU output mode reuse the buffer if the list is singular. */
344 if (pipe
->lif
&& list_is_singular(&video
->irqqueue
)) {
345 spin_unlock_irqrestore(&video
->irqlock
, flags
);
349 list_del(&done
->queue
);
351 if (!list_empty(&video
->irqqueue
))
352 next
= list_first_entry(&video
->irqqueue
,
353 struct vsp1_vb2_buffer
, queue
);
355 spin_unlock_irqrestore(&video
->irqlock
, flags
);
357 done
->buf
.sequence
= pipe
->sequence
;
358 done
->buf
.vb2_buf
.timestamp
= ktime_get_ns();
359 for (i
= 0; i
< done
->buf
.vb2_buf
.num_planes
; ++i
)
360 vb2_set_plane_payload(&done
->buf
.vb2_buf
, i
,
361 vb2_plane_size(&done
->buf
.vb2_buf
, i
));
362 vb2_buffer_done(&done
->buf
.vb2_buf
, VB2_BUF_STATE_DONE
);
367 static void vsp1_video_frame_end(struct vsp1_pipeline
*pipe
,
368 struct vsp1_rwpf
*rwpf
)
370 struct vsp1_video
*video
= rwpf
->video
;
371 struct vsp1_vb2_buffer
*buf
;
373 buf
= vsp1_video_complete_buffer(video
);
377 video
->rwpf
->mem
= buf
->mem
;
378 pipe
->buffers_ready
|= 1 << video
->pipe_index
;
381 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline
*pipe
,
382 struct vsp1_dl_list
*dl
,
383 unsigned int partition
)
385 struct vsp1_entity
*entity
;
387 pipe
->partition
= &pipe
->part_table
[partition
];
389 list_for_each_entry(entity
, &pipe
->entities
, list_pipe
) {
390 if (entity
->ops
->configure
)
391 entity
->ops
->configure(entity
, pipe
, dl
,
392 VSP1_ENTITY_PARAMS_PARTITION
);
396 static void vsp1_video_pipeline_run(struct vsp1_pipeline
*pipe
)
398 struct vsp1_device
*vsp1
= pipe
->output
->entity
.vsp1
;
399 struct vsp1_entity
*entity
;
400 unsigned int partition
;
403 pipe
->dl
= vsp1_dl_list_get(pipe
->output
->dlm
);
406 * Start with the runtime parameters as the configure operation can
407 * compute/cache information needed when configuring partitions. This
408 * is the case with flipping in the WPF.
410 list_for_each_entry(entity
, &pipe
->entities
, list_pipe
) {
411 if (entity
->ops
->configure
)
412 entity
->ops
->configure(entity
, pipe
, pipe
->dl
,
413 VSP1_ENTITY_PARAMS_RUNTIME
);
416 /* Run the first partition */
417 vsp1_video_pipeline_run_partition(pipe
, pipe
->dl
, 0);
419 /* Process consecutive partitions as necessary */
420 for (partition
= 1; partition
< pipe
->partitions
; ++partition
) {
421 struct vsp1_dl_list
*dl
;
423 dl
= vsp1_dl_list_get(pipe
->output
->dlm
);
426 * An incomplete chain will still function, but output only
427 * the partitions that had a dl available. The frame end
428 * interrupt will be marked on the last dl in the chain.
431 dev_err(vsp1
->dev
, "Failed to obtain a dl list. Frame will be incomplete\n");
435 vsp1_video_pipeline_run_partition(pipe
, dl
, partition
);
436 vsp1_dl_list_add_chain(pipe
->dl
, dl
);
439 /* Complete, and commit the head display list. */
440 vsp1_dl_list_commit(pipe
->dl
);
443 vsp1_pipeline_run(pipe
);
446 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline
*pipe
,
449 struct vsp1_device
*vsp1
= pipe
->output
->entity
.vsp1
;
450 enum vsp1_pipeline_state state
;
454 /* M2M Pipelines should never call here with an incomplete frame. */
455 WARN_ON_ONCE(!completed
);
457 spin_lock_irqsave(&pipe
->irqlock
, flags
);
459 /* Complete buffers on all video nodes. */
460 for (i
= 0; i
< vsp1
->info
->rpf_count
; ++i
) {
461 if (!pipe
->inputs
[i
])
464 vsp1_video_frame_end(pipe
, pipe
->inputs
[i
]);
467 vsp1_video_frame_end(pipe
, pipe
->output
);
470 pipe
->state
= VSP1_PIPELINE_STOPPED
;
473 * If a stop has been requested, mark the pipeline as stopped and
474 * return. Otherwise restart the pipeline if ready.
476 if (state
== VSP1_PIPELINE_STOPPING
)
478 else if (vsp1_pipeline_ready(pipe
))
479 vsp1_video_pipeline_run(pipe
);
481 spin_unlock_irqrestore(&pipe
->irqlock
, flags
);
484 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline
*pipe
,
485 struct vsp1_rwpf
*input
,
486 struct vsp1_rwpf
*output
)
488 struct media_entity_enum ent_enum
;
489 struct vsp1_entity
*entity
;
490 struct media_pad
*pad
;
491 struct vsp1_bru
*bru
= NULL
;
494 ret
= media_entity_enum_init(&ent_enum
, &input
->entity
.vsp1
->media_dev
);
499 * The main data path doesn't include the HGO or HGT, use
500 * vsp1_entity_remote_pad() to traverse the graph.
503 pad
= vsp1_entity_remote_pad(&input
->entity
.pads
[RWPF_PAD_SOURCE
]);
511 /* We've reached a video node, that shouldn't have happened. */
512 if (!is_media_entity_v4l2_subdev(pad
->entity
)) {
517 entity
= to_vsp1_entity(
518 media_entity_to_v4l2_subdev(pad
->entity
));
521 * A BRU or BRS is present in the pipeline, store its input pad
522 * number in the input RPF for use when configuring the RPF.
524 if (entity
->type
== VSP1_ENTITY_BRU
||
525 entity
->type
== VSP1_ENTITY_BRS
) {
526 /* BRU and BRS can't be chained. */
532 bru
= to_bru(&entity
->subdev
);
533 bru
->inputs
[pad
->index
].rpf
= input
;
534 input
->bru_input
= pad
->index
;
537 /* We've reached the WPF, we're done. */
538 if (entity
->type
== VSP1_ENTITY_WPF
)
541 /* Ensure the branch has no loop. */
542 if (media_entity_enum_test_and_set(&ent_enum
,
543 &entity
->subdev
.entity
)) {
548 /* UDS can't be chained. */
549 if (entity
->type
== VSP1_ENTITY_UDS
) {
556 pipe
->uds_input
= bru
? &bru
->entity
: &input
->entity
;
559 /* Follow the source link, ignoring any HGO or HGT. */
560 pad
= &entity
->pads
[entity
->source_pad
];
561 pad
= vsp1_entity_remote_pad(pad
);
564 /* The last entity must be the output WPF. */
565 if (entity
!= &output
->entity
)
569 media_entity_enum_cleanup(&ent_enum
);
574 static int vsp1_video_pipeline_build(struct vsp1_pipeline
*pipe
,
575 struct vsp1_video
*video
)
577 struct media_graph graph
;
578 struct media_entity
*entity
= &video
->video
.entity
;
579 struct media_device
*mdev
= entity
->graph_obj
.mdev
;
583 /* Walk the graph to locate the entities and video nodes. */
584 ret
= media_graph_walk_init(&graph
, mdev
);
588 media_graph_walk_start(&graph
, entity
);
590 while ((entity
= media_graph_walk_next(&graph
))) {
591 struct v4l2_subdev
*subdev
;
592 struct vsp1_rwpf
*rwpf
;
593 struct vsp1_entity
*e
;
595 if (!is_media_entity_v4l2_subdev(entity
))
598 subdev
= media_entity_to_v4l2_subdev(entity
);
599 e
= to_vsp1_entity(subdev
);
600 list_add_tail(&e
->list_pipe
, &pipe
->entities
);
603 case VSP1_ENTITY_RPF
:
604 rwpf
= to_rwpf(subdev
);
605 pipe
->inputs
[rwpf
->entity
.index
] = rwpf
;
606 rwpf
->video
->pipe_index
= ++pipe
->num_inputs
;
610 case VSP1_ENTITY_WPF
:
611 rwpf
= to_rwpf(subdev
);
613 rwpf
->video
->pipe_index
= 0;
617 case VSP1_ENTITY_LIF
:
621 case VSP1_ENTITY_BRU
:
622 case VSP1_ENTITY_BRS
:
626 case VSP1_ENTITY_HGO
:
628 to_hgo(subdev
)->histo
.pipe
= pipe
;
631 case VSP1_ENTITY_HGT
:
633 to_hgt(subdev
)->histo
.pipe
= pipe
;
641 media_graph_walk_cleanup(&graph
);
643 /* We need one output and at least one input. */
644 if (pipe
->num_inputs
== 0 || !pipe
->output
)
648 * Follow links downstream for each input and make sure the graph
649 * contains no loop and that all branches end at the output WPF.
651 for (i
= 0; i
< video
->vsp1
->info
->rpf_count
; ++i
) {
652 if (!pipe
->inputs
[i
])
655 ret
= vsp1_video_pipeline_build_branch(pipe
, pipe
->inputs
[i
],
664 static int vsp1_video_pipeline_init(struct vsp1_pipeline
*pipe
,
665 struct vsp1_video
*video
)
667 vsp1_pipeline_init(pipe
);
669 pipe
->frame_end
= vsp1_video_pipeline_frame_end
;
671 return vsp1_video_pipeline_build(pipe
, video
);
674 static struct vsp1_pipeline
*vsp1_video_pipeline_get(struct vsp1_video
*video
)
676 struct vsp1_pipeline
*pipe
;
680 * Get a pipeline object for the video node. If a pipeline has already
681 * been allocated just increment its reference count and return it.
682 * Otherwise allocate a new pipeline and initialize it, it will be freed
683 * when the last reference is released.
685 if (!video
->rwpf
->pipe
) {
686 pipe
= kzalloc(sizeof(*pipe
), GFP_KERNEL
);
688 return ERR_PTR(-ENOMEM
);
690 ret
= vsp1_video_pipeline_init(pipe
, video
);
692 vsp1_pipeline_reset(pipe
);
697 pipe
= video
->rwpf
->pipe
;
698 kref_get(&pipe
->kref
);
704 static void vsp1_video_pipeline_release(struct kref
*kref
)
706 struct vsp1_pipeline
*pipe
= container_of(kref
, typeof(*pipe
), kref
);
708 vsp1_pipeline_reset(pipe
);
712 static void vsp1_video_pipeline_put(struct vsp1_pipeline
*pipe
)
714 struct media_device
*mdev
= &pipe
->output
->entity
.vsp1
->media_dev
;
716 mutex_lock(&mdev
->graph_mutex
);
717 kref_put(&pipe
->kref
, vsp1_video_pipeline_release
);
718 mutex_unlock(&mdev
->graph_mutex
);
721 /* -----------------------------------------------------------------------------
722 * videobuf2 Queue Operations
726 vsp1_video_queue_setup(struct vb2_queue
*vq
,
727 unsigned int *nbuffers
, unsigned int *nplanes
,
728 unsigned int sizes
[], struct device
*alloc_devs
[])
730 struct vsp1_video
*video
= vb2_get_drv_priv(vq
);
731 const struct v4l2_pix_format_mplane
*format
= &video
->rwpf
->format
;
735 if (*nplanes
!= format
->num_planes
)
738 for (i
= 0; i
< *nplanes
; i
++)
739 if (sizes
[i
] < format
->plane_fmt
[i
].sizeimage
)
744 *nplanes
= format
->num_planes
;
746 for (i
= 0; i
< format
->num_planes
; ++i
)
747 sizes
[i
] = format
->plane_fmt
[i
].sizeimage
;
752 static int vsp1_video_buffer_prepare(struct vb2_buffer
*vb
)
754 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
755 struct vsp1_video
*video
= vb2_get_drv_priv(vb
->vb2_queue
);
756 struct vsp1_vb2_buffer
*buf
= to_vsp1_vb2_buffer(vbuf
);
757 const struct v4l2_pix_format_mplane
*format
= &video
->rwpf
->format
;
760 if (vb
->num_planes
< format
->num_planes
)
763 for (i
= 0; i
< vb
->num_planes
; ++i
) {
764 buf
->mem
.addr
[i
] = vb2_dma_contig_plane_dma_addr(vb
, i
);
766 if (vb2_plane_size(vb
, i
) < format
->plane_fmt
[i
].sizeimage
)
771 buf
->mem
.addr
[i
] = 0;
776 static void vsp1_video_buffer_queue(struct vb2_buffer
*vb
)
778 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
779 struct vsp1_video
*video
= vb2_get_drv_priv(vb
->vb2_queue
);
780 struct vsp1_pipeline
*pipe
= video
->rwpf
->pipe
;
781 struct vsp1_vb2_buffer
*buf
= to_vsp1_vb2_buffer(vbuf
);
785 spin_lock_irqsave(&video
->irqlock
, flags
);
786 empty
= list_empty(&video
->irqqueue
);
787 list_add_tail(&buf
->queue
, &video
->irqqueue
);
788 spin_unlock_irqrestore(&video
->irqlock
, flags
);
793 spin_lock_irqsave(&pipe
->irqlock
, flags
);
795 video
->rwpf
->mem
= buf
->mem
;
796 pipe
->buffers_ready
|= 1 << video
->pipe_index
;
798 if (vb2_is_streaming(&video
->queue
) &&
799 vsp1_pipeline_ready(pipe
))
800 vsp1_video_pipeline_run(pipe
);
802 spin_unlock_irqrestore(&pipe
->irqlock
, flags
);
805 static int vsp1_video_setup_pipeline(struct vsp1_pipeline
*pipe
)
807 struct vsp1_entity
*entity
;
810 /* Determine this pipelines sizes for image partitioning support. */
811 ret
= vsp1_video_pipeline_setup_partitions(pipe
);
815 /* Prepare the display list. */
816 pipe
->dl
= vsp1_dl_list_get(pipe
->output
->dlm
);
821 struct vsp1_uds
*uds
= to_uds(&pipe
->uds
->subdev
);
824 * If a BRU or BRS is present in the pipeline before the UDS,
825 * the alpha component doesn't need to be scaled as the BRU and
826 * BRS output alpha value is fixed to 255. Otherwise we need to
827 * scale the alpha component only when available at the input
830 if (pipe
->uds_input
->type
== VSP1_ENTITY_BRU
||
831 pipe
->uds_input
->type
== VSP1_ENTITY_BRS
) {
832 uds
->scale_alpha
= false;
834 struct vsp1_rwpf
*rpf
=
835 to_rwpf(&pipe
->uds_input
->subdev
);
837 uds
->scale_alpha
= rpf
->fmtinfo
->alpha
;
841 list_for_each_entry(entity
, &pipe
->entities
, list_pipe
) {
842 vsp1_entity_route_setup(entity
, pipe
, pipe
->dl
);
844 if (entity
->ops
->configure
)
845 entity
->ops
->configure(entity
, pipe
, pipe
->dl
,
846 VSP1_ENTITY_PARAMS_INIT
);
852 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline
*pipe
)
854 struct vsp1_video
*video
= pipe
->output
->video
;
855 struct vsp1_vb2_buffer
*buffer
;
858 /* Remove all buffers from the IRQ queue. */
859 spin_lock_irqsave(&video
->irqlock
, flags
);
860 list_for_each_entry(buffer
, &video
->irqqueue
, queue
)
861 vb2_buffer_done(&buffer
->buf
.vb2_buf
, VB2_BUF_STATE_ERROR
);
862 INIT_LIST_HEAD(&video
->irqqueue
);
863 spin_unlock_irqrestore(&video
->irqlock
, flags
);
865 /* Release our partition table allocation */
866 mutex_lock(&pipe
->lock
);
867 kfree(pipe
->part_table
);
868 pipe
->part_table
= NULL
;
869 mutex_unlock(&pipe
->lock
);
872 static int vsp1_video_start_streaming(struct vb2_queue
*vq
, unsigned int count
)
874 struct vsp1_video
*video
= vb2_get_drv_priv(vq
);
875 struct vsp1_pipeline
*pipe
= video
->rwpf
->pipe
;
876 bool start_pipeline
= false;
880 mutex_lock(&pipe
->lock
);
881 if (pipe
->stream_count
== pipe
->num_inputs
) {
882 ret
= vsp1_video_setup_pipeline(pipe
);
884 mutex_unlock(&pipe
->lock
);
885 vsp1_video_cleanup_pipeline(pipe
);
889 start_pipeline
= true;
892 pipe
->stream_count
++;
893 mutex_unlock(&pipe
->lock
);
896 * vsp1_pipeline_ready() is not sufficient to establish that all streams
897 * are prepared and the pipeline is configured, as multiple streams
898 * can race through streamon with buffers already queued; Therefore we
899 * don't even attempt to start the pipeline until the last stream has
900 * called through here.
905 spin_lock_irqsave(&pipe
->irqlock
, flags
);
906 if (vsp1_pipeline_ready(pipe
))
907 vsp1_video_pipeline_run(pipe
);
908 spin_unlock_irqrestore(&pipe
->irqlock
, flags
);
913 static void vsp1_video_stop_streaming(struct vb2_queue
*vq
)
915 struct vsp1_video
*video
= vb2_get_drv_priv(vq
);
916 struct vsp1_pipeline
*pipe
= video
->rwpf
->pipe
;
921 * Clear the buffers ready flag to make sure the device won't be started
922 * by a QBUF on the video node on the other side of the pipeline.
924 spin_lock_irqsave(&video
->irqlock
, flags
);
925 pipe
->buffers_ready
&= ~(1 << video
->pipe_index
);
926 spin_unlock_irqrestore(&video
->irqlock
, flags
);
928 mutex_lock(&pipe
->lock
);
929 if (--pipe
->stream_count
== pipe
->num_inputs
) {
930 /* Stop the pipeline. */
931 ret
= vsp1_pipeline_stop(pipe
);
932 if (ret
== -ETIMEDOUT
)
933 dev_err(video
->vsp1
->dev
, "pipeline stop timeout\n");
935 vsp1_dl_list_put(pipe
->dl
);
938 mutex_unlock(&pipe
->lock
);
940 media_pipeline_stop(&video
->video
.entity
);
941 vsp1_video_cleanup_pipeline(pipe
);
942 vsp1_video_pipeline_put(pipe
);
945 static const struct vb2_ops vsp1_video_queue_qops
= {
946 .queue_setup
= vsp1_video_queue_setup
,
947 .buf_prepare
= vsp1_video_buffer_prepare
,
948 .buf_queue
= vsp1_video_buffer_queue
,
949 .wait_prepare
= vb2_ops_wait_prepare
,
950 .wait_finish
= vb2_ops_wait_finish
,
951 .start_streaming
= vsp1_video_start_streaming
,
952 .stop_streaming
= vsp1_video_stop_streaming
,
955 /* -----------------------------------------------------------------------------
960 vsp1_video_querycap(struct file
*file
, void *fh
, struct v4l2_capability
*cap
)
962 struct v4l2_fh
*vfh
= file
->private_data
;
963 struct vsp1_video
*video
= to_vsp1_video(vfh
->vdev
);
965 cap
->capabilities
= V4L2_CAP_DEVICE_CAPS
| V4L2_CAP_STREAMING
966 | V4L2_CAP_VIDEO_CAPTURE_MPLANE
967 | V4L2_CAP_VIDEO_OUTPUT_MPLANE
;
969 if (video
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
)
970 cap
->device_caps
= V4L2_CAP_VIDEO_CAPTURE_MPLANE
971 | V4L2_CAP_STREAMING
;
973 cap
->device_caps
= V4L2_CAP_VIDEO_OUTPUT_MPLANE
974 | V4L2_CAP_STREAMING
;
976 strlcpy(cap
->driver
, "vsp1", sizeof(cap
->driver
));
977 strlcpy(cap
->card
, video
->video
.name
, sizeof(cap
->card
));
978 snprintf(cap
->bus_info
, sizeof(cap
->bus_info
), "platform:%s",
979 dev_name(video
->vsp1
->dev
));
985 vsp1_video_get_format(struct file
*file
, void *fh
, struct v4l2_format
*format
)
987 struct v4l2_fh
*vfh
= file
->private_data
;
988 struct vsp1_video
*video
= to_vsp1_video(vfh
->vdev
);
990 if (format
->type
!= video
->queue
.type
)
993 mutex_lock(&video
->lock
);
994 format
->fmt
.pix_mp
= video
->rwpf
->format
;
995 mutex_unlock(&video
->lock
);
1001 vsp1_video_try_format(struct file
*file
, void *fh
, struct v4l2_format
*format
)
1003 struct v4l2_fh
*vfh
= file
->private_data
;
1004 struct vsp1_video
*video
= to_vsp1_video(vfh
->vdev
);
1006 if (format
->type
!= video
->queue
.type
)
1009 return __vsp1_video_try_format(video
, &format
->fmt
.pix_mp
, NULL
);
1013 vsp1_video_set_format(struct file
*file
, void *fh
, struct v4l2_format
*format
)
1015 struct v4l2_fh
*vfh
= file
->private_data
;
1016 struct vsp1_video
*video
= to_vsp1_video(vfh
->vdev
);
1017 const struct vsp1_format_info
*info
;
1020 if (format
->type
!= video
->queue
.type
)
1023 ret
= __vsp1_video_try_format(video
, &format
->fmt
.pix_mp
, &info
);
1027 mutex_lock(&video
->lock
);
1029 if (vb2_is_busy(&video
->queue
)) {
1034 video
->rwpf
->format
= format
->fmt
.pix_mp
;
1035 video
->rwpf
->fmtinfo
= info
;
1038 mutex_unlock(&video
->lock
);
1043 vsp1_video_streamon(struct file
*file
, void *fh
, enum v4l2_buf_type type
)
1045 struct v4l2_fh
*vfh
= file
->private_data
;
1046 struct vsp1_video
*video
= to_vsp1_video(vfh
->vdev
);
1047 struct media_device
*mdev
= &video
->vsp1
->media_dev
;
1048 struct vsp1_pipeline
*pipe
;
1051 if (video
->queue
.owner
&& video
->queue
.owner
!= file
->private_data
)
1055 * Get a pipeline for the video node and start streaming on it. No link
1056 * touching an entity in the pipeline can be activated or deactivated
1057 * once streaming is started.
1059 mutex_lock(&mdev
->graph_mutex
);
1061 pipe
= vsp1_video_pipeline_get(video
);
1063 mutex_unlock(&mdev
->graph_mutex
);
1064 return PTR_ERR(pipe
);
1067 ret
= __media_pipeline_start(&video
->video
.entity
, &pipe
->pipe
);
1069 mutex_unlock(&mdev
->graph_mutex
);
1073 mutex_unlock(&mdev
->graph_mutex
);
1076 * Verify that the configured format matches the output of the connected
1079 ret
= vsp1_video_verify_format(video
);
1083 /* Start the queue. */
1084 ret
= vb2_streamon(&video
->queue
, type
);
1091 media_pipeline_stop(&video
->video
.entity
);
1093 vsp1_video_pipeline_put(pipe
);
1097 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops
= {
1098 .vidioc_querycap
= vsp1_video_querycap
,
1099 .vidioc_g_fmt_vid_cap_mplane
= vsp1_video_get_format
,
1100 .vidioc_s_fmt_vid_cap_mplane
= vsp1_video_set_format
,
1101 .vidioc_try_fmt_vid_cap_mplane
= vsp1_video_try_format
,
1102 .vidioc_g_fmt_vid_out_mplane
= vsp1_video_get_format
,
1103 .vidioc_s_fmt_vid_out_mplane
= vsp1_video_set_format
,
1104 .vidioc_try_fmt_vid_out_mplane
= vsp1_video_try_format
,
1105 .vidioc_reqbufs
= vb2_ioctl_reqbufs
,
1106 .vidioc_querybuf
= vb2_ioctl_querybuf
,
1107 .vidioc_qbuf
= vb2_ioctl_qbuf
,
1108 .vidioc_dqbuf
= vb2_ioctl_dqbuf
,
1109 .vidioc_expbuf
= vb2_ioctl_expbuf
,
1110 .vidioc_create_bufs
= vb2_ioctl_create_bufs
,
1111 .vidioc_prepare_buf
= vb2_ioctl_prepare_buf
,
1112 .vidioc_streamon
= vsp1_video_streamon
,
1113 .vidioc_streamoff
= vb2_ioctl_streamoff
,
1116 /* -----------------------------------------------------------------------------
1117 * V4L2 File Operations
1120 static int vsp1_video_open(struct file
*file
)
1122 struct vsp1_video
*video
= video_drvdata(file
);
1123 struct v4l2_fh
*vfh
;
1126 vfh
= kzalloc(sizeof(*vfh
), GFP_KERNEL
);
1130 v4l2_fh_init(vfh
, &video
->video
);
1133 file
->private_data
= vfh
;
1135 ret
= vsp1_device_get(video
->vsp1
);
1145 static int vsp1_video_release(struct file
*file
)
1147 struct vsp1_video
*video
= video_drvdata(file
);
1148 struct v4l2_fh
*vfh
= file
->private_data
;
1150 mutex_lock(&video
->lock
);
1151 if (video
->queue
.owner
== vfh
) {
1152 vb2_queue_release(&video
->queue
);
1153 video
->queue
.owner
= NULL
;
1155 mutex_unlock(&video
->lock
);
1157 vsp1_device_put(video
->vsp1
);
1159 v4l2_fh_release(file
);
1161 file
->private_data
= NULL
;
1166 static const struct v4l2_file_operations vsp1_video_fops
= {
1167 .owner
= THIS_MODULE
,
1168 .unlocked_ioctl
= video_ioctl2
,
1169 .open
= vsp1_video_open
,
1170 .release
= vsp1_video_release
,
1171 .poll
= vb2_fop_poll
,
1172 .mmap
= vb2_fop_mmap
,
1175 /* -----------------------------------------------------------------------------
1176 * Initialization and Cleanup
1179 struct vsp1_video
*vsp1_video_create(struct vsp1_device
*vsp1
,
1180 struct vsp1_rwpf
*rwpf
)
1182 struct vsp1_video
*video
;
1183 const char *direction
;
1186 video
= devm_kzalloc(vsp1
->dev
, sizeof(*video
), GFP_KERNEL
);
1188 return ERR_PTR(-ENOMEM
);
1190 rwpf
->video
= video
;
1195 if (rwpf
->entity
.type
== VSP1_ENTITY_RPF
) {
1196 direction
= "input";
1197 video
->type
= V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
;
1198 video
->pad
.flags
= MEDIA_PAD_FL_SOURCE
;
1199 video
->video
.vfl_dir
= VFL_DIR_TX
;
1201 direction
= "output";
1202 video
->type
= V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
;
1203 video
->pad
.flags
= MEDIA_PAD_FL_SINK
;
1204 video
->video
.vfl_dir
= VFL_DIR_RX
;
1207 mutex_init(&video
->lock
);
1208 spin_lock_init(&video
->irqlock
);
1209 INIT_LIST_HEAD(&video
->irqqueue
);
1211 /* Initialize the media entity... */
1212 ret
= media_entity_pads_init(&video
->video
.entity
, 1, &video
->pad
);
1214 return ERR_PTR(ret
);
1216 /* ... and the format ... */
1217 rwpf
->format
.pixelformat
= VSP1_VIDEO_DEF_FORMAT
;
1218 rwpf
->format
.width
= VSP1_VIDEO_DEF_WIDTH
;
1219 rwpf
->format
.height
= VSP1_VIDEO_DEF_HEIGHT
;
1220 __vsp1_video_try_format(video
, &rwpf
->format
, &rwpf
->fmtinfo
);
1222 /* ... and the video node... */
1223 video
->video
.v4l2_dev
= &video
->vsp1
->v4l2_dev
;
1224 video
->video
.fops
= &vsp1_video_fops
;
1225 snprintf(video
->video
.name
, sizeof(video
->video
.name
), "%s %s",
1226 rwpf
->entity
.subdev
.name
, direction
);
1227 video
->video
.vfl_type
= VFL_TYPE_GRABBER
;
1228 video
->video
.release
= video_device_release_empty
;
1229 video
->video
.ioctl_ops
= &vsp1_video_ioctl_ops
;
1231 video_set_drvdata(&video
->video
, video
);
1233 video
->queue
.type
= video
->type
;
1234 video
->queue
.io_modes
= VB2_MMAP
| VB2_USERPTR
| VB2_DMABUF
;
1235 video
->queue
.lock
= &video
->lock
;
1236 video
->queue
.drv_priv
= video
;
1237 video
->queue
.buf_struct_size
= sizeof(struct vsp1_vb2_buffer
);
1238 video
->queue
.ops
= &vsp1_video_queue_qops
;
1239 video
->queue
.mem_ops
= &vb2_dma_contig_memops
;
1240 video
->queue
.timestamp_flags
= V4L2_BUF_FLAG_TIMESTAMP_COPY
;
1241 video
->queue
.dev
= video
->vsp1
->bus_master
;
1242 ret
= vb2_queue_init(&video
->queue
);
1244 dev_err(video
->vsp1
->dev
, "failed to initialize vb2 queue\n");
1248 /* ... and register the video device. */
1249 video
->video
.queue
= &video
->queue
;
1250 ret
= video_register_device(&video
->video
, VFL_TYPE_GRABBER
, -1);
1252 dev_err(video
->vsp1
->dev
, "failed to register video device\n");
1259 vsp1_video_cleanup(video
);
1260 return ERR_PTR(ret
);
1263 void vsp1_video_cleanup(struct vsp1_video
*video
)
1265 if (video_is_registered(&video
->video
))
1266 video_unregister_device(&video
->video
);
1268 media_entity_cleanup(&video
->video
.entity
);