Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / mtd / nand / lpc32xx_slc.c
blob5f7cc6da0a7fa4d4585b0e41b28da632a3f89c0f
1 /*
2 * NXP LPC32XX NAND SLC driver
4 * Authors:
5 * Kevin Wells <kevin.wells@nxp.com>
6 * Roland Stigge <stigge@antcom.de>
8 * Copyright © 2011 NXP Semiconductors
9 * Copyright © 2012 Roland Stigge
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/rawnand.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/clk.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
31 #include <linux/io.h>
32 #include <linux/mm.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmaengine.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/gpio.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mtd/lpc32xx_slc.h>
41 #define LPC32XX_MODNAME "lpc32xx-nand"
43 /**********************************************************************
44 * SLC NAND controller register offsets
45 **********************************************************************/
47 #define SLC_DATA(x) (x + 0x000)
48 #define SLC_ADDR(x) (x + 0x004)
49 #define SLC_CMD(x) (x + 0x008)
50 #define SLC_STOP(x) (x + 0x00C)
51 #define SLC_CTRL(x) (x + 0x010)
52 #define SLC_CFG(x) (x + 0x014)
53 #define SLC_STAT(x) (x + 0x018)
54 #define SLC_INT_STAT(x) (x + 0x01C)
55 #define SLC_IEN(x) (x + 0x020)
56 #define SLC_ISR(x) (x + 0x024)
57 #define SLC_ICR(x) (x + 0x028)
58 #define SLC_TAC(x) (x + 0x02C)
59 #define SLC_TC(x) (x + 0x030)
60 #define SLC_ECC(x) (x + 0x034)
61 #define SLC_DMA_DATA(x) (x + 0x038)
63 /**********************************************************************
64 * slc_ctrl register definitions
65 **********************************************************************/
66 #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
67 #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
68 #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
70 /**********************************************************************
71 * slc_cfg register definitions
72 **********************************************************************/
73 #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
74 #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
75 #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
76 #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
77 #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
78 #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
80 /**********************************************************************
81 * slc_stat register definitions
82 **********************************************************************/
83 #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
84 #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
85 #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
87 /**********************************************************************
88 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
89 **********************************************************************/
90 #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
91 #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
93 /**********************************************************************
94 * slc_tac register definitions
95 **********************************************************************/
96 /* Computation of clock cycles on basis of controller and device clock rates */
97 #define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
99 /* Clock setting for RDY write sample wait time in 2*n clocks */
100 #define SLCTAC_WDR(n) (((n) & 0xF) << 28)
101 /* Write pulse width in clock cycles, 1 to 16 clocks */
102 #define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
103 /* Write hold time of control and data signals, 1 to 16 clocks */
104 #define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
105 /* Write setup time of control and data signals, 1 to 16 clocks */
106 #define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
107 /* Clock setting for RDY read sample wait time in 2*n clocks */
108 #define SLCTAC_RDR(n) (((n) & 0xF) << 12)
109 /* Read pulse width in clock cycles, 1 to 16 clocks */
110 #define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
111 /* Read hold time of control and data signals, 1 to 16 clocks */
112 #define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
113 /* Read setup time of control and data signals, 1 to 16 clocks */
114 #define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
116 /**********************************************************************
117 * slc_ecc register definitions
118 **********************************************************************/
119 /* ECC line party fetch macro */
120 #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
121 #define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
124 * DMA requires storage space for the DMA local buffer and the hardware ECC
125 * storage area. The DMA local buffer is only used if DMA mapping fails
126 * during runtime.
128 #define LPC32XX_DMA_DATA_SIZE 4096
129 #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
131 /* Number of bytes used for ECC stored in NAND per 256 bytes */
132 #define LPC32XX_SLC_DEV_ECC_BYTES 3
135 * If the NAND base clock frequency can't be fetched, this frequency will be
136 * used instead as the base. This rate is used to setup the timing registers
137 * used for NAND accesses.
139 #define LPC32XX_DEF_BUS_RATE 133250000
141 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
142 #define LPC32XX_DMA_TIMEOUT 100
145 * NAND ECC Layout for small page NAND devices
146 * Note: For large and huge page devices, the default layouts are used
148 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
149 struct mtd_oob_region *oobregion)
151 if (section)
152 return -ERANGE;
154 oobregion->length = 6;
155 oobregion->offset = 10;
157 return 0;
160 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
161 struct mtd_oob_region *oobregion)
163 if (section > 1)
164 return -ERANGE;
166 if (!section) {
167 oobregion->offset = 0;
168 oobregion->length = 4;
169 } else {
170 oobregion->offset = 6;
171 oobregion->length = 4;
174 return 0;
177 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
178 .ecc = lpc32xx_ooblayout_ecc,
179 .free = lpc32xx_ooblayout_free,
182 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
183 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
186 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
187 * Note: Large page devices used the default layout
189 static struct nand_bbt_descr bbt_smallpage_main_descr = {
190 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
191 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
192 .offs = 0,
193 .len = 4,
194 .veroffs = 6,
195 .maxblocks = 4,
196 .pattern = bbt_pattern
199 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
200 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
201 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
202 .offs = 0,
203 .len = 4,
204 .veroffs = 6,
205 .maxblocks = 4,
206 .pattern = mirror_pattern
210 * NAND platform configuration structure
212 struct lpc32xx_nand_cfg_slc {
213 uint32_t wdr_clks;
214 uint32_t wwidth;
215 uint32_t whold;
216 uint32_t wsetup;
217 uint32_t rdr_clks;
218 uint32_t rwidth;
219 uint32_t rhold;
220 uint32_t rsetup;
221 int wp_gpio;
222 struct mtd_partition *parts;
223 unsigned num_parts;
226 struct lpc32xx_nand_host {
227 struct nand_chip nand_chip;
228 struct lpc32xx_slc_platform_data *pdata;
229 struct clk *clk;
230 void __iomem *io_base;
231 struct lpc32xx_nand_cfg_slc *ncfg;
233 struct completion comp;
234 struct dma_chan *dma_chan;
235 uint32_t dma_buf_len;
236 struct dma_slave_config dma_slave_config;
237 struct scatterlist sgl;
240 * DMA and CPU addresses of ECC work area and data buffer
242 uint32_t *ecc_buf;
243 uint8_t *data_buf;
244 dma_addr_t io_base_dma;
247 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
249 uint32_t clkrate, tmp;
251 /* Reset SLC controller */
252 writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
253 udelay(1000);
255 /* Basic setup */
256 writel(0, SLC_CFG(host->io_base));
257 writel(0, SLC_IEN(host->io_base));
258 writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
259 SLC_ICR(host->io_base));
261 /* Get base clock for SLC block */
262 clkrate = clk_get_rate(host->clk);
263 if (clkrate == 0)
264 clkrate = LPC32XX_DEF_BUS_RATE;
266 /* Compute clock setup values */
267 tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
268 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
269 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
270 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
271 SLCTAC_RDR(host->ncfg->rdr_clks) |
272 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
273 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
274 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
275 writel(tmp, SLC_TAC(host->io_base));
279 * Hardware specific access to control lines
281 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
282 unsigned int ctrl)
284 uint32_t tmp;
285 struct nand_chip *chip = mtd_to_nand(mtd);
286 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
288 /* Does CE state need to be changed? */
289 tmp = readl(SLC_CFG(host->io_base));
290 if (ctrl & NAND_NCE)
291 tmp |= SLCCFG_CE_LOW;
292 else
293 tmp &= ~SLCCFG_CE_LOW;
294 writel(tmp, SLC_CFG(host->io_base));
296 if (cmd != NAND_CMD_NONE) {
297 if (ctrl & NAND_CLE)
298 writel(cmd, SLC_CMD(host->io_base));
299 else
300 writel(cmd, SLC_ADDR(host->io_base));
305 * Read the Device Ready pin
307 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
309 struct nand_chip *chip = mtd_to_nand(mtd);
310 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
311 int rdy = 0;
313 if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
314 rdy = 1;
316 return rdy;
320 * Enable NAND write protect
322 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
324 if (gpio_is_valid(host->ncfg->wp_gpio))
325 gpio_set_value(host->ncfg->wp_gpio, 0);
329 * Disable NAND write protect
331 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
333 if (gpio_is_valid(host->ncfg->wp_gpio))
334 gpio_set_value(host->ncfg->wp_gpio, 1);
338 * Prepares SLC for transfers with H/W ECC enabled
340 static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
342 /* Hardware ECC is enabled automatically in hardware as needed */
346 * Calculates the ECC for the data
348 static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
349 const unsigned char *buf,
350 unsigned char *code)
353 * ECC is calculated automatically in hardware during syndrome read
354 * and write operations, so it doesn't need to be calculated here.
356 return 0;
360 * Read a single byte from NAND device
362 static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
364 struct nand_chip *chip = mtd_to_nand(mtd);
365 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
367 return (uint8_t)readl(SLC_DATA(host->io_base));
371 * Simple device read without ECC
373 static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
375 struct nand_chip *chip = mtd_to_nand(mtd);
376 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
378 /* Direct device read with no ECC */
379 while (len-- > 0)
380 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
384 * Simple device write without ECC
386 static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
388 struct nand_chip *chip = mtd_to_nand(mtd);
389 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
391 /* Direct device write with no ECC */
392 while (len-- > 0)
393 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
397 * Read the OOB data from the device without ECC using FIFO method
399 static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
400 struct nand_chip *chip, int page)
402 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
406 * Write the OOB data to the device without ECC using FIFO method
408 static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
409 struct nand_chip *chip, int page)
411 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
412 mtd->oobsize);
416 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
418 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
420 int i;
422 for (i = 0; i < (count * 3); i += 3) {
423 uint32_t ce = ecc[i / 3];
424 ce = ~(ce << 2) & 0xFFFFFF;
425 spare[i + 2] = (uint8_t)(ce & 0xFF);
426 ce >>= 8;
427 spare[i + 1] = (uint8_t)(ce & 0xFF);
428 ce >>= 8;
429 spare[i] = (uint8_t)(ce & 0xFF);
433 static void lpc32xx_dma_complete_func(void *completion)
435 complete(completion);
438 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
439 void *mem, int len, enum dma_transfer_direction dir)
441 struct nand_chip *chip = mtd_to_nand(mtd);
442 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
443 struct dma_async_tx_descriptor *desc;
444 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
445 int res;
447 host->dma_slave_config.direction = dir;
448 host->dma_slave_config.src_addr = dma;
449 host->dma_slave_config.dst_addr = dma;
450 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
451 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
452 host->dma_slave_config.src_maxburst = 4;
453 host->dma_slave_config.dst_maxburst = 4;
454 /* DMA controller does flow control: */
455 host->dma_slave_config.device_fc = false;
456 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
457 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
458 return -ENXIO;
461 sg_init_one(&host->sgl, mem, len);
463 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
464 DMA_BIDIRECTIONAL);
465 if (res != 1) {
466 dev_err(mtd->dev.parent, "Failed to map sg list\n");
467 return -ENXIO;
469 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
470 flags);
471 if (!desc) {
472 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
473 goto out1;
476 init_completion(&host->comp);
477 desc->callback = lpc32xx_dma_complete_func;
478 desc->callback_param = &host->comp;
480 dmaengine_submit(desc);
481 dma_async_issue_pending(host->dma_chan);
483 wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
485 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
486 DMA_BIDIRECTIONAL);
488 return 0;
489 out1:
490 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
491 DMA_BIDIRECTIONAL);
492 return -ENXIO;
496 * DMA read/write transfers with ECC support
498 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
499 int read)
501 struct nand_chip *chip = mtd_to_nand(mtd);
502 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
503 int i, status = 0;
504 unsigned long timeout;
505 int res;
506 enum dma_transfer_direction dir =
507 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
508 uint8_t *dma_buf;
509 bool dma_mapped;
511 if ((void *)buf <= high_memory) {
512 dma_buf = buf;
513 dma_mapped = true;
514 } else {
515 dma_buf = host->data_buf;
516 dma_mapped = false;
517 if (!read)
518 memcpy(host->data_buf, buf, mtd->writesize);
521 if (read) {
522 writel(readl(SLC_CFG(host->io_base)) |
523 SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
524 SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
525 } else {
526 writel((readl(SLC_CFG(host->io_base)) |
527 SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
528 ~SLCCFG_DMA_DIR,
529 SLC_CFG(host->io_base));
532 /* Clear initial ECC */
533 writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
535 /* Transfer size is data area only */
536 writel(mtd->writesize, SLC_TC(host->io_base));
538 /* Start transfer in the NAND controller */
539 writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
540 SLC_CTRL(host->io_base));
542 for (i = 0; i < chip->ecc.steps; i++) {
543 /* Data */
544 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
545 dma_buf + i * chip->ecc.size,
546 mtd->writesize / chip->ecc.steps, dir);
547 if (res)
548 return res;
550 /* Always _read_ ECC */
551 if (i == chip->ecc.steps - 1)
552 break;
553 if (!read) /* ECC availability delayed on write */
554 udelay(10);
555 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
556 &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
557 if (res)
558 return res;
562 * According to NXP, the DMA can be finished here, but the NAND
563 * controller may still have buffered data. After porting to using the
564 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
565 * appears to be always true, according to tests. Keeping the check for
566 * safety reasons for now.
568 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
569 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
570 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
571 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
572 time_before(jiffies, timeout))
573 cpu_relax();
574 if (!time_before(jiffies, timeout)) {
575 dev_err(mtd->dev.parent, "FIFO held data too long\n");
576 status = -EIO;
580 /* Read last calculated ECC value */
581 if (!read)
582 udelay(10);
583 host->ecc_buf[chip->ecc.steps - 1] =
584 readl(SLC_ECC(host->io_base));
586 /* Flush DMA */
587 dmaengine_terminate_all(host->dma_chan);
589 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
590 readl(SLC_TC(host->io_base))) {
591 /* Something is left in the FIFO, something is wrong */
592 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
593 status = -EIO;
596 /* Stop DMA & HW ECC */
597 writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
598 SLC_CTRL(host->io_base));
599 writel(readl(SLC_CFG(host->io_base)) &
600 ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
601 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
603 if (!dma_mapped && read)
604 memcpy(buf, host->data_buf, mtd->writesize);
606 return status;
610 * Read the data and OOB data from the device, use ECC correction with the
611 * data, disable ECC for the OOB data
613 static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
614 struct nand_chip *chip, uint8_t *buf,
615 int oob_required, int page)
617 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
618 struct mtd_oob_region oobregion = { };
619 int stat, i, status, error;
620 uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
622 /* Issue read command */
623 nand_read_page_op(chip, page, 0, NULL, 0);
625 /* Read data and oob, calculate ECC */
626 status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
628 /* Get OOB data */
629 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
631 /* Convert to stored ECC format */
632 lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
634 /* Pointer to ECC data retrieved from NAND spare area */
635 error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
636 if (error)
637 return error;
639 oobecc = chip->oob_poi + oobregion.offset;
641 for (i = 0; i < chip->ecc.steps; i++) {
642 stat = chip->ecc.correct(mtd, buf, oobecc,
643 &tmpecc[i * chip->ecc.bytes]);
644 if (stat < 0)
645 mtd->ecc_stats.failed++;
646 else
647 mtd->ecc_stats.corrected += stat;
649 buf += chip->ecc.size;
650 oobecc += chip->ecc.bytes;
653 return status;
657 * Read the data and OOB data from the device, no ECC correction with the
658 * data or OOB data
660 static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
661 struct nand_chip *chip,
662 uint8_t *buf, int oob_required,
663 int page)
665 /* Issue read command */
666 nand_read_page_op(chip, page, 0, NULL, 0);
668 /* Raw reads can just use the FIFO interface */
669 chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
670 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
672 return 0;
676 * Write the data and OOB data to the device, use ECC with the data,
677 * disable ECC for the OOB data
679 static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
680 struct nand_chip *chip,
681 const uint8_t *buf,
682 int oob_required, int page)
684 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
685 struct mtd_oob_region oobregion = { };
686 uint8_t *pb;
687 int error;
689 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
691 /* Write data, calculate ECC on outbound data */
692 error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
693 if (error)
694 return error;
697 * The calculated ECC needs some manual work done to it before
698 * committing it to NAND. Process the calculated ECC and place
699 * the resultant values directly into the OOB buffer. */
700 error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
701 if (error)
702 return error;
704 pb = chip->oob_poi + oobregion.offset;
705 lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
707 /* Write ECC data to device */
708 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
710 return nand_prog_page_end_op(chip);
714 * Write the data and OOB data to the device, no ECC correction with the
715 * data or OOB data
717 static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
718 struct nand_chip *chip,
719 const uint8_t *buf,
720 int oob_required, int page)
722 /* Raw writes can just use the FIFO interface */
723 nand_prog_page_begin_op(chip, page, 0, buf,
724 chip->ecc.size * chip->ecc.steps);
725 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
727 return nand_prog_page_end_op(chip);
730 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
732 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
733 dma_cap_mask_t mask;
735 if (!host->pdata || !host->pdata->dma_filter) {
736 dev_err(mtd->dev.parent, "no DMA platform data\n");
737 return -ENOENT;
740 dma_cap_zero(mask);
741 dma_cap_set(DMA_SLAVE, mask);
742 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
743 "nand-slc");
744 if (!host->dma_chan) {
745 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
746 return -EBUSY;
749 return 0;
752 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
754 struct lpc32xx_nand_cfg_slc *ncfg;
755 struct device_node *np = dev->of_node;
757 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
758 if (!ncfg)
759 return NULL;
761 of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
762 of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
763 of_property_read_u32(np, "nxp,whold", &ncfg->whold);
764 of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
765 of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
766 of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
767 of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
768 of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
770 if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
771 !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
772 !ncfg->rhold || !ncfg->rsetup) {
773 dev_err(dev, "chip parameters not specified correctly\n");
774 return NULL;
777 ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
779 return ncfg;
783 * Probe for NAND controller
785 static int lpc32xx_nand_probe(struct platform_device *pdev)
787 struct lpc32xx_nand_host *host;
788 struct mtd_info *mtd;
789 struct nand_chip *chip;
790 struct resource *rc;
791 int res;
793 /* Allocate memory for the device structure (and zero it) */
794 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
795 if (!host)
796 return -ENOMEM;
798 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
799 host->io_base = devm_ioremap_resource(&pdev->dev, rc);
800 if (IS_ERR(host->io_base))
801 return PTR_ERR(host->io_base);
803 host->io_base_dma = rc->start;
804 if (pdev->dev.of_node)
805 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
806 if (!host->ncfg) {
807 dev_err(&pdev->dev,
808 "Missing or bad NAND config from device tree\n");
809 return -ENOENT;
811 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
812 return -EPROBE_DEFER;
813 if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
814 host->ncfg->wp_gpio, "NAND WP")) {
815 dev_err(&pdev->dev, "GPIO not available\n");
816 return -EBUSY;
818 lpc32xx_wp_disable(host);
820 host->pdata = dev_get_platdata(&pdev->dev);
822 chip = &host->nand_chip;
823 mtd = nand_to_mtd(chip);
824 nand_set_controller_data(chip, host);
825 nand_set_flash_node(chip, pdev->dev.of_node);
826 mtd->owner = THIS_MODULE;
827 mtd->dev.parent = &pdev->dev;
829 /* Get NAND clock */
830 host->clk = devm_clk_get(&pdev->dev, NULL);
831 if (IS_ERR(host->clk)) {
832 dev_err(&pdev->dev, "Clock failure\n");
833 res = -ENOENT;
834 goto err_exit1;
836 res = clk_prepare_enable(host->clk);
837 if (res)
838 goto err_exit1;
840 /* Set NAND IO addresses and command/ready functions */
841 chip->IO_ADDR_R = SLC_DATA(host->io_base);
842 chip->IO_ADDR_W = SLC_DATA(host->io_base);
843 chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
844 chip->dev_ready = lpc32xx_nand_device_ready;
845 chip->chip_delay = 20; /* 20us command delay time */
847 /* Init NAND controller */
848 lpc32xx_nand_setup(host);
850 platform_set_drvdata(pdev, host);
852 /* NAND callbacks for LPC32xx SLC hardware */
853 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
854 chip->read_byte = lpc32xx_nand_read_byte;
855 chip->read_buf = lpc32xx_nand_read_buf;
856 chip->write_buf = lpc32xx_nand_write_buf;
857 chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
858 chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
859 chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
860 chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
861 chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
862 chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
863 chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
864 chip->ecc.correct = nand_correct_data;
865 chip->ecc.strength = 1;
866 chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
869 * Allocate a large enough buffer for a single huge page plus
870 * extra space for the spare area and ECC storage area
872 host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
873 host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
874 GFP_KERNEL);
875 if (host->data_buf == NULL) {
876 res = -ENOMEM;
877 goto err_exit2;
880 res = lpc32xx_nand_dma_setup(host);
881 if (res) {
882 res = -EIO;
883 goto err_exit2;
886 /* Find NAND device */
887 res = nand_scan_ident(mtd, 1, NULL);
888 if (res)
889 goto err_exit3;
891 /* OOB and ECC CPU and DMA work areas */
892 host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
895 * Small page FLASH has a unique OOB layout, but large and huge
896 * page FLASH use the standard layout. Small page FLASH uses a
897 * custom BBT marker layout.
899 if (mtd->writesize <= 512)
900 mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
902 /* These sizes remain the same regardless of page size */
903 chip->ecc.size = 256;
904 chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
905 chip->ecc.prepad = chip->ecc.postpad = 0;
908 * Use a custom BBT marker setup for small page FLASH that
909 * won't interfere with the ECC layout. Large and huge page
910 * FLASH use the standard layout.
912 if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
913 mtd->writesize <= 512) {
914 chip->bbt_td = &bbt_smallpage_main_descr;
915 chip->bbt_md = &bbt_smallpage_mirror_descr;
919 * Fills out all the uninitialized function pointers with the defaults
921 res = nand_scan_tail(mtd);
922 if (res)
923 goto err_exit3;
925 mtd->name = "nxp_lpc3220_slc";
926 res = mtd_device_register(mtd, host->ncfg->parts,
927 host->ncfg->num_parts);
928 if (!res)
929 return res;
931 nand_release(mtd);
933 err_exit3:
934 dma_release_channel(host->dma_chan);
935 err_exit2:
936 clk_disable_unprepare(host->clk);
937 err_exit1:
938 lpc32xx_wp_enable(host);
940 return res;
944 * Remove NAND device.
946 static int lpc32xx_nand_remove(struct platform_device *pdev)
948 uint32_t tmp;
949 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
950 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
952 nand_release(mtd);
953 dma_release_channel(host->dma_chan);
955 /* Force CE high */
956 tmp = readl(SLC_CTRL(host->io_base));
957 tmp &= ~SLCCFG_CE_LOW;
958 writel(tmp, SLC_CTRL(host->io_base));
960 clk_disable_unprepare(host->clk);
961 lpc32xx_wp_enable(host);
963 return 0;
966 #ifdef CONFIG_PM
967 static int lpc32xx_nand_resume(struct platform_device *pdev)
969 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
970 int ret;
972 /* Re-enable NAND clock */
973 ret = clk_prepare_enable(host->clk);
974 if (ret)
975 return ret;
977 /* Fresh init of NAND controller */
978 lpc32xx_nand_setup(host);
980 /* Disable write protect */
981 lpc32xx_wp_disable(host);
983 return 0;
986 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
988 uint32_t tmp;
989 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
991 /* Force CE high */
992 tmp = readl(SLC_CTRL(host->io_base));
993 tmp &= ~SLCCFG_CE_LOW;
994 writel(tmp, SLC_CTRL(host->io_base));
996 /* Enable write protect for safety */
997 lpc32xx_wp_enable(host);
999 /* Disable clock */
1000 clk_disable_unprepare(host->clk);
1002 return 0;
1005 #else
1006 #define lpc32xx_nand_resume NULL
1007 #define lpc32xx_nand_suspend NULL
1008 #endif
1010 static const struct of_device_id lpc32xx_nand_match[] = {
1011 { .compatible = "nxp,lpc3220-slc" },
1012 { /* sentinel */ },
1014 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1016 static struct platform_driver lpc32xx_nand_driver = {
1017 .probe = lpc32xx_nand_probe,
1018 .remove = lpc32xx_nand_remove,
1019 .resume = lpc32xx_nand_resume,
1020 .suspend = lpc32xx_nand_suspend,
1021 .driver = {
1022 .name = LPC32XX_MODNAME,
1023 .of_match_table = lpc32xx_nand_match,
1027 module_platform_driver(lpc32xx_nand_driver);
1029 MODULE_LICENSE("GPL");
1030 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1031 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1032 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");