Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / dsa / microchip / ksz_common.c
blob663b0d5b982b127f934a8c87e64f5aa8209a6b0b
1 /*
2 * Microchip switch driver main logic
4 * Copyright (C) 2017
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/gpio.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
31 #include "ksz_priv.h"
33 static const struct {
34 int index;
35 char string[ETH_GSTRING_LEN];
36 } mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
37 { 0x00, "rx_hi" },
38 { 0x01, "rx_undersize" },
39 { 0x02, "rx_fragments" },
40 { 0x03, "rx_oversize" },
41 { 0x04, "rx_jabbers" },
42 { 0x05, "rx_symbol_err" },
43 { 0x06, "rx_crc_err" },
44 { 0x07, "rx_align_err" },
45 { 0x08, "rx_mac_ctrl" },
46 { 0x09, "rx_pause" },
47 { 0x0A, "rx_bcast" },
48 { 0x0B, "rx_mcast" },
49 { 0x0C, "rx_ucast" },
50 { 0x0D, "rx_64_or_less" },
51 { 0x0E, "rx_65_127" },
52 { 0x0F, "rx_128_255" },
53 { 0x10, "rx_256_511" },
54 { 0x11, "rx_512_1023" },
55 { 0x12, "rx_1024_1522" },
56 { 0x13, "rx_1523_2000" },
57 { 0x14, "rx_2001" },
58 { 0x15, "tx_hi" },
59 { 0x16, "tx_late_col" },
60 { 0x17, "tx_pause" },
61 { 0x18, "tx_bcast" },
62 { 0x19, "tx_mcast" },
63 { 0x1A, "tx_ucast" },
64 { 0x1B, "tx_deferred" },
65 { 0x1C, "tx_total_col" },
66 { 0x1D, "tx_exc_col" },
67 { 0x1E, "tx_single_col" },
68 { 0x1F, "tx_mult_col" },
69 { 0x80, "rx_total" },
70 { 0x81, "tx_total" },
71 { 0x82, "rx_discards" },
72 { 0x83, "tx_discards" },
75 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
77 u8 data;
79 ksz_read8(dev, addr, &data);
80 if (set)
81 data |= bits;
82 else
83 data &= ~bits;
84 ksz_write8(dev, addr, data);
87 static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
89 u32 data;
91 ksz_read32(dev, addr, &data);
92 if (set)
93 data |= bits;
94 else
95 data &= ~bits;
96 ksz_write32(dev, addr, data);
99 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
100 bool set)
102 u32 addr;
103 u8 data;
105 addr = PORT_CTRL_ADDR(port, offset);
106 ksz_read8(dev, addr, &data);
108 if (set)
109 data |= bits;
110 else
111 data &= ~bits;
113 ksz_write8(dev, addr, data);
116 static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
117 u32 bits, bool set)
119 u32 addr;
120 u32 data;
122 addr = PORT_CTRL_ADDR(port, offset);
123 ksz_read32(dev, addr, &data);
125 if (set)
126 data |= bits;
127 else
128 data &= ~bits;
130 ksz_write32(dev, addr, data);
133 static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
135 u8 data;
137 do {
138 ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
139 if (!(data & waiton))
140 break;
141 usleep_range(1, 10);
142 } while (timeout-- > 0);
144 if (timeout <= 0)
145 return -ETIMEDOUT;
147 return 0;
150 static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
152 struct ksz_device *dev = ds->priv;
153 int ret;
155 mutex_lock(&dev->vlan_mutex);
157 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
158 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
160 /* wait to be cleared */
161 ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
162 if (ret < 0) {
163 dev_dbg(dev->dev, "Failed to read vlan table\n");
164 goto exit;
167 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
168 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
169 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
171 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
173 exit:
174 mutex_unlock(&dev->vlan_mutex);
176 return ret;
179 static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
181 struct ksz_device *dev = ds->priv;
182 int ret;
184 mutex_lock(&dev->vlan_mutex);
186 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
187 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
188 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
190 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
191 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
193 /* wait to be cleared */
194 ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
195 if (ret < 0) {
196 dev_dbg(dev->dev, "Failed to write vlan table\n");
197 goto exit;
200 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
202 /* update vlan cache table */
203 dev->vlan_cache[vid].table[0] = vlan_table[0];
204 dev->vlan_cache[vid].table[1] = vlan_table[1];
205 dev->vlan_cache[vid].table[2] = vlan_table[2];
207 exit:
208 mutex_unlock(&dev->vlan_mutex);
210 return ret;
213 static void read_table(struct dsa_switch *ds, u32 *table)
215 struct ksz_device *dev = ds->priv;
217 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
218 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
219 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
220 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
223 static void write_table(struct dsa_switch *ds, u32 *table)
225 struct ksz_device *dev = ds->priv;
227 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
228 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
229 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
230 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
233 static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
235 u32 data;
237 do {
238 ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
239 if (!(data & waiton))
240 break;
241 usleep_range(1, 10);
242 } while (timeout-- > 0);
244 if (timeout <= 0)
245 return -ETIMEDOUT;
247 return 0;
250 static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
252 u32 data;
254 do {
255 ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
256 if (!(data & waiton))
257 break;
258 usleep_range(1, 10);
259 } while (timeout-- > 0);
261 if (timeout <= 0)
262 return -ETIMEDOUT;
264 return 0;
267 static int ksz_reset_switch(struct dsa_switch *ds)
269 struct ksz_device *dev = ds->priv;
270 u8 data8;
271 u16 data16;
272 u32 data32;
274 /* reset switch */
275 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
277 /* turn off SPI DO Edge select */
278 ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
279 data8 &= ~SPI_AUTO_EDGE_DETECTION;
280 ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
282 /* default configuration */
283 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
284 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
285 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
286 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
288 /* disable interrupts */
289 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
290 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
291 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
293 /* set broadcast storm protection 10% rate */
294 ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
295 data16 &= ~BROADCAST_STORM_RATE;
296 data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
297 ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
299 return 0;
302 static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
304 u8 data8;
305 u16 data16;
307 /* enable tag tail for host port */
308 if (cpu_port)
309 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
310 true);
312 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
314 /* set back pressure */
315 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
317 /* set flow control */
318 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
319 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
321 /* enable broadcast storm limit */
322 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
324 /* disable DiffServ priority */
325 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
327 /* replace priority */
328 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
329 false);
330 ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
331 MTI_PVID_REPLACE, false);
333 /* enable 802.1p priority */
334 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
336 /* configure MAC to 1G & RGMII mode */
337 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
338 data8 |= PORT_RGMII_ID_EG_ENABLE;
339 data8 &= ~PORT_MII_NOT_1GBIT;
340 data8 &= ~PORT_MII_SEL_M;
341 data8 |= PORT_RGMII_SEL;
342 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
344 /* clear pending interrupts */
345 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
348 static void ksz_config_cpu_port(struct dsa_switch *ds)
350 struct ksz_device *dev = ds->priv;
351 int i;
353 ds->num_ports = dev->port_cnt;
355 for (i = 0; i < ds->num_ports; i++) {
356 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
357 dev->cpu_port = i;
359 /* enable cpu port */
360 port_setup(dev, i, true);
365 static int ksz_setup(struct dsa_switch *ds)
367 struct ksz_device *dev = ds->priv;
368 int ret = 0;
370 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
371 dev->num_vlans, GFP_KERNEL);
372 if (!dev->vlan_cache)
373 return -ENOMEM;
375 ret = ksz_reset_switch(ds);
376 if (ret) {
377 dev_err(ds->dev, "failed to reset switch\n");
378 return ret;
381 /* accept packet up to 2000bytes */
382 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
384 ksz_config_cpu_port(ds);
386 ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
388 /* queue based egress rate limit */
389 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
391 /* start switch */
392 ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
394 return 0;
397 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
398 int port)
400 return DSA_TAG_PROTO_KSZ;
403 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
405 struct ksz_device *dev = ds->priv;
406 u16 val = 0;
408 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
410 return val;
413 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
415 struct ksz_device *dev = ds->priv;
417 ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
419 return 0;
422 static int ksz_enable_port(struct dsa_switch *ds, int port,
423 struct phy_device *phy)
425 struct ksz_device *dev = ds->priv;
427 /* setup slave port */
428 port_setup(dev, port, false);
430 return 0;
433 static void ksz_disable_port(struct dsa_switch *ds, int port,
434 struct phy_device *phy)
436 struct ksz_device *dev = ds->priv;
438 /* there is no port disable */
439 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
442 static int ksz_sset_count(struct dsa_switch *ds)
444 return TOTAL_SWITCH_COUNTER_NUM;
447 static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
449 int i;
451 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
452 memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
453 ETH_GSTRING_LEN);
457 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
458 uint64_t *buf)
460 struct ksz_device *dev = ds->priv;
461 int i;
462 u32 data;
463 int timeout;
465 mutex_lock(&dev->stats_mutex);
467 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
468 data = MIB_COUNTER_READ;
469 data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
470 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
472 timeout = 1000;
473 do {
474 ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
475 &data);
476 usleep_range(1, 10);
477 if (!(data & MIB_COUNTER_READ))
478 break;
479 } while (timeout-- > 0);
481 /* failed to read MIB. get out of loop */
482 if (!timeout) {
483 dev_dbg(dev->dev, "Failed to get MIB\n");
484 break;
487 /* count resets upon read */
488 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
490 dev->mib_value[i] += (uint64_t)data;
491 buf[i] = dev->mib_value[i];
494 mutex_unlock(&dev->stats_mutex);
497 static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
499 struct ksz_device *dev = ds->priv;
500 u8 data;
502 ksz_pread8(dev, port, P_STP_CTRL, &data);
503 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
505 switch (state) {
506 case BR_STATE_DISABLED:
507 data |= PORT_LEARN_DISABLE;
508 break;
509 case BR_STATE_LISTENING:
510 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
511 break;
512 case BR_STATE_LEARNING:
513 data |= PORT_RX_ENABLE;
514 break;
515 case BR_STATE_FORWARDING:
516 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
517 break;
518 case BR_STATE_BLOCKING:
519 data |= PORT_LEARN_DISABLE;
520 break;
521 default:
522 dev_err(ds->dev, "invalid STP state: %d\n", state);
523 return;
526 ksz_pwrite8(dev, port, P_STP_CTRL, data);
529 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
531 struct ksz_device *dev = ds->priv;
532 u8 data8;
534 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
535 data8 |= SW_FAST_AGING;
536 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
538 data8 &= ~SW_FAST_AGING;
539 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
542 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
544 struct ksz_device *dev = ds->priv;
546 if (flag) {
547 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
548 PORT_VLAN_LOOKUP_VID_0, true);
549 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
550 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
551 } else {
552 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
553 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
554 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
555 PORT_VLAN_LOOKUP_VID_0, false);
558 return 0;
561 static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
562 const struct switchdev_obj_port_vlan *vlan)
564 /* nothing needed */
566 return 0;
569 static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
570 const struct switchdev_obj_port_vlan *vlan)
572 struct ksz_device *dev = ds->priv;
573 u32 vlan_table[3];
574 u16 vid;
575 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
577 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
578 if (get_vlan_table(ds, vid, vlan_table)) {
579 dev_dbg(dev->dev, "Failed to get vlan table\n");
580 return;
583 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
584 if (untagged)
585 vlan_table[1] |= BIT(port);
586 else
587 vlan_table[1] &= ~BIT(port);
588 vlan_table[1] &= ~(BIT(dev->cpu_port));
590 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
592 if (set_vlan_table(ds, vid, vlan_table)) {
593 dev_dbg(dev->dev, "Failed to set vlan table\n");
594 return;
597 /* change PVID */
598 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
599 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
603 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
604 const struct switchdev_obj_port_vlan *vlan)
606 struct ksz_device *dev = ds->priv;
607 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
608 u32 vlan_table[3];
609 u16 vid;
610 u16 pvid;
612 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
613 pvid = pvid & 0xFFF;
615 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
616 if (get_vlan_table(ds, vid, vlan_table)) {
617 dev_dbg(dev->dev, "Failed to get vlan table\n");
618 return -ETIMEDOUT;
621 vlan_table[2] &= ~BIT(port);
623 if (pvid == vid)
624 pvid = 1;
626 if (untagged)
627 vlan_table[1] &= ~BIT(port);
629 if (set_vlan_table(ds, vid, vlan_table)) {
630 dev_dbg(dev->dev, "Failed to set vlan table\n");
631 return -ETIMEDOUT;
635 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
637 return 0;
640 struct alu_struct {
641 /* entry 1 */
642 u8 is_static:1;
643 u8 is_src_filter:1;
644 u8 is_dst_filter:1;
645 u8 prio_age:3;
646 u32 _reserv_0_1:23;
647 u8 mstp:3;
648 /* entry 2 */
649 u8 is_override:1;
650 u8 is_use_fid:1;
651 u32 _reserv_1_1:23;
652 u8 port_forward:7;
653 /* entry 3 & 4*/
654 u32 _reserv_2_1:9;
655 u8 fid:7;
656 u8 mac[ETH_ALEN];
659 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
660 const unsigned char *addr, u16 vid)
662 struct ksz_device *dev = ds->priv;
663 u32 alu_table[4];
664 u32 data;
665 int ret = 0;
667 mutex_lock(&dev->alu_mutex);
669 /* find any entry with mac & vid */
670 data = vid << ALU_FID_INDEX_S;
671 data |= ((addr[0] << 8) | addr[1]);
672 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
674 data = ((addr[2] << 24) | (addr[3] << 16));
675 data |= ((addr[4] << 8) | addr[5]);
676 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
678 /* start read operation */
679 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
681 /* wait to be finished */
682 ret = wait_alu_ready(dev, ALU_START, 1000);
683 if (ret < 0) {
684 dev_dbg(dev->dev, "Failed to read ALU\n");
685 goto exit;
688 /* read ALU entry */
689 read_table(ds, alu_table);
691 /* update ALU entry */
692 alu_table[0] = ALU_V_STATIC_VALID;
693 alu_table[1] |= BIT(port);
694 if (vid)
695 alu_table[1] |= ALU_V_USE_FID;
696 alu_table[2] = (vid << ALU_V_FID_S);
697 alu_table[2] |= ((addr[0] << 8) | addr[1]);
698 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
699 alu_table[3] |= ((addr[4] << 8) | addr[5]);
701 write_table(ds, alu_table);
703 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
705 /* wait to be finished */
706 ret = wait_alu_ready(dev, ALU_START, 1000);
707 if (ret < 0)
708 dev_dbg(dev->dev, "Failed to write ALU\n");
710 exit:
711 mutex_unlock(&dev->alu_mutex);
713 return ret;
716 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
717 const unsigned char *addr, u16 vid)
719 struct ksz_device *dev = ds->priv;
720 u32 alu_table[4];
721 u32 data;
722 int ret = 0;
724 mutex_lock(&dev->alu_mutex);
726 /* read any entry with mac & vid */
727 data = vid << ALU_FID_INDEX_S;
728 data |= ((addr[0] << 8) | addr[1]);
729 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
731 data = ((addr[2] << 24) | (addr[3] << 16));
732 data |= ((addr[4] << 8) | addr[5]);
733 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
735 /* start read operation */
736 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
738 /* wait to be finished */
739 ret = wait_alu_ready(dev, ALU_START, 1000);
740 if (ret < 0) {
741 dev_dbg(dev->dev, "Failed to read ALU\n");
742 goto exit;
745 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
746 if (alu_table[0] & ALU_V_STATIC_VALID) {
747 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
748 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
749 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
751 /* clear forwarding port */
752 alu_table[2] &= ~BIT(port);
754 /* if there is no port to forward, clear table */
755 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
756 alu_table[0] = 0;
757 alu_table[1] = 0;
758 alu_table[2] = 0;
759 alu_table[3] = 0;
761 } else {
762 alu_table[0] = 0;
763 alu_table[1] = 0;
764 alu_table[2] = 0;
765 alu_table[3] = 0;
768 write_table(ds, alu_table);
770 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
772 /* wait to be finished */
773 ret = wait_alu_ready(dev, ALU_START, 1000);
774 if (ret < 0)
775 dev_dbg(dev->dev, "Failed to write ALU\n");
777 exit:
778 mutex_unlock(&dev->alu_mutex);
780 return ret;
783 static void convert_alu(struct alu_struct *alu, u32 *alu_table)
785 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
786 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
787 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
788 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
789 ALU_V_PRIO_AGE_CNT_M;
790 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
792 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
793 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
794 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
796 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
798 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
799 alu->mac[1] = alu_table[2] & 0xFF;
800 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
801 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
802 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
803 alu->mac[5] = alu_table[3] & 0xFF;
806 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
807 dsa_fdb_dump_cb_t *cb, void *data)
809 struct ksz_device *dev = ds->priv;
810 int ret = 0;
811 u32 ksz_data;
812 u32 alu_table[4];
813 struct alu_struct alu;
814 int timeout;
816 mutex_lock(&dev->alu_mutex);
818 /* start ALU search */
819 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
821 do {
822 timeout = 1000;
823 do {
824 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
825 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
826 break;
827 usleep_range(1, 10);
828 } while (timeout-- > 0);
830 if (!timeout) {
831 dev_dbg(dev->dev, "Failed to search ALU\n");
832 ret = -ETIMEDOUT;
833 goto exit;
836 /* read ALU table */
837 read_table(ds, alu_table);
839 convert_alu(&alu, alu_table);
841 if (alu.port_forward & BIT(port)) {
842 ret = cb(alu.mac, alu.fid, alu.is_static, data);
843 if (ret)
844 goto exit;
846 } while (ksz_data & ALU_START);
848 exit:
850 /* stop ALU search */
851 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
853 mutex_unlock(&dev->alu_mutex);
855 return ret;
858 static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
859 const struct switchdev_obj_port_mdb *mdb)
861 /* nothing to do */
862 return 0;
865 static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
866 const struct switchdev_obj_port_mdb *mdb)
868 struct ksz_device *dev = ds->priv;
869 u32 static_table[4];
870 u32 data;
871 int index;
872 u32 mac_hi, mac_lo;
874 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
875 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
876 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
878 mutex_lock(&dev->alu_mutex);
880 for (index = 0; index < dev->num_statics; index++) {
881 /* find empty slot first */
882 data = (index << ALU_STAT_INDEX_S) |
883 ALU_STAT_READ | ALU_STAT_START;
884 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
886 /* wait to be finished */
887 if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
888 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
889 goto exit;
892 /* read ALU static table */
893 read_table(ds, static_table);
895 if (static_table[0] & ALU_V_STATIC_VALID) {
896 /* check this has same vid & mac address */
897 if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
898 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
899 (static_table[3] == mac_lo)) {
900 /* found matching one */
901 break;
903 } else {
904 /* found empty one */
905 break;
909 /* no available entry */
910 if (index == dev->num_statics)
911 goto exit;
913 /* add entry */
914 static_table[0] = ALU_V_STATIC_VALID;
915 static_table[1] |= BIT(port);
916 if (mdb->vid)
917 static_table[1] |= ALU_V_USE_FID;
918 static_table[2] = (mdb->vid << ALU_V_FID_S);
919 static_table[2] |= mac_hi;
920 static_table[3] = mac_lo;
922 write_table(ds, static_table);
924 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
925 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
927 /* wait to be finished */
928 if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
929 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
931 exit:
932 mutex_unlock(&dev->alu_mutex);
935 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
936 const struct switchdev_obj_port_mdb *mdb)
938 struct ksz_device *dev = ds->priv;
939 u32 static_table[4];
940 u32 data;
941 int index;
942 int ret = 0;
943 u32 mac_hi, mac_lo;
945 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
946 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
947 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
949 mutex_lock(&dev->alu_mutex);
951 for (index = 0; index < dev->num_statics; index++) {
952 /* find empty slot first */
953 data = (index << ALU_STAT_INDEX_S) |
954 ALU_STAT_READ | ALU_STAT_START;
955 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
957 /* wait to be finished */
958 ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
959 if (ret < 0) {
960 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
961 goto exit;
964 /* read ALU static table */
965 read_table(ds, static_table);
967 if (static_table[0] & ALU_V_STATIC_VALID) {
968 /* check this has same vid & mac address */
970 if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
971 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
972 (static_table[3] == mac_lo)) {
973 /* found matching one */
974 break;
979 /* no available entry */
980 if (index == dev->num_statics) {
981 ret = -EINVAL;
982 goto exit;
985 /* clear port */
986 static_table[1] &= ~BIT(port);
988 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
989 /* delete entry */
990 static_table[0] = 0;
991 static_table[1] = 0;
992 static_table[2] = 0;
993 static_table[3] = 0;
996 write_table(ds, static_table);
998 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
999 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1001 /* wait to be finished */
1002 ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1003 if (ret < 0)
1004 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1006 exit:
1007 mutex_unlock(&dev->alu_mutex);
1009 return ret;
1012 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1013 struct dsa_mall_mirror_tc_entry *mirror,
1014 bool ingress)
1016 struct ksz_device *dev = ds->priv;
1018 if (ingress)
1019 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1020 else
1021 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1023 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1025 /* configure mirror port */
1026 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1027 PORT_MIRROR_SNIFFER, true);
1029 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1031 return 0;
1034 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1035 struct dsa_mall_mirror_tc_entry *mirror)
1037 struct ksz_device *dev = ds->priv;
1038 u8 data;
1040 if (mirror->ingress)
1041 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1042 else
1043 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1045 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1047 if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1048 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1049 PORT_MIRROR_SNIFFER, false);
1052 static const struct dsa_switch_ops ksz_switch_ops = {
1053 .get_tag_protocol = ksz_get_tag_protocol,
1054 .setup = ksz_setup,
1055 .phy_read = ksz_phy_read16,
1056 .phy_write = ksz_phy_write16,
1057 .port_enable = ksz_enable_port,
1058 .port_disable = ksz_disable_port,
1059 .get_strings = ksz_get_strings,
1060 .get_ethtool_stats = ksz_get_ethtool_stats,
1061 .get_sset_count = ksz_sset_count,
1062 .port_stp_state_set = ksz_port_stp_state_set,
1063 .port_fast_age = ksz_port_fast_age,
1064 .port_vlan_filtering = ksz_port_vlan_filtering,
1065 .port_vlan_prepare = ksz_port_vlan_prepare,
1066 .port_vlan_add = ksz_port_vlan_add,
1067 .port_vlan_del = ksz_port_vlan_del,
1068 .port_fdb_dump = ksz_port_fdb_dump,
1069 .port_fdb_add = ksz_port_fdb_add,
1070 .port_fdb_del = ksz_port_fdb_del,
1071 .port_mdb_prepare = ksz_port_mdb_prepare,
1072 .port_mdb_add = ksz_port_mdb_add,
1073 .port_mdb_del = ksz_port_mdb_del,
1074 .port_mirror_add = ksz_port_mirror_add,
1075 .port_mirror_del = ksz_port_mirror_del,
1078 struct ksz_chip_data {
1079 u32 chip_id;
1080 const char *dev_name;
1081 int num_vlans;
1082 int num_alus;
1083 int num_statics;
1084 int cpu_ports;
1085 int port_cnt;
1088 static const struct ksz_chip_data ksz_switch_chips[] = {
1090 .chip_id = 0x00947700,
1091 .dev_name = "KSZ9477",
1092 .num_vlans = 4096,
1093 .num_alus = 4096,
1094 .num_statics = 16,
1095 .cpu_ports = 0x7F, /* can be configured as cpu port */
1096 .port_cnt = 7, /* total physical port count */
1100 static int ksz_switch_init(struct ksz_device *dev)
1102 int i;
1104 mutex_init(&dev->reg_mutex);
1105 mutex_init(&dev->stats_mutex);
1106 mutex_init(&dev->alu_mutex);
1107 mutex_init(&dev->vlan_mutex);
1109 dev->ds->ops = &ksz_switch_ops;
1111 for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1112 const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1114 if (dev->chip_id == chip->chip_id) {
1115 dev->name = chip->dev_name;
1116 dev->num_vlans = chip->num_vlans;
1117 dev->num_alus = chip->num_alus;
1118 dev->num_statics = chip->num_statics;
1119 dev->port_cnt = chip->port_cnt;
1120 dev->cpu_ports = chip->cpu_ports;
1122 break;
1126 /* no switch found */
1127 if (!dev->port_cnt)
1128 return -ENODEV;
1130 return 0;
1133 struct ksz_device *ksz_switch_alloc(struct device *base,
1134 const struct ksz_io_ops *ops,
1135 void *priv)
1137 struct dsa_switch *ds;
1138 struct ksz_device *swdev;
1140 ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1141 if (!ds)
1142 return NULL;
1144 swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1145 if (!swdev)
1146 return NULL;
1148 ds->priv = swdev;
1149 swdev->dev = base;
1151 swdev->ds = ds;
1152 swdev->priv = priv;
1153 swdev->ops = ops;
1155 return swdev;
1157 EXPORT_SYMBOL(ksz_switch_alloc);
1159 int ksz_switch_detect(struct ksz_device *dev)
1161 u8 data8;
1162 u32 id32;
1163 int ret;
1165 /* turn off SPI DO Edge select */
1166 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1167 if (ret)
1168 return ret;
1170 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1171 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1172 if (ret)
1173 return ret;
1175 /* read chip id */
1176 ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1177 if (ret)
1178 return ret;
1180 dev->chip_id = id32;
1182 return 0;
1184 EXPORT_SYMBOL(ksz_switch_detect);
1186 int ksz_switch_register(struct ksz_device *dev)
1188 int ret;
1190 if (dev->pdata)
1191 dev->chip_id = dev->pdata->chip_id;
1193 if (ksz_switch_detect(dev))
1194 return -EINVAL;
1196 ret = ksz_switch_init(dev);
1197 if (ret)
1198 return ret;
1200 return dsa_register_switch(dev->ds);
1202 EXPORT_SYMBOL(ksz_switch_register);
1204 void ksz_switch_remove(struct ksz_device *dev)
1206 dsa_unregister_switch(dev->ds);
1208 EXPORT_SYMBOL(ksz_switch_remove);
1210 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1211 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1212 MODULE_LICENSE("GPL");