2 * MTD device concatenation layer
4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
7 * NAND support by Christian Gan <cgan@iders.ca>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
35 #include <asm/div64.h>
38 * Our storage structure:
39 * Subdev points to an array of pointers to struct mtd_info objects
40 * which is allocated along with this structure
46 struct mtd_info
**subdev
;
50 * how to calculate the size required for the above structure,
51 * including the pointer array subdev points to:
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
54 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
57 * Given a pointer to the MTD object in the mtd_concat structure,
58 * we can retrieve the pointer to that structure with this macro.
60 #define CONCAT(x) ((struct mtd_concat *)(x))
63 * MTD methods which look up the relevant subdevice, translate the
64 * effective address and pass through to the subdevice.
68 concat_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
69 size_t * retlen
, u_char
* buf
)
71 struct mtd_concat
*concat
= CONCAT(mtd
);
75 for (i
= 0; i
< concat
->num_subdev
; i
++) {
76 struct mtd_info
*subdev
= concat
->subdev
[i
];
79 if (from
>= subdev
->size
) {
80 /* Not destined for this subdev */
85 if (from
+ len
> subdev
->size
)
86 /* First part goes into this subdev */
87 size
= subdev
->size
- from
;
89 /* Entire transaction goes into this subdev */
92 err
= mtd_read(subdev
, from
, size
, &retsize
, buf
);
94 /* Save information about bitflips! */
96 if (mtd_is_eccerr(err
)) {
97 mtd
->ecc_stats
.failed
++;
99 } else if (mtd_is_bitflip(err
)) {
100 mtd
->ecc_stats
.corrected
++;
101 /* Do not overwrite -EBADMSG !! */
120 concat_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
121 size_t * retlen
, const u_char
* buf
)
123 struct mtd_concat
*concat
= CONCAT(mtd
);
127 for (i
= 0; i
< concat
->num_subdev
; i
++) {
128 struct mtd_info
*subdev
= concat
->subdev
[i
];
129 size_t size
, retsize
;
131 if (to
>= subdev
->size
) {
136 if (to
+ len
> subdev
->size
)
137 size
= subdev
->size
- to
;
141 err
= mtd_write(subdev
, to
, size
, &retsize
, buf
);
158 concat_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
159 unsigned long count
, loff_t to
, size_t * retlen
)
161 struct mtd_concat
*concat
= CONCAT(mtd
);
162 struct kvec
*vecs_copy
;
163 unsigned long entry_low
, entry_high
;
164 size_t total_len
= 0;
168 /* Calculate total length of data */
169 for (i
= 0; i
< count
; i
++)
170 total_len
+= vecs
[i
].iov_len
;
172 /* Check alignment */
173 if (mtd
->writesize
> 1) {
175 if (do_div(__to
, mtd
->writesize
) || (total_len
% mtd
->writesize
))
179 /* make a copy of vecs */
180 vecs_copy
= kmemdup(vecs
, sizeof(struct kvec
) * count
, GFP_KERNEL
);
185 for (i
= 0; i
< concat
->num_subdev
; i
++) {
186 struct mtd_info
*subdev
= concat
->subdev
[i
];
187 size_t size
, wsize
, retsize
, old_iov_len
;
189 if (to
>= subdev
->size
) {
194 size
= min_t(uint64_t, total_len
, subdev
->size
- to
);
195 wsize
= size
; /* store for future use */
197 entry_high
= entry_low
;
198 while (entry_high
< count
) {
199 if (size
<= vecs_copy
[entry_high
].iov_len
)
201 size
-= vecs_copy
[entry_high
++].iov_len
;
204 old_iov_len
= vecs_copy
[entry_high
].iov_len
;
205 vecs_copy
[entry_high
].iov_len
= size
;
207 err
= mtd_writev(subdev
, &vecs_copy
[entry_low
],
208 entry_high
- entry_low
+ 1, to
, &retsize
);
210 vecs_copy
[entry_high
].iov_len
= old_iov_len
- size
;
211 vecs_copy
[entry_high
].iov_base
+= size
;
213 entry_low
= entry_high
;
233 concat_read_oob(struct mtd_info
*mtd
, loff_t from
, struct mtd_oob_ops
*ops
)
235 struct mtd_concat
*concat
= CONCAT(mtd
);
236 struct mtd_oob_ops devops
= *ops
;
239 ops
->retlen
= ops
->oobretlen
= 0;
241 for (i
= 0; i
< concat
->num_subdev
; i
++) {
242 struct mtd_info
*subdev
= concat
->subdev
[i
];
244 if (from
>= subdev
->size
) {
245 from
-= subdev
->size
;
250 if (from
+ devops
.len
> subdev
->size
)
251 devops
.len
= subdev
->size
- from
;
253 err
= mtd_read_oob(subdev
, from
, &devops
);
254 ops
->retlen
+= devops
.retlen
;
255 ops
->oobretlen
+= devops
.oobretlen
;
257 /* Save information about bitflips! */
259 if (mtd_is_eccerr(err
)) {
260 mtd
->ecc_stats
.failed
++;
262 } else if (mtd_is_bitflip(err
)) {
263 mtd
->ecc_stats
.corrected
++;
264 /* Do not overwrite -EBADMSG !! */
272 devops
.len
= ops
->len
- ops
->retlen
;
275 devops
.datbuf
+= devops
.retlen
;
278 devops
.ooblen
= ops
->ooblen
- ops
->oobretlen
;
281 devops
.oobbuf
+= ops
->oobretlen
;
290 concat_write_oob(struct mtd_info
*mtd
, loff_t to
, struct mtd_oob_ops
*ops
)
292 struct mtd_concat
*concat
= CONCAT(mtd
);
293 struct mtd_oob_ops devops
= *ops
;
296 if (!(mtd
->flags
& MTD_WRITEABLE
))
299 ops
->retlen
= ops
->oobretlen
= 0;
301 for (i
= 0; i
< concat
->num_subdev
; i
++) {
302 struct mtd_info
*subdev
= concat
->subdev
[i
];
304 if (to
>= subdev
->size
) {
309 /* partial write ? */
310 if (to
+ devops
.len
> subdev
->size
)
311 devops
.len
= subdev
->size
- to
;
313 err
= mtd_write_oob(subdev
, to
, &devops
);
314 ops
->retlen
+= devops
.retlen
;
315 ops
->oobretlen
+= devops
.oobretlen
;
320 devops
.len
= ops
->len
- ops
->retlen
;
323 devops
.datbuf
+= devops
.retlen
;
326 devops
.ooblen
= ops
->ooblen
- ops
->oobretlen
;
329 devops
.oobbuf
+= devops
.oobretlen
;
336 static void concat_erase_callback(struct erase_info
*instr
)
338 wake_up((wait_queue_head_t
*) instr
->priv
);
341 static int concat_dev_erase(struct mtd_info
*mtd
, struct erase_info
*erase
)
344 wait_queue_head_t waitq
;
345 DECLARE_WAITQUEUE(wait
, current
);
348 * This code was stol^H^H^H^Hinspired by mtdchar.c
350 init_waitqueue_head(&waitq
);
353 erase
->callback
= concat_erase_callback
;
354 erase
->priv
= (unsigned long) &waitq
;
357 * FIXME: Allow INTERRUPTIBLE. Which means
358 * not having the wait_queue head on the stack.
360 err
= mtd_erase(mtd
, erase
);
362 set_current_state(TASK_UNINTERRUPTIBLE
);
363 add_wait_queue(&waitq
, &wait
);
364 if (erase
->state
!= MTD_ERASE_DONE
365 && erase
->state
!= MTD_ERASE_FAILED
)
367 remove_wait_queue(&waitq
, &wait
);
368 set_current_state(TASK_RUNNING
);
370 err
= (erase
->state
== MTD_ERASE_FAILED
) ? -EIO
: 0;
375 static int concat_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
377 struct mtd_concat
*concat
= CONCAT(mtd
);
378 struct mtd_info
*subdev
;
380 uint64_t length
, offset
= 0;
381 struct erase_info
*erase
;
384 * Check for proper erase block alignment of the to-be-erased area.
385 * It is easier to do this based on the super device's erase
386 * region info rather than looking at each particular sub-device
389 if (!concat
->mtd
.numeraseregions
) {
390 /* the easy case: device has uniform erase block size */
391 if (instr
->addr
& (concat
->mtd
.erasesize
- 1))
393 if (instr
->len
& (concat
->mtd
.erasesize
- 1))
396 /* device has variable erase size */
397 struct mtd_erase_region_info
*erase_regions
=
398 concat
->mtd
.eraseregions
;
401 * Find the erase region where the to-be-erased area begins:
403 for (i
= 0; i
< concat
->mtd
.numeraseregions
&&
404 instr
->addr
>= erase_regions
[i
].offset
; i
++) ;
408 * Now erase_regions[i] is the region in which the
409 * to-be-erased area begins. Verify that the starting
410 * offset is aligned to this region's erase size:
412 if (i
< 0 || instr
->addr
& (erase_regions
[i
].erasesize
- 1))
416 * now find the erase region where the to-be-erased area ends:
418 for (; i
< concat
->mtd
.numeraseregions
&&
419 (instr
->addr
+ instr
->len
) >= erase_regions
[i
].offset
;
423 * check if the ending offset is aligned to this region's erase size
425 if (i
< 0 || ((instr
->addr
+ instr
->len
) &
426 (erase_regions
[i
].erasesize
- 1)))
430 /* make a local copy of instr to avoid modifying the caller's struct */
431 erase
= kmalloc(sizeof (struct erase_info
), GFP_KERNEL
);
440 * find the subdevice where the to-be-erased area begins, adjust
441 * starting offset to be relative to the subdevice start
443 for (i
= 0; i
< concat
->num_subdev
; i
++) {
444 subdev
= concat
->subdev
[i
];
445 if (subdev
->size
<= erase
->addr
) {
446 erase
->addr
-= subdev
->size
;
447 offset
+= subdev
->size
;
453 /* must never happen since size limit has been verified above */
454 BUG_ON(i
>= concat
->num_subdev
);
456 /* now do the erase: */
458 for (; length
> 0; i
++) {
459 /* loop for all subdevices affected by this request */
460 subdev
= concat
->subdev
[i
]; /* get current subdevice */
462 /* limit length to subdevice's size: */
463 if (erase
->addr
+ length
> subdev
->size
)
464 erase
->len
= subdev
->size
- erase
->addr
;
468 length
-= erase
->len
;
469 if ((err
= concat_dev_erase(subdev
, erase
))) {
470 /* sanity check: should never happen since
471 * block alignment has been checked above */
472 BUG_ON(err
== -EINVAL
);
473 if (erase
->fail_addr
!= MTD_FAIL_ADDR_UNKNOWN
)
474 instr
->fail_addr
= erase
->fail_addr
+ offset
;
478 * erase->addr specifies the offset of the area to be
479 * erased *within the current subdevice*. It can be
480 * non-zero only the first time through this loop, i.e.
481 * for the first subdevice where blocks need to be erased.
482 * All the following erases must begin at the start of the
483 * current subdevice, i.e. at offset zero.
486 offset
+= subdev
->size
;
488 instr
->state
= erase
->state
;
494 instr
->callback(instr
);
498 static int concat_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
500 struct mtd_concat
*concat
= CONCAT(mtd
);
501 int i
, err
= -EINVAL
;
503 for (i
= 0; i
< concat
->num_subdev
; i
++) {
504 struct mtd_info
*subdev
= concat
->subdev
[i
];
507 if (ofs
>= subdev
->size
) {
512 if (ofs
+ len
> subdev
->size
)
513 size
= subdev
->size
- ofs
;
517 err
= mtd_lock(subdev
, ofs
, size
);
532 static int concat_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
534 struct mtd_concat
*concat
= CONCAT(mtd
);
537 for (i
= 0; i
< concat
->num_subdev
; i
++) {
538 struct mtd_info
*subdev
= concat
->subdev
[i
];
541 if (ofs
>= subdev
->size
) {
546 if (ofs
+ len
> subdev
->size
)
547 size
= subdev
->size
- ofs
;
551 err
= mtd_unlock(subdev
, ofs
, size
);
566 static void concat_sync(struct mtd_info
*mtd
)
568 struct mtd_concat
*concat
= CONCAT(mtd
);
571 for (i
= 0; i
< concat
->num_subdev
; i
++) {
572 struct mtd_info
*subdev
= concat
->subdev
[i
];
577 static int concat_suspend(struct mtd_info
*mtd
)
579 struct mtd_concat
*concat
= CONCAT(mtd
);
582 for (i
= 0; i
< concat
->num_subdev
; i
++) {
583 struct mtd_info
*subdev
= concat
->subdev
[i
];
584 if ((rc
= mtd_suspend(subdev
)) < 0)
590 static void concat_resume(struct mtd_info
*mtd
)
592 struct mtd_concat
*concat
= CONCAT(mtd
);
595 for (i
= 0; i
< concat
->num_subdev
; i
++) {
596 struct mtd_info
*subdev
= concat
->subdev
[i
];
601 static int concat_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
603 struct mtd_concat
*concat
= CONCAT(mtd
);
606 if (!mtd_can_have_bb(concat
->subdev
[0]))
609 for (i
= 0; i
< concat
->num_subdev
; i
++) {
610 struct mtd_info
*subdev
= concat
->subdev
[i
];
612 if (ofs
>= subdev
->size
) {
617 res
= mtd_block_isbad(subdev
, ofs
);
624 static int concat_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
626 struct mtd_concat
*concat
= CONCAT(mtd
);
627 int i
, err
= -EINVAL
;
629 for (i
= 0; i
< concat
->num_subdev
; i
++) {
630 struct mtd_info
*subdev
= concat
->subdev
[i
];
632 if (ofs
>= subdev
->size
) {
637 err
= mtd_block_markbad(subdev
, ofs
);
639 mtd
->ecc_stats
.badblocks
++;
647 * This function constructs a virtual MTD device by concatenating
648 * num_devs MTD devices. A pointer to the new device object is
649 * stored to *new_dev upon success. This function does _not_
650 * register any devices: this is the caller's responsibility.
652 struct mtd_info
*mtd_concat_create(struct mtd_info
*subdev
[], /* subdevices to concatenate */
653 int num_devs
, /* number of subdevices */
655 { /* name for the new device */
658 struct mtd_concat
*concat
;
659 uint32_t max_erasesize
, curr_erasesize
;
660 int num_erase_region
;
661 int max_writebufsize
= 0;
663 printk(KERN_NOTICE
"Concatenating MTD devices:\n");
664 for (i
= 0; i
< num_devs
; i
++)
665 printk(KERN_NOTICE
"(%d): \"%s\"\n", i
, subdev
[i
]->name
);
666 printk(KERN_NOTICE
"into device \"%s\"\n", name
);
668 /* allocate the device structure */
669 size
= SIZEOF_STRUCT_MTD_CONCAT(num_devs
);
670 concat
= kzalloc(size
, GFP_KERNEL
);
673 ("memory allocation error while creating concatenated device \"%s\"\n",
677 concat
->subdev
= (struct mtd_info
**) (concat
+ 1);
680 * Set up the new "super" device's MTD object structure, check for
681 * incompatibilities between the subdevices.
683 concat
->mtd
.type
= subdev
[0]->type
;
684 concat
->mtd
.flags
= subdev
[0]->flags
;
685 concat
->mtd
.size
= subdev
[0]->size
;
686 concat
->mtd
.erasesize
= subdev
[0]->erasesize
;
687 concat
->mtd
.writesize
= subdev
[0]->writesize
;
689 for (i
= 0; i
< num_devs
; i
++)
690 if (max_writebufsize
< subdev
[i
]->writebufsize
)
691 max_writebufsize
= subdev
[i
]->writebufsize
;
692 concat
->mtd
.writebufsize
= max_writebufsize
;
694 concat
->mtd
.subpage_sft
= subdev
[0]->subpage_sft
;
695 concat
->mtd
.oobsize
= subdev
[0]->oobsize
;
696 concat
->mtd
.oobavail
= subdev
[0]->oobavail
;
697 if (subdev
[0]->_writev
)
698 concat
->mtd
._writev
= concat_writev
;
699 if (subdev
[0]->_read_oob
)
700 concat
->mtd
._read_oob
= concat_read_oob
;
701 if (subdev
[0]->_write_oob
)
702 concat
->mtd
._write_oob
= concat_write_oob
;
703 if (subdev
[0]->_block_isbad
)
704 concat
->mtd
._block_isbad
= concat_block_isbad
;
705 if (subdev
[0]->_block_markbad
)
706 concat
->mtd
._block_markbad
= concat_block_markbad
;
708 concat
->mtd
.ecc_stats
.badblocks
= subdev
[0]->ecc_stats
.badblocks
;
710 concat
->subdev
[0] = subdev
[0];
712 for (i
= 1; i
< num_devs
; i
++) {
713 if (concat
->mtd
.type
!= subdev
[i
]->type
) {
715 printk("Incompatible device type on \"%s\"\n",
719 if (concat
->mtd
.flags
!= subdev
[i
]->flags
) {
721 * Expect all flags except MTD_WRITEABLE to be
722 * equal on all subdevices.
724 if ((concat
->mtd
.flags
^ subdev
[i
]->
725 flags
) & ~MTD_WRITEABLE
) {
727 printk("Incompatible device flags on \"%s\"\n",
731 /* if writeable attribute differs,
732 make super device writeable */
734 subdev
[i
]->flags
& MTD_WRITEABLE
;
737 concat
->mtd
.size
+= subdev
[i
]->size
;
738 concat
->mtd
.ecc_stats
.badblocks
+=
739 subdev
[i
]->ecc_stats
.badblocks
;
740 if (concat
->mtd
.writesize
!= subdev
[i
]->writesize
||
741 concat
->mtd
.subpage_sft
!= subdev
[i
]->subpage_sft
||
742 concat
->mtd
.oobsize
!= subdev
[i
]->oobsize
||
743 !concat
->mtd
._read_oob
!= !subdev
[i
]->_read_oob
||
744 !concat
->mtd
._write_oob
!= !subdev
[i
]->_write_oob
) {
746 printk("Incompatible OOB or ECC data on \"%s\"\n",
750 concat
->subdev
[i
] = subdev
[i
];
754 mtd_set_ooblayout(&concat
->mtd
, subdev
[0]->ooblayout
);
756 concat
->num_subdev
= num_devs
;
757 concat
->mtd
.name
= name
;
759 concat
->mtd
._erase
= concat_erase
;
760 concat
->mtd
._read
= concat_read
;
761 concat
->mtd
._write
= concat_write
;
762 concat
->mtd
._sync
= concat_sync
;
763 concat
->mtd
._lock
= concat_lock
;
764 concat
->mtd
._unlock
= concat_unlock
;
765 concat
->mtd
._suspend
= concat_suspend
;
766 concat
->mtd
._resume
= concat_resume
;
769 * Combine the erase block size info of the subdevices:
771 * first, walk the map of the new device and see how
772 * many changes in erase size we have
774 max_erasesize
= curr_erasesize
= subdev
[0]->erasesize
;
775 num_erase_region
= 1;
776 for (i
= 0; i
< num_devs
; i
++) {
777 if (subdev
[i
]->numeraseregions
== 0) {
778 /* current subdevice has uniform erase size */
779 if (subdev
[i
]->erasesize
!= curr_erasesize
) {
780 /* if it differs from the last subdevice's erase size, count it */
782 curr_erasesize
= subdev
[i
]->erasesize
;
783 if (curr_erasesize
> max_erasesize
)
784 max_erasesize
= curr_erasesize
;
787 /* current subdevice has variable erase size */
789 for (j
= 0; j
< subdev
[i
]->numeraseregions
; j
++) {
791 /* walk the list of erase regions, count any changes */
792 if (subdev
[i
]->eraseregions
[j
].erasesize
!=
796 subdev
[i
]->eraseregions
[j
].
798 if (curr_erasesize
> max_erasesize
)
799 max_erasesize
= curr_erasesize
;
805 if (num_erase_region
== 1) {
807 * All subdevices have the same uniform erase size.
810 concat
->mtd
.erasesize
= curr_erasesize
;
811 concat
->mtd
.numeraseregions
= 0;
816 * erase block size varies across the subdevices: allocate
817 * space to store the data describing the variable erase regions
819 struct mtd_erase_region_info
*erase_region_p
;
820 uint64_t begin
, position
;
822 concat
->mtd
.erasesize
= max_erasesize
;
823 concat
->mtd
.numeraseregions
= num_erase_region
;
824 concat
->mtd
.eraseregions
= erase_region_p
=
825 kmalloc(num_erase_region
*
826 sizeof (struct mtd_erase_region_info
), GFP_KERNEL
);
827 if (!erase_region_p
) {
830 ("memory allocation error while creating erase region list"
831 " for device \"%s\"\n", name
);
836 * walk the map of the new device once more and fill in
837 * in erase region info:
839 curr_erasesize
= subdev
[0]->erasesize
;
840 begin
= position
= 0;
841 for (i
= 0; i
< num_devs
; i
++) {
842 if (subdev
[i
]->numeraseregions
== 0) {
843 /* current subdevice has uniform erase size */
844 if (subdev
[i
]->erasesize
!= curr_erasesize
) {
846 * fill in an mtd_erase_region_info structure for the area
847 * we have walked so far:
849 erase_region_p
->offset
= begin
;
850 erase_region_p
->erasesize
=
852 tmp64
= position
- begin
;
853 do_div(tmp64
, curr_erasesize
);
854 erase_region_p
->numblocks
= tmp64
;
857 curr_erasesize
= subdev
[i
]->erasesize
;
860 position
+= subdev
[i
]->size
;
862 /* current subdevice has variable erase size */
864 for (j
= 0; j
< subdev
[i
]->numeraseregions
; j
++) {
865 /* walk the list of erase regions, count any changes */
866 if (subdev
[i
]->eraseregions
[j
].
867 erasesize
!= curr_erasesize
) {
868 erase_region_p
->offset
= begin
;
869 erase_region_p
->erasesize
=
871 tmp64
= position
- begin
;
872 do_div(tmp64
, curr_erasesize
);
873 erase_region_p
->numblocks
= tmp64
;
877 subdev
[i
]->eraseregions
[j
].
882 subdev
[i
]->eraseregions
[j
].
883 numblocks
* (uint64_t)curr_erasesize
;
887 /* Now write the final entry */
888 erase_region_p
->offset
= begin
;
889 erase_region_p
->erasesize
= curr_erasesize
;
890 tmp64
= position
- begin
;
891 do_div(tmp64
, curr_erasesize
);
892 erase_region_p
->numblocks
= tmp64
;
899 * This function destroys an MTD object obtained from concat_mtd_devs()
902 void mtd_concat_destroy(struct mtd_info
*mtd
)
904 struct mtd_concat
*concat
= CONCAT(mtd
);
905 if (concat
->mtd
.numeraseregions
)
906 kfree(concat
->mtd
.eraseregions
);
910 EXPORT_SYMBOL(mtd_concat_create
);
911 EXPORT_SYMBOL(mtd_concat_destroy
);
913 MODULE_LICENSE("GPL");
914 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
915 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");