1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
4 Copyright 1994, 1995 Digital Equipment Corporation.
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
9 The author may be reached at davies@maniac.ultranet.com.
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
38 DE500 10/100 PCI Fasternet
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
50 So far the driver is known to work with the following cards:
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
82 Up to 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
99 To utilise this ability, you have to do 8 things:
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
108 insmod de4x5 io=0xghh where g = bus number
111 NB: autoprobing for modules is now supported by default. You may just
116 to load all available boards. For a specific board, still use
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
207 autosense to set the media/speed; with the following
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
244 Version Date Description
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
368 Fix type1_infoblock() bug introduced in 0.53, from
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/pci.h>
454 #include <linux/eisa.h>
455 #include <linux/delay.h>
456 #include <linux/init.h>
457 #include <linux/spinlock.h>
458 #include <linux/crc32.h>
459 #include <linux/netdevice.h>
460 #include <linux/etherdevice.h>
461 #include <linux/skbuff.h>
462 #include <linux/time.h>
463 #include <linux/types.h>
464 #include <linux/unistd.h>
465 #include <linux/ctype.h>
466 #include <linux/dma-mapping.h>
467 #include <linux/moduleparam.h>
468 #include <linux/bitops.h>
469 #include <linux/gfp.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <linux/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
482 static const char version
[] =
483 KERN_INFO
"de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
485 #define c_char const char
491 int reset
; /* Hard reset required? */
492 int id
; /* IEEE OUI */
493 int ta
; /* One cycle TA time - 802.3u is confusing here */
494 struct { /* Non autonegotiation (parallel) speed det. */
502 int reset
; /* Hard reset required? */
503 int id
; /* IEEE OUI */
504 int ta
; /* One cycle TA time */
505 struct { /* Non autonegotiation (parallel) speed det. */
510 int addr
; /* MII address for the PHY */
511 u_char
*gep
; /* Start of GEP sequence block in SROM */
512 u_char
*rst
; /* Start of reset sequence in SROM */
513 u_int mc
; /* Media Capabilities */
514 u_int ana
; /* NWay Advertisement */
515 u_int fdx
; /* Full DupleX capabilities for each media */
516 u_int ttm
; /* Transmit Threshold Mode for each media */
517 u_int mci
; /* 21142 MII Connector Interrupt info */
520 #define DE4X5_MAX_PHY 8 /* Allow up to 8 attached PHY devices per board */
523 u_char mc
; /* Media Code */
524 u_char ext
; /* csr13-15 valid when set */
525 int csr13
; /* SIA Connectivity Register */
526 int csr14
; /* SIA TX/RX Register */
527 int csr15
; /* SIA General Register */
528 int gepc
; /* SIA GEP Control Information */
529 int gep
; /* SIA GEP Data */
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
536 static struct phy_table phy_info
[] = {
537 {0, NATIONAL_TX
, 1, {0x19, 0x40, 0x00}}, /* National TX */
538 {1, BROADCOM_T4
, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
539 {0, SEEQ_T4
, 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
540 {0, CYPRESS_T4
, 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
541 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
549 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
554 ** Define special SROM detection cases
556 static c_char enet_det
[][ETH_ALEN
] = {
557 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
569 static c_char srom_repair_info
[][100] = {
570 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
571 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
578 static int de4x5_debug
= DE4X5_DEBUG
;
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug
= (DEBUG_MEDIA
| DEBUG_VERSION
);
585 ** Allow per adapter set up. For modules this is simply a command line
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
589 ** For a compiled in driver, place e.g.
590 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
594 static char *args
= DE4X5_PARM
;
604 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
606 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
609 ** Ethernet PROM defines
611 #define PROBE_LENGTH 32
612 #define ETH_PROM_SIG 0xAA5500FFUL
617 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ 1518 /* Packet + CRC */
619 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
621 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
622 #define PKT_HDR_LEN 14 /* Addresses and data length info */
623 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
630 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
633 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
638 static c_char
*de4x5_signatures
[] = DE4X5_SIGNATURE
;
641 ** Ethernet PROM defines for DC21040
643 #define PROBE_LENGTH 32
644 #define ETH_PROM_SIG 0xAA5500FFUL
649 #define PCI_MAX_BUS_NUM 8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
651 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
659 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
660 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
661 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
662 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
663 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
664 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
666 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
672 #ifndef DEC_ONLY /* See README.de4x5 for using this */
675 static int dec_only
= 1;
679 ** DE4X5 IRQ ENABLE/DISABLE
681 #define ENABLE_IRQs { \
683 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
686 #define DISABLE_IRQs {\
687 imr = inl(DE4X5_IMR);\
689 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
692 #define UNMASK_IRQs {\
693 imr |= lp->irq_mask;\
694 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
698 imr = inl(DE4X5_IMR);\
699 imr &= ~lp->irq_mask;\
700 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
706 #define START_DE4X5 {\
707 omr = inl(DE4X5_OMR);\
708 omr |= OMR_ST | OMR_SR;\
709 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
712 #define STOP_DE4X5 {\
713 omr = inl(DE4X5_OMR);\
714 omr &= ~(OMR_ST|OMR_SR);\
715 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
721 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
726 #define DE4X5_AUTOSENSE_MS 250
732 char sub_vendor_id
[2];
733 char sub_system_id
[2];
738 char num_controllers
;
743 #define SUB_VENDOR_ID 0x500a
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
753 #define NUM_RX_DESC 8 /* Number of RX descriptors */
754 #define NUM_TX_DESC 32 /* Number of TX descriptors */
755 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
756 /* Multiple of 4 for DC21040 */
757 /* Allows 512 byte alignment */
759 volatile __le32 status
;
767 ** The DE4X5 private structure
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
771 increase DE4X5_PKT_STAT_SZ */
774 u_int bins
[DE4X5_PKT_STAT_SZ
]; /* Private stats counters */
778 u_int excessive_collisions
;
780 u_int excessive_underruns
;
781 u_int rx_runt_frames
;
787 struct de4x5_private
{
788 char adapter_name
[80]; /* Adapter name */
789 u_long interrupt
; /* Aligned ISR flag */
790 struct de4x5_desc
*rx_ring
; /* RX descriptor ring */
791 struct de4x5_desc
*tx_ring
; /* TX descriptor ring */
792 struct sk_buff
*tx_skb
[NUM_TX_DESC
]; /* TX skb for freeing when sent */
793 struct sk_buff
*rx_skb
[NUM_RX_DESC
]; /* RX skb's */
794 int rx_new
, rx_old
; /* RX descriptor ring pointers */
795 int tx_new
, tx_old
; /* TX descriptor ring pointers */
796 char setup_frame
[SETUP_FRAME_LEN
]; /* Holds MCA and PA info. */
797 char frame
[64]; /* Min sized packet for loopback*/
798 spinlock_t lock
; /* Adapter specific spinlock */
799 struct net_device_stats stats
; /* Public stats */
800 struct pkt_stats pktStats
; /* Private stats counters */
803 int bus
; /* EISA or PCI */
804 int bus_num
; /* PCI Bus number */
805 int device
; /* Device number on PCI bus */
806 int state
; /* Adapter OPENED or CLOSED */
807 int chipset
; /* DC21040, DC21041 or DC21140 */
808 s32 irq_mask
; /* Interrupt Mask (Enable) bits */
809 s32 irq_en
; /* Summary interrupt bits */
810 int media
; /* Media (eg TP), mode (eg 100B)*/
811 int c_media
; /* Remember the last media conn */
812 bool fdx
; /* media full duplex flag */
813 int linkOK
; /* Link is OK */
814 int autosense
; /* Allow/disallow autosensing */
815 bool tx_enable
; /* Enable descriptor polling */
816 int setup_f
; /* Setup frame filtering type */
817 int local_state
; /* State within a 'media' state */
818 struct mii_phy phy
[DE4X5_MAX_PHY
]; /* List of attached PHY devices */
819 struct sia_phy sia
; /* SIA PHY Information */
820 int active
; /* Index to active PHY device */
821 int mii_cnt
; /* Number of attached PHY's */
822 int timeout
; /* Scheduling counter */
823 struct timer_list timer
; /* Timer info for kernel */
824 int tmp
; /* Temporary global per card */
826 u_long lock
; /* Lock the cache accesses */
827 s32 csr0
; /* Saved Bus Mode Register */
828 s32 csr6
; /* Saved Operating Mode Reg. */
829 s32 csr7
; /* Saved IRQ Mask Register */
830 s32 gep
; /* Saved General Purpose Reg. */
831 s32 gepc
; /* Control info for GEP */
832 s32 csr13
; /* Saved SIA Connectivity Reg. */
833 s32 csr14
; /* Saved SIA TX/RX Register */
834 s32 csr15
; /* Saved SIA General Register */
835 int save_cnt
; /* Flag if state already saved */
836 struct sk_buff_head queue
; /* Save the (re-ordered) skb's */
838 struct de4x5_srom srom
; /* A copy of the SROM */
839 int cfrv
; /* Card CFRV copy */
840 int rx_ovf
; /* Check for 'RX overflow' tag */
841 bool useSROM
; /* For non-DEC card use SROM */
842 bool useMII
; /* Infoblock using the MII */
843 int asBitValid
; /* Autosense bits in GEP? */
844 int asPolarity
; /* 0 => asserted high */
845 int asBit
; /* Autosense bit number in GEP */
846 int defMedium
; /* SROM default medium */
847 int tcount
; /* Last infoblock number */
848 int infoblock_init
; /* Initialised this infoblock? */
849 int infoleaf_offset
; /* SROM infoleaf for controller */
850 s32 infoblock_csr6
; /* csr6 value in SROM infoblock */
851 int infoblock_media
; /* infoblock media */
852 int (*infoleaf_fn
)(struct net_device
*); /* Pointer to infoleaf function */
853 u_char
*rst
; /* Pointer to Type 5 reset info */
854 u_char ibn
; /* Infoblock number */
855 struct parameters params
; /* Command line/ #defined params */
856 struct device
*gendev
; /* Generic device */
857 dma_addr_t dma_rings
; /* DMA handle for rings */
858 int dma_size
; /* Size of the DMA area */
859 char *rx_bufs
; /* rx bufs on alpha, sparc, ... */
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
867 ** o the chipset is the same
868 ** o the bus number is the same and > 0
869 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
878 u_char addr
[ETH_ALEN
];
882 ** The transmit ring full condition is described by the tx_old and tx_new
884 ** tx_old = tx_new Empty ring
885 ** tx_old = tx_new+1 Full ring
886 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 lp->tx_old -lp->tx_new-1)
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
897 static int de4x5_open(struct net_device
*dev
);
898 static netdev_tx_t
de4x5_queue_pkt(struct sk_buff
*skb
,
899 struct net_device
*dev
);
900 static irqreturn_t
de4x5_interrupt(int irq
, void *dev_id
);
901 static int de4x5_close(struct net_device
*dev
);
902 static struct net_device_stats
*de4x5_get_stats(struct net_device
*dev
);
903 static void de4x5_local_stats(struct net_device
*dev
, char *buf
, int pkt_len
);
904 static void set_multicast_list(struct net_device
*dev
);
905 static int de4x5_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
910 static int de4x5_hw_init(struct net_device
*dev
, u_long iobase
, struct device
*gendev
);
911 static int de4x5_init(struct net_device
*dev
);
912 static int de4x5_sw_reset(struct net_device
*dev
);
913 static int de4x5_rx(struct net_device
*dev
);
914 static int de4x5_tx(struct net_device
*dev
);
915 static void de4x5_ast(struct timer_list
*t
);
916 static int de4x5_txur(struct net_device
*dev
);
917 static int de4x5_rx_ovfc(struct net_device
*dev
);
919 static int autoconf_media(struct net_device
*dev
);
920 static void create_packet(struct net_device
*dev
, char *frame
, int len
);
921 static void load_packet(struct net_device
*dev
, char *buf
, u32 flags
, struct sk_buff
*skb
);
922 static int dc21040_autoconf(struct net_device
*dev
);
923 static int dc21041_autoconf(struct net_device
*dev
);
924 static int dc21140m_autoconf(struct net_device
*dev
);
925 static int dc2114x_autoconf(struct net_device
*dev
);
926 static int srom_autoconf(struct net_device
*dev
);
927 static int de4x5_suspect_state(struct net_device
*dev
, int timeout
, int prev_state
, int (*fn
)(struct net_device
*, int), int (*asfn
)(struct net_device
*));
928 static int dc21040_state(struct net_device
*dev
, int csr13
, int csr14
, int csr15
, int timeout
, int next_state
, int suspect_state
, int (*fn
)(struct net_device
*, int));
929 static int test_media(struct net_device
*dev
, s32 irqs
, s32 irq_mask
, s32 csr13
, s32 csr14
, s32 csr15
, s32 msec
);
930 static int test_for_100Mb(struct net_device
*dev
, int msec
);
931 static int wait_for_link(struct net_device
*dev
);
932 static int test_mii_reg(struct net_device
*dev
, int reg
, int mask
, bool pol
, long msec
);
933 static int is_spd_100(struct net_device
*dev
);
934 static int is_100_up(struct net_device
*dev
);
935 static int is_10_up(struct net_device
*dev
);
936 static int is_anc_capable(struct net_device
*dev
);
937 static int ping_media(struct net_device
*dev
, int msec
);
938 static struct sk_buff
*de4x5_alloc_rx_buff(struct net_device
*dev
, int index
, int len
);
939 static void de4x5_free_rx_buffs(struct net_device
*dev
);
940 static void de4x5_free_tx_buffs(struct net_device
*dev
);
941 static void de4x5_save_skbs(struct net_device
*dev
);
942 static void de4x5_rst_desc_ring(struct net_device
*dev
);
943 static void de4x5_cache_state(struct net_device
*dev
, int flag
);
944 static void de4x5_put_cache(struct net_device
*dev
, struct sk_buff
*skb
);
945 static void de4x5_putb_cache(struct net_device
*dev
, struct sk_buff
*skb
);
946 static struct sk_buff
*de4x5_get_cache(struct net_device
*dev
);
947 static void de4x5_setup_intr(struct net_device
*dev
);
948 static void de4x5_init_connection(struct net_device
*dev
);
949 static int de4x5_reset_phy(struct net_device
*dev
);
950 static void reset_init_sia(struct net_device
*dev
, s32 sicr
, s32 strr
, s32 sigr
);
951 static int test_ans(struct net_device
*dev
, s32 irqs
, s32 irq_mask
, s32 msec
);
952 static int test_tp(struct net_device
*dev
, s32 msec
);
953 static int EISA_signature(char *name
, struct device
*device
);
954 static int PCI_signature(char *name
, struct de4x5_private
*lp
);
955 static void DevicePresent(struct net_device
*dev
, u_long iobase
);
956 static void enet_addr_rst(u_long aprom_addr
);
957 static int de4x5_bad_srom(struct de4x5_private
*lp
);
958 static short srom_rd(u_long address
, u_char offset
);
959 static void srom_latch(u_int command
, u_long address
);
960 static void srom_command(u_int command
, u_long address
);
961 static void srom_address(u_int command
, u_long address
, u_char offset
);
962 static short srom_data(u_int command
, u_long address
);
963 /*static void srom_busy(u_int command, u_long address);*/
964 static void sendto_srom(u_int command
, u_long addr
);
965 static int getfrom_srom(u_long addr
);
966 static int srom_map_media(struct net_device
*dev
);
967 static int srom_infoleaf_info(struct net_device
*dev
);
968 static void srom_init(struct net_device
*dev
);
969 static void srom_exec(struct net_device
*dev
, u_char
*p
);
970 static int mii_rd(u_char phyreg
, u_char phyaddr
, u_long ioaddr
);
971 static void mii_wr(int data
, u_char phyreg
, u_char phyaddr
, u_long ioaddr
);
972 static int mii_rdata(u_long ioaddr
);
973 static void mii_wdata(int data
, int len
, u_long ioaddr
);
974 static void mii_ta(u_long rw
, u_long ioaddr
);
975 static int mii_swap(int data
, int len
);
976 static void mii_address(u_char addr
, u_long ioaddr
);
977 static void sendto_mii(u32 command
, int data
, u_long ioaddr
);
978 static int getfrom_mii(u32 command
, u_long ioaddr
);
979 static int mii_get_oui(u_char phyaddr
, u_long ioaddr
);
980 static int mii_get_phy(struct net_device
*dev
);
981 static void SetMulticastFilter(struct net_device
*dev
);
982 static int get_hw_addr(struct net_device
*dev
);
983 static void srom_repair(struct net_device
*dev
, int card
);
984 static int test_bad_enet(struct net_device
*dev
, int status
);
985 static int an_exception(struct de4x5_private
*lp
);
986 static char *build_setup_frame(struct net_device
*dev
, int mode
);
987 static void disable_ast(struct net_device
*dev
);
988 static long de4x5_switch_mac_port(struct net_device
*dev
);
989 static int gep_rd(struct net_device
*dev
);
990 static void gep_wr(s32 data
, struct net_device
*dev
);
991 static void yawn(struct net_device
*dev
, int state
);
992 static void de4x5_parse_params(struct net_device
*dev
);
993 static void de4x5_dbg_open(struct net_device
*dev
);
994 static void de4x5_dbg_mii(struct net_device
*dev
, int k
);
995 static void de4x5_dbg_media(struct net_device
*dev
);
996 static void de4x5_dbg_srom(struct de4x5_srom
*p
);
997 static void de4x5_dbg_rx(struct sk_buff
*skb
, int len
);
998 static int dc21041_infoleaf(struct net_device
*dev
);
999 static int dc21140_infoleaf(struct net_device
*dev
);
1000 static int dc21142_infoleaf(struct net_device
*dev
);
1001 static int dc21143_infoleaf(struct net_device
*dev
);
1002 static int type0_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1003 static int type1_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1004 static int type2_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1005 static int type3_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1006 static int type4_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1007 static int type5_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1008 static int compact_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1011 ** Note now that module autoprobing is allowed under EISA and PCI. The
1012 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1013 ** to "do the right thing".
1016 static int io
=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1018 module_param_hw(io
, int, ioport
, 0);
1019 module_param(de4x5_debug
, int, 0);
1020 module_param(dec_only
, int, 0);
1021 module_param(args
, charp
, 0);
1023 MODULE_PARM_DESC(io
, "de4x5 I/O base address");
1024 MODULE_PARM_DESC(de4x5_debug
, "de4x5 debug mask");
1025 MODULE_PARM_DESC(dec_only
, "de4x5 probe only for Digital boards (0-1)");
1026 MODULE_PARM_DESC(args
, "de4x5 full duplex and media type settings; see de4x5.c for details");
1027 MODULE_LICENSE("GPL");
1030 ** List the SROM infoleaf functions and chipsets
1034 int (*fn
)(struct net_device
*);
1036 static struct InfoLeaf infoleaf_array
[] = {
1037 {DC21041
, dc21041_infoleaf
},
1038 {DC21140
, dc21140_infoleaf
},
1039 {DC21142
, dc21142_infoleaf
},
1040 {DC21143
, dc21143_infoleaf
}
1042 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1045 ** List the SROM info block functions
1047 static int (*dc_infoblock
[])(struct net_device
*dev
, u_char
, u_char
*) = {
1057 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1060 ** Miscellaneous defines...
1062 #define RESET_DE4X5 {\
1066 outl(i | BMR_SWR, DE4X5_BMR);\
1068 outl(i, DE4X5_BMR);\
1070 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1074 #define PHY_HARD_RESET {\
1075 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1076 mdelay(1); /* Assert for 1ms */\
1077 outl(0x00, DE4X5_GEP);\
1078 mdelay(2); /* Wait for 2ms */\
1081 static const struct net_device_ops de4x5_netdev_ops
= {
1082 .ndo_open
= de4x5_open
,
1083 .ndo_stop
= de4x5_close
,
1084 .ndo_start_xmit
= de4x5_queue_pkt
,
1085 .ndo_get_stats
= de4x5_get_stats
,
1086 .ndo_set_rx_mode
= set_multicast_list
,
1087 .ndo_do_ioctl
= de4x5_ioctl
,
1088 .ndo_set_mac_address
= eth_mac_addr
,
1089 .ndo_validate_addr
= eth_validate_addr
,
1094 de4x5_hw_init(struct net_device
*dev
, u_long iobase
, struct device
*gendev
)
1096 char name
[DE4X5_NAME_LENGTH
+ 1];
1097 struct de4x5_private
*lp
= netdev_priv(dev
);
1098 struct pci_dev
*pdev
= NULL
;
1101 dev_set_drvdata(gendev
, dev
);
1103 /* Ensure we're not sleeping */
1104 if (lp
->bus
== EISA
) {
1105 outb(WAKEUP
, PCI_CFPM
);
1107 pdev
= to_pci_dev (gendev
);
1108 pci_write_config_byte(pdev
, PCI_CFDA_PSM
, WAKEUP
);
1114 if ((inl(DE4X5_STS
) & (STS_TS
| STS_RS
)) != 0) {
1115 return -ENXIO
; /* Hardware could not reset */
1119 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1121 lp
->useSROM
= false;
1122 if (lp
->bus
== PCI
) {
1123 PCI_signature(name
, lp
);
1125 EISA_signature(name
, gendev
);
1128 if (*name
== '\0') { /* Not found a board signature */
1132 dev
->base_addr
= iobase
;
1133 printk ("%s: %s at 0x%04lx", dev_name(gendev
), name
, iobase
);
1135 status
= get_hw_addr(dev
);
1136 printk(", h/w address %pM\n", dev
->dev_addr
);
1139 printk(" which has an Ethernet PROM CRC error.\n");
1142 skb_queue_head_init(&lp
->cache
.queue
);
1143 lp
->cache
.gepc
= GEP_INIT
;
1144 lp
->asBit
= GEP_SLNK
;
1145 lp
->asPolarity
= GEP_SLNK
;
1146 lp
->asBitValid
= ~0;
1148 lp
->gendev
= gendev
;
1149 spin_lock_init(&lp
->lock
);
1150 timer_setup(&lp
->timer
, de4x5_ast
, 0);
1151 de4x5_parse_params(dev
);
1154 ** Choose correct autosensing in case someone messed up
1156 lp
->autosense
= lp
->params
.autosense
;
1157 if (lp
->chipset
!= DC21140
) {
1158 if ((lp
->chipset
==DC21040
) && (lp
->params
.autosense
&TP_NW
)) {
1159 lp
->params
.autosense
= TP
;
1161 if ((lp
->chipset
==DC21041
) && (lp
->params
.autosense
&BNC_AUI
)) {
1162 lp
->params
.autosense
= BNC
;
1165 lp
->fdx
= lp
->params
.fdx
;
1166 sprintf(lp
->adapter_name
,"%s (%s)", name
, dev_name(gendev
));
1168 lp
->dma_size
= (NUM_RX_DESC
+ NUM_TX_DESC
) * sizeof(struct de4x5_desc
);
1169 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1170 lp
->dma_size
+= RX_BUFF_SZ
* NUM_RX_DESC
+ DE4X5_ALIGN
;
1172 lp
->rx_ring
= dma_alloc_coherent(gendev
, lp
->dma_size
,
1173 &lp
->dma_rings
, GFP_ATOMIC
);
1174 if (lp
->rx_ring
== NULL
) {
1178 lp
->tx_ring
= lp
->rx_ring
+ NUM_RX_DESC
;
1181 ** Set up the RX descriptor ring (Intels)
1182 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1184 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1185 for (i
=0; i
<NUM_RX_DESC
; i
++) {
1186 lp
->rx_ring
[i
].status
= 0;
1187 lp
->rx_ring
[i
].des1
= cpu_to_le32(RX_BUFF_SZ
);
1188 lp
->rx_ring
[i
].buf
= 0;
1189 lp
->rx_ring
[i
].next
= 0;
1190 lp
->rx_skb
[i
] = (struct sk_buff
*) 1; /* Dummy entry */
1195 dma_addr_t dma_rx_bufs
;
1197 dma_rx_bufs
= lp
->dma_rings
+ (NUM_RX_DESC
+ NUM_TX_DESC
)
1198 * sizeof(struct de4x5_desc
);
1199 dma_rx_bufs
= (dma_rx_bufs
+ DE4X5_ALIGN
) & ~DE4X5_ALIGN
;
1200 lp
->rx_bufs
= (char *)(((long)(lp
->rx_ring
+ NUM_RX_DESC
1201 + NUM_TX_DESC
) + DE4X5_ALIGN
) & ~DE4X5_ALIGN
);
1202 for (i
=0; i
<NUM_RX_DESC
; i
++) {
1203 lp
->rx_ring
[i
].status
= 0;
1204 lp
->rx_ring
[i
].des1
= cpu_to_le32(RX_BUFF_SZ
);
1205 lp
->rx_ring
[i
].buf
=
1206 cpu_to_le32(dma_rx_bufs
+i
*RX_BUFF_SZ
);
1207 lp
->rx_ring
[i
].next
= 0;
1208 lp
->rx_skb
[i
] = (struct sk_buff
*) 1; /* Dummy entry */
1216 lp
->rxRingSize
= NUM_RX_DESC
;
1217 lp
->txRingSize
= NUM_TX_DESC
;
1219 /* Write the end of list marker to the descriptor lists */
1220 lp
->rx_ring
[lp
->rxRingSize
- 1].des1
|= cpu_to_le32(RD_RER
);
1221 lp
->tx_ring
[lp
->txRingSize
- 1].des1
|= cpu_to_le32(TD_TER
);
1223 /* Tell the adapter where the TX/RX rings are located. */
1224 outl(lp
->dma_rings
, DE4X5_RRBA
);
1225 outl(lp
->dma_rings
+ NUM_RX_DESC
* sizeof(struct de4x5_desc
),
1228 /* Initialise the IRQ mask and Enable/Disable */
1229 lp
->irq_mask
= IMR_RIM
| IMR_TIM
| IMR_TUM
| IMR_UNM
;
1230 lp
->irq_en
= IMR_NIM
| IMR_AIM
;
1232 /* Create a loopback packet frame for later media probing */
1233 create_packet(dev
, lp
->frame
, sizeof(lp
->frame
));
1235 /* Check if the RX overflow bug needs testing for */
1236 i
= lp
->cfrv
& 0x000000fe;
1237 if ((lp
->chipset
== DC21140
) && (i
== 0x20)) {
1241 /* Initialise the SROM pointers if possible */
1243 lp
->state
= INITIALISED
;
1244 if (srom_infoleaf_info(dev
)) {
1245 dma_free_coherent (gendev
, lp
->dma_size
,
1246 lp
->rx_ring
, lp
->dma_rings
);
1255 ** Check for an MII interface
1257 if ((lp
->chipset
!= DC21040
) && (lp
->chipset
!= DC21041
)) {
1261 printk(" and requires IRQ%d (provided by %s).\n", dev
->irq
,
1262 ((lp
->bus
== PCI
) ? "PCI BIOS" : "EISA CNFG"));
1265 if (de4x5_debug
& DEBUG_VERSION
) {
1269 /* The DE4X5-specific entries in the device structure. */
1270 SET_NETDEV_DEV(dev
, gendev
);
1271 dev
->netdev_ops
= &de4x5_netdev_ops
;
1274 /* Fill in the generic fields of the device structure. */
1275 if ((status
= register_netdev (dev
))) {
1276 dma_free_coherent (gendev
, lp
->dma_size
,
1277 lp
->rx_ring
, lp
->dma_rings
);
1281 /* Let the adapter sleep to save power */
1289 de4x5_open(struct net_device
*dev
)
1291 struct de4x5_private
*lp
= netdev_priv(dev
);
1292 u_long iobase
= dev
->base_addr
;
1296 /* Allocate the RX buffers */
1297 for (i
=0; i
<lp
->rxRingSize
; i
++) {
1298 if (de4x5_alloc_rx_buff(dev
, i
, 0) == NULL
) {
1299 de4x5_free_rx_buffs(dev
);
1305 ** Wake up the adapter
1310 ** Re-initialize the DE4X5...
1312 status
= de4x5_init(dev
);
1313 spin_lock_init(&lp
->lock
);
1315 de4x5_dbg_open(dev
);
1317 if (request_irq(dev
->irq
, de4x5_interrupt
, IRQF_SHARED
,
1318 lp
->adapter_name
, dev
)) {
1319 printk("de4x5_open(): Requested IRQ%d is busy - attempting FAST/SHARE...", dev
->irq
);
1320 if (request_irq(dev
->irq
, de4x5_interrupt
, IRQF_SHARED
,
1321 lp
->adapter_name
, dev
)) {
1322 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1324 de4x5_free_rx_buffs(dev
);
1325 de4x5_free_tx_buffs(dev
);
1330 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1331 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1335 lp
->interrupt
= UNMASK_INTERRUPTS
;
1336 netif_trans_update(dev
); /* prevent tx timeout */
1340 de4x5_setup_intr(dev
);
1342 if (de4x5_debug
& DEBUG_OPEN
) {
1343 printk("\tsts: 0x%08x\n", inl(DE4X5_STS
));
1344 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR
));
1345 printk("\timr: 0x%08x\n", inl(DE4X5_IMR
));
1346 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR
));
1347 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR
));
1348 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR
));
1349 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR
));
1350 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR
));
1357 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1358 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1359 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1360 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1361 ** to be data corruption problems if it is larger (UDP errors seen from a
1365 de4x5_init(struct net_device
*dev
)
1367 /* Lock out other processes whilst setting up the hardware */
1368 netif_stop_queue(dev
);
1370 de4x5_sw_reset(dev
);
1372 /* Autoconfigure the connected port */
1373 autoconf_media(dev
);
1379 de4x5_sw_reset(struct net_device
*dev
)
1381 struct de4x5_private
*lp
= netdev_priv(dev
);
1382 u_long iobase
= dev
->base_addr
;
1383 int i
, j
, status
= 0;
1386 /* Select the MII or SRL port now and RESET the MAC */
1388 if (lp
->phy
[lp
->active
].id
!= 0) {
1389 lp
->infoblock_csr6
= OMR_SDP
| OMR_PS
| OMR_HBD
;
1391 lp
->infoblock_csr6
= OMR_SDP
| OMR_TTM
;
1393 de4x5_switch_mac_port(dev
);
1397 ** Set the programmable burst length to 8 longwords for all the DC21140
1398 ** Fasternet chips and 4 longwords for all others: DMA errors result
1399 ** without these values. Cache align 16 long.
1401 bmr
= (lp
->chipset
==DC21140
? PBL_8
: PBL_4
) | DESC_SKIP_LEN
| DE4X5_CACHE_ALIGN
;
1402 bmr
|= ((lp
->chipset
& ~0x00ff)==DC2114x
? BMR_RML
: 0);
1403 outl(bmr
, DE4X5_BMR
);
1405 omr
= inl(DE4X5_OMR
) & ~OMR_PR
; /* Turn off promiscuous mode */
1406 if (lp
->chipset
== DC21140
) {
1407 omr
|= (OMR_SDP
| OMR_SB
);
1409 lp
->setup_f
= PERFECT
;
1410 outl(lp
->dma_rings
, DE4X5_RRBA
);
1411 outl(lp
->dma_rings
+ NUM_RX_DESC
* sizeof(struct de4x5_desc
),
1414 lp
->rx_new
= lp
->rx_old
= 0;
1415 lp
->tx_new
= lp
->tx_old
= 0;
1417 for (i
= 0; i
< lp
->rxRingSize
; i
++) {
1418 lp
->rx_ring
[i
].status
= cpu_to_le32(R_OWN
);
1421 for (i
= 0; i
< lp
->txRingSize
; i
++) {
1422 lp
->tx_ring
[i
].status
= cpu_to_le32(0);
1427 /* Build the setup frame depending on filtering mode */
1428 SetMulticastFilter(dev
);
1430 load_packet(dev
, lp
->setup_frame
, PERFECT_F
|TD_SET
|SETUP_FRAME_LEN
, (struct sk_buff
*)1);
1431 outl(omr
|OMR_ST
, DE4X5_OMR
);
1433 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1435 for (j
=0, i
=0;(i
<500) && (j
==0);i
++) { /* Up to 500ms delay */
1437 if ((s32
)le32_to_cpu(lp
->tx_ring
[lp
->tx_new
].status
) >= 0) j
=1;
1439 outl(omr
, DE4X5_OMR
); /* Stop everything! */
1442 printk("%s: Setup frame timed out, status %08x\n", dev
->name
,
1447 lp
->tx_new
= (lp
->tx_new
+ 1) % lp
->txRingSize
;
1448 lp
->tx_old
= lp
->tx_new
;
1454 ** Writes a socket buffer address to the next available transmit descriptor.
1457 de4x5_queue_pkt(struct sk_buff
*skb
, struct net_device
*dev
)
1459 struct de4x5_private
*lp
= netdev_priv(dev
);
1460 u_long iobase
= dev
->base_addr
;
1463 netif_stop_queue(dev
);
1464 if (!lp
->tx_enable
) /* Cannot send for now */
1468 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1469 ** interrupts are lost by delayed descriptor status updates relative to
1470 ** the irq assertion, especially with a busy PCI bus.
1472 spin_lock_irqsave(&lp
->lock
, flags
);
1474 spin_unlock_irqrestore(&lp
->lock
, flags
);
1476 /* Test if cache is already locked - requeue skb if so */
1477 if (test_and_set_bit(0, (void *)&lp
->cache
.lock
) && !lp
->interrupt
)
1480 /* Transmit descriptor ring full or stale skb */
1481 if (netif_queue_stopped(dev
) || (u_long
) lp
->tx_skb
[lp
->tx_new
] > 1) {
1482 if (lp
->interrupt
) {
1483 de4x5_putb_cache(dev
, skb
); /* Requeue the buffer */
1485 de4x5_put_cache(dev
, skb
);
1487 if (de4x5_debug
& DEBUG_TX
) {
1488 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev
->name
, inl(DE4X5_STS
), netif_queue_stopped(dev
), inl(DE4X5_IMR
), inl(DE4X5_OMR
), ((u_long
) lp
->tx_skb
[lp
->tx_new
] > 1) ? "YES" : "NO");
1490 } else if (skb
->len
> 0) {
1491 /* If we already have stuff queued locally, use that first */
1492 if (!skb_queue_empty(&lp
->cache
.queue
) && !lp
->interrupt
) {
1493 de4x5_put_cache(dev
, skb
);
1494 skb
= de4x5_get_cache(dev
);
1497 while (skb
&& !netif_queue_stopped(dev
) &&
1498 (u_long
) lp
->tx_skb
[lp
->tx_new
] <= 1) {
1499 spin_lock_irqsave(&lp
->lock
, flags
);
1500 netif_stop_queue(dev
);
1501 load_packet(dev
, skb
->data
, TD_IC
| TD_LS
| TD_FS
| skb
->len
, skb
);
1502 lp
->stats
.tx_bytes
+= skb
->len
;
1503 outl(POLL_DEMAND
, DE4X5_TPD
);/* Start the TX */
1505 lp
->tx_new
= (lp
->tx_new
+ 1) % lp
->txRingSize
;
1507 if (TX_BUFFS_AVAIL
) {
1508 netif_start_queue(dev
); /* Another pkt may be queued */
1510 skb
= de4x5_get_cache(dev
);
1511 spin_unlock_irqrestore(&lp
->lock
, flags
);
1513 if (skb
) de4x5_putb_cache(dev
, skb
);
1518 return NETDEV_TX_OK
;
1520 dev_kfree_skb_any(skb
);
1521 return NETDEV_TX_OK
;
1525 ** The DE4X5 interrupt handler.
1527 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1528 ** so that the asserted interrupt always has some real data to work with -
1529 ** if these I/O accesses are ever changed to memory accesses, ensure the
1530 ** STS write is read immediately to complete the transaction if the adapter
1531 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1532 ** is high and descriptor status bits cannot be set before the associated
1533 ** interrupt is asserted and this routine entered.
1536 de4x5_interrupt(int irq
, void *dev_id
)
1538 struct net_device
*dev
= dev_id
;
1539 struct de4x5_private
*lp
;
1540 s32 imr
, omr
, sts
, limit
;
1542 unsigned int handled
= 0;
1544 lp
= netdev_priv(dev
);
1545 spin_lock(&lp
->lock
);
1546 iobase
= dev
->base_addr
;
1548 DISABLE_IRQs
; /* Ensure non re-entrancy */
1550 if (test_and_set_bit(MASK_INTERRUPTS
, (void*) &lp
->interrupt
))
1551 printk("%s: Re-entering the interrupt handler.\n", dev
->name
);
1553 synchronize_irq(dev
->irq
);
1555 for (limit
=0; limit
<8; limit
++) {
1556 sts
= inl(DE4X5_STS
); /* Read IRQ status */
1557 outl(sts
, DE4X5_STS
); /* Reset the board interrupts */
1559 if (!(sts
& lp
->irq_mask
)) break;/* All done */
1562 if (sts
& (STS_RI
| STS_RU
)) /* Rx interrupt (packet[s] arrived) */
1565 if (sts
& (STS_TI
| STS_TU
)) /* Tx interrupt (packet sent) */
1568 if (sts
& STS_LNF
) { /* TP Link has failed */
1569 lp
->irq_mask
&= ~IMR_LFM
;
1572 if (sts
& STS_UNF
) { /* Transmit underrun */
1576 if (sts
& STS_SE
) { /* Bus Error */
1578 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1580 spin_unlock(&lp
->lock
);
1585 /* Load the TX ring with any locally stored packets */
1586 if (!test_and_set_bit(0, (void *)&lp
->cache
.lock
)) {
1587 while (!skb_queue_empty(&lp
->cache
.queue
) && !netif_queue_stopped(dev
) && lp
->tx_enable
) {
1588 de4x5_queue_pkt(de4x5_get_cache(dev
), dev
);
1593 lp
->interrupt
= UNMASK_INTERRUPTS
;
1595 spin_unlock(&lp
->lock
);
1597 return IRQ_RETVAL(handled
);
1601 de4x5_rx(struct net_device
*dev
)
1603 struct de4x5_private
*lp
= netdev_priv(dev
);
1604 u_long iobase
= dev
->base_addr
;
1608 for (entry
=lp
->rx_new
; (s32
)le32_to_cpu(lp
->rx_ring
[entry
].status
)>=0;
1610 status
= (s32
)le32_to_cpu(lp
->rx_ring
[entry
].status
);
1613 if (inl(DE4X5_MFC
) & MFC_FOCM
) {
1619 if (status
& RD_FS
) { /* Remember the start of frame */
1623 if (status
& RD_LS
) { /* Valid frame status */
1624 if (lp
->tx_enable
) lp
->linkOK
++;
1625 if (status
& RD_ES
) { /* There was an error. */
1626 lp
->stats
.rx_errors
++; /* Update the error stats. */
1627 if (status
& (RD_RF
| RD_TL
)) lp
->stats
.rx_frame_errors
++;
1628 if (status
& RD_CE
) lp
->stats
.rx_crc_errors
++;
1629 if (status
& RD_OF
) lp
->stats
.rx_fifo_errors
++;
1630 if (status
& RD_TL
) lp
->stats
.rx_length_errors
++;
1631 if (status
& RD_RF
) lp
->pktStats
.rx_runt_frames
++;
1632 if (status
& RD_CS
) lp
->pktStats
.rx_collision
++;
1633 if (status
& RD_DB
) lp
->pktStats
.rx_dribble
++;
1634 if (status
& RD_OF
) lp
->pktStats
.rx_overflow
++;
1635 } else { /* A valid frame received */
1636 struct sk_buff
*skb
;
1637 short pkt_len
= (short)(le32_to_cpu(lp
->rx_ring
[entry
].status
)
1640 if ((skb
= de4x5_alloc_rx_buff(dev
, entry
, pkt_len
)) == NULL
) {
1641 printk("%s: Insufficient memory; nuking packet.\n",
1643 lp
->stats
.rx_dropped
++;
1645 de4x5_dbg_rx(skb
, pkt_len
);
1647 /* Push up the protocol stack */
1648 skb
->protocol
=eth_type_trans(skb
,dev
);
1649 de4x5_local_stats(dev
, skb
->data
, pkt_len
);
1653 lp
->stats
.rx_packets
++;
1654 lp
->stats
.rx_bytes
+= pkt_len
;
1658 /* Change buffer ownership for this frame, back to the adapter */
1659 for (;lp
->rx_old
!=entry
;lp
->rx_old
=(lp
->rx_old
+ 1)%lp
->rxRingSize
) {
1660 lp
->rx_ring
[lp
->rx_old
].status
= cpu_to_le32(R_OWN
);
1663 lp
->rx_ring
[entry
].status
= cpu_to_le32(R_OWN
);
1668 ** Update entry information
1670 lp
->rx_new
= (lp
->rx_new
+ 1) % lp
->rxRingSize
;
1677 de4x5_free_tx_buff(struct de4x5_private
*lp
, int entry
)
1679 dma_unmap_single(lp
->gendev
, le32_to_cpu(lp
->tx_ring
[entry
].buf
),
1680 le32_to_cpu(lp
->tx_ring
[entry
].des1
) & TD_TBS1
,
1682 if ((u_long
) lp
->tx_skb
[entry
] > 1)
1683 dev_kfree_skb_irq(lp
->tx_skb
[entry
]);
1684 lp
->tx_skb
[entry
] = NULL
;
1688 ** Buffer sent - check for TX buffer errors.
1691 de4x5_tx(struct net_device
*dev
)
1693 struct de4x5_private
*lp
= netdev_priv(dev
);
1694 u_long iobase
= dev
->base_addr
;
1698 for (entry
= lp
->tx_old
; entry
!= lp
->tx_new
; entry
= lp
->tx_old
) {
1699 status
= (s32
)le32_to_cpu(lp
->tx_ring
[entry
].status
);
1700 if (status
< 0) { /* Buffer not sent yet */
1702 } else if (status
!= 0x7fffffff) { /* Not setup frame */
1703 if (status
& TD_ES
) { /* An error happened */
1704 lp
->stats
.tx_errors
++;
1705 if (status
& TD_NC
) lp
->stats
.tx_carrier_errors
++;
1706 if (status
& TD_LC
) lp
->stats
.tx_window_errors
++;
1707 if (status
& TD_UF
) lp
->stats
.tx_fifo_errors
++;
1708 if (status
& TD_EC
) lp
->pktStats
.excessive_collisions
++;
1709 if (status
& TD_DE
) lp
->stats
.tx_aborted_errors
++;
1711 if (TX_PKT_PENDING
) {
1712 outl(POLL_DEMAND
, DE4X5_TPD
);/* Restart a stalled TX */
1714 } else { /* Packet sent */
1715 lp
->stats
.tx_packets
++;
1716 if (lp
->tx_enable
) lp
->linkOK
++;
1718 /* Update the collision counter */
1719 lp
->stats
.collisions
+= ((status
& TD_EC
) ? 16 :
1720 ((status
& TD_CC
) >> 3));
1722 /* Free the buffer. */
1723 if (lp
->tx_skb
[entry
] != NULL
)
1724 de4x5_free_tx_buff(lp
, entry
);
1727 /* Update all the pointers */
1728 lp
->tx_old
= (lp
->tx_old
+ 1) % lp
->txRingSize
;
1731 /* Any resources available? */
1732 if (TX_BUFFS_AVAIL
&& netif_queue_stopped(dev
)) {
1734 netif_wake_queue(dev
);
1736 netif_start_queue(dev
);
1743 de4x5_ast(struct timer_list
*t
)
1745 struct de4x5_private
*lp
= from_timer(lp
, t
, timer
);
1746 struct net_device
*dev
= dev_get_drvdata(lp
->gendev
);
1747 int next_tick
= DE4X5_AUTOSENSE_MS
;
1751 next_tick
= srom_autoconf(dev
);
1752 else if (lp
->chipset
== DC21140
)
1753 next_tick
= dc21140m_autoconf(dev
);
1754 else if (lp
->chipset
== DC21041
)
1755 next_tick
= dc21041_autoconf(dev
);
1756 else if (lp
->chipset
== DC21040
)
1757 next_tick
= dc21040_autoconf(dev
);
1760 dt
= (next_tick
* HZ
) / 1000;
1765 mod_timer(&lp
->timer
, jiffies
+ dt
);
1769 de4x5_txur(struct net_device
*dev
)
1771 struct de4x5_private
*lp
= netdev_priv(dev
);
1772 u_long iobase
= dev
->base_addr
;
1775 omr
= inl(DE4X5_OMR
);
1776 if (!(omr
& OMR_SF
) || (lp
->chipset
==DC21041
) || (lp
->chipset
==DC21040
)) {
1777 omr
&= ~(OMR_ST
|OMR_SR
);
1778 outl(omr
, DE4X5_OMR
);
1779 while (inl(DE4X5_STS
) & STS_TS
);
1780 if ((omr
& OMR_TR
) < OMR_TR
) {
1785 outl(omr
| OMR_ST
| OMR_SR
, DE4X5_OMR
);
1792 de4x5_rx_ovfc(struct net_device
*dev
)
1794 struct de4x5_private
*lp
= netdev_priv(dev
);
1795 u_long iobase
= dev
->base_addr
;
1798 omr
= inl(DE4X5_OMR
);
1799 outl(omr
& ~OMR_SR
, DE4X5_OMR
);
1800 while (inl(DE4X5_STS
) & STS_RS
);
1802 for (; (s32
)le32_to_cpu(lp
->rx_ring
[lp
->rx_new
].status
)>=0;) {
1803 lp
->rx_ring
[lp
->rx_new
].status
= cpu_to_le32(R_OWN
);
1804 lp
->rx_new
= (lp
->rx_new
+ 1) % lp
->rxRingSize
;
1807 outl(omr
, DE4X5_OMR
);
1813 de4x5_close(struct net_device
*dev
)
1815 struct de4x5_private
*lp
= netdev_priv(dev
);
1816 u_long iobase
= dev
->base_addr
;
1821 netif_stop_queue(dev
);
1823 if (de4x5_debug
& DEBUG_CLOSE
) {
1824 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1825 dev
->name
, inl(DE4X5_STS
));
1829 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1834 /* Free the associated irq */
1835 free_irq(dev
->irq
, dev
);
1838 /* Free any socket buffers */
1839 de4x5_free_rx_buffs(dev
);
1840 de4x5_free_tx_buffs(dev
);
1842 /* Put the adapter to sleep to save power */
1848 static struct net_device_stats
*
1849 de4x5_get_stats(struct net_device
*dev
)
1851 struct de4x5_private
*lp
= netdev_priv(dev
);
1852 u_long iobase
= dev
->base_addr
;
1854 lp
->stats
.rx_missed_errors
= (int)(inl(DE4X5_MFC
) & (MFC_OVFL
| MFC_CNTR
));
1860 de4x5_local_stats(struct net_device
*dev
, char *buf
, int pkt_len
)
1862 struct de4x5_private
*lp
= netdev_priv(dev
);
1865 for (i
=1; i
<DE4X5_PKT_STAT_SZ
-1; i
++) {
1866 if (pkt_len
< (i
*DE4X5_PKT_BIN_SZ
)) {
1867 lp
->pktStats
.bins
[i
]++;
1868 i
= DE4X5_PKT_STAT_SZ
;
1871 if (is_multicast_ether_addr(buf
)) {
1872 if (is_broadcast_ether_addr(buf
)) {
1873 lp
->pktStats
.broadcast
++;
1875 lp
->pktStats
.multicast
++;
1877 } else if (ether_addr_equal(buf
, dev
->dev_addr
)) {
1878 lp
->pktStats
.unicast
++;
1881 lp
->pktStats
.bins
[0]++; /* Duplicates stats.rx_packets */
1882 if (lp
->pktStats
.bins
[0] == 0) { /* Reset counters */
1883 memset((char *)&lp
->pktStats
, 0, sizeof(lp
->pktStats
));
1888 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1889 ** If the flag is changed on a descriptor that is being read by the hardware,
1890 ** I assume PCI transaction ordering will mean you are either successful or
1891 ** just miss asserting the change to the hardware. Anyway you're messing with
1892 ** a descriptor you don't own, but this shouldn't kill the chip provided
1893 ** the descriptor register is read only to the hardware.
1896 load_packet(struct net_device
*dev
, char *buf
, u32 flags
, struct sk_buff
*skb
)
1898 struct de4x5_private
*lp
= netdev_priv(dev
);
1899 int entry
= (lp
->tx_new
? lp
->tx_new
-1 : lp
->txRingSize
-1);
1900 dma_addr_t buf_dma
= dma_map_single(lp
->gendev
, buf
, flags
& TD_TBS1
, DMA_TO_DEVICE
);
1902 lp
->tx_ring
[lp
->tx_new
].buf
= cpu_to_le32(buf_dma
);
1903 lp
->tx_ring
[lp
->tx_new
].des1
&= cpu_to_le32(TD_TER
);
1904 lp
->tx_ring
[lp
->tx_new
].des1
|= cpu_to_le32(flags
);
1905 lp
->tx_skb
[lp
->tx_new
] = skb
;
1906 lp
->tx_ring
[entry
].des1
&= cpu_to_le32(~TD_IC
);
1909 lp
->tx_ring
[lp
->tx_new
].status
= cpu_to_le32(T_OWN
);
1914 ** Set or clear the multicast filter for this adaptor.
1917 set_multicast_list(struct net_device
*dev
)
1919 struct de4x5_private
*lp
= netdev_priv(dev
);
1920 u_long iobase
= dev
->base_addr
;
1922 /* First, double check that the adapter is open */
1923 if (lp
->state
== OPEN
) {
1924 if (dev
->flags
& IFF_PROMISC
) { /* set promiscuous mode */
1926 omr
= inl(DE4X5_OMR
);
1928 outl(omr
, DE4X5_OMR
);
1930 SetMulticastFilter(dev
);
1931 load_packet(dev
, lp
->setup_frame
, TD_IC
| PERFECT_F
| TD_SET
|
1932 SETUP_FRAME_LEN
, (struct sk_buff
*)1);
1934 lp
->tx_new
= (lp
->tx_new
+ 1) % lp
->txRingSize
;
1935 outl(POLL_DEMAND
, DE4X5_TPD
); /* Start the TX */
1936 netif_trans_update(dev
); /* prevent tx timeout */
1942 ** Calculate the hash code and update the logical address filter
1943 ** from a list of ethernet multicast addresses.
1944 ** Little endian crc one liner from Matt Thomas, DEC.
1947 SetMulticastFilter(struct net_device
*dev
)
1949 struct de4x5_private
*lp
= netdev_priv(dev
);
1950 struct netdev_hw_addr
*ha
;
1951 u_long iobase
= dev
->base_addr
;
1956 unsigned char *addrs
;
1958 omr
= inl(DE4X5_OMR
);
1959 omr
&= ~(OMR_PR
| OMR_PM
);
1960 pa
= build_setup_frame(dev
, ALL
); /* Build the basic frame */
1962 if ((dev
->flags
& IFF_ALLMULTI
) || (netdev_mc_count(dev
) > 14)) {
1963 omr
|= OMR_PM
; /* Pass all multicasts */
1964 } else if (lp
->setup_f
== HASH_PERF
) { /* Hash Filtering */
1965 netdev_for_each_mc_addr(ha
, dev
) {
1966 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1967 hashcode
= crc
& DE4X5_HASH_BITS
; /* hashcode is 9 LSb of CRC */
1969 byte
= hashcode
>> 3; /* bit[3-8] -> byte in filter */
1970 bit
= 1 << (hashcode
& 0x07);/* bit[0-2] -> bit in byte */
1972 byte
<<= 1; /* calc offset into setup frame */
1976 lp
->setup_frame
[byte
] |= bit
;
1978 } else { /* Perfect filtering */
1979 netdev_for_each_mc_addr(ha
, dev
) {
1981 for (i
=0; i
<ETH_ALEN
; i
++) {
1982 *(pa
+ (i
&1)) = *addrs
++;
1983 if (i
& 0x01) pa
+= 4;
1987 outl(omr
, DE4X5_OMR
);
1992 static u_char de4x5_irq
[] = EISA_ALLOWED_IRQ_LIST
;
1994 static int de4x5_eisa_probe(struct device
*gendev
)
1996 struct eisa_device
*edev
;
2002 struct net_device
*dev
;
2003 struct de4x5_private
*lp
;
2005 edev
= to_eisa_device (gendev
);
2006 iobase
= edev
->base_addr
;
2008 if (!request_region (iobase
, DE4X5_EISA_TOTAL_SIZE
, "de4x5"))
2011 if (!request_region (iobase
+ DE4X5_EISA_IO_PORTS
,
2012 DE4X5_EISA_TOTAL_SIZE
, "de4x5")) {
2017 if (!(dev
= alloc_etherdev (sizeof (struct de4x5_private
)))) {
2021 lp
= netdev_priv(dev
);
2023 cfid
= (u32
) inl(PCI_CFID
);
2024 lp
->cfrv
= (u_short
) inl(PCI_CFRV
);
2025 device
= (cfid
>> 8) & 0x00ffff00;
2026 vendor
= (u_short
) cfid
;
2028 /* Read the EISA Configuration Registers */
2029 regval
= inb(EISA_REG0
) & (ER0_INTL
| ER0_INTT
);
2031 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2032 * care about the EISA configuration, and thus doesn't
2033 * configure the PLX bridge properly. Oh well... Simply mimic
2034 * the EISA config file to sort it out. */
2036 /* EISA REG1: Assert DecChip 21040 HW Reset */
2037 outb (ER1_IAM
| 1, EISA_REG1
);
2040 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2041 outb (ER1_IAM
, EISA_REG1
);
2044 /* EISA REG3: R/W Burst Transfer Enable */
2045 outb (ER3_BWE
| ER3_BRE
, EISA_REG3
);
2047 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2048 outb (ER0_BSW
| ER0_BMW
| ER0_EPT
| regval
, EISA_REG0
);
2050 irq
= de4x5_irq
[(regval
>> 1) & 0x03];
2053 device
= ((lp
->cfrv
& CFRV_RN
) < DC2114x_BRK
? DC21142
: DC21143
);
2055 lp
->chipset
= device
;
2058 /* Write the PCI Configuration Registers */
2059 outl(PCI_COMMAND_IO
| PCI_COMMAND_MASTER
, PCI_CFCS
);
2060 outl(0x00006000, PCI_CFLT
);
2061 outl(iobase
, PCI_CBIO
);
2063 DevicePresent(dev
, EISA_APROM
);
2067 if (!(status
= de4x5_hw_init (dev
, iobase
, gendev
))) {
2073 release_region (iobase
+ DE4X5_EISA_IO_PORTS
, DE4X5_EISA_TOTAL_SIZE
);
2075 release_region (iobase
, DE4X5_EISA_TOTAL_SIZE
);
2080 static int de4x5_eisa_remove(struct device
*device
)
2082 struct net_device
*dev
;
2085 dev
= dev_get_drvdata(device
);
2086 iobase
= dev
->base_addr
;
2088 unregister_netdev (dev
);
2090 release_region (iobase
+ DE4X5_EISA_IO_PORTS
, DE4X5_EISA_TOTAL_SIZE
);
2091 release_region (iobase
, DE4X5_EISA_TOTAL_SIZE
);
2096 static const struct eisa_device_id de4x5_eisa_ids
[] = {
2097 { "DEC4250", 0 }, /* 0 is the board name index... */
2100 MODULE_DEVICE_TABLE(eisa
, de4x5_eisa_ids
);
2102 static struct eisa_driver de4x5_eisa_driver
= {
2103 .id_table
= de4x5_eisa_ids
,
2106 .probe
= de4x5_eisa_probe
,
2107 .remove
= de4x5_eisa_remove
,
2110 MODULE_DEVICE_TABLE(eisa
, de4x5_eisa_ids
);
2116 ** This function searches the current bus (which is >0) for a DECchip with an
2117 ** SROM, so that in multiport cards that have one SROM shared between multiple
2118 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2119 ** For single port cards this is a time waster...
2122 srom_search(struct net_device
*dev
, struct pci_dev
*pdev
)
2125 u_short vendor
, status
;
2126 u_int irq
= 0, device
;
2127 u_long iobase
= 0; /* Clear upper 32 bits in Alphas */
2129 struct de4x5_private
*lp
= netdev_priv(dev
);
2130 struct pci_dev
*this_dev
;
2132 list_for_each_entry(this_dev
, &pdev
->bus
->devices
, bus_list
) {
2133 vendor
= this_dev
->vendor
;
2134 device
= this_dev
->device
<< 8;
2135 if (!(is_DC21040
|| is_DC21041
|| is_DC21140
|| is_DC2114x
)) continue;
2137 /* Get the chip configuration revision register */
2138 pb
= this_dev
->bus
->number
;
2140 /* Set the device number information */
2141 lp
->device
= PCI_SLOT(this_dev
->devfn
);
2144 /* Set the chipset information */
2146 device
= ((this_dev
->revision
& CFRV_RN
) < DC2114x_BRK
2147 ? DC21142
: DC21143
);
2149 lp
->chipset
= device
;
2151 /* Get the board I/O address (64 bits on sparc64) */
2152 iobase
= pci_resource_start(this_dev
, 0);
2154 /* Fetch the IRQ to be used */
2155 irq
= this_dev
->irq
;
2156 if ((irq
== 0) || (irq
== 0xff) || ((int)irq
== -1)) continue;
2158 /* Check if I/O accesses are enabled */
2159 pci_read_config_word(this_dev
, PCI_COMMAND
, &status
);
2160 if (!(status
& PCI_COMMAND_IO
)) continue;
2162 /* Search for a valid SROM attached to this DECchip */
2163 DevicePresent(dev
, DE4X5_APROM
);
2164 for (j
=0, i
=0; i
<ETH_ALEN
; i
++) {
2165 j
+= (u_char
) *((u_char
*)&lp
->srom
+ SROM_HWADD
+ i
);
2167 if (j
!= 0 && j
!= 6 * 0xff) {
2168 last
.chipset
= device
;
2171 for (i
=0; i
<ETH_ALEN
; i
++) {
2172 last
.addr
[i
] = (u_char
)*((u_char
*)&lp
->srom
+ SROM_HWADD
+ i
);
2180 ** PCI bus I/O device probe
2181 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2182 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2183 ** enabled by the user first in the set up utility. Hence we just check for
2184 ** enabled features and silently ignore the card if they're not.
2186 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2187 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2188 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2189 ** PC doesn't conform to the PCI standard)!
2191 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2192 ** kernels use the V0.535[n] drivers.
2195 static int de4x5_pci_probe(struct pci_dev
*pdev
,
2196 const struct pci_device_id
*ent
)
2198 u_char pb
, pbus
= 0, dev_num
, dnum
= 0, timer
;
2199 u_short vendor
, status
;
2200 u_int irq
= 0, device
;
2201 u_long iobase
= 0; /* Clear upper 32 bits in Alphas */
2203 struct net_device
*dev
;
2204 struct de4x5_private
*lp
;
2206 dev_num
= PCI_SLOT(pdev
->devfn
);
2207 pb
= pdev
->bus
->number
;
2209 if (io
) { /* probe a single PCI device */
2210 pbus
= (u_short
)(io
>> 8);
2211 dnum
= (u_short
)(io
& 0xff);
2212 if ((pbus
!= pb
) || (dnum
!= dev_num
))
2216 vendor
= pdev
->vendor
;
2217 device
= pdev
->device
<< 8;
2218 if (!(is_DC21040
|| is_DC21041
|| is_DC21140
|| is_DC2114x
))
2221 /* Ok, the device seems to be for us. */
2222 if ((error
= pci_enable_device (pdev
)))
2225 if (!(dev
= alloc_etherdev (sizeof (struct de4x5_private
)))) {
2230 lp
= netdev_priv(dev
);
2234 /* Search for an SROM on this bus */
2235 if (lp
->bus_num
!= pb
) {
2237 srom_search(dev
, pdev
);
2240 /* Get the chip configuration revision register */
2241 lp
->cfrv
= pdev
->revision
;
2243 /* Set the device number information */
2244 lp
->device
= dev_num
;
2247 /* Set the chipset information */
2249 device
= ((lp
->cfrv
& CFRV_RN
) < DC2114x_BRK
? DC21142
: DC21143
);
2251 lp
->chipset
= device
;
2253 /* Get the board I/O address (64 bits on sparc64) */
2254 iobase
= pci_resource_start(pdev
, 0);
2256 /* Fetch the IRQ to be used */
2258 if ((irq
== 0) || (irq
== 0xff) || ((int)irq
== -1)) {
2263 /* Check if I/O accesses and Bus Mastering are enabled */
2264 pci_read_config_word(pdev
, PCI_COMMAND
, &status
);
2266 if (!(status
& PCI_COMMAND_IO
)) {
2267 status
|= PCI_COMMAND_IO
;
2268 pci_write_config_word(pdev
, PCI_COMMAND
, status
);
2269 pci_read_config_word(pdev
, PCI_COMMAND
, &status
);
2271 #endif /* __powerpc__ */
2272 if (!(status
& PCI_COMMAND_IO
)) {
2277 if (!(status
& PCI_COMMAND_MASTER
)) {
2278 status
|= PCI_COMMAND_MASTER
;
2279 pci_write_config_word(pdev
, PCI_COMMAND
, status
);
2280 pci_read_config_word(pdev
, PCI_COMMAND
, &status
);
2282 if (!(status
& PCI_COMMAND_MASTER
)) {
2287 /* Check the latency timer for values >= 0x60 */
2288 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &timer
);
2290 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0x60);
2293 DevicePresent(dev
, DE4X5_APROM
);
2295 if (!request_region (iobase
, DE4X5_PCI_TOTAL_SIZE
, "de4x5")) {
2302 if ((error
= de4x5_hw_init(dev
, iobase
, &pdev
->dev
))) {
2309 release_region (iobase
, DE4X5_PCI_TOTAL_SIZE
);
2313 pci_disable_device (pdev
);
2317 static void de4x5_pci_remove(struct pci_dev
*pdev
)
2319 struct net_device
*dev
;
2322 dev
= pci_get_drvdata(pdev
);
2323 iobase
= dev
->base_addr
;
2325 unregister_netdev (dev
);
2327 release_region (iobase
, DE4X5_PCI_TOTAL_SIZE
);
2328 pci_disable_device (pdev
);
2331 static const struct pci_device_id de4x5_pci_tbl
[] = {
2332 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_TULIP
,
2333 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0 },
2334 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_TULIP_PLUS
,
2335 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 1 },
2336 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_TULIP_FAST
,
2337 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 2 },
2338 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_21142
,
2339 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 3 },
2343 static struct pci_driver de4x5_pci_driver
= {
2345 .id_table
= de4x5_pci_tbl
,
2346 .probe
= de4x5_pci_probe
,
2347 .remove
= de4x5_pci_remove
,
2353 ** Auto configure the media here rather than setting the port at compile
2354 ** time. This routine is called by de4x5_init() and when a loss of media is
2355 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2356 ** [TP] or no recent receive activity) to check whether the user has been
2357 ** sneaky and changed the port on us.
2360 autoconf_media(struct net_device
*dev
)
2362 struct de4x5_private
*lp
= netdev_priv(dev
);
2363 u_long iobase
= dev
->base_addr
;
2367 lp
->c_media
= AUTO
; /* Bogus last media */
2368 inl(DE4X5_MFC
); /* Zero the lost frames counter */
2372 de4x5_ast(&lp
->timer
);
2378 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2379 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2380 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2381 ** The only way to test for that is to place a loopback packet onto the
2382 ** network and watch for errors. Since we're messing with the interrupt mask
2383 ** register, disable the board interrupts and do not allow any more packets to
2384 ** be queued to the hardware. Re-enable everything only when the media is
2386 ** I may have to "age out" locally queued packets so that the higher layer
2387 ** timeouts don't effectively duplicate packets on the network.
2390 dc21040_autoconf(struct net_device
*dev
)
2392 struct de4x5_private
*lp
= netdev_priv(dev
);
2393 u_long iobase
= dev
->base_addr
;
2394 int next_tick
= DE4X5_AUTOSENSE_MS
;
2397 switch (lp
->media
) {
2400 lp
->tx_enable
= false;
2402 de4x5_save_skbs(dev
);
2403 if ((lp
->autosense
== AUTO
) || (lp
->autosense
== TP
)) {
2405 } else if ((lp
->autosense
== BNC
) || (lp
->autosense
== AUI
) || (lp
->autosense
== BNC_AUI
)) {
2406 lp
->media
= BNC_AUI
;
2407 } else if (lp
->autosense
== EXT_SIA
) {
2408 lp
->media
= EXT_SIA
;
2412 lp
->local_state
= 0;
2413 next_tick
= dc21040_autoconf(dev
);
2417 next_tick
= dc21040_state(dev
, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI
,
2418 TP_SUSPECT
, test_tp
);
2422 next_tick
= de4x5_suspect_state(dev
, 1000, TP
, test_tp
, dc21040_autoconf
);
2428 next_tick
= dc21040_state(dev
, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA
,
2429 BNC_AUI_SUSPECT
, ping_media
);
2432 case BNC_AUI_SUSPECT
:
2433 next_tick
= de4x5_suspect_state(dev
, 1000, BNC_AUI
, ping_media
, dc21040_autoconf
);
2437 next_tick
= dc21040_state(dev
, 0x3041, 0x0000, 0x0006, 3000,
2438 NC
, EXT_SIA_SUSPECT
, ping_media
);
2441 case EXT_SIA_SUSPECT
:
2442 next_tick
= de4x5_suspect_state(dev
, 1000, EXT_SIA
, ping_media
, dc21040_autoconf
);
2446 /* default to TP for all */
2447 reset_init_sia(dev
, 0x8f01, 0xffff, 0x0000);
2448 if (lp
->media
!= lp
->c_media
) {
2449 de4x5_dbg_media(dev
);
2450 lp
->c_media
= lp
->media
;
2453 lp
->tx_enable
= false;
2461 dc21040_state(struct net_device
*dev
, int csr13
, int csr14
, int csr15
, int timeout
,
2462 int next_state
, int suspect_state
,
2463 int (*fn
)(struct net_device
*, int))
2465 struct de4x5_private
*lp
= netdev_priv(dev
);
2466 int next_tick
= DE4X5_AUTOSENSE_MS
;
2469 switch (lp
->local_state
) {
2471 reset_init_sia(dev
, csr13
, csr14
, csr15
);
2477 if (!lp
->tx_enable
) {
2478 linkBad
= fn(dev
, timeout
);
2480 next_tick
= linkBad
& ~TIMER_CB
;
2482 if (linkBad
&& (lp
->autosense
== AUTO
)) {
2483 lp
->local_state
= 0;
2484 lp
->media
= next_state
;
2486 de4x5_init_connection(dev
);
2489 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2490 lp
->media
= suspect_state
;
2500 de4x5_suspect_state(struct net_device
*dev
, int timeout
, int prev_state
,
2501 int (*fn
)(struct net_device
*, int),
2502 int (*asfn
)(struct net_device
*))
2504 struct de4x5_private
*lp
= netdev_priv(dev
);
2505 int next_tick
= DE4X5_AUTOSENSE_MS
;
2508 switch (lp
->local_state
) {
2511 lp
->media
= prev_state
;
2514 next_tick
= asfn(dev
);
2519 linkBad
= fn(dev
, timeout
);
2521 next_tick
= linkBad
& ~TIMER_CB
;
2522 } else if (!linkBad
) {
2524 lp
->media
= prev_state
;
2535 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2536 ** before BNC, because the BNC port will indicate activity if it's not
2537 ** terminated correctly. The only way to test for that is to place a loopback
2538 ** packet onto the network and watch for errors. Since we're messing with
2539 ** the interrupt mask register, disable the board interrupts and do not allow
2540 ** any more packets to be queued to the hardware. Re-enable everything only
2541 ** when the media is found.
2544 dc21041_autoconf(struct net_device
*dev
)
2546 struct de4x5_private
*lp
= netdev_priv(dev
);
2547 u_long iobase
= dev
->base_addr
;
2548 s32 sts
, irqs
, irq_mask
, imr
, omr
;
2549 int next_tick
= DE4X5_AUTOSENSE_MS
;
2551 switch (lp
->media
) {
2554 lp
->tx_enable
= false;
2556 de4x5_save_skbs(dev
); /* Save non transmitted skb's */
2557 if ((lp
->autosense
== AUTO
) || (lp
->autosense
== TP_NW
)) {
2558 lp
->media
= TP
; /* On chip auto negotiation is broken */
2559 } else if (lp
->autosense
== TP
) {
2561 } else if (lp
->autosense
== BNC
) {
2563 } else if (lp
->autosense
== AUI
) {
2568 lp
->local_state
= 0;
2569 next_tick
= dc21041_autoconf(dev
);
2573 if (lp
->timeout
< 0) {
2574 omr
= inl(DE4X5_OMR
);/* Set up full duplex for the autonegotiate */
2575 outl(omr
| OMR_FDX
, DE4X5_OMR
);
2577 irqs
= STS_LNF
| STS_LNP
;
2578 irq_mask
= IMR_LFM
| IMR_LPM
;
2579 sts
= test_media(dev
, irqs
, irq_mask
, 0xef01, 0xffff, 0x0008, 2400);
2581 next_tick
= sts
& ~TIMER_CB
;
2583 if (sts
& STS_LNP
) {
2588 next_tick
= dc21041_autoconf(dev
);
2593 if (!lp
->tx_enable
) {
2596 sts
= test_ans(dev
, irqs
, irq_mask
, 3000);
2598 next_tick
= sts
& ~TIMER_CB
;
2600 if (!(sts
& STS_LNP
) && (lp
->autosense
== AUTO
)) {
2602 next_tick
= dc21041_autoconf(dev
);
2604 lp
->local_state
= 1;
2605 de4x5_init_connection(dev
);
2608 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2609 lp
->media
= ANS_SUSPECT
;
2615 next_tick
= de4x5_suspect_state(dev
, 1000, ANS
, test_tp
, dc21041_autoconf
);
2619 if (!lp
->tx_enable
) {
2620 if (lp
->timeout
< 0) {
2621 omr
= inl(DE4X5_OMR
); /* Set up half duplex for TP */
2622 outl(omr
& ~OMR_FDX
, DE4X5_OMR
);
2624 irqs
= STS_LNF
| STS_LNP
;
2625 irq_mask
= IMR_LFM
| IMR_LPM
;
2626 sts
= test_media(dev
,irqs
, irq_mask
, 0xef01, 0xff3f, 0x0008, 2400);
2628 next_tick
= sts
& ~TIMER_CB
;
2630 if (!(sts
& STS_LNP
) && (lp
->autosense
== AUTO
)) {
2631 if (inl(DE4X5_SISR
) & SISR_NRA
) {
2632 lp
->media
= AUI
; /* Non selected port activity */
2636 next_tick
= dc21041_autoconf(dev
);
2638 lp
->local_state
= 1;
2639 de4x5_init_connection(dev
);
2642 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2643 lp
->media
= TP_SUSPECT
;
2649 next_tick
= de4x5_suspect_state(dev
, 1000, TP
, test_tp
, dc21041_autoconf
);
2653 if (!lp
->tx_enable
) {
2654 if (lp
->timeout
< 0) {
2655 omr
= inl(DE4X5_OMR
); /* Set up half duplex for AUI */
2656 outl(omr
& ~OMR_FDX
, DE4X5_OMR
);
2660 sts
= test_media(dev
,irqs
, irq_mask
, 0xef09, 0xf73d, 0x000e, 1000);
2662 next_tick
= sts
& ~TIMER_CB
;
2664 if (!(inl(DE4X5_SISR
) & SISR_SRA
) && (lp
->autosense
== AUTO
)) {
2666 next_tick
= dc21041_autoconf(dev
);
2668 lp
->local_state
= 1;
2669 de4x5_init_connection(dev
);
2672 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2673 lp
->media
= AUI_SUSPECT
;
2679 next_tick
= de4x5_suspect_state(dev
, 1000, AUI
, ping_media
, dc21041_autoconf
);
2683 switch (lp
->local_state
) {
2685 if (lp
->timeout
< 0) {
2686 omr
= inl(DE4X5_OMR
); /* Set up half duplex for BNC */
2687 outl(omr
& ~OMR_FDX
, DE4X5_OMR
);
2691 sts
= test_media(dev
,irqs
, irq_mask
, 0xef09, 0xf73d, 0x0006, 1000);
2693 next_tick
= sts
& ~TIMER_CB
;
2695 lp
->local_state
++; /* Ensure media connected */
2696 next_tick
= dc21041_autoconf(dev
);
2701 if (!lp
->tx_enable
) {
2702 if ((sts
= ping_media(dev
, 3000)) < 0) {
2703 next_tick
= sts
& ~TIMER_CB
;
2706 lp
->local_state
= 0;
2709 de4x5_init_connection(dev
);
2712 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2713 lp
->media
= BNC_SUSPECT
;
2721 next_tick
= de4x5_suspect_state(dev
, 1000, BNC
, ping_media
, dc21041_autoconf
);
2725 omr
= inl(DE4X5_OMR
); /* Set up full duplex for the autonegotiate */
2726 outl(omr
| OMR_FDX
, DE4X5_OMR
);
2727 reset_init_sia(dev
, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2728 if (lp
->media
!= lp
->c_media
) {
2729 de4x5_dbg_media(dev
);
2730 lp
->c_media
= lp
->media
;
2733 lp
->tx_enable
= false;
2741 ** Some autonegotiation chips are broken in that they do not return the
2742 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2743 ** register, except at the first power up negotiation.
2746 dc21140m_autoconf(struct net_device
*dev
)
2748 struct de4x5_private
*lp
= netdev_priv(dev
);
2749 int ana
, anlpa
, cap
, cr
, slnk
, sr
;
2750 int next_tick
= DE4X5_AUTOSENSE_MS
;
2751 u_long imr
, omr
, iobase
= dev
->base_addr
;
2755 if (lp
->timeout
< 0) {
2757 lp
->tx_enable
= false;
2759 de4x5_save_skbs(dev
); /* Save non transmitted skb's */
2761 if ((next_tick
= de4x5_reset_phy(dev
)) < 0) {
2762 next_tick
&= ~TIMER_CB
;
2765 if (srom_map_media(dev
) < 0) {
2769 srom_exec(dev
, lp
->phy
[lp
->active
].gep
);
2770 if (lp
->infoblock_media
== ANS
) {
2771 ana
= lp
->phy
[lp
->active
].ana
| MII_ANA_CSMA
;
2772 mii_wr(ana
, MII_ANA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2775 lp
->tmp
= MII_SR_ASSC
; /* Fake out the MII speed set */
2777 if (lp
->autosense
== _100Mb
) {
2779 } else if (lp
->autosense
== _10Mb
) {
2781 } else if ((lp
->autosense
== AUTO
) &&
2782 ((sr
=is_anc_capable(dev
)) & MII_SR_ANC
)) {
2783 ana
= (((sr
>> 6) & MII_ANA_TAF
) | MII_ANA_CSMA
);
2784 ana
&= (lp
->fdx
? ~0 : ~MII_ANA_FDAM
);
2785 mii_wr(ana
, MII_ANA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2787 } else if (lp
->autosense
== AUTO
) {
2788 lp
->media
= SPD_DET
;
2789 } else if (is_spd_100(dev
) && is_100_up(dev
)) {
2795 lp
->local_state
= 0;
2796 next_tick
= dc21140m_autoconf(dev
);
2801 switch (lp
->local_state
) {
2803 if (lp
->timeout
< 0) {
2804 mii_wr(MII_CR_ASSE
| MII_CR_RAN
, MII_CR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2806 cr
= test_mii_reg(dev
, MII_CR
, MII_CR_RAN
, false, 500);
2808 next_tick
= cr
& ~TIMER_CB
;
2811 lp
->local_state
= 0;
2812 lp
->media
= SPD_DET
;
2816 next_tick
= dc21140m_autoconf(dev
);
2821 if ((sr
=test_mii_reg(dev
, MII_SR
, MII_SR_ASSC
, true, 2000)) < 0) {
2822 next_tick
= sr
& ~TIMER_CB
;
2824 lp
->media
= SPD_DET
;
2825 lp
->local_state
= 0;
2826 if (sr
) { /* Success! */
2827 lp
->tmp
= MII_SR_ASSC
;
2828 anlpa
= mii_rd(MII_ANLPA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2829 ana
= mii_rd(MII_ANA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2830 if (!(anlpa
& MII_ANLPA_RF
) &&
2831 (cap
= anlpa
& MII_ANLPA_TAF
& ana
)) {
2832 if (cap
& MII_ANA_100M
) {
2833 lp
->fdx
= (ana
& anlpa
& MII_ANA_FDAM
& MII_ANA_100M
) != 0;
2835 } else if (cap
& MII_ANA_10M
) {
2836 lp
->fdx
= (ana
& anlpa
& MII_ANA_FDAM
& MII_ANA_10M
) != 0;
2841 } /* Auto Negotiation failed to finish */
2842 next_tick
= dc21140m_autoconf(dev
);
2843 } /* Auto Negotiation failed to start */
2848 case SPD_DET
: /* Choose 10Mb/s or 100Mb/s */
2849 if (lp
->timeout
< 0) {
2850 lp
->tmp
= (lp
->phy
[lp
->active
].id
? MII_SR_LKS
:
2851 (~gep_rd(dev
) & GEP_LNP
));
2854 if ((slnk
= test_for_100Mb(dev
, 6500)) < 0) {
2855 next_tick
= slnk
& ~TIMER_CB
;
2857 if (is_spd_100(dev
) && is_100_up(dev
)) {
2859 } else if ((!is_spd_100(dev
) && (is_10_up(dev
) & lp
->tmp
))) {
2864 next_tick
= dc21140m_autoconf(dev
);
2868 case _100Mb
: /* Set 100Mb/s */
2870 if (!lp
->tx_enable
) {
2872 de4x5_init_connection(dev
);
2874 if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2875 if (!is_100_up(dev
) || (!lp
->useSROM
&& !is_spd_100(dev
))) {
2878 next_tick
= DE4X5_AUTOSENSE_MS
;
2886 case _10Mb
: /* Set 10Mb/s */
2888 if (!lp
->tx_enable
) {
2890 de4x5_init_connection(dev
);
2892 if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2893 if (!is_10_up(dev
) || (!lp
->useSROM
&& is_spd_100(dev
))) {
2896 next_tick
= DE4X5_AUTOSENSE_MS
;
2903 if (lp
->media
!= lp
->c_media
) {
2904 de4x5_dbg_media(dev
);
2905 lp
->c_media
= lp
->media
;
2908 lp
->tx_enable
= false;
2916 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2917 ** changing how I figure out the media - but trying to keep it backwards
2918 ** compatible with the de500-xa and de500-aa.
2919 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2920 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2921 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2923 ** When autonegotiation is working, the ANS part searches the SROM for
2924 ** the highest common speed (TP) link that both can run and if that can
2925 ** be full duplex. That infoblock is executed and then the link speed set.
2927 ** Only _10Mb and _100Mb are tested here.
2930 dc2114x_autoconf(struct net_device
*dev
)
2932 struct de4x5_private
*lp
= netdev_priv(dev
);
2933 u_long iobase
= dev
->base_addr
;
2934 s32 cr
, anlpa
, ana
, cap
, irqs
, irq_mask
, imr
, omr
, slnk
, sr
, sts
;
2935 int next_tick
= DE4X5_AUTOSENSE_MS
;
2937 switch (lp
->media
) {
2939 if (lp
->timeout
< 0) {
2941 lp
->tx_enable
= false;
2944 de4x5_save_skbs(dev
); /* Save non transmitted skb's */
2945 if (lp
->params
.autosense
& ~AUTO
) {
2946 srom_map_media(dev
); /* Fixed media requested */
2947 if (lp
->media
!= lp
->params
.autosense
) {
2955 if ((next_tick
= de4x5_reset_phy(dev
)) < 0) {
2956 next_tick
&= ~TIMER_CB
;
2958 if (lp
->autosense
== _100Mb
) {
2960 } else if (lp
->autosense
== _10Mb
) {
2962 } else if (lp
->autosense
== TP
) {
2964 } else if (lp
->autosense
== BNC
) {
2966 } else if (lp
->autosense
== AUI
) {
2969 lp
->media
= SPD_DET
;
2970 if ((lp
->infoblock_media
== ANS
) &&
2971 ((sr
=is_anc_capable(dev
)) & MII_SR_ANC
)) {
2972 ana
= (((sr
>> 6) & MII_ANA_TAF
) | MII_ANA_CSMA
);
2973 ana
&= (lp
->fdx
? ~0 : ~MII_ANA_FDAM
);
2974 mii_wr(ana
, MII_ANA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2978 lp
->local_state
= 0;
2979 next_tick
= dc2114x_autoconf(dev
);
2984 switch (lp
->local_state
) {
2986 if (lp
->timeout
< 0) {
2987 mii_wr(MII_CR_ASSE
| MII_CR_RAN
, MII_CR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2989 cr
= test_mii_reg(dev
, MII_CR
, MII_CR_RAN
, false, 500);
2991 next_tick
= cr
& ~TIMER_CB
;
2994 lp
->local_state
= 0;
2995 lp
->media
= SPD_DET
;
2999 next_tick
= dc2114x_autoconf(dev
);
3004 sr
= test_mii_reg(dev
, MII_SR
, MII_SR_ASSC
, true, 2000);
3006 next_tick
= sr
& ~TIMER_CB
;
3008 lp
->media
= SPD_DET
;
3009 lp
->local_state
= 0;
3010 if (sr
) { /* Success! */
3011 lp
->tmp
= MII_SR_ASSC
;
3012 anlpa
= mii_rd(MII_ANLPA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3013 ana
= mii_rd(MII_ANA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3014 if (!(anlpa
& MII_ANLPA_RF
) &&
3015 (cap
= anlpa
& MII_ANLPA_TAF
& ana
)) {
3016 if (cap
& MII_ANA_100M
) {
3017 lp
->fdx
= (ana
& anlpa
& MII_ANA_FDAM
& MII_ANA_100M
) != 0;
3019 } else if (cap
& MII_ANA_10M
) {
3020 lp
->fdx
= (ana
& anlpa
& MII_ANA_FDAM
& MII_ANA_10M
) != 0;
3024 } /* Auto Negotiation failed to finish */
3025 next_tick
= dc2114x_autoconf(dev
);
3026 } /* Auto Negotiation failed to start */
3032 if (!lp
->tx_enable
) {
3033 if (lp
->timeout
< 0) {
3034 omr
= inl(DE4X5_OMR
); /* Set up half duplex for AUI */
3035 outl(omr
& ~OMR_FDX
, DE4X5_OMR
);
3039 sts
= test_media(dev
,irqs
, irq_mask
, 0, 0, 0, 1000);
3041 next_tick
= sts
& ~TIMER_CB
;
3043 if (!(inl(DE4X5_SISR
) & SISR_SRA
) && (lp
->autosense
== AUTO
)) {
3045 next_tick
= dc2114x_autoconf(dev
);
3047 lp
->local_state
= 1;
3048 de4x5_init_connection(dev
);
3051 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
3052 lp
->media
= AUI_SUSPECT
;
3058 next_tick
= de4x5_suspect_state(dev
, 1000, AUI
, ping_media
, dc2114x_autoconf
);
3062 switch (lp
->local_state
) {
3064 if (lp
->timeout
< 0) {
3065 omr
= inl(DE4X5_OMR
); /* Set up half duplex for BNC */
3066 outl(omr
& ~OMR_FDX
, DE4X5_OMR
);
3070 sts
= test_media(dev
,irqs
, irq_mask
, 0, 0, 0, 1000);
3072 next_tick
= sts
& ~TIMER_CB
;
3074 lp
->local_state
++; /* Ensure media connected */
3075 next_tick
= dc2114x_autoconf(dev
);
3080 if (!lp
->tx_enable
) {
3081 if ((sts
= ping_media(dev
, 3000)) < 0) {
3082 next_tick
= sts
& ~TIMER_CB
;
3085 lp
->local_state
= 0;
3089 de4x5_init_connection(dev
);
3092 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
3093 lp
->media
= BNC_SUSPECT
;
3101 next_tick
= de4x5_suspect_state(dev
, 1000, BNC
, ping_media
, dc2114x_autoconf
);
3104 case SPD_DET
: /* Choose 10Mb/s or 100Mb/s */
3105 if (srom_map_media(dev
) < 0) {
3110 if (lp
->media
== _100Mb
) {
3111 if ((slnk
= test_for_100Mb(dev
, 6500)) < 0) {
3112 lp
->media
= SPD_DET
;
3113 return slnk
& ~TIMER_CB
;
3116 if (wait_for_link(dev
) < 0) {
3117 lp
->media
= SPD_DET
;
3118 return PDET_LINK_WAIT
;
3121 if (lp
->media
== ANS
) { /* Do MII parallel detection */
3122 if (is_spd_100(dev
)) {
3127 next_tick
= dc2114x_autoconf(dev
);
3128 } else if (((lp
->media
== _100Mb
) && is_100_up(dev
)) ||
3129 (((lp
->media
== _10Mb
) || (lp
->media
== TP
) ||
3130 (lp
->media
== BNC
) || (lp
->media
== AUI
)) &&
3132 next_tick
= dc2114x_autoconf(dev
);
3141 if (!lp
->tx_enable
) {
3143 de4x5_init_connection(dev
);
3145 if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
3146 if (!is_10_up(dev
) || (!lp
->useSROM
&& is_spd_100(dev
))) {
3149 next_tick
= DE4X5_AUTOSENSE_MS
;
3157 if (!lp
->tx_enable
) {
3159 de4x5_init_connection(dev
);
3161 if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
3162 if (!is_100_up(dev
) || (!lp
->useSROM
&& !is_spd_100(dev
))) {
3165 next_tick
= DE4X5_AUTOSENSE_MS
;
3173 printk("Huh?: media:%02x\n", lp
->media
);
3182 srom_autoconf(struct net_device
*dev
)
3184 struct de4x5_private
*lp
= netdev_priv(dev
);
3186 return lp
->infoleaf_fn(dev
);
3190 ** This mapping keeps the original media codes and FDX flag unchanged.
3191 ** While it isn't strictly necessary, it helps me for the moment...
3192 ** The early return avoids a media state / SROM media space clash.
3195 srom_map_media(struct net_device
*dev
)
3197 struct de4x5_private
*lp
= netdev_priv(dev
);
3200 if (lp
->infoblock_media
== lp
->media
)
3203 switch(lp
->infoblock_media
) {
3205 if (!lp
->params
.fdx
) return -1;
3208 if (lp
->params
.fdx
&& !lp
->fdx
) return -1;
3209 if ((lp
->chipset
== DC21140
) || ((lp
->chipset
& ~0x00ff) == DC2114x
)) {
3224 case SROM_100BASETF
:
3225 if (!lp
->params
.fdx
) return -1;
3228 if (lp
->params
.fdx
&& !lp
->fdx
) return -1;
3232 case SROM_100BASET4
:
3236 case SROM_100BASEFF
:
3237 if (!lp
->params
.fdx
) return -1;
3240 if (lp
->params
.fdx
&& !lp
->fdx
) return -1;
3246 lp
->fdx
= lp
->params
.fdx
;
3250 printk("%s: Bad media code [%d] detected in SROM!\n", dev
->name
,
3251 lp
->infoblock_media
);
3259 de4x5_init_connection(struct net_device
*dev
)
3261 struct de4x5_private
*lp
= netdev_priv(dev
);
3262 u_long iobase
= dev
->base_addr
;
3265 if (lp
->media
!= lp
->c_media
) {
3266 de4x5_dbg_media(dev
);
3267 lp
->c_media
= lp
->media
; /* Stop scrolling media messages */
3270 spin_lock_irqsave(&lp
->lock
, flags
);
3271 de4x5_rst_desc_ring(dev
);
3272 de4x5_setup_intr(dev
);
3273 lp
->tx_enable
= true;
3274 spin_unlock_irqrestore(&lp
->lock
, flags
);
3275 outl(POLL_DEMAND
, DE4X5_TPD
);
3277 netif_wake_queue(dev
);
3281 ** General PHY reset function. Some MII devices don't reset correctly
3282 ** since their MII address pins can float at voltages that are dependent
3283 ** on the signal pin use. Do a double reset to ensure a reset.
3286 de4x5_reset_phy(struct net_device
*dev
)
3288 struct de4x5_private
*lp
= netdev_priv(dev
);
3289 u_long iobase
= dev
->base_addr
;
3292 if ((lp
->useSROM
) || (lp
->phy
[lp
->active
].id
)) {
3293 if (lp
->timeout
< 0) {
3295 if (lp
->phy
[lp
->active
].rst
) {
3296 srom_exec(dev
, lp
->phy
[lp
->active
].rst
);
3297 srom_exec(dev
, lp
->phy
[lp
->active
].rst
);
3298 } else if (lp
->rst
) { /* Type 5 infoblock reset */
3299 srom_exec(dev
, lp
->rst
);
3300 srom_exec(dev
, lp
->rst
);
3306 mii_wr(MII_CR_RST
, MII_CR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3310 next_tick
= test_mii_reg(dev
, MII_CR
, MII_CR_RST
, false, 500);
3312 } else if (lp
->chipset
== DC21140
) {
3320 test_media(struct net_device
*dev
, s32 irqs
, s32 irq_mask
, s32 csr13
, s32 csr14
, s32 csr15
, s32 msec
)
3322 struct de4x5_private
*lp
= netdev_priv(dev
);
3323 u_long iobase
= dev
->base_addr
;
3326 if (lp
->timeout
< 0) {
3327 lp
->timeout
= msec
/100;
3328 if (!lp
->useSROM
) { /* Already done if by SROM, else dc2104[01] */
3329 reset_init_sia(dev
, csr13
, csr14
, csr15
);
3332 /* set up the interrupt mask */
3333 outl(irq_mask
, DE4X5_IMR
);
3335 /* clear all pending interrupts */
3336 sts
= inl(DE4X5_STS
);
3337 outl(sts
, DE4X5_STS
);
3339 /* clear csr12 NRA and SRA bits */
3340 if ((lp
->chipset
== DC21041
) || lp
->useSROM
) {
3341 csr12
= inl(DE4X5_SISR
);
3342 outl(csr12
, DE4X5_SISR
);
3346 sts
= inl(DE4X5_STS
) & ~TIMER_CB
;
3348 if (!(sts
& irqs
) && --lp
->timeout
) {
3349 sts
= 100 | TIMER_CB
;
3358 test_tp(struct net_device
*dev
, s32 msec
)
3360 struct de4x5_private
*lp
= netdev_priv(dev
);
3361 u_long iobase
= dev
->base_addr
;
3364 if (lp
->timeout
< 0) {
3365 lp
->timeout
= msec
/100;
3368 sisr
= (inl(DE4X5_SISR
) & ~TIMER_CB
) & (SISR_LKF
| SISR_NCR
);
3370 if (sisr
&& --lp
->timeout
) {
3371 sisr
= 100 | TIMER_CB
;
3380 ** Samples the 100Mb Link State Signal. The sample interval is important
3381 ** because too fast a rate can give erroneous results and confuse the
3382 ** speed sense algorithm.
3384 #define SAMPLE_INTERVAL 500 /* ms */
3385 #define SAMPLE_DELAY 2000 /* ms */
3387 test_for_100Mb(struct net_device
*dev
, int msec
)
3389 struct de4x5_private
*lp
= netdev_priv(dev
);
3390 int gep
= 0, ret
= ((lp
->chipset
& ~0x00ff)==DC2114x
? -1 :GEP_SLNK
);
3392 if (lp
->timeout
< 0) {
3393 if ((msec
/SAMPLE_INTERVAL
) <= 0) return 0;
3394 if (msec
> SAMPLE_DELAY
) {
3395 lp
->timeout
= (msec
- SAMPLE_DELAY
)/SAMPLE_INTERVAL
;
3396 gep
= SAMPLE_DELAY
| TIMER_CB
;
3399 lp
->timeout
= msec
/SAMPLE_INTERVAL
;
3403 if (lp
->phy
[lp
->active
].id
|| lp
->useSROM
) {
3404 gep
= is_100_up(dev
) | is_spd_100(dev
);
3406 gep
= (~gep_rd(dev
) & (GEP_SLNK
| GEP_LNP
));
3408 if (!(gep
& ret
) && --lp
->timeout
) {
3409 gep
= SAMPLE_INTERVAL
| TIMER_CB
;
3418 wait_for_link(struct net_device
*dev
)
3420 struct de4x5_private
*lp
= netdev_priv(dev
);
3422 if (lp
->timeout
< 0) {
3426 if (lp
->timeout
--) {
3440 test_mii_reg(struct net_device
*dev
, int reg
, int mask
, bool pol
, long msec
)
3442 struct de4x5_private
*lp
= netdev_priv(dev
);
3444 u_long iobase
= dev
->base_addr
;
3446 if (lp
->timeout
< 0) {
3447 lp
->timeout
= msec
/100;
3450 reg
= mii_rd((u_char
)reg
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
) & mask
;
3451 test
= (reg
^ (pol
? ~0 : 0)) & mask
;
3453 if (test
&& --lp
->timeout
) {
3454 reg
= 100 | TIMER_CB
;
3463 is_spd_100(struct net_device
*dev
)
3465 struct de4x5_private
*lp
= netdev_priv(dev
);
3466 u_long iobase
= dev
->base_addr
;
3470 spd
= mii_rd(lp
->phy
[lp
->active
].spd
.reg
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3471 spd
= ~(spd
^ lp
->phy
[lp
->active
].spd
.value
);
3472 spd
&= lp
->phy
[lp
->active
].spd
.mask
;
3473 } else if (!lp
->useSROM
) { /* de500-xa */
3474 spd
= ((~gep_rd(dev
)) & GEP_SLNK
);
3476 if ((lp
->ibn
== 2) || !lp
->asBitValid
)
3477 return (lp
->chipset
== DC21143
) ? (~inl(DE4X5_SISR
)&SISR_LS100
) : 0;
3479 spd
= (lp
->asBitValid
& (lp
->asPolarity
^ (gep_rd(dev
) & lp
->asBit
))) |
3480 (lp
->linkOK
& ~lp
->asBitValid
);
3487 is_100_up(struct net_device
*dev
)
3489 struct de4x5_private
*lp
= netdev_priv(dev
);
3490 u_long iobase
= dev
->base_addr
;
3493 /* Double read for sticky bits & temporary drops */
3494 mii_rd(MII_SR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3495 return mii_rd(MII_SR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
) & MII_SR_LKS
;
3496 } else if (!lp
->useSROM
) { /* de500-xa */
3497 return (~gep_rd(dev
)) & GEP_SLNK
;
3499 if ((lp
->ibn
== 2) || !lp
->asBitValid
)
3500 return (lp
->chipset
== DC21143
) ? (~inl(DE4X5_SISR
)&SISR_LS100
) : 0;
3502 return (lp
->asBitValid
&(lp
->asPolarity
^(gep_rd(dev
)&lp
->asBit
))) |
3503 (lp
->linkOK
& ~lp
->asBitValid
);
3508 is_10_up(struct net_device
*dev
)
3510 struct de4x5_private
*lp
= netdev_priv(dev
);
3511 u_long iobase
= dev
->base_addr
;
3514 /* Double read for sticky bits & temporary drops */
3515 mii_rd(MII_SR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3516 return mii_rd(MII_SR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
) & MII_SR_LKS
;
3517 } else if (!lp
->useSROM
) { /* de500-xa */
3518 return (~gep_rd(dev
)) & GEP_LNP
;
3520 if ((lp
->ibn
== 2) || !lp
->asBitValid
)
3521 return ((lp
->chipset
& ~0x00ff) == DC2114x
) ?
3522 (~inl(DE4X5_SISR
)&SISR_LS10
):
3525 return (lp
->asBitValid
&(lp
->asPolarity
^(gep_rd(dev
)&lp
->asBit
))) |
3526 (lp
->linkOK
& ~lp
->asBitValid
);
3531 is_anc_capable(struct net_device
*dev
)
3533 struct de4x5_private
*lp
= netdev_priv(dev
);
3534 u_long iobase
= dev
->base_addr
;
3536 if (lp
->phy
[lp
->active
].id
&& (!lp
->useSROM
|| lp
->useMII
)) {
3537 return mii_rd(MII_SR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3538 } else if ((lp
->chipset
& ~0x00ff) == DC2114x
) {
3539 return (inl(DE4X5_SISR
) & SISR_LPN
) >> 12;
3546 ** Send a packet onto the media and watch for send errors that indicate the
3547 ** media is bad or unconnected.
3550 ping_media(struct net_device
*dev
, int msec
)
3552 struct de4x5_private
*lp
= netdev_priv(dev
);
3553 u_long iobase
= dev
->base_addr
;
3556 if (lp
->timeout
< 0) {
3557 lp
->timeout
= msec
/100;
3559 lp
->tmp
= lp
->tx_new
; /* Remember the ring position */
3560 load_packet(dev
, lp
->frame
, TD_LS
| TD_FS
| sizeof(lp
->frame
), (struct sk_buff
*)1);
3561 lp
->tx_new
= (lp
->tx_new
+ 1) % lp
->txRingSize
;
3562 outl(POLL_DEMAND
, DE4X5_TPD
);
3565 sisr
= inl(DE4X5_SISR
);
3567 if ((!(sisr
& SISR_NCR
)) &&
3568 ((s32
)le32_to_cpu(lp
->tx_ring
[lp
->tmp
].status
) < 0) &&
3570 sisr
= 100 | TIMER_CB
;
3572 if ((!(sisr
& SISR_NCR
)) &&
3573 !(le32_to_cpu(lp
->tx_ring
[lp
->tmp
].status
) & (T_OWN
| TD_ES
)) &&
3586 ** This function does 2 things: on Intels it kmalloc's another buffer to
3587 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3588 ** into which the packet is copied.
3590 static struct sk_buff
*
3591 de4x5_alloc_rx_buff(struct net_device
*dev
, int index
, int len
)
3593 struct de4x5_private
*lp
= netdev_priv(dev
);
3596 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3597 struct sk_buff
*ret
;
3600 p
= netdev_alloc_skb(dev
, IEEE802_3_SZ
+ DE4X5_ALIGN
+ 2);
3601 if (!p
) return NULL
;
3603 tmp
= virt_to_bus(p
->data
);
3604 i
= ((tmp
+ DE4X5_ALIGN
) & ~DE4X5_ALIGN
) - tmp
;
3606 lp
->rx_ring
[index
].buf
= cpu_to_le32(tmp
+ i
);
3608 ret
= lp
->rx_skb
[index
];
3609 lp
->rx_skb
[index
] = p
;
3611 if ((u_long
) ret
> 1) {
3618 if (lp
->state
!= OPEN
) return (struct sk_buff
*)1; /* Fake out the open */
3620 p
= netdev_alloc_skb(dev
, len
+ 2);
3621 if (!p
) return NULL
;
3623 skb_reserve(p
, 2); /* Align */
3624 if (index
< lp
->rx_old
) { /* Wrapped buffer */
3625 short tlen
= (lp
->rxRingSize
- lp
->rx_old
) * RX_BUFF_SZ
;
3626 skb_put_data(p
, lp
->rx_bufs
+ lp
->rx_old
* RX_BUFF_SZ
, tlen
);
3627 skb_put_data(p
, lp
->rx_bufs
, len
- tlen
);
3628 } else { /* Linear buffer */
3629 skb_put_data(p
, lp
->rx_bufs
+ lp
->rx_old
* RX_BUFF_SZ
, len
);
3637 de4x5_free_rx_buffs(struct net_device
*dev
)
3639 struct de4x5_private
*lp
= netdev_priv(dev
);
3642 for (i
=0; i
<lp
->rxRingSize
; i
++) {
3643 if ((u_long
) lp
->rx_skb
[i
] > 1) {
3644 dev_kfree_skb(lp
->rx_skb
[i
]);
3646 lp
->rx_ring
[i
].status
= 0;
3647 lp
->rx_skb
[i
] = (struct sk_buff
*)1; /* Dummy entry */
3652 de4x5_free_tx_buffs(struct net_device
*dev
)
3654 struct de4x5_private
*lp
= netdev_priv(dev
);
3657 for (i
=0; i
<lp
->txRingSize
; i
++) {
3659 de4x5_free_tx_buff(lp
, i
);
3660 lp
->tx_ring
[i
].status
= 0;
3663 /* Unload the locally queued packets */
3664 __skb_queue_purge(&lp
->cache
.queue
);
3668 ** When a user pulls a connection, the DECchip can end up in a
3669 ** 'running - waiting for end of transmission' state. This means that we
3670 ** have to perform a chip soft reset to ensure that we can synchronize
3671 ** the hardware and software and make any media probes using a loopback
3672 ** packet meaningful.
3675 de4x5_save_skbs(struct net_device
*dev
)
3677 struct de4x5_private
*lp
= netdev_priv(dev
);
3678 u_long iobase
= dev
->base_addr
;
3681 if (!lp
->cache
.save_cnt
) {
3683 de4x5_tx(dev
); /* Flush any sent skb's */
3684 de4x5_free_tx_buffs(dev
);
3685 de4x5_cache_state(dev
, DE4X5_SAVE_STATE
);
3686 de4x5_sw_reset(dev
);
3687 de4x5_cache_state(dev
, DE4X5_RESTORE_STATE
);
3688 lp
->cache
.save_cnt
++;
3694 de4x5_rst_desc_ring(struct net_device
*dev
)
3696 struct de4x5_private
*lp
= netdev_priv(dev
);
3697 u_long iobase
= dev
->base_addr
;
3701 if (lp
->cache
.save_cnt
) {
3703 outl(lp
->dma_rings
, DE4X5_RRBA
);
3704 outl(lp
->dma_rings
+ NUM_RX_DESC
* sizeof(struct de4x5_desc
),
3707 lp
->rx_new
= lp
->rx_old
= 0;
3708 lp
->tx_new
= lp
->tx_old
= 0;
3710 for (i
= 0; i
< lp
->rxRingSize
; i
++) {
3711 lp
->rx_ring
[i
].status
= cpu_to_le32(R_OWN
);
3714 for (i
= 0; i
< lp
->txRingSize
; i
++) {
3715 lp
->tx_ring
[i
].status
= cpu_to_le32(0);
3719 lp
->cache
.save_cnt
--;
3725 de4x5_cache_state(struct net_device
*dev
, int flag
)
3727 struct de4x5_private
*lp
= netdev_priv(dev
);
3728 u_long iobase
= dev
->base_addr
;
3731 case DE4X5_SAVE_STATE
:
3732 lp
->cache
.csr0
= inl(DE4X5_BMR
);
3733 lp
->cache
.csr6
= (inl(DE4X5_OMR
) & ~(OMR_ST
| OMR_SR
));
3734 lp
->cache
.csr7
= inl(DE4X5_IMR
);
3737 case DE4X5_RESTORE_STATE
:
3738 outl(lp
->cache
.csr0
, DE4X5_BMR
);
3739 outl(lp
->cache
.csr6
, DE4X5_OMR
);
3740 outl(lp
->cache
.csr7
, DE4X5_IMR
);
3741 if (lp
->chipset
== DC21140
) {
3742 gep_wr(lp
->cache
.gepc
, dev
);
3743 gep_wr(lp
->cache
.gep
, dev
);
3745 reset_init_sia(dev
, lp
->cache
.csr13
, lp
->cache
.csr14
,
3753 de4x5_put_cache(struct net_device
*dev
, struct sk_buff
*skb
)
3755 struct de4x5_private
*lp
= netdev_priv(dev
);
3757 __skb_queue_tail(&lp
->cache
.queue
, skb
);
3761 de4x5_putb_cache(struct net_device
*dev
, struct sk_buff
*skb
)
3763 struct de4x5_private
*lp
= netdev_priv(dev
);
3765 __skb_queue_head(&lp
->cache
.queue
, skb
);
3768 static struct sk_buff
*
3769 de4x5_get_cache(struct net_device
*dev
)
3771 struct de4x5_private
*lp
= netdev_priv(dev
);
3773 return __skb_dequeue(&lp
->cache
.queue
);
3777 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3778 ** is received and the auto-negotiation status is NWAY OK.
3781 test_ans(struct net_device
*dev
, s32 irqs
, s32 irq_mask
, s32 msec
)
3783 struct de4x5_private
*lp
= netdev_priv(dev
);
3784 u_long iobase
= dev
->base_addr
;
3787 if (lp
->timeout
< 0) {
3788 lp
->timeout
= msec
/100;
3789 outl(irq_mask
, DE4X5_IMR
);
3791 /* clear all pending interrupts */
3792 sts
= inl(DE4X5_STS
);
3793 outl(sts
, DE4X5_STS
);
3796 ans
= inl(DE4X5_SISR
) & SISR_ANS
;
3797 sts
= inl(DE4X5_STS
) & ~TIMER_CB
;
3799 if (!(sts
& irqs
) && (ans
^ ANS_NWOK
) && --lp
->timeout
) {
3800 sts
= 100 | TIMER_CB
;
3809 de4x5_setup_intr(struct net_device
*dev
)
3811 struct de4x5_private
*lp
= netdev_priv(dev
);
3812 u_long iobase
= dev
->base_addr
;
3815 if (inl(DE4X5_OMR
) & OMR_SR
) { /* Only unmask if TX/RX is enabled */
3818 sts
= inl(DE4X5_STS
); /* Reset any pending (stale) interrupts */
3819 outl(sts
, DE4X5_STS
);
3828 reset_init_sia(struct net_device
*dev
, s32 csr13
, s32 csr14
, s32 csr15
)
3830 struct de4x5_private
*lp
= netdev_priv(dev
);
3831 u_long iobase
= dev
->base_addr
;
3836 srom_exec(dev
, lp
->phy
[lp
->active
].rst
);
3837 srom_exec(dev
, lp
->phy
[lp
->active
].gep
);
3838 outl(1, DE4X5_SICR
);
3841 csr15
= lp
->cache
.csr15
;
3842 csr14
= lp
->cache
.csr14
;
3843 csr13
= lp
->cache
.csr13
;
3844 outl(csr15
| lp
->cache
.gepc
, DE4X5_SIGR
);
3845 outl(csr15
| lp
->cache
.gep
, DE4X5_SIGR
);
3848 outl(csr15
, DE4X5_SIGR
);
3850 outl(csr14
, DE4X5_STRR
);
3851 outl(csr13
, DE4X5_SICR
);
3857 ** Create a loopback ethernet packet
3860 create_packet(struct net_device
*dev
, char *frame
, int len
)
3865 for (i
=0; i
<ETH_ALEN
; i
++) { /* Use this source address */
3866 *buf
++ = dev
->dev_addr
[i
];
3868 for (i
=0; i
<ETH_ALEN
; i
++) { /* Use this destination address */
3869 *buf
++ = dev
->dev_addr
[i
];
3872 *buf
++ = 0; /* Packet length (2 bytes) */
3877 ** Look for a particular board name in the EISA configuration space
3880 EISA_signature(char *name
, struct device
*device
)
3882 int i
, status
= 0, siglen
= ARRAY_SIZE(de4x5_signatures
);
3883 struct eisa_device
*edev
;
3886 edev
= to_eisa_device (device
);
3887 i
= edev
->id
.driver_data
;
3889 if (i
>= 0 && i
< siglen
) {
3890 strcpy (name
, de4x5_signatures
[i
]);
3894 return status
; /* return the device name string */
3898 ** Look for a particular board name in the PCI configuration space
3901 PCI_signature(char *name
, struct de4x5_private
*lp
)
3903 int i
, status
= 0, siglen
= ARRAY_SIZE(de4x5_signatures
);
3905 if (lp
->chipset
== DC21040
) {
3906 strcpy(name
, "DE434/5");
3908 } else { /* Search for a DEC name in the SROM */
3909 int tmp
= *((char *)&lp
->srom
+ 19) * 3;
3910 strncpy(name
, (char *)&lp
->srom
+ 26 + tmp
, 8);
3913 for (i
=0; i
<siglen
; i
++) {
3914 if (strstr(name
,de4x5_signatures
[i
])!=NULL
) break;
3919 } else { /* Use chip name to avoid confusion */
3920 strcpy(name
, (((lp
->chipset
== DC21040
) ? "DC21040" :
3921 ((lp
->chipset
== DC21041
) ? "DC21041" :
3922 ((lp
->chipset
== DC21140
) ? "DC21140" :
3923 ((lp
->chipset
== DC21142
) ? "DC21142" :
3924 ((lp
->chipset
== DC21143
) ? "DC21143" : "UNKNOWN"
3927 if (lp
->chipset
!= DC21041
) {
3928 lp
->useSROM
= true; /* card is not recognisably DEC */
3930 } else if ((lp
->chipset
& ~0x00ff) == DC2114x
) {
3938 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3939 ** the DC21040, else read the SROM for the other chips.
3940 ** The SROM may not be present in a multi-MAC card, so first read the
3941 ** MAC address and check for a bad address. If there is a bad one then exit
3942 ** immediately with the prior srom contents intact (the h/w address will
3943 ** be fixed up later).
3946 DevicePresent(struct net_device
*dev
, u_long aprom_addr
)
3949 struct de4x5_private
*lp
= netdev_priv(dev
);
3951 if (lp
->chipset
== DC21040
) {
3952 if (lp
->bus
== EISA
) {
3953 enet_addr_rst(aprom_addr
); /* Reset Ethernet Address ROM Pointer */
3955 outl(0, aprom_addr
); /* Reset Ethernet Address ROM Pointer */
3957 } else { /* Read new srom */
3959 __le16
*p
= (__le16
*)((char *)&lp
->srom
+ SROM_HWADD
);
3960 for (i
=0; i
<(ETH_ALEN
>>1); i
++) {
3961 tmp
= srom_rd(aprom_addr
, (SROM_HWADD
>>1) + i
);
3962 j
+= tmp
; /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3963 *p
= cpu_to_le16(tmp
);
3965 if (j
== 0 || j
== 3 * 0xffff) {
3966 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3970 p
= (__le16
*)&lp
->srom
;
3971 for (i
=0; i
<(sizeof(struct de4x5_srom
)>>1); i
++) {
3972 tmp
= srom_rd(aprom_addr
, i
);
3973 *p
++ = cpu_to_le16(tmp
);
3975 de4x5_dbg_srom(&lp
->srom
);
3980 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
3981 ** pointer correctly (at least on my DE425 EISA card), this routine should do
3982 ** it...from depca.c.
3985 enet_addr_rst(u_long aprom_addr
)
3992 char Sig
[sizeof(u32
) << 1];
3998 dev
.llsig
.a
= ETH_PROM_SIG
;
3999 dev
.llsig
.b
= ETH_PROM_SIG
;
4000 sigLength
= sizeof(u32
) << 1;
4002 for (i
=0,j
=0;j
<sigLength
&& i
<PROBE_LENGTH
+sigLength
-1;i
++) {
4003 data
= inb(aprom_addr
);
4004 if (dev
.Sig
[j
] == data
) { /* track signature */
4006 } else { /* lost signature; begin search again */
4007 if (data
== dev
.Sig
[0]) { /* rare case.... */
4017 ** For the bad status case and no SROM, then add one to the previous
4018 ** address. However, need to add one backwards in case we have 0xff
4019 ** as one or more of the bytes. Only the last 3 bytes should be checked
4020 ** as the first three are invariant - assigned to an organisation.
4023 get_hw_addr(struct net_device
*dev
)
4025 u_long iobase
= dev
->base_addr
;
4026 int broken
, i
, k
, tmp
, status
= 0;
4028 struct de4x5_private
*lp
= netdev_priv(dev
);
4030 broken
= de4x5_bad_srom(lp
);
4032 for (i
=0,k
=0,j
=0;j
<3;j
++) {
4034 if (k
> 0xffff) k
-=0xffff;
4036 if (lp
->bus
== PCI
) {
4037 if (lp
->chipset
== DC21040
) {
4038 while ((tmp
= inl(DE4X5_APROM
)) < 0);
4040 dev
->dev_addr
[i
++] = (u_char
) tmp
;
4041 while ((tmp
= inl(DE4X5_APROM
)) < 0);
4042 k
+= (u_short
) (tmp
<< 8);
4043 dev
->dev_addr
[i
++] = (u_char
) tmp
;
4044 } else if (!broken
) {
4045 dev
->dev_addr
[i
] = (u_char
) lp
->srom
.ieee_addr
[i
]; i
++;
4046 dev
->dev_addr
[i
] = (u_char
) lp
->srom
.ieee_addr
[i
]; i
++;
4047 } else if ((broken
== SMC
) || (broken
== ACCTON
)) {
4048 dev
->dev_addr
[i
] = *((u_char
*)&lp
->srom
+ i
); i
++;
4049 dev
->dev_addr
[i
] = *((u_char
*)&lp
->srom
+ i
); i
++;
4052 k
+= (u_char
) (tmp
= inb(EISA_APROM
));
4053 dev
->dev_addr
[i
++] = (u_char
) tmp
;
4054 k
+= (u_short
) ((tmp
= inb(EISA_APROM
)) << 8);
4055 dev
->dev_addr
[i
++] = (u_char
) tmp
;
4058 if (k
> 0xffff) k
-=0xffff;
4060 if (k
== 0xffff) k
=0;
4062 if (lp
->bus
== PCI
) {
4063 if (lp
->chipset
== DC21040
) {
4064 while ((tmp
= inl(DE4X5_APROM
)) < 0);
4065 chksum
= (u_char
) tmp
;
4066 while ((tmp
= inl(DE4X5_APROM
)) < 0);
4067 chksum
|= (u_short
) (tmp
<< 8);
4068 if ((k
!= chksum
) && (dec_only
)) status
= -1;
4071 chksum
= (u_char
) inb(EISA_APROM
);
4072 chksum
|= (u_short
) (inb(EISA_APROM
) << 8);
4073 if ((k
!= chksum
) && (dec_only
)) status
= -1;
4076 /* If possible, try to fix a broken card - SMC only so far */
4077 srom_repair(dev
, broken
);
4079 #ifdef CONFIG_PPC_PMAC
4081 ** If the address starts with 00 a0, we have to bit-reverse
4082 ** each byte of the address.
4084 if ( machine_is(powermac
) &&
4085 (dev
->dev_addr
[0] == 0) &&
4086 (dev
->dev_addr
[1] == 0xa0) )
4088 for (i
= 0; i
< ETH_ALEN
; ++i
)
4090 int x
= dev
->dev_addr
[i
];
4091 x
= ((x
& 0xf) << 4) + ((x
& 0xf0) >> 4);
4092 x
= ((x
& 0x33) << 2) + ((x
& 0xcc) >> 2);
4093 dev
->dev_addr
[i
] = ((x
& 0x55) << 1) + ((x
& 0xaa) >> 1);
4096 #endif /* CONFIG_PPC_PMAC */
4098 /* Test for a bad enet address */
4099 status
= test_bad_enet(dev
, status
);
4105 ** Test for enet addresses in the first 32 bytes.
4108 de4x5_bad_srom(struct de4x5_private
*lp
)
4112 for (i
= 0; i
< ARRAY_SIZE(enet_det
); i
++) {
4113 if (!memcmp(&lp
->srom
, &enet_det
[i
], 3) &&
4114 !memcmp((char *)&lp
->srom
+0x10, &enet_det
[i
], 3)) {
4117 } else if (i
== 1) {
4128 srom_repair(struct net_device
*dev
, int card
)
4130 struct de4x5_private
*lp
= netdev_priv(dev
);
4134 memset((char *)&lp
->srom
, 0, sizeof(struct de4x5_srom
));
4135 memcpy(lp
->srom
.ieee_addr
, (char *)dev
->dev_addr
, ETH_ALEN
);
4136 memcpy(lp
->srom
.info
, (char *)&srom_repair_info
[SMC
-1], 100);
4143 ** Assume that the irq's do not follow the PCI spec - this is seems
4144 ** to be true so far (2 for 2).
4147 test_bad_enet(struct net_device
*dev
, int status
)
4149 struct de4x5_private
*lp
= netdev_priv(dev
);
4152 for (tmp
=0,i
=0; i
<ETH_ALEN
; i
++) tmp
+= (u_char
)dev
->dev_addr
[i
];
4153 if ((tmp
== 0) || (tmp
== 0x5fa)) {
4154 if ((lp
->chipset
== last
.chipset
) &&
4155 (lp
->bus_num
== last
.bus
) && (lp
->bus_num
> 0)) {
4156 for (i
=0; i
<ETH_ALEN
; i
++) dev
->dev_addr
[i
] = last
.addr
[i
];
4157 for (i
=ETH_ALEN
-1; i
>2; --i
) {
4158 dev
->dev_addr
[i
] += 1;
4159 if (dev
->dev_addr
[i
] != 0) break;
4161 for (i
=0; i
<ETH_ALEN
; i
++) last
.addr
[i
] = dev
->dev_addr
[i
];
4162 if (!an_exception(lp
)) {
4163 dev
->irq
= last
.irq
;
4168 } else if (!status
) {
4169 last
.chipset
= lp
->chipset
;
4170 last
.bus
= lp
->bus_num
;
4171 last
.irq
= dev
->irq
;
4172 for (i
=0; i
<ETH_ALEN
; i
++) last
.addr
[i
] = dev
->dev_addr
[i
];
4179 ** List of board exceptions with correctly wired IRQs
4182 an_exception(struct de4x5_private
*lp
)
4184 if ((*(u_short
*)lp
->srom
.sub_vendor_id
== 0x00c0) &&
4185 (*(u_short
*)lp
->srom
.sub_system_id
== 0x95e0)) {
4196 srom_rd(u_long addr
, u_char offset
)
4198 sendto_srom(SROM_RD
| SROM_SR
, addr
);
4200 srom_latch(SROM_RD
| SROM_SR
| DT_CS
, addr
);
4201 srom_command(SROM_RD
| SROM_SR
| DT_IN
| DT_CS
, addr
);
4202 srom_address(SROM_RD
| SROM_SR
| DT_CS
, addr
, offset
);
4204 return srom_data(SROM_RD
| SROM_SR
| DT_CS
, addr
);
4208 srom_latch(u_int command
, u_long addr
)
4210 sendto_srom(command
, addr
);
4211 sendto_srom(command
| DT_CLK
, addr
);
4212 sendto_srom(command
, addr
);
4216 srom_command(u_int command
, u_long addr
)
4218 srom_latch(command
, addr
);
4219 srom_latch(command
, addr
);
4220 srom_latch((command
& 0x0000ff00) | DT_CS
, addr
);
4224 srom_address(u_int command
, u_long addr
, u_char offset
)
4229 for (i
=0; i
<6; i
++, a
<<= 1) {
4230 srom_latch(command
| ((a
& 0x80) ? DT_IN
: 0), addr
);
4234 i
= (getfrom_srom(addr
) >> 3) & 0x01;
4238 srom_data(u_int command
, u_long addr
)
4244 for (i
=0; i
<16; i
++) {
4245 sendto_srom(command
| DT_CLK
, addr
);
4246 tmp
= getfrom_srom(addr
);
4247 sendto_srom(command
, addr
);
4249 word
= (word
<< 1) | ((tmp
>> 3) & 0x01);
4252 sendto_srom(command
& 0x0000ff00, addr
);
4259 srom_busy(u_int command, u_long addr)
4261 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4263 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4267 sendto_srom(command & 0x0000ff00, addr);
4272 sendto_srom(u_int command
, u_long addr
)
4274 outl(command
, addr
);
4279 getfrom_srom(u_long addr
)
4290 srom_infoleaf_info(struct net_device
*dev
)
4292 struct de4x5_private
*lp
= netdev_priv(dev
);
4296 /* Find the infoleaf decoder function that matches this chipset */
4297 for (i
=0; i
<INFOLEAF_SIZE
; i
++) {
4298 if (lp
->chipset
== infoleaf_array
[i
].chipset
) break;
4300 if (i
== INFOLEAF_SIZE
) {
4301 lp
->useSROM
= false;
4302 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4307 lp
->infoleaf_fn
= infoleaf_array
[i
].fn
;
4309 /* Find the information offset that this function should use */
4310 count
= *((u_char
*)&lp
->srom
+ 19);
4311 p
= (u_char
*)&lp
->srom
+ 26;
4314 for (i
=count
; i
; --i
, p
+=3) {
4315 if (lp
->device
== *p
) break;
4318 lp
->useSROM
= false;
4319 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4320 dev
->name
, lp
->device
);
4325 lp
->infoleaf_offset
= get_unaligned_le16(p
+ 1);
4331 ** This routine loads any type 1 or 3 MII info into the mii device
4332 ** struct and executes any type 5 code to reset PHY devices for this
4334 ** The info for the MII devices will be valid since the index used
4335 ** will follow the discovery process from MII address 1-31 then 0.
4338 srom_init(struct net_device
*dev
)
4340 struct de4x5_private
*lp
= netdev_priv(dev
);
4341 u_char
*p
= (u_char
*)&lp
->srom
+ lp
->infoleaf_offset
;
4345 if (lp
->chipset
== DC21140
) {
4346 lp
->cache
.gepc
= (*p
++ | GEP_CTRL
);
4347 gep_wr(lp
->cache
.gepc
, dev
);
4353 /* Jump the infoblocks to find types */
4354 for (;count
; --count
) {
4357 } else if (*(p
+1) == 5) {
4358 type5_infoblock(dev
, 1, p
);
4359 p
+= ((*p
& BLOCK_LEN
) + 1);
4360 } else if (*(p
+1) == 4) {
4361 p
+= ((*p
& BLOCK_LEN
) + 1);
4362 } else if (*(p
+1) == 3) {
4363 type3_infoblock(dev
, 1, p
);
4364 p
+= ((*p
& BLOCK_LEN
) + 1);
4365 } else if (*(p
+1) == 2) {
4366 p
+= ((*p
& BLOCK_LEN
) + 1);
4367 } else if (*(p
+1) == 1) {
4368 type1_infoblock(dev
, 1, p
);
4369 p
+= ((*p
& BLOCK_LEN
) + 1);
4371 p
+= ((*p
& BLOCK_LEN
) + 1);
4377 ** A generic routine that writes GEP control, data and reset information
4378 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4381 srom_exec(struct net_device
*dev
, u_char
*p
)
4383 struct de4x5_private
*lp
= netdev_priv(dev
);
4384 u_long iobase
= dev
->base_addr
;
4385 u_char count
= (p
? *p
++ : 0);
4386 u_short
*w
= (u_short
*)p
;
4388 if (((lp
->ibn
!= 1) && (lp
->ibn
!= 3) && (lp
->ibn
!= 5)) || !count
) return;
4390 if (lp
->chipset
!= DC21140
) RESET_SIA
;
4393 gep_wr(((lp
->chipset
==DC21140
) && (lp
->ibn
!=5) ?
4394 *p
++ : get_unaligned_le16(w
++)), dev
);
4395 mdelay(2); /* 2ms per action */
4398 if (lp
->chipset
!= DC21140
) {
4399 outl(lp
->cache
.csr14
, DE4X5_STRR
);
4400 outl(lp
->cache
.csr13
, DE4X5_SICR
);
4405 ** Basically this function is a NOP since it will never be called,
4406 ** unless I implement the DC21041 SROM functions. There's no need
4407 ** since the existing code will be satisfactory for all boards.
4410 dc21041_infoleaf(struct net_device
*dev
)
4412 return DE4X5_AUTOSENSE_MS
;
4416 dc21140_infoleaf(struct net_device
*dev
)
4418 struct de4x5_private
*lp
= netdev_priv(dev
);
4420 u_char
*p
= (u_char
*)&lp
->srom
+ lp
->infoleaf_offset
;
4421 int next_tick
= DE4X5_AUTOSENSE_MS
;
4423 /* Read the connection type */
4427 lp
->cache
.gepc
= (*p
++ | GEP_CTRL
);
4432 /* Recursively figure out the info blocks */
4434 next_tick
= dc_infoblock
[COMPACT
](dev
, count
, p
);
4436 next_tick
= dc_infoblock
[*(p
+1)](dev
, count
, p
);
4439 if (lp
->tcount
== count
) {
4441 if (lp
->media
!= lp
->c_media
) {
4442 de4x5_dbg_media(dev
);
4443 lp
->c_media
= lp
->media
;
4447 lp
->tx_enable
= false;
4450 return next_tick
& ~TIMER_CB
;
4454 dc21142_infoleaf(struct net_device
*dev
)
4456 struct de4x5_private
*lp
= netdev_priv(dev
);
4458 u_char
*p
= (u_char
*)&lp
->srom
+ lp
->infoleaf_offset
;
4459 int next_tick
= DE4X5_AUTOSENSE_MS
;
4461 /* Read the connection type */
4467 /* Recursively figure out the info blocks */
4469 next_tick
= dc_infoblock
[COMPACT
](dev
, count
, p
);
4471 next_tick
= dc_infoblock
[*(p
+1)](dev
, count
, p
);
4474 if (lp
->tcount
== count
) {
4476 if (lp
->media
!= lp
->c_media
) {
4477 de4x5_dbg_media(dev
);
4478 lp
->c_media
= lp
->media
;
4482 lp
->tx_enable
= false;
4485 return next_tick
& ~TIMER_CB
;
4489 dc21143_infoleaf(struct net_device
*dev
)
4491 struct de4x5_private
*lp
= netdev_priv(dev
);
4493 u_char
*p
= (u_char
*)&lp
->srom
+ lp
->infoleaf_offset
;
4494 int next_tick
= DE4X5_AUTOSENSE_MS
;
4496 /* Read the connection type */
4502 /* Recursively figure out the info blocks */
4504 next_tick
= dc_infoblock
[COMPACT
](dev
, count
, p
);
4506 next_tick
= dc_infoblock
[*(p
+1)](dev
, count
, p
);
4508 if (lp
->tcount
== count
) {
4510 if (lp
->media
!= lp
->c_media
) {
4511 de4x5_dbg_media(dev
);
4512 lp
->c_media
= lp
->media
;
4516 lp
->tx_enable
= false;
4519 return next_tick
& ~TIMER_CB
;
4523 ** The compact infoblock is only designed for DC21140[A] chips, so
4524 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4527 compact_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4529 struct de4x5_private
*lp
= netdev_priv(dev
);
4532 /* Recursively figure out the info blocks */
4533 if (--count
> lp
->tcount
) {
4534 if (*(p
+COMPACT_LEN
) < 128) {
4535 return dc_infoblock
[COMPACT
](dev
, count
, p
+COMPACT_LEN
);
4537 return dc_infoblock
[*(p
+COMPACT_LEN
+1)](dev
, count
, p
+COMPACT_LEN
);
4541 if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4544 gep_wr(lp
->cache
.gepc
, dev
);
4545 lp
->infoblock_media
= (*p
++) & COMPACT_MC
;
4546 lp
->cache
.gep
= *p
++;
4550 lp
->asBitValid
= (flags
& 0x80) ? 0 : -1;
4551 lp
->defMedium
= (flags
& 0x40) ? -1 : 0;
4552 lp
->asBit
= 1 << ((csr6
>> 1) & 0x07);
4553 lp
->asPolarity
= ((csr6
& 0x80) ? -1 : 0) & lp
->asBit
;
4554 lp
->infoblock_csr6
= OMR_DEF
| ((csr6
& 0x71) << 18);
4557 de4x5_switch_mac_port(dev
);
4560 return dc21140m_autoconf(dev
);
4564 ** This block describes non MII media for the DC21140[A] only.
4567 type0_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4569 struct de4x5_private
*lp
= netdev_priv(dev
);
4570 u_char flags
, csr6
, len
= (*p
& BLOCK_LEN
)+1;
4572 /* Recursively figure out the info blocks */
4573 if (--count
> lp
->tcount
) {
4574 if (*(p
+len
) < 128) {
4575 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4577 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4581 if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4584 gep_wr(lp
->cache
.gepc
, dev
);
4586 lp
->infoblock_media
= (*p
++) & BLOCK0_MC
;
4587 lp
->cache
.gep
= *p
++;
4591 lp
->asBitValid
= (flags
& 0x80) ? 0 : -1;
4592 lp
->defMedium
= (flags
& 0x40) ? -1 : 0;
4593 lp
->asBit
= 1 << ((csr6
>> 1) & 0x07);
4594 lp
->asPolarity
= ((csr6
& 0x80) ? -1 : 0) & lp
->asBit
;
4595 lp
->infoblock_csr6
= OMR_DEF
| ((csr6
& 0x71) << 18);
4598 de4x5_switch_mac_port(dev
);
4601 return dc21140m_autoconf(dev
);
4604 /* These functions are under construction! */
4607 type1_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4609 struct de4x5_private
*lp
= netdev_priv(dev
);
4610 u_char len
= (*p
& BLOCK_LEN
)+1;
4612 /* Recursively figure out the info blocks */
4613 if (--count
> lp
->tcount
) {
4614 if (*(p
+len
) < 128) {
4615 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4617 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4622 if (lp
->state
== INITIALISED
) {
4625 lp
->phy
[lp
->active
].gep
= (*p
? p
: NULL
); p
+= (*p
+ 1);
4626 lp
->phy
[lp
->active
].rst
= (*p
? p
: NULL
); p
+= (*p
+ 1);
4627 lp
->phy
[lp
->active
].mc
= get_unaligned_le16(p
); p
+= 2;
4628 lp
->phy
[lp
->active
].ana
= get_unaligned_le16(p
); p
+= 2;
4629 lp
->phy
[lp
->active
].fdx
= get_unaligned_le16(p
); p
+= 2;
4630 lp
->phy
[lp
->active
].ttm
= get_unaligned_le16(p
);
4632 } else if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4635 lp
->infoblock_csr6
= OMR_MII_100
;
4637 lp
->infoblock_media
= ANS
;
4639 de4x5_switch_mac_port(dev
);
4642 return dc21140m_autoconf(dev
);
4646 type2_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4648 struct de4x5_private
*lp
= netdev_priv(dev
);
4649 u_char len
= (*p
& BLOCK_LEN
)+1;
4651 /* Recursively figure out the info blocks */
4652 if (--count
> lp
->tcount
) {
4653 if (*(p
+len
) < 128) {
4654 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4656 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4660 if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4664 lp
->infoblock_media
= (*p
) & MEDIA_CODE
;
4666 if ((*p
++) & EXT_FIELD
) {
4667 lp
->cache
.csr13
= get_unaligned_le16(p
); p
+= 2;
4668 lp
->cache
.csr14
= get_unaligned_le16(p
); p
+= 2;
4669 lp
->cache
.csr15
= get_unaligned_le16(p
); p
+= 2;
4671 lp
->cache
.csr13
= CSR13
;
4672 lp
->cache
.csr14
= CSR14
;
4673 lp
->cache
.csr15
= CSR15
;
4675 lp
->cache
.gepc
= ((s32
)(get_unaligned_le16(p
)) << 16); p
+= 2;
4676 lp
->cache
.gep
= ((s32
)(get_unaligned_le16(p
)) << 16);
4677 lp
->infoblock_csr6
= OMR_SIA
;
4680 de4x5_switch_mac_port(dev
);
4683 return dc2114x_autoconf(dev
);
4687 type3_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4689 struct de4x5_private
*lp
= netdev_priv(dev
);
4690 u_char len
= (*p
& BLOCK_LEN
)+1;
4692 /* Recursively figure out the info blocks */
4693 if (--count
> lp
->tcount
) {
4694 if (*(p
+len
) < 128) {
4695 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4697 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4702 if (lp
->state
== INITIALISED
) {
4705 if (MOTO_SROM_BUG
) lp
->active
= 0;
4706 lp
->phy
[lp
->active
].gep
= (*p
? p
: NULL
); p
+= (2 * (*p
) + 1);
4707 lp
->phy
[lp
->active
].rst
= (*p
? p
: NULL
); p
+= (2 * (*p
) + 1);
4708 lp
->phy
[lp
->active
].mc
= get_unaligned_le16(p
); p
+= 2;
4709 lp
->phy
[lp
->active
].ana
= get_unaligned_le16(p
); p
+= 2;
4710 lp
->phy
[lp
->active
].fdx
= get_unaligned_le16(p
); p
+= 2;
4711 lp
->phy
[lp
->active
].ttm
= get_unaligned_le16(p
); p
+= 2;
4712 lp
->phy
[lp
->active
].mci
= *p
;
4714 } else if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4717 if (MOTO_SROM_BUG
) lp
->active
= 0;
4718 lp
->infoblock_csr6
= OMR_MII_100
;
4720 lp
->infoblock_media
= ANS
;
4722 de4x5_switch_mac_port(dev
);
4725 return dc2114x_autoconf(dev
);
4729 type4_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4731 struct de4x5_private
*lp
= netdev_priv(dev
);
4732 u_char flags
, csr6
, len
= (*p
& BLOCK_LEN
)+1;
4734 /* Recursively figure out the info blocks */
4735 if (--count
> lp
->tcount
) {
4736 if (*(p
+len
) < 128) {
4737 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4739 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4743 if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4747 lp
->infoblock_media
= (*p
++) & MEDIA_CODE
;
4748 lp
->cache
.csr13
= CSR13
; /* Hard coded defaults */
4749 lp
->cache
.csr14
= CSR14
;
4750 lp
->cache
.csr15
= CSR15
;
4751 lp
->cache
.gepc
= ((s32
)(get_unaligned_le16(p
)) << 16); p
+= 2;
4752 lp
->cache
.gep
= ((s32
)(get_unaligned_le16(p
)) << 16); p
+= 2;
4756 lp
->asBitValid
= (flags
& 0x80) ? 0 : -1;
4757 lp
->defMedium
= (flags
& 0x40) ? -1 : 0;
4758 lp
->asBit
= 1 << ((csr6
>> 1) & 0x07);
4759 lp
->asPolarity
= ((csr6
& 0x80) ? -1 : 0) & lp
->asBit
;
4760 lp
->infoblock_csr6
= OMR_DEF
| ((csr6
& 0x71) << 18);
4763 de4x5_switch_mac_port(dev
);
4766 return dc2114x_autoconf(dev
);
4770 ** This block type provides information for resetting external devices
4771 ** (chips) through the General Purpose Register.
4774 type5_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4776 struct de4x5_private
*lp
= netdev_priv(dev
);
4777 u_char len
= (*p
& BLOCK_LEN
)+1;
4779 /* Recursively figure out the info blocks */
4780 if (--count
> lp
->tcount
) {
4781 if (*(p
+len
) < 128) {
4782 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4784 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4788 /* Must be initializing to run this code */
4789 if ((lp
->state
== INITIALISED
) || (lp
->media
== INIT
)) {
4792 srom_exec(dev
, lp
->rst
);
4795 return DE4X5_AUTOSENSE_MS
;
4803 mii_rd(u_char phyreg
, u_char phyaddr
, u_long ioaddr
)
4805 mii_wdata(MII_PREAMBLE
, 2, ioaddr
); /* Start of 34 bit preamble... */
4806 mii_wdata(MII_PREAMBLE
, 32, ioaddr
); /* ...continued */
4807 mii_wdata(MII_STRD
, 4, ioaddr
); /* SFD and Read operation */
4808 mii_address(phyaddr
, ioaddr
); /* PHY address to be accessed */
4809 mii_address(phyreg
, ioaddr
); /* PHY Register to read */
4810 mii_ta(MII_STRD
, ioaddr
); /* Turn around time - 2 MDC */
4812 return mii_rdata(ioaddr
); /* Read data */
4816 mii_wr(int data
, u_char phyreg
, u_char phyaddr
, u_long ioaddr
)
4818 mii_wdata(MII_PREAMBLE
, 2, ioaddr
); /* Start of 34 bit preamble... */
4819 mii_wdata(MII_PREAMBLE
, 32, ioaddr
); /* ...continued */
4820 mii_wdata(MII_STWR
, 4, ioaddr
); /* SFD and Write operation */
4821 mii_address(phyaddr
, ioaddr
); /* PHY address to be accessed */
4822 mii_address(phyreg
, ioaddr
); /* PHY Register to write */
4823 mii_ta(MII_STWR
, ioaddr
); /* Turn around time - 2 MDC */
4824 data
= mii_swap(data
, 16); /* Swap data bit ordering */
4825 mii_wdata(data
, 16, ioaddr
); /* Write data */
4829 mii_rdata(u_long ioaddr
)
4834 for (i
=0; i
<16; i
++) {
4836 tmp
|= getfrom_mii(MII_MRD
| MII_RD
, ioaddr
);
4843 mii_wdata(int data
, int len
, u_long ioaddr
)
4847 for (i
=0; i
<len
; i
++) {
4848 sendto_mii(MII_MWR
| MII_WR
, data
, ioaddr
);
4854 mii_address(u_char addr
, u_long ioaddr
)
4858 addr
= mii_swap(addr
, 5);
4859 for (i
=0; i
<5; i
++) {
4860 sendto_mii(MII_MWR
| MII_WR
, addr
, ioaddr
);
4866 mii_ta(u_long rw
, u_long ioaddr
)
4868 if (rw
== MII_STWR
) {
4869 sendto_mii(MII_MWR
| MII_WR
, 1, ioaddr
);
4870 sendto_mii(MII_MWR
| MII_WR
, 0, ioaddr
);
4872 getfrom_mii(MII_MRD
| MII_RD
, ioaddr
); /* Tri-state MDIO */
4877 mii_swap(int data
, int len
)
4881 for (i
=0; i
<len
; i
++) {
4891 sendto_mii(u32 command
, int data
, u_long ioaddr
)
4895 j
= (data
& 1) << 17;
4896 outl(command
| j
, ioaddr
);
4898 outl(command
| MII_MDC
| j
, ioaddr
);
4903 getfrom_mii(u32 command
, u_long ioaddr
)
4905 outl(command
, ioaddr
);
4907 outl(command
| MII_MDC
, ioaddr
);
4910 return (inl(ioaddr
) >> 19) & 1;
4914 ** Here's 3 ways to calculate the OUI from the ID registers.
4917 mii_get_oui(u_char phyaddr
, u_long ioaddr
)
4924 int i, r2, r3, ret=0;*/
4927 /* Read r2 and r3 */
4928 r2
= mii_rd(MII_ID0
, phyaddr
, ioaddr
);
4929 r3
= mii_rd(MII_ID1
, phyaddr
, ioaddr
);
4930 /* SEEQ and Cypress way * /
4931 / * Shuffle r2 and r3 * /
4933 r3 = ((r3>>10)|(r2<<6))&0x0ff;
4934 r2 = ((r2>>2)&0x3fff);
4936 / * Bit reverse r3 * /
4943 / * Bit reverse r2 * /
4944 for (i=0;i<16;i++) {
4950 / * Swap r2 bytes * /
4952 a.breg[0]=a.breg[1];
4955 return (a.reg<<8)|ret; */ /* SEEQ and Cypress way */
4956 /* return (r2<<6)|(u_int)(r3>>10); */ /* NATIONAL and BROADCOM way */
4957 return r2
; /* (I did it) My way */
4961 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4964 mii_get_phy(struct net_device
*dev
)
4966 struct de4x5_private
*lp
= netdev_priv(dev
);
4967 u_long iobase
= dev
->base_addr
;
4968 int i
, j
, k
, n
, limit
=ARRAY_SIZE(phy_info
);
4974 /* Search the MII address space for possible PHY devices */
4975 for (n
=0, lp
->mii_cnt
=0, i
=1; !((i
==1) && (n
==1)); i
=(i
+1)%DE4X5_MAX_MII
) {
4976 lp
->phy
[lp
->active
].addr
= i
;
4977 if (i
==0) n
++; /* Count cycles */
4978 while (de4x5_reset_phy(dev
)<0) udelay(100);/* Wait for reset */
4979 id
= mii_get_oui(i
, DE4X5_MII
);
4980 if ((id
== 0) || (id
== 65535)) continue; /* Valid ID? */
4981 for (j
=0; j
<limit
; j
++) { /* Search PHY table */
4982 if (id
!= phy_info
[j
].id
) continue; /* ID match? */
4983 for (k
=0; k
< DE4X5_MAX_PHY
&& lp
->phy
[k
].id
; k
++);
4984 if (k
< DE4X5_MAX_PHY
) {
4985 memcpy((char *)&lp
->phy
[k
],
4986 (char *)&phy_info
[j
], sizeof(struct phy_table
));
4987 lp
->phy
[k
].addr
= i
;
4991 goto purgatory
; /* Stop the search */
4995 if ((j
== limit
) && (i
< DE4X5_MAX_MII
)) {
4996 for (k
=0; k
< DE4X5_MAX_PHY
&& lp
->phy
[k
].id
; k
++);
4997 lp
->phy
[k
].addr
= i
;
4999 lp
->phy
[k
].spd
.reg
= GENERIC_REG
; /* ANLPA register */
5000 lp
->phy
[k
].spd
.mask
= GENERIC_MASK
; /* 100Mb/s technologies */
5001 lp
->phy
[k
].spd
.value
= GENERIC_VALUE
; /* TX & T4, H/F Duplex */
5004 printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev
->name
);
5006 de4x5_debug
|= DEBUG_MII
;
5007 de4x5_dbg_mii(dev
, k
);
5014 if (lp
->phy
[0].id
) { /* Reset the PHY devices */
5015 for (k
=0; k
< DE4X5_MAX_PHY
&& lp
->phy
[k
].id
; k
++) { /*For each PHY*/
5016 mii_wr(MII_CR_RST
, MII_CR
, lp
->phy
[k
].addr
, DE4X5_MII
);
5017 while (mii_rd(MII_CR
, lp
->phy
[k
].addr
, DE4X5_MII
) & MII_CR_RST
);
5019 de4x5_dbg_mii(dev
, k
);
5022 if (!lp
->mii_cnt
) lp
->useMII
= false;
5028 build_setup_frame(struct net_device
*dev
, int mode
)
5030 struct de4x5_private
*lp
= netdev_priv(dev
);
5032 char *pa
= lp
->setup_frame
;
5034 /* Initialise the setup frame */
5036 memset(lp
->setup_frame
, 0, SETUP_FRAME_LEN
);
5039 if (lp
->setup_f
== HASH_PERF
) {
5040 for (pa
=lp
->setup_frame
+IMPERF_PA_OFFSET
, i
=0; i
<ETH_ALEN
; i
++) {
5041 *(pa
+ i
) = dev
->dev_addr
[i
]; /* Host address */
5042 if (i
& 0x01) pa
+= 2;
5044 *(lp
->setup_frame
+ (DE4X5_HASH_TABLE_LEN
>> 3) - 3) = 0x80;
5046 for (i
=0; i
<ETH_ALEN
; i
++) { /* Host address */
5047 *(pa
+ (i
&1)) = dev
->dev_addr
[i
];
5048 if (i
& 0x01) pa
+= 4;
5050 for (i
=0; i
<ETH_ALEN
; i
++) { /* Broadcast address */
5051 *(pa
+ (i
&1)) = (char) 0xff;
5052 if (i
& 0x01) pa
+= 4;
5056 return pa
; /* Points to the next entry */
5060 disable_ast(struct net_device
*dev
)
5062 struct de4x5_private
*lp
= netdev_priv(dev
);
5063 del_timer_sync(&lp
->timer
);
5067 de4x5_switch_mac_port(struct net_device
*dev
)
5069 struct de4x5_private
*lp
= netdev_priv(dev
);
5070 u_long iobase
= dev
->base_addr
;
5075 /* Assert the OMR_PS bit in CSR6 */
5076 omr
= (inl(DE4X5_OMR
) & ~(OMR_PS
| OMR_HBD
| OMR_TTM
| OMR_PCS
| OMR_SCR
|
5078 omr
|= lp
->infoblock_csr6
;
5079 if (omr
& OMR_PS
) omr
|= OMR_HBD
;
5080 outl(omr
, DE4X5_OMR
);
5085 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5086 if (lp
->chipset
== DC21140
) {
5087 gep_wr(lp
->cache
.gepc
, dev
);
5088 gep_wr(lp
->cache
.gep
, dev
);
5089 } else if ((lp
->chipset
& ~0x0ff) == DC2114x
) {
5090 reset_init_sia(dev
, lp
->cache
.csr13
, lp
->cache
.csr14
, lp
->cache
.csr15
);
5094 outl(omr
, DE4X5_OMR
);
5103 gep_wr(s32 data
, struct net_device
*dev
)
5105 struct de4x5_private
*lp
= netdev_priv(dev
);
5106 u_long iobase
= dev
->base_addr
;
5108 if (lp
->chipset
== DC21140
) {
5109 outl(data
, DE4X5_GEP
);
5110 } else if ((lp
->chipset
& ~0x00ff) == DC2114x
) {
5111 outl((data
<<16) | lp
->cache
.csr15
, DE4X5_SIGR
);
5116 gep_rd(struct net_device
*dev
)
5118 struct de4x5_private
*lp
= netdev_priv(dev
);
5119 u_long iobase
= dev
->base_addr
;
5121 if (lp
->chipset
== DC21140
) {
5122 return inl(DE4X5_GEP
);
5123 } else if ((lp
->chipset
& ~0x00ff) == DC2114x
) {
5124 return inl(DE4X5_SIGR
) & 0x000fffff;
5131 yawn(struct net_device
*dev
, int state
)
5133 struct de4x5_private
*lp
= netdev_priv(dev
);
5134 u_long iobase
= dev
->base_addr
;
5136 if ((lp
->chipset
== DC21040
) || (lp
->chipset
== DC21140
)) return;
5138 if(lp
->bus
== EISA
) {
5141 outb(WAKEUP
, PCI_CFPM
);
5146 outb(SNOOZE
, PCI_CFPM
);
5150 outl(0, DE4X5_SICR
);
5151 outb(SLEEP
, PCI_CFPM
);
5155 struct pci_dev
*pdev
= to_pci_dev (lp
->gendev
);
5158 pci_write_config_byte(pdev
, PCI_CFDA_PSM
, WAKEUP
);
5163 pci_write_config_byte(pdev
, PCI_CFDA_PSM
, SNOOZE
);
5167 outl(0, DE4X5_SICR
);
5168 pci_write_config_byte(pdev
, PCI_CFDA_PSM
, SLEEP
);
5175 de4x5_parse_params(struct net_device
*dev
)
5177 struct de4x5_private
*lp
= netdev_priv(dev
);
5180 lp
->params
.fdx
= false;
5181 lp
->params
.autosense
= AUTO
;
5183 if (args
== NULL
) return;
5185 if ((p
= strstr(args
, dev
->name
))) {
5186 if (!(q
= strstr(p
+strlen(dev
->name
), "eth"))) q
= p
+ strlen(p
);
5190 if (strstr(p
, "fdx") || strstr(p
, "FDX")) lp
->params
.fdx
= true;
5192 if (strstr(p
, "autosense") || strstr(p
, "AUTOSENSE")) {
5193 if (strstr(p
, "TP_NW")) {
5194 lp
->params
.autosense
= TP_NW
;
5195 } else if (strstr(p
, "TP")) {
5196 lp
->params
.autosense
= TP
;
5197 } else if (strstr(p
, "BNC_AUI")) {
5198 lp
->params
.autosense
= BNC
;
5199 } else if (strstr(p
, "BNC")) {
5200 lp
->params
.autosense
= BNC
;
5201 } else if (strstr(p
, "AUI")) {
5202 lp
->params
.autosense
= AUI
;
5203 } else if (strstr(p
, "10Mb")) {
5204 lp
->params
.autosense
= _10Mb
;
5205 } else if (strstr(p
, "100Mb")) {
5206 lp
->params
.autosense
= _100Mb
;
5207 } else if (strstr(p
, "AUTO")) {
5208 lp
->params
.autosense
= AUTO
;
5216 de4x5_dbg_open(struct net_device
*dev
)
5218 struct de4x5_private
*lp
= netdev_priv(dev
);
5221 if (de4x5_debug
& DEBUG_OPEN
) {
5222 printk("%s: de4x5 opening with irq %d\n",dev
->name
,dev
->irq
);
5223 printk("\tphysical address: %pM\n", dev
->dev_addr
);
5224 printk("Descriptor head addresses:\n");
5225 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long
)lp
->rx_ring
,(u_long
)lp
->tx_ring
);
5226 printk("Descriptor addresses:\nRX: ");
5227 for (i
=0;i
<lp
->rxRingSize
-1;i
++){
5229 printk("0x%8.8lx ",(u_long
)&lp
->rx_ring
[i
].status
);
5232 printk("...0x%8.8lx\n",(u_long
)&lp
->rx_ring
[i
].status
);
5234 for (i
=0;i
<lp
->txRingSize
-1;i
++){
5236 printk("0x%8.8lx ", (u_long
)&lp
->tx_ring
[i
].status
);
5239 printk("...0x%8.8lx\n", (u_long
)&lp
->tx_ring
[i
].status
);
5240 printk("Descriptor buffers:\nRX: ");
5241 for (i
=0;i
<lp
->rxRingSize
-1;i
++){
5243 printk("0x%8.8x ",le32_to_cpu(lp
->rx_ring
[i
].buf
));
5246 printk("...0x%8.8x\n",le32_to_cpu(lp
->rx_ring
[i
].buf
));
5248 for (i
=0;i
<lp
->txRingSize
-1;i
++){
5250 printk("0x%8.8x ", le32_to_cpu(lp
->tx_ring
[i
].buf
));
5253 printk("...0x%8.8x\n", le32_to_cpu(lp
->tx_ring
[i
].buf
));
5254 printk("Ring size:\nRX: %d\nTX: %d\n",
5255 (short)lp
->rxRingSize
,
5256 (short)lp
->txRingSize
);
5261 de4x5_dbg_mii(struct net_device
*dev
, int k
)
5263 struct de4x5_private
*lp
= netdev_priv(dev
);
5264 u_long iobase
= dev
->base_addr
;
5266 if (de4x5_debug
& DEBUG_MII
) {
5267 printk("\nMII device address: %d\n", lp
->phy
[k
].addr
);
5268 printk("MII CR: %x\n",mii_rd(MII_CR
,lp
->phy
[k
].addr
,DE4X5_MII
));
5269 printk("MII SR: %x\n",mii_rd(MII_SR
,lp
->phy
[k
].addr
,DE4X5_MII
));
5270 printk("MII ID0: %x\n",mii_rd(MII_ID0
,lp
->phy
[k
].addr
,DE4X5_MII
));
5271 printk("MII ID1: %x\n",mii_rd(MII_ID1
,lp
->phy
[k
].addr
,DE4X5_MII
));
5272 if (lp
->phy
[k
].id
!= BROADCOM_T4
) {
5273 printk("MII ANA: %x\n",mii_rd(0x04,lp
->phy
[k
].addr
,DE4X5_MII
));
5274 printk("MII ANC: %x\n",mii_rd(0x05,lp
->phy
[k
].addr
,DE4X5_MII
));
5276 printk("MII 16: %x\n",mii_rd(0x10,lp
->phy
[k
].addr
,DE4X5_MII
));
5277 if (lp
->phy
[k
].id
!= BROADCOM_T4
) {
5278 printk("MII 17: %x\n",mii_rd(0x11,lp
->phy
[k
].addr
,DE4X5_MII
));
5279 printk("MII 18: %x\n",mii_rd(0x12,lp
->phy
[k
].addr
,DE4X5_MII
));
5281 printk("MII 20: %x\n",mii_rd(0x14,lp
->phy
[k
].addr
,DE4X5_MII
));
5287 de4x5_dbg_media(struct net_device
*dev
)
5289 struct de4x5_private
*lp
= netdev_priv(dev
);
5291 if (lp
->media
!= lp
->c_media
) {
5292 if (de4x5_debug
& DEBUG_MEDIA
) {
5293 printk("%s: media is %s%s\n", dev
->name
,
5294 (lp
->media
== NC
? "unconnected, link down or incompatible connection" :
5295 (lp
->media
== TP
? "TP" :
5296 (lp
->media
== ANS
? "TP/Nway" :
5297 (lp
->media
== BNC
? "BNC" :
5298 (lp
->media
== AUI
? "AUI" :
5299 (lp
->media
== BNC_AUI
? "BNC/AUI" :
5300 (lp
->media
== EXT_SIA
? "EXT SIA" :
5301 (lp
->media
== _100Mb
? "100Mb/s" :
5302 (lp
->media
== _10Mb
? "10Mb/s" :
5304 ))))))))), (lp
->fdx
?" full duplex.":"."));
5306 lp
->c_media
= lp
->media
;
5311 de4x5_dbg_srom(struct de4x5_srom
*p
)
5315 if (de4x5_debug
& DEBUG_SROM
) {
5316 printk("Sub-system Vendor ID: %04x\n", *((u_short
*)p
->sub_vendor_id
));
5317 printk("Sub-system ID: %04x\n", *((u_short
*)p
->sub_system_id
));
5318 printk("ID Block CRC: %02x\n", (u_char
)(p
->id_block_crc
));
5319 printk("SROM version: %02x\n", (u_char
)(p
->version
));
5320 printk("# controllers: %02x\n", (u_char
)(p
->num_controllers
));
5322 printk("Hardware Address: %pM\n", p
->ieee_addr
);
5323 printk("CRC checksum: %04x\n", (u_short
)(p
->chksum
));
5324 for (i
=0; i
<64; i
++) {
5325 printk("%3d %04x\n", i
<<1, (u_short
)*((u_short
*)p
+i
));
5331 de4x5_dbg_rx(struct sk_buff
*skb
, int len
)
5335 if (de4x5_debug
& DEBUG_RX
) {
5336 printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5337 skb
->data
, &skb
->data
[6],
5338 (u_char
)skb
->data
[12],
5339 (u_char
)skb
->data
[13],
5341 for (j
=0; len
>0;j
+=16, len
-=16) {
5342 printk(" %03x: ",j
);
5343 for (i
=0; i
<16 && i
<len
; i
++) {
5344 printk("%02x ",(u_char
)skb
->data
[i
+j
]);
5352 ** Perform IOCTL call functions here. Some are privileged operations and the
5353 ** effective uid is checked in those cases. In the normal course of events
5354 ** this function is only used for my testing.
5357 de4x5_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
5359 struct de4x5_private
*lp
= netdev_priv(dev
);
5360 struct de4x5_ioctl
*ioc
= (struct de4x5_ioctl
*) &rq
->ifr_ifru
;
5361 u_long iobase
= dev
->base_addr
;
5362 int i
, j
, status
= 0;
5372 case DE4X5_GET_HWADDR
: /* Get the hardware address */
5373 ioc
->len
= ETH_ALEN
;
5374 for (i
=0; i
<ETH_ALEN
; i
++) {
5375 tmp
.addr
[i
] = dev
->dev_addr
[i
];
5377 if (copy_to_user(ioc
->data
, tmp
.addr
, ioc
->len
)) return -EFAULT
;
5380 case DE4X5_SET_HWADDR
: /* Set the hardware address */
5381 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5382 if (copy_from_user(tmp
.addr
, ioc
->data
, ETH_ALEN
)) return -EFAULT
;
5383 if (netif_queue_stopped(dev
))
5385 netif_stop_queue(dev
);
5386 for (i
=0; i
<ETH_ALEN
; i
++) {
5387 dev
->dev_addr
[i
] = tmp
.addr
[i
];
5389 build_setup_frame(dev
, PHYS_ADDR_ONLY
);
5390 /* Set up the descriptor and give ownership to the card */
5391 load_packet(dev
, lp
->setup_frame
, TD_IC
| PERFECT_F
| TD_SET
|
5392 SETUP_FRAME_LEN
, (struct sk_buff
*)1);
5393 lp
->tx_new
= (lp
->tx_new
+ 1) % lp
->txRingSize
;
5394 outl(POLL_DEMAND
, DE4X5_TPD
); /* Start the TX */
5395 netif_wake_queue(dev
); /* Unlock the TX ring */
5398 case DE4X5_SAY_BOO
: /* Say "Boo!" to the kernel log file */
5399 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5400 printk("%s: Boo!\n", dev
->name
);
5403 case DE4X5_MCA_EN
: /* Enable pass all multicast addressing */
5404 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5405 omr
= inl(DE4X5_OMR
);
5407 outl(omr
, DE4X5_OMR
);
5410 case DE4X5_GET_STATS
: /* Get the driver statistics */
5412 struct pkt_stats statbuf
;
5413 ioc
->len
= sizeof(statbuf
);
5414 spin_lock_irqsave(&lp
->lock
, flags
);
5415 memcpy(&statbuf
, &lp
->pktStats
, ioc
->len
);
5416 spin_unlock_irqrestore(&lp
->lock
, flags
);
5417 if (copy_to_user(ioc
->data
, &statbuf
, ioc
->len
))
5421 case DE4X5_CLR_STATS
: /* Zero out the driver statistics */
5422 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5423 spin_lock_irqsave(&lp
->lock
, flags
);
5424 memset(&lp
->pktStats
, 0, sizeof(lp
->pktStats
));
5425 spin_unlock_irqrestore(&lp
->lock
, flags
);
5428 case DE4X5_GET_OMR
: /* Get the OMR Register contents */
5429 tmp
.addr
[0] = inl(DE4X5_OMR
);
5430 if (copy_to_user(ioc
->data
, tmp
.addr
, 1)) return -EFAULT
;
5433 case DE4X5_SET_OMR
: /* Set the OMR Register contents */
5434 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5435 if (copy_from_user(tmp
.addr
, ioc
->data
, 1)) return -EFAULT
;
5436 outl(tmp
.addr
[0], DE4X5_OMR
);
5439 case DE4X5_GET_REG
: /* Get the DE4X5 Registers */
5441 tmp
.lval
[0] = inl(DE4X5_STS
); j
+=4;
5442 tmp
.lval
[1] = inl(DE4X5_BMR
); j
+=4;
5443 tmp
.lval
[2] = inl(DE4X5_IMR
); j
+=4;
5444 tmp
.lval
[3] = inl(DE4X5_OMR
); j
+=4;
5445 tmp
.lval
[4] = inl(DE4X5_SISR
); j
+=4;
5446 tmp
.lval
[5] = inl(DE4X5_SICR
); j
+=4;
5447 tmp
.lval
[6] = inl(DE4X5_STRR
); j
+=4;
5448 tmp
.lval
[7] = inl(DE4X5_SIGR
); j
+=4;
5450 if (copy_to_user(ioc
->data
, tmp
.lval
, ioc
->len
))
5454 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5458 tmp.addr[j++] = dev->irq;
5459 for (i=0; i<ETH_ALEN; i++) {
5460 tmp.addr[j++] = dev->dev_addr[i];
5462 tmp.addr[j++] = lp->rxRingSize;
5463 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5464 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5466 for (i=0;i<lp->rxRingSize-1;i++){
5468 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5471 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5472 for (i=0;i<lp->txRingSize-1;i++){
5474 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5477 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5479 for (i=0;i<lp->rxRingSize-1;i++){
5481 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5484 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5485 for (i=0;i<lp->txRingSize-1;i++){
5487 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5490 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5492 for (i=0;i<lp->rxRingSize;i++){
5493 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5495 for (i=0;i<lp->txRingSize;i++){
5496 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5499 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5500 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5501 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5502 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5503 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5504 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5505 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5506 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5507 tmp.lval[j>>2] = lp->chipset; j+=4;
5508 if (lp->chipset == DC21140) {
5509 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5511 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5512 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5513 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5514 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5516 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5517 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5518 tmp.lval[j>>2] = lp->active; j+=4;
5519 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5520 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5521 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5522 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5523 if (lp->phy[lp->active].id != BROADCOM_T4) {
5524 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5525 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5527 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5528 if (lp->phy[lp->active].id != BROADCOM_T4) {
5529 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5530 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5532 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5536 tmp.addr[j++] = lp->txRingSize;
5537 tmp.addr[j++] = netif_queue_stopped(dev);
5540 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5551 static int __init
de4x5_module_init (void)
5556 err
= pci_register_driver(&de4x5_pci_driver
);
5559 err
|= eisa_driver_register (&de4x5_eisa_driver
);
5565 static void __exit
de4x5_module_exit (void)
5568 pci_unregister_driver (&de4x5_pci_driver
);
5571 eisa_driver_unregister (&de4x5_eisa_driver
);
5575 module_init (de4x5_module_init
);
5576 module_exit (de4x5_module_exit
);