1 /* Renesas R-Car CAN FD device driver
3 * Copyright (C) 2015 Renesas Electronics Corp.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
11 /* The R-Car CAN FD controller can operate in either one of the below two modes
13 * - Classical CAN (CAN 2.0) only mode
15 * This driver puts the controller in CAN FD only mode by default. In this
16 * mode, the controller acts as a CAN FD node that can also interoperate with
19 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
20 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
21 * also required to switch modes.
23 * Note: The h/w manual register naming convention is clumsy and not acceptable
24 * to use as it is in the driver. However, those names are added as comments
25 * wherever it is modified to a readable name.
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/interrupt.h>
33 #include <linux/errno.h>
34 #include <linux/netdevice.h>
35 #include <linux/platform_device.h>
36 #include <linux/can/led.h>
37 #include <linux/can/dev.h>
38 #include <linux/clk.h>
40 #include <linux/of_device.h>
41 #include <linux/bitmap.h>
42 #include <linux/bitops.h>
43 #include <linux/iopoll.h>
45 #define RCANFD_DRV_NAME "rcar_canfd"
47 /* Global register bits */
50 #define RCANFD_GRMCFG_RCMC BIT(0)
52 /* RSCFDnCFDGCFG / RSCFDnGCFG */
53 #define RCANFD_GCFG_EEFE BIT(6)
54 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
55 #define RCANFD_GCFG_DCS BIT(4)
56 #define RCANFD_GCFG_DCE BIT(1)
57 #define RCANFD_GCFG_TPRI BIT(0)
59 /* RSCFDnCFDGCTR / RSCFDnGCTR */
60 #define RCANFD_GCTR_TSRST BIT(16)
61 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
62 #define RCANFD_GCTR_THLEIE BIT(10)
63 #define RCANFD_GCTR_MEIE BIT(9)
64 #define RCANFD_GCTR_DEIE BIT(8)
65 #define RCANFD_GCTR_GSLPR BIT(2)
66 #define RCANFD_GCTR_GMDC_MASK (0x3)
67 #define RCANFD_GCTR_GMDC_GOPM (0x0)
68 #define RCANFD_GCTR_GMDC_GRESET (0x1)
69 #define RCANFD_GCTR_GMDC_GTEST (0x2)
71 /* RSCFDnCFDGSTS / RSCFDnGSTS */
72 #define RCANFD_GSTS_GRAMINIT BIT(3)
73 #define RCANFD_GSTS_GSLPSTS BIT(2)
74 #define RCANFD_GSTS_GHLTSTS BIT(1)
75 #define RCANFD_GSTS_GRSTSTS BIT(0)
76 /* Non-operational status */
77 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
79 /* RSCFDnCFDGERFL / RSCFDnGERFL */
80 #define RCANFD_GERFL_EEF1 BIT(17)
81 #define RCANFD_GERFL_EEF0 BIT(16)
82 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
83 #define RCANFD_GERFL_THLES BIT(2)
84 #define RCANFD_GERFL_MES BIT(1)
85 #define RCANFD_GERFL_DEF BIT(0)
87 #define RCANFD_GERFL_ERR(gpriv, x) ((x) & (RCANFD_GERFL_EEF1 |\
88 RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\
90 RCANFD_GERFL_CMPOF : 0)))
92 /* AFL Rx rules registers */
94 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
95 #define RCANFD_GAFLCFG_SETRNC(n, x) (((x) & 0xff) << (24 - n * 8))
96 #define RCANFD_GAFLCFG_GETRNC(n, x) (((x) >> (24 - n * 8)) & 0xff)
98 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
99 #define RCANFD_GAFLECTR_AFLDAE BIT(8)
100 #define RCANFD_GAFLECTR_AFLPN(x) ((x) & 0x1f)
102 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
103 #define RCANFD_GAFLID_GAFLLB BIT(29)
105 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
106 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
108 /* Channel register bits */
110 /* RSCFDnCmCFG - Classical CAN only */
111 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
112 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
113 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
114 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
116 /* RSCFDnCFDCmNCFG - CAN FD only */
117 #define RCANFD_NCFG_NTSEG2(x) (((x) & 0x1f) << 24)
118 #define RCANFD_NCFG_NTSEG1(x) (((x) & 0x7f) << 16)
119 #define RCANFD_NCFG_NSJW(x) (((x) & 0x1f) << 11)
120 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
122 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
123 #define RCANFD_CCTR_CTME BIT(24)
124 #define RCANFD_CCTR_ERRD BIT(23)
125 #define RCANFD_CCTR_BOM_MASK (0x3 << 21)
126 #define RCANFD_CCTR_BOM_ISO (0x0 << 21)
127 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
128 #define RCANFD_CCTR_BOM_BEND (0x2 << 21)
129 #define RCANFD_CCTR_TDCVFIE BIT(19)
130 #define RCANFD_CCTR_SOCOIE BIT(18)
131 #define RCANFD_CCTR_EOCOIE BIT(17)
132 #define RCANFD_CCTR_TAIE BIT(16)
133 #define RCANFD_CCTR_ALIE BIT(15)
134 #define RCANFD_CCTR_BLIE BIT(14)
135 #define RCANFD_CCTR_OLIE BIT(13)
136 #define RCANFD_CCTR_BORIE BIT(12)
137 #define RCANFD_CCTR_BOEIE BIT(11)
138 #define RCANFD_CCTR_EPIE BIT(10)
139 #define RCANFD_CCTR_EWIE BIT(9)
140 #define RCANFD_CCTR_BEIE BIT(8)
141 #define RCANFD_CCTR_CSLPR BIT(2)
142 #define RCANFD_CCTR_CHMDC_MASK (0x3)
143 #define RCANFD_CCTR_CHDMC_COPM (0x0)
144 #define RCANFD_CCTR_CHDMC_CRESET (0x1)
145 #define RCANFD_CCTR_CHDMC_CHLT (0x2)
147 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
148 #define RCANFD_CSTS_COMSTS BIT(7)
149 #define RCANFD_CSTS_RECSTS BIT(6)
150 #define RCANFD_CSTS_TRMSTS BIT(5)
151 #define RCANFD_CSTS_BOSTS BIT(4)
152 #define RCANFD_CSTS_EPSTS BIT(3)
153 #define RCANFD_CSTS_SLPSTS BIT(2)
154 #define RCANFD_CSTS_HLTSTS BIT(1)
155 #define RCANFD_CSTS_CRSTSTS BIT(0)
157 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
158 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
160 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
161 #define RCANFD_CERFL_ADERR BIT(14)
162 #define RCANFD_CERFL_B0ERR BIT(13)
163 #define RCANFD_CERFL_B1ERR BIT(12)
164 #define RCANFD_CERFL_CERR BIT(11)
165 #define RCANFD_CERFL_AERR BIT(10)
166 #define RCANFD_CERFL_FERR BIT(9)
167 #define RCANFD_CERFL_SERR BIT(8)
168 #define RCANFD_CERFL_ALF BIT(7)
169 #define RCANFD_CERFL_BLF BIT(6)
170 #define RCANFD_CERFL_OVLF BIT(5)
171 #define RCANFD_CERFL_BORF BIT(4)
172 #define RCANFD_CERFL_BOEF BIT(3)
173 #define RCANFD_CERFL_EPF BIT(2)
174 #define RCANFD_CERFL_EWF BIT(1)
175 #define RCANFD_CERFL_BEF BIT(0)
177 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
179 /* RSCFDnCFDCmDCFG */
180 #define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24)
181 #define RCANFD_DCFG_DTSEG2(x) (((x) & 0x7) << 20)
182 #define RCANFD_DCFG_DTSEG1(x) (((x) & 0xf) << 16)
183 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
185 /* RSCFDnCFDCmFDCFG */
186 #define RCANFD_FDCFG_TDCE BIT(9)
187 #define RCANFD_FDCFG_TDCOC BIT(8)
188 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
191 #define RCANFD_RFCC_RFIM BIT(12)
192 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
193 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
194 #define RCANFD_RFCC_RFIE BIT(1)
195 #define RCANFD_RFCC_RFE BIT(0)
197 /* RSCFDnCFDRFSTSx */
198 #define RCANFD_RFSTS_RFIF BIT(3)
199 #define RCANFD_RFSTS_RFMLT BIT(2)
200 #define RCANFD_RFSTS_RFFLL BIT(1)
201 #define RCANFD_RFSTS_RFEMP BIT(0)
204 #define RCANFD_RFID_RFIDE BIT(31)
205 #define RCANFD_RFID_RFRTR BIT(30)
207 /* RSCFDnCFDRFPTRx */
208 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
209 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
210 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
212 /* RSCFDnCFDRFFDSTSx */
213 #define RCANFD_RFFDSTS_RFFDF BIT(2)
214 #define RCANFD_RFFDSTS_RFBRS BIT(1)
215 #define RCANFD_RFFDSTS_RFESI BIT(0)
217 /* Common FIFO bits */
220 #define RCANFD_CFCC_CFTML(x) (((x) & 0xf) << 20)
221 #define RCANFD_CFCC_CFM(x) (((x) & 0x3) << 16)
222 #define RCANFD_CFCC_CFIM BIT(12)
223 #define RCANFD_CFCC_CFDC(x) (((x) & 0x7) << 8)
224 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
225 #define RCANFD_CFCC_CFTXIE BIT(2)
226 #define RCANFD_CFCC_CFE BIT(0)
228 /* RSCFDnCFDCFSTSk */
229 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
230 #define RCANFD_CFSTS_CFTXIF BIT(4)
231 #define RCANFD_CFSTS_CFMLT BIT(2)
232 #define RCANFD_CFSTS_CFFLL BIT(1)
233 #define RCANFD_CFSTS_CFEMP BIT(0)
236 #define RCANFD_CFID_CFIDE BIT(31)
237 #define RCANFD_CFID_CFRTR BIT(30)
238 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
240 /* RSCFDnCFDCFPTRk */
241 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
242 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
243 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
245 /* RSCFDnCFDCFFDCSTSk */
246 #define RCANFD_CFFDCSTS_CFFDF BIT(2)
247 #define RCANFD_CFFDCSTS_CFBRS BIT(1)
248 #define RCANFD_CFFDCSTS_CFESI BIT(0)
250 /* This controller supports either Classical CAN only mode or CAN FD only mode.
251 * These modes are supported in two separate set of register maps & names.
252 * However, some of the register offsets are common for both modes. Those
253 * offsets are listed below as Common registers.
255 * The CAN FD only mode specific registers & Classical CAN only mode specific
256 * registers are listed separately. Their register names starts with
257 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
260 /* Common registers */
262 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
263 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
264 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
265 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
266 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
267 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
268 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
269 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
271 /* RSCFDnCFDGCFG / RSCFDnGCFG */
272 #define RCANFD_GCFG (0x0084)
273 /* RSCFDnCFDGCTR / RSCFDnGCTR */
274 #define RCANFD_GCTR (0x0088)
275 /* RSCFDnCFDGCTS / RSCFDnGCTS */
276 #define RCANFD_GSTS (0x008c)
277 /* RSCFDnCFDGERFL / RSCFDnGERFL */
278 #define RCANFD_GERFL (0x0090)
279 /* RSCFDnCFDGTSC / RSCFDnGTSC */
280 #define RCANFD_GTSC (0x0094)
281 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
282 #define RCANFD_GAFLECTR (0x0098)
283 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
284 #define RCANFD_GAFLCFG0 (0x009c)
285 /* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */
286 #define RCANFD_GAFLCFG1 (0x00a0)
287 /* RSCFDnCFDRMNB / RSCFDnRMNB */
288 #define RCANFD_RMNB (0x00a4)
289 /* RSCFDnCFDRMND / RSCFDnRMND */
290 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
292 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
293 #define RCANFD_RFCC(x) (0x00b8 + (0x04 * (x)))
294 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
295 #define RCANFD_RFSTS(x) (0x00d8 + (0x04 * (x)))
296 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
297 #define RCANFD_RFPCTR(x) (0x00f8 + (0x04 * (x)))
299 /* Common FIFO Control registers */
301 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
302 #define RCANFD_CFCC(ch, idx) (0x0118 + (0x0c * (ch)) + \
304 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
305 #define RCANFD_CFSTS(ch, idx) (0x0178 + (0x0c * (ch)) + \
307 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
308 #define RCANFD_CFPCTR(ch, idx) (0x01d8 + (0x0c * (ch)) + \
311 /* RSCFDnCFDFESTS / RSCFDnFESTS */
312 #define RCANFD_FESTS (0x0238)
313 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
314 #define RCANFD_FFSTS (0x023c)
315 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
316 #define RCANFD_FMSTS (0x0240)
317 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
318 #define RCANFD_RFISTS (0x0244)
319 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
320 #define RCANFD_CFRISTS (0x0248)
321 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
322 #define RCANFD_CFTISTS (0x024c)
324 /* RSCFDnCFDTMCp / RSCFDnTMCp */
325 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
326 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
327 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
329 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
330 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
331 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
332 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
333 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
334 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
335 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
336 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
337 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
338 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
340 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
341 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
342 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
343 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
344 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
345 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
347 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
348 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
349 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
350 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
351 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
352 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
354 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
355 #define RCANFD_GTINTSTS0 (0x0460)
356 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
357 #define RCANFD_GTINTSTS1 (0x0464)
358 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
359 #define RCANFD_GTSTCFG (0x0468)
360 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
361 #define RCANFD_GTSTCTR (0x046c)
362 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
363 #define RCANFD_GLOCKK (0x047c)
364 /* RSCFDnCFDGRMCFG */
365 #define RCANFD_GRMCFG (0x04fc)
367 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
368 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
369 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
370 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
371 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
372 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
373 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
374 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
376 /* Classical CAN only mode register map */
378 /* RSCFDnGAFLXXXj offset */
379 #define RCANFD_C_GAFL_OFFSET (0x0500)
381 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
382 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
383 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
384 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
385 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
387 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
388 #define RCANFD_C_RFOFFSET (0x0e00)
389 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
390 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + \
392 #define RCANFD_C_RFDF(x, df) (RCANFD_C_RFOFFSET + 0x08 + \
393 (0x10 * (x)) + (0x04 * (df)))
395 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
396 #define RCANFD_C_CFOFFSET (0x0e80)
397 #define RCANFD_C_CFID(ch, idx) (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \
399 #define RCANFD_C_CFPTR(ch, idx) (RCANFD_C_CFOFFSET + 0x04 + \
400 (0x30 * (ch)) + (0x10 * (idx)))
401 #define RCANFD_C_CFDF(ch, idx, df) (RCANFD_C_CFOFFSET + 0x08 + \
402 (0x30 * (ch)) + (0x10 * (idx)) + \
405 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
406 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
407 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
408 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
409 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
412 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
414 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
416 /* CAN FD mode specific register map */
418 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
419 #define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m)))
420 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
421 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
422 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
423 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
425 /* RSCFDnCFDGAFLXXXj offset */
426 #define RCANFD_F_GAFL_OFFSET (0x1000)
428 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
429 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
430 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
431 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
432 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
434 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
435 #define RCANFD_F_RFOFFSET (0x3000)
436 #define RCANFD_F_RFID(x) (RCANFD_F_RFOFFSET + (0x80 * (x)))
437 #define RCANFD_F_RFPTR(x) (RCANFD_F_RFOFFSET + 0x04 + \
439 #define RCANFD_F_RFFDSTS(x) (RCANFD_F_RFOFFSET + 0x08 + \
441 #define RCANFD_F_RFDF(x, df) (RCANFD_F_RFOFFSET + 0x0c + \
442 (0x80 * (x)) + (0x04 * (df)))
444 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
445 #define RCANFD_F_CFOFFSET (0x3400)
446 #define RCANFD_F_CFID(ch, idx) (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \
448 #define RCANFD_F_CFPTR(ch, idx) (RCANFD_F_CFOFFSET + 0x04 + \
449 (0x180 * (ch)) + (0x80 * (idx)))
450 #define RCANFD_F_CFFDCSTS(ch, idx) (RCANFD_F_CFOFFSET + 0x08 + \
451 (0x180 * (ch)) + (0x80 * (idx)))
452 #define RCANFD_F_CFDF(ch, idx, df) (RCANFD_F_CFOFFSET + 0x0c + \
453 (0x180 * (ch)) + (0x80 * (idx)) + \
456 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
457 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
458 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
459 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
460 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
462 /* RSCFDnCFDTHLACCm */
463 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
464 /* RSCFDnCFDRPGACCr */
465 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
468 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
469 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
471 #define RCANFD_NUM_CHANNELS 2 /* Two channels max */
472 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
474 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
475 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
477 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
478 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
479 * number is added to RFFIFO index.
481 #define RCANFD_RFFIFO_IDX 0
483 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
484 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
486 #define RCANFD_CFFIFO_IDX 0
488 /* fCAN clock select register settings */
489 enum rcar_canfd_fcanclk
{
490 RCANFD_CANFDCLK
= 0, /* CANFD clock */
491 RCANFD_EXTCLK
, /* Externally input clock */
494 struct rcar_canfd_global
;
496 /* Channel priv data */
497 struct rcar_canfd_channel
{
498 struct can_priv can
; /* Must be the first member */
499 struct net_device
*ndev
;
500 struct rcar_canfd_global
*gpriv
; /* Controller reference */
501 void __iomem
*base
; /* Register base address */
502 struct napi_struct napi
;
503 u8 tx_len
[RCANFD_FIFO_DEPTH
]; /* For net stats */
504 u32 tx_head
; /* Incremented on xmit */
505 u32 tx_tail
; /* Incremented on xmit done */
506 u32 channel
; /* Channel number */
507 spinlock_t tx_lock
; /* To protect tx path */
510 /* Global priv data */
511 struct rcar_canfd_global
{
512 struct rcar_canfd_channel
*ch
[RCANFD_NUM_CHANNELS
];
513 void __iomem
*base
; /* Register base address */
514 struct platform_device
*pdev
; /* Respective platform device */
515 struct clk
*clkp
; /* Peripheral clock */
516 struct clk
*can_clk
; /* fCAN clock */
517 enum rcar_canfd_fcanclk fcan
; /* CANFD or Ext clock */
518 unsigned long channels_mask
; /* Enabled channels mask */
519 bool fdmode
; /* CAN FD or Classical CAN only mode */
522 /* CAN FD mode nominal rate constants */
523 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const
= {
524 .name
= RCANFD_DRV_NAME
,
535 /* CAN FD mode data rate constants */
536 static const struct can_bittiming_const rcar_canfd_data_bittiming_const
= {
537 .name
= RCANFD_DRV_NAME
,
548 /* Classical CAN mode bitrate constants */
549 static const struct can_bittiming_const rcar_canfd_bittiming_const
= {
550 .name
= RCANFD_DRV_NAME
,
561 /* Helper functions */
562 static inline void rcar_canfd_update(u32 mask
, u32 val
, u32 __iomem
*reg
)
564 u32 data
= readl(reg
);
567 data
|= (val
& mask
);
571 static inline u32
rcar_canfd_read(void __iomem
*base
, u32 offset
)
573 return readl(base
+ (offset
));
576 static inline void rcar_canfd_write(void __iomem
*base
, u32 offset
, u32 val
)
578 writel(val
, base
+ (offset
));
581 static void rcar_canfd_set_bit(void __iomem
*base
, u32 reg
, u32 val
)
583 rcar_canfd_update(val
, val
, base
+ (reg
));
586 static void rcar_canfd_clear_bit(void __iomem
*base
, u32 reg
, u32 val
)
588 rcar_canfd_update(val
, 0, base
+ (reg
));
591 static void rcar_canfd_update_bit(void __iomem
*base
, u32 reg
,
594 rcar_canfd_update(mask
, val
, base
+ (reg
));
597 static void rcar_canfd_get_data(struct rcar_canfd_channel
*priv
,
598 struct canfd_frame
*cf
, u32 off
)
602 lwords
= DIV_ROUND_UP(cf
->len
, sizeof(u32
));
603 for (i
= 0; i
< lwords
; i
++)
604 *((u32
*)cf
->data
+ i
) =
605 rcar_canfd_read(priv
->base
, off
+ (i
* sizeof(u32
)));
608 static void rcar_canfd_put_data(struct rcar_canfd_channel
*priv
,
609 struct canfd_frame
*cf
, u32 off
)
613 lwords
= DIV_ROUND_UP(cf
->len
, sizeof(u32
));
614 for (i
= 0; i
< lwords
; i
++)
615 rcar_canfd_write(priv
->base
, off
+ (i
* sizeof(u32
)),
616 *((u32
*)cf
->data
+ i
));
619 static void rcar_canfd_tx_failure_cleanup(struct net_device
*ndev
)
623 for (i
= 0; i
< RCANFD_FIFO_DEPTH
; i
++)
624 can_free_echo_skb(ndev
, i
);
627 static int rcar_canfd_reset_controller(struct rcar_canfd_global
*gpriv
)
632 /* Check RAMINIT flag as CAN RAM initialization takes place
633 * after the MCU reset
635 err
= readl_poll_timeout((gpriv
->base
+ RCANFD_GSTS
), sts
,
636 !(sts
& RCANFD_GSTS_GRAMINIT
), 2, 500000);
638 dev_dbg(&gpriv
->pdev
->dev
, "global raminit failed\n");
642 /* Transition to Global Reset mode */
643 rcar_canfd_clear_bit(gpriv
->base
, RCANFD_GCTR
, RCANFD_GCTR_GSLPR
);
644 rcar_canfd_update_bit(gpriv
->base
, RCANFD_GCTR
,
645 RCANFD_GCTR_GMDC_MASK
, RCANFD_GCTR_GMDC_GRESET
);
647 /* Ensure Global reset mode */
648 err
= readl_poll_timeout((gpriv
->base
+ RCANFD_GSTS
), sts
,
649 (sts
& RCANFD_GSTS_GRSTSTS
), 2, 500000);
651 dev_dbg(&gpriv
->pdev
->dev
, "global reset failed\n");
655 /* Reset Global error flags */
656 rcar_canfd_write(gpriv
->base
, RCANFD_GERFL
, 0x0);
658 /* Set the controller into appropriate mode */
660 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GRMCFG
,
663 rcar_canfd_clear_bit(gpriv
->base
, RCANFD_GRMCFG
,
666 /* Transition all Channels to reset mode */
667 for_each_set_bit(ch
, &gpriv
->channels_mask
, RCANFD_NUM_CHANNELS
) {
668 rcar_canfd_clear_bit(gpriv
->base
,
669 RCANFD_CCTR(ch
), RCANFD_CCTR_CSLPR
);
671 rcar_canfd_update_bit(gpriv
->base
, RCANFD_CCTR(ch
),
672 RCANFD_CCTR_CHMDC_MASK
,
673 RCANFD_CCTR_CHDMC_CRESET
);
675 /* Ensure Channel reset mode */
676 err
= readl_poll_timeout((gpriv
->base
+ RCANFD_CSTS(ch
)), sts
,
677 (sts
& RCANFD_CSTS_CRSTSTS
),
680 dev_dbg(&gpriv
->pdev
->dev
,
681 "channel %u reset failed\n", ch
);
688 static void rcar_canfd_configure_controller(struct rcar_canfd_global
*gpriv
)
692 /* Global configuration settings */
694 /* ECC Error flag Enable */
695 cfg
= RCANFD_GCFG_EEFE
;
698 /* Truncate payload to configured message size RFPLS */
699 cfg
|= RCANFD_GCFG_CMPOC
;
701 /* Set External Clock if selected */
702 if (gpriv
->fcan
!= RCANFD_CANFDCLK
)
703 cfg
|= RCANFD_GCFG_DCS
;
705 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GCFG
, cfg
);
707 /* Channel configuration settings */
708 for_each_set_bit(ch
, &gpriv
->channels_mask
, RCANFD_NUM_CHANNELS
) {
709 rcar_canfd_set_bit(gpriv
->base
, RCANFD_CCTR(ch
),
711 rcar_canfd_update_bit(gpriv
->base
, RCANFD_CCTR(ch
),
712 RCANFD_CCTR_BOM_MASK
,
713 RCANFD_CCTR_BOM_BENTRY
);
717 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global
*gpriv
,
721 int offset
, start
, page
, num_rules
= RCANFD_CHANNEL_NUMRULES
;
722 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
725 start
= 0; /* Channel 0 always starts from 0th rule */
727 /* Get number of Channel 0 rules and adjust */
728 cfg
= rcar_canfd_read(gpriv
->base
, RCANFD_GAFLCFG0
);
729 start
= RCANFD_GAFLCFG_GETRNC(0, cfg
);
732 /* Enable write access to entry */
733 page
= RCANFD_GAFL_PAGENUM(start
);
734 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GAFLECTR
,
735 (RCANFD_GAFLECTR_AFLPN(page
) |
736 RCANFD_GAFLECTR_AFLDAE
));
738 /* Write number of rules for channel */
739 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GAFLCFG0
,
740 RCANFD_GAFLCFG_SETRNC(ch
, num_rules
));
742 offset
= RCANFD_F_GAFL_OFFSET
;
744 offset
= RCANFD_C_GAFL_OFFSET
;
747 rcar_canfd_write(gpriv
->base
, RCANFD_GAFLID(offset
, start
), 0);
748 /* IDE or RTR is not considered for matching */
749 rcar_canfd_write(gpriv
->base
, RCANFD_GAFLM(offset
, start
), 0);
750 /* Any data length accepted */
751 rcar_canfd_write(gpriv
->base
, RCANFD_GAFLP0(offset
, start
), 0);
752 /* Place the msg in corresponding Rx FIFO entry */
753 rcar_canfd_write(gpriv
->base
, RCANFD_GAFLP1(offset
, start
),
754 RCANFD_GAFLP1_GAFLFDP(ridx
));
756 /* Disable write access to page */
757 rcar_canfd_clear_bit(gpriv
->base
,
758 RCANFD_GAFLECTR
, RCANFD_GAFLECTR_AFLDAE
);
761 static void rcar_canfd_configure_rx(struct rcar_canfd_global
*gpriv
, u32 ch
)
763 /* Rx FIFO is used for reception */
767 /* Select Rx FIFO based on channel */
768 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
770 rfdc
= 2; /* b010 - 8 messages Rx FIFO depth */
772 rfpls
= 7; /* b111 - Max 64 bytes payload */
774 rfpls
= 0; /* b000 - Max 8 bytes payload */
776 cfg
= (RCANFD_RFCC_RFIM
| RCANFD_RFCC_RFDC(rfdc
) |
777 RCANFD_RFCC_RFPLS(rfpls
) | RCANFD_RFCC_RFIE
);
778 rcar_canfd_write(gpriv
->base
, RCANFD_RFCC(ridx
), cfg
);
781 static void rcar_canfd_configure_tx(struct rcar_canfd_global
*gpriv
, u32 ch
)
783 /* Tx/Rx(Common) FIFO configured in Tx mode is
784 * used for transmission
786 * Each channel has 3 Common FIFO dedicated to them.
787 * Use the 1st (index 0) out of 3
790 u16 cftml
, cfm
, cfdc
, cfpls
;
792 cftml
= 0; /* 0th buffer */
793 cfm
= 1; /* b01 - Transmit mode */
794 cfdc
= 2; /* b010 - 8 messages Tx FIFO depth */
796 cfpls
= 7; /* b111 - Max 64 bytes payload */
798 cfpls
= 0; /* b000 - Max 8 bytes payload */
800 cfg
= (RCANFD_CFCC_CFTML(cftml
) | RCANFD_CFCC_CFM(cfm
) |
801 RCANFD_CFCC_CFIM
| RCANFD_CFCC_CFDC(cfdc
) |
802 RCANFD_CFCC_CFPLS(cfpls
) | RCANFD_CFCC_CFTXIE
);
803 rcar_canfd_write(gpriv
->base
, RCANFD_CFCC(ch
, RCANFD_CFFIFO_IDX
), cfg
);
806 /* Clear FD mode specific control/status register */
807 rcar_canfd_write(gpriv
->base
,
808 RCANFD_F_CFFDCSTS(ch
, RCANFD_CFFIFO_IDX
), 0);
811 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global
*gpriv
)
815 /* Clear any stray error interrupt flags */
816 rcar_canfd_write(gpriv
->base
, RCANFD_GERFL
, 0);
818 /* Global interrupts setup */
819 ctr
= RCANFD_GCTR_MEIE
;
821 ctr
|= RCANFD_GCTR_CFMPOFIE
;
823 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GCTR
, ctr
);
826 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
829 /* Disable all interrupts */
830 rcar_canfd_write(gpriv
->base
, RCANFD_GCTR
, 0);
832 /* Clear any stray error interrupt flags */
833 rcar_canfd_write(gpriv
->base
, RCANFD_GERFL
, 0);
836 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
839 u32 ctr
, ch
= priv
->channel
;
841 /* Clear any stray error flags */
842 rcar_canfd_write(priv
->base
, RCANFD_CERFL(ch
), 0);
844 /* Channel interrupts setup */
845 ctr
= (RCANFD_CCTR_TAIE
|
846 RCANFD_CCTR_ALIE
| RCANFD_CCTR_BLIE
|
847 RCANFD_CCTR_OLIE
| RCANFD_CCTR_BORIE
|
848 RCANFD_CCTR_BOEIE
| RCANFD_CCTR_EPIE
|
849 RCANFD_CCTR_EWIE
| RCANFD_CCTR_BEIE
);
850 rcar_canfd_set_bit(priv
->base
, RCANFD_CCTR(ch
), ctr
);
853 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
856 u32 ctr
, ch
= priv
->channel
;
858 ctr
= (RCANFD_CCTR_TAIE
|
859 RCANFD_CCTR_ALIE
| RCANFD_CCTR_BLIE
|
860 RCANFD_CCTR_OLIE
| RCANFD_CCTR_BORIE
|
861 RCANFD_CCTR_BOEIE
| RCANFD_CCTR_EPIE
|
862 RCANFD_CCTR_EWIE
| RCANFD_CCTR_BEIE
);
863 rcar_canfd_clear_bit(priv
->base
, RCANFD_CCTR(ch
), ctr
);
865 /* Clear any stray error flags */
866 rcar_canfd_write(priv
->base
, RCANFD_CERFL(ch
), 0);
869 static void rcar_canfd_global_error(struct net_device
*ndev
)
871 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
872 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
873 struct net_device_stats
*stats
= &ndev
->stats
;
874 u32 ch
= priv
->channel
;
876 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
878 gerfl
= rcar_canfd_read(priv
->base
, RCANFD_GERFL
);
879 if ((gerfl
& RCANFD_GERFL_EEF0
) && (ch
== 0)) {
880 netdev_dbg(ndev
, "Ch0: ECC Error flag\n");
883 if ((gerfl
& RCANFD_GERFL_EEF1
) && (ch
== 1)) {
884 netdev_dbg(ndev
, "Ch1: ECC Error flag\n");
887 if (gerfl
& RCANFD_GERFL_MES
) {
888 sts
= rcar_canfd_read(priv
->base
,
889 RCANFD_CFSTS(ch
, RCANFD_CFFIFO_IDX
));
890 if (sts
& RCANFD_CFSTS_CFMLT
) {
891 netdev_dbg(ndev
, "Tx Message Lost flag\n");
893 rcar_canfd_write(priv
->base
,
894 RCANFD_CFSTS(ch
, RCANFD_CFFIFO_IDX
),
895 sts
& ~RCANFD_CFSTS_CFMLT
);
898 sts
= rcar_canfd_read(priv
->base
, RCANFD_RFSTS(ridx
));
899 if (sts
& RCANFD_RFSTS_RFMLT
) {
900 netdev_dbg(ndev
, "Rx Message Lost flag\n");
902 rcar_canfd_write(priv
->base
, RCANFD_RFSTS(ridx
),
903 sts
& ~RCANFD_RFSTS_RFMLT
);
906 if (gpriv
->fdmode
&& gerfl
& RCANFD_GERFL_CMPOF
) {
907 /* Message Lost flag will be set for respective channel
908 * when this condition happens with counters and flags
911 netdev_dbg(ndev
, "global payload overflow interrupt\n");
914 /* Clear all global error interrupts. Only affected channels bits
917 rcar_canfd_write(priv
->base
, RCANFD_GERFL
, 0);
920 static void rcar_canfd_error(struct net_device
*ndev
, u32 cerfl
,
921 u16 txerr
, u16 rxerr
)
923 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
924 struct net_device_stats
*stats
= &ndev
->stats
;
925 struct can_frame
*cf
;
927 u32 ch
= priv
->channel
;
929 netdev_dbg(ndev
, "ch erfl %x txerr %u rxerr %u\n", cerfl
, txerr
, rxerr
);
931 /* Propagate the error condition to the CAN stack */
932 skb
= alloc_can_err_skb(ndev
, &cf
);
938 /* Channel error interrupts */
939 if (cerfl
& RCANFD_CERFL_BEF
) {
940 netdev_dbg(ndev
, "Bus error\n");
941 cf
->can_id
|= CAN_ERR_BUSERROR
| CAN_ERR_PROT
;
942 cf
->data
[2] = CAN_ERR_PROT_UNSPEC
;
943 priv
->can
.can_stats
.bus_error
++;
945 if (cerfl
& RCANFD_CERFL_ADERR
) {
946 netdev_dbg(ndev
, "ACK Delimiter Error\n");
948 cf
->data
[3] |= CAN_ERR_PROT_LOC_ACK_DEL
;
950 if (cerfl
& RCANFD_CERFL_B0ERR
) {
951 netdev_dbg(ndev
, "Bit Error (dominant)\n");
953 cf
->data
[2] |= CAN_ERR_PROT_BIT0
;
955 if (cerfl
& RCANFD_CERFL_B1ERR
) {
956 netdev_dbg(ndev
, "Bit Error (recessive)\n");
958 cf
->data
[2] |= CAN_ERR_PROT_BIT1
;
960 if (cerfl
& RCANFD_CERFL_CERR
) {
961 netdev_dbg(ndev
, "CRC Error\n");
963 cf
->data
[3] |= CAN_ERR_PROT_LOC_CRC_SEQ
;
965 if (cerfl
& RCANFD_CERFL_AERR
) {
966 netdev_dbg(ndev
, "ACK Error\n");
968 cf
->can_id
|= CAN_ERR_ACK
;
969 cf
->data
[3] |= CAN_ERR_PROT_LOC_ACK
;
971 if (cerfl
& RCANFD_CERFL_FERR
) {
972 netdev_dbg(ndev
, "Form Error\n");
974 cf
->data
[2] |= CAN_ERR_PROT_FORM
;
976 if (cerfl
& RCANFD_CERFL_SERR
) {
977 netdev_dbg(ndev
, "Stuff Error\n");
979 cf
->data
[2] |= CAN_ERR_PROT_STUFF
;
981 if (cerfl
& RCANFD_CERFL_ALF
) {
982 netdev_dbg(ndev
, "Arbitration lost Error\n");
983 priv
->can
.can_stats
.arbitration_lost
++;
984 cf
->can_id
|= CAN_ERR_LOSTARB
;
985 cf
->data
[0] |= CAN_ERR_LOSTARB_UNSPEC
;
987 if (cerfl
& RCANFD_CERFL_BLF
) {
988 netdev_dbg(ndev
, "Bus Lock Error\n");
990 cf
->can_id
|= CAN_ERR_BUSERROR
;
992 if (cerfl
& RCANFD_CERFL_EWF
) {
993 netdev_dbg(ndev
, "Error warning interrupt\n");
994 priv
->can
.state
= CAN_STATE_ERROR_WARNING
;
995 priv
->can
.can_stats
.error_warning
++;
996 cf
->can_id
|= CAN_ERR_CRTL
;
997 cf
->data
[1] = txerr
> rxerr
? CAN_ERR_CRTL_TX_WARNING
:
998 CAN_ERR_CRTL_RX_WARNING
;
1000 cf
->data
[7] = rxerr
;
1002 if (cerfl
& RCANFD_CERFL_EPF
) {
1003 netdev_dbg(ndev
, "Error passive interrupt\n");
1004 priv
->can
.state
= CAN_STATE_ERROR_PASSIVE
;
1005 priv
->can
.can_stats
.error_passive
++;
1006 cf
->can_id
|= CAN_ERR_CRTL
;
1007 cf
->data
[1] = txerr
> rxerr
? CAN_ERR_CRTL_TX_PASSIVE
:
1008 CAN_ERR_CRTL_RX_PASSIVE
;
1009 cf
->data
[6] = txerr
;
1010 cf
->data
[7] = rxerr
;
1012 if (cerfl
& RCANFD_CERFL_BOEF
) {
1013 netdev_dbg(ndev
, "Bus-off entry interrupt\n");
1014 rcar_canfd_tx_failure_cleanup(ndev
);
1015 priv
->can
.state
= CAN_STATE_BUS_OFF
;
1016 priv
->can
.can_stats
.bus_off
++;
1018 cf
->can_id
|= CAN_ERR_BUSOFF
;
1020 if (cerfl
& RCANFD_CERFL_OVLF
) {
1022 "Overload Frame Transmission error interrupt\n");
1024 cf
->can_id
|= CAN_ERR_PROT
;
1025 cf
->data
[2] |= CAN_ERR_PROT_OVERLOAD
;
1028 /* Clear channel error interrupts that are handled */
1029 rcar_canfd_write(priv
->base
, RCANFD_CERFL(ch
),
1030 RCANFD_CERFL_ERR(~cerfl
));
1031 stats
->rx_packets
++;
1032 stats
->rx_bytes
+= cf
->can_dlc
;
1036 static void rcar_canfd_tx_done(struct net_device
*ndev
)
1038 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1039 struct net_device_stats
*stats
= &ndev
->stats
;
1041 unsigned long flags
;
1042 u32 ch
= priv
->channel
;
1047 sent
= priv
->tx_tail
% RCANFD_FIFO_DEPTH
;
1048 stats
->tx_packets
++;
1049 stats
->tx_bytes
+= priv
->tx_len
[sent
];
1050 priv
->tx_len
[sent
] = 0;
1051 can_get_echo_skb(ndev
, sent
);
1053 spin_lock_irqsave(&priv
->tx_lock
, flags
);
1055 sts
= rcar_canfd_read(priv
->base
,
1056 RCANFD_CFSTS(ch
, RCANFD_CFFIFO_IDX
));
1057 unsent
= RCANFD_CFSTS_CFMC(sts
);
1059 /* Wake producer only when there is room */
1060 if (unsent
!= RCANFD_FIFO_DEPTH
)
1061 netif_wake_queue(ndev
);
1063 if (priv
->tx_head
- priv
->tx_tail
<= unsent
) {
1064 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1067 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1071 /* Clear interrupt */
1072 rcar_canfd_write(priv
->base
, RCANFD_CFSTS(ch
, RCANFD_CFFIFO_IDX
),
1073 sts
& ~RCANFD_CFSTS_CFTXIF
);
1074 can_led_event(ndev
, CAN_LED_EVENT_TX
);
1077 static irqreturn_t
rcar_canfd_global_interrupt(int irq
, void *dev_id
)
1079 struct rcar_canfd_global
*gpriv
= dev_id
;
1080 struct net_device
*ndev
;
1081 struct rcar_canfd_channel
*priv
;
1085 /* Global error interrupts still indicate a condition specific
1086 * to a channel. RxFIFO interrupt is a global interrupt.
1088 for_each_set_bit(ch
, &gpriv
->channels_mask
, RCANFD_NUM_CHANNELS
) {
1089 priv
= gpriv
->ch
[ch
];
1091 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
1093 /* Global error interrupts */
1094 gerfl
= rcar_canfd_read(priv
->base
, RCANFD_GERFL
);
1095 if (unlikely(RCANFD_GERFL_ERR(gpriv
, gerfl
)))
1096 rcar_canfd_global_error(ndev
);
1098 /* Handle Rx interrupts */
1099 sts
= rcar_canfd_read(priv
->base
, RCANFD_RFSTS(ridx
));
1100 if (likely(sts
& RCANFD_RFSTS_RFIF
)) {
1101 if (napi_schedule_prep(&priv
->napi
)) {
1102 /* Disable Rx FIFO interrupts */
1103 rcar_canfd_clear_bit(priv
->base
,
1106 __napi_schedule(&priv
->napi
);
1113 static void rcar_canfd_state_change(struct net_device
*ndev
,
1114 u16 txerr
, u16 rxerr
)
1116 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1117 struct net_device_stats
*stats
= &ndev
->stats
;
1118 enum can_state rx_state
, tx_state
, state
= priv
->can
.state
;
1119 struct can_frame
*cf
;
1120 struct sk_buff
*skb
;
1122 /* Handle transition from error to normal states */
1123 if (txerr
< 96 && rxerr
< 96)
1124 state
= CAN_STATE_ERROR_ACTIVE
;
1125 else if (txerr
< 128 && rxerr
< 128)
1126 state
= CAN_STATE_ERROR_WARNING
;
1128 if (state
!= priv
->can
.state
) {
1129 netdev_dbg(ndev
, "state: new %d, old %d: txerr %u, rxerr %u\n",
1130 state
, priv
->can
.state
, txerr
, rxerr
);
1131 skb
= alloc_can_err_skb(ndev
, &cf
);
1133 stats
->rx_dropped
++;
1136 tx_state
= txerr
>= rxerr
? state
: 0;
1137 rx_state
= txerr
<= rxerr
? state
: 0;
1139 can_change_state(ndev
, cf
, tx_state
, rx_state
);
1140 stats
->rx_packets
++;
1141 stats
->rx_bytes
+= cf
->can_dlc
;
1146 static irqreturn_t
rcar_canfd_channel_interrupt(int irq
, void *dev_id
)
1148 struct rcar_canfd_global
*gpriv
= dev_id
;
1149 struct net_device
*ndev
;
1150 struct rcar_canfd_channel
*priv
;
1154 /* Common FIFO is a per channel resource */
1155 for_each_set_bit(ch
, &gpriv
->channels_mask
, RCANFD_NUM_CHANNELS
) {
1156 priv
= gpriv
->ch
[ch
];
1159 /* Channel error interrupts */
1160 cerfl
= rcar_canfd_read(priv
->base
, RCANFD_CERFL(ch
));
1161 sts
= rcar_canfd_read(priv
->base
, RCANFD_CSTS(ch
));
1162 txerr
= RCANFD_CSTS_TECCNT(sts
);
1163 rxerr
= RCANFD_CSTS_RECCNT(sts
);
1164 if (unlikely(RCANFD_CERFL_ERR(cerfl
)))
1165 rcar_canfd_error(ndev
, cerfl
, txerr
, rxerr
);
1167 /* Handle state change to lower states */
1168 if (unlikely((priv
->can
.state
!= CAN_STATE_ERROR_ACTIVE
) &&
1169 (priv
->can
.state
!= CAN_STATE_BUS_OFF
)))
1170 rcar_canfd_state_change(ndev
, txerr
, rxerr
);
1172 /* Handle Tx interrupts */
1173 sts
= rcar_canfd_read(priv
->base
,
1174 RCANFD_CFSTS(ch
, RCANFD_CFFIFO_IDX
));
1175 if (likely(sts
& RCANFD_CFSTS_CFTXIF
))
1176 rcar_canfd_tx_done(ndev
);
1181 static void rcar_canfd_set_bittiming(struct net_device
*dev
)
1183 struct rcar_canfd_channel
*priv
= netdev_priv(dev
);
1184 const struct can_bittiming
*bt
= &priv
->can
.bittiming
;
1185 const struct can_bittiming
*dbt
= &priv
->can
.data_bittiming
;
1186 u16 brp
, sjw
, tseg1
, tseg2
;
1188 u32 ch
= priv
->channel
;
1190 /* Nominal bit timing settings */
1193 tseg1
= bt
->prop_seg
+ bt
->phase_seg1
- 1;
1194 tseg2
= bt
->phase_seg2
- 1;
1196 if (priv
->can
.ctrlmode
& CAN_CTRLMODE_FD
) {
1197 /* CAN FD only mode */
1198 cfg
= (RCANFD_NCFG_NTSEG1(tseg1
) | RCANFD_NCFG_NBRP(brp
) |
1199 RCANFD_NCFG_NSJW(sjw
) | RCANFD_NCFG_NTSEG2(tseg2
));
1201 rcar_canfd_write(priv
->base
, RCANFD_CCFG(ch
), cfg
);
1202 netdev_dbg(priv
->ndev
, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1203 brp
, sjw
, tseg1
, tseg2
);
1205 /* Data bit timing settings */
1208 tseg1
= dbt
->prop_seg
+ dbt
->phase_seg1
- 1;
1209 tseg2
= dbt
->phase_seg2
- 1;
1211 cfg
= (RCANFD_DCFG_DTSEG1(tseg1
) | RCANFD_DCFG_DBRP(brp
) |
1212 RCANFD_DCFG_DSJW(sjw
) | RCANFD_DCFG_DTSEG2(tseg2
));
1214 rcar_canfd_write(priv
->base
, RCANFD_F_DCFG(ch
), cfg
);
1215 netdev_dbg(priv
->ndev
, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1216 brp
, sjw
, tseg1
, tseg2
);
1218 /* Classical CAN only mode */
1219 cfg
= (RCANFD_CFG_TSEG1(tseg1
) | RCANFD_CFG_BRP(brp
) |
1220 RCANFD_CFG_SJW(sjw
) | RCANFD_CFG_TSEG2(tseg2
));
1222 rcar_canfd_write(priv
->base
, RCANFD_CCFG(ch
), cfg
);
1223 netdev_dbg(priv
->ndev
,
1224 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1225 brp
, sjw
, tseg1
, tseg2
);
1229 static int rcar_canfd_start(struct net_device
*ndev
)
1231 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1232 int err
= -EOPNOTSUPP
;
1233 u32 sts
, ch
= priv
->channel
;
1234 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
1236 rcar_canfd_set_bittiming(ndev
);
1238 rcar_canfd_enable_channel_interrupts(priv
);
1240 /* Set channel to Operational mode */
1241 rcar_canfd_update_bit(priv
->base
, RCANFD_CCTR(ch
),
1242 RCANFD_CCTR_CHMDC_MASK
, RCANFD_CCTR_CHDMC_COPM
);
1244 /* Verify channel mode change */
1245 err
= readl_poll_timeout((priv
->base
+ RCANFD_CSTS(ch
)), sts
,
1246 (sts
& RCANFD_CSTS_COMSTS
), 2, 500000);
1248 netdev_err(ndev
, "channel %u communication state failed\n", ch
);
1249 goto fail_mode_change
;
1252 /* Enable Common & Rx FIFO */
1253 rcar_canfd_set_bit(priv
->base
, RCANFD_CFCC(ch
, RCANFD_CFFIFO_IDX
),
1255 rcar_canfd_set_bit(priv
->base
, RCANFD_RFCC(ridx
), RCANFD_RFCC_RFE
);
1257 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
1261 rcar_canfd_disable_channel_interrupts(priv
);
1265 static int rcar_canfd_open(struct net_device
*ndev
)
1267 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1268 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1271 /* Peripheral clock is already enabled in probe */
1272 err
= clk_prepare_enable(gpriv
->can_clk
);
1274 netdev_err(ndev
, "failed to enable CAN clock, error %d\n", err
);
1278 err
= open_candev(ndev
);
1280 netdev_err(ndev
, "open_candev() failed, error %d\n", err
);
1284 napi_enable(&priv
->napi
);
1285 err
= rcar_canfd_start(ndev
);
1288 netif_start_queue(ndev
);
1289 can_led_event(ndev
, CAN_LED_EVENT_OPEN
);
1292 napi_disable(&priv
->napi
);
1295 clk_disable_unprepare(gpriv
->can_clk
);
1300 static void rcar_canfd_stop(struct net_device
*ndev
)
1302 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1304 u32 sts
, ch
= priv
->channel
;
1305 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
1307 /* Transition to channel reset mode */
1308 rcar_canfd_update_bit(priv
->base
, RCANFD_CCTR(ch
),
1309 RCANFD_CCTR_CHMDC_MASK
, RCANFD_CCTR_CHDMC_CRESET
);
1311 /* Check Channel reset mode */
1312 err
= readl_poll_timeout((priv
->base
+ RCANFD_CSTS(ch
)), sts
,
1313 (sts
& RCANFD_CSTS_CRSTSTS
), 2, 500000);
1315 netdev_err(ndev
, "channel %u reset failed\n", ch
);
1317 rcar_canfd_disable_channel_interrupts(priv
);
1319 /* Disable Common & Rx FIFO */
1320 rcar_canfd_clear_bit(priv
->base
, RCANFD_CFCC(ch
, RCANFD_CFFIFO_IDX
),
1322 rcar_canfd_clear_bit(priv
->base
, RCANFD_RFCC(ridx
), RCANFD_RFCC_RFE
);
1324 /* Set the state as STOPPED */
1325 priv
->can
.state
= CAN_STATE_STOPPED
;
1328 static int rcar_canfd_close(struct net_device
*ndev
)
1330 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1331 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1333 netif_stop_queue(ndev
);
1334 rcar_canfd_stop(ndev
);
1335 napi_disable(&priv
->napi
);
1336 clk_disable_unprepare(gpriv
->can_clk
);
1338 can_led_event(ndev
, CAN_LED_EVENT_STOP
);
1342 static netdev_tx_t
rcar_canfd_start_xmit(struct sk_buff
*skb
,
1343 struct net_device
*ndev
)
1345 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1346 struct canfd_frame
*cf
= (struct canfd_frame
*)skb
->data
;
1347 u32 sts
= 0, id
, dlc
;
1348 unsigned long flags
;
1349 u32 ch
= priv
->channel
;
1351 if (can_dropped_invalid_skb(ndev
, skb
))
1352 return NETDEV_TX_OK
;
1354 if (cf
->can_id
& CAN_EFF_FLAG
) {
1355 id
= cf
->can_id
& CAN_EFF_MASK
;
1356 id
|= RCANFD_CFID_CFIDE
;
1358 id
= cf
->can_id
& CAN_SFF_MASK
;
1361 if (cf
->can_id
& CAN_RTR_FLAG
)
1362 id
|= RCANFD_CFID_CFRTR
;
1364 dlc
= RCANFD_CFPTR_CFDLC(can_len2dlc(cf
->len
));
1366 if (priv
->can
.ctrlmode
& CAN_CTRLMODE_FD
) {
1367 rcar_canfd_write(priv
->base
,
1368 RCANFD_F_CFID(ch
, RCANFD_CFFIFO_IDX
), id
);
1369 rcar_canfd_write(priv
->base
,
1370 RCANFD_F_CFPTR(ch
, RCANFD_CFFIFO_IDX
), dlc
);
1372 if (can_is_canfd_skb(skb
)) {
1373 /* CAN FD frame format */
1374 sts
|= RCANFD_CFFDCSTS_CFFDF
;
1375 if (cf
->flags
& CANFD_BRS
)
1376 sts
|= RCANFD_CFFDCSTS_CFBRS
;
1378 if (priv
->can
.state
== CAN_STATE_ERROR_PASSIVE
)
1379 sts
|= RCANFD_CFFDCSTS_CFESI
;
1382 rcar_canfd_write(priv
->base
,
1383 RCANFD_F_CFFDCSTS(ch
, RCANFD_CFFIFO_IDX
), sts
);
1385 rcar_canfd_put_data(priv
, cf
,
1386 RCANFD_F_CFDF(ch
, RCANFD_CFFIFO_IDX
, 0));
1388 rcar_canfd_write(priv
->base
,
1389 RCANFD_C_CFID(ch
, RCANFD_CFFIFO_IDX
), id
);
1390 rcar_canfd_write(priv
->base
,
1391 RCANFD_C_CFPTR(ch
, RCANFD_CFFIFO_IDX
), dlc
);
1392 rcar_canfd_put_data(priv
, cf
,
1393 RCANFD_C_CFDF(ch
, RCANFD_CFFIFO_IDX
, 0));
1396 priv
->tx_len
[priv
->tx_head
% RCANFD_FIFO_DEPTH
] = cf
->len
;
1397 can_put_echo_skb(skb
, ndev
, priv
->tx_head
% RCANFD_FIFO_DEPTH
);
1399 spin_lock_irqsave(&priv
->tx_lock
, flags
);
1402 /* Stop the queue if we've filled all FIFO entries */
1403 if (priv
->tx_head
- priv
->tx_tail
>= RCANFD_FIFO_DEPTH
)
1404 netif_stop_queue(ndev
);
1406 /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1407 * pointer for the Common FIFO
1409 rcar_canfd_write(priv
->base
,
1410 RCANFD_CFPCTR(ch
, RCANFD_CFFIFO_IDX
), 0xff);
1412 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1413 return NETDEV_TX_OK
;
1416 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel
*priv
)
1418 struct net_device_stats
*stats
= &priv
->ndev
->stats
;
1419 struct canfd_frame
*cf
;
1420 struct sk_buff
*skb
;
1421 u32 sts
= 0, id
, dlc
;
1422 u32 ch
= priv
->channel
;
1423 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
1425 if (priv
->can
.ctrlmode
& CAN_CTRLMODE_FD
) {
1426 id
= rcar_canfd_read(priv
->base
, RCANFD_F_RFID(ridx
));
1427 dlc
= rcar_canfd_read(priv
->base
, RCANFD_F_RFPTR(ridx
));
1429 sts
= rcar_canfd_read(priv
->base
, RCANFD_F_RFFDSTS(ridx
));
1430 if (sts
& RCANFD_RFFDSTS_RFFDF
)
1431 skb
= alloc_canfd_skb(priv
->ndev
, &cf
);
1433 skb
= alloc_can_skb(priv
->ndev
,
1434 (struct can_frame
**)&cf
);
1436 id
= rcar_canfd_read(priv
->base
, RCANFD_C_RFID(ridx
));
1437 dlc
= rcar_canfd_read(priv
->base
, RCANFD_C_RFPTR(ridx
));
1438 skb
= alloc_can_skb(priv
->ndev
, (struct can_frame
**)&cf
);
1442 stats
->rx_dropped
++;
1446 if (id
& RCANFD_RFID_RFIDE
)
1447 cf
->can_id
= (id
& CAN_EFF_MASK
) | CAN_EFF_FLAG
;
1449 cf
->can_id
= id
& CAN_SFF_MASK
;
1451 if (priv
->can
.ctrlmode
& CAN_CTRLMODE_FD
) {
1452 if (sts
& RCANFD_RFFDSTS_RFFDF
)
1453 cf
->len
= can_dlc2len(RCANFD_RFPTR_RFDLC(dlc
));
1455 cf
->len
= get_can_dlc(RCANFD_RFPTR_RFDLC(dlc
));
1457 if (sts
& RCANFD_RFFDSTS_RFESI
) {
1458 cf
->flags
|= CANFD_ESI
;
1459 netdev_dbg(priv
->ndev
, "ESI Error\n");
1462 if (!(sts
& RCANFD_RFFDSTS_RFFDF
) && (id
& RCANFD_RFID_RFRTR
)) {
1463 cf
->can_id
|= CAN_RTR_FLAG
;
1465 if (sts
& RCANFD_RFFDSTS_RFBRS
)
1466 cf
->flags
|= CANFD_BRS
;
1468 rcar_canfd_get_data(priv
, cf
, RCANFD_F_RFDF(ridx
, 0));
1471 cf
->len
= get_can_dlc(RCANFD_RFPTR_RFDLC(dlc
));
1472 if (id
& RCANFD_RFID_RFRTR
)
1473 cf
->can_id
|= CAN_RTR_FLAG
;
1475 rcar_canfd_get_data(priv
, cf
, RCANFD_C_RFDF(ridx
, 0));
1478 /* Write 0xff to RFPC to increment the CPU-side
1479 * pointer of the Rx FIFO
1481 rcar_canfd_write(priv
->base
, RCANFD_RFPCTR(ridx
), 0xff);
1483 can_led_event(priv
->ndev
, CAN_LED_EVENT_RX
);
1485 stats
->rx_bytes
+= cf
->len
;
1486 stats
->rx_packets
++;
1487 netif_receive_skb(skb
);
1490 static int rcar_canfd_rx_poll(struct napi_struct
*napi
, int quota
)
1492 struct rcar_canfd_channel
*priv
=
1493 container_of(napi
, struct rcar_canfd_channel
, napi
);
1496 u32 ch
= priv
->channel
;
1497 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
1499 for (num_pkts
= 0; num_pkts
< quota
; num_pkts
++) {
1500 sts
= rcar_canfd_read(priv
->base
, RCANFD_RFSTS(ridx
));
1501 /* Check FIFO empty condition */
1502 if (sts
& RCANFD_RFSTS_RFEMP
)
1505 rcar_canfd_rx_pkt(priv
);
1507 /* Clear interrupt bit */
1508 if (sts
& RCANFD_RFSTS_RFIF
)
1509 rcar_canfd_write(priv
->base
, RCANFD_RFSTS(ridx
),
1510 sts
& ~RCANFD_RFSTS_RFIF
);
1513 /* All packets processed */
1514 if (num_pkts
< quota
) {
1515 napi_complete_done(napi
, num_pkts
);
1516 /* Enable Rx FIFO interrupts */
1517 rcar_canfd_set_bit(priv
->base
, RCANFD_RFCC(ridx
),
1523 static int rcar_canfd_do_set_mode(struct net_device
*ndev
, enum can_mode mode
)
1528 case CAN_MODE_START
:
1529 err
= rcar_canfd_start(ndev
);
1532 netif_wake_queue(ndev
);
1539 static int rcar_canfd_get_berr_counter(const struct net_device
*dev
,
1540 struct can_berr_counter
*bec
)
1542 struct rcar_canfd_channel
*priv
= netdev_priv(dev
);
1543 u32 val
, ch
= priv
->channel
;
1545 /* Peripheral clock is already enabled in probe */
1546 val
= rcar_canfd_read(priv
->base
, RCANFD_CSTS(ch
));
1547 bec
->txerr
= RCANFD_CSTS_TECCNT(val
);
1548 bec
->rxerr
= RCANFD_CSTS_RECCNT(val
);
1552 static const struct net_device_ops rcar_canfd_netdev_ops
= {
1553 .ndo_open
= rcar_canfd_open
,
1554 .ndo_stop
= rcar_canfd_close
,
1555 .ndo_start_xmit
= rcar_canfd_start_xmit
,
1556 .ndo_change_mtu
= can_change_mtu
,
1559 static int rcar_canfd_channel_probe(struct rcar_canfd_global
*gpriv
, u32 ch
,
1562 struct platform_device
*pdev
= gpriv
->pdev
;
1563 struct rcar_canfd_channel
*priv
;
1564 struct net_device
*ndev
;
1567 ndev
= alloc_candev(sizeof(*priv
), RCANFD_FIFO_DEPTH
);
1569 dev_err(&pdev
->dev
, "alloc_candev() failed\n");
1573 priv
= netdev_priv(ndev
);
1575 ndev
->netdev_ops
= &rcar_canfd_netdev_ops
;
1576 ndev
->flags
|= IFF_ECHO
;
1578 priv
->base
= gpriv
->base
;
1580 priv
->can
.clock
.freq
= fcan_freq
;
1581 dev_info(&pdev
->dev
, "can_clk rate is %u\n", priv
->can
.clock
.freq
);
1583 if (gpriv
->fdmode
) {
1584 priv
->can
.bittiming_const
= &rcar_canfd_nom_bittiming_const
;
1585 priv
->can
.data_bittiming_const
=
1586 &rcar_canfd_data_bittiming_const
;
1588 /* Controller starts in CAN FD only mode */
1589 can_set_static_ctrlmode(ndev
, CAN_CTRLMODE_FD
);
1590 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_BERR_REPORTING
;
1592 /* Controller starts in Classical CAN only mode */
1593 priv
->can
.bittiming_const
= &rcar_canfd_bittiming_const
;
1594 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_BERR_REPORTING
;
1597 priv
->can
.do_set_mode
= rcar_canfd_do_set_mode
;
1598 priv
->can
.do_get_berr_counter
= rcar_canfd_get_berr_counter
;
1599 priv
->gpriv
= gpriv
;
1600 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1602 netif_napi_add(ndev
, &priv
->napi
, rcar_canfd_rx_poll
,
1603 RCANFD_NAPI_WEIGHT
);
1604 err
= register_candev(ndev
);
1607 "register_candev() failed, error %d\n", err
);
1610 spin_lock_init(&priv
->tx_lock
);
1611 devm_can_led_init(ndev
);
1612 gpriv
->ch
[priv
->channel
] = priv
;
1613 dev_info(&pdev
->dev
, "device registered (channel %u)\n", priv
->channel
);
1617 netif_napi_del(&priv
->napi
);
1623 static void rcar_canfd_channel_remove(struct rcar_canfd_global
*gpriv
, u32 ch
)
1625 struct rcar_canfd_channel
*priv
= gpriv
->ch
[ch
];
1628 unregister_candev(priv
->ndev
);
1629 netif_napi_del(&priv
->napi
);
1630 free_candev(priv
->ndev
);
1634 static int rcar_canfd_probe(struct platform_device
*pdev
)
1636 struct resource
*mem
;
1638 u32 sts
, ch
, fcan_freq
;
1639 struct rcar_canfd_global
*gpriv
;
1640 struct device_node
*of_child
;
1641 unsigned long channels_mask
= 0;
1642 int err
, ch_irq
, g_irq
;
1643 bool fdmode
= true; /* CAN FD only mode - default */
1645 if (of_property_read_bool(pdev
->dev
.of_node
, "renesas,no-can-fd"))
1646 fdmode
= false; /* Classical CAN only mode */
1648 of_child
= of_get_child_by_name(pdev
->dev
.of_node
, "channel0");
1649 if (of_child
&& of_device_is_available(of_child
))
1650 channels_mask
|= BIT(0); /* Channel 0 */
1652 of_child
= of_get_child_by_name(pdev
->dev
.of_node
, "channel1");
1653 if (of_child
&& of_device_is_available(of_child
))
1654 channels_mask
|= BIT(1); /* Channel 1 */
1656 ch_irq
= platform_get_irq(pdev
, 0);
1658 dev_err(&pdev
->dev
, "no Channel IRQ resource\n");
1663 g_irq
= platform_get_irq(pdev
, 1);
1665 dev_err(&pdev
->dev
, "no Global IRQ resource\n");
1670 /* Global controller context */
1671 gpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*gpriv
), GFP_KERNEL
);
1677 gpriv
->channels_mask
= channels_mask
;
1678 gpriv
->fdmode
= fdmode
;
1680 /* Peripheral clock */
1681 gpriv
->clkp
= devm_clk_get(&pdev
->dev
, "fck");
1682 if (IS_ERR(gpriv
->clkp
)) {
1683 err
= PTR_ERR(gpriv
->clkp
);
1684 dev_err(&pdev
->dev
, "cannot get peripheral clock, error %d\n",
1689 /* fCAN clock: Pick External clock. If not available fallback to
1692 gpriv
->can_clk
= devm_clk_get(&pdev
->dev
, "can_clk");
1693 if (IS_ERR(gpriv
->can_clk
) || (clk_get_rate(gpriv
->can_clk
) == 0)) {
1694 gpriv
->can_clk
= devm_clk_get(&pdev
->dev
, "canfd");
1695 if (IS_ERR(gpriv
->can_clk
)) {
1696 err
= PTR_ERR(gpriv
->can_clk
);
1698 "cannot get canfd clock, error %d\n", err
);
1701 gpriv
->fcan
= RCANFD_CANFDCLK
;
1704 gpriv
->fcan
= RCANFD_EXTCLK
;
1706 fcan_freq
= clk_get_rate(gpriv
->can_clk
);
1708 if (gpriv
->fcan
== RCANFD_CANFDCLK
)
1709 /* CANFD clock is further divided by (1/2) within the IP */
1712 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1713 addr
= devm_ioremap_resource(&pdev
->dev
, mem
);
1715 err
= PTR_ERR(addr
);
1720 /* Request IRQ that's common for both channels */
1721 err
= devm_request_irq(&pdev
->dev
, ch_irq
,
1722 rcar_canfd_channel_interrupt
, 0,
1723 "canfd.chn", gpriv
);
1725 dev_err(&pdev
->dev
, "devm_request_irq(%d) failed, error %d\n",
1729 err
= devm_request_irq(&pdev
->dev
, g_irq
,
1730 rcar_canfd_global_interrupt
, 0,
1731 "canfd.gbl", gpriv
);
1733 dev_err(&pdev
->dev
, "devm_request_irq(%d) failed, error %d\n",
1738 /* Enable peripheral clock for register access */
1739 err
= clk_prepare_enable(gpriv
->clkp
);
1742 "failed to enable peripheral clock, error %d\n", err
);
1746 err
= rcar_canfd_reset_controller(gpriv
);
1748 dev_err(&pdev
->dev
, "reset controller failed\n");
1752 /* Controller in Global reset & Channel reset mode */
1753 rcar_canfd_configure_controller(gpriv
);
1755 /* Configure per channel attributes */
1756 for_each_set_bit(ch
, &gpriv
->channels_mask
, RCANFD_NUM_CHANNELS
) {
1757 /* Configure Channel's Rx fifo */
1758 rcar_canfd_configure_rx(gpriv
, ch
);
1760 /* Configure Channel's Tx (Common) fifo */
1761 rcar_canfd_configure_tx(gpriv
, ch
);
1763 /* Configure receive rules */
1764 rcar_canfd_configure_afl_rules(gpriv
, ch
);
1767 /* Configure common interrupts */
1768 rcar_canfd_enable_global_interrupts(gpriv
);
1770 /* Start Global operation mode */
1771 rcar_canfd_update_bit(gpriv
->base
, RCANFD_GCTR
, RCANFD_GCTR_GMDC_MASK
,
1772 RCANFD_GCTR_GMDC_GOPM
);
1774 /* Verify mode change */
1775 err
= readl_poll_timeout((gpriv
->base
+ RCANFD_GSTS
), sts
,
1776 !(sts
& RCANFD_GSTS_GNOPM
), 2, 500000);
1778 dev_err(&pdev
->dev
, "global operational mode failed\n");
1782 for_each_set_bit(ch
, &gpriv
->channels_mask
, RCANFD_NUM_CHANNELS
) {
1783 err
= rcar_canfd_channel_probe(gpriv
, ch
, fcan_freq
);
1788 platform_set_drvdata(pdev
, gpriv
);
1789 dev_info(&pdev
->dev
, "global operational state (clk %d, fdmode %d)\n",
1790 gpriv
->fcan
, gpriv
->fdmode
);
1794 for_each_set_bit(ch
, &gpriv
->channels_mask
, RCANFD_NUM_CHANNELS
)
1795 rcar_canfd_channel_remove(gpriv
, ch
);
1797 rcar_canfd_disable_global_interrupts(gpriv
);
1799 clk_disable_unprepare(gpriv
->clkp
);
1804 static int rcar_canfd_remove(struct platform_device
*pdev
)
1806 struct rcar_canfd_global
*gpriv
= platform_get_drvdata(pdev
);
1809 rcar_canfd_reset_controller(gpriv
);
1810 rcar_canfd_disable_global_interrupts(gpriv
);
1812 for_each_set_bit(ch
, &gpriv
->channels_mask
, RCANFD_NUM_CHANNELS
) {
1813 rcar_canfd_disable_channel_interrupts(gpriv
->ch
[ch
]);
1814 rcar_canfd_channel_remove(gpriv
, ch
);
1817 /* Enter global sleep mode */
1818 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GCTR
, RCANFD_GCTR_GSLPR
);
1819 clk_disable_unprepare(gpriv
->clkp
);
1823 static int __maybe_unused
rcar_canfd_suspend(struct device
*dev
)
1828 static int __maybe_unused
rcar_canfd_resume(struct device
*dev
)
1833 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops
, rcar_canfd_suspend
,
1836 static const struct of_device_id rcar_canfd_of_table
[] = {
1837 { .compatible
= "renesas,rcar-gen3-canfd" },
1841 MODULE_DEVICE_TABLE(of
, rcar_canfd_of_table
);
1843 static struct platform_driver rcar_canfd_driver
= {
1845 .name
= RCANFD_DRV_NAME
,
1846 .of_match_table
= of_match_ptr(rcar_canfd_of_table
),
1847 .pm
= &rcar_canfd_pm_ops
,
1849 .probe
= rcar_canfd_probe
,
1850 .remove
= rcar_canfd_remove
,
1853 module_platform_driver(rcar_canfd_driver
);
1855 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
1856 MODULE_LICENSE("GPL");
1857 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
1858 MODULE_ALIAS("platform:" RCANFD_DRV_NAME
);