Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / ethernet / cavium / thunder / nicvf_main.c
blob7d9c5ffbd0412191fc112a5eb7174ef318786276
1 /*
2 * Copyright (C) 2015 Cavium, Inc.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/log2.h>
17 #include <linux/prefetch.h>
18 #include <linux/irq.h>
19 #include <linux/iommu.h>
20 #include <linux/bpf.h>
21 #include <linux/bpf_trace.h>
22 #include <linux/filter.h>
23 #include <linux/net_tstamp.h>
25 #include "nic_reg.h"
26 #include "nic.h"
27 #include "nicvf_queues.h"
28 #include "thunder_bgx.h"
29 #include "../common/cavium_ptp.h"
31 #define DRV_NAME "nicvf"
32 #define DRV_VERSION "1.0"
34 /* Supported devices */
35 static const struct pci_device_id nicvf_id_table[] = {
36 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
37 PCI_DEVICE_ID_THUNDER_NIC_VF,
38 PCI_VENDOR_ID_CAVIUM,
39 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
40 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
41 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
42 PCI_VENDOR_ID_CAVIUM,
43 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
44 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
45 PCI_DEVICE_ID_THUNDER_NIC_VF,
46 PCI_VENDOR_ID_CAVIUM,
47 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
48 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
49 PCI_DEVICE_ID_THUNDER_NIC_VF,
50 PCI_VENDOR_ID_CAVIUM,
51 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
52 { 0, } /* end of table */
55 MODULE_AUTHOR("Sunil Goutham");
56 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
57 MODULE_LICENSE("GPL v2");
58 MODULE_VERSION(DRV_VERSION);
59 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
61 static int debug = 0x00;
62 module_param(debug, int, 0644);
63 MODULE_PARM_DESC(debug, "Debug message level bitmap");
65 static int cpi_alg = CPI_ALG_NONE;
66 module_param(cpi_alg, int, S_IRUGO);
67 MODULE_PARM_DESC(cpi_alg,
68 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
70 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
72 if (nic->sqs_mode)
73 return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
74 else
75 return qidx;
78 /* The Cavium ThunderX network controller can *only* be found in SoCs
79 * containing the ThunderX ARM64 CPU implementation. All accesses to the device
80 * registers on this platform are implicitly strongly ordered with respect
81 * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
82 * with no memory barriers in this driver. The readq()/writeq() functions add
83 * explicit ordering operation which in this case are redundant, and only
84 * add overhead.
87 /* Register read/write APIs */
88 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
90 writeq_relaxed(val, nic->reg_base + offset);
93 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
95 return readq_relaxed(nic->reg_base + offset);
98 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
99 u64 qidx, u64 val)
101 void __iomem *addr = nic->reg_base + offset;
103 writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
106 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
108 void __iomem *addr = nic->reg_base + offset;
110 return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
113 /* VF -> PF mailbox communication */
114 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
116 u64 *msg = (u64 *)mbx;
118 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
119 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
122 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
124 int timeout = NIC_MBOX_MSG_TIMEOUT;
125 int sleep = 10;
127 nic->pf_acked = false;
128 nic->pf_nacked = false;
130 nicvf_write_to_mbx(nic, mbx);
132 /* Wait for previous message to be acked, timeout 2sec */
133 while (!nic->pf_acked) {
134 if (nic->pf_nacked) {
135 netdev_err(nic->netdev,
136 "PF NACK to mbox msg 0x%02x from VF%d\n",
137 (mbx->msg.msg & 0xFF), nic->vf_id);
138 return -EINVAL;
140 msleep(sleep);
141 if (nic->pf_acked)
142 break;
143 timeout -= sleep;
144 if (!timeout) {
145 netdev_err(nic->netdev,
146 "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
147 (mbx->msg.msg & 0xFF), nic->vf_id);
148 return -EBUSY;
151 return 0;
154 /* Checks if VF is able to comminicate with PF
155 * and also gets the VNIC number this VF is associated to.
157 static int nicvf_check_pf_ready(struct nicvf *nic)
159 union nic_mbx mbx = {};
161 mbx.msg.msg = NIC_MBOX_MSG_READY;
162 if (nicvf_send_msg_to_pf(nic, &mbx)) {
163 netdev_err(nic->netdev,
164 "PF didn't respond to READY msg\n");
165 return 0;
168 return 1;
171 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
173 if (bgx->rx)
174 nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
175 else
176 nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
179 static void nicvf_handle_mbx_intr(struct nicvf *nic)
181 union nic_mbx mbx = {};
182 u64 *mbx_data;
183 u64 mbx_addr;
184 int i;
186 mbx_addr = NIC_VF_PF_MAILBOX_0_1;
187 mbx_data = (u64 *)&mbx;
189 for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
190 *mbx_data = nicvf_reg_read(nic, mbx_addr);
191 mbx_data++;
192 mbx_addr += sizeof(u64);
195 netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
196 switch (mbx.msg.msg) {
197 case NIC_MBOX_MSG_READY:
198 nic->pf_acked = true;
199 nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
200 nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
201 nic->node = mbx.nic_cfg.node_id;
202 if (!nic->set_mac_pending)
203 ether_addr_copy(nic->netdev->dev_addr,
204 mbx.nic_cfg.mac_addr);
205 nic->sqs_mode = mbx.nic_cfg.sqs_mode;
206 nic->loopback_supported = mbx.nic_cfg.loopback_supported;
207 nic->link_up = false;
208 nic->duplex = 0;
209 nic->speed = 0;
210 break;
211 case NIC_MBOX_MSG_ACK:
212 nic->pf_acked = true;
213 break;
214 case NIC_MBOX_MSG_NACK:
215 nic->pf_nacked = true;
216 break;
217 case NIC_MBOX_MSG_RSS_SIZE:
218 nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
219 nic->pf_acked = true;
220 break;
221 case NIC_MBOX_MSG_BGX_STATS:
222 nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
223 nic->pf_acked = true;
224 break;
225 case NIC_MBOX_MSG_BGX_LINK_CHANGE:
226 nic->pf_acked = true;
227 nic->link_up = mbx.link_status.link_up;
228 nic->duplex = mbx.link_status.duplex;
229 nic->speed = mbx.link_status.speed;
230 nic->mac_type = mbx.link_status.mac_type;
231 if (nic->link_up) {
232 netdev_info(nic->netdev, "Link is Up %d Mbps %s duplex\n",
233 nic->speed,
234 nic->duplex == DUPLEX_FULL ?
235 "Full" : "Half");
236 netif_carrier_on(nic->netdev);
237 netif_tx_start_all_queues(nic->netdev);
238 } else {
239 netdev_info(nic->netdev, "Link is Down\n");
240 netif_carrier_off(nic->netdev);
241 netif_tx_stop_all_queues(nic->netdev);
243 break;
244 case NIC_MBOX_MSG_ALLOC_SQS:
245 nic->sqs_count = mbx.sqs_alloc.qs_count;
246 nic->pf_acked = true;
247 break;
248 case NIC_MBOX_MSG_SNICVF_PTR:
249 /* Primary VF: make note of secondary VF's pointer
250 * to be used while packet transmission.
252 nic->snicvf[mbx.nicvf.sqs_id] =
253 (struct nicvf *)mbx.nicvf.nicvf;
254 nic->pf_acked = true;
255 break;
256 case NIC_MBOX_MSG_PNICVF_PTR:
257 /* Secondary VF/Qset: make note of primary VF's pointer
258 * to be used while packet reception, to handover packet
259 * to primary VF's netdev.
261 nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
262 nic->pf_acked = true;
263 break;
264 case NIC_MBOX_MSG_PFC:
265 nic->pfc.autoneg = mbx.pfc.autoneg;
266 nic->pfc.fc_rx = mbx.pfc.fc_rx;
267 nic->pfc.fc_tx = mbx.pfc.fc_tx;
268 nic->pf_acked = true;
269 break;
270 default:
271 netdev_err(nic->netdev,
272 "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
273 break;
275 nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
278 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
280 union nic_mbx mbx = {};
282 mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
283 mbx.mac.vf_id = nic->vf_id;
284 ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
286 return nicvf_send_msg_to_pf(nic, &mbx);
289 static void nicvf_config_cpi(struct nicvf *nic)
291 union nic_mbx mbx = {};
293 mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
294 mbx.cpi_cfg.vf_id = nic->vf_id;
295 mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
296 mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
298 nicvf_send_msg_to_pf(nic, &mbx);
301 static void nicvf_get_rss_size(struct nicvf *nic)
303 union nic_mbx mbx = {};
305 mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
306 mbx.rss_size.vf_id = nic->vf_id;
307 nicvf_send_msg_to_pf(nic, &mbx);
310 void nicvf_config_rss(struct nicvf *nic)
312 union nic_mbx mbx = {};
313 struct nicvf_rss_info *rss = &nic->rss_info;
314 int ind_tbl_len = rss->rss_size;
315 int i, nextq = 0;
317 mbx.rss_cfg.vf_id = nic->vf_id;
318 mbx.rss_cfg.hash_bits = rss->hash_bits;
319 while (ind_tbl_len) {
320 mbx.rss_cfg.tbl_offset = nextq;
321 mbx.rss_cfg.tbl_len = min(ind_tbl_len,
322 RSS_IND_TBL_LEN_PER_MBX_MSG);
323 mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
324 NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
326 for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
327 mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
329 nicvf_send_msg_to_pf(nic, &mbx);
331 ind_tbl_len -= mbx.rss_cfg.tbl_len;
335 void nicvf_set_rss_key(struct nicvf *nic)
337 struct nicvf_rss_info *rss = &nic->rss_info;
338 u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
339 int idx;
341 for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
342 nicvf_reg_write(nic, key_addr, rss->key[idx]);
343 key_addr += sizeof(u64);
347 static int nicvf_rss_init(struct nicvf *nic)
349 struct nicvf_rss_info *rss = &nic->rss_info;
350 int idx;
352 nicvf_get_rss_size(nic);
354 if (cpi_alg != CPI_ALG_NONE) {
355 rss->enable = false;
356 rss->hash_bits = 0;
357 return 0;
360 rss->enable = true;
362 netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
363 nicvf_set_rss_key(nic);
365 rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
366 nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
368 rss->hash_bits = ilog2(rounddown_pow_of_two(rss->rss_size));
370 for (idx = 0; idx < rss->rss_size; idx++)
371 rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
372 nic->rx_queues);
373 nicvf_config_rss(nic);
374 return 1;
377 /* Request PF to allocate additional Qsets */
378 static void nicvf_request_sqs(struct nicvf *nic)
380 union nic_mbx mbx = {};
381 int sqs;
382 int sqs_count = nic->sqs_count;
383 int rx_queues = 0, tx_queues = 0;
385 /* Only primary VF should request */
386 if (nic->sqs_mode || !nic->sqs_count)
387 return;
389 mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
390 mbx.sqs_alloc.vf_id = nic->vf_id;
391 mbx.sqs_alloc.qs_count = nic->sqs_count;
392 if (nicvf_send_msg_to_pf(nic, &mbx)) {
393 /* No response from PF */
394 nic->sqs_count = 0;
395 return;
398 /* Return if no Secondary Qsets available */
399 if (!nic->sqs_count)
400 return;
402 if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
403 rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
405 tx_queues = nic->tx_queues + nic->xdp_tx_queues;
406 if (tx_queues > MAX_SND_QUEUES_PER_QS)
407 tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
409 /* Set no of Rx/Tx queues in each of the SQsets */
410 for (sqs = 0; sqs < nic->sqs_count; sqs++) {
411 mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
412 mbx.nicvf.vf_id = nic->vf_id;
413 mbx.nicvf.sqs_id = sqs;
414 nicvf_send_msg_to_pf(nic, &mbx);
416 nic->snicvf[sqs]->sqs_id = sqs;
417 if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
418 nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
419 rx_queues -= MAX_RCV_QUEUES_PER_QS;
420 } else {
421 nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
422 rx_queues = 0;
425 if (tx_queues > MAX_SND_QUEUES_PER_QS) {
426 nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
427 tx_queues -= MAX_SND_QUEUES_PER_QS;
428 } else {
429 nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
430 tx_queues = 0;
433 nic->snicvf[sqs]->qs->cq_cnt =
434 max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
436 /* Initialize secondary Qset's queues and its interrupts */
437 nicvf_open(nic->snicvf[sqs]->netdev);
440 /* Update stack with actual Rx/Tx queue count allocated */
441 if (sqs_count != nic->sqs_count)
442 nicvf_set_real_num_queues(nic->netdev,
443 nic->tx_queues, nic->rx_queues);
446 /* Send this Qset's nicvf pointer to PF.
447 * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
448 * so that packets received by these Qsets can use primary VF's netdev
450 static void nicvf_send_vf_struct(struct nicvf *nic)
452 union nic_mbx mbx = {};
454 mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
455 mbx.nicvf.sqs_mode = nic->sqs_mode;
456 mbx.nicvf.nicvf = (u64)nic;
457 nicvf_send_msg_to_pf(nic, &mbx);
460 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
462 union nic_mbx mbx = {};
464 mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
465 nicvf_send_msg_to_pf(nic, &mbx);
468 int nicvf_set_real_num_queues(struct net_device *netdev,
469 int tx_queues, int rx_queues)
471 int err = 0;
473 err = netif_set_real_num_tx_queues(netdev, tx_queues);
474 if (err) {
475 netdev_err(netdev,
476 "Failed to set no of Tx queues: %d\n", tx_queues);
477 return err;
480 err = netif_set_real_num_rx_queues(netdev, rx_queues);
481 if (err)
482 netdev_err(netdev,
483 "Failed to set no of Rx queues: %d\n", rx_queues);
484 return err;
487 static int nicvf_init_resources(struct nicvf *nic)
489 int err;
491 /* Enable Qset */
492 nicvf_qset_config(nic, true);
494 /* Initialize queues and HW for data transfer */
495 err = nicvf_config_data_transfer(nic, true);
496 if (err) {
497 netdev_err(nic->netdev,
498 "Failed to alloc/config VF's QSet resources\n");
499 return err;
502 return 0;
505 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
506 struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
507 struct rcv_queue *rq, struct sk_buff **skb)
509 struct xdp_buff xdp;
510 struct page *page;
511 u32 action;
512 u16 len, offset = 0;
513 u64 dma_addr, cpu_addr;
514 void *orig_data;
516 /* Retrieve packet buffer's DMA address and length */
517 len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
518 dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
520 cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
521 if (!cpu_addr)
522 return false;
523 cpu_addr = (u64)phys_to_virt(cpu_addr);
524 page = virt_to_page((void *)cpu_addr);
526 xdp.data_hard_start = page_address(page);
527 xdp.data = (void *)cpu_addr;
528 xdp_set_data_meta_invalid(&xdp);
529 xdp.data_end = xdp.data + len;
530 xdp.rxq = &rq->xdp_rxq;
531 orig_data = xdp.data;
533 rcu_read_lock();
534 action = bpf_prog_run_xdp(prog, &xdp);
535 rcu_read_unlock();
537 /* Check if XDP program has changed headers */
538 if (orig_data != xdp.data) {
539 len = xdp.data_end - xdp.data;
540 offset = orig_data - xdp.data;
541 dma_addr -= offset;
544 switch (action) {
545 case XDP_PASS:
546 /* Check if it's a recycled page, if not
547 * unmap the DMA mapping.
549 * Recycled page holds an extra reference.
551 if (page_ref_count(page) == 1) {
552 dma_addr &= PAGE_MASK;
553 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
554 RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
555 DMA_FROM_DEVICE,
556 DMA_ATTR_SKIP_CPU_SYNC);
559 /* Build SKB and pass on packet to network stack */
560 *skb = build_skb(xdp.data,
561 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
562 if (!*skb)
563 put_page(page);
564 else
565 skb_put(*skb, len);
566 return false;
567 case XDP_TX:
568 nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
569 return true;
570 default:
571 bpf_warn_invalid_xdp_action(action);
572 /* fall through */
573 case XDP_ABORTED:
574 trace_xdp_exception(nic->netdev, prog, action);
575 /* fall through */
576 case XDP_DROP:
577 /* Check if it's a recycled page, if not
578 * unmap the DMA mapping.
580 * Recycled page holds an extra reference.
582 if (page_ref_count(page) == 1) {
583 dma_addr &= PAGE_MASK;
584 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
585 RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
586 DMA_FROM_DEVICE,
587 DMA_ATTR_SKIP_CPU_SYNC);
589 put_page(page);
590 return true;
592 return false;
595 static void nicvf_snd_ptp_handler(struct net_device *netdev,
596 struct cqe_send_t *cqe_tx)
598 struct nicvf *nic = netdev_priv(netdev);
599 struct skb_shared_hwtstamps ts;
600 u64 ns;
602 nic = nic->pnicvf;
604 /* Sync for 'ptp_skb' */
605 smp_rmb();
607 /* New timestamp request can be queued now */
608 atomic_set(&nic->tx_ptp_skbs, 0);
610 /* Check for timestamp requested skb */
611 if (!nic->ptp_skb)
612 return;
614 /* Check if timestamping is timedout, which is set to 10us */
615 if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT ||
616 cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT)
617 goto no_tstamp;
619 /* Get the timestamp */
620 memset(&ts, 0, sizeof(ts));
621 ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp);
622 ts.hwtstamp = ns_to_ktime(ns);
623 skb_tstamp_tx(nic->ptp_skb, &ts);
625 no_tstamp:
626 /* Free the original skb */
627 dev_kfree_skb_any(nic->ptp_skb);
628 nic->ptp_skb = NULL;
629 /* Sync 'ptp_skb' */
630 smp_wmb();
633 static void nicvf_snd_pkt_handler(struct net_device *netdev,
634 struct cqe_send_t *cqe_tx,
635 int budget, int *subdesc_cnt,
636 unsigned int *tx_pkts, unsigned int *tx_bytes)
638 struct sk_buff *skb = NULL;
639 struct page *page;
640 struct nicvf *nic = netdev_priv(netdev);
641 struct snd_queue *sq;
642 struct sq_hdr_subdesc *hdr;
643 struct sq_hdr_subdesc *tso_sqe;
645 sq = &nic->qs->sq[cqe_tx->sq_idx];
647 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
648 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
649 return;
651 /* Check for errors */
652 if (cqe_tx->send_status)
653 nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
655 /* Is this a XDP designated Tx queue */
656 if (sq->is_xdp) {
657 page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
658 /* Check if it's recycled page or else unmap DMA mapping */
659 if (page && (page_ref_count(page) == 1))
660 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
661 hdr->subdesc_cnt);
663 /* Release page reference for recycling */
664 if (page)
665 put_page(page);
666 sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
667 *subdesc_cnt += hdr->subdesc_cnt + 1;
668 return;
671 skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
672 if (skb) {
673 /* Check for dummy descriptor used for HW TSO offload on 88xx */
674 if (hdr->dont_send) {
675 /* Get actual TSO descriptors and free them */
676 tso_sqe =
677 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
678 nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
679 tso_sqe->subdesc_cnt);
680 *subdesc_cnt += tso_sqe->subdesc_cnt + 1;
681 } else {
682 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
683 hdr->subdesc_cnt);
685 *subdesc_cnt += hdr->subdesc_cnt + 1;
686 prefetch(skb);
687 (*tx_pkts)++;
688 *tx_bytes += skb->len;
689 /* If timestamp is requested for this skb, don't free it */
690 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
691 !nic->pnicvf->ptp_skb)
692 nic->pnicvf->ptp_skb = skb;
693 else
694 napi_consume_skb(skb, budget);
695 sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
696 } else {
697 /* In case of SW TSO on 88xx, only last segment will have
698 * a SKB attached, so just free SQEs here.
700 if (!nic->hw_tso)
701 *subdesc_cnt += hdr->subdesc_cnt + 1;
705 static inline void nicvf_set_rxhash(struct net_device *netdev,
706 struct cqe_rx_t *cqe_rx,
707 struct sk_buff *skb)
709 u8 hash_type;
710 u32 hash;
712 if (!(netdev->features & NETIF_F_RXHASH))
713 return;
715 switch (cqe_rx->rss_alg) {
716 case RSS_ALG_TCP_IP:
717 case RSS_ALG_UDP_IP:
718 hash_type = PKT_HASH_TYPE_L4;
719 hash = cqe_rx->rss_tag;
720 break;
721 case RSS_ALG_IP:
722 hash_type = PKT_HASH_TYPE_L3;
723 hash = cqe_rx->rss_tag;
724 break;
725 default:
726 hash_type = PKT_HASH_TYPE_NONE;
727 hash = 0;
730 skb_set_hash(skb, hash, hash_type);
733 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb)
735 u64 ns;
737 if (!nic->ptp_clock || !nic->hw_rx_tstamp)
738 return;
740 /* The first 8 bytes is the timestamp */
741 ns = cavium_ptp_tstamp2time(nic->ptp_clock,
742 be64_to_cpu(*(__be64 *)skb->data));
743 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
745 __skb_pull(skb, 8);
748 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
749 struct napi_struct *napi,
750 struct cqe_rx_t *cqe_rx,
751 struct snd_queue *sq, struct rcv_queue *rq)
753 struct sk_buff *skb = NULL;
754 struct nicvf *nic = netdev_priv(netdev);
755 struct nicvf *snic = nic;
756 int err = 0;
757 int rq_idx;
759 rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
761 if (nic->sqs_mode) {
762 /* Use primary VF's 'nicvf' struct */
763 nic = nic->pnicvf;
764 netdev = nic->netdev;
767 /* Check for errors */
768 if (cqe_rx->err_level || cqe_rx->err_opcode) {
769 err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
770 if (err && !cqe_rx->rb_cnt)
771 return;
774 /* For XDP, ignore pkts spanning multiple pages */
775 if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
776 /* Packet consumed by XDP */
777 if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb))
778 return;
779 } else {
780 skb = nicvf_get_rcv_skb(snic, cqe_rx,
781 nic->xdp_prog ? true : false);
784 if (!skb)
785 return;
787 if (netif_msg_pktdata(nic)) {
788 netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
789 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
790 skb->data, skb->len, true);
793 /* If error packet, drop it here */
794 if (err) {
795 dev_kfree_skb_any(skb);
796 return;
799 nicvf_set_rxtstamp(nic, skb);
800 nicvf_set_rxhash(netdev, cqe_rx, skb);
802 skb_record_rx_queue(skb, rq_idx);
803 if (netdev->hw_features & NETIF_F_RXCSUM) {
804 /* HW by default verifies TCP/UDP/SCTP checksums */
805 skb->ip_summed = CHECKSUM_UNNECESSARY;
806 } else {
807 skb_checksum_none_assert(skb);
810 skb->protocol = eth_type_trans(skb, netdev);
812 /* Check for stripped VLAN */
813 if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
814 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
815 ntohs((__force __be16)cqe_rx->vlan_tci));
817 if (napi && (netdev->features & NETIF_F_GRO))
818 napi_gro_receive(napi, skb);
819 else
820 netif_receive_skb(skb);
823 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
824 struct napi_struct *napi, int budget)
826 int processed_cqe, work_done = 0, tx_done = 0;
827 int cqe_count, cqe_head;
828 int subdesc_cnt = 0;
829 struct nicvf *nic = netdev_priv(netdev);
830 struct queue_set *qs = nic->qs;
831 struct cmp_queue *cq = &qs->cq[cq_idx];
832 struct cqe_rx_t *cq_desc;
833 struct netdev_queue *txq;
834 struct snd_queue *sq = &qs->sq[cq_idx];
835 struct rcv_queue *rq = &qs->rq[cq_idx];
836 unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
838 spin_lock_bh(&cq->lock);
839 loop:
840 processed_cqe = 0;
841 /* Get no of valid CQ entries to process */
842 cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
843 cqe_count &= CQ_CQE_COUNT;
844 if (!cqe_count)
845 goto done;
847 /* Get head of the valid CQ entries */
848 cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
849 cqe_head &= 0xFFFF;
851 while (processed_cqe < cqe_count) {
852 /* Get the CQ descriptor */
853 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
854 cqe_head++;
855 cqe_head &= (cq->dmem.q_len - 1);
856 /* Initiate prefetch for next descriptor */
857 prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
859 if ((work_done >= budget) && napi &&
860 (cq_desc->cqe_type != CQE_TYPE_SEND)) {
861 break;
864 switch (cq_desc->cqe_type) {
865 case CQE_TYPE_RX:
866 nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq);
867 work_done++;
868 break;
869 case CQE_TYPE_SEND:
870 nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
871 budget, &subdesc_cnt,
872 &tx_pkts, &tx_bytes);
873 tx_done++;
874 break;
875 case CQE_TYPE_SEND_PTP:
876 nicvf_snd_ptp_handler(netdev, (void *)cq_desc);
877 break;
878 case CQE_TYPE_INVALID:
879 case CQE_TYPE_RX_SPLIT:
880 case CQE_TYPE_RX_TCP:
881 /* Ignore for now */
882 break;
884 processed_cqe++;
887 /* Ring doorbell to inform H/W to reuse processed CQEs */
888 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
889 cq_idx, processed_cqe);
891 if ((work_done < budget) && napi)
892 goto loop;
894 done:
895 /* Update SQ's descriptor free count */
896 if (subdesc_cnt)
897 nicvf_put_sq_desc(sq, subdesc_cnt);
899 txq_idx = nicvf_netdev_qidx(nic, cq_idx);
900 /* Handle XDP TX queues */
901 if (nic->pnicvf->xdp_prog) {
902 if (txq_idx < nic->pnicvf->xdp_tx_queues) {
903 nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
904 goto out;
906 nic = nic->pnicvf;
907 txq_idx -= nic->pnicvf->xdp_tx_queues;
910 /* Wakeup TXQ if its stopped earlier due to SQ full */
911 if (tx_done ||
912 (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
913 netdev = nic->pnicvf->netdev;
914 txq = netdev_get_tx_queue(netdev, txq_idx);
915 if (tx_pkts)
916 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
918 /* To read updated queue and carrier status */
919 smp_mb();
920 if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
921 netif_tx_wake_queue(txq);
922 nic = nic->pnicvf;
923 this_cpu_inc(nic->drv_stats->txq_wake);
924 netif_warn(nic, tx_err, netdev,
925 "Transmit queue wakeup SQ%d\n", txq_idx);
929 out:
930 spin_unlock_bh(&cq->lock);
931 return work_done;
934 static int nicvf_poll(struct napi_struct *napi, int budget)
936 u64 cq_head;
937 int work_done = 0;
938 struct net_device *netdev = napi->dev;
939 struct nicvf *nic = netdev_priv(netdev);
940 struct nicvf_cq_poll *cq;
942 cq = container_of(napi, struct nicvf_cq_poll, napi);
943 work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
945 if (work_done < budget) {
946 /* Slow packet rate, exit polling */
947 napi_complete_done(napi, work_done);
948 /* Re-enable interrupts */
949 cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
950 cq->cq_idx);
951 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
952 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
953 cq->cq_idx, cq_head);
954 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
956 return work_done;
959 /* Qset error interrupt handler
961 * As of now only CQ errors are handled
963 static void nicvf_handle_qs_err(unsigned long data)
965 struct nicvf *nic = (struct nicvf *)data;
966 struct queue_set *qs = nic->qs;
967 int qidx;
968 u64 status;
970 netif_tx_disable(nic->netdev);
972 /* Check if it is CQ err */
973 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
974 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
975 qidx);
976 if (!(status & CQ_ERR_MASK))
977 continue;
978 /* Process already queued CQEs and reconfig CQ */
979 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
980 nicvf_sq_disable(nic, qidx);
981 nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
982 nicvf_cmp_queue_config(nic, qs, qidx, true);
983 nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
984 nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
986 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
989 netif_tx_start_all_queues(nic->netdev);
990 /* Re-enable Qset error interrupt */
991 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
994 static void nicvf_dump_intr_status(struct nicvf *nic)
996 netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
997 nicvf_reg_read(nic, NIC_VF_INT));
1000 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
1002 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1003 u64 intr;
1005 nicvf_dump_intr_status(nic);
1007 intr = nicvf_reg_read(nic, NIC_VF_INT);
1008 /* Check for spurious interrupt */
1009 if (!(intr & NICVF_INTR_MBOX_MASK))
1010 return IRQ_HANDLED;
1012 nicvf_handle_mbx_intr(nic);
1014 return IRQ_HANDLED;
1017 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
1019 struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
1020 struct nicvf *nic = cq_poll->nicvf;
1021 int qidx = cq_poll->cq_idx;
1023 nicvf_dump_intr_status(nic);
1025 /* Disable interrupts */
1026 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1028 /* Schedule NAPI */
1029 napi_schedule_irqoff(&cq_poll->napi);
1031 /* Clear interrupt */
1032 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1034 return IRQ_HANDLED;
1037 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
1039 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1040 u8 qidx;
1043 nicvf_dump_intr_status(nic);
1045 /* Disable RBDR interrupt and schedule softirq */
1046 for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
1047 if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
1048 continue;
1049 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1050 tasklet_hi_schedule(&nic->rbdr_task);
1051 /* Clear interrupt */
1052 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1055 return IRQ_HANDLED;
1058 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
1060 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1062 nicvf_dump_intr_status(nic);
1064 /* Disable Qset err interrupt and schedule softirq */
1065 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1066 tasklet_hi_schedule(&nic->qs_err_task);
1067 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1069 return IRQ_HANDLED;
1072 static void nicvf_set_irq_affinity(struct nicvf *nic)
1074 int vec, cpu;
1076 for (vec = 0; vec < nic->num_vec; vec++) {
1077 if (!nic->irq_allocated[vec])
1078 continue;
1080 if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1081 return;
1082 /* CQ interrupts */
1083 if (vec < NICVF_INTR_ID_SQ)
1084 /* Leave CPU0 for RBDR and other interrupts */
1085 cpu = nicvf_netdev_qidx(nic, vec) + 1;
1086 else
1087 cpu = 0;
1089 cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1090 nic->affinity_mask[vec]);
1091 irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1092 nic->affinity_mask[vec]);
1096 static int nicvf_register_interrupts(struct nicvf *nic)
1098 int irq, ret = 0;
1100 for_each_cq_irq(irq)
1101 sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1102 nic->pnicvf->netdev->name,
1103 nicvf_netdev_qidx(nic, irq));
1105 for_each_sq_irq(irq)
1106 sprintf(nic->irq_name[irq], "%s-sq-%d",
1107 nic->pnicvf->netdev->name,
1108 nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1110 for_each_rbdr_irq(irq)
1111 sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1112 nic->pnicvf->netdev->name,
1113 nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1115 /* Register CQ interrupts */
1116 for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1117 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1118 nicvf_intr_handler,
1119 0, nic->irq_name[irq], nic->napi[irq]);
1120 if (ret)
1121 goto err;
1122 nic->irq_allocated[irq] = true;
1125 /* Register RBDR interrupt */
1126 for (irq = NICVF_INTR_ID_RBDR;
1127 irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1128 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1129 nicvf_rbdr_intr_handler,
1130 0, nic->irq_name[irq], nic);
1131 if (ret)
1132 goto err;
1133 nic->irq_allocated[irq] = true;
1136 /* Register QS error interrupt */
1137 sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1138 nic->pnicvf->netdev->name,
1139 nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1140 irq = NICVF_INTR_ID_QS_ERR;
1141 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1142 nicvf_qs_err_intr_handler,
1143 0, nic->irq_name[irq], nic);
1144 if (ret)
1145 goto err;
1147 nic->irq_allocated[irq] = true;
1149 /* Set IRQ affinities */
1150 nicvf_set_irq_affinity(nic);
1152 err:
1153 if (ret)
1154 netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1156 return ret;
1159 static void nicvf_unregister_interrupts(struct nicvf *nic)
1161 struct pci_dev *pdev = nic->pdev;
1162 int irq;
1164 /* Free registered interrupts */
1165 for (irq = 0; irq < nic->num_vec; irq++) {
1166 if (!nic->irq_allocated[irq])
1167 continue;
1169 irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1170 free_cpumask_var(nic->affinity_mask[irq]);
1172 if (irq < NICVF_INTR_ID_SQ)
1173 free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1174 else
1175 free_irq(pci_irq_vector(pdev, irq), nic);
1177 nic->irq_allocated[irq] = false;
1180 /* Disable MSI-X */
1181 pci_free_irq_vectors(pdev);
1182 nic->num_vec = 0;
1185 /* Initialize MSIX vectors and register MISC interrupt.
1186 * Send READY message to PF to check if its alive
1188 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1190 int ret = 0;
1191 int irq = NICVF_INTR_ID_MISC;
1193 /* Return if mailbox interrupt is already registered */
1194 if (nic->pdev->msix_enabled)
1195 return 0;
1197 /* Enable MSI-X */
1198 nic->num_vec = pci_msix_vec_count(nic->pdev);
1199 ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1200 PCI_IRQ_MSIX);
1201 if (ret < 0) {
1202 netdev_err(nic->netdev,
1203 "Req for #%d msix vectors failed\n", nic->num_vec);
1204 return 1;
1207 sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1208 /* Register Misc interrupt */
1209 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1210 nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1212 if (ret)
1213 return ret;
1214 nic->irq_allocated[irq] = true;
1216 /* Enable mailbox interrupt */
1217 nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1219 /* Check if VF is able to communicate with PF */
1220 if (!nicvf_check_pf_ready(nic)) {
1221 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1222 nicvf_unregister_interrupts(nic);
1223 return 1;
1226 return 0;
1229 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1231 struct nicvf *nic = netdev_priv(netdev);
1232 int qid = skb_get_queue_mapping(skb);
1233 struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1234 struct nicvf *snic;
1235 struct snd_queue *sq;
1236 int tmp;
1238 /* Check for minimum packet length */
1239 if (skb->len <= ETH_HLEN) {
1240 dev_kfree_skb(skb);
1241 return NETDEV_TX_OK;
1244 /* In XDP case, initial HW tx queues are used for XDP,
1245 * but stack's queue mapping starts at '0', so skip the
1246 * Tx queues attached to Rx queues for XDP.
1248 if (nic->xdp_prog)
1249 qid += nic->xdp_tx_queues;
1251 snic = nic;
1252 /* Get secondary Qset's SQ structure */
1253 if (qid >= MAX_SND_QUEUES_PER_QS) {
1254 tmp = qid / MAX_SND_QUEUES_PER_QS;
1255 snic = (struct nicvf *)nic->snicvf[tmp - 1];
1256 if (!snic) {
1257 netdev_warn(nic->netdev,
1258 "Secondary Qset#%d's ptr not initialized\n",
1259 tmp - 1);
1260 dev_kfree_skb(skb);
1261 return NETDEV_TX_OK;
1263 qid = qid % MAX_SND_QUEUES_PER_QS;
1266 sq = &snic->qs->sq[qid];
1267 if (!netif_tx_queue_stopped(txq) &&
1268 !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1269 netif_tx_stop_queue(txq);
1271 /* Barrier, so that stop_queue visible to other cpus */
1272 smp_mb();
1274 /* Check again, incase another cpu freed descriptors */
1275 if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1276 netif_tx_wake_queue(txq);
1277 } else {
1278 this_cpu_inc(nic->drv_stats->txq_stop);
1279 netif_warn(nic, tx_err, netdev,
1280 "Transmit ring full, stopping SQ%d\n", qid);
1282 return NETDEV_TX_BUSY;
1285 return NETDEV_TX_OK;
1288 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1290 struct nicvf_cq_poll *cq_poll;
1291 int qidx;
1293 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1294 cq_poll = nic->napi[qidx];
1295 if (!cq_poll)
1296 continue;
1297 nic->napi[qidx] = NULL;
1298 kfree(cq_poll);
1302 int nicvf_stop(struct net_device *netdev)
1304 int irq, qidx;
1305 struct nicvf *nic = netdev_priv(netdev);
1306 struct queue_set *qs = nic->qs;
1307 struct nicvf_cq_poll *cq_poll = NULL;
1308 union nic_mbx mbx = {};
1310 mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1311 nicvf_send_msg_to_pf(nic, &mbx);
1313 netif_carrier_off(netdev);
1314 netif_tx_stop_all_queues(nic->netdev);
1315 nic->link_up = false;
1317 /* Teardown secondary qsets first */
1318 if (!nic->sqs_mode) {
1319 for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1320 if (!nic->snicvf[qidx])
1321 continue;
1322 nicvf_stop(nic->snicvf[qidx]->netdev);
1323 nic->snicvf[qidx] = NULL;
1327 /* Disable RBDR & QS error interrupts */
1328 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1329 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1330 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1332 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1333 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1335 /* Wait for pending IRQ handlers to finish */
1336 for (irq = 0; irq < nic->num_vec; irq++)
1337 synchronize_irq(pci_irq_vector(nic->pdev, irq));
1339 tasklet_kill(&nic->rbdr_task);
1340 tasklet_kill(&nic->qs_err_task);
1341 if (nic->rb_work_scheduled)
1342 cancel_delayed_work_sync(&nic->rbdr_work);
1344 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1345 cq_poll = nic->napi[qidx];
1346 if (!cq_poll)
1347 continue;
1348 napi_synchronize(&cq_poll->napi);
1349 /* CQ intr is enabled while napi_complete,
1350 * so disable it now
1352 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1353 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1354 napi_disable(&cq_poll->napi);
1355 netif_napi_del(&cq_poll->napi);
1358 netif_tx_disable(netdev);
1360 for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1361 netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1363 /* Free resources */
1364 nicvf_config_data_transfer(nic, false);
1366 /* Disable HW Qset */
1367 nicvf_qset_config(nic, false);
1369 /* disable mailbox interrupt */
1370 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1372 nicvf_unregister_interrupts(nic);
1374 nicvf_free_cq_poll(nic);
1376 /* Free any pending SKB saved to receive timestamp */
1377 if (nic->ptp_skb) {
1378 dev_kfree_skb_any(nic->ptp_skb);
1379 nic->ptp_skb = NULL;
1382 /* Clear multiqset info */
1383 nic->pnicvf = nic;
1385 return 0;
1388 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable)
1390 union nic_mbx mbx = {};
1392 mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG;
1393 mbx.ptp.enable = enable;
1395 return nicvf_send_msg_to_pf(nic, &mbx);
1398 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1400 union nic_mbx mbx = {};
1402 mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1403 mbx.frs.max_frs = mtu;
1404 mbx.frs.vf_id = nic->vf_id;
1406 return nicvf_send_msg_to_pf(nic, &mbx);
1409 int nicvf_open(struct net_device *netdev)
1411 int cpu, err, qidx;
1412 struct nicvf *nic = netdev_priv(netdev);
1413 struct queue_set *qs = nic->qs;
1414 struct nicvf_cq_poll *cq_poll = NULL;
1415 union nic_mbx mbx = {};
1417 netif_carrier_off(netdev);
1419 err = nicvf_register_misc_interrupt(nic);
1420 if (err)
1421 return err;
1423 /* Register NAPI handler for processing CQEs */
1424 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1425 cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1426 if (!cq_poll) {
1427 err = -ENOMEM;
1428 goto napi_del;
1430 cq_poll->cq_idx = qidx;
1431 cq_poll->nicvf = nic;
1432 netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1433 NAPI_POLL_WEIGHT);
1434 napi_enable(&cq_poll->napi);
1435 nic->napi[qidx] = cq_poll;
1438 /* Check if we got MAC address from PF or else generate a radom MAC */
1439 if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1440 eth_hw_addr_random(netdev);
1441 nicvf_hw_set_mac_addr(nic, netdev);
1444 if (nic->set_mac_pending) {
1445 nic->set_mac_pending = false;
1446 nicvf_hw_set_mac_addr(nic, netdev);
1449 /* Init tasklet for handling Qset err interrupt */
1450 tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1451 (unsigned long)nic);
1453 /* Init RBDR tasklet which will refill RBDR */
1454 tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1455 (unsigned long)nic);
1456 INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1458 /* Configure CPI alorithm */
1459 nic->cpi_alg = cpi_alg;
1460 if (!nic->sqs_mode)
1461 nicvf_config_cpi(nic);
1463 nicvf_request_sqs(nic);
1464 if (nic->sqs_mode)
1465 nicvf_get_primary_vf_struct(nic);
1467 /* Configure PTP timestamp */
1468 if (nic->ptp_clock)
1469 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1470 atomic_set(&nic->tx_ptp_skbs, 0);
1471 nic->ptp_skb = NULL;
1473 /* Configure receive side scaling and MTU */
1474 if (!nic->sqs_mode) {
1475 nicvf_rss_init(nic);
1476 err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1477 if (err)
1478 goto cleanup;
1480 /* Clear percpu stats */
1481 for_each_possible_cpu(cpu)
1482 memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1483 sizeof(struct nicvf_drv_stats));
1486 err = nicvf_register_interrupts(nic);
1487 if (err)
1488 goto cleanup;
1490 /* Initialize the queues */
1491 err = nicvf_init_resources(nic);
1492 if (err)
1493 goto cleanup;
1495 /* Make sure queue initialization is written */
1496 wmb();
1498 nicvf_reg_write(nic, NIC_VF_INT, -1);
1499 /* Enable Qset err interrupt */
1500 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1502 /* Enable completion queue interrupt */
1503 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1504 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1506 /* Enable RBDR threshold interrupt */
1507 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1508 nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1510 /* Send VF config done msg to PF */
1511 mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
1512 nicvf_write_to_mbx(nic, &mbx);
1514 return 0;
1515 cleanup:
1516 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1517 nicvf_unregister_interrupts(nic);
1518 tasklet_kill(&nic->qs_err_task);
1519 tasklet_kill(&nic->rbdr_task);
1520 napi_del:
1521 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1522 cq_poll = nic->napi[qidx];
1523 if (!cq_poll)
1524 continue;
1525 napi_disable(&cq_poll->napi);
1526 netif_napi_del(&cq_poll->napi);
1528 nicvf_free_cq_poll(nic);
1529 return err;
1532 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1534 struct nicvf *nic = netdev_priv(netdev);
1535 int orig_mtu = netdev->mtu;
1537 netdev->mtu = new_mtu;
1539 if (!netif_running(netdev))
1540 return 0;
1542 if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1543 netdev->mtu = orig_mtu;
1544 return -EINVAL;
1547 return 0;
1550 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1552 struct sockaddr *addr = p;
1553 struct nicvf *nic = netdev_priv(netdev);
1555 if (!is_valid_ether_addr(addr->sa_data))
1556 return -EADDRNOTAVAIL;
1558 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1560 if (nic->pdev->msix_enabled) {
1561 if (nicvf_hw_set_mac_addr(nic, netdev))
1562 return -EBUSY;
1563 } else {
1564 nic->set_mac_pending = true;
1567 return 0;
1570 void nicvf_update_lmac_stats(struct nicvf *nic)
1572 int stat = 0;
1573 union nic_mbx mbx = {};
1575 if (!netif_running(nic->netdev))
1576 return;
1578 mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1579 mbx.bgx_stats.vf_id = nic->vf_id;
1580 /* Rx stats */
1581 mbx.bgx_stats.rx = 1;
1582 while (stat < BGX_RX_STATS_COUNT) {
1583 mbx.bgx_stats.idx = stat;
1584 if (nicvf_send_msg_to_pf(nic, &mbx))
1585 return;
1586 stat++;
1589 stat = 0;
1591 /* Tx stats */
1592 mbx.bgx_stats.rx = 0;
1593 while (stat < BGX_TX_STATS_COUNT) {
1594 mbx.bgx_stats.idx = stat;
1595 if (nicvf_send_msg_to_pf(nic, &mbx))
1596 return;
1597 stat++;
1601 void nicvf_update_stats(struct nicvf *nic)
1603 int qidx, cpu;
1604 u64 tmp_stats = 0;
1605 struct nicvf_hw_stats *stats = &nic->hw_stats;
1606 struct nicvf_drv_stats *drv_stats;
1607 struct queue_set *qs = nic->qs;
1609 #define GET_RX_STATS(reg) \
1610 nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1611 #define GET_TX_STATS(reg) \
1612 nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1614 stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1615 stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1616 stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1617 stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1618 stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1619 stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1620 stats->rx_drop_red = GET_RX_STATS(RX_RED);
1621 stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1622 stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1623 stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1624 stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1625 stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1626 stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1627 stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1629 stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1630 stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1631 stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1632 stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1633 stats->tx_drops = GET_TX_STATS(TX_DROP);
1635 /* On T88 pass 2.0, the dummy SQE added for TSO notification
1636 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1637 * pointed by dummy SQE and results in tx_drops counter being
1638 * incremented. Subtracting it from tx_tso counter will give
1639 * exact tx_drops counter.
1641 if (nic->t88 && nic->hw_tso) {
1642 for_each_possible_cpu(cpu) {
1643 drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1644 tmp_stats += drv_stats->tx_tso;
1646 stats->tx_drops = tmp_stats - stats->tx_drops;
1648 stats->tx_frames = stats->tx_ucast_frames +
1649 stats->tx_bcast_frames +
1650 stats->tx_mcast_frames;
1651 stats->rx_frames = stats->rx_ucast_frames +
1652 stats->rx_bcast_frames +
1653 stats->rx_mcast_frames;
1654 stats->rx_drops = stats->rx_drop_red +
1655 stats->rx_drop_overrun;
1657 /* Update RQ and SQ stats */
1658 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1659 nicvf_update_rq_stats(nic, qidx);
1660 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1661 nicvf_update_sq_stats(nic, qidx);
1664 static void nicvf_get_stats64(struct net_device *netdev,
1665 struct rtnl_link_stats64 *stats)
1667 struct nicvf *nic = netdev_priv(netdev);
1668 struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1670 nicvf_update_stats(nic);
1672 stats->rx_bytes = hw_stats->rx_bytes;
1673 stats->rx_packets = hw_stats->rx_frames;
1674 stats->rx_dropped = hw_stats->rx_drops;
1675 stats->multicast = hw_stats->rx_mcast_frames;
1677 stats->tx_bytes = hw_stats->tx_bytes;
1678 stats->tx_packets = hw_stats->tx_frames;
1679 stats->tx_dropped = hw_stats->tx_drops;
1683 static void nicvf_tx_timeout(struct net_device *dev)
1685 struct nicvf *nic = netdev_priv(dev);
1687 netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1689 this_cpu_inc(nic->drv_stats->tx_timeout);
1690 schedule_work(&nic->reset_task);
1693 static void nicvf_reset_task(struct work_struct *work)
1695 struct nicvf *nic;
1697 nic = container_of(work, struct nicvf, reset_task);
1699 if (!netif_running(nic->netdev))
1700 return;
1702 nicvf_stop(nic->netdev);
1703 nicvf_open(nic->netdev);
1704 netif_trans_update(nic->netdev);
1707 static int nicvf_config_loopback(struct nicvf *nic,
1708 netdev_features_t features)
1710 union nic_mbx mbx = {};
1712 mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1713 mbx.lbk.vf_id = nic->vf_id;
1714 mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1716 return nicvf_send_msg_to_pf(nic, &mbx);
1719 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1720 netdev_features_t features)
1722 struct nicvf *nic = netdev_priv(netdev);
1724 if ((features & NETIF_F_LOOPBACK) &&
1725 netif_running(netdev) && !nic->loopback_supported)
1726 features &= ~NETIF_F_LOOPBACK;
1728 return features;
1731 static int nicvf_set_features(struct net_device *netdev,
1732 netdev_features_t features)
1734 struct nicvf *nic = netdev_priv(netdev);
1735 netdev_features_t changed = features ^ netdev->features;
1737 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1738 nicvf_config_vlan_stripping(nic, features);
1740 if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1741 return nicvf_config_loopback(nic, features);
1743 return 0;
1746 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1748 u8 cq_count, txq_count;
1750 /* Set XDP Tx queue count same as Rx queue count */
1751 if (!bpf_attached)
1752 nic->xdp_tx_queues = 0;
1753 else
1754 nic->xdp_tx_queues = nic->rx_queues;
1756 /* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1757 * needs to be allocated, check how many.
1759 txq_count = nic->xdp_tx_queues + nic->tx_queues;
1760 cq_count = max(nic->rx_queues, txq_count);
1761 if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1762 nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1763 nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1764 } else {
1765 nic->sqs_count = 0;
1768 /* Set primary Qset's resources */
1769 nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1770 nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1771 nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1773 /* Update stack */
1774 nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1777 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1779 struct net_device *dev = nic->netdev;
1780 bool if_up = netif_running(nic->netdev);
1781 struct bpf_prog *old_prog;
1782 bool bpf_attached = false;
1784 /* For now just support only the usual MTU sized frames */
1785 if (prog && (dev->mtu > 1500)) {
1786 netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1787 dev->mtu);
1788 return -EOPNOTSUPP;
1791 /* ALL SQs attached to CQs i.e same as RQs, are treated as
1792 * XDP Tx queues and more Tx queues are allocated for
1793 * network stack to send pkts out.
1795 * No of Tx queues are either same as Rx queues or whatever
1796 * is left in max no of queues possible.
1798 if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1799 netdev_warn(dev,
1800 "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1801 nic->max_queues);
1802 return -ENOMEM;
1805 if (if_up)
1806 nicvf_stop(nic->netdev);
1808 old_prog = xchg(&nic->xdp_prog, prog);
1809 /* Detach old prog, if any */
1810 if (old_prog)
1811 bpf_prog_put(old_prog);
1813 if (nic->xdp_prog) {
1814 /* Attach BPF program */
1815 nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1816 if (!IS_ERR(nic->xdp_prog))
1817 bpf_attached = true;
1820 /* Calculate Tx queues needed for XDP and network stack */
1821 nicvf_set_xdp_queues(nic, bpf_attached);
1823 if (if_up) {
1824 /* Reinitialize interface, clean slate */
1825 nicvf_open(nic->netdev);
1826 netif_trans_update(nic->netdev);
1829 return 0;
1832 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
1834 struct nicvf *nic = netdev_priv(netdev);
1836 /* To avoid checks while retrieving buffer address from CQE_RX,
1837 * do not support XDP for T88 pass1.x silicons which are anyway
1838 * not in use widely.
1840 if (pass1_silicon(nic->pdev))
1841 return -EOPNOTSUPP;
1843 switch (xdp->command) {
1844 case XDP_SETUP_PROG:
1845 return nicvf_xdp_setup(nic, xdp->prog);
1846 case XDP_QUERY_PROG:
1847 xdp->prog_attached = !!nic->xdp_prog;
1848 xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0;
1849 return 0;
1850 default:
1851 return -EINVAL;
1855 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr)
1857 struct hwtstamp_config config;
1858 struct nicvf *nic = netdev_priv(netdev);
1860 if (!nic->ptp_clock)
1861 return -ENODEV;
1863 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1864 return -EFAULT;
1866 /* reserved for future extensions */
1867 if (config.flags)
1868 return -EINVAL;
1870 switch (config.tx_type) {
1871 case HWTSTAMP_TX_OFF:
1872 case HWTSTAMP_TX_ON:
1873 break;
1874 default:
1875 return -ERANGE;
1878 switch (config.rx_filter) {
1879 case HWTSTAMP_FILTER_NONE:
1880 nic->hw_rx_tstamp = false;
1881 break;
1882 case HWTSTAMP_FILTER_ALL:
1883 case HWTSTAMP_FILTER_SOME:
1884 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1885 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1886 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1887 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1888 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1889 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1890 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1891 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1892 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1893 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1894 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1895 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1896 nic->hw_rx_tstamp = true;
1897 config.rx_filter = HWTSTAMP_FILTER_ALL;
1898 break;
1899 default:
1900 return -ERANGE;
1903 if (netif_running(netdev))
1904 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1906 if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
1907 return -EFAULT;
1909 return 0;
1912 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1914 switch (cmd) {
1915 case SIOCSHWTSTAMP:
1916 return nicvf_config_hwtstamp(netdev, req);
1917 default:
1918 return -EOPNOTSUPP;
1922 static const struct net_device_ops nicvf_netdev_ops = {
1923 .ndo_open = nicvf_open,
1924 .ndo_stop = nicvf_stop,
1925 .ndo_start_xmit = nicvf_xmit,
1926 .ndo_change_mtu = nicvf_change_mtu,
1927 .ndo_set_mac_address = nicvf_set_mac_address,
1928 .ndo_get_stats64 = nicvf_get_stats64,
1929 .ndo_tx_timeout = nicvf_tx_timeout,
1930 .ndo_fix_features = nicvf_fix_features,
1931 .ndo_set_features = nicvf_set_features,
1932 .ndo_bpf = nicvf_xdp,
1933 .ndo_do_ioctl = nicvf_ioctl,
1936 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1938 struct device *dev = &pdev->dev;
1939 struct net_device *netdev;
1940 struct nicvf *nic;
1941 int err, qcount;
1942 u16 sdevid;
1943 struct cavium_ptp *ptp_clock;
1945 ptp_clock = cavium_ptp_get();
1946 if (IS_ERR(ptp_clock)) {
1947 if (PTR_ERR(ptp_clock) == -ENODEV)
1948 /* In virtualized environment we proceed without ptp */
1949 ptp_clock = NULL;
1950 else
1951 return PTR_ERR(ptp_clock);
1954 err = pci_enable_device(pdev);
1955 if (err) {
1956 dev_err(dev, "Failed to enable PCI device\n");
1957 return err;
1960 err = pci_request_regions(pdev, DRV_NAME);
1961 if (err) {
1962 dev_err(dev, "PCI request regions failed 0x%x\n", err);
1963 goto err_disable_device;
1966 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
1967 if (err) {
1968 dev_err(dev, "Unable to get usable DMA configuration\n");
1969 goto err_release_regions;
1972 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
1973 if (err) {
1974 dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
1975 goto err_release_regions;
1978 qcount = netif_get_num_default_rss_queues();
1980 /* Restrict multiqset support only for host bound VFs */
1981 if (pdev->is_virtfn) {
1982 /* Set max number of queues per VF */
1983 qcount = min_t(int, num_online_cpus(),
1984 (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
1987 netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
1988 if (!netdev) {
1989 err = -ENOMEM;
1990 goto err_release_regions;
1993 pci_set_drvdata(pdev, netdev);
1995 SET_NETDEV_DEV(netdev, &pdev->dev);
1997 nic = netdev_priv(netdev);
1998 nic->netdev = netdev;
1999 nic->pdev = pdev;
2000 nic->pnicvf = nic;
2001 nic->max_queues = qcount;
2002 /* If no of CPUs are too low, there won't be any queues left
2003 * for XDP_TX, hence double it.
2005 if (!nic->t88)
2006 nic->max_queues *= 2;
2007 nic->ptp_clock = ptp_clock;
2009 /* MAP VF's configuration registers */
2010 nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
2011 if (!nic->reg_base) {
2012 dev_err(dev, "Cannot map config register space, aborting\n");
2013 err = -ENOMEM;
2014 goto err_free_netdev;
2017 nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
2018 if (!nic->drv_stats) {
2019 err = -ENOMEM;
2020 goto err_free_netdev;
2023 err = nicvf_set_qset_resources(nic);
2024 if (err)
2025 goto err_free_netdev;
2027 /* Check if PF is alive and get MAC address for this VF */
2028 err = nicvf_register_misc_interrupt(nic);
2029 if (err)
2030 goto err_free_netdev;
2032 nicvf_send_vf_struct(nic);
2034 if (!pass1_silicon(nic->pdev))
2035 nic->hw_tso = true;
2037 /* Get iommu domain for iova to physical addr conversion */
2038 nic->iommu_domain = iommu_get_domain_for_dev(dev);
2040 pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
2041 if (sdevid == 0xA134)
2042 nic->t88 = true;
2044 /* Check if this VF is in QS only mode */
2045 if (nic->sqs_mode)
2046 return 0;
2048 err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
2049 if (err)
2050 goto err_unregister_interrupts;
2052 netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
2053 NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
2054 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2055 NETIF_F_HW_VLAN_CTAG_RX);
2057 netdev->hw_features |= NETIF_F_RXHASH;
2059 netdev->features |= netdev->hw_features;
2060 netdev->hw_features |= NETIF_F_LOOPBACK;
2062 netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
2063 NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
2065 netdev->netdev_ops = &nicvf_netdev_ops;
2066 netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
2068 /* MTU range: 64 - 9200 */
2069 netdev->min_mtu = NIC_HW_MIN_FRS;
2070 netdev->max_mtu = NIC_HW_MAX_FRS;
2072 INIT_WORK(&nic->reset_task, nicvf_reset_task);
2074 err = register_netdev(netdev);
2075 if (err) {
2076 dev_err(dev, "Failed to register netdevice\n");
2077 goto err_unregister_interrupts;
2080 nic->msg_enable = debug;
2082 nicvf_set_ethtool_ops(netdev);
2084 return 0;
2086 err_unregister_interrupts:
2087 nicvf_unregister_interrupts(nic);
2088 err_free_netdev:
2089 pci_set_drvdata(pdev, NULL);
2090 if (nic->drv_stats)
2091 free_percpu(nic->drv_stats);
2092 free_netdev(netdev);
2093 err_release_regions:
2094 pci_release_regions(pdev);
2095 err_disable_device:
2096 pci_disable_device(pdev);
2097 return err;
2100 static void nicvf_remove(struct pci_dev *pdev)
2102 struct net_device *netdev = pci_get_drvdata(pdev);
2103 struct nicvf *nic;
2104 struct net_device *pnetdev;
2106 if (!netdev)
2107 return;
2109 nic = netdev_priv(netdev);
2110 pnetdev = nic->pnicvf->netdev;
2112 /* Check if this Qset is assigned to different VF.
2113 * If yes, clean primary and all secondary Qsets.
2115 if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
2116 unregister_netdev(pnetdev);
2117 nicvf_unregister_interrupts(nic);
2118 pci_set_drvdata(pdev, NULL);
2119 if (nic->drv_stats)
2120 free_percpu(nic->drv_stats);
2121 cavium_ptp_put(nic->ptp_clock);
2122 free_netdev(netdev);
2123 pci_release_regions(pdev);
2124 pci_disable_device(pdev);
2127 static void nicvf_shutdown(struct pci_dev *pdev)
2129 nicvf_remove(pdev);
2132 static struct pci_driver nicvf_driver = {
2133 .name = DRV_NAME,
2134 .id_table = nicvf_id_table,
2135 .probe = nicvf_probe,
2136 .remove = nicvf_remove,
2137 .shutdown = nicvf_shutdown,
2140 static int __init nicvf_init_module(void)
2142 pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
2144 return pci_register_driver(&nicvf_driver);
2147 static void __exit nicvf_cleanup_module(void)
2149 pci_unregister_driver(&nicvf_driver);
2152 module_init(nicvf_init_module);
2153 module_exit(nicvf_cleanup_module);