Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / ethernet / intel / e1000e / netdev.c
blob1298b69f990b40628ef1fbb353e6d9f1bfafdd76
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
47 #include "e1000.h"
49 #define DRV_EXTRAVERSION "-k"
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60 static const struct e1000_info *e1000_info_tbl[] = {
61 [board_82571] = &e1000_82571_info,
62 [board_82572] = &e1000_82572_info,
63 [board_82573] = &e1000_82573_info,
64 [board_82574] = &e1000_82574_info,
65 [board_82583] = &e1000_82583_info,
66 [board_80003es2lan] = &e1000_es2_info,
67 [board_ich8lan] = &e1000_ich8_info,
68 [board_ich9lan] = &e1000_ich9_info,
69 [board_ich10lan] = &e1000_ich10_info,
70 [board_pchlan] = &e1000_pch_info,
71 [board_pch2lan] = &e1000_pch2_info,
72 [board_pch_lpt] = &e1000_pch_lpt_info,
73 [board_pch_spt] = &e1000_pch_spt_info,
74 [board_pch_cnp] = &e1000_pch_cnp_info,
77 struct e1000_reg_info {
78 u32 ofs;
79 char *name;
82 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
83 /* General Registers */
84 {E1000_CTRL, "CTRL"},
85 {E1000_STATUS, "STATUS"},
86 {E1000_CTRL_EXT, "CTRL_EXT"},
88 /* Interrupt Registers */
89 {E1000_ICR, "ICR"},
91 /* Rx Registers */
92 {E1000_RCTL, "RCTL"},
93 {E1000_RDLEN(0), "RDLEN"},
94 {E1000_RDH(0), "RDH"},
95 {E1000_RDT(0), "RDT"},
96 {E1000_RDTR, "RDTR"},
97 {E1000_RXDCTL(0), "RXDCTL"},
98 {E1000_ERT, "ERT"},
99 {E1000_RDBAL(0), "RDBAL"},
100 {E1000_RDBAH(0), "RDBAH"},
101 {E1000_RDFH, "RDFH"},
102 {E1000_RDFT, "RDFT"},
103 {E1000_RDFHS, "RDFHS"},
104 {E1000_RDFTS, "RDFTS"},
105 {E1000_RDFPC, "RDFPC"},
107 /* Tx Registers */
108 {E1000_TCTL, "TCTL"},
109 {E1000_TDBAL(0), "TDBAL"},
110 {E1000_TDBAH(0), "TDBAH"},
111 {E1000_TDLEN(0), "TDLEN"},
112 {E1000_TDH(0), "TDH"},
113 {E1000_TDT(0), "TDT"},
114 {E1000_TIDV, "TIDV"},
115 {E1000_TXDCTL(0), "TXDCTL"},
116 {E1000_TADV, "TADV"},
117 {E1000_TARC(0), "TARC"},
118 {E1000_TDFH, "TDFH"},
119 {E1000_TDFT, "TDFT"},
120 {E1000_TDFHS, "TDFHS"},
121 {E1000_TDFTS, "TDFTS"},
122 {E1000_TDFPC, "TDFPC"},
124 /* List Terminator */
125 {0, NULL}
129 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
130 * @hw: pointer to the HW structure
132 * When updating the MAC CSR registers, the Manageability Engine (ME) could
133 * be accessing the registers at the same time. Normally, this is handled in
134 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
135 * accesses later than it should which could result in the register to have
136 * an incorrect value. Workaround this by checking the FWSM register which
137 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
138 * and try again a number of times.
140 s32 __ew32_prepare(struct e1000_hw *hw)
142 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
144 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
145 udelay(50);
147 return i;
150 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
152 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
153 __ew32_prepare(hw);
155 writel(val, hw->hw_addr + reg);
159 * e1000_regdump - register printout routine
160 * @hw: pointer to the HW structure
161 * @reginfo: pointer to the register info table
163 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
165 int n = 0;
166 char rname[16];
167 u32 regs[8];
169 switch (reginfo->ofs) {
170 case E1000_RXDCTL(0):
171 for (n = 0; n < 2; n++)
172 regs[n] = __er32(hw, E1000_RXDCTL(n));
173 break;
174 case E1000_TXDCTL(0):
175 for (n = 0; n < 2; n++)
176 regs[n] = __er32(hw, E1000_TXDCTL(n));
177 break;
178 case E1000_TARC(0):
179 for (n = 0; n < 2; n++)
180 regs[n] = __er32(hw, E1000_TARC(n));
181 break;
182 default:
183 pr_info("%-15s %08x\n",
184 reginfo->name, __er32(hw, reginfo->ofs));
185 return;
188 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
189 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
192 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
193 struct e1000_buffer *bi)
195 int i;
196 struct e1000_ps_page *ps_page;
198 for (i = 0; i < adapter->rx_ps_pages; i++) {
199 ps_page = &bi->ps_pages[i];
201 if (ps_page->page) {
202 pr_info("packet dump for ps_page %d:\n", i);
203 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
204 16, 1, page_address(ps_page->page),
205 PAGE_SIZE, true);
211 * e1000e_dump - Print registers, Tx-ring and Rx-ring
212 * @adapter: board private structure
214 static void e1000e_dump(struct e1000_adapter *adapter)
216 struct net_device *netdev = adapter->netdev;
217 struct e1000_hw *hw = &adapter->hw;
218 struct e1000_reg_info *reginfo;
219 struct e1000_ring *tx_ring = adapter->tx_ring;
220 struct e1000_tx_desc *tx_desc;
221 struct my_u0 {
222 __le64 a;
223 __le64 b;
224 } *u0;
225 struct e1000_buffer *buffer_info;
226 struct e1000_ring *rx_ring = adapter->rx_ring;
227 union e1000_rx_desc_packet_split *rx_desc_ps;
228 union e1000_rx_desc_extended *rx_desc;
229 struct my_u1 {
230 __le64 a;
231 __le64 b;
232 __le64 c;
233 __le64 d;
234 } *u1;
235 u32 staterr;
236 int i = 0;
238 if (!netif_msg_hw(adapter))
239 return;
241 /* Print netdevice Info */
242 if (netdev) {
243 dev_info(&adapter->pdev->dev, "Net device Info\n");
244 pr_info("Device Name state trans_start\n");
245 pr_info("%-15s %016lX %016lX\n", netdev->name,
246 netdev->state, dev_trans_start(netdev));
249 /* Print Registers */
250 dev_info(&adapter->pdev->dev, "Register Dump\n");
251 pr_info(" Register Name Value\n");
252 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
253 reginfo->name; reginfo++) {
254 e1000_regdump(hw, reginfo);
257 /* Print Tx Ring Summary */
258 if (!netdev || !netif_running(netdev))
259 return;
261 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
262 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
263 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
264 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
265 0, tx_ring->next_to_use, tx_ring->next_to_clean,
266 (unsigned long long)buffer_info->dma,
267 buffer_info->length,
268 buffer_info->next_to_watch,
269 (unsigned long long)buffer_info->time_stamp);
271 /* Print Tx Ring */
272 if (!netif_msg_tx_done(adapter))
273 goto rx_ring_summary;
275 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
277 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
279 * Legacy Transmit Descriptor
280 * +--------------------------------------------------------------+
281 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
282 * +--------------------------------------------------------------+
283 * 8 | Special | CSS | Status | CMD | CSO | Length |
284 * +--------------------------------------------------------------+
285 * 63 48 47 36 35 32 31 24 23 16 15 0
287 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
288 * 63 48 47 40 39 32 31 16 15 8 7 0
289 * +----------------------------------------------------------------+
290 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
291 * +----------------------------------------------------------------+
292 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
293 * +----------------------------------------------------------------+
294 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
296 * Extended Data Descriptor (DTYP=0x1)
297 * +----------------------------------------------------------------+
298 * 0 | Buffer Address [63:0] |
299 * +----------------------------------------------------------------+
300 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
301 * +----------------------------------------------------------------+
302 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
304 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
305 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
306 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
307 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
308 const char *next_desc;
309 tx_desc = E1000_TX_DESC(*tx_ring, i);
310 buffer_info = &tx_ring->buffer_info[i];
311 u0 = (struct my_u0 *)tx_desc;
312 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
313 next_desc = " NTC/U";
314 else if (i == tx_ring->next_to_use)
315 next_desc = " NTU";
316 else if (i == tx_ring->next_to_clean)
317 next_desc = " NTC";
318 else
319 next_desc = "";
320 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
321 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
322 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
324 (unsigned long long)le64_to_cpu(u0->a),
325 (unsigned long long)le64_to_cpu(u0->b),
326 (unsigned long long)buffer_info->dma,
327 buffer_info->length, buffer_info->next_to_watch,
328 (unsigned long long)buffer_info->time_stamp,
329 buffer_info->skb, next_desc);
331 if (netif_msg_pktdata(adapter) && buffer_info->skb)
332 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
333 16, 1, buffer_info->skb->data,
334 buffer_info->skb->len, true);
337 /* Print Rx Ring Summary */
338 rx_ring_summary:
339 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
340 pr_info("Queue [NTU] [NTC]\n");
341 pr_info(" %5d %5X %5X\n",
342 0, rx_ring->next_to_use, rx_ring->next_to_clean);
344 /* Print Rx Ring */
345 if (!netif_msg_rx_status(adapter))
346 return;
348 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
349 switch (adapter->rx_ps_pages) {
350 case 1:
351 case 2:
352 case 3:
353 /* [Extended] Packet Split Receive Descriptor Format
355 * +-----------------------------------------------------+
356 * 0 | Buffer Address 0 [63:0] |
357 * +-----------------------------------------------------+
358 * 8 | Buffer Address 1 [63:0] |
359 * +-----------------------------------------------------+
360 * 16 | Buffer Address 2 [63:0] |
361 * +-----------------------------------------------------+
362 * 24 | Buffer Address 3 [63:0] |
363 * +-----------------------------------------------------+
365 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
366 /* [Extended] Receive Descriptor (Write-Back) Format
368 * 63 48 47 32 31 13 12 8 7 4 3 0
369 * +------------------------------------------------------+
370 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
371 * | Checksum | Ident | | Queue | | Type |
372 * +------------------------------------------------------+
373 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
374 * +------------------------------------------------------+
375 * 63 48 47 32 31 20 19 0
377 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
378 for (i = 0; i < rx_ring->count; i++) {
379 const char *next_desc;
380 buffer_info = &rx_ring->buffer_info[i];
381 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
382 u1 = (struct my_u1 *)rx_desc_ps;
383 staterr =
384 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
386 if (i == rx_ring->next_to_use)
387 next_desc = " NTU";
388 else if (i == rx_ring->next_to_clean)
389 next_desc = " NTC";
390 else
391 next_desc = "";
393 if (staterr & E1000_RXD_STAT_DD) {
394 /* Descriptor Done */
395 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396 "RWB", i,
397 (unsigned long long)le64_to_cpu(u1->a),
398 (unsigned long long)le64_to_cpu(u1->b),
399 (unsigned long long)le64_to_cpu(u1->c),
400 (unsigned long long)le64_to_cpu(u1->d),
401 buffer_info->skb, next_desc);
402 } else {
403 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
404 "R ", i,
405 (unsigned long long)le64_to_cpu(u1->a),
406 (unsigned long long)le64_to_cpu(u1->b),
407 (unsigned long long)le64_to_cpu(u1->c),
408 (unsigned long long)le64_to_cpu(u1->d),
409 (unsigned long long)buffer_info->dma,
410 buffer_info->skb, next_desc);
412 if (netif_msg_pktdata(adapter))
413 e1000e_dump_ps_pages(adapter,
414 buffer_info);
417 break;
418 default:
419 case 0:
420 /* Extended Receive Descriptor (Read) Format
422 * +-----------------------------------------------------+
423 * 0 | Buffer Address [63:0] |
424 * +-----------------------------------------------------+
425 * 8 | Reserved |
426 * +-----------------------------------------------------+
428 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
429 /* Extended Receive Descriptor (Write-Back) Format
431 * 63 48 47 32 31 24 23 4 3 0
432 * +------------------------------------------------------+
433 * | RSS Hash | | | |
434 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
435 * | Packet | IP | | | Type |
436 * | Checksum | Ident | | | |
437 * +------------------------------------------------------+
438 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
439 * +------------------------------------------------------+
440 * 63 48 47 32 31 20 19 0
442 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
444 for (i = 0; i < rx_ring->count; i++) {
445 const char *next_desc;
447 buffer_info = &rx_ring->buffer_info[i];
448 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
449 u1 = (struct my_u1 *)rx_desc;
450 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
452 if (i == rx_ring->next_to_use)
453 next_desc = " NTU";
454 else if (i == rx_ring->next_to_clean)
455 next_desc = " NTC";
456 else
457 next_desc = "";
459 if (staterr & E1000_RXD_STAT_DD) {
460 /* Descriptor Done */
461 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
462 "RWB", i,
463 (unsigned long long)le64_to_cpu(u1->a),
464 (unsigned long long)le64_to_cpu(u1->b),
465 buffer_info->skb, next_desc);
466 } else {
467 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
468 "R ", i,
469 (unsigned long long)le64_to_cpu(u1->a),
470 (unsigned long long)le64_to_cpu(u1->b),
471 (unsigned long long)buffer_info->dma,
472 buffer_info->skb, next_desc);
474 if (netif_msg_pktdata(adapter) &&
475 buffer_info->skb)
476 print_hex_dump(KERN_INFO, "",
477 DUMP_PREFIX_ADDRESS, 16,
479 buffer_info->skb->data,
480 adapter->rx_buffer_len,
481 true);
488 * e1000_desc_unused - calculate if we have unused descriptors
490 static int e1000_desc_unused(struct e1000_ring *ring)
492 if (ring->next_to_clean > ring->next_to_use)
493 return ring->next_to_clean - ring->next_to_use - 1;
495 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
499 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
500 * @adapter: board private structure
501 * @hwtstamps: time stamp structure to update
502 * @systim: unsigned 64bit system time value.
504 * Convert the system time value stored in the RX/TXSTMP registers into a
505 * hwtstamp which can be used by the upper level time stamping functions.
507 * The 'systim_lock' spinlock is used to protect the consistency of the
508 * system time value. This is needed because reading the 64 bit time
509 * value involves reading two 32 bit registers. The first read latches the
510 * value.
512 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
513 struct skb_shared_hwtstamps *hwtstamps,
514 u64 systim)
516 u64 ns;
517 unsigned long flags;
519 spin_lock_irqsave(&adapter->systim_lock, flags);
520 ns = timecounter_cyc2time(&adapter->tc, systim);
521 spin_unlock_irqrestore(&adapter->systim_lock, flags);
523 memset(hwtstamps, 0, sizeof(*hwtstamps));
524 hwtstamps->hwtstamp = ns_to_ktime(ns);
528 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
529 * @adapter: board private structure
530 * @status: descriptor extended error and status field
531 * @skb: particular skb to include time stamp
533 * If the time stamp is valid, convert it into the timecounter ns value
534 * and store that result into the shhwtstamps structure which is passed
535 * up the network stack.
537 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
538 struct sk_buff *skb)
540 struct e1000_hw *hw = &adapter->hw;
541 u64 rxstmp;
543 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
544 !(status & E1000_RXDEXT_STATERR_TST) ||
545 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
546 return;
548 /* The Rx time stamp registers contain the time stamp. No other
549 * received packet will be time stamped until the Rx time stamp
550 * registers are read. Because only one packet can be time stamped
551 * at a time, the register values must belong to this packet and
552 * therefore none of the other additional attributes need to be
553 * compared.
555 rxstmp = (u64)er32(RXSTMPL);
556 rxstmp |= (u64)er32(RXSTMPH) << 32;
557 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
559 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
563 * e1000_receive_skb - helper function to handle Rx indications
564 * @adapter: board private structure
565 * @staterr: descriptor extended error and status field as written by hardware
566 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
567 * @skb: pointer to sk_buff to be indicated to stack
569 static void e1000_receive_skb(struct e1000_adapter *adapter,
570 struct net_device *netdev, struct sk_buff *skb,
571 u32 staterr, __le16 vlan)
573 u16 tag = le16_to_cpu(vlan);
575 e1000e_rx_hwtstamp(adapter, staterr, skb);
577 skb->protocol = eth_type_trans(skb, netdev);
579 if (staterr & E1000_RXD_STAT_VP)
580 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
582 napi_gro_receive(&adapter->napi, skb);
586 * e1000_rx_checksum - Receive Checksum Offload
587 * @adapter: board private structure
588 * @status_err: receive descriptor status and error fields
589 * @csum: receive descriptor csum field
590 * @sk_buff: socket buffer with received data
592 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
593 struct sk_buff *skb)
595 u16 status = (u16)status_err;
596 u8 errors = (u8)(status_err >> 24);
598 skb_checksum_none_assert(skb);
600 /* Rx checksum disabled */
601 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
602 return;
604 /* Ignore Checksum bit is set */
605 if (status & E1000_RXD_STAT_IXSM)
606 return;
608 /* TCP/UDP checksum error bit or IP checksum error bit is set */
609 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
610 /* let the stack verify checksum errors */
611 adapter->hw_csum_err++;
612 return;
615 /* TCP/UDP Checksum has not been calculated */
616 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
617 return;
619 /* It must be a TCP or UDP packet with a valid checksum */
620 skb->ip_summed = CHECKSUM_UNNECESSARY;
621 adapter->hw_csum_good++;
624 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
626 struct e1000_adapter *adapter = rx_ring->adapter;
627 struct e1000_hw *hw = &adapter->hw;
628 s32 ret_val = __ew32_prepare(hw);
630 writel(i, rx_ring->tail);
632 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
633 u32 rctl = er32(RCTL);
635 ew32(RCTL, rctl & ~E1000_RCTL_EN);
636 e_err("ME firmware caused invalid RDT - resetting\n");
637 schedule_work(&adapter->reset_task);
641 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
643 struct e1000_adapter *adapter = tx_ring->adapter;
644 struct e1000_hw *hw = &adapter->hw;
645 s32 ret_val = __ew32_prepare(hw);
647 writel(i, tx_ring->tail);
649 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
650 u32 tctl = er32(TCTL);
652 ew32(TCTL, tctl & ~E1000_TCTL_EN);
653 e_err("ME firmware caused invalid TDT - resetting\n");
654 schedule_work(&adapter->reset_task);
659 * e1000_alloc_rx_buffers - Replace used receive buffers
660 * @rx_ring: Rx descriptor ring
662 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
663 int cleaned_count, gfp_t gfp)
665 struct e1000_adapter *adapter = rx_ring->adapter;
666 struct net_device *netdev = adapter->netdev;
667 struct pci_dev *pdev = adapter->pdev;
668 union e1000_rx_desc_extended *rx_desc;
669 struct e1000_buffer *buffer_info;
670 struct sk_buff *skb;
671 unsigned int i;
672 unsigned int bufsz = adapter->rx_buffer_len;
674 i = rx_ring->next_to_use;
675 buffer_info = &rx_ring->buffer_info[i];
677 while (cleaned_count--) {
678 skb = buffer_info->skb;
679 if (skb) {
680 skb_trim(skb, 0);
681 goto map_skb;
684 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
685 if (!skb) {
686 /* Better luck next round */
687 adapter->alloc_rx_buff_failed++;
688 break;
691 buffer_info->skb = skb;
692 map_skb:
693 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
694 adapter->rx_buffer_len,
695 DMA_FROM_DEVICE);
696 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
697 dev_err(&pdev->dev, "Rx DMA map failed\n");
698 adapter->rx_dma_failed++;
699 break;
702 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
703 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
705 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
706 /* Force memory writes to complete before letting h/w
707 * know there are new descriptors to fetch. (Only
708 * applicable for weak-ordered memory model archs,
709 * such as IA-64).
711 wmb();
712 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
713 e1000e_update_rdt_wa(rx_ring, i);
714 else
715 writel(i, rx_ring->tail);
717 i++;
718 if (i == rx_ring->count)
719 i = 0;
720 buffer_info = &rx_ring->buffer_info[i];
723 rx_ring->next_to_use = i;
727 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
728 * @rx_ring: Rx descriptor ring
730 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
731 int cleaned_count, gfp_t gfp)
733 struct e1000_adapter *adapter = rx_ring->adapter;
734 struct net_device *netdev = adapter->netdev;
735 struct pci_dev *pdev = adapter->pdev;
736 union e1000_rx_desc_packet_split *rx_desc;
737 struct e1000_buffer *buffer_info;
738 struct e1000_ps_page *ps_page;
739 struct sk_buff *skb;
740 unsigned int i, j;
742 i = rx_ring->next_to_use;
743 buffer_info = &rx_ring->buffer_info[i];
745 while (cleaned_count--) {
746 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
748 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
749 ps_page = &buffer_info->ps_pages[j];
750 if (j >= adapter->rx_ps_pages) {
751 /* all unused desc entries get hw null ptr */
752 rx_desc->read.buffer_addr[j + 1] =
753 ~cpu_to_le64(0);
754 continue;
756 if (!ps_page->page) {
757 ps_page->page = alloc_page(gfp);
758 if (!ps_page->page) {
759 adapter->alloc_rx_buff_failed++;
760 goto no_buffers;
762 ps_page->dma = dma_map_page(&pdev->dev,
763 ps_page->page,
764 0, PAGE_SIZE,
765 DMA_FROM_DEVICE);
766 if (dma_mapping_error(&pdev->dev,
767 ps_page->dma)) {
768 dev_err(&adapter->pdev->dev,
769 "Rx DMA page map failed\n");
770 adapter->rx_dma_failed++;
771 goto no_buffers;
774 /* Refresh the desc even if buffer_addrs
775 * didn't change because each write-back
776 * erases this info.
778 rx_desc->read.buffer_addr[j + 1] =
779 cpu_to_le64(ps_page->dma);
782 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
783 gfp);
785 if (!skb) {
786 adapter->alloc_rx_buff_failed++;
787 break;
790 buffer_info->skb = skb;
791 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
792 adapter->rx_ps_bsize0,
793 DMA_FROM_DEVICE);
794 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
795 dev_err(&pdev->dev, "Rx DMA map failed\n");
796 adapter->rx_dma_failed++;
797 /* cleanup skb */
798 dev_kfree_skb_any(skb);
799 buffer_info->skb = NULL;
800 break;
803 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
805 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
806 /* Force memory writes to complete before letting h/w
807 * know there are new descriptors to fetch. (Only
808 * applicable for weak-ordered memory model archs,
809 * such as IA-64).
811 wmb();
812 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
813 e1000e_update_rdt_wa(rx_ring, i << 1);
814 else
815 writel(i << 1, rx_ring->tail);
818 i++;
819 if (i == rx_ring->count)
820 i = 0;
821 buffer_info = &rx_ring->buffer_info[i];
824 no_buffers:
825 rx_ring->next_to_use = i;
829 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
830 * @rx_ring: Rx descriptor ring
831 * @cleaned_count: number of buffers to allocate this pass
834 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
835 int cleaned_count, gfp_t gfp)
837 struct e1000_adapter *adapter = rx_ring->adapter;
838 struct net_device *netdev = adapter->netdev;
839 struct pci_dev *pdev = adapter->pdev;
840 union e1000_rx_desc_extended *rx_desc;
841 struct e1000_buffer *buffer_info;
842 struct sk_buff *skb;
843 unsigned int i;
844 unsigned int bufsz = 256 - 16; /* for skb_reserve */
846 i = rx_ring->next_to_use;
847 buffer_info = &rx_ring->buffer_info[i];
849 while (cleaned_count--) {
850 skb = buffer_info->skb;
851 if (skb) {
852 skb_trim(skb, 0);
853 goto check_page;
856 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
857 if (unlikely(!skb)) {
858 /* Better luck next round */
859 adapter->alloc_rx_buff_failed++;
860 break;
863 buffer_info->skb = skb;
864 check_page:
865 /* allocate a new page if necessary */
866 if (!buffer_info->page) {
867 buffer_info->page = alloc_page(gfp);
868 if (unlikely(!buffer_info->page)) {
869 adapter->alloc_rx_buff_failed++;
870 break;
874 if (!buffer_info->dma) {
875 buffer_info->dma = dma_map_page(&pdev->dev,
876 buffer_info->page, 0,
877 PAGE_SIZE,
878 DMA_FROM_DEVICE);
879 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
880 adapter->alloc_rx_buff_failed++;
881 break;
885 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
886 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
888 if (unlikely(++i == rx_ring->count))
889 i = 0;
890 buffer_info = &rx_ring->buffer_info[i];
893 if (likely(rx_ring->next_to_use != i)) {
894 rx_ring->next_to_use = i;
895 if (unlikely(i-- == 0))
896 i = (rx_ring->count - 1);
898 /* Force memory writes to complete before letting h/w
899 * know there are new descriptors to fetch. (Only
900 * applicable for weak-ordered memory model archs,
901 * such as IA-64).
903 wmb();
904 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
905 e1000e_update_rdt_wa(rx_ring, i);
906 else
907 writel(i, rx_ring->tail);
911 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
912 struct sk_buff *skb)
914 if (netdev->features & NETIF_F_RXHASH)
915 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
919 * e1000_clean_rx_irq - Send received data up the network stack
920 * @rx_ring: Rx descriptor ring
922 * the return value indicates whether actual cleaning was done, there
923 * is no guarantee that everything was cleaned
925 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
926 int work_to_do)
928 struct e1000_adapter *adapter = rx_ring->adapter;
929 struct net_device *netdev = adapter->netdev;
930 struct pci_dev *pdev = adapter->pdev;
931 struct e1000_hw *hw = &adapter->hw;
932 union e1000_rx_desc_extended *rx_desc, *next_rxd;
933 struct e1000_buffer *buffer_info, *next_buffer;
934 u32 length, staterr;
935 unsigned int i;
936 int cleaned_count = 0;
937 bool cleaned = false;
938 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
940 i = rx_ring->next_to_clean;
941 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
942 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
943 buffer_info = &rx_ring->buffer_info[i];
945 while (staterr & E1000_RXD_STAT_DD) {
946 struct sk_buff *skb;
948 if (*work_done >= work_to_do)
949 break;
950 (*work_done)++;
951 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
953 skb = buffer_info->skb;
954 buffer_info->skb = NULL;
956 prefetch(skb->data - NET_IP_ALIGN);
958 i++;
959 if (i == rx_ring->count)
960 i = 0;
961 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
962 prefetch(next_rxd);
964 next_buffer = &rx_ring->buffer_info[i];
966 cleaned = true;
967 cleaned_count++;
968 dma_unmap_single(&pdev->dev, buffer_info->dma,
969 adapter->rx_buffer_len, DMA_FROM_DEVICE);
970 buffer_info->dma = 0;
972 length = le16_to_cpu(rx_desc->wb.upper.length);
974 /* !EOP means multiple descriptors were used to store a single
975 * packet, if that's the case we need to toss it. In fact, we
976 * need to toss every packet with the EOP bit clear and the
977 * next frame that _does_ have the EOP bit set, as it is by
978 * definition only a frame fragment
980 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
981 adapter->flags2 |= FLAG2_IS_DISCARDING;
983 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
984 /* All receives must fit into a single buffer */
985 e_dbg("Receive packet consumed multiple buffers\n");
986 /* recycle */
987 buffer_info->skb = skb;
988 if (staterr & E1000_RXD_STAT_EOP)
989 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
990 goto next_desc;
993 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
994 !(netdev->features & NETIF_F_RXALL))) {
995 /* recycle */
996 buffer_info->skb = skb;
997 goto next_desc;
1000 /* adjust length to remove Ethernet CRC */
1001 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1002 /* If configured to store CRC, don't subtract FCS,
1003 * but keep the FCS bytes out of the total_rx_bytes
1004 * counter
1006 if (netdev->features & NETIF_F_RXFCS)
1007 total_rx_bytes -= 4;
1008 else
1009 length -= 4;
1012 total_rx_bytes += length;
1013 total_rx_packets++;
1015 /* code added for copybreak, this should improve
1016 * performance for small packets with large amounts
1017 * of reassembly being done in the stack
1019 if (length < copybreak) {
1020 struct sk_buff *new_skb =
1021 napi_alloc_skb(&adapter->napi, length);
1022 if (new_skb) {
1023 skb_copy_to_linear_data_offset(new_skb,
1024 -NET_IP_ALIGN,
1025 (skb->data -
1026 NET_IP_ALIGN),
1027 (length +
1028 NET_IP_ALIGN));
1029 /* save the skb in buffer_info as good */
1030 buffer_info->skb = skb;
1031 skb = new_skb;
1033 /* else just continue with the old one */
1035 /* end copybreak code */
1036 skb_put(skb, length);
1038 /* Receive Checksum Offload */
1039 e1000_rx_checksum(adapter, staterr, skb);
1041 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1043 e1000_receive_skb(adapter, netdev, skb, staterr,
1044 rx_desc->wb.upper.vlan);
1046 next_desc:
1047 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1049 /* return some buffers to hardware, one at a time is too slow */
1050 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1051 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1052 GFP_ATOMIC);
1053 cleaned_count = 0;
1056 /* use prefetched values */
1057 rx_desc = next_rxd;
1058 buffer_info = next_buffer;
1060 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1062 rx_ring->next_to_clean = i;
1064 cleaned_count = e1000_desc_unused(rx_ring);
1065 if (cleaned_count)
1066 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1068 adapter->total_rx_bytes += total_rx_bytes;
1069 adapter->total_rx_packets += total_rx_packets;
1070 return cleaned;
1073 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1074 struct e1000_buffer *buffer_info,
1075 bool drop)
1077 struct e1000_adapter *adapter = tx_ring->adapter;
1079 if (buffer_info->dma) {
1080 if (buffer_info->mapped_as_page)
1081 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1082 buffer_info->length, DMA_TO_DEVICE);
1083 else
1084 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1085 buffer_info->length, DMA_TO_DEVICE);
1086 buffer_info->dma = 0;
1088 if (buffer_info->skb) {
1089 if (drop)
1090 dev_kfree_skb_any(buffer_info->skb);
1091 else
1092 dev_consume_skb_any(buffer_info->skb);
1093 buffer_info->skb = NULL;
1095 buffer_info->time_stamp = 0;
1098 static void e1000_print_hw_hang(struct work_struct *work)
1100 struct e1000_adapter *adapter = container_of(work,
1101 struct e1000_adapter,
1102 print_hang_task);
1103 struct net_device *netdev = adapter->netdev;
1104 struct e1000_ring *tx_ring = adapter->tx_ring;
1105 unsigned int i = tx_ring->next_to_clean;
1106 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1107 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1108 struct e1000_hw *hw = &adapter->hw;
1109 u16 phy_status, phy_1000t_status, phy_ext_status;
1110 u16 pci_status;
1112 if (test_bit(__E1000_DOWN, &adapter->state))
1113 return;
1115 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1116 /* May be block on write-back, flush and detect again
1117 * flush pending descriptor writebacks to memory
1119 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1120 /* execute the writes immediately */
1121 e1e_flush();
1122 /* Due to rare timing issues, write to TIDV again to ensure
1123 * the write is successful
1125 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1126 /* execute the writes immediately */
1127 e1e_flush();
1128 adapter->tx_hang_recheck = true;
1129 return;
1131 adapter->tx_hang_recheck = false;
1133 if (er32(TDH(0)) == er32(TDT(0))) {
1134 e_dbg("false hang detected, ignoring\n");
1135 return;
1138 /* Real hang detected */
1139 netif_stop_queue(netdev);
1141 e1e_rphy(hw, MII_BMSR, &phy_status);
1142 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1143 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1145 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1147 /* detected Hardware unit hang */
1148 e_err("Detected Hardware Unit Hang:\n"
1149 " TDH <%x>\n"
1150 " TDT <%x>\n"
1151 " next_to_use <%x>\n"
1152 " next_to_clean <%x>\n"
1153 "buffer_info[next_to_clean]:\n"
1154 " time_stamp <%lx>\n"
1155 " next_to_watch <%x>\n"
1156 " jiffies <%lx>\n"
1157 " next_to_watch.status <%x>\n"
1158 "MAC Status <%x>\n"
1159 "PHY Status <%x>\n"
1160 "PHY 1000BASE-T Status <%x>\n"
1161 "PHY Extended Status <%x>\n"
1162 "PCI Status <%x>\n",
1163 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1164 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1165 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1166 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1168 e1000e_dump(adapter);
1170 /* Suggest workaround for known h/w issue */
1171 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1172 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1176 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1177 * @work: pointer to work struct
1179 * This work function polls the TSYNCTXCTL valid bit to determine when a
1180 * timestamp has been taken for the current stored skb. The timestamp must
1181 * be for this skb because only one such packet is allowed in the queue.
1183 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1185 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1186 tx_hwtstamp_work);
1187 struct e1000_hw *hw = &adapter->hw;
1189 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1190 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1191 struct skb_shared_hwtstamps shhwtstamps;
1192 u64 txstmp;
1194 txstmp = er32(TXSTMPL);
1195 txstmp |= (u64)er32(TXSTMPH) << 32;
1197 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1199 /* Clear the global tx_hwtstamp_skb pointer and force writes
1200 * prior to notifying the stack of a Tx timestamp.
1202 adapter->tx_hwtstamp_skb = NULL;
1203 wmb(); /* force write prior to skb_tstamp_tx */
1205 skb_tstamp_tx(skb, &shhwtstamps);
1206 dev_consume_skb_any(skb);
1207 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1208 + adapter->tx_timeout_factor * HZ)) {
1209 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1210 adapter->tx_hwtstamp_skb = NULL;
1211 adapter->tx_hwtstamp_timeouts++;
1212 e_warn("clearing Tx timestamp hang\n");
1213 } else {
1214 /* reschedule to check later */
1215 schedule_work(&adapter->tx_hwtstamp_work);
1220 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1221 * @tx_ring: Tx descriptor ring
1223 * the return value indicates whether actual cleaning was done, there
1224 * is no guarantee that everything was cleaned
1226 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1228 struct e1000_adapter *adapter = tx_ring->adapter;
1229 struct net_device *netdev = adapter->netdev;
1230 struct e1000_hw *hw = &adapter->hw;
1231 struct e1000_tx_desc *tx_desc, *eop_desc;
1232 struct e1000_buffer *buffer_info;
1233 unsigned int i, eop;
1234 unsigned int count = 0;
1235 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1236 unsigned int bytes_compl = 0, pkts_compl = 0;
1238 i = tx_ring->next_to_clean;
1239 eop = tx_ring->buffer_info[i].next_to_watch;
1240 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1242 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1243 (count < tx_ring->count)) {
1244 bool cleaned = false;
1246 dma_rmb(); /* read buffer_info after eop_desc */
1247 for (; !cleaned; count++) {
1248 tx_desc = E1000_TX_DESC(*tx_ring, i);
1249 buffer_info = &tx_ring->buffer_info[i];
1250 cleaned = (i == eop);
1252 if (cleaned) {
1253 total_tx_packets += buffer_info->segs;
1254 total_tx_bytes += buffer_info->bytecount;
1255 if (buffer_info->skb) {
1256 bytes_compl += buffer_info->skb->len;
1257 pkts_compl++;
1261 e1000_put_txbuf(tx_ring, buffer_info, false);
1262 tx_desc->upper.data = 0;
1264 i++;
1265 if (i == tx_ring->count)
1266 i = 0;
1269 if (i == tx_ring->next_to_use)
1270 break;
1271 eop = tx_ring->buffer_info[i].next_to_watch;
1272 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1275 tx_ring->next_to_clean = i;
1277 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1279 #define TX_WAKE_THRESHOLD 32
1280 if (count && netif_carrier_ok(netdev) &&
1281 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1282 /* Make sure that anybody stopping the queue after this
1283 * sees the new next_to_clean.
1285 smp_mb();
1287 if (netif_queue_stopped(netdev) &&
1288 !(test_bit(__E1000_DOWN, &adapter->state))) {
1289 netif_wake_queue(netdev);
1290 ++adapter->restart_queue;
1294 if (adapter->detect_tx_hung) {
1295 /* Detect a transmit hang in hardware, this serializes the
1296 * check with the clearing of time_stamp and movement of i
1298 adapter->detect_tx_hung = false;
1299 if (tx_ring->buffer_info[i].time_stamp &&
1300 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1301 + (adapter->tx_timeout_factor * HZ)) &&
1302 !(er32(STATUS) & E1000_STATUS_TXOFF))
1303 schedule_work(&adapter->print_hang_task);
1304 else
1305 adapter->tx_hang_recheck = false;
1307 adapter->total_tx_bytes += total_tx_bytes;
1308 adapter->total_tx_packets += total_tx_packets;
1309 return count < tx_ring->count;
1313 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1314 * @rx_ring: Rx descriptor ring
1316 * the return value indicates whether actual cleaning was done, there
1317 * is no guarantee that everything was cleaned
1319 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1320 int work_to_do)
1322 struct e1000_adapter *adapter = rx_ring->adapter;
1323 struct e1000_hw *hw = &adapter->hw;
1324 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1325 struct net_device *netdev = adapter->netdev;
1326 struct pci_dev *pdev = adapter->pdev;
1327 struct e1000_buffer *buffer_info, *next_buffer;
1328 struct e1000_ps_page *ps_page;
1329 struct sk_buff *skb;
1330 unsigned int i, j;
1331 u32 length, staterr;
1332 int cleaned_count = 0;
1333 bool cleaned = false;
1334 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1336 i = rx_ring->next_to_clean;
1337 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1338 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1339 buffer_info = &rx_ring->buffer_info[i];
1341 while (staterr & E1000_RXD_STAT_DD) {
1342 if (*work_done >= work_to_do)
1343 break;
1344 (*work_done)++;
1345 skb = buffer_info->skb;
1346 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1348 /* in the packet split case this is header only */
1349 prefetch(skb->data - NET_IP_ALIGN);
1351 i++;
1352 if (i == rx_ring->count)
1353 i = 0;
1354 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1355 prefetch(next_rxd);
1357 next_buffer = &rx_ring->buffer_info[i];
1359 cleaned = true;
1360 cleaned_count++;
1361 dma_unmap_single(&pdev->dev, buffer_info->dma,
1362 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1363 buffer_info->dma = 0;
1365 /* see !EOP comment in other Rx routine */
1366 if (!(staterr & E1000_RXD_STAT_EOP))
1367 adapter->flags2 |= FLAG2_IS_DISCARDING;
1369 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1370 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1371 dev_kfree_skb_irq(skb);
1372 if (staterr & E1000_RXD_STAT_EOP)
1373 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1374 goto next_desc;
1377 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1378 !(netdev->features & NETIF_F_RXALL))) {
1379 dev_kfree_skb_irq(skb);
1380 goto next_desc;
1383 length = le16_to_cpu(rx_desc->wb.middle.length0);
1385 if (!length) {
1386 e_dbg("Last part of the packet spanning multiple descriptors\n");
1387 dev_kfree_skb_irq(skb);
1388 goto next_desc;
1391 /* Good Receive */
1392 skb_put(skb, length);
1395 /* this looks ugly, but it seems compiler issues make
1396 * it more efficient than reusing j
1398 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1400 /* page alloc/put takes too long and effects small
1401 * packet throughput, so unsplit small packets and
1402 * save the alloc/put only valid in softirq (napi)
1403 * context to call kmap_*
1405 if (l1 && (l1 <= copybreak) &&
1406 ((length + l1) <= adapter->rx_ps_bsize0)) {
1407 u8 *vaddr;
1409 ps_page = &buffer_info->ps_pages[0];
1411 /* there is no documentation about how to call
1412 * kmap_atomic, so we can't hold the mapping
1413 * very long
1415 dma_sync_single_for_cpu(&pdev->dev,
1416 ps_page->dma,
1417 PAGE_SIZE,
1418 DMA_FROM_DEVICE);
1419 vaddr = kmap_atomic(ps_page->page);
1420 memcpy(skb_tail_pointer(skb), vaddr, l1);
1421 kunmap_atomic(vaddr);
1422 dma_sync_single_for_device(&pdev->dev,
1423 ps_page->dma,
1424 PAGE_SIZE,
1425 DMA_FROM_DEVICE);
1427 /* remove the CRC */
1428 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1429 if (!(netdev->features & NETIF_F_RXFCS))
1430 l1 -= 4;
1433 skb_put(skb, l1);
1434 goto copydone;
1435 } /* if */
1438 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1439 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1440 if (!length)
1441 break;
1443 ps_page = &buffer_info->ps_pages[j];
1444 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1445 DMA_FROM_DEVICE);
1446 ps_page->dma = 0;
1447 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1448 ps_page->page = NULL;
1449 skb->len += length;
1450 skb->data_len += length;
1451 skb->truesize += PAGE_SIZE;
1454 /* strip the ethernet crc, problem is we're using pages now so
1455 * this whole operation can get a little cpu intensive
1457 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1458 if (!(netdev->features & NETIF_F_RXFCS))
1459 pskb_trim(skb, skb->len - 4);
1462 copydone:
1463 total_rx_bytes += skb->len;
1464 total_rx_packets++;
1466 e1000_rx_checksum(adapter, staterr, skb);
1468 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1470 if (rx_desc->wb.upper.header_status &
1471 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1472 adapter->rx_hdr_split++;
1474 e1000_receive_skb(adapter, netdev, skb, staterr,
1475 rx_desc->wb.middle.vlan);
1477 next_desc:
1478 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1479 buffer_info->skb = NULL;
1481 /* return some buffers to hardware, one at a time is too slow */
1482 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1483 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1484 GFP_ATOMIC);
1485 cleaned_count = 0;
1488 /* use prefetched values */
1489 rx_desc = next_rxd;
1490 buffer_info = next_buffer;
1492 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1494 rx_ring->next_to_clean = i;
1496 cleaned_count = e1000_desc_unused(rx_ring);
1497 if (cleaned_count)
1498 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1500 adapter->total_rx_bytes += total_rx_bytes;
1501 adapter->total_rx_packets += total_rx_packets;
1502 return cleaned;
1506 * e1000_consume_page - helper function
1508 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1509 u16 length)
1511 bi->page = NULL;
1512 skb->len += length;
1513 skb->data_len += length;
1514 skb->truesize += PAGE_SIZE;
1518 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1519 * @adapter: board private structure
1521 * the return value indicates whether actual cleaning was done, there
1522 * is no guarantee that everything was cleaned
1524 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1525 int work_to_do)
1527 struct e1000_adapter *adapter = rx_ring->adapter;
1528 struct net_device *netdev = adapter->netdev;
1529 struct pci_dev *pdev = adapter->pdev;
1530 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1531 struct e1000_buffer *buffer_info, *next_buffer;
1532 u32 length, staterr;
1533 unsigned int i;
1534 int cleaned_count = 0;
1535 bool cleaned = false;
1536 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1537 struct skb_shared_info *shinfo;
1539 i = rx_ring->next_to_clean;
1540 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1541 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1542 buffer_info = &rx_ring->buffer_info[i];
1544 while (staterr & E1000_RXD_STAT_DD) {
1545 struct sk_buff *skb;
1547 if (*work_done >= work_to_do)
1548 break;
1549 (*work_done)++;
1550 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1552 skb = buffer_info->skb;
1553 buffer_info->skb = NULL;
1555 ++i;
1556 if (i == rx_ring->count)
1557 i = 0;
1558 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1559 prefetch(next_rxd);
1561 next_buffer = &rx_ring->buffer_info[i];
1563 cleaned = true;
1564 cleaned_count++;
1565 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1566 DMA_FROM_DEVICE);
1567 buffer_info->dma = 0;
1569 length = le16_to_cpu(rx_desc->wb.upper.length);
1571 /* errors is only valid for DD + EOP descriptors */
1572 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1573 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1574 !(netdev->features & NETIF_F_RXALL)))) {
1575 /* recycle both page and skb */
1576 buffer_info->skb = skb;
1577 /* an error means any chain goes out the window too */
1578 if (rx_ring->rx_skb_top)
1579 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1580 rx_ring->rx_skb_top = NULL;
1581 goto next_desc;
1583 #define rxtop (rx_ring->rx_skb_top)
1584 if (!(staterr & E1000_RXD_STAT_EOP)) {
1585 /* this descriptor is only the beginning (or middle) */
1586 if (!rxtop) {
1587 /* this is the beginning of a chain */
1588 rxtop = skb;
1589 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1590 0, length);
1591 } else {
1592 /* this is the middle of a chain */
1593 shinfo = skb_shinfo(rxtop);
1594 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595 buffer_info->page, 0,
1596 length);
1597 /* re-use the skb, only consumed the page */
1598 buffer_info->skb = skb;
1600 e1000_consume_page(buffer_info, rxtop, length);
1601 goto next_desc;
1602 } else {
1603 if (rxtop) {
1604 /* end of the chain */
1605 shinfo = skb_shinfo(rxtop);
1606 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1607 buffer_info->page, 0,
1608 length);
1609 /* re-use the current skb, we only consumed the
1610 * page
1612 buffer_info->skb = skb;
1613 skb = rxtop;
1614 rxtop = NULL;
1615 e1000_consume_page(buffer_info, skb, length);
1616 } else {
1617 /* no chain, got EOP, this buf is the packet
1618 * copybreak to save the put_page/alloc_page
1620 if (length <= copybreak &&
1621 skb_tailroom(skb) >= length) {
1622 u8 *vaddr;
1623 vaddr = kmap_atomic(buffer_info->page);
1624 memcpy(skb_tail_pointer(skb), vaddr,
1625 length);
1626 kunmap_atomic(vaddr);
1627 /* re-use the page, so don't erase
1628 * buffer_info->page
1630 skb_put(skb, length);
1631 } else {
1632 skb_fill_page_desc(skb, 0,
1633 buffer_info->page, 0,
1634 length);
1635 e1000_consume_page(buffer_info, skb,
1636 length);
1641 /* Receive Checksum Offload */
1642 e1000_rx_checksum(adapter, staterr, skb);
1644 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1646 /* probably a little skewed due to removing CRC */
1647 total_rx_bytes += skb->len;
1648 total_rx_packets++;
1650 /* eth type trans needs skb->data to point to something */
1651 if (!pskb_may_pull(skb, ETH_HLEN)) {
1652 e_err("pskb_may_pull failed.\n");
1653 dev_kfree_skb_irq(skb);
1654 goto next_desc;
1657 e1000_receive_skb(adapter, netdev, skb, staterr,
1658 rx_desc->wb.upper.vlan);
1660 next_desc:
1661 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1663 /* return some buffers to hardware, one at a time is too slow */
1664 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1665 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1666 GFP_ATOMIC);
1667 cleaned_count = 0;
1670 /* use prefetched values */
1671 rx_desc = next_rxd;
1672 buffer_info = next_buffer;
1674 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1676 rx_ring->next_to_clean = i;
1678 cleaned_count = e1000_desc_unused(rx_ring);
1679 if (cleaned_count)
1680 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1682 adapter->total_rx_bytes += total_rx_bytes;
1683 adapter->total_rx_packets += total_rx_packets;
1684 return cleaned;
1688 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1689 * @rx_ring: Rx descriptor ring
1691 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1693 struct e1000_adapter *adapter = rx_ring->adapter;
1694 struct e1000_buffer *buffer_info;
1695 struct e1000_ps_page *ps_page;
1696 struct pci_dev *pdev = adapter->pdev;
1697 unsigned int i, j;
1699 /* Free all the Rx ring sk_buffs */
1700 for (i = 0; i < rx_ring->count; i++) {
1701 buffer_info = &rx_ring->buffer_info[i];
1702 if (buffer_info->dma) {
1703 if (adapter->clean_rx == e1000_clean_rx_irq)
1704 dma_unmap_single(&pdev->dev, buffer_info->dma,
1705 adapter->rx_buffer_len,
1706 DMA_FROM_DEVICE);
1707 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1708 dma_unmap_page(&pdev->dev, buffer_info->dma,
1709 PAGE_SIZE, DMA_FROM_DEVICE);
1710 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1711 dma_unmap_single(&pdev->dev, buffer_info->dma,
1712 adapter->rx_ps_bsize0,
1713 DMA_FROM_DEVICE);
1714 buffer_info->dma = 0;
1717 if (buffer_info->page) {
1718 put_page(buffer_info->page);
1719 buffer_info->page = NULL;
1722 if (buffer_info->skb) {
1723 dev_kfree_skb(buffer_info->skb);
1724 buffer_info->skb = NULL;
1727 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1728 ps_page = &buffer_info->ps_pages[j];
1729 if (!ps_page->page)
1730 break;
1731 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1732 DMA_FROM_DEVICE);
1733 ps_page->dma = 0;
1734 put_page(ps_page->page);
1735 ps_page->page = NULL;
1739 /* there also may be some cached data from a chained receive */
1740 if (rx_ring->rx_skb_top) {
1741 dev_kfree_skb(rx_ring->rx_skb_top);
1742 rx_ring->rx_skb_top = NULL;
1745 /* Zero out the descriptor ring */
1746 memset(rx_ring->desc, 0, rx_ring->size);
1748 rx_ring->next_to_clean = 0;
1749 rx_ring->next_to_use = 0;
1750 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1753 static void e1000e_downshift_workaround(struct work_struct *work)
1755 struct e1000_adapter *adapter = container_of(work,
1756 struct e1000_adapter,
1757 downshift_task);
1759 if (test_bit(__E1000_DOWN, &adapter->state))
1760 return;
1762 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1766 * e1000_intr_msi - Interrupt Handler
1767 * @irq: interrupt number
1768 * @data: pointer to a network interface device structure
1770 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1772 struct net_device *netdev = data;
1773 struct e1000_adapter *adapter = netdev_priv(netdev);
1774 struct e1000_hw *hw = &adapter->hw;
1775 u32 icr = er32(ICR);
1777 /* read ICR disables interrupts using IAM */
1778 if (icr & E1000_ICR_LSC) {
1779 hw->mac.get_link_status = true;
1780 /* ICH8 workaround-- Call gig speed drop workaround on cable
1781 * disconnect (LSC) before accessing any PHY registers
1783 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1784 (!(er32(STATUS) & E1000_STATUS_LU)))
1785 schedule_work(&adapter->downshift_task);
1787 /* 80003ES2LAN workaround-- For packet buffer work-around on
1788 * link down event; disable receives here in the ISR and reset
1789 * adapter in watchdog
1791 if (netif_carrier_ok(netdev) &&
1792 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1793 /* disable receives */
1794 u32 rctl = er32(RCTL);
1796 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1797 adapter->flags |= FLAG_RESTART_NOW;
1799 /* guard against interrupt when we're going down */
1800 if (!test_bit(__E1000_DOWN, &adapter->state))
1801 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1804 /* Reset on uncorrectable ECC error */
1805 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1806 u32 pbeccsts = er32(PBECCSTS);
1808 adapter->corr_errors +=
1809 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1810 adapter->uncorr_errors +=
1811 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1812 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1814 /* Do the reset outside of interrupt context */
1815 schedule_work(&adapter->reset_task);
1817 /* return immediately since reset is imminent */
1818 return IRQ_HANDLED;
1821 if (napi_schedule_prep(&adapter->napi)) {
1822 adapter->total_tx_bytes = 0;
1823 adapter->total_tx_packets = 0;
1824 adapter->total_rx_bytes = 0;
1825 adapter->total_rx_packets = 0;
1826 __napi_schedule(&adapter->napi);
1829 return IRQ_HANDLED;
1833 * e1000_intr - Interrupt Handler
1834 * @irq: interrupt number
1835 * @data: pointer to a network interface device structure
1837 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1839 struct net_device *netdev = data;
1840 struct e1000_adapter *adapter = netdev_priv(netdev);
1841 struct e1000_hw *hw = &adapter->hw;
1842 u32 rctl, icr = er32(ICR);
1844 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1845 return IRQ_NONE; /* Not our interrupt */
1847 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1848 * not set, then the adapter didn't send an interrupt
1850 if (!(icr & E1000_ICR_INT_ASSERTED))
1851 return IRQ_NONE;
1853 /* Interrupt Auto-Mask...upon reading ICR,
1854 * interrupts are masked. No need for the
1855 * IMC write
1858 if (icr & E1000_ICR_LSC) {
1859 hw->mac.get_link_status = true;
1860 /* ICH8 workaround-- Call gig speed drop workaround on cable
1861 * disconnect (LSC) before accessing any PHY registers
1863 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1864 (!(er32(STATUS) & E1000_STATUS_LU)))
1865 schedule_work(&adapter->downshift_task);
1867 /* 80003ES2LAN workaround--
1868 * For packet buffer work-around on link down event;
1869 * disable receives here in the ISR and
1870 * reset adapter in watchdog
1872 if (netif_carrier_ok(netdev) &&
1873 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1874 /* disable receives */
1875 rctl = er32(RCTL);
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877 adapter->flags |= FLAG_RESTART_NOW;
1879 /* guard against interrupt when we're going down */
1880 if (!test_bit(__E1000_DOWN, &adapter->state))
1881 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1884 /* Reset on uncorrectable ECC error */
1885 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1886 u32 pbeccsts = er32(PBECCSTS);
1888 adapter->corr_errors +=
1889 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1890 adapter->uncorr_errors +=
1891 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1892 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1894 /* Do the reset outside of interrupt context */
1895 schedule_work(&adapter->reset_task);
1897 /* return immediately since reset is imminent */
1898 return IRQ_HANDLED;
1901 if (napi_schedule_prep(&adapter->napi)) {
1902 adapter->total_tx_bytes = 0;
1903 adapter->total_tx_packets = 0;
1904 adapter->total_rx_bytes = 0;
1905 adapter->total_rx_packets = 0;
1906 __napi_schedule(&adapter->napi);
1909 return IRQ_HANDLED;
1912 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1914 struct net_device *netdev = data;
1915 struct e1000_adapter *adapter = netdev_priv(netdev);
1916 struct e1000_hw *hw = &adapter->hw;
1917 u32 icr;
1918 bool enable = true;
1920 icr = er32(ICR);
1921 if (icr & E1000_ICR_RXO) {
1922 ew32(ICR, E1000_ICR_RXO);
1923 enable = false;
1924 /* napi poll will re-enable Other, make sure it runs */
1925 if (napi_schedule_prep(&adapter->napi)) {
1926 adapter->total_rx_bytes = 0;
1927 adapter->total_rx_packets = 0;
1928 __napi_schedule(&adapter->napi);
1931 if (icr & E1000_ICR_LSC) {
1932 ew32(ICR, E1000_ICR_LSC);
1933 hw->mac.get_link_status = true;
1934 /* guard against interrupt when we're going down */
1935 if (!test_bit(__E1000_DOWN, &adapter->state))
1936 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1939 if (enable && !test_bit(__E1000_DOWN, &adapter->state))
1940 ew32(IMS, E1000_IMS_OTHER);
1942 return IRQ_HANDLED;
1945 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1947 struct net_device *netdev = data;
1948 struct e1000_adapter *adapter = netdev_priv(netdev);
1949 struct e1000_hw *hw = &adapter->hw;
1950 struct e1000_ring *tx_ring = adapter->tx_ring;
1952 adapter->total_tx_bytes = 0;
1953 adapter->total_tx_packets = 0;
1955 if (!e1000_clean_tx_irq(tx_ring))
1956 /* Ring was not completely cleaned, so fire another interrupt */
1957 ew32(ICS, tx_ring->ims_val);
1959 if (!test_bit(__E1000_DOWN, &adapter->state))
1960 ew32(IMS, adapter->tx_ring->ims_val);
1962 return IRQ_HANDLED;
1965 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1967 struct net_device *netdev = data;
1968 struct e1000_adapter *adapter = netdev_priv(netdev);
1969 struct e1000_ring *rx_ring = adapter->rx_ring;
1971 /* Write the ITR value calculated at the end of the
1972 * previous interrupt.
1974 if (rx_ring->set_itr) {
1975 u32 itr = rx_ring->itr_val ?
1976 1000000000 / (rx_ring->itr_val * 256) : 0;
1978 writel(itr, rx_ring->itr_register);
1979 rx_ring->set_itr = 0;
1982 if (napi_schedule_prep(&adapter->napi)) {
1983 adapter->total_rx_bytes = 0;
1984 adapter->total_rx_packets = 0;
1985 __napi_schedule(&adapter->napi);
1987 return IRQ_HANDLED;
1991 * e1000_configure_msix - Configure MSI-X hardware
1993 * e1000_configure_msix sets up the hardware to properly
1994 * generate MSI-X interrupts.
1996 static void e1000_configure_msix(struct e1000_adapter *adapter)
1998 struct e1000_hw *hw = &adapter->hw;
1999 struct e1000_ring *rx_ring = adapter->rx_ring;
2000 struct e1000_ring *tx_ring = adapter->tx_ring;
2001 int vector = 0;
2002 u32 ctrl_ext, ivar = 0;
2004 adapter->eiac_mask = 0;
2006 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2007 if (hw->mac.type == e1000_82574) {
2008 u32 rfctl = er32(RFCTL);
2010 rfctl |= E1000_RFCTL_ACK_DIS;
2011 ew32(RFCTL, rfctl);
2014 /* Configure Rx vector */
2015 rx_ring->ims_val = E1000_IMS_RXQ0;
2016 adapter->eiac_mask |= rx_ring->ims_val;
2017 if (rx_ring->itr_val)
2018 writel(1000000000 / (rx_ring->itr_val * 256),
2019 rx_ring->itr_register);
2020 else
2021 writel(1, rx_ring->itr_register);
2022 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2024 /* Configure Tx vector */
2025 tx_ring->ims_val = E1000_IMS_TXQ0;
2026 vector++;
2027 if (tx_ring->itr_val)
2028 writel(1000000000 / (tx_ring->itr_val * 256),
2029 tx_ring->itr_register);
2030 else
2031 writel(1, tx_ring->itr_register);
2032 adapter->eiac_mask |= tx_ring->ims_val;
2033 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2035 /* set vector for Other Causes, e.g. link changes */
2036 vector++;
2037 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2038 if (rx_ring->itr_val)
2039 writel(1000000000 / (rx_ring->itr_val * 256),
2040 hw->hw_addr + E1000_EITR_82574(vector));
2041 else
2042 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2043 adapter->eiac_mask |= E1000_IMS_OTHER;
2045 /* Cause Tx interrupts on every write back */
2046 ivar |= BIT(31);
2048 ew32(IVAR, ivar);
2050 /* enable MSI-X PBA support */
2051 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2052 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2053 ew32(CTRL_EXT, ctrl_ext);
2054 e1e_flush();
2057 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2059 if (adapter->msix_entries) {
2060 pci_disable_msix(adapter->pdev);
2061 kfree(adapter->msix_entries);
2062 adapter->msix_entries = NULL;
2063 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2064 pci_disable_msi(adapter->pdev);
2065 adapter->flags &= ~FLAG_MSI_ENABLED;
2070 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2072 * Attempt to configure interrupts using the best available
2073 * capabilities of the hardware and kernel.
2075 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2077 int err;
2078 int i;
2080 switch (adapter->int_mode) {
2081 case E1000E_INT_MODE_MSIX:
2082 if (adapter->flags & FLAG_HAS_MSIX) {
2083 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2084 adapter->msix_entries = kcalloc(adapter->num_vectors,
2085 sizeof(struct
2086 msix_entry),
2087 GFP_KERNEL);
2088 if (adapter->msix_entries) {
2089 struct e1000_adapter *a = adapter;
2091 for (i = 0; i < adapter->num_vectors; i++)
2092 adapter->msix_entries[i].entry = i;
2094 err = pci_enable_msix_range(a->pdev,
2095 a->msix_entries,
2096 a->num_vectors,
2097 a->num_vectors);
2098 if (err > 0)
2099 return;
2101 /* MSI-X failed, so fall through and try MSI */
2102 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2103 e1000e_reset_interrupt_capability(adapter);
2105 adapter->int_mode = E1000E_INT_MODE_MSI;
2106 /* Fall through */
2107 case E1000E_INT_MODE_MSI:
2108 if (!pci_enable_msi(adapter->pdev)) {
2109 adapter->flags |= FLAG_MSI_ENABLED;
2110 } else {
2111 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2112 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2114 /* Fall through */
2115 case E1000E_INT_MODE_LEGACY:
2116 /* Don't do anything; this is the system default */
2117 break;
2120 /* store the number of vectors being used */
2121 adapter->num_vectors = 1;
2125 * e1000_request_msix - Initialize MSI-X interrupts
2127 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2128 * kernel.
2130 static int e1000_request_msix(struct e1000_adapter *adapter)
2132 struct net_device *netdev = adapter->netdev;
2133 int err = 0, vector = 0;
2135 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2136 snprintf(adapter->rx_ring->name,
2137 sizeof(adapter->rx_ring->name) - 1,
2138 "%s-rx-0", netdev->name);
2139 else
2140 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2141 err = request_irq(adapter->msix_entries[vector].vector,
2142 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2143 netdev);
2144 if (err)
2145 return err;
2146 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2147 E1000_EITR_82574(vector);
2148 adapter->rx_ring->itr_val = adapter->itr;
2149 vector++;
2151 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2152 snprintf(adapter->tx_ring->name,
2153 sizeof(adapter->tx_ring->name) - 1,
2154 "%s-tx-0", netdev->name);
2155 else
2156 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2157 err = request_irq(adapter->msix_entries[vector].vector,
2158 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2159 netdev);
2160 if (err)
2161 return err;
2162 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2163 E1000_EITR_82574(vector);
2164 adapter->tx_ring->itr_val = adapter->itr;
2165 vector++;
2167 err = request_irq(adapter->msix_entries[vector].vector,
2168 e1000_msix_other, 0, netdev->name, netdev);
2169 if (err)
2170 return err;
2172 e1000_configure_msix(adapter);
2174 return 0;
2178 * e1000_request_irq - initialize interrupts
2180 * Attempts to configure interrupts using the best available
2181 * capabilities of the hardware and kernel.
2183 static int e1000_request_irq(struct e1000_adapter *adapter)
2185 struct net_device *netdev = adapter->netdev;
2186 int err;
2188 if (adapter->msix_entries) {
2189 err = e1000_request_msix(adapter);
2190 if (!err)
2191 return err;
2192 /* fall back to MSI */
2193 e1000e_reset_interrupt_capability(adapter);
2194 adapter->int_mode = E1000E_INT_MODE_MSI;
2195 e1000e_set_interrupt_capability(adapter);
2197 if (adapter->flags & FLAG_MSI_ENABLED) {
2198 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2199 netdev->name, netdev);
2200 if (!err)
2201 return err;
2203 /* fall back to legacy interrupt */
2204 e1000e_reset_interrupt_capability(adapter);
2205 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2208 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2209 netdev->name, netdev);
2210 if (err)
2211 e_err("Unable to allocate interrupt, Error: %d\n", err);
2213 return err;
2216 static void e1000_free_irq(struct e1000_adapter *adapter)
2218 struct net_device *netdev = adapter->netdev;
2220 if (adapter->msix_entries) {
2221 int vector = 0;
2223 free_irq(adapter->msix_entries[vector].vector, netdev);
2224 vector++;
2226 free_irq(adapter->msix_entries[vector].vector, netdev);
2227 vector++;
2229 /* Other Causes interrupt vector */
2230 free_irq(adapter->msix_entries[vector].vector, netdev);
2231 return;
2234 free_irq(adapter->pdev->irq, netdev);
2238 * e1000_irq_disable - Mask off interrupt generation on the NIC
2240 static void e1000_irq_disable(struct e1000_adapter *adapter)
2242 struct e1000_hw *hw = &adapter->hw;
2244 ew32(IMC, ~0);
2245 if (adapter->msix_entries)
2246 ew32(EIAC_82574, 0);
2247 e1e_flush();
2249 if (adapter->msix_entries) {
2250 int i;
2252 for (i = 0; i < adapter->num_vectors; i++)
2253 synchronize_irq(adapter->msix_entries[i].vector);
2254 } else {
2255 synchronize_irq(adapter->pdev->irq);
2260 * e1000_irq_enable - Enable default interrupt generation settings
2262 static void e1000_irq_enable(struct e1000_adapter *adapter)
2264 struct e1000_hw *hw = &adapter->hw;
2266 if (adapter->msix_entries) {
2267 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2268 ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2269 } else if (hw->mac.type >= e1000_pch_lpt) {
2270 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2271 } else {
2272 ew32(IMS, IMS_ENABLE_MASK);
2274 e1e_flush();
2278 * e1000e_get_hw_control - get control of the h/w from f/w
2279 * @adapter: address of board private structure
2281 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2282 * For ASF and Pass Through versions of f/w this means that
2283 * the driver is loaded. For AMT version (only with 82573)
2284 * of the f/w this means that the network i/f is open.
2286 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2288 struct e1000_hw *hw = &adapter->hw;
2289 u32 ctrl_ext;
2290 u32 swsm;
2292 /* Let firmware know the driver has taken over */
2293 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294 swsm = er32(SWSM);
2295 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2296 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297 ctrl_ext = er32(CTRL_EXT);
2298 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2303 * e1000e_release_hw_control - release control of the h/w to f/w
2304 * @adapter: address of board private structure
2306 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2307 * For ASF and Pass Through versions of f/w this means that the
2308 * driver is no longer loaded. For AMT version (only with 82573) i
2309 * of the f/w this means that the network i/f is closed.
2312 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2314 struct e1000_hw *hw = &adapter->hw;
2315 u32 ctrl_ext;
2316 u32 swsm;
2318 /* Let firmware taken over control of h/w */
2319 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2320 swsm = er32(SWSM);
2321 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2322 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2323 ctrl_ext = er32(CTRL_EXT);
2324 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2329 * e1000_alloc_ring_dma - allocate memory for a ring structure
2331 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2332 struct e1000_ring *ring)
2334 struct pci_dev *pdev = adapter->pdev;
2336 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2337 GFP_KERNEL);
2338 if (!ring->desc)
2339 return -ENOMEM;
2341 return 0;
2345 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2346 * @tx_ring: Tx descriptor ring
2348 * Return 0 on success, negative on failure
2350 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2352 struct e1000_adapter *adapter = tx_ring->adapter;
2353 int err = -ENOMEM, size;
2355 size = sizeof(struct e1000_buffer) * tx_ring->count;
2356 tx_ring->buffer_info = vzalloc(size);
2357 if (!tx_ring->buffer_info)
2358 goto err;
2360 /* round up to nearest 4K */
2361 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2362 tx_ring->size = ALIGN(tx_ring->size, 4096);
2364 err = e1000_alloc_ring_dma(adapter, tx_ring);
2365 if (err)
2366 goto err;
2368 tx_ring->next_to_use = 0;
2369 tx_ring->next_to_clean = 0;
2371 return 0;
2372 err:
2373 vfree(tx_ring->buffer_info);
2374 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2375 return err;
2379 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2380 * @rx_ring: Rx descriptor ring
2382 * Returns 0 on success, negative on failure
2384 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2386 struct e1000_adapter *adapter = rx_ring->adapter;
2387 struct e1000_buffer *buffer_info;
2388 int i, size, desc_len, err = -ENOMEM;
2390 size = sizeof(struct e1000_buffer) * rx_ring->count;
2391 rx_ring->buffer_info = vzalloc(size);
2392 if (!rx_ring->buffer_info)
2393 goto err;
2395 for (i = 0; i < rx_ring->count; i++) {
2396 buffer_info = &rx_ring->buffer_info[i];
2397 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2398 sizeof(struct e1000_ps_page),
2399 GFP_KERNEL);
2400 if (!buffer_info->ps_pages)
2401 goto err_pages;
2404 desc_len = sizeof(union e1000_rx_desc_packet_split);
2406 /* Round up to nearest 4K */
2407 rx_ring->size = rx_ring->count * desc_len;
2408 rx_ring->size = ALIGN(rx_ring->size, 4096);
2410 err = e1000_alloc_ring_dma(adapter, rx_ring);
2411 if (err)
2412 goto err_pages;
2414 rx_ring->next_to_clean = 0;
2415 rx_ring->next_to_use = 0;
2416 rx_ring->rx_skb_top = NULL;
2418 return 0;
2420 err_pages:
2421 for (i = 0; i < rx_ring->count; i++) {
2422 buffer_info = &rx_ring->buffer_info[i];
2423 kfree(buffer_info->ps_pages);
2425 err:
2426 vfree(rx_ring->buffer_info);
2427 e_err("Unable to allocate memory for the receive descriptor ring\n");
2428 return err;
2432 * e1000_clean_tx_ring - Free Tx Buffers
2433 * @tx_ring: Tx descriptor ring
2435 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2437 struct e1000_adapter *adapter = tx_ring->adapter;
2438 struct e1000_buffer *buffer_info;
2439 unsigned long size;
2440 unsigned int i;
2442 for (i = 0; i < tx_ring->count; i++) {
2443 buffer_info = &tx_ring->buffer_info[i];
2444 e1000_put_txbuf(tx_ring, buffer_info, false);
2447 netdev_reset_queue(adapter->netdev);
2448 size = sizeof(struct e1000_buffer) * tx_ring->count;
2449 memset(tx_ring->buffer_info, 0, size);
2451 memset(tx_ring->desc, 0, tx_ring->size);
2453 tx_ring->next_to_use = 0;
2454 tx_ring->next_to_clean = 0;
2458 * e1000e_free_tx_resources - Free Tx Resources per Queue
2459 * @tx_ring: Tx descriptor ring
2461 * Free all transmit software resources
2463 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2465 struct e1000_adapter *adapter = tx_ring->adapter;
2466 struct pci_dev *pdev = adapter->pdev;
2468 e1000_clean_tx_ring(tx_ring);
2470 vfree(tx_ring->buffer_info);
2471 tx_ring->buffer_info = NULL;
2473 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2474 tx_ring->dma);
2475 tx_ring->desc = NULL;
2479 * e1000e_free_rx_resources - Free Rx Resources
2480 * @rx_ring: Rx descriptor ring
2482 * Free all receive software resources
2484 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2486 struct e1000_adapter *adapter = rx_ring->adapter;
2487 struct pci_dev *pdev = adapter->pdev;
2488 int i;
2490 e1000_clean_rx_ring(rx_ring);
2492 for (i = 0; i < rx_ring->count; i++)
2493 kfree(rx_ring->buffer_info[i].ps_pages);
2495 vfree(rx_ring->buffer_info);
2496 rx_ring->buffer_info = NULL;
2498 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2499 rx_ring->dma);
2500 rx_ring->desc = NULL;
2504 * e1000_update_itr - update the dynamic ITR value based on statistics
2505 * @adapter: pointer to adapter
2506 * @itr_setting: current adapter->itr
2507 * @packets: the number of packets during this measurement interval
2508 * @bytes: the number of bytes during this measurement interval
2510 * Stores a new ITR value based on packets and byte
2511 * counts during the last interrupt. The advantage of per interrupt
2512 * computation is faster updates and more accurate ITR for the current
2513 * traffic pattern. Constants in this function were computed
2514 * based on theoretical maximum wire speed and thresholds were set based
2515 * on testing data as well as attempting to minimize response time
2516 * while increasing bulk throughput. This functionality is controlled
2517 * by the InterruptThrottleRate module parameter.
2519 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2521 unsigned int retval = itr_setting;
2523 if (packets == 0)
2524 return itr_setting;
2526 switch (itr_setting) {
2527 case lowest_latency:
2528 /* handle TSO and jumbo frames */
2529 if (bytes / packets > 8000)
2530 retval = bulk_latency;
2531 else if ((packets < 5) && (bytes > 512))
2532 retval = low_latency;
2533 break;
2534 case low_latency: /* 50 usec aka 20000 ints/s */
2535 if (bytes > 10000) {
2536 /* this if handles the TSO accounting */
2537 if (bytes / packets > 8000)
2538 retval = bulk_latency;
2539 else if ((packets < 10) || ((bytes / packets) > 1200))
2540 retval = bulk_latency;
2541 else if ((packets > 35))
2542 retval = lowest_latency;
2543 } else if (bytes / packets > 2000) {
2544 retval = bulk_latency;
2545 } else if (packets <= 2 && bytes < 512) {
2546 retval = lowest_latency;
2548 break;
2549 case bulk_latency: /* 250 usec aka 4000 ints/s */
2550 if (bytes > 25000) {
2551 if (packets > 35)
2552 retval = low_latency;
2553 } else if (bytes < 6000) {
2554 retval = low_latency;
2556 break;
2559 return retval;
2562 static void e1000_set_itr(struct e1000_adapter *adapter)
2564 u16 current_itr;
2565 u32 new_itr = adapter->itr;
2567 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2568 if (adapter->link_speed != SPEED_1000) {
2569 current_itr = 0;
2570 new_itr = 4000;
2571 goto set_itr_now;
2574 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2575 new_itr = 0;
2576 goto set_itr_now;
2579 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2580 adapter->total_tx_packets,
2581 adapter->total_tx_bytes);
2582 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2583 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2584 adapter->tx_itr = low_latency;
2586 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2587 adapter->total_rx_packets,
2588 adapter->total_rx_bytes);
2589 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2590 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2591 adapter->rx_itr = low_latency;
2593 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2595 /* counts and packets in update_itr are dependent on these numbers */
2596 switch (current_itr) {
2597 case lowest_latency:
2598 new_itr = 70000;
2599 break;
2600 case low_latency:
2601 new_itr = 20000; /* aka hwitr = ~200 */
2602 break;
2603 case bulk_latency:
2604 new_itr = 4000;
2605 break;
2606 default:
2607 break;
2610 set_itr_now:
2611 if (new_itr != adapter->itr) {
2612 /* this attempts to bias the interrupt rate towards Bulk
2613 * by adding intermediate steps when interrupt rate is
2614 * increasing
2616 new_itr = new_itr > adapter->itr ?
2617 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2618 adapter->itr = new_itr;
2619 adapter->rx_ring->itr_val = new_itr;
2620 if (adapter->msix_entries)
2621 adapter->rx_ring->set_itr = 1;
2622 else
2623 e1000e_write_itr(adapter, new_itr);
2628 * e1000e_write_itr - write the ITR value to the appropriate registers
2629 * @adapter: address of board private structure
2630 * @itr: new ITR value to program
2632 * e1000e_write_itr determines if the adapter is in MSI-X mode
2633 * and, if so, writes the EITR registers with the ITR value.
2634 * Otherwise, it writes the ITR value into the ITR register.
2636 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2638 struct e1000_hw *hw = &adapter->hw;
2639 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2641 if (adapter->msix_entries) {
2642 int vector;
2644 for (vector = 0; vector < adapter->num_vectors; vector++)
2645 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2646 } else {
2647 ew32(ITR, new_itr);
2652 * e1000_alloc_queues - Allocate memory for all rings
2653 * @adapter: board private structure to initialize
2655 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2657 int size = sizeof(struct e1000_ring);
2659 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2660 if (!adapter->tx_ring)
2661 goto err;
2662 adapter->tx_ring->count = adapter->tx_ring_count;
2663 adapter->tx_ring->adapter = adapter;
2665 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2666 if (!adapter->rx_ring)
2667 goto err;
2668 adapter->rx_ring->count = adapter->rx_ring_count;
2669 adapter->rx_ring->adapter = adapter;
2671 return 0;
2672 err:
2673 e_err("Unable to allocate memory for queues\n");
2674 kfree(adapter->rx_ring);
2675 kfree(adapter->tx_ring);
2676 return -ENOMEM;
2680 * e1000e_poll - NAPI Rx polling callback
2681 * @napi: struct associated with this polling callback
2682 * @weight: number of packets driver is allowed to process this poll
2684 static int e1000e_poll(struct napi_struct *napi, int weight)
2686 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2687 napi);
2688 struct e1000_hw *hw = &adapter->hw;
2689 struct net_device *poll_dev = adapter->netdev;
2690 int tx_cleaned = 1, work_done = 0;
2692 adapter = netdev_priv(poll_dev);
2694 if (!adapter->msix_entries ||
2695 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2696 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2698 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2700 if (!tx_cleaned)
2701 work_done = weight;
2703 /* If weight not fully consumed, exit the polling mode */
2704 if (work_done < weight) {
2705 if (adapter->itr_setting & 3)
2706 e1000_set_itr(adapter);
2707 napi_complete_done(napi, work_done);
2708 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2709 if (adapter->msix_entries)
2710 ew32(IMS, adapter->rx_ring->ims_val |
2711 E1000_IMS_OTHER);
2712 else
2713 e1000_irq_enable(adapter);
2717 return work_done;
2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2721 __always_unused __be16 proto, u16 vid)
2723 struct e1000_adapter *adapter = netdev_priv(netdev);
2724 struct e1000_hw *hw = &adapter->hw;
2725 u32 vfta, index;
2727 /* don't update vlan cookie if already programmed */
2728 if ((adapter->hw.mng_cookie.status &
2729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730 (vid == adapter->mng_vlan_id))
2731 return 0;
2733 /* add VID to filter table */
2734 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735 index = (vid >> 5) & 0x7F;
2736 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737 vfta |= BIT((vid & 0x1F));
2738 hw->mac.ops.write_vfta(hw, index, vfta);
2741 set_bit(vid, adapter->active_vlans);
2743 return 0;
2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2747 __always_unused __be16 proto, u16 vid)
2749 struct e1000_adapter *adapter = netdev_priv(netdev);
2750 struct e1000_hw *hw = &adapter->hw;
2751 u32 vfta, index;
2753 if ((adapter->hw.mng_cookie.status &
2754 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755 (vid == adapter->mng_vlan_id)) {
2756 /* release control to f/w */
2757 e1000e_release_hw_control(adapter);
2758 return 0;
2761 /* remove VID from filter table */
2762 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763 index = (vid >> 5) & 0x7F;
2764 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765 vfta &= ~BIT((vid & 0x1F));
2766 hw->mac.ops.write_vfta(hw, index, vfta);
2769 clear_bit(vid, adapter->active_vlans);
2771 return 0;
2775 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776 * @adapter: board private structure to initialize
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2780 struct net_device *netdev = adapter->netdev;
2781 struct e1000_hw *hw = &adapter->hw;
2782 u32 rctl;
2784 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785 /* disable VLAN receive filtering */
2786 rctl = er32(RCTL);
2787 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788 ew32(RCTL, rctl);
2790 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2791 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792 adapter->mng_vlan_id);
2793 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2799 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800 * @adapter: board private structure to initialize
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2804 struct e1000_hw *hw = &adapter->hw;
2805 u32 rctl;
2807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808 /* enable VLAN receive filtering */
2809 rctl = er32(RCTL);
2810 rctl |= E1000_RCTL_VFE;
2811 rctl &= ~E1000_RCTL_CFIEN;
2812 ew32(RCTL, rctl);
2817 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2818 * @adapter: board private structure to initialize
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2822 struct e1000_hw *hw = &adapter->hw;
2823 u32 ctrl;
2825 /* disable VLAN tag insert/strip */
2826 ctrl = er32(CTRL);
2827 ctrl &= ~E1000_CTRL_VME;
2828 ew32(CTRL, ctrl);
2832 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833 * @adapter: board private structure to initialize
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2837 struct e1000_hw *hw = &adapter->hw;
2838 u32 ctrl;
2840 /* enable VLAN tag insert/strip */
2841 ctrl = er32(CTRL);
2842 ctrl |= E1000_CTRL_VME;
2843 ew32(CTRL, ctrl);
2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2848 struct net_device *netdev = adapter->netdev;
2849 u16 vid = adapter->hw.mng_cookie.vlan_id;
2850 u16 old_vid = adapter->mng_vlan_id;
2852 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2853 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2854 adapter->mng_vlan_id = vid;
2857 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2858 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2861 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2863 u16 vid;
2865 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2867 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2868 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2873 struct e1000_hw *hw = &adapter->hw;
2874 u32 manc, manc2h, mdef, i, j;
2876 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877 return;
2879 manc = er32(MANC);
2881 /* enable receiving management packets to the host. this will probably
2882 * generate destination unreachable messages from the host OS, but
2883 * the packets will be handled on SMBUS
2885 manc |= E1000_MANC_EN_MNG2HOST;
2886 manc2h = er32(MANC2H);
2888 switch (hw->mac.type) {
2889 default:
2890 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891 break;
2892 case e1000_82574:
2893 case e1000_82583:
2894 /* Check if IPMI pass-through decision filter already exists;
2895 * if so, enable it.
2897 for (i = 0, j = 0; i < 8; i++) {
2898 mdef = er32(MDEF(i));
2900 /* Ignore filters with anything other than IPMI ports */
2901 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902 continue;
2904 /* Enable this decision filter in MANC2H */
2905 if (mdef)
2906 manc2h |= BIT(i);
2908 j |= mdef;
2911 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912 break;
2914 /* Create new decision filter in an empty filter */
2915 for (i = 0, j = 0; i < 8; i++)
2916 if (er32(MDEF(i)) == 0) {
2917 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918 E1000_MDEF_PORT_664));
2919 manc2h |= BIT(1);
2920 j++;
2921 break;
2924 if (!j)
2925 e_warn("Unable to create IPMI pass-through filter\n");
2926 break;
2929 ew32(MANC2H, manc2h);
2930 ew32(MANC, manc);
2934 * e1000_configure_tx - Configure Transmit Unit after Reset
2935 * @adapter: board private structure
2937 * Configure the Tx unit of the MAC after a reset.
2939 static void e1000_configure_tx(struct e1000_adapter *adapter)
2941 struct e1000_hw *hw = &adapter->hw;
2942 struct e1000_ring *tx_ring = adapter->tx_ring;
2943 u64 tdba;
2944 u32 tdlen, tctl, tarc;
2946 /* Setup the HW Tx Head and Tail descriptor pointers */
2947 tdba = tx_ring->dma;
2948 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2949 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950 ew32(TDBAH(0), (tdba >> 32));
2951 ew32(TDLEN(0), tdlen);
2952 ew32(TDH(0), 0);
2953 ew32(TDT(0), 0);
2954 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2957 writel(0, tx_ring->head);
2958 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2959 e1000e_update_tdt_wa(tx_ring, 0);
2960 else
2961 writel(0, tx_ring->tail);
2963 /* Set the Tx Interrupt Delay register */
2964 ew32(TIDV, adapter->tx_int_delay);
2965 /* Tx irq moderation */
2966 ew32(TADV, adapter->tx_abs_int_delay);
2968 if (adapter->flags2 & FLAG2_DMA_BURST) {
2969 u32 txdctl = er32(TXDCTL(0));
2971 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2972 E1000_TXDCTL_WTHRESH);
2973 /* set up some performance related parameters to encourage the
2974 * hardware to use the bus more efficiently in bursts, depends
2975 * on the tx_int_delay to be enabled,
2976 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2977 * hthresh = 1 ==> prefetch when one or more available
2978 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2979 * BEWARE: this seems to work but should be considered first if
2980 * there are Tx hangs or other Tx related bugs
2982 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2983 ew32(TXDCTL(0), txdctl);
2985 /* erratum work around: set txdctl the same for both queues */
2986 ew32(TXDCTL(1), er32(TXDCTL(0)));
2988 /* Program the Transmit Control Register */
2989 tctl = er32(TCTL);
2990 tctl &= ~E1000_TCTL_CT;
2991 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2992 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2994 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2995 tarc = er32(TARC(0));
2996 /* set the speed mode bit, we'll clear it if we're not at
2997 * gigabit link later
2999 #define SPEED_MODE_BIT BIT(21)
3000 tarc |= SPEED_MODE_BIT;
3001 ew32(TARC(0), tarc);
3004 /* errata: program both queues to unweighted RR */
3005 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3006 tarc = er32(TARC(0));
3007 tarc |= 1;
3008 ew32(TARC(0), tarc);
3009 tarc = er32(TARC(1));
3010 tarc |= 1;
3011 ew32(TARC(1), tarc);
3014 /* Setup Transmit Descriptor Settings for eop descriptor */
3015 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3017 /* only set IDE if we are delaying interrupts using the timers */
3018 if (adapter->tx_int_delay)
3019 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3021 /* enable Report Status bit */
3022 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3024 ew32(TCTL, tctl);
3026 hw->mac.ops.config_collision_dist(hw);
3028 /* SPT and KBL Si errata workaround to avoid data corruption */
3029 if (hw->mac.type == e1000_pch_spt) {
3030 u32 reg_val;
3032 reg_val = er32(IOSFPC);
3033 reg_val |= E1000_RCTL_RDMTS_HEX;
3034 ew32(IOSFPC, reg_val);
3036 reg_val = er32(TARC(0));
3037 /* SPT and KBL Si errata workaround to avoid Tx hang.
3038 * Dropping the number of outstanding requests from
3039 * 3 to 2 in order to avoid a buffer overrun.
3041 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3042 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3043 ew32(TARC(0), reg_val);
3048 * e1000_setup_rctl - configure the receive control registers
3049 * @adapter: Board private structure
3051 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3052 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3053 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3055 struct e1000_hw *hw = &adapter->hw;
3056 u32 rctl, rfctl;
3057 u32 pages = 0;
3059 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3060 * If jumbo frames not set, program related MAC/PHY registers
3061 * to h/w defaults
3063 if (hw->mac.type >= e1000_pch2lan) {
3064 s32 ret_val;
3066 if (adapter->netdev->mtu > ETH_DATA_LEN)
3067 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3068 else
3069 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3071 if (ret_val)
3072 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3075 /* Program MC offset vector base */
3076 rctl = er32(RCTL);
3077 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3078 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3079 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3080 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3082 /* Do not Store bad packets */
3083 rctl &= ~E1000_RCTL_SBP;
3085 /* Enable Long Packet receive */
3086 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3087 rctl &= ~E1000_RCTL_LPE;
3088 else
3089 rctl |= E1000_RCTL_LPE;
3091 /* Some systems expect that the CRC is included in SMBUS traffic. The
3092 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3093 * host memory when this is enabled
3095 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3096 rctl |= E1000_RCTL_SECRC;
3098 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3099 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3100 u16 phy_data;
3102 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3103 phy_data &= 0xfff8;
3104 phy_data |= BIT(2);
3105 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3107 e1e_rphy(hw, 22, &phy_data);
3108 phy_data &= 0x0fff;
3109 phy_data |= BIT(14);
3110 e1e_wphy(hw, 0x10, 0x2823);
3111 e1e_wphy(hw, 0x11, 0x0003);
3112 e1e_wphy(hw, 22, phy_data);
3115 /* Setup buffer sizes */
3116 rctl &= ~E1000_RCTL_SZ_4096;
3117 rctl |= E1000_RCTL_BSEX;
3118 switch (adapter->rx_buffer_len) {
3119 case 2048:
3120 default:
3121 rctl |= E1000_RCTL_SZ_2048;
3122 rctl &= ~E1000_RCTL_BSEX;
3123 break;
3124 case 4096:
3125 rctl |= E1000_RCTL_SZ_4096;
3126 break;
3127 case 8192:
3128 rctl |= E1000_RCTL_SZ_8192;
3129 break;
3130 case 16384:
3131 rctl |= E1000_RCTL_SZ_16384;
3132 break;
3135 /* Enable Extended Status in all Receive Descriptors */
3136 rfctl = er32(RFCTL);
3137 rfctl |= E1000_RFCTL_EXTEN;
3138 ew32(RFCTL, rfctl);
3140 /* 82571 and greater support packet-split where the protocol
3141 * header is placed in skb->data and the packet data is
3142 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3143 * In the case of a non-split, skb->data is linearly filled,
3144 * followed by the page buffers. Therefore, skb->data is
3145 * sized to hold the largest protocol header.
3147 * allocations using alloc_page take too long for regular MTU
3148 * so only enable packet split for jumbo frames
3150 * Using pages when the page size is greater than 16k wastes
3151 * a lot of memory, since we allocate 3 pages at all times
3152 * per packet.
3154 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3155 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3156 adapter->rx_ps_pages = pages;
3157 else
3158 adapter->rx_ps_pages = 0;
3160 if (adapter->rx_ps_pages) {
3161 u32 psrctl = 0;
3163 /* Enable Packet split descriptors */
3164 rctl |= E1000_RCTL_DTYP_PS;
3166 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3168 switch (adapter->rx_ps_pages) {
3169 case 3:
3170 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3171 /* fall-through */
3172 case 2:
3173 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3174 /* fall-through */
3175 case 1:
3176 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3177 break;
3180 ew32(PSRCTL, psrctl);
3183 /* This is useful for sniffing bad packets. */
3184 if (adapter->netdev->features & NETIF_F_RXALL) {
3185 /* UPE and MPE will be handled by normal PROMISC logic
3186 * in e1000e_set_rx_mode
3188 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3189 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3190 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3192 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3193 E1000_RCTL_DPF | /* Allow filtered pause */
3194 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3195 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3196 * and that breaks VLANs.
3200 ew32(RCTL, rctl);
3201 /* just started the receive unit, no need to restart */
3202 adapter->flags &= ~FLAG_RESTART_NOW;
3206 * e1000_configure_rx - Configure Receive Unit after Reset
3207 * @adapter: board private structure
3209 * Configure the Rx unit of the MAC after a reset.
3211 static void e1000_configure_rx(struct e1000_adapter *adapter)
3213 struct e1000_hw *hw = &adapter->hw;
3214 struct e1000_ring *rx_ring = adapter->rx_ring;
3215 u64 rdba;
3216 u32 rdlen, rctl, rxcsum, ctrl_ext;
3218 if (adapter->rx_ps_pages) {
3219 /* this is a 32 byte descriptor */
3220 rdlen = rx_ring->count *
3221 sizeof(union e1000_rx_desc_packet_split);
3222 adapter->clean_rx = e1000_clean_rx_irq_ps;
3223 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3224 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3225 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3226 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3227 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3228 } else {
3229 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3230 adapter->clean_rx = e1000_clean_rx_irq;
3231 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3234 /* disable receives while setting up the descriptors */
3235 rctl = er32(RCTL);
3236 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3237 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3238 e1e_flush();
3239 usleep_range(10000, 20000);
3241 if (adapter->flags2 & FLAG2_DMA_BURST) {
3242 /* set the writeback threshold (only takes effect if the RDTR
3243 * is set). set GRAN=1 and write back up to 0x4 worth, and
3244 * enable prefetching of 0x20 Rx descriptors
3245 * granularity = 01
3246 * wthresh = 04,
3247 * hthresh = 04,
3248 * pthresh = 0x20
3250 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3251 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3254 /* set the Receive Delay Timer Register */
3255 ew32(RDTR, adapter->rx_int_delay);
3257 /* irq moderation */
3258 ew32(RADV, adapter->rx_abs_int_delay);
3259 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3260 e1000e_write_itr(adapter, adapter->itr);
3262 ctrl_ext = er32(CTRL_EXT);
3263 /* Auto-Mask interrupts upon ICR access */
3264 ctrl_ext |= E1000_CTRL_EXT_IAME;
3265 ew32(IAM, 0xffffffff);
3266 ew32(CTRL_EXT, ctrl_ext);
3267 e1e_flush();
3269 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3270 * the Base and Length of the Rx Descriptor Ring
3272 rdba = rx_ring->dma;
3273 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3274 ew32(RDBAH(0), (rdba >> 32));
3275 ew32(RDLEN(0), rdlen);
3276 ew32(RDH(0), 0);
3277 ew32(RDT(0), 0);
3278 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3279 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3281 writel(0, rx_ring->head);
3282 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3283 e1000e_update_rdt_wa(rx_ring, 0);
3284 else
3285 writel(0, rx_ring->tail);
3287 /* Enable Receive Checksum Offload for TCP and UDP */
3288 rxcsum = er32(RXCSUM);
3289 if (adapter->netdev->features & NETIF_F_RXCSUM)
3290 rxcsum |= E1000_RXCSUM_TUOFL;
3291 else
3292 rxcsum &= ~E1000_RXCSUM_TUOFL;
3293 ew32(RXCSUM, rxcsum);
3295 /* With jumbo frames, excessive C-state transition latencies result
3296 * in dropped transactions.
3298 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3299 u32 lat =
3300 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3301 adapter->max_frame_size) * 8 / 1000;
3303 if (adapter->flags & FLAG_IS_ICH) {
3304 u32 rxdctl = er32(RXDCTL(0));
3306 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3309 dev_info(&adapter->pdev->dev,
3310 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3311 pm_qos_update_request(&adapter->pm_qos_req, lat);
3312 } else {
3313 pm_qos_update_request(&adapter->pm_qos_req,
3314 PM_QOS_DEFAULT_VALUE);
3317 /* Enable Receives */
3318 ew32(RCTL, rctl);
3322 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3323 * @netdev: network interface device structure
3325 * Writes multicast address list to the MTA hash table.
3326 * Returns: -ENOMEM on failure
3327 * 0 on no addresses written
3328 * X on writing X addresses to MTA
3330 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3332 struct e1000_adapter *adapter = netdev_priv(netdev);
3333 struct e1000_hw *hw = &adapter->hw;
3334 struct netdev_hw_addr *ha;
3335 u8 *mta_list;
3336 int i;
3338 if (netdev_mc_empty(netdev)) {
3339 /* nothing to program, so clear mc list */
3340 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3341 return 0;
3344 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3345 if (!mta_list)
3346 return -ENOMEM;
3348 /* update_mc_addr_list expects a packed array of only addresses. */
3349 i = 0;
3350 netdev_for_each_mc_addr(ha, netdev)
3351 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3353 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3354 kfree(mta_list);
3356 return netdev_mc_count(netdev);
3360 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3361 * @netdev: network interface device structure
3363 * Writes unicast address list to the RAR table.
3364 * Returns: -ENOMEM on failure/insufficient address space
3365 * 0 on no addresses written
3366 * X on writing X addresses to the RAR table
3368 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3370 struct e1000_adapter *adapter = netdev_priv(netdev);
3371 struct e1000_hw *hw = &adapter->hw;
3372 unsigned int rar_entries;
3373 int count = 0;
3375 rar_entries = hw->mac.ops.rar_get_count(hw);
3377 /* save a rar entry for our hardware address */
3378 rar_entries--;
3380 /* save a rar entry for the LAA workaround */
3381 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3382 rar_entries--;
3384 /* return ENOMEM indicating insufficient memory for addresses */
3385 if (netdev_uc_count(netdev) > rar_entries)
3386 return -ENOMEM;
3388 if (!netdev_uc_empty(netdev) && rar_entries) {
3389 struct netdev_hw_addr *ha;
3391 /* write the addresses in reverse order to avoid write
3392 * combining
3394 netdev_for_each_uc_addr(ha, netdev) {
3395 int ret_val;
3397 if (!rar_entries)
3398 break;
3399 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3400 if (ret_val < 0)
3401 return -ENOMEM;
3402 count++;
3406 /* zero out the remaining RAR entries not used above */
3407 for (; rar_entries > 0; rar_entries--) {
3408 ew32(RAH(rar_entries), 0);
3409 ew32(RAL(rar_entries), 0);
3411 e1e_flush();
3413 return count;
3417 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3418 * @netdev: network interface device structure
3420 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3421 * address list or the network interface flags are updated. This routine is
3422 * responsible for configuring the hardware for proper unicast, multicast,
3423 * promiscuous mode, and all-multi behavior.
3425 static void e1000e_set_rx_mode(struct net_device *netdev)
3427 struct e1000_adapter *adapter = netdev_priv(netdev);
3428 struct e1000_hw *hw = &adapter->hw;
3429 u32 rctl;
3431 if (pm_runtime_suspended(netdev->dev.parent))
3432 return;
3434 /* Check for Promiscuous and All Multicast modes */
3435 rctl = er32(RCTL);
3437 /* clear the affected bits */
3438 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3440 if (netdev->flags & IFF_PROMISC) {
3441 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3442 /* Do not hardware filter VLANs in promisc mode */
3443 e1000e_vlan_filter_disable(adapter);
3444 } else {
3445 int count;
3447 if (netdev->flags & IFF_ALLMULTI) {
3448 rctl |= E1000_RCTL_MPE;
3449 } else {
3450 /* Write addresses to the MTA, if the attempt fails
3451 * then we should just turn on promiscuous mode so
3452 * that we can at least receive multicast traffic
3454 count = e1000e_write_mc_addr_list(netdev);
3455 if (count < 0)
3456 rctl |= E1000_RCTL_MPE;
3458 e1000e_vlan_filter_enable(adapter);
3459 /* Write addresses to available RAR registers, if there is not
3460 * sufficient space to store all the addresses then enable
3461 * unicast promiscuous mode
3463 count = e1000e_write_uc_addr_list(netdev);
3464 if (count < 0)
3465 rctl |= E1000_RCTL_UPE;
3468 ew32(RCTL, rctl);
3470 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3471 e1000e_vlan_strip_enable(adapter);
3472 else
3473 e1000e_vlan_strip_disable(adapter);
3476 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3478 struct e1000_hw *hw = &adapter->hw;
3479 u32 mrqc, rxcsum;
3480 u32 rss_key[10];
3481 int i;
3483 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3484 for (i = 0; i < 10; i++)
3485 ew32(RSSRK(i), rss_key[i]);
3487 /* Direct all traffic to queue 0 */
3488 for (i = 0; i < 32; i++)
3489 ew32(RETA(i), 0);
3491 /* Disable raw packet checksumming so that RSS hash is placed in
3492 * descriptor on writeback.
3494 rxcsum = er32(RXCSUM);
3495 rxcsum |= E1000_RXCSUM_PCSD;
3497 ew32(RXCSUM, rxcsum);
3499 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3500 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3501 E1000_MRQC_RSS_FIELD_IPV6 |
3502 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3503 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3505 ew32(MRQC, mrqc);
3509 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3510 * @adapter: board private structure
3511 * @timinca: pointer to returned time increment attributes
3513 * Get attributes for incrementing the System Time Register SYSTIML/H at
3514 * the default base frequency, and set the cyclecounter shift value.
3516 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3518 struct e1000_hw *hw = &adapter->hw;
3519 u32 incvalue, incperiod, shift;
3521 /* Make sure clock is enabled on I217/I218/I219 before checking
3522 * the frequency
3524 if ((hw->mac.type >= e1000_pch_lpt) &&
3525 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3526 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3527 u32 fextnvm7 = er32(FEXTNVM7);
3529 if (!(fextnvm7 & BIT(0))) {
3530 ew32(FEXTNVM7, fextnvm7 | BIT(0));
3531 e1e_flush();
3535 switch (hw->mac.type) {
3536 case e1000_pch2lan:
3537 /* Stable 96MHz frequency */
3538 incperiod = INCPERIOD_96MHZ;
3539 incvalue = INCVALUE_96MHZ;
3540 shift = INCVALUE_SHIFT_96MHZ;
3541 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3542 break;
3543 case e1000_pch_lpt:
3544 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3545 /* Stable 96MHz frequency */
3546 incperiod = INCPERIOD_96MHZ;
3547 incvalue = INCVALUE_96MHZ;
3548 shift = INCVALUE_SHIFT_96MHZ;
3549 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3550 } else {
3551 /* Stable 25MHz frequency */
3552 incperiod = INCPERIOD_25MHZ;
3553 incvalue = INCVALUE_25MHZ;
3554 shift = INCVALUE_SHIFT_25MHZ;
3555 adapter->cc.shift = shift;
3557 break;
3558 case e1000_pch_spt:
3559 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3560 /* Stable 24MHz frequency */
3561 incperiod = INCPERIOD_24MHZ;
3562 incvalue = INCVALUE_24MHZ;
3563 shift = INCVALUE_SHIFT_24MHZ;
3564 adapter->cc.shift = shift;
3565 break;
3567 return -EINVAL;
3568 case e1000_pch_cnp:
3569 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3570 /* Stable 24MHz frequency */
3571 incperiod = INCPERIOD_24MHZ;
3572 incvalue = INCVALUE_24MHZ;
3573 shift = INCVALUE_SHIFT_24MHZ;
3574 adapter->cc.shift = shift;
3575 } else {
3576 /* Stable 38400KHz frequency */
3577 incperiod = INCPERIOD_38400KHZ;
3578 incvalue = INCVALUE_38400KHZ;
3579 shift = INCVALUE_SHIFT_38400KHZ;
3580 adapter->cc.shift = shift;
3582 break;
3583 case e1000_82574:
3584 case e1000_82583:
3585 /* Stable 25MHz frequency */
3586 incperiod = INCPERIOD_25MHZ;
3587 incvalue = INCVALUE_25MHZ;
3588 shift = INCVALUE_SHIFT_25MHZ;
3589 adapter->cc.shift = shift;
3590 break;
3591 default:
3592 return -EINVAL;
3595 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3596 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3598 return 0;
3602 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3603 * @adapter: board private structure
3605 * Outgoing time stamping can be enabled and disabled. Play nice and
3606 * disable it when requested, although it shouldn't cause any overhead
3607 * when no packet needs it. At most one packet in the queue may be
3608 * marked for time stamping, otherwise it would be impossible to tell
3609 * for sure to which packet the hardware time stamp belongs.
3611 * Incoming time stamping has to be configured via the hardware filters.
3612 * Not all combinations are supported, in particular event type has to be
3613 * specified. Matching the kind of event packet is not supported, with the
3614 * exception of "all V2 events regardless of level 2 or 4".
3616 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3617 struct hwtstamp_config *config)
3619 struct e1000_hw *hw = &adapter->hw;
3620 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3621 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3622 u32 rxmtrl = 0;
3623 u16 rxudp = 0;
3624 bool is_l4 = false;
3625 bool is_l2 = false;
3626 u32 regval;
3628 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3629 return -EINVAL;
3631 /* flags reserved for future extensions - must be zero */
3632 if (config->flags)
3633 return -EINVAL;
3635 switch (config->tx_type) {
3636 case HWTSTAMP_TX_OFF:
3637 tsync_tx_ctl = 0;
3638 break;
3639 case HWTSTAMP_TX_ON:
3640 break;
3641 default:
3642 return -ERANGE;
3645 switch (config->rx_filter) {
3646 case HWTSTAMP_FILTER_NONE:
3647 tsync_rx_ctl = 0;
3648 break;
3649 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3650 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3651 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3652 is_l4 = true;
3653 break;
3654 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3655 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3656 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3657 is_l4 = true;
3658 break;
3659 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3660 /* Also time stamps V2 L2 Path Delay Request/Response */
3661 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3662 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3663 is_l2 = true;
3664 break;
3665 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3666 /* Also time stamps V2 L2 Path Delay Request/Response. */
3667 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3668 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3669 is_l2 = true;
3670 break;
3671 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3672 /* Hardware cannot filter just V2 L4 Sync messages;
3673 * fall-through to V2 (both L2 and L4) Sync.
3675 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3676 /* Also time stamps V2 Path Delay Request/Response. */
3677 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3678 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3679 is_l2 = true;
3680 is_l4 = true;
3681 break;
3682 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3683 /* Hardware cannot filter just V2 L4 Delay Request messages;
3684 * fall-through to V2 (both L2 and L4) Delay Request.
3686 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3687 /* Also time stamps V2 Path Delay Request/Response. */
3688 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3689 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3690 is_l2 = true;
3691 is_l4 = true;
3692 break;
3693 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3694 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3695 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3696 * fall-through to all V2 (both L2 and L4) Events.
3698 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3699 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3700 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3701 is_l2 = true;
3702 is_l4 = true;
3703 break;
3704 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3705 /* For V1, the hardware can only filter Sync messages or
3706 * Delay Request messages but not both so fall-through to
3707 * time stamp all packets.
3709 case HWTSTAMP_FILTER_NTP_ALL:
3710 case HWTSTAMP_FILTER_ALL:
3711 is_l2 = true;
3712 is_l4 = true;
3713 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3714 config->rx_filter = HWTSTAMP_FILTER_ALL;
3715 break;
3716 default:
3717 return -ERANGE;
3720 adapter->hwtstamp_config = *config;
3722 /* enable/disable Tx h/w time stamping */
3723 regval = er32(TSYNCTXCTL);
3724 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3725 regval |= tsync_tx_ctl;
3726 ew32(TSYNCTXCTL, regval);
3727 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3728 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3729 e_err("Timesync Tx Control register not set as expected\n");
3730 return -EAGAIN;
3733 /* enable/disable Rx h/w time stamping */
3734 regval = er32(TSYNCRXCTL);
3735 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3736 regval |= tsync_rx_ctl;
3737 ew32(TSYNCRXCTL, regval);
3738 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3739 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3740 (regval & (E1000_TSYNCRXCTL_ENABLED |
3741 E1000_TSYNCRXCTL_TYPE_MASK))) {
3742 e_err("Timesync Rx Control register not set as expected\n");
3743 return -EAGAIN;
3746 /* L2: define ethertype filter for time stamped packets */
3747 if (is_l2)
3748 rxmtrl |= ETH_P_1588;
3750 /* define which PTP packets get time stamped */
3751 ew32(RXMTRL, rxmtrl);
3753 /* Filter by destination port */
3754 if (is_l4) {
3755 rxudp = PTP_EV_PORT;
3756 cpu_to_be16s(&rxudp);
3758 ew32(RXUDP, rxudp);
3760 e1e_flush();
3762 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3763 er32(RXSTMPH);
3764 er32(TXSTMPH);
3766 return 0;
3770 * e1000_configure - configure the hardware for Rx and Tx
3771 * @adapter: private board structure
3773 static void e1000_configure(struct e1000_adapter *adapter)
3775 struct e1000_ring *rx_ring = adapter->rx_ring;
3777 e1000e_set_rx_mode(adapter->netdev);
3779 e1000_restore_vlan(adapter);
3780 e1000_init_manageability_pt(adapter);
3782 e1000_configure_tx(adapter);
3784 if (adapter->netdev->features & NETIF_F_RXHASH)
3785 e1000e_setup_rss_hash(adapter);
3786 e1000_setup_rctl(adapter);
3787 e1000_configure_rx(adapter);
3788 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3792 * e1000e_power_up_phy - restore link in case the phy was powered down
3793 * @adapter: address of board private structure
3795 * The phy may be powered down to save power and turn off link when the
3796 * driver is unloaded and wake on lan is not enabled (among others)
3797 * *** this routine MUST be followed by a call to e1000e_reset ***
3799 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3801 if (adapter->hw.phy.ops.power_up)
3802 adapter->hw.phy.ops.power_up(&adapter->hw);
3804 adapter->hw.mac.ops.setup_link(&adapter->hw);
3808 * e1000_power_down_phy - Power down the PHY
3810 * Power down the PHY so no link is implied when interface is down.
3811 * The PHY cannot be powered down if management or WoL is active.
3813 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3815 if (adapter->hw.phy.ops.power_down)
3816 adapter->hw.phy.ops.power_down(&adapter->hw);
3820 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3822 * We want to clear all pending descriptors from the TX ring.
3823 * zeroing happens when the HW reads the regs. We assign the ring itself as
3824 * the data of the next descriptor. We don't care about the data we are about
3825 * to reset the HW.
3827 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3829 struct e1000_hw *hw = &adapter->hw;
3830 struct e1000_ring *tx_ring = adapter->tx_ring;
3831 struct e1000_tx_desc *tx_desc = NULL;
3832 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3833 u16 size = 512;
3835 tctl = er32(TCTL);
3836 ew32(TCTL, tctl | E1000_TCTL_EN);
3837 tdt = er32(TDT(0));
3838 BUG_ON(tdt != tx_ring->next_to_use);
3839 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3840 tx_desc->buffer_addr = tx_ring->dma;
3842 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3843 tx_desc->upper.data = 0;
3844 /* flush descriptors to memory before notifying the HW */
3845 wmb();
3846 tx_ring->next_to_use++;
3847 if (tx_ring->next_to_use == tx_ring->count)
3848 tx_ring->next_to_use = 0;
3849 ew32(TDT(0), tx_ring->next_to_use);
3850 mmiowb();
3851 usleep_range(200, 250);
3855 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3857 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3859 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3861 u32 rctl, rxdctl;
3862 struct e1000_hw *hw = &adapter->hw;
3864 rctl = er32(RCTL);
3865 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3866 e1e_flush();
3867 usleep_range(100, 150);
3869 rxdctl = er32(RXDCTL(0));
3870 /* zero the lower 14 bits (prefetch and host thresholds) */
3871 rxdctl &= 0xffffc000;
3873 /* update thresholds: prefetch threshold to 31, host threshold to 1
3874 * and make sure the granularity is "descriptors" and not "cache lines"
3876 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3878 ew32(RXDCTL(0), rxdctl);
3879 /* momentarily enable the RX ring for the changes to take effect */
3880 ew32(RCTL, rctl | E1000_RCTL_EN);
3881 e1e_flush();
3882 usleep_range(100, 150);
3883 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3887 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3889 * In i219, the descriptor rings must be emptied before resetting the HW
3890 * or before changing the device state to D3 during runtime (runtime PM).
3892 * Failure to do this will cause the HW to enter a unit hang state which can
3893 * only be released by PCI reset on the device
3897 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3899 u16 hang_state;
3900 u32 fext_nvm11, tdlen;
3901 struct e1000_hw *hw = &adapter->hw;
3903 /* First, disable MULR fix in FEXTNVM11 */
3904 fext_nvm11 = er32(FEXTNVM11);
3905 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3906 ew32(FEXTNVM11, fext_nvm11);
3907 /* do nothing if we're not in faulty state, or if the queue is empty */
3908 tdlen = er32(TDLEN(0));
3909 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3910 &hang_state);
3911 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3912 return;
3913 e1000_flush_tx_ring(adapter);
3914 /* recheck, maybe the fault is caused by the rx ring */
3915 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3916 &hang_state);
3917 if (hang_state & FLUSH_DESC_REQUIRED)
3918 e1000_flush_rx_ring(adapter);
3922 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3923 * @adapter: board private structure
3925 * When the MAC is reset, all hardware bits for timesync will be reset to the
3926 * default values. This function will restore the settings last in place.
3927 * Since the clock SYSTIME registers are reset, we will simply restore the
3928 * cyclecounter to the kernel real clock time.
3930 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3932 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3933 struct e1000_hw *hw = &adapter->hw;
3934 unsigned long flags;
3935 u32 timinca;
3936 s32 ret_val;
3938 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3939 return;
3941 if (info->adjfreq) {
3942 /* restore the previous ptp frequency delta */
3943 ret_val = info->adjfreq(info, adapter->ptp_delta);
3944 } else {
3945 /* set the default base frequency if no adjustment possible */
3946 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3947 if (!ret_val)
3948 ew32(TIMINCA, timinca);
3951 if (ret_val) {
3952 dev_warn(&adapter->pdev->dev,
3953 "Failed to restore TIMINCA clock rate delta: %d\n",
3954 ret_val);
3955 return;
3958 /* reset the systim ns time counter */
3959 spin_lock_irqsave(&adapter->systim_lock, flags);
3960 timecounter_init(&adapter->tc, &adapter->cc,
3961 ktime_to_ns(ktime_get_real()));
3962 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3964 /* restore the previous hwtstamp configuration settings */
3965 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3969 * e1000e_reset - bring the hardware into a known good state
3971 * This function boots the hardware and enables some settings that
3972 * require a configuration cycle of the hardware - those cannot be
3973 * set/changed during runtime. After reset the device needs to be
3974 * properly configured for Rx, Tx etc.
3976 void e1000e_reset(struct e1000_adapter *adapter)
3978 struct e1000_mac_info *mac = &adapter->hw.mac;
3979 struct e1000_fc_info *fc = &adapter->hw.fc;
3980 struct e1000_hw *hw = &adapter->hw;
3981 u32 tx_space, min_tx_space, min_rx_space;
3982 u32 pba = adapter->pba;
3983 u16 hwm;
3985 /* reset Packet Buffer Allocation to default */
3986 ew32(PBA, pba);
3988 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3989 /* To maintain wire speed transmits, the Tx FIFO should be
3990 * large enough to accommodate two full transmit packets,
3991 * rounded up to the next 1KB and expressed in KB. Likewise,
3992 * the Rx FIFO should be large enough to accommodate at least
3993 * one full receive packet and is similarly rounded up and
3994 * expressed in KB.
3996 pba = er32(PBA);
3997 /* upper 16 bits has Tx packet buffer allocation size in KB */
3998 tx_space = pba >> 16;
3999 /* lower 16 bits has Rx packet buffer allocation size in KB */
4000 pba &= 0xffff;
4001 /* the Tx fifo also stores 16 bytes of information about the Tx
4002 * but don't include ethernet FCS because hardware appends it
4004 min_tx_space = (adapter->max_frame_size +
4005 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
4006 min_tx_space = ALIGN(min_tx_space, 1024);
4007 min_tx_space >>= 10;
4008 /* software strips receive CRC, so leave room for it */
4009 min_rx_space = adapter->max_frame_size;
4010 min_rx_space = ALIGN(min_rx_space, 1024);
4011 min_rx_space >>= 10;
4013 /* If current Tx allocation is less than the min Tx FIFO size,
4014 * and the min Tx FIFO size is less than the current Rx FIFO
4015 * allocation, take space away from current Rx allocation
4017 if ((tx_space < min_tx_space) &&
4018 ((min_tx_space - tx_space) < pba)) {
4019 pba -= min_tx_space - tx_space;
4021 /* if short on Rx space, Rx wins and must trump Tx
4022 * adjustment
4024 if (pba < min_rx_space)
4025 pba = min_rx_space;
4028 ew32(PBA, pba);
4031 /* flow control settings
4033 * The high water mark must be low enough to fit one full frame
4034 * (or the size used for early receive) above it in the Rx FIFO.
4035 * Set it to the lower of:
4036 * - 90% of the Rx FIFO size, and
4037 * - the full Rx FIFO size minus one full frame
4039 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4040 fc->pause_time = 0xFFFF;
4041 else
4042 fc->pause_time = E1000_FC_PAUSE_TIME;
4043 fc->send_xon = true;
4044 fc->current_mode = fc->requested_mode;
4046 switch (hw->mac.type) {
4047 case e1000_ich9lan:
4048 case e1000_ich10lan:
4049 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4050 pba = 14;
4051 ew32(PBA, pba);
4052 fc->high_water = 0x2800;
4053 fc->low_water = fc->high_water - 8;
4054 break;
4056 /* fall-through */
4057 default:
4058 hwm = min(((pba << 10) * 9 / 10),
4059 ((pba << 10) - adapter->max_frame_size));
4061 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4062 fc->low_water = fc->high_water - 8;
4063 break;
4064 case e1000_pchlan:
4065 /* Workaround PCH LOM adapter hangs with certain network
4066 * loads. If hangs persist, try disabling Tx flow control.
4068 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4069 fc->high_water = 0x3500;
4070 fc->low_water = 0x1500;
4071 } else {
4072 fc->high_water = 0x5000;
4073 fc->low_water = 0x3000;
4075 fc->refresh_time = 0x1000;
4076 break;
4077 case e1000_pch2lan:
4078 case e1000_pch_lpt:
4079 case e1000_pch_spt:
4080 case e1000_pch_cnp:
4081 fc->refresh_time = 0x0400;
4083 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4084 fc->high_water = 0x05C20;
4085 fc->low_water = 0x05048;
4086 fc->pause_time = 0x0650;
4087 break;
4090 pba = 14;
4091 ew32(PBA, pba);
4092 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4093 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4094 break;
4097 /* Alignment of Tx data is on an arbitrary byte boundary with the
4098 * maximum size per Tx descriptor limited only to the transmit
4099 * allocation of the packet buffer minus 96 bytes with an upper
4100 * limit of 24KB due to receive synchronization limitations.
4102 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4103 24 << 10);
4105 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4106 * fit in receive buffer.
4108 if (adapter->itr_setting & 0x3) {
4109 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4110 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4111 dev_info(&adapter->pdev->dev,
4112 "Interrupt Throttle Rate off\n");
4113 adapter->flags2 |= FLAG2_DISABLE_AIM;
4114 e1000e_write_itr(adapter, 0);
4116 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4117 dev_info(&adapter->pdev->dev,
4118 "Interrupt Throttle Rate on\n");
4119 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4120 adapter->itr = 20000;
4121 e1000e_write_itr(adapter, adapter->itr);
4125 if (hw->mac.type >= e1000_pch_spt)
4126 e1000_flush_desc_rings(adapter);
4127 /* Allow time for pending master requests to run */
4128 mac->ops.reset_hw(hw);
4130 /* For parts with AMT enabled, let the firmware know
4131 * that the network interface is in control
4133 if (adapter->flags & FLAG_HAS_AMT)
4134 e1000e_get_hw_control(adapter);
4136 ew32(WUC, 0);
4138 if (mac->ops.init_hw(hw))
4139 e_err("Hardware Error\n");
4141 e1000_update_mng_vlan(adapter);
4143 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4144 ew32(VET, ETH_P_8021Q);
4146 e1000e_reset_adaptive(hw);
4148 /* restore systim and hwtstamp settings */
4149 e1000e_systim_reset(adapter);
4151 /* Set EEE advertisement as appropriate */
4152 if (adapter->flags2 & FLAG2_HAS_EEE) {
4153 s32 ret_val;
4154 u16 adv_addr;
4156 switch (hw->phy.type) {
4157 case e1000_phy_82579:
4158 adv_addr = I82579_EEE_ADVERTISEMENT;
4159 break;
4160 case e1000_phy_i217:
4161 adv_addr = I217_EEE_ADVERTISEMENT;
4162 break;
4163 default:
4164 dev_err(&adapter->pdev->dev,
4165 "Invalid PHY type setting EEE advertisement\n");
4166 return;
4169 ret_val = hw->phy.ops.acquire(hw);
4170 if (ret_val) {
4171 dev_err(&adapter->pdev->dev,
4172 "EEE advertisement - unable to acquire PHY\n");
4173 return;
4176 e1000_write_emi_reg_locked(hw, adv_addr,
4177 hw->dev_spec.ich8lan.eee_disable ?
4178 0 : adapter->eee_advert);
4180 hw->phy.ops.release(hw);
4183 if (!netif_running(adapter->netdev) &&
4184 !test_bit(__E1000_TESTING, &adapter->state))
4185 e1000_power_down_phy(adapter);
4187 e1000_get_phy_info(hw);
4189 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4190 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4191 u16 phy_data = 0;
4192 /* speed up time to link by disabling smart power down, ignore
4193 * the return value of this function because there is nothing
4194 * different we would do if it failed
4196 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4197 phy_data &= ~IGP02E1000_PM_SPD;
4198 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4200 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4201 u32 reg;
4203 /* Fextnvm7 @ 0xe4[2] = 1 */
4204 reg = er32(FEXTNVM7);
4205 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4206 ew32(FEXTNVM7, reg);
4207 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4208 reg = er32(FEXTNVM9);
4209 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4210 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4211 ew32(FEXTNVM9, reg);
4217 * e1000e_trigger_lsc - trigger an LSC interrupt
4218 * @adapter:
4220 * Fire a link status change interrupt to start the watchdog.
4222 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4224 struct e1000_hw *hw = &adapter->hw;
4226 if (adapter->msix_entries)
4227 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4228 else
4229 ew32(ICS, E1000_ICS_LSC);
4232 void e1000e_up(struct e1000_adapter *adapter)
4234 /* hardware has been reset, we need to reload some things */
4235 e1000_configure(adapter);
4237 clear_bit(__E1000_DOWN, &adapter->state);
4239 if (adapter->msix_entries)
4240 e1000_configure_msix(adapter);
4241 e1000_irq_enable(adapter);
4243 netif_start_queue(adapter->netdev);
4245 e1000e_trigger_lsc(adapter);
4248 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4250 struct e1000_hw *hw = &adapter->hw;
4252 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4253 return;
4255 /* flush pending descriptor writebacks to memory */
4256 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4257 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4259 /* execute the writes immediately */
4260 e1e_flush();
4262 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4263 * write is successful
4265 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4266 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4268 /* execute the writes immediately */
4269 e1e_flush();
4272 static void e1000e_update_stats(struct e1000_adapter *adapter);
4275 * e1000e_down - quiesce the device and optionally reset the hardware
4276 * @adapter: board private structure
4277 * @reset: boolean flag to reset the hardware or not
4279 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4281 struct net_device *netdev = adapter->netdev;
4282 struct e1000_hw *hw = &adapter->hw;
4283 u32 tctl, rctl;
4285 /* signal that we're down so the interrupt handler does not
4286 * reschedule our watchdog timer
4288 set_bit(__E1000_DOWN, &adapter->state);
4290 netif_carrier_off(netdev);
4292 /* disable receives in the hardware */
4293 rctl = er32(RCTL);
4294 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4295 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4296 /* flush and sleep below */
4298 netif_stop_queue(netdev);
4300 /* disable transmits in the hardware */
4301 tctl = er32(TCTL);
4302 tctl &= ~E1000_TCTL_EN;
4303 ew32(TCTL, tctl);
4305 /* flush both disables and wait for them to finish */
4306 e1e_flush();
4307 usleep_range(10000, 20000);
4309 e1000_irq_disable(adapter);
4311 napi_synchronize(&adapter->napi);
4313 del_timer_sync(&adapter->watchdog_timer);
4314 del_timer_sync(&adapter->phy_info_timer);
4316 spin_lock(&adapter->stats64_lock);
4317 e1000e_update_stats(adapter);
4318 spin_unlock(&adapter->stats64_lock);
4320 e1000e_flush_descriptors(adapter);
4322 adapter->link_speed = 0;
4323 adapter->link_duplex = 0;
4325 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4326 if ((hw->mac.type >= e1000_pch2lan) &&
4327 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4328 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4329 e_dbg("failed to disable jumbo frame workaround mode\n");
4331 if (!pci_channel_offline(adapter->pdev)) {
4332 if (reset)
4333 e1000e_reset(adapter);
4334 else if (hw->mac.type >= e1000_pch_spt)
4335 e1000_flush_desc_rings(adapter);
4337 e1000_clean_tx_ring(adapter->tx_ring);
4338 e1000_clean_rx_ring(adapter->rx_ring);
4341 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4343 might_sleep();
4344 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4345 usleep_range(1000, 2000);
4346 e1000e_down(adapter, true);
4347 e1000e_up(adapter);
4348 clear_bit(__E1000_RESETTING, &adapter->state);
4352 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4353 * @hw: pointer to the HW structure
4354 * @systim: time value read, sanitized and returned
4356 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4357 * check to see that the time is incrementing at a reasonable
4358 * rate and is a multiple of incvalue.
4360 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4362 u64 time_delta, rem, temp;
4363 u64 systim_next;
4364 u32 incvalue;
4365 int i;
4367 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4368 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4369 /* latch SYSTIMH on read of SYSTIML */
4370 systim_next = (u64)er32(SYSTIML);
4371 systim_next |= (u64)er32(SYSTIMH) << 32;
4373 time_delta = systim_next - systim;
4374 temp = time_delta;
4375 /* VMWare users have seen incvalue of zero, don't div / 0 */
4376 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4378 systim = systim_next;
4380 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4381 break;
4384 return systim;
4388 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4389 * @cc: cyclecounter structure
4391 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4393 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4394 cc);
4395 struct e1000_hw *hw = &adapter->hw;
4396 u32 systimel, systimeh;
4397 u64 systim;
4398 /* SYSTIMH latching upon SYSTIML read does not work well.
4399 * This means that if SYSTIML overflows after we read it but before
4400 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4401 * will experience a huge non linear increment in the systime value
4402 * to fix that we test for overflow and if true, we re-read systime.
4404 systimel = er32(SYSTIML);
4405 systimeh = er32(SYSTIMH);
4406 /* Is systimel is so large that overflow is possible? */
4407 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4408 u32 systimel_2 = er32(SYSTIML);
4409 if (systimel > systimel_2) {
4410 /* There was an overflow, read again SYSTIMH, and use
4411 * systimel_2
4413 systimeh = er32(SYSTIMH);
4414 systimel = systimel_2;
4417 systim = (u64)systimel;
4418 systim |= (u64)systimeh << 32;
4420 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4421 systim = e1000e_sanitize_systim(hw, systim);
4423 return systim;
4427 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4428 * @adapter: board private structure to initialize
4430 * e1000_sw_init initializes the Adapter private data structure.
4431 * Fields are initialized based on PCI device information and
4432 * OS network device settings (MTU size).
4434 static int e1000_sw_init(struct e1000_adapter *adapter)
4436 struct net_device *netdev = adapter->netdev;
4438 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4439 adapter->rx_ps_bsize0 = 128;
4440 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4441 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4442 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4443 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4445 spin_lock_init(&adapter->stats64_lock);
4447 e1000e_set_interrupt_capability(adapter);
4449 if (e1000_alloc_queues(adapter))
4450 return -ENOMEM;
4452 /* Setup hardware time stamping cyclecounter */
4453 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4454 adapter->cc.read = e1000e_cyclecounter_read;
4455 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4456 adapter->cc.mult = 1;
4457 /* cc.shift set in e1000e_get_base_tininca() */
4459 spin_lock_init(&adapter->systim_lock);
4460 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4463 /* Explicitly disable IRQ since the NIC can be in any state. */
4464 e1000_irq_disable(adapter);
4466 set_bit(__E1000_DOWN, &adapter->state);
4467 return 0;
4471 * e1000_intr_msi_test - Interrupt Handler
4472 * @irq: interrupt number
4473 * @data: pointer to a network interface device structure
4475 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4477 struct net_device *netdev = data;
4478 struct e1000_adapter *adapter = netdev_priv(netdev);
4479 struct e1000_hw *hw = &adapter->hw;
4480 u32 icr = er32(ICR);
4482 e_dbg("icr is %08X\n", icr);
4483 if (icr & E1000_ICR_RXSEQ) {
4484 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4485 /* Force memory writes to complete before acknowledging the
4486 * interrupt is handled.
4488 wmb();
4491 return IRQ_HANDLED;
4495 * e1000_test_msi_interrupt - Returns 0 for successful test
4496 * @adapter: board private struct
4498 * code flow taken from tg3.c
4500 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4502 struct net_device *netdev = adapter->netdev;
4503 struct e1000_hw *hw = &adapter->hw;
4504 int err;
4506 /* poll_enable hasn't been called yet, so don't need disable */
4507 /* clear any pending events */
4508 er32(ICR);
4510 /* free the real vector and request a test handler */
4511 e1000_free_irq(adapter);
4512 e1000e_reset_interrupt_capability(adapter);
4514 /* Assume that the test fails, if it succeeds then the test
4515 * MSI irq handler will unset this flag
4517 adapter->flags |= FLAG_MSI_TEST_FAILED;
4519 err = pci_enable_msi(adapter->pdev);
4520 if (err)
4521 goto msi_test_failed;
4523 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4524 netdev->name, netdev);
4525 if (err) {
4526 pci_disable_msi(adapter->pdev);
4527 goto msi_test_failed;
4530 /* Force memory writes to complete before enabling and firing an
4531 * interrupt.
4533 wmb();
4535 e1000_irq_enable(adapter);
4537 /* fire an unusual interrupt on the test handler */
4538 ew32(ICS, E1000_ICS_RXSEQ);
4539 e1e_flush();
4540 msleep(100);
4542 e1000_irq_disable(adapter);
4544 rmb(); /* read flags after interrupt has been fired */
4546 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4547 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4548 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4549 } else {
4550 e_dbg("MSI interrupt test succeeded!\n");
4553 free_irq(adapter->pdev->irq, netdev);
4554 pci_disable_msi(adapter->pdev);
4556 msi_test_failed:
4557 e1000e_set_interrupt_capability(adapter);
4558 return e1000_request_irq(adapter);
4562 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4563 * @adapter: board private struct
4565 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4567 static int e1000_test_msi(struct e1000_adapter *adapter)
4569 int err;
4570 u16 pci_cmd;
4572 if (!(adapter->flags & FLAG_MSI_ENABLED))
4573 return 0;
4575 /* disable SERR in case the MSI write causes a master abort */
4576 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4577 if (pci_cmd & PCI_COMMAND_SERR)
4578 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4579 pci_cmd & ~PCI_COMMAND_SERR);
4581 err = e1000_test_msi_interrupt(adapter);
4583 /* re-enable SERR */
4584 if (pci_cmd & PCI_COMMAND_SERR) {
4585 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4586 pci_cmd |= PCI_COMMAND_SERR;
4587 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4590 return err;
4594 * e1000e_open - Called when a network interface is made active
4595 * @netdev: network interface device structure
4597 * Returns 0 on success, negative value on failure
4599 * The open entry point is called when a network interface is made
4600 * active by the system (IFF_UP). At this point all resources needed
4601 * for transmit and receive operations are allocated, the interrupt
4602 * handler is registered with the OS, the watchdog timer is started,
4603 * and the stack is notified that the interface is ready.
4605 int e1000e_open(struct net_device *netdev)
4607 struct e1000_adapter *adapter = netdev_priv(netdev);
4608 struct e1000_hw *hw = &adapter->hw;
4609 struct pci_dev *pdev = adapter->pdev;
4610 int err;
4612 /* disallow open during test */
4613 if (test_bit(__E1000_TESTING, &adapter->state))
4614 return -EBUSY;
4616 pm_runtime_get_sync(&pdev->dev);
4618 netif_carrier_off(netdev);
4620 /* allocate transmit descriptors */
4621 err = e1000e_setup_tx_resources(adapter->tx_ring);
4622 if (err)
4623 goto err_setup_tx;
4625 /* allocate receive descriptors */
4626 err = e1000e_setup_rx_resources(adapter->rx_ring);
4627 if (err)
4628 goto err_setup_rx;
4630 /* If AMT is enabled, let the firmware know that the network
4631 * interface is now open and reset the part to a known state.
4633 if (adapter->flags & FLAG_HAS_AMT) {
4634 e1000e_get_hw_control(adapter);
4635 e1000e_reset(adapter);
4638 e1000e_power_up_phy(adapter);
4640 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4641 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4642 e1000_update_mng_vlan(adapter);
4644 /* DMA latency requirement to workaround jumbo issue */
4645 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4646 PM_QOS_DEFAULT_VALUE);
4648 /* before we allocate an interrupt, we must be ready to handle it.
4649 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4650 * as soon as we call pci_request_irq, so we have to setup our
4651 * clean_rx handler before we do so.
4653 e1000_configure(adapter);
4655 err = e1000_request_irq(adapter);
4656 if (err)
4657 goto err_req_irq;
4659 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4660 * ignore e1000e MSI messages, which means we need to test our MSI
4661 * interrupt now
4663 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4664 err = e1000_test_msi(adapter);
4665 if (err) {
4666 e_err("Interrupt allocation failed\n");
4667 goto err_req_irq;
4671 /* From here on the code is the same as e1000e_up() */
4672 clear_bit(__E1000_DOWN, &adapter->state);
4674 napi_enable(&adapter->napi);
4676 e1000_irq_enable(adapter);
4678 adapter->tx_hang_recheck = false;
4679 netif_start_queue(netdev);
4681 hw->mac.get_link_status = true;
4682 pm_runtime_put(&pdev->dev);
4684 e1000e_trigger_lsc(adapter);
4686 return 0;
4688 err_req_irq:
4689 pm_qos_remove_request(&adapter->pm_qos_req);
4690 e1000e_release_hw_control(adapter);
4691 e1000_power_down_phy(adapter);
4692 e1000e_free_rx_resources(adapter->rx_ring);
4693 err_setup_rx:
4694 e1000e_free_tx_resources(adapter->tx_ring);
4695 err_setup_tx:
4696 e1000e_reset(adapter);
4697 pm_runtime_put_sync(&pdev->dev);
4699 return err;
4703 * e1000e_close - Disables a network interface
4704 * @netdev: network interface device structure
4706 * Returns 0, this is not allowed to fail
4708 * The close entry point is called when an interface is de-activated
4709 * by the OS. The hardware is still under the drivers control, but
4710 * needs to be disabled. A global MAC reset is issued to stop the
4711 * hardware, and all transmit and receive resources are freed.
4713 int e1000e_close(struct net_device *netdev)
4715 struct e1000_adapter *adapter = netdev_priv(netdev);
4716 struct pci_dev *pdev = adapter->pdev;
4717 int count = E1000_CHECK_RESET_COUNT;
4719 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4720 usleep_range(10000, 20000);
4722 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4724 pm_runtime_get_sync(&pdev->dev);
4726 if (!test_bit(__E1000_DOWN, &adapter->state)) {
4727 e1000e_down(adapter, true);
4728 e1000_free_irq(adapter);
4730 /* Link status message must follow this format */
4731 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4734 napi_disable(&adapter->napi);
4736 e1000e_free_tx_resources(adapter->tx_ring);
4737 e1000e_free_rx_resources(adapter->rx_ring);
4739 /* kill manageability vlan ID if supported, but not if a vlan with
4740 * the same ID is registered on the host OS (let 8021q kill it)
4742 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4743 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4744 adapter->mng_vlan_id);
4746 /* If AMT is enabled, let the firmware know that the network
4747 * interface is now closed
4749 if ((adapter->flags & FLAG_HAS_AMT) &&
4750 !test_bit(__E1000_TESTING, &adapter->state))
4751 e1000e_release_hw_control(adapter);
4753 pm_qos_remove_request(&adapter->pm_qos_req);
4755 pm_runtime_put_sync(&pdev->dev);
4757 return 0;
4761 * e1000_set_mac - Change the Ethernet Address of the NIC
4762 * @netdev: network interface device structure
4763 * @p: pointer to an address structure
4765 * Returns 0 on success, negative on failure
4767 static int e1000_set_mac(struct net_device *netdev, void *p)
4769 struct e1000_adapter *adapter = netdev_priv(netdev);
4770 struct e1000_hw *hw = &adapter->hw;
4771 struct sockaddr *addr = p;
4773 if (!is_valid_ether_addr(addr->sa_data))
4774 return -EADDRNOTAVAIL;
4776 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4777 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4779 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4781 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4782 /* activate the work around */
4783 e1000e_set_laa_state_82571(&adapter->hw, 1);
4785 /* Hold a copy of the LAA in RAR[14] This is done so that
4786 * between the time RAR[0] gets clobbered and the time it
4787 * gets fixed (in e1000_watchdog), the actual LAA is in one
4788 * of the RARs and no incoming packets directed to this port
4789 * are dropped. Eventually the LAA will be in RAR[0] and
4790 * RAR[14]
4792 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4793 adapter->hw.mac.rar_entry_count - 1);
4796 return 0;
4800 * e1000e_update_phy_task - work thread to update phy
4801 * @work: pointer to our work struct
4803 * this worker thread exists because we must acquire a
4804 * semaphore to read the phy, which we could msleep while
4805 * waiting for it, and we can't msleep in a timer.
4807 static void e1000e_update_phy_task(struct work_struct *work)
4809 struct e1000_adapter *adapter = container_of(work,
4810 struct e1000_adapter,
4811 update_phy_task);
4812 struct e1000_hw *hw = &adapter->hw;
4814 if (test_bit(__E1000_DOWN, &adapter->state))
4815 return;
4817 e1000_get_phy_info(hw);
4819 /* Enable EEE on 82579 after link up */
4820 if (hw->phy.type >= e1000_phy_82579)
4821 e1000_set_eee_pchlan(hw);
4825 * e1000_update_phy_info - timre call-back to update PHY info
4826 * @data: pointer to adapter cast into an unsigned long
4828 * Need to wait a few seconds after link up to get diagnostic information from
4829 * the phy
4831 static void e1000_update_phy_info(struct timer_list *t)
4833 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4835 if (test_bit(__E1000_DOWN, &adapter->state))
4836 return;
4838 schedule_work(&adapter->update_phy_task);
4842 * e1000e_update_phy_stats - Update the PHY statistics counters
4843 * @adapter: board private structure
4845 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4847 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4849 struct e1000_hw *hw = &adapter->hw;
4850 s32 ret_val;
4851 u16 phy_data;
4853 ret_val = hw->phy.ops.acquire(hw);
4854 if (ret_val)
4855 return;
4857 /* A page set is expensive so check if already on desired page.
4858 * If not, set to the page with the PHY status registers.
4860 hw->phy.addr = 1;
4861 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4862 &phy_data);
4863 if (ret_val)
4864 goto release;
4865 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4866 ret_val = hw->phy.ops.set_page(hw,
4867 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4868 if (ret_val)
4869 goto release;
4872 /* Single Collision Count */
4873 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4874 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4875 if (!ret_val)
4876 adapter->stats.scc += phy_data;
4878 /* Excessive Collision Count */
4879 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4880 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4881 if (!ret_val)
4882 adapter->stats.ecol += phy_data;
4884 /* Multiple Collision Count */
4885 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4886 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4887 if (!ret_val)
4888 adapter->stats.mcc += phy_data;
4890 /* Late Collision Count */
4891 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4892 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4893 if (!ret_val)
4894 adapter->stats.latecol += phy_data;
4896 /* Collision Count - also used for adaptive IFS */
4897 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4898 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4899 if (!ret_val)
4900 hw->mac.collision_delta = phy_data;
4902 /* Defer Count */
4903 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4904 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4905 if (!ret_val)
4906 adapter->stats.dc += phy_data;
4908 /* Transmit with no CRS */
4909 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4910 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4911 if (!ret_val)
4912 adapter->stats.tncrs += phy_data;
4914 release:
4915 hw->phy.ops.release(hw);
4919 * e1000e_update_stats - Update the board statistics counters
4920 * @adapter: board private structure
4922 static void e1000e_update_stats(struct e1000_adapter *adapter)
4924 struct net_device *netdev = adapter->netdev;
4925 struct e1000_hw *hw = &adapter->hw;
4926 struct pci_dev *pdev = adapter->pdev;
4928 /* Prevent stats update while adapter is being reset, or if the pci
4929 * connection is down.
4931 if (adapter->link_speed == 0)
4932 return;
4933 if (pci_channel_offline(pdev))
4934 return;
4936 adapter->stats.crcerrs += er32(CRCERRS);
4937 adapter->stats.gprc += er32(GPRC);
4938 adapter->stats.gorc += er32(GORCL);
4939 er32(GORCH); /* Clear gorc */
4940 adapter->stats.bprc += er32(BPRC);
4941 adapter->stats.mprc += er32(MPRC);
4942 adapter->stats.roc += er32(ROC);
4944 adapter->stats.mpc += er32(MPC);
4946 /* Half-duplex statistics */
4947 if (adapter->link_duplex == HALF_DUPLEX) {
4948 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4949 e1000e_update_phy_stats(adapter);
4950 } else {
4951 adapter->stats.scc += er32(SCC);
4952 adapter->stats.ecol += er32(ECOL);
4953 adapter->stats.mcc += er32(MCC);
4954 adapter->stats.latecol += er32(LATECOL);
4955 adapter->stats.dc += er32(DC);
4957 hw->mac.collision_delta = er32(COLC);
4959 if ((hw->mac.type != e1000_82574) &&
4960 (hw->mac.type != e1000_82583))
4961 adapter->stats.tncrs += er32(TNCRS);
4963 adapter->stats.colc += hw->mac.collision_delta;
4966 adapter->stats.xonrxc += er32(XONRXC);
4967 adapter->stats.xontxc += er32(XONTXC);
4968 adapter->stats.xoffrxc += er32(XOFFRXC);
4969 adapter->stats.xofftxc += er32(XOFFTXC);
4970 adapter->stats.gptc += er32(GPTC);
4971 adapter->stats.gotc += er32(GOTCL);
4972 er32(GOTCH); /* Clear gotc */
4973 adapter->stats.rnbc += er32(RNBC);
4974 adapter->stats.ruc += er32(RUC);
4976 adapter->stats.mptc += er32(MPTC);
4977 adapter->stats.bptc += er32(BPTC);
4979 /* used for adaptive IFS */
4981 hw->mac.tx_packet_delta = er32(TPT);
4982 adapter->stats.tpt += hw->mac.tx_packet_delta;
4984 adapter->stats.algnerrc += er32(ALGNERRC);
4985 adapter->stats.rxerrc += er32(RXERRC);
4986 adapter->stats.cexterr += er32(CEXTERR);
4987 adapter->stats.tsctc += er32(TSCTC);
4988 adapter->stats.tsctfc += er32(TSCTFC);
4990 /* Fill out the OS statistics structure */
4991 netdev->stats.multicast = adapter->stats.mprc;
4992 netdev->stats.collisions = adapter->stats.colc;
4994 /* Rx Errors */
4996 /* RLEC on some newer hardware can be incorrect so build
4997 * our own version based on RUC and ROC
4999 netdev->stats.rx_errors = adapter->stats.rxerrc +
5000 adapter->stats.crcerrs + adapter->stats.algnerrc +
5001 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5002 netdev->stats.rx_length_errors = adapter->stats.ruc +
5003 adapter->stats.roc;
5004 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5005 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5006 netdev->stats.rx_missed_errors = adapter->stats.mpc;
5008 /* Tx Errors */
5009 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5010 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5011 netdev->stats.tx_window_errors = adapter->stats.latecol;
5012 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5014 /* Tx Dropped needs to be maintained elsewhere */
5016 /* Management Stats */
5017 adapter->stats.mgptc += er32(MGTPTC);
5018 adapter->stats.mgprc += er32(MGTPRC);
5019 adapter->stats.mgpdc += er32(MGTPDC);
5021 /* Correctable ECC Errors */
5022 if (hw->mac.type >= e1000_pch_lpt) {
5023 u32 pbeccsts = er32(PBECCSTS);
5025 adapter->corr_errors +=
5026 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5027 adapter->uncorr_errors +=
5028 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5029 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5034 * e1000_phy_read_status - Update the PHY register status snapshot
5035 * @adapter: board private structure
5037 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5039 struct e1000_hw *hw = &adapter->hw;
5040 struct e1000_phy_regs *phy = &adapter->phy_regs;
5042 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5043 (er32(STATUS) & E1000_STATUS_LU) &&
5044 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5045 int ret_val;
5047 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5048 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5049 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5050 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5051 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5052 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5053 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5054 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5055 if (ret_val)
5056 e_warn("Error reading PHY register\n");
5057 } else {
5058 /* Do not read PHY registers if link is not up
5059 * Set values to typical power-on defaults
5061 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5062 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5063 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5064 BMSR_ERCAP);
5065 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5066 ADVERTISE_ALL | ADVERTISE_CSMA);
5067 phy->lpa = 0;
5068 phy->expansion = EXPANSION_ENABLENPAGE;
5069 phy->ctrl1000 = ADVERTISE_1000FULL;
5070 phy->stat1000 = 0;
5071 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5075 static void e1000_print_link_info(struct e1000_adapter *adapter)
5077 struct e1000_hw *hw = &adapter->hw;
5078 u32 ctrl = er32(CTRL);
5080 /* Link status message must follow this format for user tools */
5081 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5082 adapter->netdev->name, adapter->link_speed,
5083 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5084 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5085 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5086 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5089 static bool e1000e_has_link(struct e1000_adapter *adapter)
5091 struct e1000_hw *hw = &adapter->hw;
5092 bool link_active = false;
5093 s32 ret_val = 0;
5095 /* get_link_status is set on LSC (link status) interrupt or
5096 * Rx sequence error interrupt. get_link_status will stay
5097 * true until the check_for_link establishes link
5098 * for copper adapters ONLY
5100 switch (hw->phy.media_type) {
5101 case e1000_media_type_copper:
5102 if (hw->mac.get_link_status) {
5103 ret_val = hw->mac.ops.check_for_link(hw);
5104 link_active = ret_val > 0;
5105 } else {
5106 link_active = true;
5108 break;
5109 case e1000_media_type_fiber:
5110 ret_val = hw->mac.ops.check_for_link(hw);
5111 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5112 break;
5113 case e1000_media_type_internal_serdes:
5114 ret_val = hw->mac.ops.check_for_link(hw);
5115 link_active = hw->mac.serdes_has_link;
5116 break;
5117 default:
5118 case e1000_media_type_unknown:
5119 break;
5122 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5123 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5124 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5125 e_info("Gigabit has been disabled, downgrading speed\n");
5128 return link_active;
5131 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5133 /* make sure the receive unit is started */
5134 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5135 (adapter->flags & FLAG_RESTART_NOW)) {
5136 struct e1000_hw *hw = &adapter->hw;
5137 u32 rctl = er32(RCTL);
5139 ew32(RCTL, rctl | E1000_RCTL_EN);
5140 adapter->flags &= ~FLAG_RESTART_NOW;
5144 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5146 struct e1000_hw *hw = &adapter->hw;
5148 /* With 82574 controllers, PHY needs to be checked periodically
5149 * for hung state and reset, if two calls return true
5151 if (e1000_check_phy_82574(hw))
5152 adapter->phy_hang_count++;
5153 else
5154 adapter->phy_hang_count = 0;
5156 if (adapter->phy_hang_count > 1) {
5157 adapter->phy_hang_count = 0;
5158 e_dbg("PHY appears hung - resetting\n");
5159 schedule_work(&adapter->reset_task);
5164 * e1000_watchdog - Timer Call-back
5165 * @data: pointer to adapter cast into an unsigned long
5167 static void e1000_watchdog(struct timer_list *t)
5169 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5171 /* Do the rest outside of interrupt context */
5172 schedule_work(&adapter->watchdog_task);
5174 /* TODO: make this use queue_delayed_work() */
5177 static void e1000_watchdog_task(struct work_struct *work)
5179 struct e1000_adapter *adapter = container_of(work,
5180 struct e1000_adapter,
5181 watchdog_task);
5182 struct net_device *netdev = adapter->netdev;
5183 struct e1000_mac_info *mac = &adapter->hw.mac;
5184 struct e1000_phy_info *phy = &adapter->hw.phy;
5185 struct e1000_ring *tx_ring = adapter->tx_ring;
5186 struct e1000_hw *hw = &adapter->hw;
5187 u32 link, tctl;
5189 if (test_bit(__E1000_DOWN, &adapter->state))
5190 return;
5192 link = e1000e_has_link(adapter);
5193 if ((netif_carrier_ok(netdev)) && link) {
5194 /* Cancel scheduled suspend requests. */
5195 pm_runtime_resume(netdev->dev.parent);
5197 e1000e_enable_receives(adapter);
5198 goto link_up;
5201 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5202 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5203 e1000_update_mng_vlan(adapter);
5205 if (link) {
5206 if (!netif_carrier_ok(netdev)) {
5207 bool txb2b = true;
5209 /* Cancel scheduled suspend requests. */
5210 pm_runtime_resume(netdev->dev.parent);
5212 /* update snapshot of PHY registers on LSC */
5213 e1000_phy_read_status(adapter);
5214 mac->ops.get_link_up_info(&adapter->hw,
5215 &adapter->link_speed,
5216 &adapter->link_duplex);
5217 e1000_print_link_info(adapter);
5219 /* check if SmartSpeed worked */
5220 e1000e_check_downshift(hw);
5221 if (phy->speed_downgraded)
5222 netdev_warn(netdev,
5223 "Link Speed was downgraded by SmartSpeed\n");
5225 /* On supported PHYs, check for duplex mismatch only
5226 * if link has autonegotiated at 10/100 half
5228 if ((hw->phy.type == e1000_phy_igp_3 ||
5229 hw->phy.type == e1000_phy_bm) &&
5230 hw->mac.autoneg &&
5231 (adapter->link_speed == SPEED_10 ||
5232 adapter->link_speed == SPEED_100) &&
5233 (adapter->link_duplex == HALF_DUPLEX)) {
5234 u16 autoneg_exp;
5236 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5238 if (!(autoneg_exp & EXPANSION_NWAY))
5239 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5242 /* adjust timeout factor according to speed/duplex */
5243 adapter->tx_timeout_factor = 1;
5244 switch (adapter->link_speed) {
5245 case SPEED_10:
5246 txb2b = false;
5247 adapter->tx_timeout_factor = 16;
5248 break;
5249 case SPEED_100:
5250 txb2b = false;
5251 adapter->tx_timeout_factor = 10;
5252 break;
5255 /* workaround: re-program speed mode bit after
5256 * link-up event
5258 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5259 !txb2b) {
5260 u32 tarc0;
5262 tarc0 = er32(TARC(0));
5263 tarc0 &= ~SPEED_MODE_BIT;
5264 ew32(TARC(0), tarc0);
5267 /* disable TSO for pcie and 10/100 speeds, to avoid
5268 * some hardware issues
5270 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5271 switch (adapter->link_speed) {
5272 case SPEED_10:
5273 case SPEED_100:
5274 e_info("10/100 speed: disabling TSO\n");
5275 netdev->features &= ~NETIF_F_TSO;
5276 netdev->features &= ~NETIF_F_TSO6;
5277 break;
5278 case SPEED_1000:
5279 netdev->features |= NETIF_F_TSO;
5280 netdev->features |= NETIF_F_TSO6;
5281 break;
5282 default:
5283 /* oops */
5284 break;
5288 /* enable transmits in the hardware, need to do this
5289 * after setting TARC(0)
5291 tctl = er32(TCTL);
5292 tctl |= E1000_TCTL_EN;
5293 ew32(TCTL, tctl);
5295 /* Perform any post-link-up configuration before
5296 * reporting link up.
5298 if (phy->ops.cfg_on_link_up)
5299 phy->ops.cfg_on_link_up(hw);
5301 netif_carrier_on(netdev);
5303 if (!test_bit(__E1000_DOWN, &adapter->state))
5304 mod_timer(&adapter->phy_info_timer,
5305 round_jiffies(jiffies + 2 * HZ));
5307 } else {
5308 if (netif_carrier_ok(netdev)) {
5309 adapter->link_speed = 0;
5310 adapter->link_duplex = 0;
5311 /* Link status message must follow this format */
5312 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5313 netif_carrier_off(netdev);
5314 if (!test_bit(__E1000_DOWN, &adapter->state))
5315 mod_timer(&adapter->phy_info_timer,
5316 round_jiffies(jiffies + 2 * HZ));
5318 /* 8000ES2LAN requires a Rx packet buffer work-around
5319 * on link down event; reset the controller to flush
5320 * the Rx packet buffer.
5322 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5323 adapter->flags |= FLAG_RESTART_NOW;
5324 else
5325 pm_schedule_suspend(netdev->dev.parent,
5326 LINK_TIMEOUT);
5330 link_up:
5331 spin_lock(&adapter->stats64_lock);
5332 e1000e_update_stats(adapter);
5334 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5335 adapter->tpt_old = adapter->stats.tpt;
5336 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5337 adapter->colc_old = adapter->stats.colc;
5339 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5340 adapter->gorc_old = adapter->stats.gorc;
5341 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5342 adapter->gotc_old = adapter->stats.gotc;
5343 spin_unlock(&adapter->stats64_lock);
5345 /* If the link is lost the controller stops DMA, but
5346 * if there is queued Tx work it cannot be done. So
5347 * reset the controller to flush the Tx packet buffers.
5349 if (!netif_carrier_ok(netdev) &&
5350 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5351 adapter->flags |= FLAG_RESTART_NOW;
5353 /* If reset is necessary, do it outside of interrupt context. */
5354 if (adapter->flags & FLAG_RESTART_NOW) {
5355 schedule_work(&adapter->reset_task);
5356 /* return immediately since reset is imminent */
5357 return;
5360 e1000e_update_adaptive(&adapter->hw);
5362 /* Simple mode for Interrupt Throttle Rate (ITR) */
5363 if (adapter->itr_setting == 4) {
5364 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5365 * Total asymmetrical Tx or Rx gets ITR=8000;
5366 * everyone else is between 2000-8000.
5368 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5369 u32 dif = (adapter->gotc > adapter->gorc ?
5370 adapter->gotc - adapter->gorc :
5371 adapter->gorc - adapter->gotc) / 10000;
5372 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5374 e1000e_write_itr(adapter, itr);
5377 /* Cause software interrupt to ensure Rx ring is cleaned */
5378 if (adapter->msix_entries)
5379 ew32(ICS, adapter->rx_ring->ims_val);
5380 else
5381 ew32(ICS, E1000_ICS_RXDMT0);
5383 /* flush pending descriptors to memory before detecting Tx hang */
5384 e1000e_flush_descriptors(adapter);
5386 /* Force detection of hung controller every watchdog period */
5387 adapter->detect_tx_hung = true;
5389 /* With 82571 controllers, LAA may be overwritten due to controller
5390 * reset from the other port. Set the appropriate LAA in RAR[0]
5392 if (e1000e_get_laa_state_82571(hw))
5393 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5395 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5396 e1000e_check_82574_phy_workaround(adapter);
5398 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5399 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5400 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5401 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5402 er32(RXSTMPH);
5403 adapter->rx_hwtstamp_cleared++;
5404 } else {
5405 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5409 /* Reset the timer */
5410 if (!test_bit(__E1000_DOWN, &adapter->state))
5411 mod_timer(&adapter->watchdog_timer,
5412 round_jiffies(jiffies + 2 * HZ));
5415 #define E1000_TX_FLAGS_CSUM 0x00000001
5416 #define E1000_TX_FLAGS_VLAN 0x00000002
5417 #define E1000_TX_FLAGS_TSO 0x00000004
5418 #define E1000_TX_FLAGS_IPV4 0x00000008
5419 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5420 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5421 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5422 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5424 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5425 __be16 protocol)
5427 struct e1000_context_desc *context_desc;
5428 struct e1000_buffer *buffer_info;
5429 unsigned int i;
5430 u32 cmd_length = 0;
5431 u16 ipcse = 0, mss;
5432 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5433 int err;
5435 if (!skb_is_gso(skb))
5436 return 0;
5438 err = skb_cow_head(skb, 0);
5439 if (err < 0)
5440 return err;
5442 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5443 mss = skb_shinfo(skb)->gso_size;
5444 if (protocol == htons(ETH_P_IP)) {
5445 struct iphdr *iph = ip_hdr(skb);
5446 iph->tot_len = 0;
5447 iph->check = 0;
5448 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5449 0, IPPROTO_TCP, 0);
5450 cmd_length = E1000_TXD_CMD_IP;
5451 ipcse = skb_transport_offset(skb) - 1;
5452 } else if (skb_is_gso_v6(skb)) {
5453 ipv6_hdr(skb)->payload_len = 0;
5454 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5455 &ipv6_hdr(skb)->daddr,
5456 0, IPPROTO_TCP, 0);
5457 ipcse = 0;
5459 ipcss = skb_network_offset(skb);
5460 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5461 tucss = skb_transport_offset(skb);
5462 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5464 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5465 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5467 i = tx_ring->next_to_use;
5468 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5469 buffer_info = &tx_ring->buffer_info[i];
5471 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5472 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5473 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5474 context_desc->upper_setup.tcp_fields.tucss = tucss;
5475 context_desc->upper_setup.tcp_fields.tucso = tucso;
5476 context_desc->upper_setup.tcp_fields.tucse = 0;
5477 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5478 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5479 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5481 buffer_info->time_stamp = jiffies;
5482 buffer_info->next_to_watch = i;
5484 i++;
5485 if (i == tx_ring->count)
5486 i = 0;
5487 tx_ring->next_to_use = i;
5489 return 1;
5492 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5493 __be16 protocol)
5495 struct e1000_adapter *adapter = tx_ring->adapter;
5496 struct e1000_context_desc *context_desc;
5497 struct e1000_buffer *buffer_info;
5498 unsigned int i;
5499 u8 css;
5500 u32 cmd_len = E1000_TXD_CMD_DEXT;
5502 if (skb->ip_summed != CHECKSUM_PARTIAL)
5503 return false;
5505 switch (protocol) {
5506 case cpu_to_be16(ETH_P_IP):
5507 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5508 cmd_len |= E1000_TXD_CMD_TCP;
5509 break;
5510 case cpu_to_be16(ETH_P_IPV6):
5511 /* XXX not handling all IPV6 headers */
5512 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5513 cmd_len |= E1000_TXD_CMD_TCP;
5514 break;
5515 default:
5516 if (unlikely(net_ratelimit()))
5517 e_warn("checksum_partial proto=%x!\n",
5518 be16_to_cpu(protocol));
5519 break;
5522 css = skb_checksum_start_offset(skb);
5524 i = tx_ring->next_to_use;
5525 buffer_info = &tx_ring->buffer_info[i];
5526 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5528 context_desc->lower_setup.ip_config = 0;
5529 context_desc->upper_setup.tcp_fields.tucss = css;
5530 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5531 context_desc->upper_setup.tcp_fields.tucse = 0;
5532 context_desc->tcp_seg_setup.data = 0;
5533 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5535 buffer_info->time_stamp = jiffies;
5536 buffer_info->next_to_watch = i;
5538 i++;
5539 if (i == tx_ring->count)
5540 i = 0;
5541 tx_ring->next_to_use = i;
5543 return true;
5546 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5547 unsigned int first, unsigned int max_per_txd,
5548 unsigned int nr_frags)
5550 struct e1000_adapter *adapter = tx_ring->adapter;
5551 struct pci_dev *pdev = adapter->pdev;
5552 struct e1000_buffer *buffer_info;
5553 unsigned int len = skb_headlen(skb);
5554 unsigned int offset = 0, size, count = 0, i;
5555 unsigned int f, bytecount, segs;
5557 i = tx_ring->next_to_use;
5559 while (len) {
5560 buffer_info = &tx_ring->buffer_info[i];
5561 size = min(len, max_per_txd);
5563 buffer_info->length = size;
5564 buffer_info->time_stamp = jiffies;
5565 buffer_info->next_to_watch = i;
5566 buffer_info->dma = dma_map_single(&pdev->dev,
5567 skb->data + offset,
5568 size, DMA_TO_DEVICE);
5569 buffer_info->mapped_as_page = false;
5570 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5571 goto dma_error;
5573 len -= size;
5574 offset += size;
5575 count++;
5577 if (len) {
5578 i++;
5579 if (i == tx_ring->count)
5580 i = 0;
5584 for (f = 0; f < nr_frags; f++) {
5585 const struct skb_frag_struct *frag;
5587 frag = &skb_shinfo(skb)->frags[f];
5588 len = skb_frag_size(frag);
5589 offset = 0;
5591 while (len) {
5592 i++;
5593 if (i == tx_ring->count)
5594 i = 0;
5596 buffer_info = &tx_ring->buffer_info[i];
5597 size = min(len, max_per_txd);
5599 buffer_info->length = size;
5600 buffer_info->time_stamp = jiffies;
5601 buffer_info->next_to_watch = i;
5602 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5603 offset, size,
5604 DMA_TO_DEVICE);
5605 buffer_info->mapped_as_page = true;
5606 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5607 goto dma_error;
5609 len -= size;
5610 offset += size;
5611 count++;
5615 segs = skb_shinfo(skb)->gso_segs ? : 1;
5616 /* multiply data chunks by size of headers */
5617 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5619 tx_ring->buffer_info[i].skb = skb;
5620 tx_ring->buffer_info[i].segs = segs;
5621 tx_ring->buffer_info[i].bytecount = bytecount;
5622 tx_ring->buffer_info[first].next_to_watch = i;
5624 return count;
5626 dma_error:
5627 dev_err(&pdev->dev, "Tx DMA map failed\n");
5628 buffer_info->dma = 0;
5629 if (count)
5630 count--;
5632 while (count--) {
5633 if (i == 0)
5634 i += tx_ring->count;
5635 i--;
5636 buffer_info = &tx_ring->buffer_info[i];
5637 e1000_put_txbuf(tx_ring, buffer_info, true);
5640 return 0;
5643 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5645 struct e1000_adapter *adapter = tx_ring->adapter;
5646 struct e1000_tx_desc *tx_desc = NULL;
5647 struct e1000_buffer *buffer_info;
5648 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5649 unsigned int i;
5651 if (tx_flags & E1000_TX_FLAGS_TSO) {
5652 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5653 E1000_TXD_CMD_TSE;
5654 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5656 if (tx_flags & E1000_TX_FLAGS_IPV4)
5657 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5660 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5661 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5662 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5665 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5666 txd_lower |= E1000_TXD_CMD_VLE;
5667 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5670 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5671 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5673 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5674 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5675 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5678 i = tx_ring->next_to_use;
5680 do {
5681 buffer_info = &tx_ring->buffer_info[i];
5682 tx_desc = E1000_TX_DESC(*tx_ring, i);
5683 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5684 tx_desc->lower.data = cpu_to_le32(txd_lower |
5685 buffer_info->length);
5686 tx_desc->upper.data = cpu_to_le32(txd_upper);
5688 i++;
5689 if (i == tx_ring->count)
5690 i = 0;
5691 } while (--count > 0);
5693 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5695 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5696 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5697 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5699 /* Force memory writes to complete before letting h/w
5700 * know there are new descriptors to fetch. (Only
5701 * applicable for weak-ordered memory model archs,
5702 * such as IA-64).
5704 wmb();
5706 tx_ring->next_to_use = i;
5709 #define MINIMUM_DHCP_PACKET_SIZE 282
5710 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5711 struct sk_buff *skb)
5713 struct e1000_hw *hw = &adapter->hw;
5714 u16 length, offset;
5716 if (skb_vlan_tag_present(skb) &&
5717 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5718 (adapter->hw.mng_cookie.status &
5719 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5720 return 0;
5722 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5723 return 0;
5725 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5726 return 0;
5729 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5730 struct udphdr *udp;
5732 if (ip->protocol != IPPROTO_UDP)
5733 return 0;
5735 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5736 if (ntohs(udp->dest) != 67)
5737 return 0;
5739 offset = (u8 *)udp + 8 - skb->data;
5740 length = skb->len - offset;
5741 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5744 return 0;
5747 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5749 struct e1000_adapter *adapter = tx_ring->adapter;
5751 netif_stop_queue(adapter->netdev);
5752 /* Herbert's original patch had:
5753 * smp_mb__after_netif_stop_queue();
5754 * but since that doesn't exist yet, just open code it.
5756 smp_mb();
5758 /* We need to check again in a case another CPU has just
5759 * made room available.
5761 if (e1000_desc_unused(tx_ring) < size)
5762 return -EBUSY;
5764 /* A reprieve! */
5765 netif_start_queue(adapter->netdev);
5766 ++adapter->restart_queue;
5767 return 0;
5770 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5772 BUG_ON(size > tx_ring->count);
5774 if (e1000_desc_unused(tx_ring) >= size)
5775 return 0;
5776 return __e1000_maybe_stop_tx(tx_ring, size);
5779 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5780 struct net_device *netdev)
5782 struct e1000_adapter *adapter = netdev_priv(netdev);
5783 struct e1000_ring *tx_ring = adapter->tx_ring;
5784 unsigned int first;
5785 unsigned int tx_flags = 0;
5786 unsigned int len = skb_headlen(skb);
5787 unsigned int nr_frags;
5788 unsigned int mss;
5789 int count = 0;
5790 int tso;
5791 unsigned int f;
5792 __be16 protocol = vlan_get_protocol(skb);
5794 if (test_bit(__E1000_DOWN, &adapter->state)) {
5795 dev_kfree_skb_any(skb);
5796 return NETDEV_TX_OK;
5799 if (skb->len <= 0) {
5800 dev_kfree_skb_any(skb);
5801 return NETDEV_TX_OK;
5804 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5805 * pad skb in order to meet this minimum size requirement
5807 if (skb_put_padto(skb, 17))
5808 return NETDEV_TX_OK;
5810 mss = skb_shinfo(skb)->gso_size;
5811 if (mss) {
5812 u8 hdr_len;
5814 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5815 * points to just header, pull a few bytes of payload from
5816 * frags into skb->data
5818 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5819 /* we do this workaround for ES2LAN, but it is un-necessary,
5820 * avoiding it could save a lot of cycles
5822 if (skb->data_len && (hdr_len == len)) {
5823 unsigned int pull_size;
5825 pull_size = min_t(unsigned int, 4, skb->data_len);
5826 if (!__pskb_pull_tail(skb, pull_size)) {
5827 e_err("__pskb_pull_tail failed.\n");
5828 dev_kfree_skb_any(skb);
5829 return NETDEV_TX_OK;
5831 len = skb_headlen(skb);
5835 /* reserve a descriptor for the offload context */
5836 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5837 count++;
5838 count++;
5840 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5842 nr_frags = skb_shinfo(skb)->nr_frags;
5843 for (f = 0; f < nr_frags; f++)
5844 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5845 adapter->tx_fifo_limit);
5847 if (adapter->hw.mac.tx_pkt_filtering)
5848 e1000_transfer_dhcp_info(adapter, skb);
5850 /* need: count + 2 desc gap to keep tail from touching
5851 * head, otherwise try next time
5853 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5854 return NETDEV_TX_BUSY;
5856 if (skb_vlan_tag_present(skb)) {
5857 tx_flags |= E1000_TX_FLAGS_VLAN;
5858 tx_flags |= (skb_vlan_tag_get(skb) <<
5859 E1000_TX_FLAGS_VLAN_SHIFT);
5862 first = tx_ring->next_to_use;
5864 tso = e1000_tso(tx_ring, skb, protocol);
5865 if (tso < 0) {
5866 dev_kfree_skb_any(skb);
5867 return NETDEV_TX_OK;
5870 if (tso)
5871 tx_flags |= E1000_TX_FLAGS_TSO;
5872 else if (e1000_tx_csum(tx_ring, skb, protocol))
5873 tx_flags |= E1000_TX_FLAGS_CSUM;
5875 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5876 * 82571 hardware supports TSO capabilities for IPv6 as well...
5877 * no longer assume, we must.
5879 if (protocol == htons(ETH_P_IP))
5880 tx_flags |= E1000_TX_FLAGS_IPV4;
5882 if (unlikely(skb->no_fcs))
5883 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5885 /* if count is 0 then mapping error has occurred */
5886 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5887 nr_frags);
5888 if (count) {
5889 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5890 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5891 if (!adapter->tx_hwtstamp_skb) {
5892 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5893 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5894 adapter->tx_hwtstamp_skb = skb_get(skb);
5895 adapter->tx_hwtstamp_start = jiffies;
5896 schedule_work(&adapter->tx_hwtstamp_work);
5897 } else {
5898 adapter->tx_hwtstamp_skipped++;
5902 skb_tx_timestamp(skb);
5904 netdev_sent_queue(netdev, skb->len);
5905 e1000_tx_queue(tx_ring, tx_flags, count);
5906 /* Make sure there is space in the ring for the next send. */
5907 e1000_maybe_stop_tx(tx_ring,
5908 (MAX_SKB_FRAGS *
5909 DIV_ROUND_UP(PAGE_SIZE,
5910 adapter->tx_fifo_limit) + 2));
5912 if (!skb->xmit_more ||
5913 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5914 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5915 e1000e_update_tdt_wa(tx_ring,
5916 tx_ring->next_to_use);
5917 else
5918 writel(tx_ring->next_to_use, tx_ring->tail);
5920 /* we need this if more than one processor can write
5921 * to our tail at a time, it synchronizes IO on
5922 *IA64/Altix systems
5924 mmiowb();
5926 } else {
5927 dev_kfree_skb_any(skb);
5928 tx_ring->buffer_info[first].time_stamp = 0;
5929 tx_ring->next_to_use = first;
5932 return NETDEV_TX_OK;
5936 * e1000_tx_timeout - Respond to a Tx Hang
5937 * @netdev: network interface device structure
5939 static void e1000_tx_timeout(struct net_device *netdev)
5941 struct e1000_adapter *adapter = netdev_priv(netdev);
5943 /* Do the reset outside of interrupt context */
5944 adapter->tx_timeout_count++;
5945 schedule_work(&adapter->reset_task);
5948 static void e1000_reset_task(struct work_struct *work)
5950 struct e1000_adapter *adapter;
5951 adapter = container_of(work, struct e1000_adapter, reset_task);
5953 /* don't run the task if already down */
5954 if (test_bit(__E1000_DOWN, &adapter->state))
5955 return;
5957 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5958 e1000e_dump(adapter);
5959 e_err("Reset adapter unexpectedly\n");
5961 e1000e_reinit_locked(adapter);
5965 * e1000_get_stats64 - Get System Network Statistics
5966 * @netdev: network interface device structure
5967 * @stats: rtnl_link_stats64 pointer
5969 * Returns the address of the device statistics structure.
5971 void e1000e_get_stats64(struct net_device *netdev,
5972 struct rtnl_link_stats64 *stats)
5974 struct e1000_adapter *adapter = netdev_priv(netdev);
5976 spin_lock(&adapter->stats64_lock);
5977 e1000e_update_stats(adapter);
5978 /* Fill out the OS statistics structure */
5979 stats->rx_bytes = adapter->stats.gorc;
5980 stats->rx_packets = adapter->stats.gprc;
5981 stats->tx_bytes = adapter->stats.gotc;
5982 stats->tx_packets = adapter->stats.gptc;
5983 stats->multicast = adapter->stats.mprc;
5984 stats->collisions = adapter->stats.colc;
5986 /* Rx Errors */
5988 /* RLEC on some newer hardware can be incorrect so build
5989 * our own version based on RUC and ROC
5991 stats->rx_errors = adapter->stats.rxerrc +
5992 adapter->stats.crcerrs + adapter->stats.algnerrc +
5993 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5994 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5995 stats->rx_crc_errors = adapter->stats.crcerrs;
5996 stats->rx_frame_errors = adapter->stats.algnerrc;
5997 stats->rx_missed_errors = adapter->stats.mpc;
5999 /* Tx Errors */
6000 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6001 stats->tx_aborted_errors = adapter->stats.ecol;
6002 stats->tx_window_errors = adapter->stats.latecol;
6003 stats->tx_carrier_errors = adapter->stats.tncrs;
6005 /* Tx Dropped needs to be maintained elsewhere */
6007 spin_unlock(&adapter->stats64_lock);
6011 * e1000_change_mtu - Change the Maximum Transfer Unit
6012 * @netdev: network interface device structure
6013 * @new_mtu: new value for maximum frame size
6015 * Returns 0 on success, negative on failure
6017 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6019 struct e1000_adapter *adapter = netdev_priv(netdev);
6020 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6022 /* Jumbo frame support */
6023 if ((new_mtu > ETH_DATA_LEN) &&
6024 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6025 e_err("Jumbo Frames not supported.\n");
6026 return -EINVAL;
6029 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6030 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6031 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6032 (new_mtu > ETH_DATA_LEN)) {
6033 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6034 return -EINVAL;
6037 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6038 usleep_range(1000, 2000);
6039 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6040 adapter->max_frame_size = max_frame;
6041 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6042 netdev->mtu = new_mtu;
6044 pm_runtime_get_sync(netdev->dev.parent);
6046 if (netif_running(netdev))
6047 e1000e_down(adapter, true);
6049 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6050 * means we reserve 2 more, this pushes us to allocate from the next
6051 * larger slab size.
6052 * i.e. RXBUFFER_2048 --> size-4096 slab
6053 * However with the new *_jumbo_rx* routines, jumbo receives will use
6054 * fragmented skbs
6057 if (max_frame <= 2048)
6058 adapter->rx_buffer_len = 2048;
6059 else
6060 adapter->rx_buffer_len = 4096;
6062 /* adjust allocation if LPE protects us, and we aren't using SBP */
6063 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6064 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6066 if (netif_running(netdev))
6067 e1000e_up(adapter);
6068 else
6069 e1000e_reset(adapter);
6071 pm_runtime_put_sync(netdev->dev.parent);
6073 clear_bit(__E1000_RESETTING, &adapter->state);
6075 return 0;
6078 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6079 int cmd)
6081 struct e1000_adapter *adapter = netdev_priv(netdev);
6082 struct mii_ioctl_data *data = if_mii(ifr);
6084 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6085 return -EOPNOTSUPP;
6087 switch (cmd) {
6088 case SIOCGMIIPHY:
6089 data->phy_id = adapter->hw.phy.addr;
6090 break;
6091 case SIOCGMIIREG:
6092 e1000_phy_read_status(adapter);
6094 switch (data->reg_num & 0x1F) {
6095 case MII_BMCR:
6096 data->val_out = adapter->phy_regs.bmcr;
6097 break;
6098 case MII_BMSR:
6099 data->val_out = adapter->phy_regs.bmsr;
6100 break;
6101 case MII_PHYSID1:
6102 data->val_out = (adapter->hw.phy.id >> 16);
6103 break;
6104 case MII_PHYSID2:
6105 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6106 break;
6107 case MII_ADVERTISE:
6108 data->val_out = adapter->phy_regs.advertise;
6109 break;
6110 case MII_LPA:
6111 data->val_out = adapter->phy_regs.lpa;
6112 break;
6113 case MII_EXPANSION:
6114 data->val_out = adapter->phy_regs.expansion;
6115 break;
6116 case MII_CTRL1000:
6117 data->val_out = adapter->phy_regs.ctrl1000;
6118 break;
6119 case MII_STAT1000:
6120 data->val_out = adapter->phy_regs.stat1000;
6121 break;
6122 case MII_ESTATUS:
6123 data->val_out = adapter->phy_regs.estatus;
6124 break;
6125 default:
6126 return -EIO;
6128 break;
6129 case SIOCSMIIREG:
6130 default:
6131 return -EOPNOTSUPP;
6133 return 0;
6137 * e1000e_hwtstamp_ioctl - control hardware time stamping
6138 * @netdev: network interface device structure
6139 * @ifreq: interface request
6141 * Outgoing time stamping can be enabled and disabled. Play nice and
6142 * disable it when requested, although it shouldn't cause any overhead
6143 * when no packet needs it. At most one packet in the queue may be
6144 * marked for time stamping, otherwise it would be impossible to tell
6145 * for sure to which packet the hardware time stamp belongs.
6147 * Incoming time stamping has to be configured via the hardware filters.
6148 * Not all combinations are supported, in particular event type has to be
6149 * specified. Matching the kind of event packet is not supported, with the
6150 * exception of "all V2 events regardless of level 2 or 4".
6152 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6154 struct e1000_adapter *adapter = netdev_priv(netdev);
6155 struct hwtstamp_config config;
6156 int ret_val;
6158 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6159 return -EFAULT;
6161 ret_val = e1000e_config_hwtstamp(adapter, &config);
6162 if (ret_val)
6163 return ret_val;
6165 switch (config.rx_filter) {
6166 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6167 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6168 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6169 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6170 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6171 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6172 /* With V2 type filters which specify a Sync or Delay Request,
6173 * Path Delay Request/Response messages are also time stamped
6174 * by hardware so notify the caller the requested packets plus
6175 * some others are time stamped.
6177 config.rx_filter = HWTSTAMP_FILTER_SOME;
6178 break;
6179 default:
6180 break;
6183 return copy_to_user(ifr->ifr_data, &config,
6184 sizeof(config)) ? -EFAULT : 0;
6187 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6189 struct e1000_adapter *adapter = netdev_priv(netdev);
6191 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6192 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6195 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6197 switch (cmd) {
6198 case SIOCGMIIPHY:
6199 case SIOCGMIIREG:
6200 case SIOCSMIIREG:
6201 return e1000_mii_ioctl(netdev, ifr, cmd);
6202 case SIOCSHWTSTAMP:
6203 return e1000e_hwtstamp_set(netdev, ifr);
6204 case SIOCGHWTSTAMP:
6205 return e1000e_hwtstamp_get(netdev, ifr);
6206 default:
6207 return -EOPNOTSUPP;
6211 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6213 struct e1000_hw *hw = &adapter->hw;
6214 u32 i, mac_reg, wuc;
6215 u16 phy_reg, wuc_enable;
6216 int retval;
6218 /* copy MAC RARs to PHY RARs */
6219 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6221 retval = hw->phy.ops.acquire(hw);
6222 if (retval) {
6223 e_err("Could not acquire PHY\n");
6224 return retval;
6227 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6228 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6229 if (retval)
6230 goto release;
6232 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6233 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6234 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6235 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6236 (u16)(mac_reg & 0xFFFF));
6237 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6238 (u16)((mac_reg >> 16) & 0xFFFF));
6241 /* configure PHY Rx Control register */
6242 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6243 mac_reg = er32(RCTL);
6244 if (mac_reg & E1000_RCTL_UPE)
6245 phy_reg |= BM_RCTL_UPE;
6246 if (mac_reg & E1000_RCTL_MPE)
6247 phy_reg |= BM_RCTL_MPE;
6248 phy_reg &= ~(BM_RCTL_MO_MASK);
6249 if (mac_reg & E1000_RCTL_MO_3)
6250 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6251 << BM_RCTL_MO_SHIFT);
6252 if (mac_reg & E1000_RCTL_BAM)
6253 phy_reg |= BM_RCTL_BAM;
6254 if (mac_reg & E1000_RCTL_PMCF)
6255 phy_reg |= BM_RCTL_PMCF;
6256 mac_reg = er32(CTRL);
6257 if (mac_reg & E1000_CTRL_RFCE)
6258 phy_reg |= BM_RCTL_RFCE;
6259 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6261 wuc = E1000_WUC_PME_EN;
6262 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6263 wuc |= E1000_WUC_APME;
6265 /* enable PHY wakeup in MAC register */
6266 ew32(WUFC, wufc);
6267 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6268 E1000_WUC_PME_STATUS | wuc));
6270 /* configure and enable PHY wakeup in PHY registers */
6271 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6272 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6274 /* activate PHY wakeup */
6275 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6276 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6277 if (retval)
6278 e_err("Could not set PHY Host Wakeup bit\n");
6279 release:
6280 hw->phy.ops.release(hw);
6282 return retval;
6285 static void e1000e_flush_lpic(struct pci_dev *pdev)
6287 struct net_device *netdev = pci_get_drvdata(pdev);
6288 struct e1000_adapter *adapter = netdev_priv(netdev);
6289 struct e1000_hw *hw = &adapter->hw;
6290 u32 ret_val;
6292 pm_runtime_get_sync(netdev->dev.parent);
6294 ret_val = hw->phy.ops.acquire(hw);
6295 if (ret_val)
6296 goto fl_out;
6298 pr_info("EEE TX LPI TIMER: %08X\n",
6299 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6301 hw->phy.ops.release(hw);
6303 fl_out:
6304 pm_runtime_put_sync(netdev->dev.parent);
6307 static int e1000e_pm_freeze(struct device *dev)
6309 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6310 struct e1000_adapter *adapter = netdev_priv(netdev);
6312 netif_device_detach(netdev);
6314 if (netif_running(netdev)) {
6315 int count = E1000_CHECK_RESET_COUNT;
6317 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6318 usleep_range(10000, 20000);
6320 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6322 /* Quiesce the device without resetting the hardware */
6323 e1000e_down(adapter, false);
6324 e1000_free_irq(adapter);
6326 e1000e_reset_interrupt_capability(adapter);
6328 /* Allow time for pending master requests to run */
6329 e1000e_disable_pcie_master(&adapter->hw);
6331 return 0;
6334 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6336 struct net_device *netdev = pci_get_drvdata(pdev);
6337 struct e1000_adapter *adapter = netdev_priv(netdev);
6338 struct e1000_hw *hw = &adapter->hw;
6339 u32 ctrl, ctrl_ext, rctl, status;
6340 /* Runtime suspend should only enable wakeup for link changes */
6341 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6342 int retval = 0;
6344 status = er32(STATUS);
6345 if (status & E1000_STATUS_LU)
6346 wufc &= ~E1000_WUFC_LNKC;
6348 if (wufc) {
6349 e1000_setup_rctl(adapter);
6350 e1000e_set_rx_mode(netdev);
6352 /* turn on all-multi mode if wake on multicast is enabled */
6353 if (wufc & E1000_WUFC_MC) {
6354 rctl = er32(RCTL);
6355 rctl |= E1000_RCTL_MPE;
6356 ew32(RCTL, rctl);
6359 ctrl = er32(CTRL);
6360 ctrl |= E1000_CTRL_ADVD3WUC;
6361 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6362 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6363 ew32(CTRL, ctrl);
6365 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6366 adapter->hw.phy.media_type ==
6367 e1000_media_type_internal_serdes) {
6368 /* keep the laser running in D3 */
6369 ctrl_ext = er32(CTRL_EXT);
6370 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6371 ew32(CTRL_EXT, ctrl_ext);
6374 if (!runtime)
6375 e1000e_power_up_phy(adapter);
6377 if (adapter->flags & FLAG_IS_ICH)
6378 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6380 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6381 /* enable wakeup by the PHY */
6382 retval = e1000_init_phy_wakeup(adapter, wufc);
6383 if (retval)
6384 return retval;
6385 } else {
6386 /* enable wakeup by the MAC */
6387 ew32(WUFC, wufc);
6388 ew32(WUC, E1000_WUC_PME_EN);
6390 } else {
6391 ew32(WUC, 0);
6392 ew32(WUFC, 0);
6394 e1000_power_down_phy(adapter);
6397 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6398 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6399 } else if (hw->mac.type >= e1000_pch_lpt) {
6400 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6401 /* ULP does not support wake from unicast, multicast
6402 * or broadcast.
6404 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6406 if (retval)
6407 return retval;
6410 /* Ensure that the appropriate bits are set in LPI_CTRL
6411 * for EEE in Sx
6413 if ((hw->phy.type >= e1000_phy_i217) &&
6414 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6415 u16 lpi_ctrl = 0;
6417 retval = hw->phy.ops.acquire(hw);
6418 if (!retval) {
6419 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6420 &lpi_ctrl);
6421 if (!retval) {
6422 if (adapter->eee_advert &
6423 hw->dev_spec.ich8lan.eee_lp_ability &
6424 I82579_EEE_100_SUPPORTED)
6425 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6426 if (adapter->eee_advert &
6427 hw->dev_spec.ich8lan.eee_lp_ability &
6428 I82579_EEE_1000_SUPPORTED)
6429 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6431 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6432 lpi_ctrl);
6435 hw->phy.ops.release(hw);
6438 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6439 * would have already happened in close and is redundant.
6441 e1000e_release_hw_control(adapter);
6443 pci_clear_master(pdev);
6445 /* The pci-e switch on some quad port adapters will report a
6446 * correctable error when the MAC transitions from D0 to D3. To
6447 * prevent this we need to mask off the correctable errors on the
6448 * downstream port of the pci-e switch.
6450 * We don't have the associated upstream bridge while assigning
6451 * the PCI device into guest. For example, the KVM on power is
6452 * one of the cases.
6454 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6455 struct pci_dev *us_dev = pdev->bus->self;
6456 u16 devctl;
6458 if (!us_dev)
6459 return 0;
6461 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6462 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6463 (devctl & ~PCI_EXP_DEVCTL_CERE));
6465 pci_save_state(pdev);
6466 pci_prepare_to_sleep(pdev);
6468 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6471 return 0;
6475 * __e1000e_disable_aspm - Disable ASPM states
6476 * @pdev: pointer to PCI device struct
6477 * @state: bit-mask of ASPM states to disable
6478 * @locked: indication if this context holds pci_bus_sem locked.
6480 * Some devices *must* have certain ASPM states disabled per hardware errata.
6482 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6484 struct pci_dev *parent = pdev->bus->self;
6485 u16 aspm_dis_mask = 0;
6486 u16 pdev_aspmc, parent_aspmc;
6488 switch (state) {
6489 case PCIE_LINK_STATE_L0S:
6490 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6491 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6492 /* fall-through - can't have L1 without L0s */
6493 case PCIE_LINK_STATE_L1:
6494 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6495 break;
6496 default:
6497 return;
6500 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6501 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6503 if (parent) {
6504 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6505 &parent_aspmc);
6506 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6509 /* Nothing to do if the ASPM states to be disabled already are */
6510 if (!(pdev_aspmc & aspm_dis_mask) &&
6511 (!parent || !(parent_aspmc & aspm_dis_mask)))
6512 return;
6514 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6515 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6516 "L0s" : "",
6517 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6518 "L1" : "");
6520 #ifdef CONFIG_PCIEASPM
6521 if (locked)
6522 pci_disable_link_state_locked(pdev, state);
6523 else
6524 pci_disable_link_state(pdev, state);
6526 /* Double-check ASPM control. If not disabled by the above, the
6527 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6528 * not enabled); override by writing PCI config space directly.
6530 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6531 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6533 if (!(aspm_dis_mask & pdev_aspmc))
6534 return;
6535 #endif
6537 /* Both device and parent should have the same ASPM setting.
6538 * Disable ASPM in downstream component first and then upstream.
6540 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6542 if (parent)
6543 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6544 aspm_dis_mask);
6548 * e1000e_disable_aspm - Disable ASPM states.
6549 * @pdev: pointer to PCI device struct
6550 * @state: bit-mask of ASPM states to disable
6552 * This function acquires the pci_bus_sem!
6553 * Some devices *must* have certain ASPM states disabled per hardware errata.
6555 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6557 __e1000e_disable_aspm(pdev, state, 0);
6561 * e1000e_disable_aspm_locked Disable ASPM states.
6562 * @pdev: pointer to PCI device struct
6563 * @state: bit-mask of ASPM states to disable
6565 * This function must be called with pci_bus_sem acquired!
6566 * Some devices *must* have certain ASPM states disabled per hardware errata.
6568 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6570 __e1000e_disable_aspm(pdev, state, 1);
6573 #ifdef CONFIG_PM
6574 static int __e1000_resume(struct pci_dev *pdev)
6576 struct net_device *netdev = pci_get_drvdata(pdev);
6577 struct e1000_adapter *adapter = netdev_priv(netdev);
6578 struct e1000_hw *hw = &adapter->hw;
6579 u16 aspm_disable_flag = 0;
6581 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6582 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6583 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6584 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6585 if (aspm_disable_flag)
6586 e1000e_disable_aspm(pdev, aspm_disable_flag);
6588 pci_set_master(pdev);
6590 if (hw->mac.type >= e1000_pch2lan)
6591 e1000_resume_workarounds_pchlan(&adapter->hw);
6593 e1000e_power_up_phy(adapter);
6595 /* report the system wakeup cause from S3/S4 */
6596 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6597 u16 phy_data;
6599 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6600 if (phy_data) {
6601 e_info("PHY Wakeup cause - %s\n",
6602 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6603 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6604 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6605 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6606 phy_data & E1000_WUS_LNKC ?
6607 "Link Status Change" : "other");
6609 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6610 } else {
6611 u32 wus = er32(WUS);
6613 if (wus) {
6614 e_info("MAC Wakeup cause - %s\n",
6615 wus & E1000_WUS_EX ? "Unicast Packet" :
6616 wus & E1000_WUS_MC ? "Multicast Packet" :
6617 wus & E1000_WUS_BC ? "Broadcast Packet" :
6618 wus & E1000_WUS_MAG ? "Magic Packet" :
6619 wus & E1000_WUS_LNKC ? "Link Status Change" :
6620 "other");
6622 ew32(WUS, ~0);
6625 e1000e_reset(adapter);
6627 e1000_init_manageability_pt(adapter);
6629 /* If the controller has AMT, do not set DRV_LOAD until the interface
6630 * is up. For all other cases, let the f/w know that the h/w is now
6631 * under the control of the driver.
6633 if (!(adapter->flags & FLAG_HAS_AMT))
6634 e1000e_get_hw_control(adapter);
6636 return 0;
6639 #ifdef CONFIG_PM_SLEEP
6640 static int e1000e_pm_thaw(struct device *dev)
6642 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6643 struct e1000_adapter *adapter = netdev_priv(netdev);
6645 e1000e_set_interrupt_capability(adapter);
6646 if (netif_running(netdev)) {
6647 u32 err = e1000_request_irq(adapter);
6649 if (err)
6650 return err;
6652 e1000e_up(adapter);
6655 netif_device_attach(netdev);
6657 return 0;
6660 static int e1000e_pm_suspend(struct device *dev)
6662 struct pci_dev *pdev = to_pci_dev(dev);
6663 int rc;
6665 e1000e_flush_lpic(pdev);
6667 e1000e_pm_freeze(dev);
6669 rc = __e1000_shutdown(pdev, false);
6670 if (rc)
6671 e1000e_pm_thaw(dev);
6673 return rc;
6676 static int e1000e_pm_resume(struct device *dev)
6678 struct pci_dev *pdev = to_pci_dev(dev);
6679 int rc;
6681 rc = __e1000_resume(pdev);
6682 if (rc)
6683 return rc;
6685 return e1000e_pm_thaw(dev);
6687 #endif /* CONFIG_PM_SLEEP */
6689 static int e1000e_pm_runtime_idle(struct device *dev)
6691 struct pci_dev *pdev = to_pci_dev(dev);
6692 struct net_device *netdev = pci_get_drvdata(pdev);
6693 struct e1000_adapter *adapter = netdev_priv(netdev);
6694 u16 eee_lp;
6696 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6698 if (!e1000e_has_link(adapter)) {
6699 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6700 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6703 return -EBUSY;
6706 static int e1000e_pm_runtime_resume(struct device *dev)
6708 struct pci_dev *pdev = to_pci_dev(dev);
6709 struct net_device *netdev = pci_get_drvdata(pdev);
6710 struct e1000_adapter *adapter = netdev_priv(netdev);
6711 int rc;
6713 rc = __e1000_resume(pdev);
6714 if (rc)
6715 return rc;
6717 if (netdev->flags & IFF_UP)
6718 e1000e_up(adapter);
6720 return rc;
6723 static int e1000e_pm_runtime_suspend(struct device *dev)
6725 struct pci_dev *pdev = to_pci_dev(dev);
6726 struct net_device *netdev = pci_get_drvdata(pdev);
6727 struct e1000_adapter *adapter = netdev_priv(netdev);
6729 if (netdev->flags & IFF_UP) {
6730 int count = E1000_CHECK_RESET_COUNT;
6732 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6733 usleep_range(10000, 20000);
6735 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6737 /* Down the device without resetting the hardware */
6738 e1000e_down(adapter, false);
6741 if (__e1000_shutdown(pdev, true)) {
6742 e1000e_pm_runtime_resume(dev);
6743 return -EBUSY;
6746 return 0;
6748 #endif /* CONFIG_PM */
6750 static void e1000_shutdown(struct pci_dev *pdev)
6752 e1000e_flush_lpic(pdev);
6754 e1000e_pm_freeze(&pdev->dev);
6756 __e1000_shutdown(pdev, false);
6759 #ifdef CONFIG_NET_POLL_CONTROLLER
6761 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6763 struct net_device *netdev = data;
6764 struct e1000_adapter *adapter = netdev_priv(netdev);
6766 if (adapter->msix_entries) {
6767 int vector, msix_irq;
6769 vector = 0;
6770 msix_irq = adapter->msix_entries[vector].vector;
6771 if (disable_hardirq(msix_irq))
6772 e1000_intr_msix_rx(msix_irq, netdev);
6773 enable_irq(msix_irq);
6775 vector++;
6776 msix_irq = adapter->msix_entries[vector].vector;
6777 if (disable_hardirq(msix_irq))
6778 e1000_intr_msix_tx(msix_irq, netdev);
6779 enable_irq(msix_irq);
6781 vector++;
6782 msix_irq = adapter->msix_entries[vector].vector;
6783 if (disable_hardirq(msix_irq))
6784 e1000_msix_other(msix_irq, netdev);
6785 enable_irq(msix_irq);
6788 return IRQ_HANDLED;
6792 * e1000_netpoll
6793 * @netdev: network interface device structure
6795 * Polling 'interrupt' - used by things like netconsole to send skbs
6796 * without having to re-enable interrupts. It's not called while
6797 * the interrupt routine is executing.
6799 static void e1000_netpoll(struct net_device *netdev)
6801 struct e1000_adapter *adapter = netdev_priv(netdev);
6803 switch (adapter->int_mode) {
6804 case E1000E_INT_MODE_MSIX:
6805 e1000_intr_msix(adapter->pdev->irq, netdev);
6806 break;
6807 case E1000E_INT_MODE_MSI:
6808 if (disable_hardirq(adapter->pdev->irq))
6809 e1000_intr_msi(adapter->pdev->irq, netdev);
6810 enable_irq(adapter->pdev->irq);
6811 break;
6812 default: /* E1000E_INT_MODE_LEGACY */
6813 if (disable_hardirq(adapter->pdev->irq))
6814 e1000_intr(adapter->pdev->irq, netdev);
6815 enable_irq(adapter->pdev->irq);
6816 break;
6819 #endif
6822 * e1000_io_error_detected - called when PCI error is detected
6823 * @pdev: Pointer to PCI device
6824 * @state: The current pci connection state
6826 * This function is called after a PCI bus error affecting
6827 * this device has been detected.
6829 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6830 pci_channel_state_t state)
6832 struct net_device *netdev = pci_get_drvdata(pdev);
6833 struct e1000_adapter *adapter = netdev_priv(netdev);
6835 netif_device_detach(netdev);
6837 if (state == pci_channel_io_perm_failure)
6838 return PCI_ERS_RESULT_DISCONNECT;
6840 if (netif_running(netdev))
6841 e1000e_down(adapter, true);
6842 pci_disable_device(pdev);
6844 /* Request a slot slot reset. */
6845 return PCI_ERS_RESULT_NEED_RESET;
6849 * e1000_io_slot_reset - called after the pci bus has been reset.
6850 * @pdev: Pointer to PCI device
6852 * Restart the card from scratch, as if from a cold-boot. Implementation
6853 * resembles the first-half of the e1000e_pm_resume routine.
6855 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6857 struct net_device *netdev = pci_get_drvdata(pdev);
6858 struct e1000_adapter *adapter = netdev_priv(netdev);
6859 struct e1000_hw *hw = &adapter->hw;
6860 u16 aspm_disable_flag = 0;
6861 int err;
6862 pci_ers_result_t result;
6864 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6865 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6866 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6867 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6868 if (aspm_disable_flag)
6869 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6871 err = pci_enable_device_mem(pdev);
6872 if (err) {
6873 dev_err(&pdev->dev,
6874 "Cannot re-enable PCI device after reset.\n");
6875 result = PCI_ERS_RESULT_DISCONNECT;
6876 } else {
6877 pdev->state_saved = true;
6878 pci_restore_state(pdev);
6879 pci_set_master(pdev);
6881 pci_enable_wake(pdev, PCI_D3hot, 0);
6882 pci_enable_wake(pdev, PCI_D3cold, 0);
6884 e1000e_reset(adapter);
6885 ew32(WUS, ~0);
6886 result = PCI_ERS_RESULT_RECOVERED;
6889 pci_cleanup_aer_uncorrect_error_status(pdev);
6891 return result;
6895 * e1000_io_resume - called when traffic can start flowing again.
6896 * @pdev: Pointer to PCI device
6898 * This callback is called when the error recovery driver tells us that
6899 * its OK to resume normal operation. Implementation resembles the
6900 * second-half of the e1000e_pm_resume routine.
6902 static void e1000_io_resume(struct pci_dev *pdev)
6904 struct net_device *netdev = pci_get_drvdata(pdev);
6905 struct e1000_adapter *adapter = netdev_priv(netdev);
6907 e1000_init_manageability_pt(adapter);
6909 if (netif_running(netdev))
6910 e1000e_up(adapter);
6912 netif_device_attach(netdev);
6914 /* If the controller has AMT, do not set DRV_LOAD until the interface
6915 * is up. For all other cases, let the f/w know that the h/w is now
6916 * under the control of the driver.
6918 if (!(adapter->flags & FLAG_HAS_AMT))
6919 e1000e_get_hw_control(adapter);
6922 static void e1000_print_device_info(struct e1000_adapter *adapter)
6924 struct e1000_hw *hw = &adapter->hw;
6925 struct net_device *netdev = adapter->netdev;
6926 u32 ret_val;
6927 u8 pba_str[E1000_PBANUM_LENGTH];
6929 /* print bus type/speed/width info */
6930 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6931 /* bus width */
6932 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6933 "Width x1"),
6934 /* MAC address */
6935 netdev->dev_addr);
6936 e_info("Intel(R) PRO/%s Network Connection\n",
6937 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6938 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6939 E1000_PBANUM_LENGTH);
6940 if (ret_val)
6941 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6942 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6943 hw->mac.type, hw->phy.type, pba_str);
6946 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6948 struct e1000_hw *hw = &adapter->hw;
6949 int ret_val;
6950 u16 buf = 0;
6952 if (hw->mac.type != e1000_82573)
6953 return;
6955 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6956 le16_to_cpus(&buf);
6957 if (!ret_val && (!(buf & BIT(0)))) {
6958 /* Deep Smart Power Down (DSPD) */
6959 dev_warn(&adapter->pdev->dev,
6960 "Warning: detected DSPD enabled in EEPROM\n");
6964 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6965 netdev_features_t features)
6967 struct e1000_adapter *adapter = netdev_priv(netdev);
6968 struct e1000_hw *hw = &adapter->hw;
6970 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6971 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6972 features &= ~NETIF_F_RXFCS;
6974 /* Since there is no support for separate Rx/Tx vlan accel
6975 * enable/disable make sure Tx flag is always in same state as Rx.
6977 if (features & NETIF_F_HW_VLAN_CTAG_RX)
6978 features |= NETIF_F_HW_VLAN_CTAG_TX;
6979 else
6980 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6982 return features;
6985 static int e1000_set_features(struct net_device *netdev,
6986 netdev_features_t features)
6988 struct e1000_adapter *adapter = netdev_priv(netdev);
6989 netdev_features_t changed = features ^ netdev->features;
6991 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6992 adapter->flags |= FLAG_TSO_FORCE;
6994 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6995 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6996 NETIF_F_RXALL)))
6997 return 0;
6999 if (changed & NETIF_F_RXFCS) {
7000 if (features & NETIF_F_RXFCS) {
7001 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7002 } else {
7003 /* We need to take it back to defaults, which might mean
7004 * stripping is still disabled at the adapter level.
7006 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7007 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7008 else
7009 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7013 netdev->features = features;
7015 if (netif_running(netdev))
7016 e1000e_reinit_locked(adapter);
7017 else
7018 e1000e_reset(adapter);
7020 return 0;
7023 static const struct net_device_ops e1000e_netdev_ops = {
7024 .ndo_open = e1000e_open,
7025 .ndo_stop = e1000e_close,
7026 .ndo_start_xmit = e1000_xmit_frame,
7027 .ndo_get_stats64 = e1000e_get_stats64,
7028 .ndo_set_rx_mode = e1000e_set_rx_mode,
7029 .ndo_set_mac_address = e1000_set_mac,
7030 .ndo_change_mtu = e1000_change_mtu,
7031 .ndo_do_ioctl = e1000_ioctl,
7032 .ndo_tx_timeout = e1000_tx_timeout,
7033 .ndo_validate_addr = eth_validate_addr,
7035 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7036 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7037 #ifdef CONFIG_NET_POLL_CONTROLLER
7038 .ndo_poll_controller = e1000_netpoll,
7039 #endif
7040 .ndo_set_features = e1000_set_features,
7041 .ndo_fix_features = e1000_fix_features,
7042 .ndo_features_check = passthru_features_check,
7046 * e1000_probe - Device Initialization Routine
7047 * @pdev: PCI device information struct
7048 * @ent: entry in e1000_pci_tbl
7050 * Returns 0 on success, negative on failure
7052 * e1000_probe initializes an adapter identified by a pci_dev structure.
7053 * The OS initialization, configuring of the adapter private structure,
7054 * and a hardware reset occur.
7056 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7058 struct net_device *netdev;
7059 struct e1000_adapter *adapter;
7060 struct e1000_hw *hw;
7061 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7062 resource_size_t mmio_start, mmio_len;
7063 resource_size_t flash_start, flash_len;
7064 static int cards_found;
7065 u16 aspm_disable_flag = 0;
7066 int bars, i, err, pci_using_dac;
7067 u16 eeprom_data = 0;
7068 u16 eeprom_apme_mask = E1000_EEPROM_APME;
7069 s32 ret_val = 0;
7071 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7072 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7073 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7074 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7075 if (aspm_disable_flag)
7076 e1000e_disable_aspm(pdev, aspm_disable_flag);
7078 err = pci_enable_device_mem(pdev);
7079 if (err)
7080 return err;
7082 pci_using_dac = 0;
7083 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7084 if (!err) {
7085 pci_using_dac = 1;
7086 } else {
7087 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7088 if (err) {
7089 dev_err(&pdev->dev,
7090 "No usable DMA configuration, aborting\n");
7091 goto err_dma;
7095 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7096 err = pci_request_selected_regions_exclusive(pdev, bars,
7097 e1000e_driver_name);
7098 if (err)
7099 goto err_pci_reg;
7101 /* AER (Advanced Error Reporting) hooks */
7102 pci_enable_pcie_error_reporting(pdev);
7104 pci_set_master(pdev);
7105 /* PCI config space info */
7106 err = pci_save_state(pdev);
7107 if (err)
7108 goto err_alloc_etherdev;
7110 err = -ENOMEM;
7111 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7112 if (!netdev)
7113 goto err_alloc_etherdev;
7115 SET_NETDEV_DEV(netdev, &pdev->dev);
7117 netdev->irq = pdev->irq;
7119 pci_set_drvdata(pdev, netdev);
7120 adapter = netdev_priv(netdev);
7121 hw = &adapter->hw;
7122 adapter->netdev = netdev;
7123 adapter->pdev = pdev;
7124 adapter->ei = ei;
7125 adapter->pba = ei->pba;
7126 adapter->flags = ei->flags;
7127 adapter->flags2 = ei->flags2;
7128 adapter->hw.adapter = adapter;
7129 adapter->hw.mac.type = ei->mac;
7130 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7131 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7133 mmio_start = pci_resource_start(pdev, 0);
7134 mmio_len = pci_resource_len(pdev, 0);
7136 err = -EIO;
7137 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7138 if (!adapter->hw.hw_addr)
7139 goto err_ioremap;
7141 if ((adapter->flags & FLAG_HAS_FLASH) &&
7142 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7143 (hw->mac.type < e1000_pch_spt)) {
7144 flash_start = pci_resource_start(pdev, 1);
7145 flash_len = pci_resource_len(pdev, 1);
7146 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7147 if (!adapter->hw.flash_address)
7148 goto err_flashmap;
7151 /* Set default EEE advertisement */
7152 if (adapter->flags2 & FLAG2_HAS_EEE)
7153 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7155 /* construct the net_device struct */
7156 netdev->netdev_ops = &e1000e_netdev_ops;
7157 e1000e_set_ethtool_ops(netdev);
7158 netdev->watchdog_timeo = 5 * HZ;
7159 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7160 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7162 netdev->mem_start = mmio_start;
7163 netdev->mem_end = mmio_start + mmio_len;
7165 adapter->bd_number = cards_found++;
7167 e1000e_check_options(adapter);
7169 /* setup adapter struct */
7170 err = e1000_sw_init(adapter);
7171 if (err)
7172 goto err_sw_init;
7174 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7175 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7176 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7178 err = ei->get_variants(adapter);
7179 if (err)
7180 goto err_hw_init;
7182 if ((adapter->flags & FLAG_IS_ICH) &&
7183 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7184 (hw->mac.type < e1000_pch_spt))
7185 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7187 hw->mac.ops.get_bus_info(&adapter->hw);
7189 adapter->hw.phy.autoneg_wait_to_complete = 0;
7191 /* Copper options */
7192 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7193 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7194 adapter->hw.phy.disable_polarity_correction = 0;
7195 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7198 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7199 dev_info(&pdev->dev,
7200 "PHY reset is blocked due to SOL/IDER session.\n");
7202 /* Set initial default active device features */
7203 netdev->features = (NETIF_F_SG |
7204 NETIF_F_HW_VLAN_CTAG_RX |
7205 NETIF_F_HW_VLAN_CTAG_TX |
7206 NETIF_F_TSO |
7207 NETIF_F_TSO6 |
7208 NETIF_F_RXHASH |
7209 NETIF_F_RXCSUM |
7210 NETIF_F_HW_CSUM);
7212 /* Set user-changeable features (subset of all device features) */
7213 netdev->hw_features = netdev->features;
7214 netdev->hw_features |= NETIF_F_RXFCS;
7215 netdev->priv_flags |= IFF_SUPP_NOFCS;
7216 netdev->hw_features |= NETIF_F_RXALL;
7218 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7219 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7221 netdev->vlan_features |= (NETIF_F_SG |
7222 NETIF_F_TSO |
7223 NETIF_F_TSO6 |
7224 NETIF_F_HW_CSUM);
7226 netdev->priv_flags |= IFF_UNICAST_FLT;
7228 if (pci_using_dac) {
7229 netdev->features |= NETIF_F_HIGHDMA;
7230 netdev->vlan_features |= NETIF_F_HIGHDMA;
7233 /* MTU range: 68 - max_hw_frame_size */
7234 netdev->min_mtu = ETH_MIN_MTU;
7235 netdev->max_mtu = adapter->max_hw_frame_size -
7236 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7238 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7239 adapter->flags |= FLAG_MNG_PT_ENABLED;
7241 /* before reading the NVM, reset the controller to
7242 * put the device in a known good starting state
7244 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7246 /* systems with ASPM and others may see the checksum fail on the first
7247 * attempt. Let's give it a few tries
7249 for (i = 0;; i++) {
7250 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7251 break;
7252 if (i == 2) {
7253 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7254 err = -EIO;
7255 goto err_eeprom;
7259 e1000_eeprom_checks(adapter);
7261 /* copy the MAC address */
7262 if (e1000e_read_mac_addr(&adapter->hw))
7263 dev_err(&pdev->dev,
7264 "NVM Read Error while reading MAC address\n");
7266 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7268 if (!is_valid_ether_addr(netdev->dev_addr)) {
7269 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7270 netdev->dev_addr);
7271 err = -EIO;
7272 goto err_eeprom;
7275 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7276 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7278 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7279 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7280 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7281 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7282 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7284 /* Initialize link parameters. User can change them with ethtool */
7285 adapter->hw.mac.autoneg = 1;
7286 adapter->fc_autoneg = true;
7287 adapter->hw.fc.requested_mode = e1000_fc_default;
7288 adapter->hw.fc.current_mode = e1000_fc_default;
7289 adapter->hw.phy.autoneg_advertised = 0x2f;
7291 /* Initial Wake on LAN setting - If APM wake is enabled in
7292 * the EEPROM, enable the ACPI Magic Packet filter
7294 if (adapter->flags & FLAG_APME_IN_WUC) {
7295 /* APME bit in EEPROM is mapped to WUC.APME */
7296 eeprom_data = er32(WUC);
7297 eeprom_apme_mask = E1000_WUC_APME;
7298 if ((hw->mac.type > e1000_ich10lan) &&
7299 (eeprom_data & E1000_WUC_PHY_WAKE))
7300 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7301 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7302 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7303 (adapter->hw.bus.func == 1))
7304 ret_val = e1000_read_nvm(&adapter->hw,
7305 NVM_INIT_CONTROL3_PORT_B,
7306 1, &eeprom_data);
7307 else
7308 ret_val = e1000_read_nvm(&adapter->hw,
7309 NVM_INIT_CONTROL3_PORT_A,
7310 1, &eeprom_data);
7313 /* fetch WoL from EEPROM */
7314 if (ret_val)
7315 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7316 else if (eeprom_data & eeprom_apme_mask)
7317 adapter->eeprom_wol |= E1000_WUFC_MAG;
7319 /* now that we have the eeprom settings, apply the special cases
7320 * where the eeprom may be wrong or the board simply won't support
7321 * wake on lan on a particular port
7323 if (!(adapter->flags & FLAG_HAS_WOL))
7324 adapter->eeprom_wol = 0;
7326 /* initialize the wol settings based on the eeprom settings */
7327 adapter->wol = adapter->eeprom_wol;
7329 /* make sure adapter isn't asleep if manageability is enabled */
7330 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7331 (hw->mac.ops.check_mng_mode(hw)))
7332 device_wakeup_enable(&pdev->dev);
7334 /* save off EEPROM version number */
7335 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7337 if (ret_val) {
7338 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7339 adapter->eeprom_vers = 0;
7342 /* init PTP hardware clock */
7343 e1000e_ptp_init(adapter);
7345 /* reset the hardware with the new settings */
7346 e1000e_reset(adapter);
7348 /* If the controller has AMT, do not set DRV_LOAD until the interface
7349 * is up. For all other cases, let the f/w know that the h/w is now
7350 * under the control of the driver.
7352 if (!(adapter->flags & FLAG_HAS_AMT))
7353 e1000e_get_hw_control(adapter);
7355 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7356 err = register_netdev(netdev);
7357 if (err)
7358 goto err_register;
7360 /* carrier off reporting is important to ethtool even BEFORE open */
7361 netif_carrier_off(netdev);
7363 e1000_print_device_info(adapter);
7365 if (pci_dev_run_wake(pdev))
7366 pm_runtime_put_noidle(&pdev->dev);
7368 return 0;
7370 err_register:
7371 if (!(adapter->flags & FLAG_HAS_AMT))
7372 e1000e_release_hw_control(adapter);
7373 err_eeprom:
7374 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7375 e1000_phy_hw_reset(&adapter->hw);
7376 err_hw_init:
7377 kfree(adapter->tx_ring);
7378 kfree(adapter->rx_ring);
7379 err_sw_init:
7380 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7381 iounmap(adapter->hw.flash_address);
7382 e1000e_reset_interrupt_capability(adapter);
7383 err_flashmap:
7384 iounmap(adapter->hw.hw_addr);
7385 err_ioremap:
7386 free_netdev(netdev);
7387 err_alloc_etherdev:
7388 pci_release_mem_regions(pdev);
7389 err_pci_reg:
7390 err_dma:
7391 pci_disable_device(pdev);
7392 return err;
7396 * e1000_remove - Device Removal Routine
7397 * @pdev: PCI device information struct
7399 * e1000_remove is called by the PCI subsystem to alert the driver
7400 * that it should release a PCI device. The could be caused by a
7401 * Hot-Plug event, or because the driver is going to be removed from
7402 * memory.
7404 static void e1000_remove(struct pci_dev *pdev)
7406 struct net_device *netdev = pci_get_drvdata(pdev);
7407 struct e1000_adapter *adapter = netdev_priv(netdev);
7408 bool down = test_bit(__E1000_DOWN, &adapter->state);
7410 e1000e_ptp_remove(adapter);
7412 /* The timers may be rescheduled, so explicitly disable them
7413 * from being rescheduled.
7415 if (!down)
7416 set_bit(__E1000_DOWN, &adapter->state);
7417 del_timer_sync(&adapter->watchdog_timer);
7418 del_timer_sync(&adapter->phy_info_timer);
7420 cancel_work_sync(&adapter->reset_task);
7421 cancel_work_sync(&adapter->watchdog_task);
7422 cancel_work_sync(&adapter->downshift_task);
7423 cancel_work_sync(&adapter->update_phy_task);
7424 cancel_work_sync(&adapter->print_hang_task);
7426 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7427 cancel_work_sync(&adapter->tx_hwtstamp_work);
7428 if (adapter->tx_hwtstamp_skb) {
7429 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7430 adapter->tx_hwtstamp_skb = NULL;
7434 /* Don't lie to e1000_close() down the road. */
7435 if (!down)
7436 clear_bit(__E1000_DOWN, &adapter->state);
7437 unregister_netdev(netdev);
7439 if (pci_dev_run_wake(pdev))
7440 pm_runtime_get_noresume(&pdev->dev);
7442 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7443 * would have already happened in close and is redundant.
7445 e1000e_release_hw_control(adapter);
7447 e1000e_reset_interrupt_capability(adapter);
7448 kfree(adapter->tx_ring);
7449 kfree(adapter->rx_ring);
7451 iounmap(adapter->hw.hw_addr);
7452 if ((adapter->hw.flash_address) &&
7453 (adapter->hw.mac.type < e1000_pch_spt))
7454 iounmap(adapter->hw.flash_address);
7455 pci_release_mem_regions(pdev);
7457 free_netdev(netdev);
7459 /* AER disable */
7460 pci_disable_pcie_error_reporting(pdev);
7462 pci_disable_device(pdev);
7465 /* PCI Error Recovery (ERS) */
7466 static const struct pci_error_handlers e1000_err_handler = {
7467 .error_detected = e1000_io_error_detected,
7468 .slot_reset = e1000_io_slot_reset,
7469 .resume = e1000_io_resume,
7472 static const struct pci_device_id e1000_pci_tbl[] = {
7473 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7474 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7475 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7476 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7477 board_82571 },
7478 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7479 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7480 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7481 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7482 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7484 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7485 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7486 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7487 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7489 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7490 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7491 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7493 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7494 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7495 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7497 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7498 board_80003es2lan },
7499 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7500 board_80003es2lan },
7501 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7502 board_80003es2lan },
7503 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7504 board_80003es2lan },
7506 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7507 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7508 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7509 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7511 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7512 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7513 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7516 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7517 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7518 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7519 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7520 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7521 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7522 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7523 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7525 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7526 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7527 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7529 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7530 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7531 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7533 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7534 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7535 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7536 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7538 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7539 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7541 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7542 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7543 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7544 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7545 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7546 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7547 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7548 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7549 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7550 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7551 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7552 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7553 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7554 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7555 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7556 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7557 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7558 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7559 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7560 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7561 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7562 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7563 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7564 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7565 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7567 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7569 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7571 static const struct dev_pm_ops e1000_pm_ops = {
7572 #ifdef CONFIG_PM_SLEEP
7573 .suspend = e1000e_pm_suspend,
7574 .resume = e1000e_pm_resume,
7575 .freeze = e1000e_pm_freeze,
7576 .thaw = e1000e_pm_thaw,
7577 .poweroff = e1000e_pm_suspend,
7578 .restore = e1000e_pm_resume,
7579 #endif
7580 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7581 e1000e_pm_runtime_idle)
7584 /* PCI Device API Driver */
7585 static struct pci_driver e1000_driver = {
7586 .name = e1000e_driver_name,
7587 .id_table = e1000_pci_tbl,
7588 .probe = e1000_probe,
7589 .remove = e1000_remove,
7590 .driver = {
7591 .pm = &e1000_pm_ops,
7593 .shutdown = e1000_shutdown,
7594 .err_handler = &e1000_err_handler
7598 * e1000_init_module - Driver Registration Routine
7600 * e1000_init_module is the first routine called when the driver is
7601 * loaded. All it does is register with the PCI subsystem.
7603 static int __init e1000_init_module(void)
7605 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7606 e1000e_driver_version);
7607 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7609 return pci_register_driver(&e1000_driver);
7611 module_init(e1000_init_module);
7614 * e1000_exit_module - Driver Exit Cleanup Routine
7616 * e1000_exit_module is called just before the driver is removed
7617 * from memory.
7619 static void __exit e1000_exit_module(void)
7621 pci_unregister_driver(&e1000_driver);
7623 module_exit(e1000_exit_module);
7625 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7626 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7627 MODULE_LICENSE("GPL");
7628 MODULE_VERSION(DRV_VERSION);
7630 /* netdev.c */