2 * sonix sn9c102 (bayer) library
4 * Copyright (C) 2009-2011 Jean-François Moine <http://moinejf.free.fr>
5 * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
6 * Add Pas106 Stefano Mozzi (C) 2004
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 /* Some documentation on known sonixb registers:
23 0x10 high nibble red gain low nibble blue gain
24 0x11 low nibble green gain
30 0x08-0x0f i2c / 3wire registers
33 0x15 hsize (hsize = register-value * 16)
34 0x16 vsize (vsize = register-value * 16)
35 0x17 bit 0 toggle compression quality (according to sn9c102 driver)
36 0x18 bit 7 enables compression, bit 4-5 set image down scaling:
37 00 scale 1, 01 scale 1/2, 10, scale 1/4
38 0x19 high-nibble is sensor clock divider, changes exposure on sensors which
39 use a clock generated by the bridge. Some sensors have their own clock.
40 0x1c auto_exposure area (for avg_lum) startx (startx = register-value * 32)
41 0x1d auto_exposure area (for avg_lum) starty (starty = register-value * 32)
42 0x1e auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
43 0x1f auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
46 #define MODULE_NAME "sonixb"
48 #include <linux/input.h>
51 MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>");
52 MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
53 MODULE_LICENSE("GPL");
55 /* specific webcam descriptor */
57 struct gspca_dev gspca_dev
; /* !! must be the first item */
59 struct v4l2_ctrl
*brightness
;
60 struct v4l2_ctrl
*plfreq
;
66 u8 header
[12]; /* Header without sof marker */
68 unsigned char autogain_ignore_frames
;
69 unsigned char frames_to_drop
;
71 __u8 bridge
; /* Type of bridge */
73 #define BRIDGE_102 0 /* We make no difference between 101 and 102 */
76 __u8 sensor
; /* Type of image sensor chip */
77 #define SENSOR_HV7131D 0
78 #define SENSOR_HV7131R 1
79 #define SENSOR_OV6650 2
80 #define SENSOR_OV7630 3
81 #define SENSOR_PAS106 4
82 #define SENSOR_PAS202 5
83 #define SENSOR_TAS5110C 6
84 #define SENSOR_TAS5110D 7
85 #define SENSOR_TAS5130CXX 8
89 typedef const __u8 sensor_init_t
[8];
92 const __u8
*bridge_init
;
93 sensor_init_t
*sensor_init
;
99 /* sensor_data flags */
100 #define F_SIF 0x01 /* sif or vga */
102 /* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
103 #define MODE_RAW 0x10 /* raw bayer mode */
104 #define MODE_REDUCED_SIF 0x20 /* vga mode (320x240 / 160x120) on sif cam */
106 #define COMP 0xc7 /* 0x87 //0x07 */
107 #define COMP1 0xc9 /* 0x89 //0x09 */
109 #define MCK_INIT 0x63
110 #define MCK_INIT1 0x20 /*fixme: Bayer - 0x50 for JPEG ??*/
114 #define SENS(bridge, sensor, _flags, _sensor_addr) \
116 .bridge_init = bridge, \
117 .sensor_init = sensor, \
118 .sensor_init_size = sizeof(sensor), \
119 .flags = _flags, .sensor_addr = _sensor_addr \
122 /* We calculate the autogain at the end of the transfer of a frame, at this
123 moment a frame with the old settings is being captured and transmitted. So
124 if we adjust the gain or exposure we must ignore atleast the next frame for
125 the new settings to come into effect before doing any other adjustments. */
126 #define AUTOGAIN_IGNORE_FRAMES 1
128 static const struct v4l2_pix_format vga_mode
[] = {
129 {160, 120, V4L2_PIX_FMT_SBGGR8
, V4L2_FIELD_NONE
,
131 .sizeimage
= 160 * 120,
132 .colorspace
= V4L2_COLORSPACE_SRGB
,
133 .priv
= 2 | MODE_RAW
},
134 {160, 120, V4L2_PIX_FMT_SN9C10X
, V4L2_FIELD_NONE
,
136 .sizeimage
= 160 * 120 * 5 / 4,
137 .colorspace
= V4L2_COLORSPACE_SRGB
,
139 {320, 240, V4L2_PIX_FMT_SN9C10X
, V4L2_FIELD_NONE
,
141 .sizeimage
= 320 * 240 * 5 / 4,
142 .colorspace
= V4L2_COLORSPACE_SRGB
,
144 {640, 480, V4L2_PIX_FMT_SN9C10X
, V4L2_FIELD_NONE
,
146 .sizeimage
= 640 * 480 * 5 / 4,
147 .colorspace
= V4L2_COLORSPACE_SRGB
,
150 static const struct v4l2_pix_format sif_mode
[] = {
151 {160, 120, V4L2_PIX_FMT_SBGGR8
, V4L2_FIELD_NONE
,
153 .sizeimage
= 160 * 120,
154 .colorspace
= V4L2_COLORSPACE_SRGB
,
155 .priv
= 1 | MODE_RAW
| MODE_REDUCED_SIF
},
156 {160, 120, V4L2_PIX_FMT_SN9C10X
, V4L2_FIELD_NONE
,
158 .sizeimage
= 160 * 120 * 5 / 4,
159 .colorspace
= V4L2_COLORSPACE_SRGB
,
160 .priv
= 1 | MODE_REDUCED_SIF
},
161 {176, 144, V4L2_PIX_FMT_SBGGR8
, V4L2_FIELD_NONE
,
163 .sizeimage
= 176 * 144,
164 .colorspace
= V4L2_COLORSPACE_SRGB
,
165 .priv
= 1 | MODE_RAW
},
166 {176, 144, V4L2_PIX_FMT_SN9C10X
, V4L2_FIELD_NONE
,
168 .sizeimage
= 176 * 144 * 5 / 4,
169 .colorspace
= V4L2_COLORSPACE_SRGB
,
171 {320, 240, V4L2_PIX_FMT_SN9C10X
, V4L2_FIELD_NONE
,
173 .sizeimage
= 320 * 240 * 5 / 4,
174 .colorspace
= V4L2_COLORSPACE_SRGB
,
175 .priv
= 0 | MODE_REDUCED_SIF
},
176 {352, 288, V4L2_PIX_FMT_SN9C10X
, V4L2_FIELD_NONE
,
178 .sizeimage
= 352 * 288 * 5 / 4,
179 .colorspace
= V4L2_COLORSPACE_SRGB
,
183 static const __u8 initHv7131d
[] = {
184 0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
186 0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
187 0x28, 0x1e, 0x60, 0x8e, 0x42,
189 static const __u8 hv7131d_sensor_init
[][8] = {
190 {0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
191 {0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
192 {0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
193 {0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
194 {0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
197 static const __u8 initHv7131r
[] = {
198 0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
200 0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
201 0x28, 0x1e, 0x60, 0x8a, 0x20,
203 static const __u8 hv7131r_sensor_init
[][8] = {
204 {0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
205 {0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
206 {0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
207 {0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
208 {0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
210 static const __u8 initOv6650
[] = {
211 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
212 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
213 0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
216 static const __u8 ov6650_sensor_init
[][8] = {
217 /* Bright, contrast, etc are set through SCBB interface.
218 * AVCAP on win2 do not send any data on this controls. */
219 /* Anyway, some registers appears to alter bright and constrat */
222 {0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
223 /* Set clock register 0x11 low nibble is clock divider */
224 {0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
225 /* Next some unknown stuff */
226 {0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
227 /* {0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
228 * THIS SET GREEN SCREEN
229 * (pixels could be innverted in decode kind of "brg",
230 * but blue wont be there. Avoid this data ... */
231 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
232 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
233 {0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
234 /* Enable rgb brightness control */
235 {0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
236 /* HDG: Note windows uses the line below, which sets both register 0x60
237 and 0x61 I believe these registers of the ov6650 are identical as
238 those of the ov7630, because if this is true the windows settings
239 add a bit additional red gain and a lot additional blue gain, which
240 matches my findings that the windows settings make blue much too
241 blue and red a little too red.
242 {0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
243 /* Some more unknown stuff */
244 {0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
245 {0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
248 static const __u8 initOv7630
[] = {
249 0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, /* r01 .. r08 */
250 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */
251 0x00, 0x01, 0x01, 0x0a, /* r11 .. r14 */
252 0x28, 0x1e, /* H & V sizes r15 .. r16 */
253 0x68, 0x8f, MCK_INIT1
, /* r17 .. r19 */
255 static const __u8 ov7630_sensor_init
[][8] = {
256 {0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
257 {0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
258 /* {0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10}, jfm */
259 {0xd0, 0x21, 0x12, 0x5c, 0x00, 0x80, 0x34, 0x10}, /* jfm */
260 {0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
261 {0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
262 {0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
263 {0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
264 {0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
265 {0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
266 {0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
267 {0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
268 /* {0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10}, * jfm */
269 {0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
270 {0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
271 {0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
272 {0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
273 {0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
274 {0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
277 static const __u8 initPas106
[] = {
278 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
280 0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
281 0x16, 0x12, 0x24, COMP1
, MCK_INIT1
,
283 /* compression 0x86 mckinit1 0x2b */
285 /* "Known" PAS106B registers:
287 0x03 Variable framerate bits 4-11
288 0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
289 The variable framerate control must never be set lower then 300,
290 which sets the framerate at 90 / reg02, otherwise vsync is lost.
291 0x05 Shutter Time Line Offset, this can be used as an exposure control:
292 0 = use full frame time, 255 = no exposure at all
293 Note this may never be larger then "var-framerate control" / 2 - 2.
294 When var-framerate control is < 514, no exposure is reached at the max
295 allowed value for the framerate control value, rather then at 255.
296 0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
297 only a very little bit, leave at 0xcd
298 0x07 offset sign bit (bit0 1 > negative offset)
305 0x13 Write 1 to commit settings to sensor
308 static const __u8 pas106_sensor_init
[][8] = {
309 /* Pixel Clock Divider 6 */
310 { 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
311 /* Frame Time MSB (also seen as 0x12) */
312 { 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
313 /* Frame Time LSB (also seen as 0x05) */
314 { 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
315 /* Shutter Time Line Offset (also seen as 0x6d) */
316 { 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
317 /* Shutter Time Pixel Offset (also seen as 0xb1) */
318 { 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
319 /* Black Level Subtract Sign (also seen 0x00) */
320 { 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
321 /* Black Level Subtract Level (also seen 0x01) */
322 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
323 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
324 /* Color Gain B Pixel 5 a */
325 { 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
326 /* Color Gain G1 Pixel 1 5 */
327 { 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
328 /* Color Gain G2 Pixel 1 0 5 */
329 { 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
330 /* Color Gain R Pixel 3 1 */
331 { 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
332 /* Color GainH Pixel */
333 { 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
335 { 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
337 { 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
338 /* H&V synchro polarity */
339 { 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
341 { 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
343 { 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
345 { 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
346 /* Validate Settings */
347 { 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
350 static const __u8 initPas202
[] = {
351 0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
353 0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
354 0x28, 0x1e, 0x20, 0x89, 0x20,
357 /* "Known" PAS202BCB registers:
359 0x04 Variable framerate bits 6-11 (*)
360 0x05 Var framerate bits 0-5, one must leave the 2 msb's at 0 !!
364 0x0b offset sign bit (bit0 1 > negative offset)
366 0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
367 leave at 1 otherwise we get a jump in our exposure control
368 0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
369 0x10 Master gain 0 - 31
370 0x11 write 1 to apply changes
371 (*) The variable framerate control must never be set lower then 500
372 which sets the framerate at 30 / reg02, otherwise vsync is lost.
374 static const __u8 pas202_sensor_init
[][8] = {
375 /* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
376 to set it lower, but for some reason the bridge starts missing
378 {0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
379 {0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
380 {0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
381 {0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
382 {0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
383 {0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
384 {0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
385 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
386 {0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
387 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
390 static const __u8 initTas5110c
[] = {
391 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
393 0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
394 0x16, 0x12, 0x60, 0x86, 0x2b,
396 /* Same as above, except a different hstart */
397 static const __u8 initTas5110d
[] = {
398 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
400 0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
401 0x16, 0x12, 0x60, 0x86, 0x2b,
403 /* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */
404 static const __u8 tas5110c_sensor_init
[][8] = {
405 {0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
406 {0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
408 /* Known TAS5110D registers
409 * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain
410 * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted)
411 * Note: writing reg03 seems to only work when written together with 02
413 static const __u8 tas5110d_sensor_init
[][8] = {
414 {0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */
417 static const __u8 initTas5130
[] = {
418 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
420 0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
421 0x28, 0x1e, 0x60, COMP
, MCK_INIT
,
423 static const __u8 tas5130_sensor_init
[][8] = {
424 /* {0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
425 * shutter 0x47 short exposure? */
426 {0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
427 /* shutter 0x01 long exposure */
428 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
431 static const struct sensor_data sensor_data
[] = {
432 SENS(initHv7131d
, hv7131d_sensor_init
, 0, 0),
433 SENS(initHv7131r
, hv7131r_sensor_init
, 0, 0),
434 SENS(initOv6650
, ov6650_sensor_init
, F_SIF
, 0x60),
435 SENS(initOv7630
, ov7630_sensor_init
, 0, 0x21),
436 SENS(initPas106
, pas106_sensor_init
, F_SIF
, 0),
437 SENS(initPas202
, pas202_sensor_init
, 0, 0),
438 SENS(initTas5110c
, tas5110c_sensor_init
, F_SIF
, 0),
439 SENS(initTas5110d
, tas5110d_sensor_init
, F_SIF
, 0),
440 SENS(initTas5130
, tas5130_sensor_init
, 0, 0),
443 /* get one byte in gspca_dev->usb_buf */
444 static void reg_r(struct gspca_dev
*gspca_dev
,
449 if (gspca_dev
->usb_err
< 0)
452 res
= usb_control_msg(gspca_dev
->dev
,
453 usb_rcvctrlpipe(gspca_dev
->dev
, 0),
455 USB_DIR_IN
| USB_TYPE_VENDOR
| USB_RECIP_INTERFACE
,
458 gspca_dev
->usb_buf
, 1,
462 dev_err(gspca_dev
->v4l2_dev
.dev
,
463 "Error reading register %02x: %d\n", value
, res
);
464 gspca_dev
->usb_err
= res
;
468 static void reg_w(struct gspca_dev
*gspca_dev
,
475 if (gspca_dev
->usb_err
< 0)
478 memcpy(gspca_dev
->usb_buf
, buffer
, len
);
479 res
= usb_control_msg(gspca_dev
->dev
,
480 usb_sndctrlpipe(gspca_dev
->dev
, 0),
482 USB_DIR_OUT
| USB_TYPE_VENDOR
| USB_RECIP_INTERFACE
,
485 gspca_dev
->usb_buf
, len
,
489 dev_err(gspca_dev
->v4l2_dev
.dev
,
490 "Error writing register %02x: %d\n", value
, res
);
491 gspca_dev
->usb_err
= res
;
495 static void i2c_w(struct gspca_dev
*gspca_dev
, const u8
*buf
)
499 if (gspca_dev
->usb_err
< 0)
503 reg_w(gspca_dev
, 0x08, buf
, 8);
505 if (gspca_dev
->usb_err
< 0)
508 reg_r(gspca_dev
, 0x08);
509 if (gspca_dev
->usb_buf
[0] & 0x04) {
510 if (gspca_dev
->usb_buf
[0] & 0x08) {
511 dev_err(gspca_dev
->v4l2_dev
.dev
,
512 "i2c error writing %8ph\n", buf
);
513 gspca_dev
->usb_err
= -EIO
;
519 dev_err(gspca_dev
->v4l2_dev
.dev
, "i2c write timeout\n");
520 gspca_dev
->usb_err
= -EIO
;
523 static void i2c_w_vector(struct gspca_dev
*gspca_dev
,
524 const __u8 buffer
[][8], int len
)
527 if (gspca_dev
->usb_err
< 0)
529 i2c_w(gspca_dev
, *buffer
);
537 static void setbrightness(struct gspca_dev
*gspca_dev
)
539 struct sd
*sd
= (struct sd
*) gspca_dev
;
541 switch (sd
->sensor
) {
543 case SENSOR_OV7630
: {
545 {0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
547 /* change reg 0x06 */
548 i2cOV
[1] = sensor_data
[sd
->sensor
].sensor_addr
;
549 i2cOV
[3] = sd
->brightness
->val
;
550 i2c_w(gspca_dev
, i2cOV
);
554 case SENSOR_PAS202
: {
556 {0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
558 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
560 /* PAS106 uses reg 7 and 8 instead of b and c */
561 if (sd
->sensor
== SENSOR_PAS106
) {
566 if (sd
->brightness
->val
< 127) {
567 /* change reg 0x0b, signreg */
568 i2cpbright
[3] = 0x01;
569 /* set reg 0x0c, offset */
570 i2cpbright
[4] = 127 - sd
->brightness
->val
;
572 i2cpbright
[4] = sd
->brightness
->val
- 127;
574 i2c_w(gspca_dev
, i2cpbright
);
575 i2c_w(gspca_dev
, i2cpdoit
);
583 static void setgain(struct gspca_dev
*gspca_dev
)
585 struct sd
*sd
= (struct sd
*) gspca_dev
;
586 u8 gain
= gspca_dev
->gain
->val
;
588 switch (sd
->sensor
) {
589 case SENSOR_HV7131D
: {
591 {0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};
593 i2c
[3] = 0x3f - gain
;
594 i2c
[4] = 0x3f - gain
;
595 i2c
[5] = 0x3f - gain
;
597 i2c_w(gspca_dev
, i2c
);
600 case SENSOR_TAS5110C
:
601 case SENSOR_TAS5130CXX
: {
603 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
606 i2c_w(gspca_dev
, i2c
);
609 case SENSOR_TAS5110D
: {
611 0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 };
613 /* The bits in the register are the wrong way around!! */
614 i2c
[3] |= (gain
& 0x80) >> 7;
615 i2c
[3] |= (gain
& 0x40) >> 5;
616 i2c
[3] |= (gain
& 0x20) >> 3;
617 i2c
[3] |= (gain
& 0x10) >> 1;
618 i2c
[3] |= (gain
& 0x08) << 1;
619 i2c
[3] |= (gain
& 0x04) << 3;
620 i2c
[3] |= (gain
& 0x02) << 5;
621 i2c
[3] |= (gain
& 0x01) << 7;
622 i2c_w(gspca_dev
, i2c
);
626 case SENSOR_OV7630
: {
627 __u8 i2c
[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
630 * The ov7630's gain is weird, at 32 the gain drops to the
631 * same level as at 16, so skip 32-47 (of the 0-63 scale).
633 if (sd
->sensor
== SENSOR_OV7630
&& gain
>= 32)
636 i2c
[1] = sensor_data
[sd
->sensor
].sensor_addr
;
638 i2c_w(gspca_dev
, i2c
);
642 case SENSOR_PAS202
: {
644 {0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
645 __u8 i2cpcolorgain
[] =
646 {0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
648 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
650 /* PAS106 uses different regs (and has split green gains) */
651 if (sd
->sensor
== SENSOR_PAS106
) {
653 i2cpcolorgain
[0] = 0xd0;
654 i2cpcolorgain
[2] = 0x09;
659 i2cpcolorgain
[3] = gain
>> 1;
660 i2cpcolorgain
[4] = gain
>> 1;
661 i2cpcolorgain
[5] = gain
>> 1;
662 i2cpcolorgain
[6] = gain
>> 1;
664 i2c_w(gspca_dev
, i2cpgain
);
665 i2c_w(gspca_dev
, i2cpcolorgain
);
666 i2c_w(gspca_dev
, i2cpdoit
);
670 if (sd
->bridge
== BRIDGE_103
) {
671 u8 buf
[3] = { gain
, gain
, gain
}; /* R, G, B */
672 reg_w(gspca_dev
, 0x05, buf
, 3);
675 buf
[0] = gain
<< 4 | gain
; /* Red and blue */
676 buf
[1] = gain
; /* Green */
677 reg_w(gspca_dev
, 0x10, buf
, 2);
682 static void setexposure(struct gspca_dev
*gspca_dev
)
684 struct sd
*sd
= (struct sd
*) gspca_dev
;
686 switch (sd
->sensor
) {
687 case SENSOR_HV7131D
: {
688 /* Note the datasheet wrongly says line mode exposure uses reg
689 0x26 and 0x27, testing has shown 0x25 + 0x26 */
690 __u8 i2c
[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
691 u16 reg
= gspca_dev
->exposure
->val
;
695 i2c_w(gspca_dev
, i2c
);
698 case SENSOR_TAS5110C
:
699 case SENSOR_TAS5110D
: {
700 /* register 19's high nibble contains the sn9c10x clock divider
701 The high nibble configures the no fps according to the
702 formula: 60 / high_nibble. With a maximum of 30 fps */
703 u8 reg
= gspca_dev
->exposure
->val
;
705 reg
= (reg
<< 4) | 0x0b;
706 reg_w(gspca_dev
, 0x19, ®
, 1);
710 case SENSOR_OV7630
: {
711 /* The ov6650 / ov7630 have 2 registers which both influence
712 exposure, register 11, whose low nibble sets the nr off fps
713 according to: fps = 30 / (low_nibble + 1)
715 The fps configures the maximum exposure setting, but it is
716 possible to use less exposure then what the fps maximum
717 allows by setting register 10. register 10 configures the
718 actual exposure as quotient of the full exposure, with 0
719 being no exposure at all (not very useful) and reg10_max
720 being max exposure possible at that framerate.
722 The code maps our 0 - 510 ms exposure ctrl to these 2
723 registers, trying to keep fps as high as possible.
725 __u8 i2c
[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
726 int reg10
, reg11
, reg10_max
;
728 /* ov6645 datasheet says reg10_max is 9a, but that uses
729 tline * 2 * reg10 as formula for calculating texpo, the
730 ov6650 probably uses the same formula as the 7730 which uses
731 tline * 4 * reg10, which explains why the reg10max we've
732 found experimentally for the ov6650 is exactly half that of
733 the ov6645. The ov7630 datasheet says the max is 0x41. */
734 if (sd
->sensor
== SENSOR_OV6650
) {
736 i2c
[4] = 0xc0; /* OV6650 needs non default vsync pol */
740 reg11
= (15 * gspca_dev
->exposure
->val
+ 999) / 1000;
746 /* In 640x480, if the reg11 has less than 4, the image is
747 unstable (the bridge goes into a higher compression mode
748 which we have not reverse engineered yet). */
749 if (gspca_dev
->pixfmt
.width
== 640 && reg11
< 4)
752 /* frame exposure time in ms = 1000 * reg11 / 30 ->
753 reg10 = (gspca_dev->exposure->val / 2) * reg10_max
754 / (1000 * reg11 / 30) */
755 reg10
= (gspca_dev
->exposure
->val
* 15 * reg10_max
)
758 /* Don't allow this to get below 10 when using autogain, the
759 steps become very large (relatively) when below 10 causing
760 the image to oscilate from much too dark, to much too bright
762 if (gspca_dev
->autogain
->val
&& reg10
< 10)
764 else if (reg10
> reg10_max
)
767 /* Write reg 10 and reg11 low nibble */
768 i2c
[1] = sensor_data
[sd
->sensor
].sensor_addr
;
772 /* If register 11 didn't change, don't change it */
773 if (sd
->reg11
== reg11
)
776 i2c_w(gspca_dev
, i2c
);
777 if (gspca_dev
->usb_err
== 0)
781 case SENSOR_PAS202
: {
782 __u8 i2cpframerate
[] =
783 {0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
785 {0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
786 const __u8 i2cpdoit
[] =
787 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
790 /* The exposure knee for the autogain algorithm is 200
791 (100 ms / 10 fps on other sensors), for values below this
792 use the control for setting the partial frame expose time,
793 above that use variable framerate. This way we run at max
794 framerate (640x480@7.5 fps, 320x240@10fps) until the knee
795 is reached. Using the variable framerate control above 200
796 is better then playing around with both clockdiv + partial
797 frame exposure times (like we are doing with the ov chips),
798 as that sometimes leads to jumps in the exposure control,
799 which are bad for auto exposure. */
800 if (gspca_dev
->exposure
->val
< 200) {
801 i2cpexpo
[3] = 255 - (gspca_dev
->exposure
->val
* 255)
803 framerate_ctrl
= 500;
805 /* The PAS202's exposure control goes from 0 - 4095,
806 but anything below 500 causes vsync issues, so scale
807 our 200-1023 to 500-4095 */
808 framerate_ctrl
= (gspca_dev
->exposure
->val
- 200)
812 i2cpframerate
[3] = framerate_ctrl
>> 6;
813 i2cpframerate
[4] = framerate_ctrl
& 0x3f;
814 i2c_w(gspca_dev
, i2cpframerate
);
815 i2c_w(gspca_dev
, i2cpexpo
);
816 i2c_w(gspca_dev
, i2cpdoit
);
819 case SENSOR_PAS106
: {
820 __u8 i2cpframerate
[] =
821 {0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
823 {0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
824 const __u8 i2cpdoit
[] =
825 {0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
828 /* For values below 150 use partial frame exposure, above
829 that use framerate ctrl */
830 if (gspca_dev
->exposure
->val
< 150) {
831 i2cpexpo
[3] = 150 - gspca_dev
->exposure
->val
;
832 framerate_ctrl
= 300;
834 /* The PAS106's exposure control goes from 0 - 4095,
835 but anything below 300 causes vsync issues, so scale
836 our 150-1023 to 300-4095 */
837 framerate_ctrl
= (gspca_dev
->exposure
->val
- 150)
841 i2cpframerate
[3] = framerate_ctrl
>> 4;
842 i2cpframerate
[4] = framerate_ctrl
& 0x0f;
843 i2c_w(gspca_dev
, i2cpframerate
);
844 i2c_w(gspca_dev
, i2cpexpo
);
845 i2c_w(gspca_dev
, i2cpdoit
);
853 static void setfreq(struct gspca_dev
*gspca_dev
)
855 struct sd
*sd
= (struct sd
*) gspca_dev
;
857 if (sd
->sensor
== SENSOR_OV6650
|| sd
->sensor
== SENSOR_OV7630
) {
858 /* Framerate adjust register for artificial light 50 hz flicker
859 compensation, for the ov6650 this is identical to ov6630
860 0x2b register, see ov6630 datasheet.
861 0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
862 __u8 i2c
[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
863 switch (sd
->plfreq
->val
) {
865 /* case 0: * no filter*/
866 /* case 2: * 60 hz */
870 i2c
[3] = (sd
->sensor
== SENSOR_OV6650
)
874 i2c
[1] = sensor_data
[sd
->sensor
].sensor_addr
;
875 i2c_w(gspca_dev
, i2c
);
879 static void do_autogain(struct gspca_dev
*gspca_dev
)
881 struct sd
*sd
= (struct sd
*) gspca_dev
;
882 int deadzone
, desired_avg_lum
, avg_lum
;
884 avg_lum
= atomic_read(&sd
->avg_lum
);
888 if (sd
->autogain_ignore_frames
> 0) {
889 sd
->autogain_ignore_frames
--;
893 /* SIF / VGA sensors have a different autoexposure area and thus
894 different avg_lum values for the same picture brightness */
895 if (sensor_data
[sd
->sensor
].flags
& F_SIF
) {
897 /* SIF sensors tend to overexpose, so keep this small */
898 desired_avg_lum
= 5000;
901 desired_avg_lum
= 13000;
905 desired_avg_lum
= sd
->brightness
->val
* desired_avg_lum
/ 127;
907 if (gspca_dev
->exposure
->maximum
< 500) {
908 if (gspca_coarse_grained_expo_autogain(gspca_dev
, avg_lum
,
909 desired_avg_lum
, deadzone
))
910 sd
->autogain_ignore_frames
= AUTOGAIN_IGNORE_FRAMES
;
912 int gain_knee
= (s32
)gspca_dev
->gain
->maximum
* 9 / 10;
913 if (gspca_expo_autogain(gspca_dev
, avg_lum
, desired_avg_lum
,
914 deadzone
, gain_knee
, sd
->exposure_knee
))
915 sd
->autogain_ignore_frames
= AUTOGAIN_IGNORE_FRAMES
;
919 /* this function is called at probe time */
920 static int sd_config(struct gspca_dev
*gspca_dev
,
921 const struct usb_device_id
*id
)
923 struct sd
*sd
= (struct sd
*) gspca_dev
;
926 reg_r(gspca_dev
, 0x00);
927 if (gspca_dev
->usb_buf
[0] != 0x10)
930 /* copy the webcam info from the device id */
931 sd
->sensor
= id
->driver_info
>> 8;
932 sd
->bridge
= id
->driver_info
& 0xff;
934 cam
= &gspca_dev
->cam
;
935 if (!(sensor_data
[sd
->sensor
].flags
& F_SIF
)) {
936 cam
->cam_mode
= vga_mode
;
937 cam
->nmodes
= ARRAY_SIZE(vga_mode
);
939 cam
->cam_mode
= sif_mode
;
940 cam
->nmodes
= ARRAY_SIZE(sif_mode
);
942 cam
->npkt
= 36; /* 36 packets per ISOC message */
947 /* this function is called at probe and resume time */
948 static int sd_init(struct gspca_dev
*gspca_dev
)
950 const __u8 stop
= 0x09; /* Disable stream turn of LED */
952 reg_w(gspca_dev
, 0x01, &stop
, 1);
954 return gspca_dev
->usb_err
;
957 static int sd_s_ctrl(struct v4l2_ctrl
*ctrl
)
959 struct gspca_dev
*gspca_dev
=
960 container_of(ctrl
->handler
, struct gspca_dev
, ctrl_handler
);
961 struct sd
*sd
= (struct sd
*)gspca_dev
;
963 gspca_dev
->usb_err
= 0;
965 if (ctrl
->id
== V4L2_CID_AUTOGAIN
&& ctrl
->is_new
&& ctrl
->val
) {
966 /* when switching to autogain set defaults to make sure
967 we are on a valid point of the autogain gain /
968 exposure knee graph, and give this change time to
969 take effect before doing autogain. */
970 gspca_dev
->gain
->val
= gspca_dev
->gain
->default_value
;
971 gspca_dev
->exposure
->val
= gspca_dev
->exposure
->default_value
;
972 sd
->autogain_ignore_frames
= AUTOGAIN_IGNORE_FRAMES
;
975 if (!gspca_dev
->streaming
)
979 case V4L2_CID_BRIGHTNESS
:
980 setbrightness(gspca_dev
);
982 case V4L2_CID_AUTOGAIN
:
983 if (gspca_dev
->exposure
->is_new
|| (ctrl
->is_new
&& ctrl
->val
))
984 setexposure(gspca_dev
);
985 if (gspca_dev
->gain
->is_new
|| (ctrl
->is_new
&& ctrl
->val
))
988 case V4L2_CID_POWER_LINE_FREQUENCY
:
994 return gspca_dev
->usb_err
;
997 static const struct v4l2_ctrl_ops sd_ctrl_ops
= {
1001 /* this function is called at probe time */
1002 static int sd_init_controls(struct gspca_dev
*gspca_dev
)
1004 struct sd
*sd
= (struct sd
*) gspca_dev
;
1005 struct v4l2_ctrl_handler
*hdl
= &gspca_dev
->ctrl_handler
;
1007 gspca_dev
->vdev
.ctrl_handler
= hdl
;
1008 v4l2_ctrl_handler_init(hdl
, 5);
1010 if (sd
->sensor
== SENSOR_OV6650
|| sd
->sensor
== SENSOR_OV7630
||
1011 sd
->sensor
== SENSOR_PAS106
|| sd
->sensor
== SENSOR_PAS202
)
1012 sd
->brightness
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1013 V4L2_CID_BRIGHTNESS
, 0, 255, 1, 127);
1015 /* Gain range is sensor dependent */
1016 switch (sd
->sensor
) {
1020 gspca_dev
->gain
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1021 V4L2_CID_GAIN
, 0, 31, 1, 15);
1024 gspca_dev
->gain
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1025 V4L2_CID_GAIN
, 0, 47, 1, 31);
1027 case SENSOR_HV7131D
:
1028 gspca_dev
->gain
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1029 V4L2_CID_GAIN
, 0, 63, 1, 31);
1031 case SENSOR_TAS5110C
:
1032 case SENSOR_TAS5110D
:
1033 case SENSOR_TAS5130CXX
:
1034 gspca_dev
->gain
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1035 V4L2_CID_GAIN
, 0, 255, 1, 127);
1038 if (sd
->bridge
== BRIDGE_103
) {
1039 gspca_dev
->gain
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1040 V4L2_CID_GAIN
, 0, 127, 1, 63);
1042 gspca_dev
->gain
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1043 V4L2_CID_GAIN
, 0, 15, 1, 7);
1047 /* Exposure range is sensor dependent, and not all have exposure */
1048 switch (sd
->sensor
) {
1049 case SENSOR_HV7131D
:
1050 gspca_dev
->exposure
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1051 V4L2_CID_EXPOSURE
, 0, 8191, 1, 482);
1052 sd
->exposure_knee
= 964;
1058 gspca_dev
->exposure
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1059 V4L2_CID_EXPOSURE
, 0, 1023, 1, 66);
1060 sd
->exposure_knee
= 200;
1062 case SENSOR_TAS5110C
:
1063 case SENSOR_TAS5110D
:
1064 gspca_dev
->exposure
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1065 V4L2_CID_EXPOSURE
, 2, 15, 1, 2);
1069 if (gspca_dev
->exposure
) {
1070 gspca_dev
->autogain
= v4l2_ctrl_new_std(hdl
, &sd_ctrl_ops
,
1071 V4L2_CID_AUTOGAIN
, 0, 1, 1, 1);
1074 if (sd
->sensor
== SENSOR_OV6650
|| sd
->sensor
== SENSOR_OV7630
)
1075 sd
->plfreq
= v4l2_ctrl_new_std_menu(hdl
, &sd_ctrl_ops
,
1076 V4L2_CID_POWER_LINE_FREQUENCY
,
1077 V4L2_CID_POWER_LINE_FREQUENCY_60HZ
, 0,
1078 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED
);
1081 pr_err("Could not initialize controls\n");
1085 if (gspca_dev
->autogain
)
1086 v4l2_ctrl_auto_cluster(3, &gspca_dev
->autogain
, 0, false);
1091 /* -- start the camera -- */
1092 static int sd_start(struct gspca_dev
*gspca_dev
)
1094 struct sd
*sd
= (struct sd
*) gspca_dev
;
1095 struct cam
*cam
= &gspca_dev
->cam
;
1099 mode
= cam
->cam_mode
[gspca_dev
->curr_mode
].priv
& 0x07;
1100 /* Copy registers 0x01 - 0x19 from the template */
1101 memcpy(®s
[0x01], sensor_data
[sd
->sensor
].bridge_init
, 0x19);
1103 regs
[0x18] |= mode
<< 4;
1105 /* Set bridge gain to 1.0 */
1106 if (sd
->bridge
== BRIDGE_103
) {
1107 regs
[0x05] = 0x20; /* Red */
1108 regs
[0x06] = 0x20; /* Green */
1109 regs
[0x07] = 0x20; /* Blue */
1111 regs
[0x10] = 0x00; /* Red and blue */
1112 regs
[0x11] = 0x00; /* Green */
1115 /* Setup pixel numbers and auto exposure window */
1116 if (sensor_data
[sd
->sensor
].flags
& F_SIF
) {
1117 regs
[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */
1118 regs
[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */
1119 regs
[0x1c] = 0x02; /* AE H-start 64 */
1120 regs
[0x1d] = 0x02; /* AE V-start 64 */
1121 regs
[0x1e] = 0x09; /* AE H-end 288 */
1122 regs
[0x1f] = 0x07; /* AE V-end 224 */
1124 regs
[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */
1125 regs
[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */
1126 regs
[0x1c] = 0x05; /* AE H-start 160 */
1127 regs
[0x1d] = 0x03; /* AE V-start 96 */
1128 regs
[0x1e] = 0x0f; /* AE H-end 480 */
1129 regs
[0x1f] = 0x0c; /* AE V-end 384 */
1132 /* Setup the gamma table (only used with the sn9c103 bridge) */
1133 for (i
= 0; i
< 16; i
++)
1134 regs
[0x20 + i
] = i
* 16;
1135 regs
[0x20 + i
] = 255;
1137 /* Special cases where some regs depend on mode or bridge */
1138 switch (sd
->sensor
) {
1139 case SENSOR_TAS5130CXX
:
1141 probably not mode specific at all most likely the upper
1142 nibble of 0x19 is exposure (clock divider) just as with
1143 the tas5110, we need someone to test this. */
1144 regs
[0x19] = mode
? 0x23 : 0x43;
1147 /* FIXME / TESTME for some reason with the 101/102 bridge the
1148 clock is set to 12 Mhz (reg1 == 0x04), rather then 24.
1149 Also the hstart needs to go from 1 to 2 when using a 103,
1150 which is likely related. This does not seem right. */
1151 if (sd
->bridge
== BRIDGE_103
) {
1152 regs
[0x01] = 0x44; /* Select 24 Mhz clock */
1153 regs
[0x12] = 0x02; /* Set hstart to 2 */
1157 /* For some unknown reason we need to increase hstart by 1 on
1158 the sn9c103, otherwise we get wrong colors (bayer shift). */
1159 if (sd
->bridge
== BRIDGE_103
)
1163 /* Disable compression when the raw bayer format has been selected */
1164 if (cam
->cam_mode
[gspca_dev
->curr_mode
].priv
& MODE_RAW
)
1165 regs
[0x18] &= ~0x80;
1167 /* Vga mode emulation on SIF sensor? */
1168 if (cam
->cam_mode
[gspca_dev
->curr_mode
].priv
& MODE_REDUCED_SIF
) {
1169 regs
[0x12] += 16; /* hstart adjust */
1170 regs
[0x13] += 24; /* vstart adjust */
1171 regs
[0x15] = 320 / 16; /* hsize */
1172 regs
[0x16] = 240 / 16; /* vsize */
1175 /* reg 0x01 bit 2 video transfert on */
1176 reg_w(gspca_dev
, 0x01, ®s
[0x01], 1);
1177 /* reg 0x17 SensorClk enable inv Clk 0x60 */
1178 reg_w(gspca_dev
, 0x17, ®s
[0x17], 1);
1179 /* Set the registers from the template */
1180 reg_w(gspca_dev
, 0x01, ®s
[0x01],
1181 (sd
->bridge
== BRIDGE_103
) ? 0x30 : 0x1f);
1183 /* Init the sensor */
1184 i2c_w_vector(gspca_dev
, sensor_data
[sd
->sensor
].sensor_init
,
1185 sensor_data
[sd
->sensor
].sensor_init_size
);
1187 /* Mode / bridge specific sensor setup */
1188 switch (sd
->sensor
) {
1189 case SENSOR_PAS202
: {
1190 const __u8 i2cpclockdiv
[] =
1191 {0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
1192 /* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
1194 i2c_w(gspca_dev
, i2cpclockdiv
);
1198 /* FIXME / TESTME We should be able to handle this identical
1199 for the 101/102 and the 103 case */
1200 if (sd
->bridge
== BRIDGE_103
) {
1201 const __u8 i2c
[] = { 0xa0, 0x21, 0x13,
1202 0x80, 0x00, 0x00, 0x00, 0x10 };
1203 i2c_w(gspca_dev
, i2c
);
1207 /* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1208 reg_w(gspca_dev
, 0x15, ®s
[0x15], 2);
1209 /* compression register */
1210 reg_w(gspca_dev
, 0x18, ®s
[0x18], 1);
1212 reg_w(gspca_dev
, 0x12, ®s
[0x12], 1);
1214 reg_w(gspca_dev
, 0x13, ®s
[0x13], 1);
1215 /* reset 0x17 SensorClk enable inv Clk 0x60 */
1216 /*fixme: ov7630 [17]=68 8f (+20 if 102)*/
1217 reg_w(gspca_dev
, 0x17, ®s
[0x17], 1);
1218 /*MCKSIZE ->3 */ /*fixme: not ov7630*/
1219 reg_w(gspca_dev
, 0x19, ®s
[0x19], 1);
1220 /* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1221 reg_w(gspca_dev
, 0x1c, ®s
[0x1c], 4);
1222 /* Enable video transfert */
1223 reg_w(gspca_dev
, 0x01, ®s
[0x01], 1);
1225 reg_w(gspca_dev
, 0x18, ®s
[0x18], 2);
1231 setbrightness(gspca_dev
);
1232 setexposure(gspca_dev
);
1235 sd
->frames_to_drop
= 0;
1236 sd
->autogain_ignore_frames
= 0;
1237 gspca_dev
->exp_too_high_cnt
= 0;
1238 gspca_dev
->exp_too_low_cnt
= 0;
1239 atomic_set(&sd
->avg_lum
, -1);
1240 return gspca_dev
->usb_err
;
1243 static void sd_stopN(struct gspca_dev
*gspca_dev
)
1248 static u8
* find_sof(struct gspca_dev
*gspca_dev
, u8
*data
, int len
)
1250 struct sd
*sd
= (struct sd
*) gspca_dev
;
1251 int i
, header_size
= (sd
->bridge
== BRIDGE_103
) ? 18 : 12;
1253 /* frames start with:
1254 * ff ff 00 c4 c4 96 synchro
1256 * xx (frame sequence / size / compression)
1257 * (xx) (idem - extra byte for sn9c103)
1258 * ll mm brightness sum inside auto exposure
1259 * ll mm brightness sum outside auto exposure
1260 * (xx xx xx xx xx) audio values for snc103
1262 for (i
= 0; i
< len
; i
++) {
1263 switch (sd
->header_read
) {
1265 if (data
[i
] == 0xff)
1269 if (data
[i
] == 0xff)
1272 sd
->header_read
= 0;
1275 if (data
[i
] == 0x00)
1277 else if (data
[i
] != 0xff)
1278 sd
->header_read
= 0;
1281 if (data
[i
] == 0xc4)
1283 else if (data
[i
] == 0xff)
1284 sd
->header_read
= 1;
1286 sd
->header_read
= 0;
1289 if (data
[i
] == 0xc4)
1291 else if (data
[i
] == 0xff)
1292 sd
->header_read
= 1;
1294 sd
->header_read
= 0;
1297 if (data
[i
] == 0x96)
1299 else if (data
[i
] == 0xff)
1300 sd
->header_read
= 1;
1302 sd
->header_read
= 0;
1305 sd
->header
[sd
->header_read
- 6] = data
[i
];
1307 if (sd
->header_read
== header_size
) {
1308 sd
->header_read
= 0;
1309 return data
+ i
+ 1;
1316 static void sd_pkt_scan(struct gspca_dev
*gspca_dev
,
1317 u8
*data
, /* isoc packet */
1318 int len
) /* iso packet length */
1320 int fr_h_sz
= 0, lum_offset
= 0, len_after_sof
= 0;
1321 struct sd
*sd
= (struct sd
*) gspca_dev
;
1322 struct cam
*cam
= &gspca_dev
->cam
;
1325 sof
= find_sof(gspca_dev
, data
, len
);
1327 if (sd
->bridge
== BRIDGE_103
) {
1335 len_after_sof
= len
- (sof
- data
);
1336 len
= (sof
- data
) - fr_h_sz
;
1341 if (cam
->cam_mode
[gspca_dev
->curr_mode
].priv
& MODE_RAW
) {
1342 /* In raw mode we sometimes get some garbage after the frame
1345 int size
= cam
->cam_mode
[gspca_dev
->curr_mode
].sizeimage
;
1347 used
= gspca_dev
->image_len
;
1348 if (used
+ len
> size
)
1352 gspca_frame_add(gspca_dev
, INTER_PACKET
, data
, len
);
1355 int lum
= sd
->header
[lum_offset
] +
1356 (sd
->header
[lum_offset
+ 1] << 8);
1358 /* When exposure changes midway a frame we
1359 get a lum of 0 in this case drop 2 frames
1360 as the frames directly after an exposure
1361 change have an unstable image. Sometimes lum
1362 *really* is 0 (cam used in low light with
1363 low exposure setting), so do not drop frames
1364 if the previous lum was 0 too. */
1365 if (lum
== 0 && sd
->prev_avg_lum
!= 0) {
1367 sd
->frames_to_drop
= 2;
1368 sd
->prev_avg_lum
= 0;
1370 sd
->prev_avg_lum
= lum
;
1371 atomic_set(&sd
->avg_lum
, lum
);
1373 if (sd
->frames_to_drop
)
1374 sd
->frames_to_drop
--;
1376 gspca_frame_add(gspca_dev
, LAST_PACKET
, NULL
, 0);
1378 gspca_frame_add(gspca_dev
, FIRST_PACKET
, sof
, len_after_sof
);
1382 #if IS_ENABLED(CONFIG_INPUT)
1383 static int sd_int_pkt_scan(struct gspca_dev
*gspca_dev
,
1384 u8
*data
, /* interrupt packet data */
1385 int len
) /* interrupt packet length */
1389 if (len
== 1 && data
[0] == 1) {
1390 input_report_key(gspca_dev
->input_dev
, KEY_CAMERA
, 1);
1391 input_sync(gspca_dev
->input_dev
);
1392 input_report_key(gspca_dev
->input_dev
, KEY_CAMERA
, 0);
1393 input_sync(gspca_dev
->input_dev
);
1401 /* sub-driver description */
1402 static const struct sd_desc sd_desc
= {
1403 .name
= MODULE_NAME
,
1404 .config
= sd_config
,
1406 .init_controls
= sd_init_controls
,
1409 .pkt_scan
= sd_pkt_scan
,
1410 .dq_callback
= do_autogain
,
1411 #if IS_ENABLED(CONFIG_INPUT)
1412 .int_pkt_scan
= sd_int_pkt_scan
,
1416 /* -- module initialisation -- */
1417 #define SB(sensor, bridge) \
1418 .driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge
1421 static const struct usb_device_id device_table
[] = {
1422 {USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C
, 102)}, /* TAS5110C1B */
1423 {USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C
, 101)}, /* TAS5110C1B */
1424 {USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D
, 101)}, /* TAS5110D */
1425 {USB_DEVICE(0x0c45, 0x6009), SB(PAS106
, 101)},
1426 {USB_DEVICE(0x0c45, 0x600d), SB(PAS106
, 101)},
1427 {USB_DEVICE(0x0c45, 0x6011), SB(OV6650
, 101)},
1428 {USB_DEVICE(0x0c45, 0x6019), SB(OV7630
, 101)},
1429 {USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX
, 102)},
1430 {USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX
, 102)},
1431 {USB_DEVICE(0x0c45, 0x6027), SB(OV7630
, 101)}, /* Genius Eye 310 */
1432 {USB_DEVICE(0x0c45, 0x6028), SB(PAS202
, 102)},
1433 {USB_DEVICE(0x0c45, 0x6029), SB(PAS106
, 102)},
1434 {USB_DEVICE(0x0c45, 0x602a), SB(HV7131D
, 102)},
1435 /* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
1436 {USB_DEVICE(0x0c45, 0x602c), SB(OV7630
, 102)},
1437 {USB_DEVICE(0x0c45, 0x602d), SB(HV7131R
, 102)},
1438 {USB_DEVICE(0x0c45, 0x602e), SB(OV7630
, 102)},
1439 /* {USB_DEVICE(0x0c45, 0x6030), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
1440 /* {USB_DEVICE(0x0c45, 0x6082), SB(MI03XX, 103)}, */ /* MI0343 MI0360 */
1441 {USB_DEVICE(0x0c45, 0x6083), SB(HV7131D
, 103)},
1442 {USB_DEVICE(0x0c45, 0x608c), SB(HV7131R
, 103)},
1443 /* {USB_DEVICE(0x0c45, 0x608e), SB(CISVF10, 103)}, */
1444 {USB_DEVICE(0x0c45, 0x608f), SB(OV7630
, 103)},
1445 {USB_DEVICE(0x0c45, 0x60a8), SB(PAS106
, 103)},
1446 {USB_DEVICE(0x0c45, 0x60aa), SB(TAS5130CXX
, 103)},
1447 {USB_DEVICE(0x0c45, 0x60af), SB(PAS202
, 103)},
1448 {USB_DEVICE(0x0c45, 0x60b0), SB(OV7630
, 103)},
1451 MODULE_DEVICE_TABLE(usb
, device_table
);
1453 /* -- device connect -- */
1454 static int sd_probe(struct usb_interface
*intf
,
1455 const struct usb_device_id
*id
)
1457 return gspca_dev_probe(intf
, id
, &sd_desc
, sizeof(struct sd
),
1461 static struct usb_driver sd_driver
= {
1462 .name
= MODULE_NAME
,
1463 .id_table
= device_table
,
1465 .disconnect
= gspca_disconnect
,
1467 .suspend
= gspca_suspend
,
1468 .resume
= gspca_resume
,
1469 .reset_resume
= gspca_resume
,
1473 module_usb_driver(sd_driver
);