2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/clk.h>
32 #include <linux/mtd/rawnand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/slab.h>
35 #include <linux/of_device.h>
38 #include <linux/platform_data/mtd-davinci.h>
39 #include <linux/platform_data/mtd-davinci-aemif.h>
42 * This is a device driver for the NAND flash controller found on the
43 * various DaVinci family chips. It handles up to four SoC chipselects,
44 * and some flavors of secondary chipselect (e.g. based on A12) as used
45 * with multichip packages.
47 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
48 * available on chips like the DM355 and OMAP-L137 and needed with the
49 * more error-prone MLC NAND chips.
51 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
52 * outputs in a "wire-AND" configuration, with no per-chip signals.
54 struct davinci_nand_info
{
55 struct nand_chip chip
;
68 uint32_t mask_chipsel
;
72 uint32_t core_chipsel
;
74 struct davinci_aemif_timing
*timing
;
77 static DEFINE_SPINLOCK(davinci_nand_lock
);
78 static bool ecc4_busy
;
80 static inline struct davinci_nand_info
*to_davinci_nand(struct mtd_info
*mtd
)
82 return container_of(mtd_to_nand(mtd
), struct davinci_nand_info
, chip
);
85 static inline unsigned int davinci_nand_readl(struct davinci_nand_info
*info
,
88 return __raw_readl(info
->base
+ offset
);
91 static inline void davinci_nand_writel(struct davinci_nand_info
*info
,
92 int offset
, unsigned long value
)
94 __raw_writel(value
, info
->base
+ offset
);
97 /*----------------------------------------------------------------------*/
100 * Access to hardware control lines: ALE, CLE, secondary chipselect.
103 static void nand_davinci_hwcontrol(struct mtd_info
*mtd
, int cmd
,
106 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
107 uint32_t addr
= info
->current_cs
;
108 struct nand_chip
*nand
= mtd_to_nand(mtd
);
110 /* Did the control lines change? */
111 if (ctrl
& NAND_CTRL_CHANGE
) {
112 if ((ctrl
& NAND_CTRL_CLE
) == NAND_CTRL_CLE
)
113 addr
|= info
->mask_cle
;
114 else if ((ctrl
& NAND_CTRL_ALE
) == NAND_CTRL_ALE
)
115 addr
|= info
->mask_ale
;
117 nand
->IO_ADDR_W
= (void __iomem __force
*)addr
;
120 if (cmd
!= NAND_CMD_NONE
)
121 iowrite8(cmd
, nand
->IO_ADDR_W
);
124 static void nand_davinci_select_chip(struct mtd_info
*mtd
, int chip
)
126 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
127 uint32_t addr
= info
->ioaddr
;
129 /* maybe kick in a second chipselect */
131 addr
|= info
->mask_chipsel
;
132 info
->current_cs
= addr
;
134 info
->chip
.IO_ADDR_W
= (void __iomem __force
*)addr
;
135 info
->chip
.IO_ADDR_R
= info
->chip
.IO_ADDR_W
;
138 /*----------------------------------------------------------------------*/
141 * 1-bit hardware ECC ... context maintained for each core chipselect
144 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info
*mtd
)
146 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
148 return davinci_nand_readl(info
, NANDF1ECC_OFFSET
149 + 4 * info
->core_chipsel
);
152 static void nand_davinci_hwctl_1bit(struct mtd_info
*mtd
, int mode
)
154 struct davinci_nand_info
*info
;
158 info
= to_davinci_nand(mtd
);
160 /* Reset ECC hardware */
161 nand_davinci_readecc_1bit(mtd
);
163 spin_lock_irqsave(&davinci_nand_lock
, flags
);
165 /* Restart ECC hardware */
166 nandcfr
= davinci_nand_readl(info
, NANDFCR_OFFSET
);
167 nandcfr
|= BIT(8 + info
->core_chipsel
);
168 davinci_nand_writel(info
, NANDFCR_OFFSET
, nandcfr
);
170 spin_unlock_irqrestore(&davinci_nand_lock
, flags
);
174 * Read hardware ECC value and pack into three bytes
176 static int nand_davinci_calculate_1bit(struct mtd_info
*mtd
,
177 const u_char
*dat
, u_char
*ecc_code
)
179 unsigned int ecc_val
= nand_davinci_readecc_1bit(mtd
);
180 unsigned int ecc24
= (ecc_val
& 0x0fff) | ((ecc_val
& 0x0fff0000) >> 4);
182 /* invert so that erased block ecc is correct */
184 ecc_code
[0] = (u_char
)(ecc24
);
185 ecc_code
[1] = (u_char
)(ecc24
>> 8);
186 ecc_code
[2] = (u_char
)(ecc24
>> 16);
191 static int nand_davinci_correct_1bit(struct mtd_info
*mtd
, u_char
*dat
,
192 u_char
*read_ecc
, u_char
*calc_ecc
)
194 struct nand_chip
*chip
= mtd_to_nand(mtd
);
195 uint32_t eccNand
= read_ecc
[0] | (read_ecc
[1] << 8) |
197 uint32_t eccCalc
= calc_ecc
[0] | (calc_ecc
[1] << 8) |
199 uint32_t diff
= eccCalc
^ eccNand
;
202 if ((((diff
>> 12) ^ diff
) & 0xfff) == 0xfff) {
203 /* Correctable error */
204 if ((diff
>> (12 + 3)) < chip
->ecc
.size
) {
205 dat
[diff
>> (12 + 3)] ^= BIT((diff
>> 12) & 7);
210 } else if (!(diff
& (diff
- 1))) {
211 /* Single bit ECC error in the ECC itself,
215 /* Uncorrectable error */
223 /*----------------------------------------------------------------------*/
226 * 4-bit hardware ECC ... context maintained over entire AEMIF
228 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
229 * since that forces use of a problematic "infix OOB" layout.
230 * Among other things, it trashes manufacturer bad block markers.
231 * Also, and specific to this hardware, it ECC-protects the "prepad"
232 * in the OOB ... while having ECC protection for parts of OOB would
233 * seem useful, the current MTD stack sometimes wants to update the
234 * OOB without recomputing ECC.
237 static void nand_davinci_hwctl_4bit(struct mtd_info
*mtd
, int mode
)
239 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
243 /* Reset ECC hardware */
244 davinci_nand_readl(info
, NAND_4BIT_ECC1_OFFSET
);
246 spin_lock_irqsave(&davinci_nand_lock
, flags
);
248 /* Start 4-bit ECC calculation for read/write */
249 val
= davinci_nand_readl(info
, NANDFCR_OFFSET
);
251 val
|= (info
->core_chipsel
<< 4) | BIT(12);
252 davinci_nand_writel(info
, NANDFCR_OFFSET
, val
);
254 info
->is_readmode
= (mode
== NAND_ECC_READ
);
256 spin_unlock_irqrestore(&davinci_nand_lock
, flags
);
259 /* Read raw ECC code after writing to NAND. */
261 nand_davinci_readecc_4bit(struct davinci_nand_info
*info
, u32 code
[4])
263 const u32 mask
= 0x03ff03ff;
265 code
[0] = davinci_nand_readl(info
, NAND_4BIT_ECC1_OFFSET
) & mask
;
266 code
[1] = davinci_nand_readl(info
, NAND_4BIT_ECC2_OFFSET
) & mask
;
267 code
[2] = davinci_nand_readl(info
, NAND_4BIT_ECC3_OFFSET
) & mask
;
268 code
[3] = davinci_nand_readl(info
, NAND_4BIT_ECC4_OFFSET
) & mask
;
271 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
272 static int nand_davinci_calculate_4bit(struct mtd_info
*mtd
,
273 const u_char
*dat
, u_char
*ecc_code
)
275 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
279 /* After a read, terminate ECC calculation by a dummy read
280 * of some 4-bit ECC register. ECC covers everything that
281 * was read; correct() just uses the hardware state, so
282 * ecc_code is not needed.
284 if (info
->is_readmode
) {
285 davinci_nand_readl(info
, NAND_4BIT_ECC1_OFFSET
);
289 /* Pack eight raw 10-bit ecc values into ten bytes, making
290 * two passes which each convert four values (in upper and
291 * lower halves of two 32-bit words) into five bytes. The
292 * ROM boot loader uses this same packing scheme.
294 nand_davinci_readecc_4bit(info
, raw_ecc
);
295 for (i
= 0, p
= raw_ecc
; i
< 2; i
++, p
+= 2) {
296 *ecc_code
++ = p
[0] & 0xff;
297 *ecc_code
++ = ((p
[0] >> 8) & 0x03) | ((p
[0] >> 14) & 0xfc);
298 *ecc_code
++ = ((p
[0] >> 22) & 0x0f) | ((p
[1] << 4) & 0xf0);
299 *ecc_code
++ = ((p
[1] >> 4) & 0x3f) | ((p
[1] >> 10) & 0xc0);
300 *ecc_code
++ = (p
[1] >> 18) & 0xff;
306 /* Correct up to 4 bits in data we just read, using state left in the
307 * hardware plus the ecc_code computed when it was first written.
309 static int nand_davinci_correct_4bit(struct mtd_info
*mtd
,
310 u_char
*data
, u_char
*ecc_code
, u_char
*null
)
313 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
314 unsigned short ecc10
[8];
315 unsigned short *ecc16
;
318 unsigned num_errors
, corrected
;
321 /* Unpack ten bytes into eight 10 bit values. We know we're
322 * little-endian, and use type punning for less shifting/masking.
324 if (WARN_ON(0x01 & (unsigned) ecc_code
))
326 ecc16
= (unsigned short *)ecc_code
;
328 ecc10
[0] = (ecc16
[0] >> 0) & 0x3ff;
329 ecc10
[1] = ((ecc16
[0] >> 10) & 0x3f) | ((ecc16
[1] << 6) & 0x3c0);
330 ecc10
[2] = (ecc16
[1] >> 4) & 0x3ff;
331 ecc10
[3] = ((ecc16
[1] >> 14) & 0x3) | ((ecc16
[2] << 2) & 0x3fc);
332 ecc10
[4] = (ecc16
[2] >> 8) | ((ecc16
[3] << 8) & 0x300);
333 ecc10
[5] = (ecc16
[3] >> 2) & 0x3ff;
334 ecc10
[6] = ((ecc16
[3] >> 12) & 0xf) | ((ecc16
[4] << 4) & 0x3f0);
335 ecc10
[7] = (ecc16
[4] >> 6) & 0x3ff;
337 /* Tell ECC controller about the expected ECC codes. */
338 for (i
= 7; i
>= 0; i
--)
339 davinci_nand_writel(info
, NAND_4BIT_ECC_LOAD_OFFSET
, ecc10
[i
]);
341 /* Allow time for syndrome calculation ... then read it.
342 * A syndrome of all zeroes 0 means no detected errors.
344 davinci_nand_readl(info
, NANDFSR_OFFSET
);
345 nand_davinci_readecc_4bit(info
, syndrome
);
346 if (!(syndrome
[0] | syndrome
[1] | syndrome
[2] | syndrome
[3]))
350 * Clear any previous address calculation by doing a dummy read of an
351 * error address register.
353 davinci_nand_readl(info
, NAND_ERR_ADD1_OFFSET
);
355 /* Start address calculation, and wait for it to complete.
356 * We _could_ start reading more data while this is working,
357 * to speed up the overall page read.
359 davinci_nand_writel(info
, NANDFCR_OFFSET
,
360 davinci_nand_readl(info
, NANDFCR_OFFSET
) | BIT(13));
363 * ECC_STATE field reads 0x3 (Error correction complete) immediately
364 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
365 * begin trying to poll for the state, you may fall right out of your
366 * loop without any of the correction calculations having taken place.
367 * The recommendation from the hardware team is to initially delay as
368 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
371 timeo
= jiffies
+ usecs_to_jiffies(100);
373 ecc_state
= (davinci_nand_readl(info
,
374 NANDFSR_OFFSET
) >> 8) & 0x0f;
376 } while ((ecc_state
< 4) && time_before(jiffies
, timeo
));
379 u32 fsr
= davinci_nand_readl(info
, NANDFSR_OFFSET
);
381 switch ((fsr
>> 8) & 0x0f) {
382 case 0: /* no error, should not happen */
383 davinci_nand_readl(info
, NAND_ERR_ERRVAL1_OFFSET
);
385 case 1: /* five or more errors detected */
386 davinci_nand_readl(info
, NAND_ERR_ERRVAL1_OFFSET
);
388 case 2: /* error addresses computed */
390 num_errors
= 1 + ((fsr
>> 16) & 0x03);
392 default: /* still working on it */
399 /* correct each error */
400 for (i
= 0, corrected
= 0; i
< num_errors
; i
++) {
401 int error_address
, error_value
;
404 error_address
= davinci_nand_readl(info
,
405 NAND_ERR_ADD2_OFFSET
);
406 error_value
= davinci_nand_readl(info
,
407 NAND_ERR_ERRVAL2_OFFSET
);
409 error_address
= davinci_nand_readl(info
,
410 NAND_ERR_ADD1_OFFSET
);
411 error_value
= davinci_nand_readl(info
,
412 NAND_ERR_ERRVAL1_OFFSET
);
416 error_address
>>= 16;
419 error_address
&= 0x3ff;
420 error_address
= (512 + 7) - error_address
;
422 if (error_address
< 512) {
423 data
[error_address
] ^= error_value
;
431 /*----------------------------------------------------------------------*/
434 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
435 * how these chips are normally wired. This translates to both 8 and 16
436 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
438 * For now we assume that configuration, or any other one which ignores
439 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
440 * and have that transparently morphed into multiple NAND operations.
442 static void nand_davinci_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
444 struct nand_chip
*chip
= mtd_to_nand(mtd
);
446 if ((0x03 & ((unsigned)buf
)) == 0 && (0x03 & len
) == 0)
447 ioread32_rep(chip
->IO_ADDR_R
, buf
, len
>> 2);
448 else if ((0x01 & ((unsigned)buf
)) == 0 && (0x01 & len
) == 0)
449 ioread16_rep(chip
->IO_ADDR_R
, buf
, len
>> 1);
451 ioread8_rep(chip
->IO_ADDR_R
, buf
, len
);
454 static void nand_davinci_write_buf(struct mtd_info
*mtd
,
455 const uint8_t *buf
, int len
)
457 struct nand_chip
*chip
= mtd_to_nand(mtd
);
459 if ((0x03 & ((unsigned)buf
)) == 0 && (0x03 & len
) == 0)
460 iowrite32_rep(chip
->IO_ADDR_R
, buf
, len
>> 2);
461 else if ((0x01 & ((unsigned)buf
)) == 0 && (0x01 & len
) == 0)
462 iowrite16_rep(chip
->IO_ADDR_R
, buf
, len
>> 1);
464 iowrite8_rep(chip
->IO_ADDR_R
, buf
, len
);
468 * Check hardware register for wait status. Returns 1 if device is ready,
469 * 0 if it is still busy.
471 static int nand_davinci_dev_ready(struct mtd_info
*mtd
)
473 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
475 return davinci_nand_readl(info
, NANDFSR_OFFSET
) & BIT(0);
478 /*----------------------------------------------------------------------*/
480 /* An ECC layout for using 4-bit ECC with small-page flash, storing
481 * ten ECC bytes plus the manufacturer's bad block marker byte, and
482 * and not overlapping the default BBT markers.
484 static int hwecc4_ooblayout_small_ecc(struct mtd_info
*mtd
, int section
,
485 struct mtd_oob_region
*oobregion
)
491 oobregion
->offset
= 0;
492 oobregion
->length
= 5;
493 } else if (section
== 1) {
494 oobregion
->offset
= 6;
495 oobregion
->length
= 2;
497 oobregion
->offset
= 13;
498 oobregion
->length
= 3;
504 static int hwecc4_ooblayout_small_free(struct mtd_info
*mtd
, int section
,
505 struct mtd_oob_region
*oobregion
)
511 oobregion
->offset
= 8;
512 oobregion
->length
= 5;
514 oobregion
->offset
= 16;
515 oobregion
->length
= mtd
->oobsize
- 16;
521 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops
= {
522 .ecc
= hwecc4_ooblayout_small_ecc
,
523 .free
= hwecc4_ooblayout_small_free
,
526 #if defined(CONFIG_OF)
527 static const struct of_device_id davinci_nand_of_match
[] = {
528 {.compatible
= "ti,davinci-nand", },
529 {.compatible
= "ti,keystone-nand", },
532 MODULE_DEVICE_TABLE(of
, davinci_nand_of_match
);
534 static struct davinci_nand_pdata
535 *nand_davinci_get_pdata(struct platform_device
*pdev
)
537 if (!dev_get_platdata(&pdev
->dev
) && pdev
->dev
.of_node
) {
538 struct davinci_nand_pdata
*pdata
;
542 pdata
= devm_kzalloc(&pdev
->dev
,
543 sizeof(struct davinci_nand_pdata
),
545 pdev
->dev
.platform_data
= pdata
;
547 return ERR_PTR(-ENOMEM
);
548 if (!of_property_read_u32(pdev
->dev
.of_node
,
549 "ti,davinci-chipselect", &prop
))
552 return ERR_PTR(-EINVAL
);
554 if (!of_property_read_u32(pdev
->dev
.of_node
,
555 "ti,davinci-mask-ale", &prop
))
556 pdata
->mask_ale
= prop
;
557 if (!of_property_read_u32(pdev
->dev
.of_node
,
558 "ti,davinci-mask-cle", &prop
))
559 pdata
->mask_cle
= prop
;
560 if (!of_property_read_u32(pdev
->dev
.of_node
,
561 "ti,davinci-mask-chipsel", &prop
))
562 pdata
->mask_chipsel
= prop
;
563 if (!of_property_read_string(pdev
->dev
.of_node
,
564 "ti,davinci-ecc-mode", &mode
)) {
565 if (!strncmp("none", mode
, 4))
566 pdata
->ecc_mode
= NAND_ECC_NONE
;
567 if (!strncmp("soft", mode
, 4))
568 pdata
->ecc_mode
= NAND_ECC_SOFT
;
569 if (!strncmp("hw", mode
, 2))
570 pdata
->ecc_mode
= NAND_ECC_HW
;
572 if (!of_property_read_u32(pdev
->dev
.of_node
,
573 "ti,davinci-ecc-bits", &prop
))
574 pdata
->ecc_bits
= prop
;
576 if (!of_property_read_u32(pdev
->dev
.of_node
,
577 "ti,davinci-nand-buswidth", &prop
) && prop
== 16)
578 pdata
->options
|= NAND_BUSWIDTH_16
;
580 if (of_property_read_bool(pdev
->dev
.of_node
,
581 "ti,davinci-nand-use-bbt"))
582 pdata
->bbt_options
= NAND_BBT_USE_FLASH
;
585 * Since kernel v4.8, this driver has been fixed to enable
586 * use of 4-bit hardware ECC with subpages and verified on
587 * TI's keystone EVMs (K2L, K2HK and K2E).
588 * However, in the interest of not breaking systems using
589 * existing UBI partitions, sub-page writes are not being
590 * (re)enabled. If you want to use subpage writes on Keystone
591 * platforms (i.e. do not have any existing UBI partitions),
592 * then use "ti,davinci-nand" as the compatible in your
595 if (of_device_is_compatible(pdev
->dev
.of_node
,
596 "ti,keystone-nand")) {
597 pdata
->options
|= NAND_NO_SUBPAGE_WRITE
;
601 return dev_get_platdata(&pdev
->dev
);
604 static struct davinci_nand_pdata
605 *nand_davinci_get_pdata(struct platform_device
*pdev
)
607 return dev_get_platdata(&pdev
->dev
);
611 static int nand_davinci_probe(struct platform_device
*pdev
)
613 struct davinci_nand_pdata
*pdata
;
614 struct davinci_nand_info
*info
;
615 struct resource
*res1
;
616 struct resource
*res2
;
621 struct mtd_info
*mtd
;
623 pdata
= nand_davinci_get_pdata(pdev
);
625 return PTR_ERR(pdata
);
627 /* insist on board-specific configuration */
631 /* which external chipselect will we be managing? */
632 if (pdev
->id
< 0 || pdev
->id
> 3)
635 info
= devm_kzalloc(&pdev
->dev
, sizeof(*info
), GFP_KERNEL
);
639 platform_set_drvdata(pdev
, info
);
641 res1
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
642 res2
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
643 if (!res1
|| !res2
) {
644 dev_err(&pdev
->dev
, "resource missing\n");
648 vaddr
= devm_ioremap_resource(&pdev
->dev
, res1
);
650 return PTR_ERR(vaddr
);
653 * This registers range is used to setup NAND settings. In case with
654 * TI AEMIF driver, the same memory address range is requested already
655 * by AEMIF, so we cannot request it twice, just ioremap.
656 * The AEMIF and NAND drivers not use the same registers in this range.
658 base
= devm_ioremap(&pdev
->dev
, res2
->start
, resource_size(res2
));
660 dev_err(&pdev
->dev
, "ioremap failed for resource %pR\n", res2
);
661 return -EADDRNOTAVAIL
;
664 info
->dev
= &pdev
->dev
;
668 mtd
= nand_to_mtd(&info
->chip
);
669 mtd
->dev
.parent
= &pdev
->dev
;
670 nand_set_flash_node(&info
->chip
, pdev
->dev
.of_node
);
672 info
->chip
.IO_ADDR_R
= vaddr
;
673 info
->chip
.IO_ADDR_W
= vaddr
;
674 info
->chip
.chip_delay
= 0;
675 info
->chip
.select_chip
= nand_davinci_select_chip
;
677 /* options such as NAND_BBT_USE_FLASH */
678 info
->chip
.bbt_options
= pdata
->bbt_options
;
679 /* options such as 16-bit widths */
680 info
->chip
.options
= pdata
->options
;
681 info
->chip
.bbt_td
= pdata
->bbt_td
;
682 info
->chip
.bbt_md
= pdata
->bbt_md
;
683 info
->timing
= pdata
->timing
;
685 info
->ioaddr
= (uint32_t __force
) vaddr
;
687 info
->current_cs
= info
->ioaddr
;
688 info
->core_chipsel
= pdev
->id
;
689 info
->mask_chipsel
= pdata
->mask_chipsel
;
691 /* use nandboot-capable ALE/CLE masks by default */
692 info
->mask_ale
= pdata
->mask_ale
? : MASK_ALE
;
693 info
->mask_cle
= pdata
->mask_cle
? : MASK_CLE
;
695 /* Set address of hardware control function */
696 info
->chip
.cmd_ctrl
= nand_davinci_hwcontrol
;
697 info
->chip
.dev_ready
= nand_davinci_dev_ready
;
699 /* Speed up buffer I/O */
700 info
->chip
.read_buf
= nand_davinci_read_buf
;
701 info
->chip
.write_buf
= nand_davinci_write_buf
;
703 /* Use board-specific ECC config */
704 info
->chip
.ecc
.mode
= pdata
->ecc_mode
;
708 info
->clk
= devm_clk_get(&pdev
->dev
, "aemif");
709 if (IS_ERR(info
->clk
)) {
710 ret
= PTR_ERR(info
->clk
);
711 dev_dbg(&pdev
->dev
, "unable to get AEMIF clock, err %d\n", ret
);
715 ret
= clk_prepare_enable(info
->clk
);
717 dev_dbg(&pdev
->dev
, "unable to enable AEMIF clock, err %d\n",
722 spin_lock_irq(&davinci_nand_lock
);
724 /* put CSxNAND into NAND mode */
725 val
= davinci_nand_readl(info
, NANDFCR_OFFSET
);
726 val
|= BIT(info
->core_chipsel
);
727 davinci_nand_writel(info
, NANDFCR_OFFSET
, val
);
729 spin_unlock_irq(&davinci_nand_lock
);
731 /* Scan to find existence of the device(s) */
732 ret
= nand_scan_ident(mtd
, pdata
->mask_chipsel
? 2 : 1, NULL
);
734 dev_dbg(&pdev
->dev
, "no NAND chip(s) found\n");
738 switch (info
->chip
.ecc
.mode
) {
745 * This driver expects Hamming based ECC when ecc_mode is set
746 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
747 * avoid adding an extra ->ecc_algo field to
748 * davinci_nand_pdata.
750 info
->chip
.ecc
.algo
= NAND_ECC_HAMMING
;
753 if (pdata
->ecc_bits
== 4) {
754 /* No sanity checks: CPUs must support this,
755 * and the chips may not use NAND_BUSWIDTH_16.
758 /* No sharing 4-bit hardware between chipselects yet */
759 spin_lock_irq(&davinci_nand_lock
);
764 spin_unlock_irq(&davinci_nand_lock
);
769 info
->chip
.ecc
.calculate
= nand_davinci_calculate_4bit
;
770 info
->chip
.ecc
.correct
= nand_davinci_correct_4bit
;
771 info
->chip
.ecc
.hwctl
= nand_davinci_hwctl_4bit
;
772 info
->chip
.ecc
.bytes
= 10;
773 info
->chip
.ecc
.options
= NAND_ECC_GENERIC_ERASED_CHECK
;
774 info
->chip
.ecc
.algo
= NAND_ECC_BCH
;
776 /* 1bit ecc hamming */
777 info
->chip
.ecc
.calculate
= nand_davinci_calculate_1bit
;
778 info
->chip
.ecc
.correct
= nand_davinci_correct_1bit
;
779 info
->chip
.ecc
.hwctl
= nand_davinci_hwctl_1bit
;
780 info
->chip
.ecc
.bytes
= 3;
781 info
->chip
.ecc
.algo
= NAND_ECC_HAMMING
;
783 info
->chip
.ecc
.size
= 512;
784 info
->chip
.ecc
.strength
= pdata
->ecc_bits
;
790 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
791 * is OK, but it allocates 6 bytes when only 3 are needed (for
792 * each 512 bytes). For the 4-bit HW ECC, that default is not
793 * usable: 10 bytes are needed, not 6.
795 if (pdata
->ecc_bits
== 4) {
796 int chunks
= mtd
->writesize
/ 512;
798 if (!chunks
|| mtd
->oobsize
< 16) {
799 dev_dbg(&pdev
->dev
, "too small\n");
804 /* For small page chips, preserve the manufacturer's
805 * badblock marking data ... and make sure a flash BBT
806 * table marker fits in the free bytes.
809 mtd_set_ooblayout(mtd
, &hwecc4_small_ooblayout_ops
);
810 } else if (chunks
== 4 || chunks
== 8) {
811 mtd_set_ooblayout(mtd
, &nand_ooblayout_lp_ops
);
812 info
->chip
.ecc
.mode
= NAND_ECC_HW_OOB_FIRST
;
819 ret
= nand_scan_tail(mtd
);
824 ret
= mtd_device_parse_register(mtd
, NULL
, NULL
,
825 pdata
->parts
, pdata
->nr_parts
);
827 ret
= mtd_device_register(mtd
, NULL
, 0);
831 val
= davinci_nand_readl(info
, NRCSR_OFFSET
);
832 dev_info(&pdev
->dev
, "controller rev. %d.%d\n",
833 (val
>> 8) & 0xff, val
& 0xff);
838 clk_disable_unprepare(info
->clk
);
841 spin_lock_irq(&davinci_nand_lock
);
842 if (info
->chip
.ecc
.mode
== NAND_ECC_HW_SYNDROME
)
844 spin_unlock_irq(&davinci_nand_lock
);
848 static int nand_davinci_remove(struct platform_device
*pdev
)
850 struct davinci_nand_info
*info
= platform_get_drvdata(pdev
);
852 spin_lock_irq(&davinci_nand_lock
);
853 if (info
->chip
.ecc
.mode
== NAND_ECC_HW_SYNDROME
)
855 spin_unlock_irq(&davinci_nand_lock
);
857 nand_release(nand_to_mtd(&info
->chip
));
859 clk_disable_unprepare(info
->clk
);
864 static struct platform_driver nand_davinci_driver
= {
865 .probe
= nand_davinci_probe
,
866 .remove
= nand_davinci_remove
,
868 .name
= "davinci_nand",
869 .of_match_table
= of_match_ptr(davinci_nand_of_match
),
872 MODULE_ALIAS("platform:davinci_nand");
874 module_platform_driver(nand_davinci_driver
);
876 MODULE_LICENSE("GPL");
877 MODULE_AUTHOR("Texas Instruments");
878 MODULE_DESCRIPTION("Davinci NAND flash driver");