Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / ethernet / dec / tulip / de4x5.c
bloba31b4df3e7ffb8dbf48430cadb1d7e9dbb3ea82c
1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
4 Copyright 1994, 1995 Digital Equipment Corporation.
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
9 The author may be reached at davies@maniac.ultranet.com.
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
50 So far the driver is known to work with the following cards:
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
82 Up to 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
99 To utilise this ability, you have to do 8 things:
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
114 insmod de4x5
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
238 TO DO:
239 ------
241 Revision History
242 ----------------
244 Version Date Description
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/pci.h>
454 #include <linux/eisa.h>
455 #include <linux/delay.h>
456 #include <linux/init.h>
457 #include <linux/spinlock.h>
458 #include <linux/crc32.h>
459 #include <linux/netdevice.h>
460 #include <linux/etherdevice.h>
461 #include <linux/skbuff.h>
462 #include <linux/time.h>
463 #include <linux/types.h>
464 #include <linux/unistd.h>
465 #include <linux/ctype.h>
466 #include <linux/dma-mapping.h>
467 #include <linux/moduleparam.h>
468 #include <linux/bitops.h>
469 #include <linux/gfp.h>
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <linux/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
480 #include "de4x5.h"
482 static const char version[] =
483 KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
485 #define c_char const char
488 ** MII Information
490 struct phy_table {
491 int reset; /* Hard reset required? */
492 int id; /* IEEE OUI */
493 int ta; /* One cycle TA time - 802.3u is confusing here */
494 struct { /* Non autonegotiation (parallel) speed det. */
495 int reg;
496 int mask;
497 int value;
498 } spd;
501 struct mii_phy {
502 int reset; /* Hard reset required? */
503 int id; /* IEEE OUI */
504 int ta; /* One cycle TA time */
505 struct { /* Non autonegotiation (parallel) speed det. */
506 int reg;
507 int mask;
508 int value;
509 } spd;
510 int addr; /* MII address for the PHY */
511 u_char *gep; /* Start of GEP sequence block in SROM */
512 u_char *rst; /* Start of reset sequence in SROM */
513 u_int mc; /* Media Capabilities */
514 u_int ana; /* NWay Advertisement */
515 u_int fdx; /* Full DupleX capabilities for each media */
516 u_int ttm; /* Transmit Threshold Mode for each media */
517 u_int mci; /* 21142 MII Connector Interrupt info */
520 #define DE4X5_MAX_PHY 8 /* Allow up to 8 attached PHY devices per board */
522 struct sia_phy {
523 u_char mc; /* Media Code */
524 u_char ext; /* csr13-15 valid when set */
525 int csr13; /* SIA Connectivity Register */
526 int csr14; /* SIA TX/RX Register */
527 int csr15; /* SIA General Register */
528 int gepc; /* SIA GEP Control Information */
529 int gep; /* SIA GEP Data */
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
536 static struct phy_table phy_info[] = {
537 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
538 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
539 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
540 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
541 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
549 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
554 ** Define special SROM detection cases
556 static c_char enet_det[][ETH_ALEN] = {
557 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
561 #define SMC 1
562 #define ACCTON 2
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
569 static c_char srom_repair_info[][100] = {
570 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
571 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573 0x00,0x18,}
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
589 ** For a compiled in driver, place e.g.
590 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
599 struct parameters {
600 bool fdx;
601 int autosense;
604 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
606 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
609 ** Ethernet PROM defines
611 #define PROBE_LENGTH 32
612 #define ETH_PROM_SIG 0xAA5500FFUL
615 ** Ethernet Info
617 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ 1518 /* Packet + CRC */
619 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
621 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
622 #define PKT_HDR_LEN 14 /* Addresses and data length info */
623 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
628 ** EISA bus defines
630 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
633 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
641 ** Ethernet PROM defines for DC21040
643 #define PROBE_LENGTH 32
644 #define ETH_PROM_SIG 0xAA5500FFUL
647 ** PCI Bus defines
649 #define PCI_MAX_BUS_NUM 8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
651 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
659 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
660 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
661 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
662 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
663 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
664 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
666 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
672 #ifndef DEC_ONLY /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
679 ** DE4X5 IRQ ENABLE/DISABLE
681 #define ENABLE_IRQs { \
682 imr |= lp->irq_en;\
683 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
686 #define DISABLE_IRQs {\
687 imr = inl(DE4X5_IMR);\
688 imr &= ~lp->irq_en;\
689 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
692 #define UNMASK_IRQs {\
693 imr |= lp->irq_mask;\
694 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
697 #define MASK_IRQs {\
698 imr = inl(DE4X5_IMR);\
699 imr &= ~lp->irq_mask;\
700 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
704 ** DE4X5 START/STOP
706 #define START_DE4X5 {\
707 omr = inl(DE4X5_OMR);\
708 omr |= OMR_ST | OMR_SR;\
709 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
712 #define STOP_DE4X5 {\
713 omr = inl(DE4X5_OMR);\
714 omr &= ~(OMR_ST|OMR_SR);\
715 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
719 ** DE4X5 SIA RESET
721 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
726 #define DE4X5_AUTOSENSE_MS 250
729 ** SROM Structure
731 struct de4x5_srom {
732 char sub_vendor_id[2];
733 char sub_system_id[2];
734 char reserved[12];
735 char id_block_crc;
736 char reserved2;
737 char version;
738 char num_controllers;
739 char ieee_addr[6];
740 char info[100];
741 short chksum;
743 #define SUB_VENDOR_ID 0x500a
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
753 #define NUM_RX_DESC 8 /* Number of RX descriptors */
754 #define NUM_TX_DESC 32 /* Number of TX descriptors */
755 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
756 /* Multiple of 4 for DC21040 */
757 /* Allows 512 byte alignment */
758 struct de4x5_desc {
759 volatile __le32 status;
760 __le32 des1;
761 __le32 buf;
762 __le32 next;
763 DESC_ALIGN
767 ** The DE4X5 private structure
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
771 increase DE4X5_PKT_STAT_SZ */
773 struct pkt_stats {
774 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
775 u_int unicast;
776 u_int multicast;
777 u_int broadcast;
778 u_int excessive_collisions;
779 u_int tx_underruns;
780 u_int excessive_underruns;
781 u_int rx_runt_frames;
782 u_int rx_collision;
783 u_int rx_dribble;
784 u_int rx_overflow;
787 struct de4x5_private {
788 char adapter_name[80]; /* Adapter name */
789 u_long interrupt; /* Aligned ISR flag */
790 struct de4x5_desc *rx_ring; /* RX descriptor ring */
791 struct de4x5_desc *tx_ring; /* TX descriptor ring */
792 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
793 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
794 int rx_new, rx_old; /* RX descriptor ring pointers */
795 int tx_new, tx_old; /* TX descriptor ring pointers */
796 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
797 char frame[64]; /* Min sized packet for loopback*/
798 spinlock_t lock; /* Adapter specific spinlock */
799 struct net_device_stats stats; /* Public stats */
800 struct pkt_stats pktStats; /* Private stats counters */
801 char rxRingSize;
802 char txRingSize;
803 int bus; /* EISA or PCI */
804 int bus_num; /* PCI Bus number */
805 int device; /* Device number on PCI bus */
806 int state; /* Adapter OPENED or CLOSED */
807 int chipset; /* DC21040, DC21041 or DC21140 */
808 s32 irq_mask; /* Interrupt Mask (Enable) bits */
809 s32 irq_en; /* Summary interrupt bits */
810 int media; /* Media (eg TP), mode (eg 100B)*/
811 int c_media; /* Remember the last media conn */
812 bool fdx; /* media full duplex flag */
813 int linkOK; /* Link is OK */
814 int autosense; /* Allow/disallow autosensing */
815 bool tx_enable; /* Enable descriptor polling */
816 int setup_f; /* Setup frame filtering type */
817 int local_state; /* State within a 'media' state */
818 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
819 struct sia_phy sia; /* SIA PHY Information */
820 int active; /* Index to active PHY device */
821 int mii_cnt; /* Number of attached PHY's */
822 int timeout; /* Scheduling counter */
823 struct timer_list timer; /* Timer info for kernel */
824 int tmp; /* Temporary global per card */
825 struct {
826 u_long lock; /* Lock the cache accesses */
827 s32 csr0; /* Saved Bus Mode Register */
828 s32 csr6; /* Saved Operating Mode Reg. */
829 s32 csr7; /* Saved IRQ Mask Register */
830 s32 gep; /* Saved General Purpose Reg. */
831 s32 gepc; /* Control info for GEP */
832 s32 csr13; /* Saved SIA Connectivity Reg. */
833 s32 csr14; /* Saved SIA TX/RX Register */
834 s32 csr15; /* Saved SIA General Register */
835 int save_cnt; /* Flag if state already saved */
836 struct sk_buff_head queue; /* Save the (re-ordered) skb's */
837 } cache;
838 struct de4x5_srom srom; /* A copy of the SROM */
839 int cfrv; /* Card CFRV copy */
840 int rx_ovf; /* Check for 'RX overflow' tag */
841 bool useSROM; /* For non-DEC card use SROM */
842 bool useMII; /* Infoblock using the MII */
843 int asBitValid; /* Autosense bits in GEP? */
844 int asPolarity; /* 0 => asserted high */
845 int asBit; /* Autosense bit number in GEP */
846 int defMedium; /* SROM default medium */
847 int tcount; /* Last infoblock number */
848 int infoblock_init; /* Initialised this infoblock? */
849 int infoleaf_offset; /* SROM infoleaf for controller */
850 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
851 int infoblock_media; /* infoblock media */
852 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
853 u_char *rst; /* Pointer to Type 5 reset info */
854 u_char ibn; /* Infoblock number */
855 struct parameters params; /* Command line/ #defined params */
856 struct device *gendev; /* Generic device */
857 dma_addr_t dma_rings; /* DMA handle for rings */
858 int dma_size; /* Size of the DMA area */
859 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
867 ** o the chipset is the same
868 ** o the bus number is the same and > 0
869 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
874 static struct {
875 int chipset;
876 int bus;
877 int irq;
878 u_char addr[ETH_ALEN];
879 } last = {0,};
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 ** tx_old = tx_new Empty ring
885 ** tx_old = tx_new+1 Full ring
886 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 lp->tx_old -lp->tx_new-1)
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
895 ** Public Functions
897 static int de4x5_open(struct net_device *dev);
898 static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899 struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901 static int de4x5_close(struct net_device *dev);
902 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void set_multicast_list(struct net_device *dev);
905 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
908 ** Private functions
910 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int de4x5_init(struct net_device *dev);
912 static int de4x5_sw_reset(struct net_device *dev);
913 static int de4x5_rx(struct net_device *dev);
914 static int de4x5_tx(struct net_device *dev);
915 static void de4x5_ast(struct timer_list *t);
916 static int de4x5_txur(struct net_device *dev);
917 static int de4x5_rx_ovfc(struct net_device *dev);
919 static int autoconf_media(struct net_device *dev);
920 static void create_packet(struct net_device *dev, char *frame, int len);
921 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int dc21040_autoconf(struct net_device *dev);
923 static int dc21041_autoconf(struct net_device *dev);
924 static int dc21140m_autoconf(struct net_device *dev);
925 static int dc2114x_autoconf(struct net_device *dev);
926 static int srom_autoconf(struct net_device *dev);
927 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int test_for_100Mb(struct net_device *dev, int msec);
931 static int wait_for_link(struct net_device *dev);
932 static int test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933 static int is_spd_100(struct net_device *dev);
934 static int is_100_up(struct net_device *dev);
935 static int is_10_up(struct net_device *dev);
936 static int is_anc_capable(struct net_device *dev);
937 static int ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void de4x5_free_rx_buffs(struct net_device *dev);
940 static void de4x5_free_tx_buffs(struct net_device *dev);
941 static void de4x5_save_skbs(struct net_device *dev);
942 static void de4x5_rst_desc_ring(struct net_device *dev);
943 static void de4x5_cache_state(struct net_device *dev, int flag);
944 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void de4x5_setup_intr(struct net_device *dev);
948 static void de4x5_init_connection(struct net_device *dev);
949 static int de4x5_reset_phy(struct net_device *dev);
950 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int test_tp(struct net_device *dev, s32 msec);
953 static int EISA_signature(char *name, struct device *device);
954 static int PCI_signature(char *name, struct de4x5_private *lp);
955 static void DevicePresent(struct net_device *dev, u_long iobase);
956 static void enet_addr_rst(u_long aprom_addr);
957 static int de4x5_bad_srom(struct de4x5_private *lp);
958 static short srom_rd(u_long address, u_char offset);
959 static void srom_latch(u_int command, u_long address);
960 static void srom_command(u_int command, u_long address);
961 static void srom_address(u_int command, u_long address, u_char offset);
962 static short srom_data(u_int command, u_long address);
963 /*static void srom_busy(u_int command, u_long address);*/
964 static void sendto_srom(u_int command, u_long addr);
965 static int getfrom_srom(u_long addr);
966 static int srom_map_media(struct net_device *dev);
967 static int srom_infoleaf_info(struct net_device *dev);
968 static void srom_init(struct net_device *dev);
969 static void srom_exec(struct net_device *dev, u_char *p);
970 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int mii_rdata(u_long ioaddr);
973 static void mii_wdata(int data, int len, u_long ioaddr);
974 static void mii_ta(u_long rw, u_long ioaddr);
975 static int mii_swap(int data, int len);
976 static void mii_address(u_char addr, u_long ioaddr);
977 static void sendto_mii(u32 command, int data, u_long ioaddr);
978 static int getfrom_mii(u32 command, u_long ioaddr);
979 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int mii_get_phy(struct net_device *dev);
981 static void SetMulticastFilter(struct net_device *dev);
982 static int get_hw_addr(struct net_device *dev);
983 static void srom_repair(struct net_device *dev, int card);
984 static int test_bad_enet(struct net_device *dev, int status);
985 static int an_exception(struct de4x5_private *lp);
986 static char *build_setup_frame(struct net_device *dev, int mode);
987 static void disable_ast(struct net_device *dev);
988 static long de4x5_switch_mac_port(struct net_device *dev);
989 static int gep_rd(struct net_device *dev);
990 static void gep_wr(s32 data, struct net_device *dev);
991 static void yawn(struct net_device *dev, int state);
992 static void de4x5_parse_params(struct net_device *dev);
993 static void de4x5_dbg_open(struct net_device *dev);
994 static void de4x5_dbg_mii(struct net_device *dev, int k);
995 static void de4x5_dbg_media(struct net_device *dev);
996 static void de4x5_dbg_srom(struct de4x5_srom *p);
997 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
998 static int dc21041_infoleaf(struct net_device *dev);
999 static int dc21140_infoleaf(struct net_device *dev);
1000 static int dc21142_infoleaf(struct net_device *dev);
1001 static int dc21143_infoleaf(struct net_device *dev);
1002 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1003 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1011 ** Note now that module autoprobing is allowed under EISA and PCI. The
1012 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1013 ** to "do the right thing".
1016 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1018 module_param_hw(io, int, ioport, 0);
1019 module_param(de4x5_debug, int, 0);
1020 module_param(dec_only, int, 0);
1021 module_param(args, charp, 0);
1023 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1024 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1025 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1026 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1027 MODULE_LICENSE("GPL");
1030 ** List the SROM infoleaf functions and chipsets
1032 struct InfoLeaf {
1033 int chipset;
1034 int (*fn)(struct net_device *);
1036 static struct InfoLeaf infoleaf_array[] = {
1037 {DC21041, dc21041_infoleaf},
1038 {DC21140, dc21140_infoleaf},
1039 {DC21142, dc21142_infoleaf},
1040 {DC21143, dc21143_infoleaf}
1042 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1045 ** List the SROM info block functions
1047 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1048 type0_infoblock,
1049 type1_infoblock,
1050 type2_infoblock,
1051 type3_infoblock,
1052 type4_infoblock,
1053 type5_infoblock,
1054 compact_infoblock
1057 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1060 ** Miscellaneous defines...
1062 #define RESET_DE4X5 {\
1063 int i;\
1064 i=inl(DE4X5_BMR);\
1065 mdelay(1);\
1066 outl(i | BMR_SWR, DE4X5_BMR);\
1067 mdelay(1);\
1068 outl(i, DE4X5_BMR);\
1069 mdelay(1);\
1070 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1071 mdelay(1);\
1074 #define PHY_HARD_RESET {\
1075 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1076 mdelay(1); /* Assert for 1ms */\
1077 outl(0x00, DE4X5_GEP);\
1078 mdelay(2); /* Wait for 2ms */\
1081 static const struct net_device_ops de4x5_netdev_ops = {
1082 .ndo_open = de4x5_open,
1083 .ndo_stop = de4x5_close,
1084 .ndo_start_xmit = de4x5_queue_pkt,
1085 .ndo_get_stats = de4x5_get_stats,
1086 .ndo_set_rx_mode = set_multicast_list,
1087 .ndo_do_ioctl = de4x5_ioctl,
1088 .ndo_set_mac_address= eth_mac_addr,
1089 .ndo_validate_addr = eth_validate_addr,
1093 static int
1094 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1096 char name[DE4X5_NAME_LENGTH + 1];
1097 struct de4x5_private *lp = netdev_priv(dev);
1098 struct pci_dev *pdev = NULL;
1099 int i, status=0;
1101 dev_set_drvdata(gendev, dev);
1103 /* Ensure we're not sleeping */
1104 if (lp->bus == EISA) {
1105 outb(WAKEUP, PCI_CFPM);
1106 } else {
1107 pdev = to_pci_dev (gendev);
1108 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1110 mdelay(10);
1112 RESET_DE4X5;
1114 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1115 return -ENXIO; /* Hardware could not reset */
1119 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1121 lp->useSROM = false;
1122 if (lp->bus == PCI) {
1123 PCI_signature(name, lp);
1124 } else {
1125 EISA_signature(name, gendev);
1128 if (*name == '\0') { /* Not found a board signature */
1129 return -ENXIO;
1132 dev->base_addr = iobase;
1133 printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1135 status = get_hw_addr(dev);
1136 printk(", h/w address %pM\n", dev->dev_addr);
1138 if (status != 0) {
1139 printk(" which has an Ethernet PROM CRC error.\n");
1140 return -ENXIO;
1141 } else {
1142 skb_queue_head_init(&lp->cache.queue);
1143 lp->cache.gepc = GEP_INIT;
1144 lp->asBit = GEP_SLNK;
1145 lp->asPolarity = GEP_SLNK;
1146 lp->asBitValid = ~0;
1147 lp->timeout = -1;
1148 lp->gendev = gendev;
1149 spin_lock_init(&lp->lock);
1150 timer_setup(&lp->timer, de4x5_ast, 0);
1151 de4x5_parse_params(dev);
1154 ** Choose correct autosensing in case someone messed up
1156 lp->autosense = lp->params.autosense;
1157 if (lp->chipset != DC21140) {
1158 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1159 lp->params.autosense = TP;
1161 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1162 lp->params.autosense = BNC;
1165 lp->fdx = lp->params.fdx;
1166 sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1168 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1169 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1170 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1171 #endif
1172 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1173 &lp->dma_rings, GFP_ATOMIC);
1174 if (lp->rx_ring == NULL) {
1175 return -ENOMEM;
1178 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1181 ** Set up the RX descriptor ring (Intels)
1182 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1184 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1185 for (i=0; i<NUM_RX_DESC; i++) {
1186 lp->rx_ring[i].status = 0;
1187 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1188 lp->rx_ring[i].buf = 0;
1189 lp->rx_ring[i].next = 0;
1190 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1193 #else
1195 dma_addr_t dma_rx_bufs;
1197 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1198 * sizeof(struct de4x5_desc);
1199 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1200 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1201 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1202 for (i=0; i<NUM_RX_DESC; i++) {
1203 lp->rx_ring[i].status = 0;
1204 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1205 lp->rx_ring[i].buf =
1206 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1207 lp->rx_ring[i].next = 0;
1208 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1212 #endif
1214 barrier();
1216 lp->rxRingSize = NUM_RX_DESC;
1217 lp->txRingSize = NUM_TX_DESC;
1219 /* Write the end of list marker to the descriptor lists */
1220 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1221 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1223 /* Tell the adapter where the TX/RX rings are located. */
1224 outl(lp->dma_rings, DE4X5_RRBA);
1225 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1226 DE4X5_TRBA);
1228 /* Initialise the IRQ mask and Enable/Disable */
1229 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1230 lp->irq_en = IMR_NIM | IMR_AIM;
1232 /* Create a loopback packet frame for later media probing */
1233 create_packet(dev, lp->frame, sizeof(lp->frame));
1235 /* Check if the RX overflow bug needs testing for */
1236 i = lp->cfrv & 0x000000fe;
1237 if ((lp->chipset == DC21140) && (i == 0x20)) {
1238 lp->rx_ovf = 1;
1241 /* Initialise the SROM pointers if possible */
1242 if (lp->useSROM) {
1243 lp->state = INITIALISED;
1244 if (srom_infoleaf_info(dev)) {
1245 dma_free_coherent (gendev, lp->dma_size,
1246 lp->rx_ring, lp->dma_rings);
1247 return -ENXIO;
1249 srom_init(dev);
1252 lp->state = CLOSED;
1255 ** Check for an MII interface
1257 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1258 mii_get_phy(dev);
1261 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1262 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1265 if (de4x5_debug & DEBUG_VERSION) {
1266 printk(version);
1269 /* The DE4X5-specific entries in the device structure. */
1270 SET_NETDEV_DEV(dev, gendev);
1271 dev->netdev_ops = &de4x5_netdev_ops;
1272 dev->mem_start = 0;
1274 /* Fill in the generic fields of the device structure. */
1275 if ((status = register_netdev (dev))) {
1276 dma_free_coherent (gendev, lp->dma_size,
1277 lp->rx_ring, lp->dma_rings);
1278 return status;
1281 /* Let the adapter sleep to save power */
1282 yawn(dev, SLEEP);
1284 return status;
1288 static int
1289 de4x5_open(struct net_device *dev)
1291 struct de4x5_private *lp = netdev_priv(dev);
1292 u_long iobase = dev->base_addr;
1293 int i, status = 0;
1294 s32 omr;
1296 /* Allocate the RX buffers */
1297 for (i=0; i<lp->rxRingSize; i++) {
1298 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1299 de4x5_free_rx_buffs(dev);
1300 return -EAGAIN;
1305 ** Wake up the adapter
1307 yawn(dev, WAKEUP);
1310 ** Re-initialize the DE4X5...
1312 status = de4x5_init(dev);
1313 spin_lock_init(&lp->lock);
1314 lp->state = OPEN;
1315 de4x5_dbg_open(dev);
1317 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1318 lp->adapter_name, dev)) {
1319 printk("de4x5_open(): Requested IRQ%d is busy - attempting FAST/SHARE...", dev->irq);
1320 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1321 lp->adapter_name, dev)) {
1322 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1323 disable_ast(dev);
1324 de4x5_free_rx_buffs(dev);
1325 de4x5_free_tx_buffs(dev);
1326 yawn(dev, SLEEP);
1327 lp->state = CLOSED;
1328 return -EAGAIN;
1329 } else {
1330 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1331 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1335 lp->interrupt = UNMASK_INTERRUPTS;
1336 netif_trans_update(dev); /* prevent tx timeout */
1338 START_DE4X5;
1340 de4x5_setup_intr(dev);
1342 if (de4x5_debug & DEBUG_OPEN) {
1343 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1344 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1345 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1346 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1347 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1348 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1349 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1350 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1353 return status;
1357 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1358 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1359 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1360 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1361 ** to be data corruption problems if it is larger (UDP errors seen from a
1362 ** ttcp source).
1364 static int
1365 de4x5_init(struct net_device *dev)
1367 /* Lock out other processes whilst setting up the hardware */
1368 netif_stop_queue(dev);
1370 de4x5_sw_reset(dev);
1372 /* Autoconfigure the connected port */
1373 autoconf_media(dev);
1375 return 0;
1378 static int
1379 de4x5_sw_reset(struct net_device *dev)
1381 struct de4x5_private *lp = netdev_priv(dev);
1382 u_long iobase = dev->base_addr;
1383 int i, j, status = 0;
1384 s32 bmr, omr;
1386 /* Select the MII or SRL port now and RESET the MAC */
1387 if (!lp->useSROM) {
1388 if (lp->phy[lp->active].id != 0) {
1389 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1390 } else {
1391 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1393 de4x5_switch_mac_port(dev);
1397 ** Set the programmable burst length to 8 longwords for all the DC21140
1398 ** Fasternet chips and 4 longwords for all others: DMA errors result
1399 ** without these values. Cache align 16 long.
1401 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1402 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1403 outl(bmr, DE4X5_BMR);
1405 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1406 if (lp->chipset == DC21140) {
1407 omr |= (OMR_SDP | OMR_SB);
1409 lp->setup_f = PERFECT;
1410 outl(lp->dma_rings, DE4X5_RRBA);
1411 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1412 DE4X5_TRBA);
1414 lp->rx_new = lp->rx_old = 0;
1415 lp->tx_new = lp->tx_old = 0;
1417 for (i = 0; i < lp->rxRingSize; i++) {
1418 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1421 for (i = 0; i < lp->txRingSize; i++) {
1422 lp->tx_ring[i].status = cpu_to_le32(0);
1425 barrier();
1427 /* Build the setup frame depending on filtering mode */
1428 SetMulticastFilter(dev);
1430 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1431 outl(omr|OMR_ST, DE4X5_OMR);
1433 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1435 for (j=0, i=0;(i<500) && (j==0);i++) { /* Up to 500ms delay */
1436 mdelay(1);
1437 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1439 outl(omr, DE4X5_OMR); /* Stop everything! */
1441 if (j == 0) {
1442 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1443 inl(DE4X5_STS));
1444 status = -EIO;
1447 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1448 lp->tx_old = lp->tx_new;
1450 return status;
1454 ** Writes a socket buffer address to the next available transmit descriptor.
1456 static netdev_tx_t
1457 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1459 struct de4x5_private *lp = netdev_priv(dev);
1460 u_long iobase = dev->base_addr;
1461 u_long flags = 0;
1463 netif_stop_queue(dev);
1464 if (!lp->tx_enable) /* Cannot send for now */
1465 goto tx_err;
1468 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1469 ** interrupts are lost by delayed descriptor status updates relative to
1470 ** the irq assertion, especially with a busy PCI bus.
1472 spin_lock_irqsave(&lp->lock, flags);
1473 de4x5_tx(dev);
1474 spin_unlock_irqrestore(&lp->lock, flags);
1476 /* Test if cache is already locked - requeue skb if so */
1477 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1478 goto tx_err;
1480 /* Transmit descriptor ring full or stale skb */
1481 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1482 if (lp->interrupt) {
1483 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1484 } else {
1485 de4x5_put_cache(dev, skb);
1487 if (de4x5_debug & DEBUG_TX) {
1488 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1490 } else if (skb->len > 0) {
1491 /* If we already have stuff queued locally, use that first */
1492 if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1493 de4x5_put_cache(dev, skb);
1494 skb = de4x5_get_cache(dev);
1497 while (skb && !netif_queue_stopped(dev) &&
1498 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1499 spin_lock_irqsave(&lp->lock, flags);
1500 netif_stop_queue(dev);
1501 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1502 lp->stats.tx_bytes += skb->len;
1503 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1505 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1507 if (TX_BUFFS_AVAIL) {
1508 netif_start_queue(dev); /* Another pkt may be queued */
1510 skb = de4x5_get_cache(dev);
1511 spin_unlock_irqrestore(&lp->lock, flags);
1513 if (skb) de4x5_putb_cache(dev, skb);
1516 lp->cache.lock = 0;
1518 return NETDEV_TX_OK;
1519 tx_err:
1520 dev_kfree_skb_any(skb);
1521 return NETDEV_TX_OK;
1525 ** The DE4X5 interrupt handler.
1527 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1528 ** so that the asserted interrupt always has some real data to work with -
1529 ** if these I/O accesses are ever changed to memory accesses, ensure the
1530 ** STS write is read immediately to complete the transaction if the adapter
1531 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1532 ** is high and descriptor status bits cannot be set before the associated
1533 ** interrupt is asserted and this routine entered.
1535 static irqreturn_t
1536 de4x5_interrupt(int irq, void *dev_id)
1538 struct net_device *dev = dev_id;
1539 struct de4x5_private *lp;
1540 s32 imr, omr, sts, limit;
1541 u_long iobase;
1542 unsigned int handled = 0;
1544 lp = netdev_priv(dev);
1545 spin_lock(&lp->lock);
1546 iobase = dev->base_addr;
1548 DISABLE_IRQs; /* Ensure non re-entrancy */
1550 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1551 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1553 synchronize_irq(dev->irq);
1555 for (limit=0; limit<8; limit++) {
1556 sts = inl(DE4X5_STS); /* Read IRQ status */
1557 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1559 if (!(sts & lp->irq_mask)) break;/* All done */
1560 handled = 1;
1562 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1563 de4x5_rx(dev);
1565 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1566 de4x5_tx(dev);
1568 if (sts & STS_LNF) { /* TP Link has failed */
1569 lp->irq_mask &= ~IMR_LFM;
1572 if (sts & STS_UNF) { /* Transmit underrun */
1573 de4x5_txur(dev);
1576 if (sts & STS_SE) { /* Bus Error */
1577 STOP_DE4X5;
1578 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1579 dev->name, sts);
1580 spin_unlock(&lp->lock);
1581 return IRQ_HANDLED;
1585 /* Load the TX ring with any locally stored packets */
1586 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1587 while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1588 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1590 lp->cache.lock = 0;
1593 lp->interrupt = UNMASK_INTERRUPTS;
1594 ENABLE_IRQs;
1595 spin_unlock(&lp->lock);
1597 return IRQ_RETVAL(handled);
1600 static int
1601 de4x5_rx(struct net_device *dev)
1603 struct de4x5_private *lp = netdev_priv(dev);
1604 u_long iobase = dev->base_addr;
1605 int entry;
1606 s32 status;
1608 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1609 entry=lp->rx_new) {
1610 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1612 if (lp->rx_ovf) {
1613 if (inl(DE4X5_MFC) & MFC_FOCM) {
1614 de4x5_rx_ovfc(dev);
1615 break;
1619 if (status & RD_FS) { /* Remember the start of frame */
1620 lp->rx_old = entry;
1623 if (status & RD_LS) { /* Valid frame status */
1624 if (lp->tx_enable) lp->linkOK++;
1625 if (status & RD_ES) { /* There was an error. */
1626 lp->stats.rx_errors++; /* Update the error stats. */
1627 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1628 if (status & RD_CE) lp->stats.rx_crc_errors++;
1629 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1630 if (status & RD_TL) lp->stats.rx_length_errors++;
1631 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1632 if (status & RD_CS) lp->pktStats.rx_collision++;
1633 if (status & RD_DB) lp->pktStats.rx_dribble++;
1634 if (status & RD_OF) lp->pktStats.rx_overflow++;
1635 } else { /* A valid frame received */
1636 struct sk_buff *skb;
1637 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1638 >> 16) - 4;
1640 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1641 printk("%s: Insufficient memory; nuking packet.\n",
1642 dev->name);
1643 lp->stats.rx_dropped++;
1644 } else {
1645 de4x5_dbg_rx(skb, pkt_len);
1647 /* Push up the protocol stack */
1648 skb->protocol=eth_type_trans(skb,dev);
1649 de4x5_local_stats(dev, skb->data, pkt_len);
1650 netif_rx(skb);
1652 /* Update stats */
1653 lp->stats.rx_packets++;
1654 lp->stats.rx_bytes += pkt_len;
1658 /* Change buffer ownership for this frame, back to the adapter */
1659 for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1660 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1661 barrier();
1663 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1664 barrier();
1668 ** Update entry information
1670 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1673 return 0;
1676 static inline void
1677 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1679 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1680 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1681 DMA_TO_DEVICE);
1682 if ((u_long) lp->tx_skb[entry] > 1)
1683 dev_kfree_skb_irq(lp->tx_skb[entry]);
1684 lp->tx_skb[entry] = NULL;
1688 ** Buffer sent - check for TX buffer errors.
1690 static int
1691 de4x5_tx(struct net_device *dev)
1693 struct de4x5_private *lp = netdev_priv(dev);
1694 u_long iobase = dev->base_addr;
1695 int entry;
1696 s32 status;
1698 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1699 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1700 if (status < 0) { /* Buffer not sent yet */
1701 break;
1702 } else if (status != 0x7fffffff) { /* Not setup frame */
1703 if (status & TD_ES) { /* An error happened */
1704 lp->stats.tx_errors++;
1705 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1706 if (status & TD_LC) lp->stats.tx_window_errors++;
1707 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1708 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1709 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1711 if (TX_PKT_PENDING) {
1712 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1714 } else { /* Packet sent */
1715 lp->stats.tx_packets++;
1716 if (lp->tx_enable) lp->linkOK++;
1718 /* Update the collision counter */
1719 lp->stats.collisions += ((status & TD_EC) ? 16 :
1720 ((status & TD_CC) >> 3));
1722 /* Free the buffer. */
1723 if (lp->tx_skb[entry] != NULL)
1724 de4x5_free_tx_buff(lp, entry);
1727 /* Update all the pointers */
1728 lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1731 /* Any resources available? */
1732 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1733 if (lp->interrupt)
1734 netif_wake_queue(dev);
1735 else
1736 netif_start_queue(dev);
1739 return 0;
1742 static void
1743 de4x5_ast(struct timer_list *t)
1745 struct de4x5_private *lp = from_timer(lp, t, timer);
1746 struct net_device *dev = dev_get_drvdata(lp->gendev);
1747 int next_tick = DE4X5_AUTOSENSE_MS;
1748 int dt;
1750 if (lp->useSROM)
1751 next_tick = srom_autoconf(dev);
1752 else if (lp->chipset == DC21140)
1753 next_tick = dc21140m_autoconf(dev);
1754 else if (lp->chipset == DC21041)
1755 next_tick = dc21041_autoconf(dev);
1756 else if (lp->chipset == DC21040)
1757 next_tick = dc21040_autoconf(dev);
1758 lp->linkOK = 0;
1760 dt = (next_tick * HZ) / 1000;
1762 if (!dt)
1763 dt = 1;
1765 mod_timer(&lp->timer, jiffies + dt);
1768 static int
1769 de4x5_txur(struct net_device *dev)
1771 struct de4x5_private *lp = netdev_priv(dev);
1772 u_long iobase = dev->base_addr;
1773 int omr;
1775 omr = inl(DE4X5_OMR);
1776 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1777 omr &= ~(OMR_ST|OMR_SR);
1778 outl(omr, DE4X5_OMR);
1779 while (inl(DE4X5_STS) & STS_TS);
1780 if ((omr & OMR_TR) < OMR_TR) {
1781 omr += 0x4000;
1782 } else {
1783 omr |= OMR_SF;
1785 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1788 return 0;
1791 static int
1792 de4x5_rx_ovfc(struct net_device *dev)
1794 struct de4x5_private *lp = netdev_priv(dev);
1795 u_long iobase = dev->base_addr;
1796 int omr;
1798 omr = inl(DE4X5_OMR);
1799 outl(omr & ~OMR_SR, DE4X5_OMR);
1800 while (inl(DE4X5_STS) & STS_RS);
1802 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1803 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1804 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1807 outl(omr, DE4X5_OMR);
1809 return 0;
1812 static int
1813 de4x5_close(struct net_device *dev)
1815 struct de4x5_private *lp = netdev_priv(dev);
1816 u_long iobase = dev->base_addr;
1817 s32 imr, omr;
1819 disable_ast(dev);
1821 netif_stop_queue(dev);
1823 if (de4x5_debug & DEBUG_CLOSE) {
1824 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1825 dev->name, inl(DE4X5_STS));
1829 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1831 DISABLE_IRQs;
1832 STOP_DE4X5;
1834 /* Free the associated irq */
1835 free_irq(dev->irq, dev);
1836 lp->state = CLOSED;
1838 /* Free any socket buffers */
1839 de4x5_free_rx_buffs(dev);
1840 de4x5_free_tx_buffs(dev);
1842 /* Put the adapter to sleep to save power */
1843 yawn(dev, SLEEP);
1845 return 0;
1848 static struct net_device_stats *
1849 de4x5_get_stats(struct net_device *dev)
1851 struct de4x5_private *lp = netdev_priv(dev);
1852 u_long iobase = dev->base_addr;
1854 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1856 return &lp->stats;
1859 static void
1860 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1862 struct de4x5_private *lp = netdev_priv(dev);
1863 int i;
1865 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1866 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1867 lp->pktStats.bins[i]++;
1868 i = DE4X5_PKT_STAT_SZ;
1871 if (is_multicast_ether_addr(buf)) {
1872 if (is_broadcast_ether_addr(buf)) {
1873 lp->pktStats.broadcast++;
1874 } else {
1875 lp->pktStats.multicast++;
1877 } else if (ether_addr_equal(buf, dev->dev_addr)) {
1878 lp->pktStats.unicast++;
1881 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1882 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1883 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1888 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1889 ** If the flag is changed on a descriptor that is being read by the hardware,
1890 ** I assume PCI transaction ordering will mean you are either successful or
1891 ** just miss asserting the change to the hardware. Anyway you're messing with
1892 ** a descriptor you don't own, but this shouldn't kill the chip provided
1893 ** the descriptor register is read only to the hardware.
1895 static void
1896 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1898 struct de4x5_private *lp = netdev_priv(dev);
1899 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1900 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1902 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1903 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1904 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1905 lp->tx_skb[lp->tx_new] = skb;
1906 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1907 barrier();
1909 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1910 barrier();
1914 ** Set or clear the multicast filter for this adaptor.
1916 static void
1917 set_multicast_list(struct net_device *dev)
1919 struct de4x5_private *lp = netdev_priv(dev);
1920 u_long iobase = dev->base_addr;
1922 /* First, double check that the adapter is open */
1923 if (lp->state == OPEN) {
1924 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1925 u32 omr;
1926 omr = inl(DE4X5_OMR);
1927 omr |= OMR_PR;
1928 outl(omr, DE4X5_OMR);
1929 } else {
1930 SetMulticastFilter(dev);
1931 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1932 SETUP_FRAME_LEN, (struct sk_buff *)1);
1934 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1935 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1936 netif_trans_update(dev); /* prevent tx timeout */
1942 ** Calculate the hash code and update the logical address filter
1943 ** from a list of ethernet multicast addresses.
1944 ** Little endian crc one liner from Matt Thomas, DEC.
1946 static void
1947 SetMulticastFilter(struct net_device *dev)
1949 struct de4x5_private *lp = netdev_priv(dev);
1950 struct netdev_hw_addr *ha;
1951 u_long iobase = dev->base_addr;
1952 int i, bit, byte;
1953 u16 hashcode;
1954 u32 omr, crc;
1955 char *pa;
1956 unsigned char *addrs;
1958 omr = inl(DE4X5_OMR);
1959 omr &= ~(OMR_PR | OMR_PM);
1960 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1962 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1963 omr |= OMR_PM; /* Pass all multicasts */
1964 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1965 netdev_for_each_mc_addr(ha, dev) {
1966 crc = ether_crc_le(ETH_ALEN, ha->addr);
1967 hashcode = crc & DE4X5_HASH_BITS; /* hashcode is 9 LSb of CRC */
1969 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1970 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1972 byte <<= 1; /* calc offset into setup frame */
1973 if (byte & 0x02) {
1974 byte -= 1;
1976 lp->setup_frame[byte] |= bit;
1978 } else { /* Perfect filtering */
1979 netdev_for_each_mc_addr(ha, dev) {
1980 addrs = ha->addr;
1981 for (i=0; i<ETH_ALEN; i++) {
1982 *(pa + (i&1)) = *addrs++;
1983 if (i & 0x01) pa += 4;
1987 outl(omr, DE4X5_OMR);
1990 #ifdef CONFIG_EISA
1992 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1994 static int de4x5_eisa_probe(struct device *gendev)
1996 struct eisa_device *edev;
1997 u_long iobase;
1998 u_char irq, regval;
1999 u_short vendor;
2000 u32 cfid;
2001 int status, device;
2002 struct net_device *dev;
2003 struct de4x5_private *lp;
2005 edev = to_eisa_device (gendev);
2006 iobase = edev->base_addr;
2008 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2009 return -EBUSY;
2011 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2012 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2013 status = -EBUSY;
2014 goto release_reg_1;
2017 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2018 status = -ENOMEM;
2019 goto release_reg_2;
2021 lp = netdev_priv(dev);
2023 cfid = (u32) inl(PCI_CFID);
2024 lp->cfrv = (u_short) inl(PCI_CFRV);
2025 device = (cfid >> 8) & 0x00ffff00;
2026 vendor = (u_short) cfid;
2028 /* Read the EISA Configuration Registers */
2029 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2030 #ifdef CONFIG_ALPHA
2031 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2032 * care about the EISA configuration, and thus doesn't
2033 * configure the PLX bridge properly. Oh well... Simply mimic
2034 * the EISA config file to sort it out. */
2036 /* EISA REG1: Assert DecChip 21040 HW Reset */
2037 outb (ER1_IAM | 1, EISA_REG1);
2038 mdelay (1);
2040 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2041 outb (ER1_IAM, EISA_REG1);
2042 mdelay (1);
2044 /* EISA REG3: R/W Burst Transfer Enable */
2045 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2047 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2048 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2049 #endif
2050 irq = de4x5_irq[(regval >> 1) & 0x03];
2052 if (is_DC2114x) {
2053 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2055 lp->chipset = device;
2056 lp->bus = EISA;
2058 /* Write the PCI Configuration Registers */
2059 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2060 outl(0x00006000, PCI_CFLT);
2061 outl(iobase, PCI_CBIO);
2063 DevicePresent(dev, EISA_APROM);
2065 dev->irq = irq;
2067 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2068 return 0;
2071 free_netdev (dev);
2072 release_reg_2:
2073 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2074 release_reg_1:
2075 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2077 return status;
2080 static int de4x5_eisa_remove(struct device *device)
2082 struct net_device *dev;
2083 u_long iobase;
2085 dev = dev_get_drvdata(device);
2086 iobase = dev->base_addr;
2088 unregister_netdev (dev);
2089 free_netdev (dev);
2090 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2091 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2093 return 0;
2096 static const struct eisa_device_id de4x5_eisa_ids[] = {
2097 { "DEC4250", 0 }, /* 0 is the board name index... */
2098 { "" }
2100 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2102 static struct eisa_driver de4x5_eisa_driver = {
2103 .id_table = de4x5_eisa_ids,
2104 .driver = {
2105 .name = "de4x5",
2106 .probe = de4x5_eisa_probe,
2107 .remove = de4x5_eisa_remove,
2110 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2111 #endif
2113 #ifdef CONFIG_PCI
2116 ** This function searches the current bus (which is >0) for a DECchip with an
2117 ** SROM, so that in multiport cards that have one SROM shared between multiple
2118 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2119 ** For single port cards this is a time waster...
2121 static void
2122 srom_search(struct net_device *dev, struct pci_dev *pdev)
2124 u_char pb;
2125 u_short vendor, status;
2126 u_int irq = 0, device;
2127 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2128 int i, j;
2129 struct de4x5_private *lp = netdev_priv(dev);
2130 struct pci_dev *this_dev;
2132 list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2133 vendor = this_dev->vendor;
2134 device = this_dev->device << 8;
2135 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2137 /* Get the chip configuration revision register */
2138 pb = this_dev->bus->number;
2140 /* Set the device number information */
2141 lp->device = PCI_SLOT(this_dev->devfn);
2142 lp->bus_num = pb;
2144 /* Set the chipset information */
2145 if (is_DC2114x) {
2146 device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2147 ? DC21142 : DC21143);
2149 lp->chipset = device;
2151 /* Get the board I/O address (64 bits on sparc64) */
2152 iobase = pci_resource_start(this_dev, 0);
2154 /* Fetch the IRQ to be used */
2155 irq = this_dev->irq;
2156 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2158 /* Check if I/O accesses are enabled */
2159 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2160 if (!(status & PCI_COMMAND_IO)) continue;
2162 /* Search for a valid SROM attached to this DECchip */
2163 DevicePresent(dev, DE4X5_APROM);
2164 for (j=0, i=0; i<ETH_ALEN; i++) {
2165 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2167 if (j != 0 && j != 6 * 0xff) {
2168 last.chipset = device;
2169 last.bus = pb;
2170 last.irq = irq;
2171 for (i=0; i<ETH_ALEN; i++) {
2172 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2174 return;
2180 ** PCI bus I/O device probe
2181 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2182 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2183 ** enabled by the user first in the set up utility. Hence we just check for
2184 ** enabled features and silently ignore the card if they're not.
2186 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2187 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2188 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2189 ** PC doesn't conform to the PCI standard)!
2191 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2192 ** kernels use the V0.535[n] drivers.
2195 static int de4x5_pci_probe(struct pci_dev *pdev,
2196 const struct pci_device_id *ent)
2198 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2199 u_short vendor, status;
2200 u_int irq = 0, device;
2201 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2202 int error;
2203 struct net_device *dev;
2204 struct de4x5_private *lp;
2206 dev_num = PCI_SLOT(pdev->devfn);
2207 pb = pdev->bus->number;
2209 if (io) { /* probe a single PCI device */
2210 pbus = (u_short)(io >> 8);
2211 dnum = (u_short)(io & 0xff);
2212 if ((pbus != pb) || (dnum != dev_num))
2213 return -ENODEV;
2216 vendor = pdev->vendor;
2217 device = pdev->device << 8;
2218 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2219 return -ENODEV;
2221 /* Ok, the device seems to be for us. */
2222 if ((error = pci_enable_device (pdev)))
2223 return error;
2225 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2226 error = -ENOMEM;
2227 goto disable_dev;
2230 lp = netdev_priv(dev);
2231 lp->bus = PCI;
2232 lp->bus_num = 0;
2234 /* Search for an SROM on this bus */
2235 if (lp->bus_num != pb) {
2236 lp->bus_num = pb;
2237 srom_search(dev, pdev);
2240 /* Get the chip configuration revision register */
2241 lp->cfrv = pdev->revision;
2243 /* Set the device number information */
2244 lp->device = dev_num;
2245 lp->bus_num = pb;
2247 /* Set the chipset information */
2248 if (is_DC2114x) {
2249 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2251 lp->chipset = device;
2253 /* Get the board I/O address (64 bits on sparc64) */
2254 iobase = pci_resource_start(pdev, 0);
2256 /* Fetch the IRQ to be used */
2257 irq = pdev->irq;
2258 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2259 error = -ENODEV;
2260 goto free_dev;
2263 /* Check if I/O accesses and Bus Mastering are enabled */
2264 pci_read_config_word(pdev, PCI_COMMAND, &status);
2265 #ifdef __powerpc__
2266 if (!(status & PCI_COMMAND_IO)) {
2267 status |= PCI_COMMAND_IO;
2268 pci_write_config_word(pdev, PCI_COMMAND, status);
2269 pci_read_config_word(pdev, PCI_COMMAND, &status);
2271 #endif /* __powerpc__ */
2272 if (!(status & PCI_COMMAND_IO)) {
2273 error = -ENODEV;
2274 goto free_dev;
2277 if (!(status & PCI_COMMAND_MASTER)) {
2278 status |= PCI_COMMAND_MASTER;
2279 pci_write_config_word(pdev, PCI_COMMAND, status);
2280 pci_read_config_word(pdev, PCI_COMMAND, &status);
2282 if (!(status & PCI_COMMAND_MASTER)) {
2283 error = -ENODEV;
2284 goto free_dev;
2287 /* Check the latency timer for values >= 0x60 */
2288 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2289 if (timer < 0x60) {
2290 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2293 DevicePresent(dev, DE4X5_APROM);
2295 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2296 error = -EBUSY;
2297 goto free_dev;
2300 dev->irq = irq;
2302 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2303 goto release;
2306 return 0;
2308 release:
2309 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2310 free_dev:
2311 free_netdev (dev);
2312 disable_dev:
2313 pci_disable_device (pdev);
2314 return error;
2317 static void de4x5_pci_remove(struct pci_dev *pdev)
2319 struct net_device *dev;
2320 u_long iobase;
2322 dev = pci_get_drvdata(pdev);
2323 iobase = dev->base_addr;
2325 unregister_netdev (dev);
2326 free_netdev (dev);
2327 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2328 pci_disable_device (pdev);
2331 static const struct pci_device_id de4x5_pci_tbl[] = {
2332 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2333 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2334 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2335 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2336 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2337 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2338 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2339 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2340 { },
2343 static struct pci_driver de4x5_pci_driver = {
2344 .name = "de4x5",
2345 .id_table = de4x5_pci_tbl,
2346 .probe = de4x5_pci_probe,
2347 .remove = de4x5_pci_remove,
2350 #endif
2353 ** Auto configure the media here rather than setting the port at compile
2354 ** time. This routine is called by de4x5_init() and when a loss of media is
2355 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2356 ** [TP] or no recent receive activity) to check whether the user has been
2357 ** sneaky and changed the port on us.
2359 static int
2360 autoconf_media(struct net_device *dev)
2362 struct de4x5_private *lp = netdev_priv(dev);
2363 u_long iobase = dev->base_addr;
2365 disable_ast(dev);
2367 lp->c_media = AUTO; /* Bogus last media */
2368 inl(DE4X5_MFC); /* Zero the lost frames counter */
2369 lp->media = INIT;
2370 lp->tcount = 0;
2372 de4x5_ast(&lp->timer);
2374 return lp->media;
2378 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2379 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2380 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2381 ** The only way to test for that is to place a loopback packet onto the
2382 ** network and watch for errors. Since we're messing with the interrupt mask
2383 ** register, disable the board interrupts and do not allow any more packets to
2384 ** be queued to the hardware. Re-enable everything only when the media is
2385 ** found.
2386 ** I may have to "age out" locally queued packets so that the higher layer
2387 ** timeouts don't effectively duplicate packets on the network.
2389 static int
2390 dc21040_autoconf(struct net_device *dev)
2392 struct de4x5_private *lp = netdev_priv(dev);
2393 u_long iobase = dev->base_addr;
2394 int next_tick = DE4X5_AUTOSENSE_MS;
2395 s32 imr;
2397 switch (lp->media) {
2398 case INIT:
2399 DISABLE_IRQs;
2400 lp->tx_enable = false;
2401 lp->timeout = -1;
2402 de4x5_save_skbs(dev);
2403 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2404 lp->media = TP;
2405 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2406 lp->media = BNC_AUI;
2407 } else if (lp->autosense == EXT_SIA) {
2408 lp->media = EXT_SIA;
2409 } else {
2410 lp->media = NC;
2412 lp->local_state = 0;
2413 next_tick = dc21040_autoconf(dev);
2414 break;
2416 case TP:
2417 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2418 TP_SUSPECT, test_tp);
2419 break;
2421 case TP_SUSPECT:
2422 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2423 break;
2425 case BNC:
2426 case AUI:
2427 case BNC_AUI:
2428 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2429 BNC_AUI_SUSPECT, ping_media);
2430 break;
2432 case BNC_AUI_SUSPECT:
2433 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2434 break;
2436 case EXT_SIA:
2437 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2438 NC, EXT_SIA_SUSPECT, ping_media);
2439 break;
2441 case EXT_SIA_SUSPECT:
2442 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2443 break;
2445 case NC:
2446 /* default to TP for all */
2447 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2448 if (lp->media != lp->c_media) {
2449 de4x5_dbg_media(dev);
2450 lp->c_media = lp->media;
2452 lp->media = INIT;
2453 lp->tx_enable = false;
2454 break;
2457 return next_tick;
2460 static int
2461 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2462 int next_state, int suspect_state,
2463 int (*fn)(struct net_device *, int))
2465 struct de4x5_private *lp = netdev_priv(dev);
2466 int next_tick = DE4X5_AUTOSENSE_MS;
2467 int linkBad;
2469 switch (lp->local_state) {
2470 case 0:
2471 reset_init_sia(dev, csr13, csr14, csr15);
2472 lp->local_state++;
2473 next_tick = 500;
2474 break;
2476 case 1:
2477 if (!lp->tx_enable) {
2478 linkBad = fn(dev, timeout);
2479 if (linkBad < 0) {
2480 next_tick = linkBad & ~TIMER_CB;
2481 } else {
2482 if (linkBad && (lp->autosense == AUTO)) {
2483 lp->local_state = 0;
2484 lp->media = next_state;
2485 } else {
2486 de4x5_init_connection(dev);
2489 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2490 lp->media = suspect_state;
2491 next_tick = 3000;
2493 break;
2496 return next_tick;
2499 static int
2500 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2501 int (*fn)(struct net_device *, int),
2502 int (*asfn)(struct net_device *))
2504 struct de4x5_private *lp = netdev_priv(dev);
2505 int next_tick = DE4X5_AUTOSENSE_MS;
2506 int linkBad;
2508 switch (lp->local_state) {
2509 case 1:
2510 if (lp->linkOK) {
2511 lp->media = prev_state;
2512 } else {
2513 lp->local_state++;
2514 next_tick = asfn(dev);
2516 break;
2518 case 2:
2519 linkBad = fn(dev, timeout);
2520 if (linkBad < 0) {
2521 next_tick = linkBad & ~TIMER_CB;
2522 } else if (!linkBad) {
2523 lp->local_state--;
2524 lp->media = prev_state;
2525 } else {
2526 lp->media = INIT;
2527 lp->tcount++;
2531 return next_tick;
2535 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2536 ** before BNC, because the BNC port will indicate activity if it's not
2537 ** terminated correctly. The only way to test for that is to place a loopback
2538 ** packet onto the network and watch for errors. Since we're messing with
2539 ** the interrupt mask register, disable the board interrupts and do not allow
2540 ** any more packets to be queued to the hardware. Re-enable everything only
2541 ** when the media is found.
2543 static int
2544 dc21041_autoconf(struct net_device *dev)
2546 struct de4x5_private *lp = netdev_priv(dev);
2547 u_long iobase = dev->base_addr;
2548 s32 sts, irqs, irq_mask, imr, omr;
2549 int next_tick = DE4X5_AUTOSENSE_MS;
2551 switch (lp->media) {
2552 case INIT:
2553 DISABLE_IRQs;
2554 lp->tx_enable = false;
2555 lp->timeout = -1;
2556 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2557 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2558 lp->media = TP; /* On chip auto negotiation is broken */
2559 } else if (lp->autosense == TP) {
2560 lp->media = TP;
2561 } else if (lp->autosense == BNC) {
2562 lp->media = BNC;
2563 } else if (lp->autosense == AUI) {
2564 lp->media = AUI;
2565 } else {
2566 lp->media = NC;
2568 lp->local_state = 0;
2569 next_tick = dc21041_autoconf(dev);
2570 break;
2572 case TP_NW:
2573 if (lp->timeout < 0) {
2574 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2575 outl(omr | OMR_FDX, DE4X5_OMR);
2577 irqs = STS_LNF | STS_LNP;
2578 irq_mask = IMR_LFM | IMR_LPM;
2579 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2580 if (sts < 0) {
2581 next_tick = sts & ~TIMER_CB;
2582 } else {
2583 if (sts & STS_LNP) {
2584 lp->media = ANS;
2585 } else {
2586 lp->media = AUI;
2588 next_tick = dc21041_autoconf(dev);
2590 break;
2592 case ANS:
2593 if (!lp->tx_enable) {
2594 irqs = STS_LNP;
2595 irq_mask = IMR_LPM;
2596 sts = test_ans(dev, irqs, irq_mask, 3000);
2597 if (sts < 0) {
2598 next_tick = sts & ~TIMER_CB;
2599 } else {
2600 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2601 lp->media = TP;
2602 next_tick = dc21041_autoconf(dev);
2603 } else {
2604 lp->local_state = 1;
2605 de4x5_init_connection(dev);
2608 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2609 lp->media = ANS_SUSPECT;
2610 next_tick = 3000;
2612 break;
2614 case ANS_SUSPECT:
2615 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2616 break;
2618 case TP:
2619 if (!lp->tx_enable) {
2620 if (lp->timeout < 0) {
2621 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2622 outl(omr & ~OMR_FDX, DE4X5_OMR);
2624 irqs = STS_LNF | STS_LNP;
2625 irq_mask = IMR_LFM | IMR_LPM;
2626 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2627 if (sts < 0) {
2628 next_tick = sts & ~TIMER_CB;
2629 } else {
2630 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2631 if (inl(DE4X5_SISR) & SISR_NRA) {
2632 lp->media = AUI; /* Non selected port activity */
2633 } else {
2634 lp->media = BNC;
2636 next_tick = dc21041_autoconf(dev);
2637 } else {
2638 lp->local_state = 1;
2639 de4x5_init_connection(dev);
2642 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2643 lp->media = TP_SUSPECT;
2644 next_tick = 3000;
2646 break;
2648 case TP_SUSPECT:
2649 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2650 break;
2652 case AUI:
2653 if (!lp->tx_enable) {
2654 if (lp->timeout < 0) {
2655 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2656 outl(omr & ~OMR_FDX, DE4X5_OMR);
2658 irqs = 0;
2659 irq_mask = 0;
2660 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2661 if (sts < 0) {
2662 next_tick = sts & ~TIMER_CB;
2663 } else {
2664 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2665 lp->media = BNC;
2666 next_tick = dc21041_autoconf(dev);
2667 } else {
2668 lp->local_state = 1;
2669 de4x5_init_connection(dev);
2672 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2673 lp->media = AUI_SUSPECT;
2674 next_tick = 3000;
2676 break;
2678 case AUI_SUSPECT:
2679 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2680 break;
2682 case BNC:
2683 switch (lp->local_state) {
2684 case 0:
2685 if (lp->timeout < 0) {
2686 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2687 outl(omr & ~OMR_FDX, DE4X5_OMR);
2689 irqs = 0;
2690 irq_mask = 0;
2691 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2692 if (sts < 0) {
2693 next_tick = sts & ~TIMER_CB;
2694 } else {
2695 lp->local_state++; /* Ensure media connected */
2696 next_tick = dc21041_autoconf(dev);
2698 break;
2700 case 1:
2701 if (!lp->tx_enable) {
2702 if ((sts = ping_media(dev, 3000)) < 0) {
2703 next_tick = sts & ~TIMER_CB;
2704 } else {
2705 if (sts) {
2706 lp->local_state = 0;
2707 lp->media = NC;
2708 } else {
2709 de4x5_init_connection(dev);
2712 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2713 lp->media = BNC_SUSPECT;
2714 next_tick = 3000;
2716 break;
2718 break;
2720 case BNC_SUSPECT:
2721 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2722 break;
2724 case NC:
2725 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2726 outl(omr | OMR_FDX, DE4X5_OMR);
2727 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2728 if (lp->media != lp->c_media) {
2729 de4x5_dbg_media(dev);
2730 lp->c_media = lp->media;
2732 lp->media = INIT;
2733 lp->tx_enable = false;
2734 break;
2737 return next_tick;
2741 ** Some autonegotiation chips are broken in that they do not return the
2742 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2743 ** register, except at the first power up negotiation.
2745 static int
2746 dc21140m_autoconf(struct net_device *dev)
2748 struct de4x5_private *lp = netdev_priv(dev);
2749 int ana, anlpa, cap, cr, slnk, sr;
2750 int next_tick = DE4X5_AUTOSENSE_MS;
2751 u_long imr, omr, iobase = dev->base_addr;
2753 switch(lp->media) {
2754 case INIT:
2755 if (lp->timeout < 0) {
2756 DISABLE_IRQs;
2757 lp->tx_enable = false;
2758 lp->linkOK = 0;
2759 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2761 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2762 next_tick &= ~TIMER_CB;
2763 } else {
2764 if (lp->useSROM) {
2765 if (srom_map_media(dev) < 0) {
2766 lp->tcount++;
2767 return next_tick;
2769 srom_exec(dev, lp->phy[lp->active].gep);
2770 if (lp->infoblock_media == ANS) {
2771 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2772 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2774 } else {
2775 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2776 SET_10Mb;
2777 if (lp->autosense == _100Mb) {
2778 lp->media = _100Mb;
2779 } else if (lp->autosense == _10Mb) {
2780 lp->media = _10Mb;
2781 } else if ((lp->autosense == AUTO) &&
2782 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2783 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2784 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2785 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2786 lp->media = ANS;
2787 } else if (lp->autosense == AUTO) {
2788 lp->media = SPD_DET;
2789 } else if (is_spd_100(dev) && is_100_up(dev)) {
2790 lp->media = _100Mb;
2791 } else {
2792 lp->media = NC;
2795 lp->local_state = 0;
2796 next_tick = dc21140m_autoconf(dev);
2798 break;
2800 case ANS:
2801 switch (lp->local_state) {
2802 case 0:
2803 if (lp->timeout < 0) {
2804 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2806 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2807 if (cr < 0) {
2808 next_tick = cr & ~TIMER_CB;
2809 } else {
2810 if (cr) {
2811 lp->local_state = 0;
2812 lp->media = SPD_DET;
2813 } else {
2814 lp->local_state++;
2816 next_tick = dc21140m_autoconf(dev);
2818 break;
2820 case 1:
2821 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2822 next_tick = sr & ~TIMER_CB;
2823 } else {
2824 lp->media = SPD_DET;
2825 lp->local_state = 0;
2826 if (sr) { /* Success! */
2827 lp->tmp = MII_SR_ASSC;
2828 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2829 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2830 if (!(anlpa & MII_ANLPA_RF) &&
2831 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2832 if (cap & MII_ANA_100M) {
2833 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2834 lp->media = _100Mb;
2835 } else if (cap & MII_ANA_10M) {
2836 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2838 lp->media = _10Mb;
2841 } /* Auto Negotiation failed to finish */
2842 next_tick = dc21140m_autoconf(dev);
2843 } /* Auto Negotiation failed to start */
2844 break;
2846 break;
2848 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2849 if (lp->timeout < 0) {
2850 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2851 (~gep_rd(dev) & GEP_LNP));
2852 SET_100Mb_PDET;
2854 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2855 next_tick = slnk & ~TIMER_CB;
2856 } else {
2857 if (is_spd_100(dev) && is_100_up(dev)) {
2858 lp->media = _100Mb;
2859 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2860 lp->media = _10Mb;
2861 } else {
2862 lp->media = NC;
2864 next_tick = dc21140m_autoconf(dev);
2866 break;
2868 case _100Mb: /* Set 100Mb/s */
2869 next_tick = 3000;
2870 if (!lp->tx_enable) {
2871 SET_100Mb;
2872 de4x5_init_connection(dev);
2873 } else {
2874 if (!lp->linkOK && (lp->autosense == AUTO)) {
2875 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2876 lp->media = INIT;
2877 lp->tcount++;
2878 next_tick = DE4X5_AUTOSENSE_MS;
2882 break;
2884 case BNC:
2885 case AUI:
2886 case _10Mb: /* Set 10Mb/s */
2887 next_tick = 3000;
2888 if (!lp->tx_enable) {
2889 SET_10Mb;
2890 de4x5_init_connection(dev);
2891 } else {
2892 if (!lp->linkOK && (lp->autosense == AUTO)) {
2893 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2894 lp->media = INIT;
2895 lp->tcount++;
2896 next_tick = DE4X5_AUTOSENSE_MS;
2900 break;
2902 case NC:
2903 if (lp->media != lp->c_media) {
2904 de4x5_dbg_media(dev);
2905 lp->c_media = lp->media;
2907 lp->media = INIT;
2908 lp->tx_enable = false;
2909 break;
2912 return next_tick;
2916 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2917 ** changing how I figure out the media - but trying to keep it backwards
2918 ** compatible with the de500-xa and de500-aa.
2919 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2920 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2921 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2922 ** active.
2923 ** When autonegotiation is working, the ANS part searches the SROM for
2924 ** the highest common speed (TP) link that both can run and if that can
2925 ** be full duplex. That infoblock is executed and then the link speed set.
2927 ** Only _10Mb and _100Mb are tested here.
2929 static int
2930 dc2114x_autoconf(struct net_device *dev)
2932 struct de4x5_private *lp = netdev_priv(dev);
2933 u_long iobase = dev->base_addr;
2934 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2935 int next_tick = DE4X5_AUTOSENSE_MS;
2937 switch (lp->media) {
2938 case INIT:
2939 if (lp->timeout < 0) {
2940 DISABLE_IRQs;
2941 lp->tx_enable = false;
2942 lp->linkOK = 0;
2943 lp->timeout = -1;
2944 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2945 if (lp->params.autosense & ~AUTO) {
2946 srom_map_media(dev); /* Fixed media requested */
2947 if (lp->media != lp->params.autosense) {
2948 lp->tcount++;
2949 lp->media = INIT;
2950 return next_tick;
2952 lp->media = INIT;
2955 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2956 next_tick &= ~TIMER_CB;
2957 } else {
2958 if (lp->autosense == _100Mb) {
2959 lp->media = _100Mb;
2960 } else if (lp->autosense == _10Mb) {
2961 lp->media = _10Mb;
2962 } else if (lp->autosense == TP) {
2963 lp->media = TP;
2964 } else if (lp->autosense == BNC) {
2965 lp->media = BNC;
2966 } else if (lp->autosense == AUI) {
2967 lp->media = AUI;
2968 } else {
2969 lp->media = SPD_DET;
2970 if ((lp->infoblock_media == ANS) &&
2971 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2972 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2973 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2974 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2975 lp->media = ANS;
2978 lp->local_state = 0;
2979 next_tick = dc2114x_autoconf(dev);
2981 break;
2983 case ANS:
2984 switch (lp->local_state) {
2985 case 0:
2986 if (lp->timeout < 0) {
2987 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2989 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2990 if (cr < 0) {
2991 next_tick = cr & ~TIMER_CB;
2992 } else {
2993 if (cr) {
2994 lp->local_state = 0;
2995 lp->media = SPD_DET;
2996 } else {
2997 lp->local_state++;
2999 next_tick = dc2114x_autoconf(dev);
3001 break;
3003 case 1:
3004 sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3005 if (sr < 0) {
3006 next_tick = sr & ~TIMER_CB;
3007 } else {
3008 lp->media = SPD_DET;
3009 lp->local_state = 0;
3010 if (sr) { /* Success! */
3011 lp->tmp = MII_SR_ASSC;
3012 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3013 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3014 if (!(anlpa & MII_ANLPA_RF) &&
3015 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3016 if (cap & MII_ANA_100M) {
3017 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3018 lp->media = _100Mb;
3019 } else if (cap & MII_ANA_10M) {
3020 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3021 lp->media = _10Mb;
3024 } /* Auto Negotiation failed to finish */
3025 next_tick = dc2114x_autoconf(dev);
3026 } /* Auto Negotiation failed to start */
3027 break;
3029 break;
3031 case AUI:
3032 if (!lp->tx_enable) {
3033 if (lp->timeout < 0) {
3034 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3035 outl(omr & ~OMR_FDX, DE4X5_OMR);
3037 irqs = 0;
3038 irq_mask = 0;
3039 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3040 if (sts < 0) {
3041 next_tick = sts & ~TIMER_CB;
3042 } else {
3043 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3044 lp->media = BNC;
3045 next_tick = dc2114x_autoconf(dev);
3046 } else {
3047 lp->local_state = 1;
3048 de4x5_init_connection(dev);
3051 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3052 lp->media = AUI_SUSPECT;
3053 next_tick = 3000;
3055 break;
3057 case AUI_SUSPECT:
3058 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3059 break;
3061 case BNC:
3062 switch (lp->local_state) {
3063 case 0:
3064 if (lp->timeout < 0) {
3065 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3066 outl(omr & ~OMR_FDX, DE4X5_OMR);
3068 irqs = 0;
3069 irq_mask = 0;
3070 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3071 if (sts < 0) {
3072 next_tick = sts & ~TIMER_CB;
3073 } else {
3074 lp->local_state++; /* Ensure media connected */
3075 next_tick = dc2114x_autoconf(dev);
3077 break;
3079 case 1:
3080 if (!lp->tx_enable) {
3081 if ((sts = ping_media(dev, 3000)) < 0) {
3082 next_tick = sts & ~TIMER_CB;
3083 } else {
3084 if (sts) {
3085 lp->local_state = 0;
3086 lp->tcount++;
3087 lp->media = INIT;
3088 } else {
3089 de4x5_init_connection(dev);
3092 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3093 lp->media = BNC_SUSPECT;
3094 next_tick = 3000;
3096 break;
3098 break;
3100 case BNC_SUSPECT:
3101 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3102 break;
3104 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3105 if (srom_map_media(dev) < 0) {
3106 lp->tcount++;
3107 lp->media = INIT;
3108 return next_tick;
3110 if (lp->media == _100Mb) {
3111 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3112 lp->media = SPD_DET;
3113 return slnk & ~TIMER_CB;
3115 } else {
3116 if (wait_for_link(dev) < 0) {
3117 lp->media = SPD_DET;
3118 return PDET_LINK_WAIT;
3121 if (lp->media == ANS) { /* Do MII parallel detection */
3122 if (is_spd_100(dev)) {
3123 lp->media = _100Mb;
3124 } else {
3125 lp->media = _10Mb;
3127 next_tick = dc2114x_autoconf(dev);
3128 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3129 (((lp->media == _10Mb) || (lp->media == TP) ||
3130 (lp->media == BNC) || (lp->media == AUI)) &&
3131 is_10_up(dev))) {
3132 next_tick = dc2114x_autoconf(dev);
3133 } else {
3134 lp->tcount++;
3135 lp->media = INIT;
3137 break;
3139 case _10Mb:
3140 next_tick = 3000;
3141 if (!lp->tx_enable) {
3142 SET_10Mb;
3143 de4x5_init_connection(dev);
3144 } else {
3145 if (!lp->linkOK && (lp->autosense == AUTO)) {
3146 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3147 lp->media = INIT;
3148 lp->tcount++;
3149 next_tick = DE4X5_AUTOSENSE_MS;
3153 break;
3155 case _100Mb:
3156 next_tick = 3000;
3157 if (!lp->tx_enable) {
3158 SET_100Mb;
3159 de4x5_init_connection(dev);
3160 } else {
3161 if (!lp->linkOK && (lp->autosense == AUTO)) {
3162 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3163 lp->media = INIT;
3164 lp->tcount++;
3165 next_tick = DE4X5_AUTOSENSE_MS;
3169 break;
3171 default:
3172 lp->tcount++;
3173 printk("Huh?: media:%02x\n", lp->media);
3174 lp->media = INIT;
3175 break;
3178 return next_tick;
3181 static int
3182 srom_autoconf(struct net_device *dev)
3184 struct de4x5_private *lp = netdev_priv(dev);
3186 return lp->infoleaf_fn(dev);
3190 ** This mapping keeps the original media codes and FDX flag unchanged.
3191 ** While it isn't strictly necessary, it helps me for the moment...
3192 ** The early return avoids a media state / SROM media space clash.
3194 static int
3195 srom_map_media(struct net_device *dev)
3197 struct de4x5_private *lp = netdev_priv(dev);
3199 lp->fdx = false;
3200 if (lp->infoblock_media == lp->media)
3201 return 0;
3203 switch(lp->infoblock_media) {
3204 case SROM_10BASETF:
3205 if (!lp->params.fdx) return -1;
3206 lp->fdx = true;
3207 case SROM_10BASET:
3208 if (lp->params.fdx && !lp->fdx) return -1;
3209 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3210 lp->media = _10Mb;
3211 } else {
3212 lp->media = TP;
3214 break;
3216 case SROM_10BASE2:
3217 lp->media = BNC;
3218 break;
3220 case SROM_10BASE5:
3221 lp->media = AUI;
3222 break;
3224 case SROM_100BASETF:
3225 if (!lp->params.fdx) return -1;
3226 lp->fdx = true;
3227 case SROM_100BASET:
3228 if (lp->params.fdx && !lp->fdx) return -1;
3229 lp->media = _100Mb;
3230 break;
3232 case SROM_100BASET4:
3233 lp->media = _100Mb;
3234 break;
3236 case SROM_100BASEFF:
3237 if (!lp->params.fdx) return -1;
3238 lp->fdx = true;
3239 case SROM_100BASEF:
3240 if (lp->params.fdx && !lp->fdx) return -1;
3241 lp->media = _100Mb;
3242 break;
3244 case ANS:
3245 lp->media = ANS;
3246 lp->fdx = lp->params.fdx;
3247 break;
3249 default:
3250 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3251 lp->infoblock_media);
3252 return -1;
3255 return 0;
3258 static void
3259 de4x5_init_connection(struct net_device *dev)
3261 struct de4x5_private *lp = netdev_priv(dev);
3262 u_long iobase = dev->base_addr;
3263 u_long flags = 0;
3265 if (lp->media != lp->c_media) {
3266 de4x5_dbg_media(dev);
3267 lp->c_media = lp->media; /* Stop scrolling media messages */
3270 spin_lock_irqsave(&lp->lock, flags);
3271 de4x5_rst_desc_ring(dev);
3272 de4x5_setup_intr(dev);
3273 lp->tx_enable = true;
3274 spin_unlock_irqrestore(&lp->lock, flags);
3275 outl(POLL_DEMAND, DE4X5_TPD);
3277 netif_wake_queue(dev);
3281 ** General PHY reset function. Some MII devices don't reset correctly
3282 ** since their MII address pins can float at voltages that are dependent
3283 ** on the signal pin use. Do a double reset to ensure a reset.
3285 static int
3286 de4x5_reset_phy(struct net_device *dev)
3288 struct de4x5_private *lp = netdev_priv(dev);
3289 u_long iobase = dev->base_addr;
3290 int next_tick = 0;
3292 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3293 if (lp->timeout < 0) {
3294 if (lp->useSROM) {
3295 if (lp->phy[lp->active].rst) {
3296 srom_exec(dev, lp->phy[lp->active].rst);
3297 srom_exec(dev, lp->phy[lp->active].rst);
3298 } else if (lp->rst) { /* Type 5 infoblock reset */
3299 srom_exec(dev, lp->rst);
3300 srom_exec(dev, lp->rst);
3302 } else {
3303 PHY_HARD_RESET;
3305 if (lp->useMII) {
3306 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3309 if (lp->useMII) {
3310 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3312 } else if (lp->chipset == DC21140) {
3313 PHY_HARD_RESET;
3316 return next_tick;
3319 static int
3320 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3322 struct de4x5_private *lp = netdev_priv(dev);
3323 u_long iobase = dev->base_addr;
3324 s32 sts, csr12;
3326 if (lp->timeout < 0) {
3327 lp->timeout = msec/100;
3328 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3329 reset_init_sia(dev, csr13, csr14, csr15);
3332 /* set up the interrupt mask */
3333 outl(irq_mask, DE4X5_IMR);
3335 /* clear all pending interrupts */
3336 sts = inl(DE4X5_STS);
3337 outl(sts, DE4X5_STS);
3339 /* clear csr12 NRA and SRA bits */
3340 if ((lp->chipset == DC21041) || lp->useSROM) {
3341 csr12 = inl(DE4X5_SISR);
3342 outl(csr12, DE4X5_SISR);
3346 sts = inl(DE4X5_STS) & ~TIMER_CB;
3348 if (!(sts & irqs) && --lp->timeout) {
3349 sts = 100 | TIMER_CB;
3350 } else {
3351 lp->timeout = -1;
3354 return sts;
3357 static int
3358 test_tp(struct net_device *dev, s32 msec)
3360 struct de4x5_private *lp = netdev_priv(dev);
3361 u_long iobase = dev->base_addr;
3362 int sisr;
3364 if (lp->timeout < 0) {
3365 lp->timeout = msec/100;
3368 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3370 if (sisr && --lp->timeout) {
3371 sisr = 100 | TIMER_CB;
3372 } else {
3373 lp->timeout = -1;
3376 return sisr;
3380 ** Samples the 100Mb Link State Signal. The sample interval is important
3381 ** because too fast a rate can give erroneous results and confuse the
3382 ** speed sense algorithm.
3384 #define SAMPLE_INTERVAL 500 /* ms */
3385 #define SAMPLE_DELAY 2000 /* ms */
3386 static int
3387 test_for_100Mb(struct net_device *dev, int msec)
3389 struct de4x5_private *lp = netdev_priv(dev);
3390 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3392 if (lp->timeout < 0) {
3393 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3394 if (msec > SAMPLE_DELAY) {
3395 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3396 gep = SAMPLE_DELAY | TIMER_CB;
3397 return gep;
3398 } else {
3399 lp->timeout = msec/SAMPLE_INTERVAL;
3403 if (lp->phy[lp->active].id || lp->useSROM) {
3404 gep = is_100_up(dev) | is_spd_100(dev);
3405 } else {
3406 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3408 if (!(gep & ret) && --lp->timeout) {
3409 gep = SAMPLE_INTERVAL | TIMER_CB;
3410 } else {
3411 lp->timeout = -1;
3414 return gep;
3417 static int
3418 wait_for_link(struct net_device *dev)
3420 struct de4x5_private *lp = netdev_priv(dev);
3422 if (lp->timeout < 0) {
3423 lp->timeout = 1;
3426 if (lp->timeout--) {
3427 return TIMER_CB;
3428 } else {
3429 lp->timeout = -1;
3432 return 0;
3439 static int
3440 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3442 struct de4x5_private *lp = netdev_priv(dev);
3443 int test;
3444 u_long iobase = dev->base_addr;
3446 if (lp->timeout < 0) {
3447 lp->timeout = msec/100;
3450 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3451 test = (reg ^ (pol ? ~0 : 0)) & mask;
3453 if (test && --lp->timeout) {
3454 reg = 100 | TIMER_CB;
3455 } else {
3456 lp->timeout = -1;
3459 return reg;
3462 static int
3463 is_spd_100(struct net_device *dev)
3465 struct de4x5_private *lp = netdev_priv(dev);
3466 u_long iobase = dev->base_addr;
3467 int spd;
3469 if (lp->useMII) {
3470 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3471 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3472 spd &= lp->phy[lp->active].spd.mask;
3473 } else if (!lp->useSROM) { /* de500-xa */
3474 spd = ((~gep_rd(dev)) & GEP_SLNK);
3475 } else {
3476 if ((lp->ibn == 2) || !lp->asBitValid)
3477 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3479 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3480 (lp->linkOK & ~lp->asBitValid);
3483 return spd;
3486 static int
3487 is_100_up(struct net_device *dev)
3489 struct de4x5_private *lp = netdev_priv(dev);
3490 u_long iobase = dev->base_addr;
3492 if (lp->useMII) {
3493 /* Double read for sticky bits & temporary drops */
3494 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3495 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3496 } else if (!lp->useSROM) { /* de500-xa */
3497 return (~gep_rd(dev)) & GEP_SLNK;
3498 } else {
3499 if ((lp->ibn == 2) || !lp->asBitValid)
3500 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3502 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3503 (lp->linkOK & ~lp->asBitValid);
3507 static int
3508 is_10_up(struct net_device *dev)
3510 struct de4x5_private *lp = netdev_priv(dev);
3511 u_long iobase = dev->base_addr;
3513 if (lp->useMII) {
3514 /* Double read for sticky bits & temporary drops */
3515 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3516 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3517 } else if (!lp->useSROM) { /* de500-xa */
3518 return (~gep_rd(dev)) & GEP_LNP;
3519 } else {
3520 if ((lp->ibn == 2) || !lp->asBitValid)
3521 return ((lp->chipset & ~0x00ff) == DC2114x) ?
3522 (~inl(DE4X5_SISR)&SISR_LS10):
3525 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3526 (lp->linkOK & ~lp->asBitValid);
3530 static int
3531 is_anc_capable(struct net_device *dev)
3533 struct de4x5_private *lp = netdev_priv(dev);
3534 u_long iobase = dev->base_addr;
3536 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3537 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3538 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3539 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3540 } else {
3541 return 0;
3546 ** Send a packet onto the media and watch for send errors that indicate the
3547 ** media is bad or unconnected.
3549 static int
3550 ping_media(struct net_device *dev, int msec)
3552 struct de4x5_private *lp = netdev_priv(dev);
3553 u_long iobase = dev->base_addr;
3554 int sisr;
3556 if (lp->timeout < 0) {
3557 lp->timeout = msec/100;
3559 lp->tmp = lp->tx_new; /* Remember the ring position */
3560 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3561 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3562 outl(POLL_DEMAND, DE4X5_TPD);
3565 sisr = inl(DE4X5_SISR);
3567 if ((!(sisr & SISR_NCR)) &&
3568 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3569 (--lp->timeout)) {
3570 sisr = 100 | TIMER_CB;
3571 } else {
3572 if ((!(sisr & SISR_NCR)) &&
3573 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3574 lp->timeout) {
3575 sisr = 0;
3576 } else {
3577 sisr = 1;
3579 lp->timeout = -1;
3582 return sisr;
3586 ** This function does 2 things: on Intels it kmalloc's another buffer to
3587 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3588 ** into which the packet is copied.
3590 static struct sk_buff *
3591 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3593 struct de4x5_private *lp = netdev_priv(dev);
3594 struct sk_buff *p;
3596 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3597 struct sk_buff *ret;
3598 u_long i=0, tmp;
3600 p = netdev_alloc_skb(dev, IEEE802_3_SZ + DE4X5_ALIGN + 2);
3601 if (!p) return NULL;
3603 tmp = virt_to_bus(p->data);
3604 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3605 skb_reserve(p, i);
3606 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3608 ret = lp->rx_skb[index];
3609 lp->rx_skb[index] = p;
3611 if ((u_long) ret > 1) {
3612 skb_put(ret, len);
3615 return ret;
3617 #else
3618 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3620 p = netdev_alloc_skb(dev, len + 2);
3621 if (!p) return NULL;
3623 skb_reserve(p, 2); /* Align */
3624 if (index < lp->rx_old) { /* Wrapped buffer */
3625 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3626 skb_put_data(p, lp->rx_bufs + lp->rx_old * RX_BUFF_SZ, tlen);
3627 skb_put_data(p, lp->rx_bufs, len - tlen);
3628 } else { /* Linear buffer */
3629 skb_put_data(p, lp->rx_bufs + lp->rx_old * RX_BUFF_SZ, len);
3632 return p;
3633 #endif
3636 static void
3637 de4x5_free_rx_buffs(struct net_device *dev)
3639 struct de4x5_private *lp = netdev_priv(dev);
3640 int i;
3642 for (i=0; i<lp->rxRingSize; i++) {
3643 if ((u_long) lp->rx_skb[i] > 1) {
3644 dev_kfree_skb(lp->rx_skb[i]);
3646 lp->rx_ring[i].status = 0;
3647 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3651 static void
3652 de4x5_free_tx_buffs(struct net_device *dev)
3654 struct de4x5_private *lp = netdev_priv(dev);
3655 int i;
3657 for (i=0; i<lp->txRingSize; i++) {
3658 if (lp->tx_skb[i])
3659 de4x5_free_tx_buff(lp, i);
3660 lp->tx_ring[i].status = 0;
3663 /* Unload the locally queued packets */
3664 __skb_queue_purge(&lp->cache.queue);
3668 ** When a user pulls a connection, the DECchip can end up in a
3669 ** 'running - waiting for end of transmission' state. This means that we
3670 ** have to perform a chip soft reset to ensure that we can synchronize
3671 ** the hardware and software and make any media probes using a loopback
3672 ** packet meaningful.
3674 static void
3675 de4x5_save_skbs(struct net_device *dev)
3677 struct de4x5_private *lp = netdev_priv(dev);
3678 u_long iobase = dev->base_addr;
3679 s32 omr;
3681 if (!lp->cache.save_cnt) {
3682 STOP_DE4X5;
3683 de4x5_tx(dev); /* Flush any sent skb's */
3684 de4x5_free_tx_buffs(dev);
3685 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3686 de4x5_sw_reset(dev);
3687 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3688 lp->cache.save_cnt++;
3689 START_DE4X5;
3693 static void
3694 de4x5_rst_desc_ring(struct net_device *dev)
3696 struct de4x5_private *lp = netdev_priv(dev);
3697 u_long iobase = dev->base_addr;
3698 int i;
3699 s32 omr;
3701 if (lp->cache.save_cnt) {
3702 STOP_DE4X5;
3703 outl(lp->dma_rings, DE4X5_RRBA);
3704 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3705 DE4X5_TRBA);
3707 lp->rx_new = lp->rx_old = 0;
3708 lp->tx_new = lp->tx_old = 0;
3710 for (i = 0; i < lp->rxRingSize; i++) {
3711 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3714 for (i = 0; i < lp->txRingSize; i++) {
3715 lp->tx_ring[i].status = cpu_to_le32(0);
3718 barrier();
3719 lp->cache.save_cnt--;
3720 START_DE4X5;
3724 static void
3725 de4x5_cache_state(struct net_device *dev, int flag)
3727 struct de4x5_private *lp = netdev_priv(dev);
3728 u_long iobase = dev->base_addr;
3730 switch(flag) {
3731 case DE4X5_SAVE_STATE:
3732 lp->cache.csr0 = inl(DE4X5_BMR);
3733 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3734 lp->cache.csr7 = inl(DE4X5_IMR);
3735 break;
3737 case DE4X5_RESTORE_STATE:
3738 outl(lp->cache.csr0, DE4X5_BMR);
3739 outl(lp->cache.csr6, DE4X5_OMR);
3740 outl(lp->cache.csr7, DE4X5_IMR);
3741 if (lp->chipset == DC21140) {
3742 gep_wr(lp->cache.gepc, dev);
3743 gep_wr(lp->cache.gep, dev);
3744 } else {
3745 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3746 lp->cache.csr15);
3748 break;
3752 static void
3753 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3755 struct de4x5_private *lp = netdev_priv(dev);
3757 __skb_queue_tail(&lp->cache.queue, skb);
3760 static void
3761 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3763 struct de4x5_private *lp = netdev_priv(dev);
3765 __skb_queue_head(&lp->cache.queue, skb);
3768 static struct sk_buff *
3769 de4x5_get_cache(struct net_device *dev)
3771 struct de4x5_private *lp = netdev_priv(dev);
3773 return __skb_dequeue(&lp->cache.queue);
3777 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3778 ** is received and the auto-negotiation status is NWAY OK.
3780 static int
3781 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3783 struct de4x5_private *lp = netdev_priv(dev);
3784 u_long iobase = dev->base_addr;
3785 s32 sts, ans;
3787 if (lp->timeout < 0) {
3788 lp->timeout = msec/100;
3789 outl(irq_mask, DE4X5_IMR);
3791 /* clear all pending interrupts */
3792 sts = inl(DE4X5_STS);
3793 outl(sts, DE4X5_STS);
3796 ans = inl(DE4X5_SISR) & SISR_ANS;
3797 sts = inl(DE4X5_STS) & ~TIMER_CB;
3799 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3800 sts = 100 | TIMER_CB;
3801 } else {
3802 lp->timeout = -1;
3805 return sts;
3808 static void
3809 de4x5_setup_intr(struct net_device *dev)
3811 struct de4x5_private *lp = netdev_priv(dev);
3812 u_long iobase = dev->base_addr;
3813 s32 imr, sts;
3815 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3816 imr = 0;
3817 UNMASK_IRQs;
3818 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3819 outl(sts, DE4X5_STS);
3820 ENABLE_IRQs;
3827 static void
3828 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3830 struct de4x5_private *lp = netdev_priv(dev);
3831 u_long iobase = dev->base_addr;
3833 RESET_SIA;
3834 if (lp->useSROM) {
3835 if (lp->ibn == 3) {
3836 srom_exec(dev, lp->phy[lp->active].rst);
3837 srom_exec(dev, lp->phy[lp->active].gep);
3838 outl(1, DE4X5_SICR);
3839 return;
3840 } else {
3841 csr15 = lp->cache.csr15;
3842 csr14 = lp->cache.csr14;
3843 csr13 = lp->cache.csr13;
3844 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3845 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3847 } else {
3848 outl(csr15, DE4X5_SIGR);
3850 outl(csr14, DE4X5_STRR);
3851 outl(csr13, DE4X5_SICR);
3853 mdelay(10);
3857 ** Create a loopback ethernet packet
3859 static void
3860 create_packet(struct net_device *dev, char *frame, int len)
3862 int i;
3863 char *buf = frame;
3865 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3866 *buf++ = dev->dev_addr[i];
3868 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3869 *buf++ = dev->dev_addr[i];
3872 *buf++ = 0; /* Packet length (2 bytes) */
3873 *buf++ = 1;
3877 ** Look for a particular board name in the EISA configuration space
3879 static int
3880 EISA_signature(char *name, struct device *device)
3882 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3883 struct eisa_device *edev;
3885 *name = '\0';
3886 edev = to_eisa_device (device);
3887 i = edev->id.driver_data;
3889 if (i >= 0 && i < siglen) {
3890 strcpy (name, de4x5_signatures[i]);
3891 status = 1;
3894 return status; /* return the device name string */
3898 ** Look for a particular board name in the PCI configuration space
3900 static int
3901 PCI_signature(char *name, struct de4x5_private *lp)
3903 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3905 if (lp->chipset == DC21040) {
3906 strcpy(name, "DE434/5");
3907 return status;
3908 } else { /* Search for a DEC name in the SROM */
3909 int tmp = *((char *)&lp->srom + 19) * 3;
3910 strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3912 name[8] = '\0';
3913 for (i=0; i<siglen; i++) {
3914 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3916 if (i == siglen) {
3917 if (dec_only) {
3918 *name = '\0';
3919 } else { /* Use chip name to avoid confusion */
3920 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3921 ((lp->chipset == DC21041) ? "DC21041" :
3922 ((lp->chipset == DC21140) ? "DC21140" :
3923 ((lp->chipset == DC21142) ? "DC21142" :
3924 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3925 )))))));
3927 if (lp->chipset != DC21041) {
3928 lp->useSROM = true; /* card is not recognisably DEC */
3930 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3931 lp->useSROM = true;
3934 return status;
3938 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3939 ** the DC21040, else read the SROM for the other chips.
3940 ** The SROM may not be present in a multi-MAC card, so first read the
3941 ** MAC address and check for a bad address. If there is a bad one then exit
3942 ** immediately with the prior srom contents intact (the h/w address will
3943 ** be fixed up later).
3945 static void
3946 DevicePresent(struct net_device *dev, u_long aprom_addr)
3948 int i, j=0;
3949 struct de4x5_private *lp = netdev_priv(dev);
3951 if (lp->chipset == DC21040) {
3952 if (lp->bus == EISA) {
3953 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3954 } else {
3955 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
3957 } else { /* Read new srom */
3958 u_short tmp;
3959 __le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3960 for (i=0; i<(ETH_ALEN>>1); i++) {
3961 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3962 j += tmp; /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3963 *p = cpu_to_le16(tmp);
3965 if (j == 0 || j == 3 * 0xffff) {
3966 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3967 return;
3970 p = (__le16 *)&lp->srom;
3971 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3972 tmp = srom_rd(aprom_addr, i);
3973 *p++ = cpu_to_le16(tmp);
3975 de4x5_dbg_srom(&lp->srom);
3980 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
3981 ** pointer correctly (at least on my DE425 EISA card), this routine should do
3982 ** it...from depca.c.
3984 static void
3985 enet_addr_rst(u_long aprom_addr)
3987 union {
3988 struct {
3989 u32 a;
3990 u32 b;
3991 } llsig;
3992 char Sig[sizeof(u32) << 1];
3993 } dev;
3994 short sigLength=0;
3995 s8 data;
3996 int i, j;
3998 dev.llsig.a = ETH_PROM_SIG;
3999 dev.llsig.b = ETH_PROM_SIG;
4000 sigLength = sizeof(u32) << 1;
4002 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4003 data = inb(aprom_addr);
4004 if (dev.Sig[j] == data) { /* track signature */
4005 j++;
4006 } else { /* lost signature; begin search again */
4007 if (data == dev.Sig[0]) { /* rare case.... */
4008 j=1;
4009 } else {
4010 j=0;
4017 ** For the bad status case and no SROM, then add one to the previous
4018 ** address. However, need to add one backwards in case we have 0xff
4019 ** as one or more of the bytes. Only the last 3 bytes should be checked
4020 ** as the first three are invariant - assigned to an organisation.
4022 static int
4023 get_hw_addr(struct net_device *dev)
4025 u_long iobase = dev->base_addr;
4026 int broken, i, k, tmp, status = 0;
4027 u_short j,chksum;
4028 struct de4x5_private *lp = netdev_priv(dev);
4030 broken = de4x5_bad_srom(lp);
4032 for (i=0,k=0,j=0;j<3;j++) {
4033 k <<= 1;
4034 if (k > 0xffff) k-=0xffff;
4036 if (lp->bus == PCI) {
4037 if (lp->chipset == DC21040) {
4038 while ((tmp = inl(DE4X5_APROM)) < 0);
4039 k += (u_char) tmp;
4040 dev->dev_addr[i++] = (u_char) tmp;
4041 while ((tmp = inl(DE4X5_APROM)) < 0);
4042 k += (u_short) (tmp << 8);
4043 dev->dev_addr[i++] = (u_char) tmp;
4044 } else if (!broken) {
4045 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4046 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4047 } else if ((broken == SMC) || (broken == ACCTON)) {
4048 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4049 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4051 } else {
4052 k += (u_char) (tmp = inb(EISA_APROM));
4053 dev->dev_addr[i++] = (u_char) tmp;
4054 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4055 dev->dev_addr[i++] = (u_char) tmp;
4058 if (k > 0xffff) k-=0xffff;
4060 if (k == 0xffff) k=0;
4062 if (lp->bus == PCI) {
4063 if (lp->chipset == DC21040) {
4064 while ((tmp = inl(DE4X5_APROM)) < 0);
4065 chksum = (u_char) tmp;
4066 while ((tmp = inl(DE4X5_APROM)) < 0);
4067 chksum |= (u_short) (tmp << 8);
4068 if ((k != chksum) && (dec_only)) status = -1;
4070 } else {
4071 chksum = (u_char) inb(EISA_APROM);
4072 chksum |= (u_short) (inb(EISA_APROM) << 8);
4073 if ((k != chksum) && (dec_only)) status = -1;
4076 /* If possible, try to fix a broken card - SMC only so far */
4077 srom_repair(dev, broken);
4079 #ifdef CONFIG_PPC_PMAC
4081 ** If the address starts with 00 a0, we have to bit-reverse
4082 ** each byte of the address.
4084 if ( machine_is(powermac) &&
4085 (dev->dev_addr[0] == 0) &&
4086 (dev->dev_addr[1] == 0xa0) )
4088 for (i = 0; i < ETH_ALEN; ++i)
4090 int x = dev->dev_addr[i];
4091 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4092 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4093 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4096 #endif /* CONFIG_PPC_PMAC */
4098 /* Test for a bad enet address */
4099 status = test_bad_enet(dev, status);
4101 return status;
4105 ** Test for enet addresses in the first 32 bytes.
4107 static int
4108 de4x5_bad_srom(struct de4x5_private *lp)
4110 int i, status = 0;
4112 for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4113 if (!memcmp(&lp->srom, &enet_det[i], 3) &&
4114 !memcmp((char *)&lp->srom+0x10, &enet_det[i], 3)) {
4115 if (i == 0) {
4116 status = SMC;
4117 } else if (i == 1) {
4118 status = ACCTON;
4120 break;
4124 return status;
4127 static void
4128 srom_repair(struct net_device *dev, int card)
4130 struct de4x5_private *lp = netdev_priv(dev);
4132 switch(card) {
4133 case SMC:
4134 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4135 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4136 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4137 lp->useSROM = true;
4138 break;
4143 ** Assume that the irq's do not follow the PCI spec - this is seems
4144 ** to be true so far (2 for 2).
4146 static int
4147 test_bad_enet(struct net_device *dev, int status)
4149 struct de4x5_private *lp = netdev_priv(dev);
4150 int i, tmp;
4152 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4153 if ((tmp == 0) || (tmp == 0x5fa)) {
4154 if ((lp->chipset == last.chipset) &&
4155 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4156 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4157 for (i=ETH_ALEN-1; i>2; --i) {
4158 dev->dev_addr[i] += 1;
4159 if (dev->dev_addr[i] != 0) break;
4161 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4162 if (!an_exception(lp)) {
4163 dev->irq = last.irq;
4166 status = 0;
4168 } else if (!status) {
4169 last.chipset = lp->chipset;
4170 last.bus = lp->bus_num;
4171 last.irq = dev->irq;
4172 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4175 return status;
4179 ** List of board exceptions with correctly wired IRQs
4181 static int
4182 an_exception(struct de4x5_private *lp)
4184 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4185 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4186 return -1;
4189 return 0;
4193 ** SROM Read
4195 static short
4196 srom_rd(u_long addr, u_char offset)
4198 sendto_srom(SROM_RD | SROM_SR, addr);
4200 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4201 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4202 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4204 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4207 static void
4208 srom_latch(u_int command, u_long addr)
4210 sendto_srom(command, addr);
4211 sendto_srom(command | DT_CLK, addr);
4212 sendto_srom(command, addr);
4215 static void
4216 srom_command(u_int command, u_long addr)
4218 srom_latch(command, addr);
4219 srom_latch(command, addr);
4220 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4223 static void
4224 srom_address(u_int command, u_long addr, u_char offset)
4226 int i, a;
4228 a = offset << 2;
4229 for (i=0; i<6; i++, a <<= 1) {
4230 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4232 udelay(1);
4234 i = (getfrom_srom(addr) >> 3) & 0x01;
4237 static short
4238 srom_data(u_int command, u_long addr)
4240 int i;
4241 short word = 0;
4242 s32 tmp;
4244 for (i=0; i<16; i++) {
4245 sendto_srom(command | DT_CLK, addr);
4246 tmp = getfrom_srom(addr);
4247 sendto_srom(command, addr);
4249 word = (word << 1) | ((tmp >> 3) & 0x01);
4252 sendto_srom(command & 0x0000ff00, addr);
4254 return word;
4258 static void
4259 srom_busy(u_int command, u_long addr)
4261 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4263 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4264 mdelay(1);
4267 sendto_srom(command & 0x0000ff00, addr);
4271 static void
4272 sendto_srom(u_int command, u_long addr)
4274 outl(command, addr);
4275 udelay(1);
4278 static int
4279 getfrom_srom(u_long addr)
4281 s32 tmp;
4283 tmp = inl(addr);
4284 udelay(1);
4286 return tmp;
4289 static int
4290 srom_infoleaf_info(struct net_device *dev)
4292 struct de4x5_private *lp = netdev_priv(dev);
4293 int i, count;
4294 u_char *p;
4296 /* Find the infoleaf decoder function that matches this chipset */
4297 for (i=0; i<INFOLEAF_SIZE; i++) {
4298 if (lp->chipset == infoleaf_array[i].chipset) break;
4300 if (i == INFOLEAF_SIZE) {
4301 lp->useSROM = false;
4302 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4303 dev->name);
4304 return -ENXIO;
4307 lp->infoleaf_fn = infoleaf_array[i].fn;
4309 /* Find the information offset that this function should use */
4310 count = *((u_char *)&lp->srom + 19);
4311 p = (u_char *)&lp->srom + 26;
4313 if (count > 1) {
4314 for (i=count; i; --i, p+=3) {
4315 if (lp->device == *p) break;
4317 if (i == 0) {
4318 lp->useSROM = false;
4319 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4320 dev->name, lp->device);
4321 return -ENXIO;
4325 lp->infoleaf_offset = get_unaligned_le16(p + 1);
4327 return 0;
4331 ** This routine loads any type 1 or 3 MII info into the mii device
4332 ** struct and executes any type 5 code to reset PHY devices for this
4333 ** controller.
4334 ** The info for the MII devices will be valid since the index used
4335 ** will follow the discovery process from MII address 1-31 then 0.
4337 static void
4338 srom_init(struct net_device *dev)
4340 struct de4x5_private *lp = netdev_priv(dev);
4341 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4342 u_char count;
4344 p+=2;
4345 if (lp->chipset == DC21140) {
4346 lp->cache.gepc = (*p++ | GEP_CTRL);
4347 gep_wr(lp->cache.gepc, dev);
4350 /* Block count */
4351 count = *p++;
4353 /* Jump the infoblocks to find types */
4354 for (;count; --count) {
4355 if (*p < 128) {
4356 p += COMPACT_LEN;
4357 } else if (*(p+1) == 5) {
4358 type5_infoblock(dev, 1, p);
4359 p += ((*p & BLOCK_LEN) + 1);
4360 } else if (*(p+1) == 4) {
4361 p += ((*p & BLOCK_LEN) + 1);
4362 } else if (*(p+1) == 3) {
4363 type3_infoblock(dev, 1, p);
4364 p += ((*p & BLOCK_LEN) + 1);
4365 } else if (*(p+1) == 2) {
4366 p += ((*p & BLOCK_LEN) + 1);
4367 } else if (*(p+1) == 1) {
4368 type1_infoblock(dev, 1, p);
4369 p += ((*p & BLOCK_LEN) + 1);
4370 } else {
4371 p += ((*p & BLOCK_LEN) + 1);
4377 ** A generic routine that writes GEP control, data and reset information
4378 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4380 static void
4381 srom_exec(struct net_device *dev, u_char *p)
4383 struct de4x5_private *lp = netdev_priv(dev);
4384 u_long iobase = dev->base_addr;
4385 u_char count = (p ? *p++ : 0);
4386 u_short *w = (u_short *)p;
4388 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4390 if (lp->chipset != DC21140) RESET_SIA;
4392 while (count--) {
4393 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4394 *p++ : get_unaligned_le16(w++)), dev);
4395 mdelay(2); /* 2ms per action */
4398 if (lp->chipset != DC21140) {
4399 outl(lp->cache.csr14, DE4X5_STRR);
4400 outl(lp->cache.csr13, DE4X5_SICR);
4405 ** Basically this function is a NOP since it will never be called,
4406 ** unless I implement the DC21041 SROM functions. There's no need
4407 ** since the existing code will be satisfactory for all boards.
4409 static int
4410 dc21041_infoleaf(struct net_device *dev)
4412 return DE4X5_AUTOSENSE_MS;
4415 static int
4416 dc21140_infoleaf(struct net_device *dev)
4418 struct de4x5_private *lp = netdev_priv(dev);
4419 u_char count = 0;
4420 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4421 int next_tick = DE4X5_AUTOSENSE_MS;
4423 /* Read the connection type */
4424 p+=2;
4426 /* GEP control */
4427 lp->cache.gepc = (*p++ | GEP_CTRL);
4429 /* Block count */
4430 count = *p++;
4432 /* Recursively figure out the info blocks */
4433 if (*p < 128) {
4434 next_tick = dc_infoblock[COMPACT](dev, count, p);
4435 } else {
4436 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4439 if (lp->tcount == count) {
4440 lp->media = NC;
4441 if (lp->media != lp->c_media) {
4442 de4x5_dbg_media(dev);
4443 lp->c_media = lp->media;
4445 lp->media = INIT;
4446 lp->tcount = 0;
4447 lp->tx_enable = false;
4450 return next_tick & ~TIMER_CB;
4453 static int
4454 dc21142_infoleaf(struct net_device *dev)
4456 struct de4x5_private *lp = netdev_priv(dev);
4457 u_char count = 0;
4458 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4459 int next_tick = DE4X5_AUTOSENSE_MS;
4461 /* Read the connection type */
4462 p+=2;
4464 /* Block count */
4465 count = *p++;
4467 /* Recursively figure out the info blocks */
4468 if (*p < 128) {
4469 next_tick = dc_infoblock[COMPACT](dev, count, p);
4470 } else {
4471 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4474 if (lp->tcount == count) {
4475 lp->media = NC;
4476 if (lp->media != lp->c_media) {
4477 de4x5_dbg_media(dev);
4478 lp->c_media = lp->media;
4480 lp->media = INIT;
4481 lp->tcount = 0;
4482 lp->tx_enable = false;
4485 return next_tick & ~TIMER_CB;
4488 static int
4489 dc21143_infoleaf(struct net_device *dev)
4491 struct de4x5_private *lp = netdev_priv(dev);
4492 u_char count = 0;
4493 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4494 int next_tick = DE4X5_AUTOSENSE_MS;
4496 /* Read the connection type */
4497 p+=2;
4499 /* Block count */
4500 count = *p++;
4502 /* Recursively figure out the info blocks */
4503 if (*p < 128) {
4504 next_tick = dc_infoblock[COMPACT](dev, count, p);
4505 } else {
4506 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4508 if (lp->tcount == count) {
4509 lp->media = NC;
4510 if (lp->media != lp->c_media) {
4511 de4x5_dbg_media(dev);
4512 lp->c_media = lp->media;
4514 lp->media = INIT;
4515 lp->tcount = 0;
4516 lp->tx_enable = false;
4519 return next_tick & ~TIMER_CB;
4523 ** The compact infoblock is only designed for DC21140[A] chips, so
4524 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4526 static int
4527 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4529 struct de4x5_private *lp = netdev_priv(dev);
4530 u_char flags, csr6;
4532 /* Recursively figure out the info blocks */
4533 if (--count > lp->tcount) {
4534 if (*(p+COMPACT_LEN) < 128) {
4535 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4536 } else {
4537 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4541 if ((lp->media == INIT) && (lp->timeout < 0)) {
4542 lp->ibn = COMPACT;
4543 lp->active = 0;
4544 gep_wr(lp->cache.gepc, dev);
4545 lp->infoblock_media = (*p++) & COMPACT_MC;
4546 lp->cache.gep = *p++;
4547 csr6 = *p++;
4548 flags = *p++;
4550 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4551 lp->defMedium = (flags & 0x40) ? -1 : 0;
4552 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4553 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4554 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4555 lp->useMII = false;
4557 de4x5_switch_mac_port(dev);
4560 return dc21140m_autoconf(dev);
4564 ** This block describes non MII media for the DC21140[A] only.
4566 static int
4567 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4569 struct de4x5_private *lp = netdev_priv(dev);
4570 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4572 /* Recursively figure out the info blocks */
4573 if (--count > lp->tcount) {
4574 if (*(p+len) < 128) {
4575 return dc_infoblock[COMPACT](dev, count, p+len);
4576 } else {
4577 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4581 if ((lp->media == INIT) && (lp->timeout < 0)) {
4582 lp->ibn = 0;
4583 lp->active = 0;
4584 gep_wr(lp->cache.gepc, dev);
4585 p+=2;
4586 lp->infoblock_media = (*p++) & BLOCK0_MC;
4587 lp->cache.gep = *p++;
4588 csr6 = *p++;
4589 flags = *p++;
4591 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4592 lp->defMedium = (flags & 0x40) ? -1 : 0;
4593 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4594 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4595 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4596 lp->useMII = false;
4598 de4x5_switch_mac_port(dev);
4601 return dc21140m_autoconf(dev);
4604 /* These functions are under construction! */
4606 static int
4607 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4609 struct de4x5_private *lp = netdev_priv(dev);
4610 u_char len = (*p & BLOCK_LEN)+1;
4612 /* Recursively figure out the info blocks */
4613 if (--count > lp->tcount) {
4614 if (*(p+len) < 128) {
4615 return dc_infoblock[COMPACT](dev, count, p+len);
4616 } else {
4617 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4621 p += 2;
4622 if (lp->state == INITIALISED) {
4623 lp->ibn = 1;
4624 lp->active = *p++;
4625 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4626 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4627 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4628 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4629 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4630 lp->phy[lp->active].ttm = get_unaligned_le16(p);
4631 return 0;
4632 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4633 lp->ibn = 1;
4634 lp->active = *p;
4635 lp->infoblock_csr6 = OMR_MII_100;
4636 lp->useMII = true;
4637 lp->infoblock_media = ANS;
4639 de4x5_switch_mac_port(dev);
4642 return dc21140m_autoconf(dev);
4645 static int
4646 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4648 struct de4x5_private *lp = netdev_priv(dev);
4649 u_char len = (*p & BLOCK_LEN)+1;
4651 /* Recursively figure out the info blocks */
4652 if (--count > lp->tcount) {
4653 if (*(p+len) < 128) {
4654 return dc_infoblock[COMPACT](dev, count, p+len);
4655 } else {
4656 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4660 if ((lp->media == INIT) && (lp->timeout < 0)) {
4661 lp->ibn = 2;
4662 lp->active = 0;
4663 p += 2;
4664 lp->infoblock_media = (*p) & MEDIA_CODE;
4666 if ((*p++) & EXT_FIELD) {
4667 lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4668 lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4669 lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4670 } else {
4671 lp->cache.csr13 = CSR13;
4672 lp->cache.csr14 = CSR14;
4673 lp->cache.csr15 = CSR15;
4675 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4676 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16);
4677 lp->infoblock_csr6 = OMR_SIA;
4678 lp->useMII = false;
4680 de4x5_switch_mac_port(dev);
4683 return dc2114x_autoconf(dev);
4686 static int
4687 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4689 struct de4x5_private *lp = netdev_priv(dev);
4690 u_char len = (*p & BLOCK_LEN)+1;
4692 /* Recursively figure out the info blocks */
4693 if (--count > lp->tcount) {
4694 if (*(p+len) < 128) {
4695 return dc_infoblock[COMPACT](dev, count, p+len);
4696 } else {
4697 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4701 p += 2;
4702 if (lp->state == INITIALISED) {
4703 lp->ibn = 3;
4704 lp->active = *p++;
4705 if (MOTO_SROM_BUG) lp->active = 0;
4706 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4707 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4708 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4709 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4710 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4711 lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4712 lp->phy[lp->active].mci = *p;
4713 return 0;
4714 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4715 lp->ibn = 3;
4716 lp->active = *p;
4717 if (MOTO_SROM_BUG) lp->active = 0;
4718 lp->infoblock_csr6 = OMR_MII_100;
4719 lp->useMII = true;
4720 lp->infoblock_media = ANS;
4722 de4x5_switch_mac_port(dev);
4725 return dc2114x_autoconf(dev);
4728 static int
4729 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4731 struct de4x5_private *lp = netdev_priv(dev);
4732 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4734 /* Recursively figure out the info blocks */
4735 if (--count > lp->tcount) {
4736 if (*(p+len) < 128) {
4737 return dc_infoblock[COMPACT](dev, count, p+len);
4738 } else {
4739 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4743 if ((lp->media == INIT) && (lp->timeout < 0)) {
4744 lp->ibn = 4;
4745 lp->active = 0;
4746 p+=2;
4747 lp->infoblock_media = (*p++) & MEDIA_CODE;
4748 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4749 lp->cache.csr14 = CSR14;
4750 lp->cache.csr15 = CSR15;
4751 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4752 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4753 csr6 = *p++;
4754 flags = *p++;
4756 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4757 lp->defMedium = (flags & 0x40) ? -1 : 0;
4758 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4759 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4760 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4761 lp->useMII = false;
4763 de4x5_switch_mac_port(dev);
4766 return dc2114x_autoconf(dev);
4770 ** This block type provides information for resetting external devices
4771 ** (chips) through the General Purpose Register.
4773 static int
4774 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4776 struct de4x5_private *lp = netdev_priv(dev);
4777 u_char len = (*p & BLOCK_LEN)+1;
4779 /* Recursively figure out the info blocks */
4780 if (--count > lp->tcount) {
4781 if (*(p+len) < 128) {
4782 return dc_infoblock[COMPACT](dev, count, p+len);
4783 } else {
4784 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4788 /* Must be initializing to run this code */
4789 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4790 p+=2;
4791 lp->rst = p;
4792 srom_exec(dev, lp->rst);
4795 return DE4X5_AUTOSENSE_MS;
4799 ** MII Read/Write
4802 static int
4803 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4805 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4806 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4807 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4808 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4809 mii_address(phyreg, ioaddr); /* PHY Register to read */
4810 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4812 return mii_rdata(ioaddr); /* Read data */
4815 static void
4816 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4818 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4819 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4820 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4821 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4822 mii_address(phyreg, ioaddr); /* PHY Register to write */
4823 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4824 data = mii_swap(data, 16); /* Swap data bit ordering */
4825 mii_wdata(data, 16, ioaddr); /* Write data */
4828 static int
4829 mii_rdata(u_long ioaddr)
4831 int i;
4832 s32 tmp = 0;
4834 for (i=0; i<16; i++) {
4835 tmp <<= 1;
4836 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4839 return tmp;
4842 static void
4843 mii_wdata(int data, int len, u_long ioaddr)
4845 int i;
4847 for (i=0; i<len; i++) {
4848 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4849 data >>= 1;
4853 static void
4854 mii_address(u_char addr, u_long ioaddr)
4856 int i;
4858 addr = mii_swap(addr, 5);
4859 for (i=0; i<5; i++) {
4860 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4861 addr >>= 1;
4865 static void
4866 mii_ta(u_long rw, u_long ioaddr)
4868 if (rw == MII_STWR) {
4869 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4870 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4871 } else {
4872 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4876 static int
4877 mii_swap(int data, int len)
4879 int i, tmp = 0;
4881 for (i=0; i<len; i++) {
4882 tmp <<= 1;
4883 tmp |= (data & 1);
4884 data >>= 1;
4887 return tmp;
4890 static void
4891 sendto_mii(u32 command, int data, u_long ioaddr)
4893 u32 j;
4895 j = (data & 1) << 17;
4896 outl(command | j, ioaddr);
4897 udelay(1);
4898 outl(command | MII_MDC | j, ioaddr);
4899 udelay(1);
4902 static int
4903 getfrom_mii(u32 command, u_long ioaddr)
4905 outl(command, ioaddr);
4906 udelay(1);
4907 outl(command | MII_MDC, ioaddr);
4908 udelay(1);
4910 return (inl(ioaddr) >> 19) & 1;
4914 ** Here's 3 ways to calculate the OUI from the ID registers.
4916 static int
4917 mii_get_oui(u_char phyaddr, u_long ioaddr)
4920 union {
4921 u_short reg;
4922 u_char breg[2];
4923 } a;
4924 int i, r2, r3, ret=0;*/
4925 int r2, r3;
4927 /* Read r2 and r3 */
4928 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4929 r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4930 /* SEEQ and Cypress way * /
4931 / * Shuffle r2 and r3 * /
4932 a.reg=0;
4933 r3 = ((r3>>10)|(r2<<6))&0x0ff;
4934 r2 = ((r2>>2)&0x3fff);
4936 / * Bit reverse r3 * /
4937 for (i=0;i<8;i++) {
4938 ret<<=1;
4939 ret |= (r3&1);
4940 r3>>=1;
4943 / * Bit reverse r2 * /
4944 for (i=0;i<16;i++) {
4945 a.reg<<=1;
4946 a.reg |= (r2&1);
4947 r2>>=1;
4950 / * Swap r2 bytes * /
4951 i=a.breg[0];
4952 a.breg[0]=a.breg[1];
4953 a.breg[1]=i;
4955 return (a.reg<<8)|ret; */ /* SEEQ and Cypress way */
4956 /* return (r2<<6)|(u_int)(r3>>10); */ /* NATIONAL and BROADCOM way */
4957 return r2; /* (I did it) My way */
4961 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4963 static int
4964 mii_get_phy(struct net_device *dev)
4966 struct de4x5_private *lp = netdev_priv(dev);
4967 u_long iobase = dev->base_addr;
4968 int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4969 int id;
4971 lp->active = 0;
4972 lp->useMII = true;
4974 /* Search the MII address space for possible PHY devices */
4975 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4976 lp->phy[lp->active].addr = i;
4977 if (i==0) n++; /* Count cycles */
4978 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4979 id = mii_get_oui(i, DE4X5_MII);
4980 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
4981 for (j=0; j<limit; j++) { /* Search PHY table */
4982 if (id != phy_info[j].id) continue; /* ID match? */
4983 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4984 if (k < DE4X5_MAX_PHY) {
4985 memcpy((char *)&lp->phy[k],
4986 (char *)&phy_info[j], sizeof(struct phy_table));
4987 lp->phy[k].addr = i;
4988 lp->mii_cnt++;
4989 lp->active++;
4990 } else {
4991 goto purgatory; /* Stop the search */
4993 break;
4995 if ((j == limit) && (i < DE4X5_MAX_MII)) {
4996 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4997 lp->phy[k].addr = i;
4998 lp->phy[k].id = id;
4999 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
5000 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5001 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5002 lp->mii_cnt++;
5003 lp->active++;
5004 printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5005 j = de4x5_debug;
5006 de4x5_debug |= DEBUG_MII;
5007 de4x5_dbg_mii(dev, k);
5008 de4x5_debug = j;
5009 printk("\n");
5012 purgatory:
5013 lp->active = 0;
5014 if (lp->phy[0].id) { /* Reset the PHY devices */
5015 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5016 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5017 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5019 de4x5_dbg_mii(dev, k);
5022 if (!lp->mii_cnt) lp->useMII = false;
5024 return lp->mii_cnt;
5027 static char *
5028 build_setup_frame(struct net_device *dev, int mode)
5030 struct de4x5_private *lp = netdev_priv(dev);
5031 int i;
5032 char *pa = lp->setup_frame;
5034 /* Initialise the setup frame */
5035 if (mode == ALL) {
5036 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5039 if (lp->setup_f == HASH_PERF) {
5040 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5041 *(pa + i) = dev->dev_addr[i]; /* Host address */
5042 if (i & 0x01) pa += 2;
5044 *(lp->setup_frame + (DE4X5_HASH_TABLE_LEN >> 3) - 3) = 0x80;
5045 } else {
5046 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5047 *(pa + (i&1)) = dev->dev_addr[i];
5048 if (i & 0x01) pa += 4;
5050 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5051 *(pa + (i&1)) = (char) 0xff;
5052 if (i & 0x01) pa += 4;
5056 return pa; /* Points to the next entry */
5059 static void
5060 disable_ast(struct net_device *dev)
5062 struct de4x5_private *lp = netdev_priv(dev);
5063 del_timer_sync(&lp->timer);
5066 static long
5067 de4x5_switch_mac_port(struct net_device *dev)
5069 struct de4x5_private *lp = netdev_priv(dev);
5070 u_long iobase = dev->base_addr;
5071 s32 omr;
5073 STOP_DE4X5;
5075 /* Assert the OMR_PS bit in CSR6 */
5076 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5077 OMR_FDX));
5078 omr |= lp->infoblock_csr6;
5079 if (omr & OMR_PS) omr |= OMR_HBD;
5080 outl(omr, DE4X5_OMR);
5082 /* Soft Reset */
5083 RESET_DE4X5;
5085 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5086 if (lp->chipset == DC21140) {
5087 gep_wr(lp->cache.gepc, dev);
5088 gep_wr(lp->cache.gep, dev);
5089 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5090 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5093 /* Restore CSR6 */
5094 outl(omr, DE4X5_OMR);
5096 /* Reset CSR8 */
5097 inl(DE4X5_MFC);
5099 return omr;
5102 static void
5103 gep_wr(s32 data, struct net_device *dev)
5105 struct de4x5_private *lp = netdev_priv(dev);
5106 u_long iobase = dev->base_addr;
5108 if (lp->chipset == DC21140) {
5109 outl(data, DE4X5_GEP);
5110 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5111 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5115 static int
5116 gep_rd(struct net_device *dev)
5118 struct de4x5_private *lp = netdev_priv(dev);
5119 u_long iobase = dev->base_addr;
5121 if (lp->chipset == DC21140) {
5122 return inl(DE4X5_GEP);
5123 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5124 return inl(DE4X5_SIGR) & 0x000fffff;
5127 return 0;
5130 static void
5131 yawn(struct net_device *dev, int state)
5133 struct de4x5_private *lp = netdev_priv(dev);
5134 u_long iobase = dev->base_addr;
5136 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5138 if(lp->bus == EISA) {
5139 switch(state) {
5140 case WAKEUP:
5141 outb(WAKEUP, PCI_CFPM);
5142 mdelay(10);
5143 break;
5145 case SNOOZE:
5146 outb(SNOOZE, PCI_CFPM);
5147 break;
5149 case SLEEP:
5150 outl(0, DE4X5_SICR);
5151 outb(SLEEP, PCI_CFPM);
5152 break;
5154 } else {
5155 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5156 switch(state) {
5157 case WAKEUP:
5158 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5159 mdelay(10);
5160 break;
5162 case SNOOZE:
5163 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5164 break;
5166 case SLEEP:
5167 outl(0, DE4X5_SICR);
5168 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5169 break;
5174 static void
5175 de4x5_parse_params(struct net_device *dev)
5177 struct de4x5_private *lp = netdev_priv(dev);
5178 char *p, *q, t;
5180 lp->params.fdx = false;
5181 lp->params.autosense = AUTO;
5183 if (args == NULL) return;
5185 if ((p = strstr(args, dev->name))) {
5186 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5187 t = *q;
5188 *q = '\0';
5190 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5192 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5193 if (strstr(p, "TP_NW")) {
5194 lp->params.autosense = TP_NW;
5195 } else if (strstr(p, "TP")) {
5196 lp->params.autosense = TP;
5197 } else if (strstr(p, "BNC_AUI")) {
5198 lp->params.autosense = BNC;
5199 } else if (strstr(p, "BNC")) {
5200 lp->params.autosense = BNC;
5201 } else if (strstr(p, "AUI")) {
5202 lp->params.autosense = AUI;
5203 } else if (strstr(p, "10Mb")) {
5204 lp->params.autosense = _10Mb;
5205 } else if (strstr(p, "100Mb")) {
5206 lp->params.autosense = _100Mb;
5207 } else if (strstr(p, "AUTO")) {
5208 lp->params.autosense = AUTO;
5211 *q = t;
5215 static void
5216 de4x5_dbg_open(struct net_device *dev)
5218 struct de4x5_private *lp = netdev_priv(dev);
5219 int i;
5221 if (de4x5_debug & DEBUG_OPEN) {
5222 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5223 printk("\tphysical address: %pM\n", dev->dev_addr);
5224 printk("Descriptor head addresses:\n");
5225 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5226 printk("Descriptor addresses:\nRX: ");
5227 for (i=0;i<lp->rxRingSize-1;i++){
5228 if (i < 3) {
5229 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5232 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5233 printk("TX: ");
5234 for (i=0;i<lp->txRingSize-1;i++){
5235 if (i < 3) {
5236 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5239 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5240 printk("Descriptor buffers:\nRX: ");
5241 for (i=0;i<lp->rxRingSize-1;i++){
5242 if (i < 3) {
5243 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5246 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5247 printk("TX: ");
5248 for (i=0;i<lp->txRingSize-1;i++){
5249 if (i < 3) {
5250 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5253 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5254 printk("Ring size:\nRX: %d\nTX: %d\n",
5255 (short)lp->rxRingSize,
5256 (short)lp->txRingSize);
5260 static void
5261 de4x5_dbg_mii(struct net_device *dev, int k)
5263 struct de4x5_private *lp = netdev_priv(dev);
5264 u_long iobase = dev->base_addr;
5266 if (de4x5_debug & DEBUG_MII) {
5267 printk("\nMII device address: %d\n", lp->phy[k].addr);
5268 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5269 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5270 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5271 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5272 if (lp->phy[k].id != BROADCOM_T4) {
5273 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5274 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5276 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5277 if (lp->phy[k].id != BROADCOM_T4) {
5278 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5279 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5280 } else {
5281 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5286 static void
5287 de4x5_dbg_media(struct net_device *dev)
5289 struct de4x5_private *lp = netdev_priv(dev);
5291 if (lp->media != lp->c_media) {
5292 if (de4x5_debug & DEBUG_MEDIA) {
5293 printk("%s: media is %s%s\n", dev->name,
5294 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5295 (lp->media == TP ? "TP" :
5296 (lp->media == ANS ? "TP/Nway" :
5297 (lp->media == BNC ? "BNC" :
5298 (lp->media == AUI ? "AUI" :
5299 (lp->media == BNC_AUI ? "BNC/AUI" :
5300 (lp->media == EXT_SIA ? "EXT SIA" :
5301 (lp->media == _100Mb ? "100Mb/s" :
5302 (lp->media == _10Mb ? "10Mb/s" :
5303 "???"
5304 ))))))))), (lp->fdx?" full duplex.":"."));
5306 lp->c_media = lp->media;
5310 static void
5311 de4x5_dbg_srom(struct de4x5_srom *p)
5313 int i;
5315 if (de4x5_debug & DEBUG_SROM) {
5316 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5317 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5318 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5319 printk("SROM version: %02x\n", (u_char)(p->version));
5320 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5322 printk("Hardware Address: %pM\n", p->ieee_addr);
5323 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5324 for (i=0; i<64; i++) {
5325 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5330 static void
5331 de4x5_dbg_rx(struct sk_buff *skb, int len)
5333 int i, j;
5335 if (de4x5_debug & DEBUG_RX) {
5336 printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5337 skb->data, &skb->data[6],
5338 (u_char)skb->data[12],
5339 (u_char)skb->data[13],
5340 len);
5341 for (j=0; len>0;j+=16, len-=16) {
5342 printk(" %03x: ",j);
5343 for (i=0; i<16 && i<len; i++) {
5344 printk("%02x ",(u_char)skb->data[i+j]);
5346 printk("\n");
5352 ** Perform IOCTL call functions here. Some are privileged operations and the
5353 ** effective uid is checked in those cases. In the normal course of events
5354 ** this function is only used for my testing.
5356 static int
5357 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5359 struct de4x5_private *lp = netdev_priv(dev);
5360 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5361 u_long iobase = dev->base_addr;
5362 int i, j, status = 0;
5363 s32 omr;
5364 union {
5365 u8 addr[144];
5366 u16 sval[72];
5367 u32 lval[36];
5368 } tmp;
5369 u_long flags = 0;
5371 switch(ioc->cmd) {
5372 case DE4X5_GET_HWADDR: /* Get the hardware address */
5373 ioc->len = ETH_ALEN;
5374 for (i=0; i<ETH_ALEN; i++) {
5375 tmp.addr[i] = dev->dev_addr[i];
5377 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5378 break;
5380 case DE4X5_SET_HWADDR: /* Set the hardware address */
5381 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5382 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5383 if (netif_queue_stopped(dev))
5384 return -EBUSY;
5385 netif_stop_queue(dev);
5386 for (i=0; i<ETH_ALEN; i++) {
5387 dev->dev_addr[i] = tmp.addr[i];
5389 build_setup_frame(dev, PHYS_ADDR_ONLY);
5390 /* Set up the descriptor and give ownership to the card */
5391 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5392 SETUP_FRAME_LEN, (struct sk_buff *)1);
5393 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5394 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5395 netif_wake_queue(dev); /* Unlock the TX ring */
5396 break;
5398 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5399 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5400 printk("%s: Boo!\n", dev->name);
5401 break;
5403 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5404 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5405 omr = inl(DE4X5_OMR);
5406 omr |= OMR_PM;
5407 outl(omr, DE4X5_OMR);
5408 break;
5410 case DE4X5_GET_STATS: /* Get the driver statistics */
5412 struct pkt_stats statbuf;
5413 ioc->len = sizeof(statbuf);
5414 spin_lock_irqsave(&lp->lock, flags);
5415 memcpy(&statbuf, &lp->pktStats, ioc->len);
5416 spin_unlock_irqrestore(&lp->lock, flags);
5417 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5418 return -EFAULT;
5419 break;
5421 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5422 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5423 spin_lock_irqsave(&lp->lock, flags);
5424 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5425 spin_unlock_irqrestore(&lp->lock, flags);
5426 break;
5428 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5429 tmp.addr[0] = inl(DE4X5_OMR);
5430 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5431 break;
5433 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5434 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5435 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5436 outl(tmp.addr[0], DE4X5_OMR);
5437 break;
5439 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5440 j = 0;
5441 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5442 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5443 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5444 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5445 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5446 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5447 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5448 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5449 ioc->len = j;
5450 if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5451 return -EFAULT;
5452 break;
5454 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5456 case DE4X5_DUMP:
5457 j = 0;
5458 tmp.addr[j++] = dev->irq;
5459 for (i=0; i<ETH_ALEN; i++) {
5460 tmp.addr[j++] = dev->dev_addr[i];
5462 tmp.addr[j++] = lp->rxRingSize;
5463 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5464 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5466 for (i=0;i<lp->rxRingSize-1;i++){
5467 if (i < 3) {
5468 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5471 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5472 for (i=0;i<lp->txRingSize-1;i++){
5473 if (i < 3) {
5474 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5477 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5479 for (i=0;i<lp->rxRingSize-1;i++){
5480 if (i < 3) {
5481 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5484 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5485 for (i=0;i<lp->txRingSize-1;i++){
5486 if (i < 3) {
5487 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5490 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5492 for (i=0;i<lp->rxRingSize;i++){
5493 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5495 for (i=0;i<lp->txRingSize;i++){
5496 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5499 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5500 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5501 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5502 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5503 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5504 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5505 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5506 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5507 tmp.lval[j>>2] = lp->chipset; j+=4;
5508 if (lp->chipset == DC21140) {
5509 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5510 } else {
5511 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5512 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5513 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5514 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5516 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5517 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5518 tmp.lval[j>>2] = lp->active; j+=4;
5519 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5520 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5521 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5522 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5523 if (lp->phy[lp->active].id != BROADCOM_T4) {
5524 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5525 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5527 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5528 if (lp->phy[lp->active].id != BROADCOM_T4) {
5529 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5530 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5531 } else {
5532 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5536 tmp.addr[j++] = lp->txRingSize;
5537 tmp.addr[j++] = netif_queue_stopped(dev);
5539 ioc->len = j;
5540 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5541 break;
5544 default:
5545 return -EOPNOTSUPP;
5548 return status;
5551 static int __init de4x5_module_init (void)
5553 int err = 0;
5555 #ifdef CONFIG_PCI
5556 err = pci_register_driver(&de4x5_pci_driver);
5557 #endif
5558 #ifdef CONFIG_EISA
5559 err |= eisa_driver_register (&de4x5_eisa_driver);
5560 #endif
5562 return err;
5565 static void __exit de4x5_module_exit (void)
5567 #ifdef CONFIG_PCI
5568 pci_unregister_driver (&de4x5_pci_driver);
5569 #endif
5570 #ifdef CONFIG_EISA
5571 eisa_driver_unregister (&de4x5_eisa_driver);
5572 #endif
5575 module_init (de4x5_module_init);
5576 module_exit (de4x5_module_exit);