1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
49 #define DRV_EXTRAVERSION "-k"
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name
[] = "e1000e";
53 const char e1000e_driver_version
[] = DRV_VERSION
;
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug
= -1;
57 module_param(debug
, int, 0);
58 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
60 static const struct e1000_info
*e1000_info_tbl
[] = {
61 [board_82571
] = &e1000_82571_info
,
62 [board_82572
] = &e1000_82572_info
,
63 [board_82573
] = &e1000_82573_info
,
64 [board_82574
] = &e1000_82574_info
,
65 [board_82583
] = &e1000_82583_info
,
66 [board_80003es2lan
] = &e1000_es2_info
,
67 [board_ich8lan
] = &e1000_ich8_info
,
68 [board_ich9lan
] = &e1000_ich9_info
,
69 [board_ich10lan
] = &e1000_ich10_info
,
70 [board_pchlan
] = &e1000_pch_info
,
71 [board_pch2lan
] = &e1000_pch2_info
,
72 [board_pch_lpt
] = &e1000_pch_lpt_info
,
73 [board_pch_spt
] = &e1000_pch_spt_info
,
74 [board_pch_cnp
] = &e1000_pch_cnp_info
,
77 struct e1000_reg_info
{
82 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
83 /* General Registers */
85 {E1000_STATUS
, "STATUS"},
86 {E1000_CTRL_EXT
, "CTRL_EXT"},
88 /* Interrupt Registers */
93 {E1000_RDLEN(0), "RDLEN"},
94 {E1000_RDH(0), "RDH"},
95 {E1000_RDT(0), "RDT"},
97 {E1000_RXDCTL(0), "RXDCTL"},
99 {E1000_RDBAL(0), "RDBAL"},
100 {E1000_RDBAH(0), "RDBAH"},
101 {E1000_RDFH
, "RDFH"},
102 {E1000_RDFT
, "RDFT"},
103 {E1000_RDFHS
, "RDFHS"},
104 {E1000_RDFTS
, "RDFTS"},
105 {E1000_RDFPC
, "RDFPC"},
108 {E1000_TCTL
, "TCTL"},
109 {E1000_TDBAL(0), "TDBAL"},
110 {E1000_TDBAH(0), "TDBAH"},
111 {E1000_TDLEN(0), "TDLEN"},
112 {E1000_TDH(0), "TDH"},
113 {E1000_TDT(0), "TDT"},
114 {E1000_TIDV
, "TIDV"},
115 {E1000_TXDCTL(0), "TXDCTL"},
116 {E1000_TADV
, "TADV"},
117 {E1000_TARC(0), "TARC"},
118 {E1000_TDFH
, "TDFH"},
119 {E1000_TDFT
, "TDFT"},
120 {E1000_TDFHS
, "TDFHS"},
121 {E1000_TDFTS
, "TDFTS"},
122 {E1000_TDFPC
, "TDFPC"},
124 /* List Terminator */
129 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
130 * @hw: pointer to the HW structure
132 * When updating the MAC CSR registers, the Manageability Engine (ME) could
133 * be accessing the registers at the same time. Normally, this is handled in
134 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
135 * accesses later than it should which could result in the register to have
136 * an incorrect value. Workaround this by checking the FWSM register which
137 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
138 * and try again a number of times.
140 s32
__ew32_prepare(struct e1000_hw
*hw
)
142 s32 i
= E1000_ICH_FWSM_PCIM2PCI_COUNT
;
144 while ((er32(FWSM
) & E1000_ICH_FWSM_PCIM2PCI
) && --i
)
150 void __ew32(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
152 if (hw
->adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
155 writel(val
, hw
->hw_addr
+ reg
);
159 * e1000_regdump - register printout routine
160 * @hw: pointer to the HW structure
161 * @reginfo: pointer to the register info table
163 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
169 switch (reginfo
->ofs
) {
170 case E1000_RXDCTL(0):
171 for (n
= 0; n
< 2; n
++)
172 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
174 case E1000_TXDCTL(0):
175 for (n
= 0; n
< 2; n
++)
176 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
179 for (n
= 0; n
< 2; n
++)
180 regs
[n
] = __er32(hw
, E1000_TARC(n
));
183 pr_info("%-15s %08x\n",
184 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
188 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
189 pr_info("%-15s %08x %08x\n", rname
, regs
[0], regs
[1]);
192 static void e1000e_dump_ps_pages(struct e1000_adapter
*adapter
,
193 struct e1000_buffer
*bi
)
196 struct e1000_ps_page
*ps_page
;
198 for (i
= 0; i
< adapter
->rx_ps_pages
; i
++) {
199 ps_page
= &bi
->ps_pages
[i
];
202 pr_info("packet dump for ps_page %d:\n", i
);
203 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
204 16, 1, page_address(ps_page
->page
),
211 * e1000e_dump - Print registers, Tx-ring and Rx-ring
212 * @adapter: board private structure
214 static void e1000e_dump(struct e1000_adapter
*adapter
)
216 struct net_device
*netdev
= adapter
->netdev
;
217 struct e1000_hw
*hw
= &adapter
->hw
;
218 struct e1000_reg_info
*reginfo
;
219 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
220 struct e1000_tx_desc
*tx_desc
;
225 struct e1000_buffer
*buffer_info
;
226 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
227 union e1000_rx_desc_packet_split
*rx_desc_ps
;
228 union e1000_rx_desc_extended
*rx_desc
;
238 if (!netif_msg_hw(adapter
))
241 /* Print netdevice Info */
243 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
244 pr_info("Device Name state trans_start\n");
245 pr_info("%-15s %016lX %016lX\n", netdev
->name
,
246 netdev
->state
, dev_trans_start(netdev
));
249 /* Print Registers */
250 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
251 pr_info(" Register Name Value\n");
252 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
253 reginfo
->name
; reginfo
++) {
254 e1000_regdump(hw
, reginfo
);
257 /* Print Tx Ring Summary */
258 if (!netdev
|| !netif_running(netdev
))
261 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
262 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
263 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
264 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
265 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
266 (unsigned long long)buffer_info
->dma
,
268 buffer_info
->next_to_watch
,
269 (unsigned long long)buffer_info
->time_stamp
);
272 if (!netif_msg_tx_done(adapter
))
273 goto rx_ring_summary
;
275 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
277 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
279 * Legacy Transmit Descriptor
280 * +--------------------------------------------------------------+
281 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
282 * +--------------------------------------------------------------+
283 * 8 | Special | CSS | Status | CMD | CSO | Length |
284 * +--------------------------------------------------------------+
285 * 63 48 47 36 35 32 31 24 23 16 15 0
287 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
288 * 63 48 47 40 39 32 31 16 15 8 7 0
289 * +----------------------------------------------------------------+
290 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
291 * +----------------------------------------------------------------+
292 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
293 * +----------------------------------------------------------------+
294 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
296 * Extended Data Descriptor (DTYP=0x1)
297 * +----------------------------------------------------------------+
298 * 0 | Buffer Address [63:0] |
299 * +----------------------------------------------------------------+
300 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
301 * +----------------------------------------------------------------+
302 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
304 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
305 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
306 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
307 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
308 const char *next_desc
;
309 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
310 buffer_info
= &tx_ring
->buffer_info
[i
];
311 u0
= (struct my_u0
*)tx_desc
;
312 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
313 next_desc
= " NTC/U";
314 else if (i
== tx_ring
->next_to_use
)
316 else if (i
== tx_ring
->next_to_clean
)
320 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
321 (!(le64_to_cpu(u0
->b
) & BIT(29)) ? 'l' :
322 ((le64_to_cpu(u0
->b
) & BIT(20)) ? 'd' : 'c')),
324 (unsigned long long)le64_to_cpu(u0
->a
),
325 (unsigned long long)le64_to_cpu(u0
->b
),
326 (unsigned long long)buffer_info
->dma
,
327 buffer_info
->length
, buffer_info
->next_to_watch
,
328 (unsigned long long)buffer_info
->time_stamp
,
329 buffer_info
->skb
, next_desc
);
331 if (netif_msg_pktdata(adapter
) && buffer_info
->skb
)
332 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
333 16, 1, buffer_info
->skb
->data
,
334 buffer_info
->skb
->len
, true);
337 /* Print Rx Ring Summary */
339 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
340 pr_info("Queue [NTU] [NTC]\n");
341 pr_info(" %5d %5X %5X\n",
342 0, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
345 if (!netif_msg_rx_status(adapter
))
348 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
349 switch (adapter
->rx_ps_pages
) {
353 /* [Extended] Packet Split Receive Descriptor Format
355 * +-----------------------------------------------------+
356 * 0 | Buffer Address 0 [63:0] |
357 * +-----------------------------------------------------+
358 * 8 | Buffer Address 1 [63:0] |
359 * +-----------------------------------------------------+
360 * 16 | Buffer Address 2 [63:0] |
361 * +-----------------------------------------------------+
362 * 24 | Buffer Address 3 [63:0] |
363 * +-----------------------------------------------------+
365 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
366 /* [Extended] Receive Descriptor (Write-Back) Format
368 * 63 48 47 32 31 13 12 8 7 4 3 0
369 * +------------------------------------------------------+
370 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
371 * | Checksum | Ident | | Queue | | Type |
372 * +------------------------------------------------------+
373 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
374 * +------------------------------------------------------+
375 * 63 48 47 32 31 20 19 0
377 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
378 for (i
= 0; i
< rx_ring
->count
; i
++) {
379 const char *next_desc
;
380 buffer_info
= &rx_ring
->buffer_info
[i
];
381 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
382 u1
= (struct my_u1
*)rx_desc_ps
;
384 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
386 if (i
== rx_ring
->next_to_use
)
388 else if (i
== rx_ring
->next_to_clean
)
393 if (staterr
& E1000_RXD_STAT_DD
) {
394 /* Descriptor Done */
395 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
397 (unsigned long long)le64_to_cpu(u1
->a
),
398 (unsigned long long)le64_to_cpu(u1
->b
),
399 (unsigned long long)le64_to_cpu(u1
->c
),
400 (unsigned long long)le64_to_cpu(u1
->d
),
401 buffer_info
->skb
, next_desc
);
403 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
405 (unsigned long long)le64_to_cpu(u1
->a
),
406 (unsigned long long)le64_to_cpu(u1
->b
),
407 (unsigned long long)le64_to_cpu(u1
->c
),
408 (unsigned long long)le64_to_cpu(u1
->d
),
409 (unsigned long long)buffer_info
->dma
,
410 buffer_info
->skb
, next_desc
);
412 if (netif_msg_pktdata(adapter
))
413 e1000e_dump_ps_pages(adapter
,
420 /* Extended Receive Descriptor (Read) Format
422 * +-----------------------------------------------------+
423 * 0 | Buffer Address [63:0] |
424 * +-----------------------------------------------------+
426 * +-----------------------------------------------------+
428 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
429 /* Extended Receive Descriptor (Write-Back) Format
431 * 63 48 47 32 31 24 23 4 3 0
432 * +------------------------------------------------------+
434 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
435 * | Packet | IP | | | Type |
436 * | Checksum | Ident | | | |
437 * +------------------------------------------------------+
438 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
439 * +------------------------------------------------------+
440 * 63 48 47 32 31 20 19 0
442 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
444 for (i
= 0; i
< rx_ring
->count
; i
++) {
445 const char *next_desc
;
447 buffer_info
= &rx_ring
->buffer_info
[i
];
448 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
449 u1
= (struct my_u1
*)rx_desc
;
450 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
452 if (i
== rx_ring
->next_to_use
)
454 else if (i
== rx_ring
->next_to_clean
)
459 if (staterr
& E1000_RXD_STAT_DD
) {
460 /* Descriptor Done */
461 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
463 (unsigned long long)le64_to_cpu(u1
->a
),
464 (unsigned long long)le64_to_cpu(u1
->b
),
465 buffer_info
->skb
, next_desc
);
467 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
469 (unsigned long long)le64_to_cpu(u1
->a
),
470 (unsigned long long)le64_to_cpu(u1
->b
),
471 (unsigned long long)buffer_info
->dma
,
472 buffer_info
->skb
, next_desc
);
474 if (netif_msg_pktdata(adapter
) &&
476 print_hex_dump(KERN_INFO
, "",
477 DUMP_PREFIX_ADDRESS
, 16,
479 buffer_info
->skb
->data
,
480 adapter
->rx_buffer_len
,
488 * e1000_desc_unused - calculate if we have unused descriptors
490 static int e1000_desc_unused(struct e1000_ring
*ring
)
492 if (ring
->next_to_clean
> ring
->next_to_use
)
493 return ring
->next_to_clean
- ring
->next_to_use
- 1;
495 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
499 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
500 * @adapter: board private structure
501 * @hwtstamps: time stamp structure to update
502 * @systim: unsigned 64bit system time value.
504 * Convert the system time value stored in the RX/TXSTMP registers into a
505 * hwtstamp which can be used by the upper level time stamping functions.
507 * The 'systim_lock' spinlock is used to protect the consistency of the
508 * system time value. This is needed because reading the 64 bit time
509 * value involves reading two 32 bit registers. The first read latches the
512 static void e1000e_systim_to_hwtstamp(struct e1000_adapter
*adapter
,
513 struct skb_shared_hwtstamps
*hwtstamps
,
519 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
520 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
521 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
523 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
524 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
528 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
529 * @adapter: board private structure
530 * @status: descriptor extended error and status field
531 * @skb: particular skb to include time stamp
533 * If the time stamp is valid, convert it into the timecounter ns value
534 * and store that result into the shhwtstamps structure which is passed
535 * up the network stack.
537 static void e1000e_rx_hwtstamp(struct e1000_adapter
*adapter
, u32 status
,
540 struct e1000_hw
*hw
= &adapter
->hw
;
543 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) ||
544 !(status
& E1000_RXDEXT_STATERR_TST
) ||
545 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
548 /* The Rx time stamp registers contain the time stamp. No other
549 * received packet will be time stamped until the Rx time stamp
550 * registers are read. Because only one packet can be time stamped
551 * at a time, the register values must belong to this packet and
552 * therefore none of the other additional attributes need to be
555 rxstmp
= (u64
)er32(RXSTMPL
);
556 rxstmp
|= (u64
)er32(RXSTMPH
) << 32;
557 e1000e_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), rxstmp
);
559 adapter
->flags2
&= ~FLAG2_CHECK_RX_HWTSTAMP
;
563 * e1000_receive_skb - helper function to handle Rx indications
564 * @adapter: board private structure
565 * @staterr: descriptor extended error and status field as written by hardware
566 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
567 * @skb: pointer to sk_buff to be indicated to stack
569 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
570 struct net_device
*netdev
, struct sk_buff
*skb
,
571 u32 staterr
, __le16 vlan
)
573 u16 tag
= le16_to_cpu(vlan
);
575 e1000e_rx_hwtstamp(adapter
, staterr
, skb
);
577 skb
->protocol
= eth_type_trans(skb
, netdev
);
579 if (staterr
& E1000_RXD_STAT_VP
)
580 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tag
);
582 napi_gro_receive(&adapter
->napi
, skb
);
586 * e1000_rx_checksum - Receive Checksum Offload
587 * @adapter: board private structure
588 * @status_err: receive descriptor status and error fields
589 * @csum: receive descriptor csum field
590 * @sk_buff: socket buffer with received data
592 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
595 u16 status
= (u16
)status_err
;
596 u8 errors
= (u8
)(status_err
>> 24);
598 skb_checksum_none_assert(skb
);
600 /* Rx checksum disabled */
601 if (!(adapter
->netdev
->features
& NETIF_F_RXCSUM
))
604 /* Ignore Checksum bit is set */
605 if (status
& E1000_RXD_STAT_IXSM
)
608 /* TCP/UDP checksum error bit or IP checksum error bit is set */
609 if (errors
& (E1000_RXD_ERR_TCPE
| E1000_RXD_ERR_IPE
)) {
610 /* let the stack verify checksum errors */
611 adapter
->hw_csum_err
++;
615 /* TCP/UDP Checksum has not been calculated */
616 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
619 /* It must be a TCP or UDP packet with a valid checksum */
620 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
621 adapter
->hw_csum_good
++;
624 static void e1000e_update_rdt_wa(struct e1000_ring
*rx_ring
, unsigned int i
)
626 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
627 struct e1000_hw
*hw
= &adapter
->hw
;
628 s32 ret_val
= __ew32_prepare(hw
);
630 writel(i
, rx_ring
->tail
);
632 if (unlikely(!ret_val
&& (i
!= readl(rx_ring
->tail
)))) {
633 u32 rctl
= er32(RCTL
);
635 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
636 e_err("ME firmware caused invalid RDT - resetting\n");
637 schedule_work(&adapter
->reset_task
);
641 static void e1000e_update_tdt_wa(struct e1000_ring
*tx_ring
, unsigned int i
)
643 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
644 struct e1000_hw
*hw
= &adapter
->hw
;
645 s32 ret_val
= __ew32_prepare(hw
);
647 writel(i
, tx_ring
->tail
);
649 if (unlikely(!ret_val
&& (i
!= readl(tx_ring
->tail
)))) {
650 u32 tctl
= er32(TCTL
);
652 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
653 e_err("ME firmware caused invalid TDT - resetting\n");
654 schedule_work(&adapter
->reset_task
);
659 * e1000_alloc_rx_buffers - Replace used receive buffers
660 * @rx_ring: Rx descriptor ring
662 static void e1000_alloc_rx_buffers(struct e1000_ring
*rx_ring
,
663 int cleaned_count
, gfp_t gfp
)
665 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
666 struct net_device
*netdev
= adapter
->netdev
;
667 struct pci_dev
*pdev
= adapter
->pdev
;
668 union e1000_rx_desc_extended
*rx_desc
;
669 struct e1000_buffer
*buffer_info
;
672 unsigned int bufsz
= adapter
->rx_buffer_len
;
674 i
= rx_ring
->next_to_use
;
675 buffer_info
= &rx_ring
->buffer_info
[i
];
677 while (cleaned_count
--) {
678 skb
= buffer_info
->skb
;
684 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
686 /* Better luck next round */
687 adapter
->alloc_rx_buff_failed
++;
691 buffer_info
->skb
= skb
;
693 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
694 adapter
->rx_buffer_len
,
696 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
697 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
698 adapter
->rx_dma_failed
++;
702 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
703 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
705 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
706 /* Force memory writes to complete before letting h/w
707 * know there are new descriptors to fetch. (Only
708 * applicable for weak-ordered memory model archs,
712 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
713 e1000e_update_rdt_wa(rx_ring
, i
);
715 writel(i
, rx_ring
->tail
);
718 if (i
== rx_ring
->count
)
720 buffer_info
= &rx_ring
->buffer_info
[i
];
723 rx_ring
->next_to_use
= i
;
727 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
728 * @rx_ring: Rx descriptor ring
730 static void e1000_alloc_rx_buffers_ps(struct e1000_ring
*rx_ring
,
731 int cleaned_count
, gfp_t gfp
)
733 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
734 struct net_device
*netdev
= adapter
->netdev
;
735 struct pci_dev
*pdev
= adapter
->pdev
;
736 union e1000_rx_desc_packet_split
*rx_desc
;
737 struct e1000_buffer
*buffer_info
;
738 struct e1000_ps_page
*ps_page
;
742 i
= rx_ring
->next_to_use
;
743 buffer_info
= &rx_ring
->buffer_info
[i
];
745 while (cleaned_count
--) {
746 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
748 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
749 ps_page
= &buffer_info
->ps_pages
[j
];
750 if (j
>= adapter
->rx_ps_pages
) {
751 /* all unused desc entries get hw null ptr */
752 rx_desc
->read
.buffer_addr
[j
+ 1] =
756 if (!ps_page
->page
) {
757 ps_page
->page
= alloc_page(gfp
);
758 if (!ps_page
->page
) {
759 adapter
->alloc_rx_buff_failed
++;
762 ps_page
->dma
= dma_map_page(&pdev
->dev
,
766 if (dma_mapping_error(&pdev
->dev
,
768 dev_err(&adapter
->pdev
->dev
,
769 "Rx DMA page map failed\n");
770 adapter
->rx_dma_failed
++;
774 /* Refresh the desc even if buffer_addrs
775 * didn't change because each write-back
778 rx_desc
->read
.buffer_addr
[j
+ 1] =
779 cpu_to_le64(ps_page
->dma
);
782 skb
= __netdev_alloc_skb_ip_align(netdev
, adapter
->rx_ps_bsize0
,
786 adapter
->alloc_rx_buff_failed
++;
790 buffer_info
->skb
= skb
;
791 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
792 adapter
->rx_ps_bsize0
,
794 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
795 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
796 adapter
->rx_dma_failed
++;
798 dev_kfree_skb_any(skb
);
799 buffer_info
->skb
= NULL
;
803 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
805 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
806 /* Force memory writes to complete before letting h/w
807 * know there are new descriptors to fetch. (Only
808 * applicable for weak-ordered memory model archs,
812 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
813 e1000e_update_rdt_wa(rx_ring
, i
<< 1);
815 writel(i
<< 1, rx_ring
->tail
);
819 if (i
== rx_ring
->count
)
821 buffer_info
= &rx_ring
->buffer_info
[i
];
825 rx_ring
->next_to_use
= i
;
829 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
830 * @rx_ring: Rx descriptor ring
831 * @cleaned_count: number of buffers to allocate this pass
834 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring
*rx_ring
,
835 int cleaned_count
, gfp_t gfp
)
837 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
838 struct net_device
*netdev
= adapter
->netdev
;
839 struct pci_dev
*pdev
= adapter
->pdev
;
840 union e1000_rx_desc_extended
*rx_desc
;
841 struct e1000_buffer
*buffer_info
;
844 unsigned int bufsz
= 256 - 16; /* for skb_reserve */
846 i
= rx_ring
->next_to_use
;
847 buffer_info
= &rx_ring
->buffer_info
[i
];
849 while (cleaned_count
--) {
850 skb
= buffer_info
->skb
;
856 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
857 if (unlikely(!skb
)) {
858 /* Better luck next round */
859 adapter
->alloc_rx_buff_failed
++;
863 buffer_info
->skb
= skb
;
865 /* allocate a new page if necessary */
866 if (!buffer_info
->page
) {
867 buffer_info
->page
= alloc_page(gfp
);
868 if (unlikely(!buffer_info
->page
)) {
869 adapter
->alloc_rx_buff_failed
++;
874 if (!buffer_info
->dma
) {
875 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
876 buffer_info
->page
, 0,
879 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
880 adapter
->alloc_rx_buff_failed
++;
885 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
886 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
888 if (unlikely(++i
== rx_ring
->count
))
890 buffer_info
= &rx_ring
->buffer_info
[i
];
893 if (likely(rx_ring
->next_to_use
!= i
)) {
894 rx_ring
->next_to_use
= i
;
895 if (unlikely(i
-- == 0))
896 i
= (rx_ring
->count
- 1);
898 /* Force memory writes to complete before letting h/w
899 * know there are new descriptors to fetch. (Only
900 * applicable for weak-ordered memory model archs,
904 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
905 e1000e_update_rdt_wa(rx_ring
, i
);
907 writel(i
, rx_ring
->tail
);
911 static inline void e1000_rx_hash(struct net_device
*netdev
, __le32 rss
,
914 if (netdev
->features
& NETIF_F_RXHASH
)
915 skb_set_hash(skb
, le32_to_cpu(rss
), PKT_HASH_TYPE_L3
);
919 * e1000_clean_rx_irq - Send received data up the network stack
920 * @rx_ring: Rx descriptor ring
922 * the return value indicates whether actual cleaning was done, there
923 * is no guarantee that everything was cleaned
925 static bool e1000_clean_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
928 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
929 struct net_device
*netdev
= adapter
->netdev
;
930 struct pci_dev
*pdev
= adapter
->pdev
;
931 struct e1000_hw
*hw
= &adapter
->hw
;
932 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
933 struct e1000_buffer
*buffer_info
, *next_buffer
;
936 int cleaned_count
= 0;
937 bool cleaned
= false;
938 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
940 i
= rx_ring
->next_to_clean
;
941 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
942 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
943 buffer_info
= &rx_ring
->buffer_info
[i
];
945 while (staterr
& E1000_RXD_STAT_DD
) {
948 if (*work_done
>= work_to_do
)
951 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
953 skb
= buffer_info
->skb
;
954 buffer_info
->skb
= NULL
;
956 prefetch(skb
->data
- NET_IP_ALIGN
);
959 if (i
== rx_ring
->count
)
961 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
964 next_buffer
= &rx_ring
->buffer_info
[i
];
968 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
969 adapter
->rx_buffer_len
, DMA_FROM_DEVICE
);
970 buffer_info
->dma
= 0;
972 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
974 /* !EOP means multiple descriptors were used to store a single
975 * packet, if that's the case we need to toss it. In fact, we
976 * need to toss every packet with the EOP bit clear and the
977 * next frame that _does_ have the EOP bit set, as it is by
978 * definition only a frame fragment
980 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
)))
981 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
983 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
984 /* All receives must fit into a single buffer */
985 e_dbg("Receive packet consumed multiple buffers\n");
987 buffer_info
->skb
= skb
;
988 if (staterr
& E1000_RXD_STAT_EOP
)
989 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
993 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
994 !(netdev
->features
& NETIF_F_RXALL
))) {
996 buffer_info
->skb
= skb
;
1000 /* adjust length to remove Ethernet CRC */
1001 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1002 /* If configured to store CRC, don't subtract FCS,
1003 * but keep the FCS bytes out of the total_rx_bytes
1006 if (netdev
->features
& NETIF_F_RXFCS
)
1007 total_rx_bytes
-= 4;
1012 total_rx_bytes
+= length
;
1015 /* code added for copybreak, this should improve
1016 * performance for small packets with large amounts
1017 * of reassembly being done in the stack
1019 if (length
< copybreak
) {
1020 struct sk_buff
*new_skb
=
1021 napi_alloc_skb(&adapter
->napi
, length
);
1023 skb_copy_to_linear_data_offset(new_skb
,
1029 /* save the skb in buffer_info as good */
1030 buffer_info
->skb
= skb
;
1033 /* else just continue with the old one */
1035 /* end copybreak code */
1036 skb_put(skb
, length
);
1038 /* Receive Checksum Offload */
1039 e1000_rx_checksum(adapter
, staterr
, skb
);
1041 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1043 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1044 rx_desc
->wb
.upper
.vlan
);
1047 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1049 /* return some buffers to hardware, one at a time is too slow */
1050 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1051 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1056 /* use prefetched values */
1058 buffer_info
= next_buffer
;
1060 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1062 rx_ring
->next_to_clean
= i
;
1064 cleaned_count
= e1000_desc_unused(rx_ring
);
1066 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1068 adapter
->total_rx_bytes
+= total_rx_bytes
;
1069 adapter
->total_rx_packets
+= total_rx_packets
;
1073 static void e1000_put_txbuf(struct e1000_ring
*tx_ring
,
1074 struct e1000_buffer
*buffer_info
,
1077 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1079 if (buffer_info
->dma
) {
1080 if (buffer_info
->mapped_as_page
)
1081 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1082 buffer_info
->length
, DMA_TO_DEVICE
);
1084 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1085 buffer_info
->length
, DMA_TO_DEVICE
);
1086 buffer_info
->dma
= 0;
1088 if (buffer_info
->skb
) {
1090 dev_kfree_skb_any(buffer_info
->skb
);
1092 dev_consume_skb_any(buffer_info
->skb
);
1093 buffer_info
->skb
= NULL
;
1095 buffer_info
->time_stamp
= 0;
1098 static void e1000_print_hw_hang(struct work_struct
*work
)
1100 struct e1000_adapter
*adapter
= container_of(work
,
1101 struct e1000_adapter
,
1103 struct net_device
*netdev
= adapter
->netdev
;
1104 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1105 unsigned int i
= tx_ring
->next_to_clean
;
1106 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1107 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1108 struct e1000_hw
*hw
= &adapter
->hw
;
1109 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
1112 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1115 if (!adapter
->tx_hang_recheck
&& (adapter
->flags2
& FLAG2_DMA_BURST
)) {
1116 /* May be block on write-back, flush and detect again
1117 * flush pending descriptor writebacks to memory
1119 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1120 /* execute the writes immediately */
1122 /* Due to rare timing issues, write to TIDV again to ensure
1123 * the write is successful
1125 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1126 /* execute the writes immediately */
1128 adapter
->tx_hang_recheck
= true;
1131 adapter
->tx_hang_recheck
= false;
1133 if (er32(TDH(0)) == er32(TDT(0))) {
1134 e_dbg("false hang detected, ignoring\n");
1138 /* Real hang detected */
1139 netif_stop_queue(netdev
);
1141 e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1142 e1e_rphy(hw
, MII_STAT1000
, &phy_1000t_status
);
1143 e1e_rphy(hw
, MII_ESTATUS
, &phy_ext_status
);
1145 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
1147 /* detected Hardware unit hang */
1148 e_err("Detected Hardware Unit Hang:\n"
1151 " next_to_use <%x>\n"
1152 " next_to_clean <%x>\n"
1153 "buffer_info[next_to_clean]:\n"
1154 " time_stamp <%lx>\n"
1155 " next_to_watch <%x>\n"
1157 " next_to_watch.status <%x>\n"
1160 "PHY 1000BASE-T Status <%x>\n"
1161 "PHY Extended Status <%x>\n"
1162 "PCI Status <%x>\n",
1163 readl(tx_ring
->head
), readl(tx_ring
->tail
), tx_ring
->next_to_use
,
1164 tx_ring
->next_to_clean
, tx_ring
->buffer_info
[eop
].time_stamp
,
1165 eop
, jiffies
, eop_desc
->upper
.fields
.status
, er32(STATUS
),
1166 phy_status
, phy_1000t_status
, phy_ext_status
, pci_status
);
1168 e1000e_dump(adapter
);
1170 /* Suggest workaround for known h/w issue */
1171 if ((hw
->mac
.type
== e1000_pchlan
) && (er32(CTRL
) & E1000_CTRL_TFCE
))
1172 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1176 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1177 * @work: pointer to work struct
1179 * This work function polls the TSYNCTXCTL valid bit to determine when a
1180 * timestamp has been taken for the current stored skb. The timestamp must
1181 * be for this skb because only one such packet is allowed in the queue.
1183 static void e1000e_tx_hwtstamp_work(struct work_struct
*work
)
1185 struct e1000_adapter
*adapter
= container_of(work
, struct e1000_adapter
,
1187 struct e1000_hw
*hw
= &adapter
->hw
;
1189 if (er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
) {
1190 struct sk_buff
*skb
= adapter
->tx_hwtstamp_skb
;
1191 struct skb_shared_hwtstamps shhwtstamps
;
1194 txstmp
= er32(TXSTMPL
);
1195 txstmp
|= (u64
)er32(TXSTMPH
) << 32;
1197 e1000e_systim_to_hwtstamp(adapter
, &shhwtstamps
, txstmp
);
1199 /* Clear the global tx_hwtstamp_skb pointer and force writes
1200 * prior to notifying the stack of a Tx timestamp.
1202 adapter
->tx_hwtstamp_skb
= NULL
;
1203 wmb(); /* force write prior to skb_tstamp_tx */
1205 skb_tstamp_tx(skb
, &shhwtstamps
);
1206 dev_consume_skb_any(skb
);
1207 } else if (time_after(jiffies
, adapter
->tx_hwtstamp_start
1208 + adapter
->tx_timeout_factor
* HZ
)) {
1209 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1210 adapter
->tx_hwtstamp_skb
= NULL
;
1211 adapter
->tx_hwtstamp_timeouts
++;
1212 e_warn("clearing Tx timestamp hang\n");
1214 /* reschedule to check later */
1215 schedule_work(&adapter
->tx_hwtstamp_work
);
1220 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1221 * @tx_ring: Tx descriptor ring
1223 * the return value indicates whether actual cleaning was done, there
1224 * is no guarantee that everything was cleaned
1226 static bool e1000_clean_tx_irq(struct e1000_ring
*tx_ring
)
1228 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1229 struct net_device
*netdev
= adapter
->netdev
;
1230 struct e1000_hw
*hw
= &adapter
->hw
;
1231 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
1232 struct e1000_buffer
*buffer_info
;
1233 unsigned int i
, eop
;
1234 unsigned int count
= 0;
1235 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1236 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1238 i
= tx_ring
->next_to_clean
;
1239 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1240 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1242 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1243 (count
< tx_ring
->count
)) {
1244 bool cleaned
= false;
1246 dma_rmb(); /* read buffer_info after eop_desc */
1247 for (; !cleaned
; count
++) {
1248 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1249 buffer_info
= &tx_ring
->buffer_info
[i
];
1250 cleaned
= (i
== eop
);
1253 total_tx_packets
+= buffer_info
->segs
;
1254 total_tx_bytes
+= buffer_info
->bytecount
;
1255 if (buffer_info
->skb
) {
1256 bytes_compl
+= buffer_info
->skb
->len
;
1261 e1000_put_txbuf(tx_ring
, buffer_info
, false);
1262 tx_desc
->upper
.data
= 0;
1265 if (i
== tx_ring
->count
)
1269 if (i
== tx_ring
->next_to_use
)
1271 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1272 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1275 tx_ring
->next_to_clean
= i
;
1277 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
1279 #define TX_WAKE_THRESHOLD 32
1280 if (count
&& netif_carrier_ok(netdev
) &&
1281 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1282 /* Make sure that anybody stopping the queue after this
1283 * sees the new next_to_clean.
1287 if (netif_queue_stopped(netdev
) &&
1288 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1289 netif_wake_queue(netdev
);
1290 ++adapter
->restart_queue
;
1294 if (adapter
->detect_tx_hung
) {
1295 /* Detect a transmit hang in hardware, this serializes the
1296 * check with the clearing of time_stamp and movement of i
1298 adapter
->detect_tx_hung
= false;
1299 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1300 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1301 + (adapter
->tx_timeout_factor
* HZ
)) &&
1302 !(er32(STATUS
) & E1000_STATUS_TXOFF
))
1303 schedule_work(&adapter
->print_hang_task
);
1305 adapter
->tx_hang_recheck
= false;
1307 adapter
->total_tx_bytes
+= total_tx_bytes
;
1308 adapter
->total_tx_packets
+= total_tx_packets
;
1309 return count
< tx_ring
->count
;
1313 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1314 * @rx_ring: Rx descriptor ring
1316 * the return value indicates whether actual cleaning was done, there
1317 * is no guarantee that everything was cleaned
1319 static bool e1000_clean_rx_irq_ps(struct e1000_ring
*rx_ring
, int *work_done
,
1322 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1323 struct e1000_hw
*hw
= &adapter
->hw
;
1324 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1325 struct net_device
*netdev
= adapter
->netdev
;
1326 struct pci_dev
*pdev
= adapter
->pdev
;
1327 struct e1000_buffer
*buffer_info
, *next_buffer
;
1328 struct e1000_ps_page
*ps_page
;
1329 struct sk_buff
*skb
;
1331 u32 length
, staterr
;
1332 int cleaned_count
= 0;
1333 bool cleaned
= false;
1334 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1336 i
= rx_ring
->next_to_clean
;
1337 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1338 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1339 buffer_info
= &rx_ring
->buffer_info
[i
];
1341 while (staterr
& E1000_RXD_STAT_DD
) {
1342 if (*work_done
>= work_to_do
)
1345 skb
= buffer_info
->skb
;
1346 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1348 /* in the packet split case this is header only */
1349 prefetch(skb
->data
- NET_IP_ALIGN
);
1352 if (i
== rx_ring
->count
)
1354 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1357 next_buffer
= &rx_ring
->buffer_info
[i
];
1361 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1362 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1363 buffer_info
->dma
= 0;
1365 /* see !EOP comment in other Rx routine */
1366 if (!(staterr
& E1000_RXD_STAT_EOP
))
1367 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1369 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1370 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1371 dev_kfree_skb_irq(skb
);
1372 if (staterr
& E1000_RXD_STAT_EOP
)
1373 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1377 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1378 !(netdev
->features
& NETIF_F_RXALL
))) {
1379 dev_kfree_skb_irq(skb
);
1383 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1386 e_dbg("Last part of the packet spanning multiple descriptors\n");
1387 dev_kfree_skb_irq(skb
);
1392 skb_put(skb
, length
);
1395 /* this looks ugly, but it seems compiler issues make
1396 * it more efficient than reusing j
1398 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1400 /* page alloc/put takes too long and effects small
1401 * packet throughput, so unsplit small packets and
1402 * save the alloc/put only valid in softirq (napi)
1403 * context to call kmap_*
1405 if (l1
&& (l1
<= copybreak
) &&
1406 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1409 ps_page
= &buffer_info
->ps_pages
[0];
1411 /* there is no documentation about how to call
1412 * kmap_atomic, so we can't hold the mapping
1415 dma_sync_single_for_cpu(&pdev
->dev
,
1419 vaddr
= kmap_atomic(ps_page
->page
);
1420 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1421 kunmap_atomic(vaddr
);
1422 dma_sync_single_for_device(&pdev
->dev
,
1427 /* remove the CRC */
1428 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1429 if (!(netdev
->features
& NETIF_F_RXFCS
))
1438 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1439 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1443 ps_page
= &buffer_info
->ps_pages
[j
];
1444 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1447 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1448 ps_page
->page
= NULL
;
1450 skb
->data_len
+= length
;
1451 skb
->truesize
+= PAGE_SIZE
;
1454 /* strip the ethernet crc, problem is we're using pages now so
1455 * this whole operation can get a little cpu intensive
1457 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1458 if (!(netdev
->features
& NETIF_F_RXFCS
))
1459 pskb_trim(skb
, skb
->len
- 4);
1463 total_rx_bytes
+= skb
->len
;
1466 e1000_rx_checksum(adapter
, staterr
, skb
);
1468 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1470 if (rx_desc
->wb
.upper
.header_status
&
1471 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1472 adapter
->rx_hdr_split
++;
1474 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1475 rx_desc
->wb
.middle
.vlan
);
1478 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1479 buffer_info
->skb
= NULL
;
1481 /* return some buffers to hardware, one at a time is too slow */
1482 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1483 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1488 /* use prefetched values */
1490 buffer_info
= next_buffer
;
1492 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1494 rx_ring
->next_to_clean
= i
;
1496 cleaned_count
= e1000_desc_unused(rx_ring
);
1498 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1500 adapter
->total_rx_bytes
+= total_rx_bytes
;
1501 adapter
->total_rx_packets
+= total_rx_packets
;
1506 * e1000_consume_page - helper function
1508 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1513 skb
->data_len
+= length
;
1514 skb
->truesize
+= PAGE_SIZE
;
1518 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1519 * @adapter: board private structure
1521 * the return value indicates whether actual cleaning was done, there
1522 * is no guarantee that everything was cleaned
1524 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
1527 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1528 struct net_device
*netdev
= adapter
->netdev
;
1529 struct pci_dev
*pdev
= adapter
->pdev
;
1530 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
1531 struct e1000_buffer
*buffer_info
, *next_buffer
;
1532 u32 length
, staterr
;
1534 int cleaned_count
= 0;
1535 bool cleaned
= false;
1536 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1537 struct skb_shared_info
*shinfo
;
1539 i
= rx_ring
->next_to_clean
;
1540 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1541 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1542 buffer_info
= &rx_ring
->buffer_info
[i
];
1544 while (staterr
& E1000_RXD_STAT_DD
) {
1545 struct sk_buff
*skb
;
1547 if (*work_done
>= work_to_do
)
1550 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1552 skb
= buffer_info
->skb
;
1553 buffer_info
->skb
= NULL
;
1556 if (i
== rx_ring
->count
)
1558 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1561 next_buffer
= &rx_ring
->buffer_info
[i
];
1565 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1567 buffer_info
->dma
= 0;
1569 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
1571 /* errors is only valid for DD + EOP descriptors */
1572 if (unlikely((staterr
& E1000_RXD_STAT_EOP
) &&
1573 ((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1574 !(netdev
->features
& NETIF_F_RXALL
)))) {
1575 /* recycle both page and skb */
1576 buffer_info
->skb
= skb
;
1577 /* an error means any chain goes out the window too */
1578 if (rx_ring
->rx_skb_top
)
1579 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1580 rx_ring
->rx_skb_top
= NULL
;
1583 #define rxtop (rx_ring->rx_skb_top)
1584 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
1585 /* this descriptor is only the beginning (or middle) */
1587 /* this is the beginning of a chain */
1589 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1592 /* this is the middle of a chain */
1593 shinfo
= skb_shinfo(rxtop
);
1594 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1595 buffer_info
->page
, 0,
1597 /* re-use the skb, only consumed the page */
1598 buffer_info
->skb
= skb
;
1600 e1000_consume_page(buffer_info
, rxtop
, length
);
1604 /* end of the chain */
1605 shinfo
= skb_shinfo(rxtop
);
1606 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1607 buffer_info
->page
, 0,
1609 /* re-use the current skb, we only consumed the
1612 buffer_info
->skb
= skb
;
1615 e1000_consume_page(buffer_info
, skb
, length
);
1617 /* no chain, got EOP, this buf is the packet
1618 * copybreak to save the put_page/alloc_page
1620 if (length
<= copybreak
&&
1621 skb_tailroom(skb
) >= length
) {
1623 vaddr
= kmap_atomic(buffer_info
->page
);
1624 memcpy(skb_tail_pointer(skb
), vaddr
,
1626 kunmap_atomic(vaddr
);
1627 /* re-use the page, so don't erase
1630 skb_put(skb
, length
);
1632 skb_fill_page_desc(skb
, 0,
1633 buffer_info
->page
, 0,
1635 e1000_consume_page(buffer_info
, skb
,
1641 /* Receive Checksum Offload */
1642 e1000_rx_checksum(adapter
, staterr
, skb
);
1644 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1646 /* probably a little skewed due to removing CRC */
1647 total_rx_bytes
+= skb
->len
;
1650 /* eth type trans needs skb->data to point to something */
1651 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1652 e_err("pskb_may_pull failed.\n");
1653 dev_kfree_skb_irq(skb
);
1657 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1658 rx_desc
->wb
.upper
.vlan
);
1661 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1663 /* return some buffers to hardware, one at a time is too slow */
1664 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1665 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1670 /* use prefetched values */
1672 buffer_info
= next_buffer
;
1674 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1676 rx_ring
->next_to_clean
= i
;
1678 cleaned_count
= e1000_desc_unused(rx_ring
);
1680 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1682 adapter
->total_rx_bytes
+= total_rx_bytes
;
1683 adapter
->total_rx_packets
+= total_rx_packets
;
1688 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1689 * @rx_ring: Rx descriptor ring
1691 static void e1000_clean_rx_ring(struct e1000_ring
*rx_ring
)
1693 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1694 struct e1000_buffer
*buffer_info
;
1695 struct e1000_ps_page
*ps_page
;
1696 struct pci_dev
*pdev
= adapter
->pdev
;
1699 /* Free all the Rx ring sk_buffs */
1700 for (i
= 0; i
< rx_ring
->count
; i
++) {
1701 buffer_info
= &rx_ring
->buffer_info
[i
];
1702 if (buffer_info
->dma
) {
1703 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1704 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1705 adapter
->rx_buffer_len
,
1707 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1708 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1709 PAGE_SIZE
, DMA_FROM_DEVICE
);
1710 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1711 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1712 adapter
->rx_ps_bsize0
,
1714 buffer_info
->dma
= 0;
1717 if (buffer_info
->page
) {
1718 put_page(buffer_info
->page
);
1719 buffer_info
->page
= NULL
;
1722 if (buffer_info
->skb
) {
1723 dev_kfree_skb(buffer_info
->skb
);
1724 buffer_info
->skb
= NULL
;
1727 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1728 ps_page
= &buffer_info
->ps_pages
[j
];
1731 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1734 put_page(ps_page
->page
);
1735 ps_page
->page
= NULL
;
1739 /* there also may be some cached data from a chained receive */
1740 if (rx_ring
->rx_skb_top
) {
1741 dev_kfree_skb(rx_ring
->rx_skb_top
);
1742 rx_ring
->rx_skb_top
= NULL
;
1745 /* Zero out the descriptor ring */
1746 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1748 rx_ring
->next_to_clean
= 0;
1749 rx_ring
->next_to_use
= 0;
1750 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1753 static void e1000e_downshift_workaround(struct work_struct
*work
)
1755 struct e1000_adapter
*adapter
= container_of(work
,
1756 struct e1000_adapter
,
1759 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1762 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1766 * e1000_intr_msi - Interrupt Handler
1767 * @irq: interrupt number
1768 * @data: pointer to a network interface device structure
1770 static irqreturn_t
e1000_intr_msi(int __always_unused irq
, void *data
)
1772 struct net_device
*netdev
= data
;
1773 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1774 struct e1000_hw
*hw
= &adapter
->hw
;
1775 u32 icr
= er32(ICR
);
1777 /* read ICR disables interrupts using IAM */
1778 if (icr
& E1000_ICR_LSC
) {
1779 hw
->mac
.get_link_status
= true;
1780 /* ICH8 workaround-- Call gig speed drop workaround on cable
1781 * disconnect (LSC) before accessing any PHY registers
1783 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1784 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1785 schedule_work(&adapter
->downshift_task
);
1787 /* 80003ES2LAN workaround-- For packet buffer work-around on
1788 * link down event; disable receives here in the ISR and reset
1789 * adapter in watchdog
1791 if (netif_carrier_ok(netdev
) &&
1792 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1793 /* disable receives */
1794 u32 rctl
= er32(RCTL
);
1796 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1797 adapter
->flags
|= FLAG_RESTART_NOW
;
1799 /* guard against interrupt when we're going down */
1800 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1801 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1804 /* Reset on uncorrectable ECC error */
1805 if ((icr
& E1000_ICR_ECCER
) && (hw
->mac
.type
>= e1000_pch_lpt
)) {
1806 u32 pbeccsts
= er32(PBECCSTS
);
1808 adapter
->corr_errors
+=
1809 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1810 adapter
->uncorr_errors
+=
1811 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1812 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1814 /* Do the reset outside of interrupt context */
1815 schedule_work(&adapter
->reset_task
);
1817 /* return immediately since reset is imminent */
1821 if (napi_schedule_prep(&adapter
->napi
)) {
1822 adapter
->total_tx_bytes
= 0;
1823 adapter
->total_tx_packets
= 0;
1824 adapter
->total_rx_bytes
= 0;
1825 adapter
->total_rx_packets
= 0;
1826 __napi_schedule(&adapter
->napi
);
1833 * e1000_intr - Interrupt Handler
1834 * @irq: interrupt number
1835 * @data: pointer to a network interface device structure
1837 static irqreturn_t
e1000_intr(int __always_unused irq
, void *data
)
1839 struct net_device
*netdev
= data
;
1840 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1841 struct e1000_hw
*hw
= &adapter
->hw
;
1842 u32 rctl
, icr
= er32(ICR
);
1844 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1845 return IRQ_NONE
; /* Not our interrupt */
1847 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1848 * not set, then the adapter didn't send an interrupt
1850 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1853 /* Interrupt Auto-Mask...upon reading ICR,
1854 * interrupts are masked. No need for the
1858 if (icr
& E1000_ICR_LSC
) {
1859 hw
->mac
.get_link_status
= true;
1860 /* ICH8 workaround-- Call gig speed drop workaround on cable
1861 * disconnect (LSC) before accessing any PHY registers
1863 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1864 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1865 schedule_work(&adapter
->downshift_task
);
1867 /* 80003ES2LAN workaround--
1868 * For packet buffer work-around on link down event;
1869 * disable receives here in the ISR and
1870 * reset adapter in watchdog
1872 if (netif_carrier_ok(netdev
) &&
1873 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1874 /* disable receives */
1876 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1877 adapter
->flags
|= FLAG_RESTART_NOW
;
1879 /* guard against interrupt when we're going down */
1880 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1881 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1884 /* Reset on uncorrectable ECC error */
1885 if ((icr
& E1000_ICR_ECCER
) && (hw
->mac
.type
>= e1000_pch_lpt
)) {
1886 u32 pbeccsts
= er32(PBECCSTS
);
1888 adapter
->corr_errors
+=
1889 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1890 adapter
->uncorr_errors
+=
1891 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1892 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1894 /* Do the reset outside of interrupt context */
1895 schedule_work(&adapter
->reset_task
);
1897 /* return immediately since reset is imminent */
1901 if (napi_schedule_prep(&adapter
->napi
)) {
1902 adapter
->total_tx_bytes
= 0;
1903 adapter
->total_tx_packets
= 0;
1904 adapter
->total_rx_bytes
= 0;
1905 adapter
->total_rx_packets
= 0;
1906 __napi_schedule(&adapter
->napi
);
1912 static irqreturn_t
e1000_msix_other(int __always_unused irq
, void *data
)
1914 struct net_device
*netdev
= data
;
1915 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1916 struct e1000_hw
*hw
= &adapter
->hw
;
1921 if (icr
& E1000_ICR_RXO
) {
1922 ew32(ICR
, E1000_ICR_RXO
);
1924 /* napi poll will re-enable Other, make sure it runs */
1925 if (napi_schedule_prep(&adapter
->napi
)) {
1926 adapter
->total_rx_bytes
= 0;
1927 adapter
->total_rx_packets
= 0;
1928 __napi_schedule(&adapter
->napi
);
1931 if (icr
& E1000_ICR_LSC
) {
1932 ew32(ICR
, E1000_ICR_LSC
);
1933 hw
->mac
.get_link_status
= true;
1934 /* guard against interrupt when we're going down */
1935 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1936 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1939 if (enable
&& !test_bit(__E1000_DOWN
, &adapter
->state
))
1940 ew32(IMS
, E1000_IMS_OTHER
);
1945 static irqreturn_t
e1000_intr_msix_tx(int __always_unused irq
, void *data
)
1947 struct net_device
*netdev
= data
;
1948 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1949 struct e1000_hw
*hw
= &adapter
->hw
;
1950 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1952 adapter
->total_tx_bytes
= 0;
1953 adapter
->total_tx_packets
= 0;
1955 if (!e1000_clean_tx_irq(tx_ring
))
1956 /* Ring was not completely cleaned, so fire another interrupt */
1957 ew32(ICS
, tx_ring
->ims_val
);
1959 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1960 ew32(IMS
, adapter
->tx_ring
->ims_val
);
1965 static irqreturn_t
e1000_intr_msix_rx(int __always_unused irq
, void *data
)
1967 struct net_device
*netdev
= data
;
1968 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1969 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1971 /* Write the ITR value calculated at the end of the
1972 * previous interrupt.
1974 if (rx_ring
->set_itr
) {
1975 u32 itr
= rx_ring
->itr_val
?
1976 1000000000 / (rx_ring
->itr_val
* 256) : 0;
1978 writel(itr
, rx_ring
->itr_register
);
1979 rx_ring
->set_itr
= 0;
1982 if (napi_schedule_prep(&adapter
->napi
)) {
1983 adapter
->total_rx_bytes
= 0;
1984 adapter
->total_rx_packets
= 0;
1985 __napi_schedule(&adapter
->napi
);
1991 * e1000_configure_msix - Configure MSI-X hardware
1993 * e1000_configure_msix sets up the hardware to properly
1994 * generate MSI-X interrupts.
1996 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1998 struct e1000_hw
*hw
= &adapter
->hw
;
1999 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2000 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2002 u32 ctrl_ext
, ivar
= 0;
2004 adapter
->eiac_mask
= 0;
2006 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2007 if (hw
->mac
.type
== e1000_82574
) {
2008 u32 rfctl
= er32(RFCTL
);
2010 rfctl
|= E1000_RFCTL_ACK_DIS
;
2014 /* Configure Rx vector */
2015 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
2016 adapter
->eiac_mask
|= rx_ring
->ims_val
;
2017 if (rx_ring
->itr_val
)
2018 writel(1000000000 / (rx_ring
->itr_val
* 256),
2019 rx_ring
->itr_register
);
2021 writel(1, rx_ring
->itr_register
);
2022 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
2024 /* Configure Tx vector */
2025 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
2027 if (tx_ring
->itr_val
)
2028 writel(1000000000 / (tx_ring
->itr_val
* 256),
2029 tx_ring
->itr_register
);
2031 writel(1, tx_ring
->itr_register
);
2032 adapter
->eiac_mask
|= tx_ring
->ims_val
;
2033 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
2035 /* set vector for Other Causes, e.g. link changes */
2037 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
2038 if (rx_ring
->itr_val
)
2039 writel(1000000000 / (rx_ring
->itr_val
* 256),
2040 hw
->hw_addr
+ E1000_EITR_82574(vector
));
2042 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2043 adapter
->eiac_mask
|= E1000_IMS_OTHER
;
2045 /* Cause Tx interrupts on every write back */
2050 /* enable MSI-X PBA support */
2051 ctrl_ext
= er32(CTRL_EXT
) & ~E1000_CTRL_EXT_IAME
;
2052 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
| E1000_CTRL_EXT_EIAME
;
2053 ew32(CTRL_EXT
, ctrl_ext
);
2057 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
2059 if (adapter
->msix_entries
) {
2060 pci_disable_msix(adapter
->pdev
);
2061 kfree(adapter
->msix_entries
);
2062 adapter
->msix_entries
= NULL
;
2063 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2064 pci_disable_msi(adapter
->pdev
);
2065 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
2070 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2072 * Attempt to configure interrupts using the best available
2073 * capabilities of the hardware and kernel.
2075 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
2080 switch (adapter
->int_mode
) {
2081 case E1000E_INT_MODE_MSIX
:
2082 if (adapter
->flags
& FLAG_HAS_MSIX
) {
2083 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
2084 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
2088 if (adapter
->msix_entries
) {
2089 struct e1000_adapter
*a
= adapter
;
2091 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2092 adapter
->msix_entries
[i
].entry
= i
;
2094 err
= pci_enable_msix_range(a
->pdev
,
2101 /* MSI-X failed, so fall through and try MSI */
2102 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2103 e1000e_reset_interrupt_capability(adapter
);
2105 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2107 case E1000E_INT_MODE_MSI
:
2108 if (!pci_enable_msi(adapter
->pdev
)) {
2109 adapter
->flags
|= FLAG_MSI_ENABLED
;
2111 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2112 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2115 case E1000E_INT_MODE_LEGACY
:
2116 /* Don't do anything; this is the system default */
2120 /* store the number of vectors being used */
2121 adapter
->num_vectors
= 1;
2125 * e1000_request_msix - Initialize MSI-X interrupts
2127 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2130 static int e1000_request_msix(struct e1000_adapter
*adapter
)
2132 struct net_device
*netdev
= adapter
->netdev
;
2133 int err
= 0, vector
= 0;
2135 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2136 snprintf(adapter
->rx_ring
->name
,
2137 sizeof(adapter
->rx_ring
->name
) - 1,
2138 "%s-rx-0", netdev
->name
);
2140 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2141 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2142 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
2146 adapter
->rx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2147 E1000_EITR_82574(vector
);
2148 adapter
->rx_ring
->itr_val
= adapter
->itr
;
2151 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2152 snprintf(adapter
->tx_ring
->name
,
2153 sizeof(adapter
->tx_ring
->name
) - 1,
2154 "%s-tx-0", netdev
->name
);
2156 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2157 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2158 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
2162 adapter
->tx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2163 E1000_EITR_82574(vector
);
2164 adapter
->tx_ring
->itr_val
= adapter
->itr
;
2167 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2168 e1000_msix_other
, 0, netdev
->name
, netdev
);
2172 e1000_configure_msix(adapter
);
2178 * e1000_request_irq - initialize interrupts
2180 * Attempts to configure interrupts using the best available
2181 * capabilities of the hardware and kernel.
2183 static int e1000_request_irq(struct e1000_adapter
*adapter
)
2185 struct net_device
*netdev
= adapter
->netdev
;
2188 if (adapter
->msix_entries
) {
2189 err
= e1000_request_msix(adapter
);
2192 /* fall back to MSI */
2193 e1000e_reset_interrupt_capability(adapter
);
2194 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2195 e1000e_set_interrupt_capability(adapter
);
2197 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2198 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
2199 netdev
->name
, netdev
);
2203 /* fall back to legacy interrupt */
2204 e1000e_reset_interrupt_capability(adapter
);
2205 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2208 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
2209 netdev
->name
, netdev
);
2211 e_err("Unable to allocate interrupt, Error: %d\n", err
);
2216 static void e1000_free_irq(struct e1000_adapter
*adapter
)
2218 struct net_device
*netdev
= adapter
->netdev
;
2220 if (adapter
->msix_entries
) {
2223 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2226 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2229 /* Other Causes interrupt vector */
2230 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2234 free_irq(adapter
->pdev
->irq
, netdev
);
2238 * e1000_irq_disable - Mask off interrupt generation on the NIC
2240 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
2242 struct e1000_hw
*hw
= &adapter
->hw
;
2245 if (adapter
->msix_entries
)
2246 ew32(EIAC_82574
, 0);
2249 if (adapter
->msix_entries
) {
2252 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2253 synchronize_irq(adapter
->msix_entries
[i
].vector
);
2255 synchronize_irq(adapter
->pdev
->irq
);
2260 * e1000_irq_enable - Enable default interrupt generation settings
2262 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
2264 struct e1000_hw
*hw
= &adapter
->hw
;
2266 if (adapter
->msix_entries
) {
2267 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
2268 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_LSC
);
2269 } else if (hw
->mac
.type
>= e1000_pch_lpt
) {
2270 ew32(IMS
, IMS_ENABLE_MASK
| E1000_IMS_ECCER
);
2272 ew32(IMS
, IMS_ENABLE_MASK
);
2278 * e1000e_get_hw_control - get control of the h/w from f/w
2279 * @adapter: address of board private structure
2281 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2282 * For ASF and Pass Through versions of f/w this means that
2283 * the driver is loaded. For AMT version (only with 82573)
2284 * of the f/w this means that the network i/f is open.
2286 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2288 struct e1000_hw
*hw
= &adapter
->hw
;
2292 /* Let firmware know the driver has taken over */
2293 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2295 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2296 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2297 ctrl_ext
= er32(CTRL_EXT
);
2298 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2303 * e1000e_release_hw_control - release control of the h/w to f/w
2304 * @adapter: address of board private structure
2306 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2307 * For ASF and Pass Through versions of f/w this means that the
2308 * driver is no longer loaded. For AMT version (only with 82573) i
2309 * of the f/w this means that the network i/f is closed.
2312 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2314 struct e1000_hw
*hw
= &adapter
->hw
;
2318 /* Let firmware taken over control of h/w */
2319 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2321 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2322 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2323 ctrl_ext
= er32(CTRL_EXT
);
2324 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2329 * e1000_alloc_ring_dma - allocate memory for a ring structure
2331 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2332 struct e1000_ring
*ring
)
2334 struct pci_dev
*pdev
= adapter
->pdev
;
2336 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2345 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2346 * @tx_ring: Tx descriptor ring
2348 * Return 0 on success, negative on failure
2350 int e1000e_setup_tx_resources(struct e1000_ring
*tx_ring
)
2352 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2353 int err
= -ENOMEM
, size
;
2355 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2356 tx_ring
->buffer_info
= vzalloc(size
);
2357 if (!tx_ring
->buffer_info
)
2360 /* round up to nearest 4K */
2361 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2362 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2364 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2368 tx_ring
->next_to_use
= 0;
2369 tx_ring
->next_to_clean
= 0;
2373 vfree(tx_ring
->buffer_info
);
2374 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2379 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2380 * @rx_ring: Rx descriptor ring
2382 * Returns 0 on success, negative on failure
2384 int e1000e_setup_rx_resources(struct e1000_ring
*rx_ring
)
2386 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2387 struct e1000_buffer
*buffer_info
;
2388 int i
, size
, desc_len
, err
= -ENOMEM
;
2390 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2391 rx_ring
->buffer_info
= vzalloc(size
);
2392 if (!rx_ring
->buffer_info
)
2395 for (i
= 0; i
< rx_ring
->count
; i
++) {
2396 buffer_info
= &rx_ring
->buffer_info
[i
];
2397 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2398 sizeof(struct e1000_ps_page
),
2400 if (!buffer_info
->ps_pages
)
2404 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2406 /* Round up to nearest 4K */
2407 rx_ring
->size
= rx_ring
->count
* desc_len
;
2408 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2410 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2414 rx_ring
->next_to_clean
= 0;
2415 rx_ring
->next_to_use
= 0;
2416 rx_ring
->rx_skb_top
= NULL
;
2421 for (i
= 0; i
< rx_ring
->count
; i
++) {
2422 buffer_info
= &rx_ring
->buffer_info
[i
];
2423 kfree(buffer_info
->ps_pages
);
2426 vfree(rx_ring
->buffer_info
);
2427 e_err("Unable to allocate memory for the receive descriptor ring\n");
2432 * e1000_clean_tx_ring - Free Tx Buffers
2433 * @tx_ring: Tx descriptor ring
2435 static void e1000_clean_tx_ring(struct e1000_ring
*tx_ring
)
2437 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2438 struct e1000_buffer
*buffer_info
;
2442 for (i
= 0; i
< tx_ring
->count
; i
++) {
2443 buffer_info
= &tx_ring
->buffer_info
[i
];
2444 e1000_put_txbuf(tx_ring
, buffer_info
, false);
2447 netdev_reset_queue(adapter
->netdev
);
2448 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2449 memset(tx_ring
->buffer_info
, 0, size
);
2451 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2453 tx_ring
->next_to_use
= 0;
2454 tx_ring
->next_to_clean
= 0;
2458 * e1000e_free_tx_resources - Free Tx Resources per Queue
2459 * @tx_ring: Tx descriptor ring
2461 * Free all transmit software resources
2463 void e1000e_free_tx_resources(struct e1000_ring
*tx_ring
)
2465 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2466 struct pci_dev
*pdev
= adapter
->pdev
;
2468 e1000_clean_tx_ring(tx_ring
);
2470 vfree(tx_ring
->buffer_info
);
2471 tx_ring
->buffer_info
= NULL
;
2473 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2475 tx_ring
->desc
= NULL
;
2479 * e1000e_free_rx_resources - Free Rx Resources
2480 * @rx_ring: Rx descriptor ring
2482 * Free all receive software resources
2484 void e1000e_free_rx_resources(struct e1000_ring
*rx_ring
)
2486 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2487 struct pci_dev
*pdev
= adapter
->pdev
;
2490 e1000_clean_rx_ring(rx_ring
);
2492 for (i
= 0; i
< rx_ring
->count
; i
++)
2493 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2495 vfree(rx_ring
->buffer_info
);
2496 rx_ring
->buffer_info
= NULL
;
2498 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2500 rx_ring
->desc
= NULL
;
2504 * e1000_update_itr - update the dynamic ITR value based on statistics
2505 * @adapter: pointer to adapter
2506 * @itr_setting: current adapter->itr
2507 * @packets: the number of packets during this measurement interval
2508 * @bytes: the number of bytes during this measurement interval
2510 * Stores a new ITR value based on packets and byte
2511 * counts during the last interrupt. The advantage of per interrupt
2512 * computation is faster updates and more accurate ITR for the current
2513 * traffic pattern. Constants in this function were computed
2514 * based on theoretical maximum wire speed and thresholds were set based
2515 * on testing data as well as attempting to minimize response time
2516 * while increasing bulk throughput. This functionality is controlled
2517 * by the InterruptThrottleRate module parameter.
2519 static unsigned int e1000_update_itr(u16 itr_setting
, int packets
, int bytes
)
2521 unsigned int retval
= itr_setting
;
2526 switch (itr_setting
) {
2527 case lowest_latency
:
2528 /* handle TSO and jumbo frames */
2529 if (bytes
/ packets
> 8000)
2530 retval
= bulk_latency
;
2531 else if ((packets
< 5) && (bytes
> 512))
2532 retval
= low_latency
;
2534 case low_latency
: /* 50 usec aka 20000 ints/s */
2535 if (bytes
> 10000) {
2536 /* this if handles the TSO accounting */
2537 if (bytes
/ packets
> 8000)
2538 retval
= bulk_latency
;
2539 else if ((packets
< 10) || ((bytes
/ packets
) > 1200))
2540 retval
= bulk_latency
;
2541 else if ((packets
> 35))
2542 retval
= lowest_latency
;
2543 } else if (bytes
/ packets
> 2000) {
2544 retval
= bulk_latency
;
2545 } else if (packets
<= 2 && bytes
< 512) {
2546 retval
= lowest_latency
;
2549 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2550 if (bytes
> 25000) {
2552 retval
= low_latency
;
2553 } else if (bytes
< 6000) {
2554 retval
= low_latency
;
2562 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2565 u32 new_itr
= adapter
->itr
;
2567 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2568 if (adapter
->link_speed
!= SPEED_1000
) {
2574 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2579 adapter
->tx_itr
= e1000_update_itr(adapter
->tx_itr
,
2580 adapter
->total_tx_packets
,
2581 adapter
->total_tx_bytes
);
2582 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2583 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2584 adapter
->tx_itr
= low_latency
;
2586 adapter
->rx_itr
= e1000_update_itr(adapter
->rx_itr
,
2587 adapter
->total_rx_packets
,
2588 adapter
->total_rx_bytes
);
2589 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2590 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2591 adapter
->rx_itr
= low_latency
;
2593 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2595 /* counts and packets in update_itr are dependent on these numbers */
2596 switch (current_itr
) {
2597 case lowest_latency
:
2601 new_itr
= 20000; /* aka hwitr = ~200 */
2611 if (new_itr
!= adapter
->itr
) {
2612 /* this attempts to bias the interrupt rate towards Bulk
2613 * by adding intermediate steps when interrupt rate is
2616 new_itr
= new_itr
> adapter
->itr
?
2617 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) : new_itr
;
2618 adapter
->itr
= new_itr
;
2619 adapter
->rx_ring
->itr_val
= new_itr
;
2620 if (adapter
->msix_entries
)
2621 adapter
->rx_ring
->set_itr
= 1;
2623 e1000e_write_itr(adapter
, new_itr
);
2628 * e1000e_write_itr - write the ITR value to the appropriate registers
2629 * @adapter: address of board private structure
2630 * @itr: new ITR value to program
2632 * e1000e_write_itr determines if the adapter is in MSI-X mode
2633 * and, if so, writes the EITR registers with the ITR value.
2634 * Otherwise, it writes the ITR value into the ITR register.
2636 void e1000e_write_itr(struct e1000_adapter
*adapter
, u32 itr
)
2638 struct e1000_hw
*hw
= &adapter
->hw
;
2639 u32 new_itr
= itr
? 1000000000 / (itr
* 256) : 0;
2641 if (adapter
->msix_entries
) {
2644 for (vector
= 0; vector
< adapter
->num_vectors
; vector
++)
2645 writel(new_itr
, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2652 * e1000_alloc_queues - Allocate memory for all rings
2653 * @adapter: board private structure to initialize
2655 static int e1000_alloc_queues(struct e1000_adapter
*adapter
)
2657 int size
= sizeof(struct e1000_ring
);
2659 adapter
->tx_ring
= kzalloc(size
, GFP_KERNEL
);
2660 if (!adapter
->tx_ring
)
2662 adapter
->tx_ring
->count
= adapter
->tx_ring_count
;
2663 adapter
->tx_ring
->adapter
= adapter
;
2665 adapter
->rx_ring
= kzalloc(size
, GFP_KERNEL
);
2666 if (!adapter
->rx_ring
)
2668 adapter
->rx_ring
->count
= adapter
->rx_ring_count
;
2669 adapter
->rx_ring
->adapter
= adapter
;
2673 e_err("Unable to allocate memory for queues\n");
2674 kfree(adapter
->rx_ring
);
2675 kfree(adapter
->tx_ring
);
2680 * e1000e_poll - NAPI Rx polling callback
2681 * @napi: struct associated with this polling callback
2682 * @weight: number of packets driver is allowed to process this poll
2684 static int e1000e_poll(struct napi_struct
*napi
, int weight
)
2686 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
,
2688 struct e1000_hw
*hw
= &adapter
->hw
;
2689 struct net_device
*poll_dev
= adapter
->netdev
;
2690 int tx_cleaned
= 1, work_done
= 0;
2692 adapter
= netdev_priv(poll_dev
);
2694 if (!adapter
->msix_entries
||
2695 (adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2696 tx_cleaned
= e1000_clean_tx_irq(adapter
->tx_ring
);
2698 adapter
->clean_rx(adapter
->rx_ring
, &work_done
, weight
);
2703 /* If weight not fully consumed, exit the polling mode */
2704 if (work_done
< weight
) {
2705 if (adapter
->itr_setting
& 3)
2706 e1000_set_itr(adapter
);
2707 napi_complete_done(napi
, work_done
);
2708 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2709 if (adapter
->msix_entries
)
2710 ew32(IMS
, adapter
->rx_ring
->ims_val
|
2713 e1000_irq_enable(adapter
);
2720 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
2721 __always_unused __be16 proto
, u16 vid
)
2723 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2724 struct e1000_hw
*hw
= &adapter
->hw
;
2727 /* don't update vlan cookie if already programmed */
2728 if ((adapter
->hw
.mng_cookie
.status
&
2729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2730 (vid
== adapter
->mng_vlan_id
))
2733 /* add VID to filter table */
2734 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2735 index
= (vid
>> 5) & 0x7F;
2736 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2737 vfta
|= BIT((vid
& 0x1F));
2738 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2741 set_bit(vid
, adapter
->active_vlans
);
2746 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
2747 __always_unused __be16 proto
, u16 vid
)
2749 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2750 struct e1000_hw
*hw
= &adapter
->hw
;
2753 if ((adapter
->hw
.mng_cookie
.status
&
2754 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2755 (vid
== adapter
->mng_vlan_id
)) {
2756 /* release control to f/w */
2757 e1000e_release_hw_control(adapter
);
2761 /* remove VID from filter table */
2762 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2763 index
= (vid
>> 5) & 0x7F;
2764 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2765 vfta
&= ~BIT((vid
& 0x1F));
2766 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2769 clear_bit(vid
, adapter
->active_vlans
);
2775 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776 * @adapter: board private structure to initialize
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2780 struct net_device
*netdev
= adapter
->netdev
;
2781 struct e1000_hw
*hw
= &adapter
->hw
;
2784 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2785 /* disable VLAN receive filtering */
2787 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2790 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2791 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
2792 adapter
->mng_vlan_id
);
2793 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2799 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800 * @adapter: board private structure to initialize
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2804 struct e1000_hw
*hw
= &adapter
->hw
;
2807 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2808 /* enable VLAN receive filtering */
2810 rctl
|= E1000_RCTL_VFE
;
2811 rctl
&= ~E1000_RCTL_CFIEN
;
2817 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2818 * @adapter: board private structure to initialize
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2822 struct e1000_hw
*hw
= &adapter
->hw
;
2825 /* disable VLAN tag insert/strip */
2827 ctrl
&= ~E1000_CTRL_VME
;
2832 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833 * @adapter: board private structure to initialize
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2837 struct e1000_hw
*hw
= &adapter
->hw
;
2840 /* enable VLAN tag insert/strip */
2842 ctrl
|= E1000_CTRL_VME
;
2846 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2848 struct net_device
*netdev
= adapter
->netdev
;
2849 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2850 u16 old_vid
= adapter
->mng_vlan_id
;
2852 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2853 e1000_vlan_rx_add_vid(netdev
, htons(ETH_P_8021Q
), vid
);
2854 adapter
->mng_vlan_id
= vid
;
2857 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2858 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
), old_vid
);
2861 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2865 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), 0);
2867 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2868 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
2871 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2873 struct e1000_hw
*hw
= &adapter
->hw
;
2874 u32 manc
, manc2h
, mdef
, i
, j
;
2876 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2881 /* enable receiving management packets to the host. this will probably
2882 * generate destination unreachable messages from the host OS, but
2883 * the packets will be handled on SMBUS
2885 manc
|= E1000_MANC_EN_MNG2HOST
;
2886 manc2h
= er32(MANC2H
);
2888 switch (hw
->mac
.type
) {
2890 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2894 /* Check if IPMI pass-through decision filter already exists;
2897 for (i
= 0, j
= 0; i
< 8; i
++) {
2898 mdef
= er32(MDEF(i
));
2900 /* Ignore filters with anything other than IPMI ports */
2901 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2904 /* Enable this decision filter in MANC2H */
2911 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2914 /* Create new decision filter in an empty filter */
2915 for (i
= 0, j
= 0; i
< 8; i
++)
2916 if (er32(MDEF(i
)) == 0) {
2917 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2918 E1000_MDEF_PORT_664
));
2925 e_warn("Unable to create IPMI pass-through filter\n");
2929 ew32(MANC2H
, manc2h
);
2934 * e1000_configure_tx - Configure Transmit Unit after Reset
2935 * @adapter: board private structure
2937 * Configure the Tx unit of the MAC after a reset.
2939 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2941 struct e1000_hw
*hw
= &adapter
->hw
;
2942 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2944 u32 tdlen
, tctl
, tarc
;
2946 /* Setup the HW Tx Head and Tail descriptor pointers */
2947 tdba
= tx_ring
->dma
;
2948 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2949 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
2950 ew32(TDBAH(0), (tdba
>> 32));
2951 ew32(TDLEN(0), tdlen
);
2954 tx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_TDH(0);
2955 tx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_TDT(0);
2957 writel(0, tx_ring
->head
);
2958 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
2959 e1000e_update_tdt_wa(tx_ring
, 0);
2961 writel(0, tx_ring
->tail
);
2963 /* Set the Tx Interrupt Delay register */
2964 ew32(TIDV
, adapter
->tx_int_delay
);
2965 /* Tx irq moderation */
2966 ew32(TADV
, adapter
->tx_abs_int_delay
);
2968 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2969 u32 txdctl
= er32(TXDCTL(0));
2971 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2972 E1000_TXDCTL_WTHRESH
);
2973 /* set up some performance related parameters to encourage the
2974 * hardware to use the bus more efficiently in bursts, depends
2975 * on the tx_int_delay to be enabled,
2976 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2977 * hthresh = 1 ==> prefetch when one or more available
2978 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2979 * BEWARE: this seems to work but should be considered first if
2980 * there are Tx hangs or other Tx related bugs
2982 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2983 ew32(TXDCTL(0), txdctl
);
2985 /* erratum work around: set txdctl the same for both queues */
2986 ew32(TXDCTL(1), er32(TXDCTL(0)));
2988 /* Program the Transmit Control Register */
2990 tctl
&= ~E1000_TCTL_CT
;
2991 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2992 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2994 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2995 tarc
= er32(TARC(0));
2996 /* set the speed mode bit, we'll clear it if we're not at
2997 * gigabit link later
2999 #define SPEED_MODE_BIT BIT(21)
3000 tarc
|= SPEED_MODE_BIT
;
3001 ew32(TARC(0), tarc
);
3004 /* errata: program both queues to unweighted RR */
3005 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
3006 tarc
= er32(TARC(0));
3008 ew32(TARC(0), tarc
);
3009 tarc
= er32(TARC(1));
3011 ew32(TARC(1), tarc
);
3014 /* Setup Transmit Descriptor Settings for eop descriptor */
3015 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
3017 /* only set IDE if we are delaying interrupts using the timers */
3018 if (adapter
->tx_int_delay
)
3019 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
3021 /* enable Report Status bit */
3022 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
3026 hw
->mac
.ops
.config_collision_dist(hw
);
3028 /* SPT and KBL Si errata workaround to avoid data corruption */
3029 if (hw
->mac
.type
== e1000_pch_spt
) {
3032 reg_val
= er32(IOSFPC
);
3033 reg_val
|= E1000_RCTL_RDMTS_HEX
;
3034 ew32(IOSFPC
, reg_val
);
3036 reg_val
= er32(TARC(0));
3037 /* SPT and KBL Si errata workaround to avoid Tx hang.
3038 * Dropping the number of outstanding requests from
3039 * 3 to 2 in order to avoid a buffer overrun.
3041 reg_val
&= ~E1000_TARC0_CB_MULTIQ_3_REQ
;
3042 reg_val
|= E1000_TARC0_CB_MULTIQ_2_REQ
;
3043 ew32(TARC(0), reg_val
);
3048 * e1000_setup_rctl - configure the receive control registers
3049 * @adapter: Board private structure
3051 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3052 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3053 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
3055 struct e1000_hw
*hw
= &adapter
->hw
;
3059 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3060 * If jumbo frames not set, program related MAC/PHY registers
3063 if (hw
->mac
.type
>= e1000_pch2lan
) {
3066 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
3067 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
3069 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
3072 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3075 /* Program MC offset vector base */
3077 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
3078 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
3079 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
3080 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
3082 /* Do not Store bad packets */
3083 rctl
&= ~E1000_RCTL_SBP
;
3085 /* Enable Long Packet receive */
3086 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
3087 rctl
&= ~E1000_RCTL_LPE
;
3089 rctl
|= E1000_RCTL_LPE
;
3091 /* Some systems expect that the CRC is included in SMBUS traffic. The
3092 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3093 * host memory when this is enabled
3095 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
3096 rctl
|= E1000_RCTL_SECRC
;
3098 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3099 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
3102 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
3105 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
3107 e1e_rphy(hw
, 22, &phy_data
);
3109 phy_data
|= BIT(14);
3110 e1e_wphy(hw
, 0x10, 0x2823);
3111 e1e_wphy(hw
, 0x11, 0x0003);
3112 e1e_wphy(hw
, 22, phy_data
);
3115 /* Setup buffer sizes */
3116 rctl
&= ~E1000_RCTL_SZ_4096
;
3117 rctl
|= E1000_RCTL_BSEX
;
3118 switch (adapter
->rx_buffer_len
) {
3121 rctl
|= E1000_RCTL_SZ_2048
;
3122 rctl
&= ~E1000_RCTL_BSEX
;
3125 rctl
|= E1000_RCTL_SZ_4096
;
3128 rctl
|= E1000_RCTL_SZ_8192
;
3131 rctl
|= E1000_RCTL_SZ_16384
;
3135 /* Enable Extended Status in all Receive Descriptors */
3136 rfctl
= er32(RFCTL
);
3137 rfctl
|= E1000_RFCTL_EXTEN
;
3140 /* 82571 and greater support packet-split where the protocol
3141 * header is placed in skb->data and the packet data is
3142 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3143 * In the case of a non-split, skb->data is linearly filled,
3144 * followed by the page buffers. Therefore, skb->data is
3145 * sized to hold the largest protocol header.
3147 * allocations using alloc_page take too long for regular MTU
3148 * so only enable packet split for jumbo frames
3150 * Using pages when the page size is greater than 16k wastes
3151 * a lot of memory, since we allocate 3 pages at all times
3154 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
3155 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
3156 adapter
->rx_ps_pages
= pages
;
3158 adapter
->rx_ps_pages
= 0;
3160 if (adapter
->rx_ps_pages
) {
3163 /* Enable Packet split descriptors */
3164 rctl
|= E1000_RCTL_DTYP_PS
;
3166 psrctl
|= adapter
->rx_ps_bsize0
>> E1000_PSRCTL_BSIZE0_SHIFT
;
3168 switch (adapter
->rx_ps_pages
) {
3170 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE3_SHIFT
;
3173 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE2_SHIFT
;
3176 psrctl
|= PAGE_SIZE
>> E1000_PSRCTL_BSIZE1_SHIFT
;
3180 ew32(PSRCTL
, psrctl
);
3183 /* This is useful for sniffing bad packets. */
3184 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
3185 /* UPE and MPE will be handled by normal PROMISC logic
3186 * in e1000e_set_rx_mode
3188 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
3189 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
3190 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
3192 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
3193 E1000_RCTL_DPF
| /* Allow filtered pause */
3194 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
3195 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3196 * and that breaks VLANs.
3201 /* just started the receive unit, no need to restart */
3202 adapter
->flags
&= ~FLAG_RESTART_NOW
;
3206 * e1000_configure_rx - Configure Receive Unit after Reset
3207 * @adapter: board private structure
3209 * Configure the Rx unit of the MAC after a reset.
3211 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
3213 struct e1000_hw
*hw
= &adapter
->hw
;
3214 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3216 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
3218 if (adapter
->rx_ps_pages
) {
3219 /* this is a 32 byte descriptor */
3220 rdlen
= rx_ring
->count
*
3221 sizeof(union e1000_rx_desc_packet_split
);
3222 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
3223 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
3224 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3225 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3226 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
3227 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
3229 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3230 adapter
->clean_rx
= e1000_clean_rx_irq
;
3231 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
3234 /* disable receives while setting up the descriptors */
3236 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3237 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3239 usleep_range(10000, 20000);
3241 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
3242 /* set the writeback threshold (only takes effect if the RDTR
3243 * is set). set GRAN=1 and write back up to 0x4 worth, and
3244 * enable prefetching of 0x20 Rx descriptors
3250 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
3251 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
3254 /* set the Receive Delay Timer Register */
3255 ew32(RDTR
, adapter
->rx_int_delay
);
3257 /* irq moderation */
3258 ew32(RADV
, adapter
->rx_abs_int_delay
);
3259 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
3260 e1000e_write_itr(adapter
, adapter
->itr
);
3262 ctrl_ext
= er32(CTRL_EXT
);
3263 /* Auto-Mask interrupts upon ICR access */
3264 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
3265 ew32(IAM
, 0xffffffff);
3266 ew32(CTRL_EXT
, ctrl_ext
);
3269 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3270 * the Base and Length of the Rx Descriptor Ring
3272 rdba
= rx_ring
->dma
;
3273 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
3274 ew32(RDBAH(0), (rdba
>> 32));
3275 ew32(RDLEN(0), rdlen
);
3278 rx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_RDH(0);
3279 rx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_RDT(0);
3281 writel(0, rx_ring
->head
);
3282 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
3283 e1000e_update_rdt_wa(rx_ring
, 0);
3285 writel(0, rx_ring
->tail
);
3287 /* Enable Receive Checksum Offload for TCP and UDP */
3288 rxcsum
= er32(RXCSUM
);
3289 if (adapter
->netdev
->features
& NETIF_F_RXCSUM
)
3290 rxcsum
|= E1000_RXCSUM_TUOFL
;
3292 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
3293 ew32(RXCSUM
, rxcsum
);
3295 /* With jumbo frames, excessive C-state transition latencies result
3296 * in dropped transactions.
3298 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3300 ((er32(PBA
) & E1000_PBA_RXA_MASK
) * 1024 -
3301 adapter
->max_frame_size
) * 8 / 1000;
3303 if (adapter
->flags
& FLAG_IS_ICH
) {
3304 u32 rxdctl
= er32(RXDCTL(0));
3306 ew32(RXDCTL(0), rxdctl
| 0x3 | BIT(8));
3309 dev_info(&adapter
->pdev
->dev
,
3310 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3311 pm_qos_update_request(&adapter
->pm_qos_req
, lat
);
3313 pm_qos_update_request(&adapter
->pm_qos_req
,
3314 PM_QOS_DEFAULT_VALUE
);
3317 /* Enable Receives */
3322 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3323 * @netdev: network interface device structure
3325 * Writes multicast address list to the MTA hash table.
3326 * Returns: -ENOMEM on failure
3327 * 0 on no addresses written
3328 * X on writing X addresses to MTA
3330 static int e1000e_write_mc_addr_list(struct net_device
*netdev
)
3332 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3333 struct e1000_hw
*hw
= &adapter
->hw
;
3334 struct netdev_hw_addr
*ha
;
3338 if (netdev_mc_empty(netdev
)) {
3339 /* nothing to program, so clear mc list */
3340 hw
->mac
.ops
.update_mc_addr_list(hw
, NULL
, 0);
3344 mta_list
= kzalloc(netdev_mc_count(netdev
) * ETH_ALEN
, GFP_ATOMIC
);
3348 /* update_mc_addr_list expects a packed array of only addresses. */
3350 netdev_for_each_mc_addr(ha
, netdev
)
3351 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3353 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
);
3356 return netdev_mc_count(netdev
);
3360 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3361 * @netdev: network interface device structure
3363 * Writes unicast address list to the RAR table.
3364 * Returns: -ENOMEM on failure/insufficient address space
3365 * 0 on no addresses written
3366 * X on writing X addresses to the RAR table
3368 static int e1000e_write_uc_addr_list(struct net_device
*netdev
)
3370 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3371 struct e1000_hw
*hw
= &adapter
->hw
;
3372 unsigned int rar_entries
;
3375 rar_entries
= hw
->mac
.ops
.rar_get_count(hw
);
3377 /* save a rar entry for our hardware address */
3380 /* save a rar entry for the LAA workaround */
3381 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
)
3384 /* return ENOMEM indicating insufficient memory for addresses */
3385 if (netdev_uc_count(netdev
) > rar_entries
)
3388 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3389 struct netdev_hw_addr
*ha
;
3391 /* write the addresses in reverse order to avoid write
3394 netdev_for_each_uc_addr(ha
, netdev
) {
3399 ret_val
= hw
->mac
.ops
.rar_set(hw
, ha
->addr
, rar_entries
--);
3406 /* zero out the remaining RAR entries not used above */
3407 for (; rar_entries
> 0; rar_entries
--) {
3408 ew32(RAH(rar_entries
), 0);
3409 ew32(RAL(rar_entries
), 0);
3417 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3418 * @netdev: network interface device structure
3420 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3421 * address list or the network interface flags are updated. This routine is
3422 * responsible for configuring the hardware for proper unicast, multicast,
3423 * promiscuous mode, and all-multi behavior.
3425 static void e1000e_set_rx_mode(struct net_device
*netdev
)
3427 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3428 struct e1000_hw
*hw
= &adapter
->hw
;
3431 if (pm_runtime_suspended(netdev
->dev
.parent
))
3434 /* Check for Promiscuous and All Multicast modes */
3437 /* clear the affected bits */
3438 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3440 if (netdev
->flags
& IFF_PROMISC
) {
3441 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3442 /* Do not hardware filter VLANs in promisc mode */
3443 e1000e_vlan_filter_disable(adapter
);
3447 if (netdev
->flags
& IFF_ALLMULTI
) {
3448 rctl
|= E1000_RCTL_MPE
;
3450 /* Write addresses to the MTA, if the attempt fails
3451 * then we should just turn on promiscuous mode so
3452 * that we can at least receive multicast traffic
3454 count
= e1000e_write_mc_addr_list(netdev
);
3456 rctl
|= E1000_RCTL_MPE
;
3458 e1000e_vlan_filter_enable(adapter
);
3459 /* Write addresses to available RAR registers, if there is not
3460 * sufficient space to store all the addresses then enable
3461 * unicast promiscuous mode
3463 count
= e1000e_write_uc_addr_list(netdev
);
3465 rctl
|= E1000_RCTL_UPE
;
3470 if (netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
3471 e1000e_vlan_strip_enable(adapter
);
3473 e1000e_vlan_strip_disable(adapter
);
3476 static void e1000e_setup_rss_hash(struct e1000_adapter
*adapter
)
3478 struct e1000_hw
*hw
= &adapter
->hw
;
3483 netdev_rss_key_fill(rss_key
, sizeof(rss_key
));
3484 for (i
= 0; i
< 10; i
++)
3485 ew32(RSSRK(i
), rss_key
[i
]);
3487 /* Direct all traffic to queue 0 */
3488 for (i
= 0; i
< 32; i
++)
3491 /* Disable raw packet checksumming so that RSS hash is placed in
3492 * descriptor on writeback.
3494 rxcsum
= er32(RXCSUM
);
3495 rxcsum
|= E1000_RXCSUM_PCSD
;
3497 ew32(RXCSUM
, rxcsum
);
3499 mrqc
= (E1000_MRQC_RSS_FIELD_IPV4
|
3500 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
3501 E1000_MRQC_RSS_FIELD_IPV6
|
3502 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
3503 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
3509 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3510 * @adapter: board private structure
3511 * @timinca: pointer to returned time increment attributes
3513 * Get attributes for incrementing the System Time Register SYSTIML/H at
3514 * the default base frequency, and set the cyclecounter shift value.
3516 s32
e1000e_get_base_timinca(struct e1000_adapter
*adapter
, u32
*timinca
)
3518 struct e1000_hw
*hw
= &adapter
->hw
;
3519 u32 incvalue
, incperiod
, shift
;
3521 /* Make sure clock is enabled on I217/I218/I219 before checking
3524 if ((hw
->mac
.type
>= e1000_pch_lpt
) &&
3525 !(er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) &&
3526 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_ENABLED
)) {
3527 u32 fextnvm7
= er32(FEXTNVM7
);
3529 if (!(fextnvm7
& BIT(0))) {
3530 ew32(FEXTNVM7
, fextnvm7
| BIT(0));
3535 switch (hw
->mac
.type
) {
3537 /* Stable 96MHz frequency */
3538 incperiod
= INCPERIOD_96MHZ
;
3539 incvalue
= INCVALUE_96MHZ
;
3540 shift
= INCVALUE_SHIFT_96MHZ
;
3541 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHZ
;
3544 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3545 /* Stable 96MHz frequency */
3546 incperiod
= INCPERIOD_96MHZ
;
3547 incvalue
= INCVALUE_96MHZ
;
3548 shift
= INCVALUE_SHIFT_96MHZ
;
3549 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHZ
;
3551 /* Stable 25MHz frequency */
3552 incperiod
= INCPERIOD_25MHZ
;
3553 incvalue
= INCVALUE_25MHZ
;
3554 shift
= INCVALUE_SHIFT_25MHZ
;
3555 adapter
->cc
.shift
= shift
;
3559 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3560 /* Stable 24MHz frequency */
3561 incperiod
= INCPERIOD_24MHZ
;
3562 incvalue
= INCVALUE_24MHZ
;
3563 shift
= INCVALUE_SHIFT_24MHZ
;
3564 adapter
->cc
.shift
= shift
;
3569 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3570 /* Stable 24MHz frequency */
3571 incperiod
= INCPERIOD_24MHZ
;
3572 incvalue
= INCVALUE_24MHZ
;
3573 shift
= INCVALUE_SHIFT_24MHZ
;
3574 adapter
->cc
.shift
= shift
;
3576 /* Stable 38400KHz frequency */
3577 incperiod
= INCPERIOD_38400KHZ
;
3578 incvalue
= INCVALUE_38400KHZ
;
3579 shift
= INCVALUE_SHIFT_38400KHZ
;
3580 adapter
->cc
.shift
= shift
;
3585 /* Stable 25MHz frequency */
3586 incperiod
= INCPERIOD_25MHZ
;
3587 incvalue
= INCVALUE_25MHZ
;
3588 shift
= INCVALUE_SHIFT_25MHZ
;
3589 adapter
->cc
.shift
= shift
;
3595 *timinca
= ((incperiod
<< E1000_TIMINCA_INCPERIOD_SHIFT
) |
3596 ((incvalue
<< shift
) & E1000_TIMINCA_INCVALUE_MASK
));
3602 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3603 * @adapter: board private structure
3605 * Outgoing time stamping can be enabled and disabled. Play nice and
3606 * disable it when requested, although it shouldn't cause any overhead
3607 * when no packet needs it. At most one packet in the queue may be
3608 * marked for time stamping, otherwise it would be impossible to tell
3609 * for sure to which packet the hardware time stamp belongs.
3611 * Incoming time stamping has to be configured via the hardware filters.
3612 * Not all combinations are supported, in particular event type has to be
3613 * specified. Matching the kind of event packet is not supported, with the
3614 * exception of "all V2 events regardless of level 2 or 4".
3616 static int e1000e_config_hwtstamp(struct e1000_adapter
*adapter
,
3617 struct hwtstamp_config
*config
)
3619 struct e1000_hw
*hw
= &adapter
->hw
;
3620 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
3621 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
3628 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3631 /* flags reserved for future extensions - must be zero */
3635 switch (config
->tx_type
) {
3636 case HWTSTAMP_TX_OFF
:
3639 case HWTSTAMP_TX_ON
:
3645 switch (config
->rx_filter
) {
3646 case HWTSTAMP_FILTER_NONE
:
3649 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3650 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3651 rxmtrl
= E1000_RXMTRL_PTP_V1_SYNC_MESSAGE
;
3654 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3655 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3656 rxmtrl
= E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE
;
3659 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3660 /* Also time stamps V2 L2 Path Delay Request/Response */
3661 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3662 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3665 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3666 /* Also time stamps V2 L2 Path Delay Request/Response. */
3667 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3668 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3671 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3672 /* Hardware cannot filter just V2 L4 Sync messages;
3673 * fall-through to V2 (both L2 and L4) Sync.
3675 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3676 /* Also time stamps V2 Path Delay Request/Response. */
3677 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3678 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3682 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3683 /* Hardware cannot filter just V2 L4 Delay Request messages;
3684 * fall-through to V2 (both L2 and L4) Delay Request.
3686 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3687 /* Also time stamps V2 Path Delay Request/Response. */
3688 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3689 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3693 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3694 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3695 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3696 * fall-through to all V2 (both L2 and L4) Events.
3698 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3699 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
3700 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
3704 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3705 /* For V1, the hardware can only filter Sync messages or
3706 * Delay Request messages but not both so fall-through to
3707 * time stamp all packets.
3709 case HWTSTAMP_FILTER_NTP_ALL
:
3710 case HWTSTAMP_FILTER_ALL
:
3713 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
3714 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3720 adapter
->hwtstamp_config
= *config
;
3722 /* enable/disable Tx h/w time stamping */
3723 regval
= er32(TSYNCTXCTL
);
3724 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
3725 regval
|= tsync_tx_ctl
;
3726 ew32(TSYNCTXCTL
, regval
);
3727 if ((er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) !=
3728 (regval
& E1000_TSYNCTXCTL_ENABLED
)) {
3729 e_err("Timesync Tx Control register not set as expected\n");
3733 /* enable/disable Rx h/w time stamping */
3734 regval
= er32(TSYNCRXCTL
);
3735 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
3736 regval
|= tsync_rx_ctl
;
3737 ew32(TSYNCRXCTL
, regval
);
3738 if ((er32(TSYNCRXCTL
) & (E1000_TSYNCRXCTL_ENABLED
|
3739 E1000_TSYNCRXCTL_TYPE_MASK
)) !=
3740 (regval
& (E1000_TSYNCRXCTL_ENABLED
|
3741 E1000_TSYNCRXCTL_TYPE_MASK
))) {
3742 e_err("Timesync Rx Control register not set as expected\n");
3746 /* L2: define ethertype filter for time stamped packets */
3748 rxmtrl
|= ETH_P_1588
;
3750 /* define which PTP packets get time stamped */
3751 ew32(RXMTRL
, rxmtrl
);
3753 /* Filter by destination port */
3755 rxudp
= PTP_EV_PORT
;
3756 cpu_to_be16s(&rxudp
);
3762 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3770 * e1000_configure - configure the hardware for Rx and Tx
3771 * @adapter: private board structure
3773 static void e1000_configure(struct e1000_adapter
*adapter
)
3775 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3777 e1000e_set_rx_mode(adapter
->netdev
);
3779 e1000_restore_vlan(adapter
);
3780 e1000_init_manageability_pt(adapter
);
3782 e1000_configure_tx(adapter
);
3784 if (adapter
->netdev
->features
& NETIF_F_RXHASH
)
3785 e1000e_setup_rss_hash(adapter
);
3786 e1000_setup_rctl(adapter
);
3787 e1000_configure_rx(adapter
);
3788 adapter
->alloc_rx_buf(rx_ring
, e1000_desc_unused(rx_ring
), GFP_KERNEL
);
3792 * e1000e_power_up_phy - restore link in case the phy was powered down
3793 * @adapter: address of board private structure
3795 * The phy may be powered down to save power and turn off link when the
3796 * driver is unloaded and wake on lan is not enabled (among others)
3797 * *** this routine MUST be followed by a call to e1000e_reset ***
3799 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3801 if (adapter
->hw
.phy
.ops
.power_up
)
3802 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3804 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3808 * e1000_power_down_phy - Power down the PHY
3810 * Power down the PHY so no link is implied when interface is down.
3811 * The PHY cannot be powered down if management or WoL is active.
3813 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3815 if (adapter
->hw
.phy
.ops
.power_down
)
3816 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3820 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3822 * We want to clear all pending descriptors from the TX ring.
3823 * zeroing happens when the HW reads the regs. We assign the ring itself as
3824 * the data of the next descriptor. We don't care about the data we are about
3827 static void e1000_flush_tx_ring(struct e1000_adapter
*adapter
)
3829 struct e1000_hw
*hw
= &adapter
->hw
;
3830 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3831 struct e1000_tx_desc
*tx_desc
= NULL
;
3832 u32 tdt
, tctl
, txd_lower
= E1000_TXD_CMD_IFCS
;
3836 ew32(TCTL
, tctl
| E1000_TCTL_EN
);
3838 BUG_ON(tdt
!= tx_ring
->next_to_use
);
3839 tx_desc
= E1000_TX_DESC(*tx_ring
, tx_ring
->next_to_use
);
3840 tx_desc
->buffer_addr
= tx_ring
->dma
;
3842 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
| size
);
3843 tx_desc
->upper
.data
= 0;
3844 /* flush descriptors to memory before notifying the HW */
3846 tx_ring
->next_to_use
++;
3847 if (tx_ring
->next_to_use
== tx_ring
->count
)
3848 tx_ring
->next_to_use
= 0;
3849 ew32(TDT(0), tx_ring
->next_to_use
);
3851 usleep_range(200, 250);
3855 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3857 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3859 static void e1000_flush_rx_ring(struct e1000_adapter
*adapter
)
3862 struct e1000_hw
*hw
= &adapter
->hw
;
3865 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3867 usleep_range(100, 150);
3869 rxdctl
= er32(RXDCTL(0));
3870 /* zero the lower 14 bits (prefetch and host thresholds) */
3871 rxdctl
&= 0xffffc000;
3873 /* update thresholds: prefetch threshold to 31, host threshold to 1
3874 * and make sure the granularity is "descriptors" and not "cache lines"
3876 rxdctl
|= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC
);
3878 ew32(RXDCTL(0), rxdctl
);
3879 /* momentarily enable the RX ring for the changes to take effect */
3880 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3882 usleep_range(100, 150);
3883 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3887 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3889 * In i219, the descriptor rings must be emptied before resetting the HW
3890 * or before changing the device state to D3 during runtime (runtime PM).
3892 * Failure to do this will cause the HW to enter a unit hang state which can
3893 * only be released by PCI reset on the device
3897 static void e1000_flush_desc_rings(struct e1000_adapter
*adapter
)
3900 u32 fext_nvm11
, tdlen
;
3901 struct e1000_hw
*hw
= &adapter
->hw
;
3903 /* First, disable MULR fix in FEXTNVM11 */
3904 fext_nvm11
= er32(FEXTNVM11
);
3905 fext_nvm11
|= E1000_FEXTNVM11_DISABLE_MULR_FIX
;
3906 ew32(FEXTNVM11
, fext_nvm11
);
3907 /* do nothing if we're not in faulty state, or if the queue is empty */
3908 tdlen
= er32(TDLEN(0));
3909 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3911 if (!(hang_state
& FLUSH_DESC_REQUIRED
) || !tdlen
)
3913 e1000_flush_tx_ring(adapter
);
3914 /* recheck, maybe the fault is caused by the rx ring */
3915 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3917 if (hang_state
& FLUSH_DESC_REQUIRED
)
3918 e1000_flush_rx_ring(adapter
);
3922 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3923 * @adapter: board private structure
3925 * When the MAC is reset, all hardware bits for timesync will be reset to the
3926 * default values. This function will restore the settings last in place.
3927 * Since the clock SYSTIME registers are reset, we will simply restore the
3928 * cyclecounter to the kernel real clock time.
3930 static void e1000e_systim_reset(struct e1000_adapter
*adapter
)
3932 struct ptp_clock_info
*info
= &adapter
->ptp_clock_info
;
3933 struct e1000_hw
*hw
= &adapter
->hw
;
3934 unsigned long flags
;
3938 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3941 if (info
->adjfreq
) {
3942 /* restore the previous ptp frequency delta */
3943 ret_val
= info
->adjfreq(info
, adapter
->ptp_delta
);
3945 /* set the default base frequency if no adjustment possible */
3946 ret_val
= e1000e_get_base_timinca(adapter
, &timinca
);
3948 ew32(TIMINCA
, timinca
);
3952 dev_warn(&adapter
->pdev
->dev
,
3953 "Failed to restore TIMINCA clock rate delta: %d\n",
3958 /* reset the systim ns time counter */
3959 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
3960 timecounter_init(&adapter
->tc
, &adapter
->cc
,
3961 ktime_to_ns(ktime_get_real()));
3962 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
3964 /* restore the previous hwtstamp configuration settings */
3965 e1000e_config_hwtstamp(adapter
, &adapter
->hwtstamp_config
);
3969 * e1000e_reset - bring the hardware into a known good state
3971 * This function boots the hardware and enables some settings that
3972 * require a configuration cycle of the hardware - those cannot be
3973 * set/changed during runtime. After reset the device needs to be
3974 * properly configured for Rx, Tx etc.
3976 void e1000e_reset(struct e1000_adapter
*adapter
)
3978 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3979 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3980 struct e1000_hw
*hw
= &adapter
->hw
;
3981 u32 tx_space
, min_tx_space
, min_rx_space
;
3982 u32 pba
= adapter
->pba
;
3985 /* reset Packet Buffer Allocation to default */
3988 if (adapter
->max_frame_size
> (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3989 /* To maintain wire speed transmits, the Tx FIFO should be
3990 * large enough to accommodate two full transmit packets,
3991 * rounded up to the next 1KB and expressed in KB. Likewise,
3992 * the Rx FIFO should be large enough to accommodate at least
3993 * one full receive packet and is similarly rounded up and
3997 /* upper 16 bits has Tx packet buffer allocation size in KB */
3998 tx_space
= pba
>> 16;
3999 /* lower 16 bits has Rx packet buffer allocation size in KB */
4001 /* the Tx fifo also stores 16 bytes of information about the Tx
4002 * but don't include ethernet FCS because hardware appends it
4004 min_tx_space
= (adapter
->max_frame_size
+
4005 sizeof(struct e1000_tx_desc
) - ETH_FCS_LEN
) * 2;
4006 min_tx_space
= ALIGN(min_tx_space
, 1024);
4007 min_tx_space
>>= 10;
4008 /* software strips receive CRC, so leave room for it */
4009 min_rx_space
= adapter
->max_frame_size
;
4010 min_rx_space
= ALIGN(min_rx_space
, 1024);
4011 min_rx_space
>>= 10;
4013 /* If current Tx allocation is less than the min Tx FIFO size,
4014 * and the min Tx FIFO size is less than the current Rx FIFO
4015 * allocation, take space away from current Rx allocation
4017 if ((tx_space
< min_tx_space
) &&
4018 ((min_tx_space
- tx_space
) < pba
)) {
4019 pba
-= min_tx_space
- tx_space
;
4021 /* if short on Rx space, Rx wins and must trump Tx
4024 if (pba
< min_rx_space
)
4031 /* flow control settings
4033 * The high water mark must be low enough to fit one full frame
4034 * (or the size used for early receive) above it in the Rx FIFO.
4035 * Set it to the lower of:
4036 * - 90% of the Rx FIFO size, and
4037 * - the full Rx FIFO size minus one full frame
4039 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
4040 fc
->pause_time
= 0xFFFF;
4042 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
4043 fc
->send_xon
= true;
4044 fc
->current_mode
= fc
->requested_mode
;
4046 switch (hw
->mac
.type
) {
4048 case e1000_ich10lan
:
4049 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
4052 fc
->high_water
= 0x2800;
4053 fc
->low_water
= fc
->high_water
- 8;
4058 hwm
= min(((pba
<< 10) * 9 / 10),
4059 ((pba
<< 10) - adapter
->max_frame_size
));
4061 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
4062 fc
->low_water
= fc
->high_water
- 8;
4065 /* Workaround PCH LOM adapter hangs with certain network
4066 * loads. If hangs persist, try disabling Tx flow control.
4068 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
4069 fc
->high_water
= 0x3500;
4070 fc
->low_water
= 0x1500;
4072 fc
->high_water
= 0x5000;
4073 fc
->low_water
= 0x3000;
4075 fc
->refresh_time
= 0x1000;
4081 fc
->refresh_time
= 0x0400;
4083 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
) {
4084 fc
->high_water
= 0x05C20;
4085 fc
->low_water
= 0x05048;
4086 fc
->pause_time
= 0x0650;
4092 fc
->high_water
= ((pba
<< 10) * 9 / 10) & E1000_FCRTH_RTH
;
4093 fc
->low_water
= ((pba
<< 10) * 8 / 10) & E1000_FCRTL_RTL
;
4097 /* Alignment of Tx data is on an arbitrary byte boundary with the
4098 * maximum size per Tx descriptor limited only to the transmit
4099 * allocation of the packet buffer minus 96 bytes with an upper
4100 * limit of 24KB due to receive synchronization limitations.
4102 adapter
->tx_fifo_limit
= min_t(u32
, ((er32(PBA
) >> 16) << 10) - 96,
4105 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4106 * fit in receive buffer.
4108 if (adapter
->itr_setting
& 0x3) {
4109 if ((adapter
->max_frame_size
* 2) > (pba
<< 10)) {
4110 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
4111 dev_info(&adapter
->pdev
->dev
,
4112 "Interrupt Throttle Rate off\n");
4113 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
4114 e1000e_write_itr(adapter
, 0);
4116 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
4117 dev_info(&adapter
->pdev
->dev
,
4118 "Interrupt Throttle Rate on\n");
4119 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
4120 adapter
->itr
= 20000;
4121 e1000e_write_itr(adapter
, adapter
->itr
);
4125 if (hw
->mac
.type
>= e1000_pch_spt
)
4126 e1000_flush_desc_rings(adapter
);
4127 /* Allow time for pending master requests to run */
4128 mac
->ops
.reset_hw(hw
);
4130 /* For parts with AMT enabled, let the firmware know
4131 * that the network interface is in control
4133 if (adapter
->flags
& FLAG_HAS_AMT
)
4134 e1000e_get_hw_control(adapter
);
4138 if (mac
->ops
.init_hw(hw
))
4139 e_err("Hardware Error\n");
4141 e1000_update_mng_vlan(adapter
);
4143 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4144 ew32(VET
, ETH_P_8021Q
);
4146 e1000e_reset_adaptive(hw
);
4148 /* restore systim and hwtstamp settings */
4149 e1000e_systim_reset(adapter
);
4151 /* Set EEE advertisement as appropriate */
4152 if (adapter
->flags2
& FLAG2_HAS_EEE
) {
4156 switch (hw
->phy
.type
) {
4157 case e1000_phy_82579
:
4158 adv_addr
= I82579_EEE_ADVERTISEMENT
;
4160 case e1000_phy_i217
:
4161 adv_addr
= I217_EEE_ADVERTISEMENT
;
4164 dev_err(&adapter
->pdev
->dev
,
4165 "Invalid PHY type setting EEE advertisement\n");
4169 ret_val
= hw
->phy
.ops
.acquire(hw
);
4171 dev_err(&adapter
->pdev
->dev
,
4172 "EEE advertisement - unable to acquire PHY\n");
4176 e1000_write_emi_reg_locked(hw
, adv_addr
,
4177 hw
->dev_spec
.ich8lan
.eee_disable
?
4178 0 : adapter
->eee_advert
);
4180 hw
->phy
.ops
.release(hw
);
4183 if (!netif_running(adapter
->netdev
) &&
4184 !test_bit(__E1000_TESTING
, &adapter
->state
))
4185 e1000_power_down_phy(adapter
);
4187 e1000_get_phy_info(hw
);
4189 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
4190 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
4192 /* speed up time to link by disabling smart power down, ignore
4193 * the return value of this function because there is nothing
4194 * different we would do if it failed
4196 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
4197 phy_data
&= ~IGP02E1000_PM_SPD
;
4198 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
4200 if (hw
->mac
.type
>= e1000_pch_spt
&& adapter
->int_mode
== 0) {
4203 /* Fextnvm7 @ 0xe4[2] = 1 */
4204 reg
= er32(FEXTNVM7
);
4205 reg
|= E1000_FEXTNVM7_SIDE_CLK_UNGATE
;
4206 ew32(FEXTNVM7
, reg
);
4207 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4208 reg
= er32(FEXTNVM9
);
4209 reg
|= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS
|
4210 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS
;
4211 ew32(FEXTNVM9
, reg
);
4217 * e1000e_trigger_lsc - trigger an LSC interrupt
4220 * Fire a link status change interrupt to start the watchdog.
4222 static void e1000e_trigger_lsc(struct e1000_adapter
*adapter
)
4224 struct e1000_hw
*hw
= &adapter
->hw
;
4226 if (adapter
->msix_entries
)
4227 ew32(ICS
, E1000_ICS_LSC
| E1000_ICS_OTHER
);
4229 ew32(ICS
, E1000_ICS_LSC
);
4232 void e1000e_up(struct e1000_adapter
*adapter
)
4234 /* hardware has been reset, we need to reload some things */
4235 e1000_configure(adapter
);
4237 clear_bit(__E1000_DOWN
, &adapter
->state
);
4239 if (adapter
->msix_entries
)
4240 e1000_configure_msix(adapter
);
4241 e1000_irq_enable(adapter
);
4243 netif_start_queue(adapter
->netdev
);
4245 e1000e_trigger_lsc(adapter
);
4248 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
4250 struct e1000_hw
*hw
= &adapter
->hw
;
4252 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
4255 /* flush pending descriptor writebacks to memory */
4256 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4257 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4259 /* execute the writes immediately */
4262 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4263 * write is successful
4265 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4266 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4268 /* execute the writes immediately */
4272 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
4275 * e1000e_down - quiesce the device and optionally reset the hardware
4276 * @adapter: board private structure
4277 * @reset: boolean flag to reset the hardware or not
4279 void e1000e_down(struct e1000_adapter
*adapter
, bool reset
)
4281 struct net_device
*netdev
= adapter
->netdev
;
4282 struct e1000_hw
*hw
= &adapter
->hw
;
4285 /* signal that we're down so the interrupt handler does not
4286 * reschedule our watchdog timer
4288 set_bit(__E1000_DOWN
, &adapter
->state
);
4290 netif_carrier_off(netdev
);
4292 /* disable receives in the hardware */
4294 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
4295 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
4296 /* flush and sleep below */
4298 netif_stop_queue(netdev
);
4300 /* disable transmits in the hardware */
4302 tctl
&= ~E1000_TCTL_EN
;
4305 /* flush both disables and wait for them to finish */
4307 usleep_range(10000, 20000);
4309 e1000_irq_disable(adapter
);
4311 napi_synchronize(&adapter
->napi
);
4313 del_timer_sync(&adapter
->watchdog_timer
);
4314 del_timer_sync(&adapter
->phy_info_timer
);
4316 spin_lock(&adapter
->stats64_lock
);
4317 e1000e_update_stats(adapter
);
4318 spin_unlock(&adapter
->stats64_lock
);
4320 e1000e_flush_descriptors(adapter
);
4322 adapter
->link_speed
= 0;
4323 adapter
->link_duplex
= 0;
4325 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4326 if ((hw
->mac
.type
>= e1000_pch2lan
) &&
4327 (adapter
->netdev
->mtu
> ETH_DATA_LEN
) &&
4328 e1000_lv_jumbo_workaround_ich8lan(hw
, false))
4329 e_dbg("failed to disable jumbo frame workaround mode\n");
4331 if (!pci_channel_offline(adapter
->pdev
)) {
4333 e1000e_reset(adapter
);
4334 else if (hw
->mac
.type
>= e1000_pch_spt
)
4335 e1000_flush_desc_rings(adapter
);
4337 e1000_clean_tx_ring(adapter
->tx_ring
);
4338 e1000_clean_rx_ring(adapter
->rx_ring
);
4341 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
4344 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4345 usleep_range(1000, 2000);
4346 e1000e_down(adapter
, true);
4348 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4352 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4353 * @hw: pointer to the HW structure
4354 * @systim: time value read, sanitized and returned
4356 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4357 * check to see that the time is incrementing at a reasonable
4358 * rate and is a multiple of incvalue.
4360 static u64
e1000e_sanitize_systim(struct e1000_hw
*hw
, u64 systim
)
4362 u64 time_delta
, rem
, temp
;
4367 incvalue
= er32(TIMINCA
) & E1000_TIMINCA_INCVALUE_MASK
;
4368 for (i
= 0; i
< E1000_MAX_82574_SYSTIM_REREADS
; i
++) {
4369 /* latch SYSTIMH on read of SYSTIML */
4370 systim_next
= (u64
)er32(SYSTIML
);
4371 systim_next
|= (u64
)er32(SYSTIMH
) << 32;
4373 time_delta
= systim_next
- systim
;
4375 /* VMWare users have seen incvalue of zero, don't div / 0 */
4376 rem
= incvalue
? do_div(temp
, incvalue
) : (time_delta
!= 0);
4378 systim
= systim_next
;
4380 if ((time_delta
< E1000_82574_SYSTIM_EPSILON
) && (rem
== 0))
4388 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4389 * @cc: cyclecounter structure
4391 static u64
e1000e_cyclecounter_read(const struct cyclecounter
*cc
)
4393 struct e1000_adapter
*adapter
= container_of(cc
, struct e1000_adapter
,
4395 struct e1000_hw
*hw
= &adapter
->hw
;
4396 u32 systimel
, systimeh
;
4398 /* SYSTIMH latching upon SYSTIML read does not work well.
4399 * This means that if SYSTIML overflows after we read it but before
4400 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4401 * will experience a huge non linear increment in the systime value
4402 * to fix that we test for overflow and if true, we re-read systime.
4404 systimel
= er32(SYSTIML
);
4405 systimeh
= er32(SYSTIMH
);
4406 /* Is systimel is so large that overflow is possible? */
4407 if (systimel
>= (u32
)0xffffffff - E1000_TIMINCA_INCVALUE_MASK
) {
4408 u32 systimel_2
= er32(SYSTIML
);
4409 if (systimel
> systimel_2
) {
4410 /* There was an overflow, read again SYSTIMH, and use
4413 systimeh
= er32(SYSTIMH
);
4414 systimel
= systimel_2
;
4417 systim
= (u64
)systimel
;
4418 systim
|= (u64
)systimeh
<< 32;
4420 if (adapter
->flags2
& FLAG2_CHECK_SYSTIM_OVERFLOW
)
4421 systim
= e1000e_sanitize_systim(hw
, systim
);
4427 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4428 * @adapter: board private structure to initialize
4430 * e1000_sw_init initializes the Adapter private data structure.
4431 * Fields are initialized based on PCI device information and
4432 * OS network device settings (MTU size).
4434 static int e1000_sw_init(struct e1000_adapter
*adapter
)
4436 struct net_device
*netdev
= adapter
->netdev
;
4438 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
4439 adapter
->rx_ps_bsize0
= 128;
4440 adapter
->max_frame_size
= netdev
->mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
4441 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
4442 adapter
->tx_ring_count
= E1000_DEFAULT_TXD
;
4443 adapter
->rx_ring_count
= E1000_DEFAULT_RXD
;
4445 spin_lock_init(&adapter
->stats64_lock
);
4447 e1000e_set_interrupt_capability(adapter
);
4449 if (e1000_alloc_queues(adapter
))
4452 /* Setup hardware time stamping cyclecounter */
4453 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
4454 adapter
->cc
.read
= e1000e_cyclecounter_read
;
4455 adapter
->cc
.mask
= CYCLECOUNTER_MASK(64);
4456 adapter
->cc
.mult
= 1;
4457 /* cc.shift set in e1000e_get_base_tininca() */
4459 spin_lock_init(&adapter
->systim_lock
);
4460 INIT_WORK(&adapter
->tx_hwtstamp_work
, e1000e_tx_hwtstamp_work
);
4463 /* Explicitly disable IRQ since the NIC can be in any state. */
4464 e1000_irq_disable(adapter
);
4466 set_bit(__E1000_DOWN
, &adapter
->state
);
4471 * e1000_intr_msi_test - Interrupt Handler
4472 * @irq: interrupt number
4473 * @data: pointer to a network interface device structure
4475 static irqreturn_t
e1000_intr_msi_test(int __always_unused irq
, void *data
)
4477 struct net_device
*netdev
= data
;
4478 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4479 struct e1000_hw
*hw
= &adapter
->hw
;
4480 u32 icr
= er32(ICR
);
4482 e_dbg("icr is %08X\n", icr
);
4483 if (icr
& E1000_ICR_RXSEQ
) {
4484 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
4485 /* Force memory writes to complete before acknowledging the
4486 * interrupt is handled.
4495 * e1000_test_msi_interrupt - Returns 0 for successful test
4496 * @adapter: board private struct
4498 * code flow taken from tg3.c
4500 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
4502 struct net_device
*netdev
= adapter
->netdev
;
4503 struct e1000_hw
*hw
= &adapter
->hw
;
4506 /* poll_enable hasn't been called yet, so don't need disable */
4507 /* clear any pending events */
4510 /* free the real vector and request a test handler */
4511 e1000_free_irq(adapter
);
4512 e1000e_reset_interrupt_capability(adapter
);
4514 /* Assume that the test fails, if it succeeds then the test
4515 * MSI irq handler will unset this flag
4517 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
4519 err
= pci_enable_msi(adapter
->pdev
);
4521 goto msi_test_failed
;
4523 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
4524 netdev
->name
, netdev
);
4526 pci_disable_msi(adapter
->pdev
);
4527 goto msi_test_failed
;
4530 /* Force memory writes to complete before enabling and firing an
4535 e1000_irq_enable(adapter
);
4537 /* fire an unusual interrupt on the test handler */
4538 ew32(ICS
, E1000_ICS_RXSEQ
);
4542 e1000_irq_disable(adapter
);
4544 rmb(); /* read flags after interrupt has been fired */
4546 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
4547 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
4548 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4550 e_dbg("MSI interrupt test succeeded!\n");
4553 free_irq(adapter
->pdev
->irq
, netdev
);
4554 pci_disable_msi(adapter
->pdev
);
4557 e1000e_set_interrupt_capability(adapter
);
4558 return e1000_request_irq(adapter
);
4562 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4563 * @adapter: board private struct
4565 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4567 static int e1000_test_msi(struct e1000_adapter
*adapter
)
4572 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
4575 /* disable SERR in case the MSI write causes a master abort */
4576 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4577 if (pci_cmd
& PCI_COMMAND_SERR
)
4578 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
4579 pci_cmd
& ~PCI_COMMAND_SERR
);
4581 err
= e1000_test_msi_interrupt(adapter
);
4583 /* re-enable SERR */
4584 if (pci_cmd
& PCI_COMMAND_SERR
) {
4585 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4586 pci_cmd
|= PCI_COMMAND_SERR
;
4587 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
4594 * e1000e_open - Called when a network interface is made active
4595 * @netdev: network interface device structure
4597 * Returns 0 on success, negative value on failure
4599 * The open entry point is called when a network interface is made
4600 * active by the system (IFF_UP). At this point all resources needed
4601 * for transmit and receive operations are allocated, the interrupt
4602 * handler is registered with the OS, the watchdog timer is started,
4603 * and the stack is notified that the interface is ready.
4605 int e1000e_open(struct net_device
*netdev
)
4607 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4608 struct e1000_hw
*hw
= &adapter
->hw
;
4609 struct pci_dev
*pdev
= adapter
->pdev
;
4612 /* disallow open during test */
4613 if (test_bit(__E1000_TESTING
, &adapter
->state
))
4616 pm_runtime_get_sync(&pdev
->dev
);
4618 netif_carrier_off(netdev
);
4620 /* allocate transmit descriptors */
4621 err
= e1000e_setup_tx_resources(adapter
->tx_ring
);
4625 /* allocate receive descriptors */
4626 err
= e1000e_setup_rx_resources(adapter
->rx_ring
);
4630 /* If AMT is enabled, let the firmware know that the network
4631 * interface is now open and reset the part to a known state.
4633 if (adapter
->flags
& FLAG_HAS_AMT
) {
4634 e1000e_get_hw_control(adapter
);
4635 e1000e_reset(adapter
);
4638 e1000e_power_up_phy(adapter
);
4640 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4641 if ((adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
4642 e1000_update_mng_vlan(adapter
);
4644 /* DMA latency requirement to workaround jumbo issue */
4645 pm_qos_add_request(&adapter
->pm_qos_req
, PM_QOS_CPU_DMA_LATENCY
,
4646 PM_QOS_DEFAULT_VALUE
);
4648 /* before we allocate an interrupt, we must be ready to handle it.
4649 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4650 * as soon as we call pci_request_irq, so we have to setup our
4651 * clean_rx handler before we do so.
4653 e1000_configure(adapter
);
4655 err
= e1000_request_irq(adapter
);
4659 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4660 * ignore e1000e MSI messages, which means we need to test our MSI
4663 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
4664 err
= e1000_test_msi(adapter
);
4666 e_err("Interrupt allocation failed\n");
4671 /* From here on the code is the same as e1000e_up() */
4672 clear_bit(__E1000_DOWN
, &adapter
->state
);
4674 napi_enable(&adapter
->napi
);
4676 e1000_irq_enable(adapter
);
4678 adapter
->tx_hang_recheck
= false;
4679 netif_start_queue(netdev
);
4681 hw
->mac
.get_link_status
= true;
4682 pm_runtime_put(&pdev
->dev
);
4684 e1000e_trigger_lsc(adapter
);
4689 pm_qos_remove_request(&adapter
->pm_qos_req
);
4690 e1000e_release_hw_control(adapter
);
4691 e1000_power_down_phy(adapter
);
4692 e1000e_free_rx_resources(adapter
->rx_ring
);
4694 e1000e_free_tx_resources(adapter
->tx_ring
);
4696 e1000e_reset(adapter
);
4697 pm_runtime_put_sync(&pdev
->dev
);
4703 * e1000e_close - Disables a network interface
4704 * @netdev: network interface device structure
4706 * Returns 0, this is not allowed to fail
4708 * The close entry point is called when an interface is de-activated
4709 * by the OS. The hardware is still under the drivers control, but
4710 * needs to be disabled. A global MAC reset is issued to stop the
4711 * hardware, and all transmit and receive resources are freed.
4713 int e1000e_close(struct net_device
*netdev
)
4715 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4716 struct pci_dev
*pdev
= adapter
->pdev
;
4717 int count
= E1000_CHECK_RESET_COUNT
;
4719 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
4720 usleep_range(10000, 20000);
4722 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4724 pm_runtime_get_sync(&pdev
->dev
);
4726 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
4727 e1000e_down(adapter
, true);
4728 e1000_free_irq(adapter
);
4730 /* Link status message must follow this format */
4731 pr_info("%s NIC Link is Down\n", adapter
->netdev
->name
);
4734 napi_disable(&adapter
->napi
);
4736 e1000e_free_tx_resources(adapter
->tx_ring
);
4737 e1000e_free_rx_resources(adapter
->rx_ring
);
4739 /* kill manageability vlan ID if supported, but not if a vlan with
4740 * the same ID is registered on the host OS (let 8021q kill it)
4742 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
4743 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
4744 adapter
->mng_vlan_id
);
4746 /* If AMT is enabled, let the firmware know that the network
4747 * interface is now closed
4749 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
4750 !test_bit(__E1000_TESTING
, &adapter
->state
))
4751 e1000e_release_hw_control(adapter
);
4753 pm_qos_remove_request(&adapter
->pm_qos_req
);
4755 pm_runtime_put_sync(&pdev
->dev
);
4761 * e1000_set_mac - Change the Ethernet Address of the NIC
4762 * @netdev: network interface device structure
4763 * @p: pointer to an address structure
4765 * Returns 0 on success, negative on failure
4767 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
4769 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4770 struct e1000_hw
*hw
= &adapter
->hw
;
4771 struct sockaddr
*addr
= p
;
4773 if (!is_valid_ether_addr(addr
->sa_data
))
4774 return -EADDRNOTAVAIL
;
4776 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
4777 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
4779 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
4781 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
4782 /* activate the work around */
4783 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
4785 /* Hold a copy of the LAA in RAR[14] This is done so that
4786 * between the time RAR[0] gets clobbered and the time it
4787 * gets fixed (in e1000_watchdog), the actual LAA is in one
4788 * of the RARs and no incoming packets directed to this port
4789 * are dropped. Eventually the LAA will be in RAR[0] and
4792 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
,
4793 adapter
->hw
.mac
.rar_entry_count
- 1);
4800 * e1000e_update_phy_task - work thread to update phy
4801 * @work: pointer to our work struct
4803 * this worker thread exists because we must acquire a
4804 * semaphore to read the phy, which we could msleep while
4805 * waiting for it, and we can't msleep in a timer.
4807 static void e1000e_update_phy_task(struct work_struct
*work
)
4809 struct e1000_adapter
*adapter
= container_of(work
,
4810 struct e1000_adapter
,
4812 struct e1000_hw
*hw
= &adapter
->hw
;
4814 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4817 e1000_get_phy_info(hw
);
4819 /* Enable EEE on 82579 after link up */
4820 if (hw
->phy
.type
>= e1000_phy_82579
)
4821 e1000_set_eee_pchlan(hw
);
4825 * e1000_update_phy_info - timre call-back to update PHY info
4826 * @data: pointer to adapter cast into an unsigned long
4828 * Need to wait a few seconds after link up to get diagnostic information from
4831 static void e1000_update_phy_info(struct timer_list
*t
)
4833 struct e1000_adapter
*adapter
= from_timer(adapter
, t
, phy_info_timer
);
4835 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4838 schedule_work(&adapter
->update_phy_task
);
4842 * e1000e_update_phy_stats - Update the PHY statistics counters
4843 * @adapter: board private structure
4845 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4847 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
4849 struct e1000_hw
*hw
= &adapter
->hw
;
4853 ret_val
= hw
->phy
.ops
.acquire(hw
);
4857 /* A page set is expensive so check if already on desired page.
4858 * If not, set to the page with the PHY status registers.
4861 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4865 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
4866 ret_val
= hw
->phy
.ops
.set_page(hw
,
4867 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
4872 /* Single Collision Count */
4873 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
4874 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
4876 adapter
->stats
.scc
+= phy_data
;
4878 /* Excessive Collision Count */
4879 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
4880 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
4882 adapter
->stats
.ecol
+= phy_data
;
4884 /* Multiple Collision Count */
4885 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4886 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4888 adapter
->stats
.mcc
+= phy_data
;
4890 /* Late Collision Count */
4891 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4892 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4894 adapter
->stats
.latecol
+= phy_data
;
4896 /* Collision Count - also used for adaptive IFS */
4897 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4898 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4900 hw
->mac
.collision_delta
= phy_data
;
4903 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4904 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4906 adapter
->stats
.dc
+= phy_data
;
4908 /* Transmit with no CRS */
4909 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4910 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4912 adapter
->stats
.tncrs
+= phy_data
;
4915 hw
->phy
.ops
.release(hw
);
4919 * e1000e_update_stats - Update the board statistics counters
4920 * @adapter: board private structure
4922 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
4924 struct net_device
*netdev
= adapter
->netdev
;
4925 struct e1000_hw
*hw
= &adapter
->hw
;
4926 struct pci_dev
*pdev
= adapter
->pdev
;
4928 /* Prevent stats update while adapter is being reset, or if the pci
4929 * connection is down.
4931 if (adapter
->link_speed
== 0)
4933 if (pci_channel_offline(pdev
))
4936 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
4937 adapter
->stats
.gprc
+= er32(GPRC
);
4938 adapter
->stats
.gorc
+= er32(GORCL
);
4939 er32(GORCH
); /* Clear gorc */
4940 adapter
->stats
.bprc
+= er32(BPRC
);
4941 adapter
->stats
.mprc
+= er32(MPRC
);
4942 adapter
->stats
.roc
+= er32(ROC
);
4944 adapter
->stats
.mpc
+= er32(MPC
);
4946 /* Half-duplex statistics */
4947 if (adapter
->link_duplex
== HALF_DUPLEX
) {
4948 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
4949 e1000e_update_phy_stats(adapter
);
4951 adapter
->stats
.scc
+= er32(SCC
);
4952 adapter
->stats
.ecol
+= er32(ECOL
);
4953 adapter
->stats
.mcc
+= er32(MCC
);
4954 adapter
->stats
.latecol
+= er32(LATECOL
);
4955 adapter
->stats
.dc
+= er32(DC
);
4957 hw
->mac
.collision_delta
= er32(COLC
);
4959 if ((hw
->mac
.type
!= e1000_82574
) &&
4960 (hw
->mac
.type
!= e1000_82583
))
4961 adapter
->stats
.tncrs
+= er32(TNCRS
);
4963 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
4966 adapter
->stats
.xonrxc
+= er32(XONRXC
);
4967 adapter
->stats
.xontxc
+= er32(XONTXC
);
4968 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
4969 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
4970 adapter
->stats
.gptc
+= er32(GPTC
);
4971 adapter
->stats
.gotc
+= er32(GOTCL
);
4972 er32(GOTCH
); /* Clear gotc */
4973 adapter
->stats
.rnbc
+= er32(RNBC
);
4974 adapter
->stats
.ruc
+= er32(RUC
);
4976 adapter
->stats
.mptc
+= er32(MPTC
);
4977 adapter
->stats
.bptc
+= er32(BPTC
);
4979 /* used for adaptive IFS */
4981 hw
->mac
.tx_packet_delta
= er32(TPT
);
4982 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4984 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4985 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4986 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4987 adapter
->stats
.tsctc
+= er32(TSCTC
);
4988 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
4990 /* Fill out the OS statistics structure */
4991 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
4992 netdev
->stats
.collisions
= adapter
->stats
.colc
;
4996 /* RLEC on some newer hardware can be incorrect so build
4997 * our own version based on RUC and ROC
4999 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
5000 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5001 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
5002 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
5004 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
5005 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
5006 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
5009 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
5010 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
5011 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
5012 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
5014 /* Tx Dropped needs to be maintained elsewhere */
5016 /* Management Stats */
5017 adapter
->stats
.mgptc
+= er32(MGTPTC
);
5018 adapter
->stats
.mgprc
+= er32(MGTPRC
);
5019 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
5021 /* Correctable ECC Errors */
5022 if (hw
->mac
.type
>= e1000_pch_lpt
) {
5023 u32 pbeccsts
= er32(PBECCSTS
);
5025 adapter
->corr_errors
+=
5026 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
5027 adapter
->uncorr_errors
+=
5028 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
5029 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
5034 * e1000_phy_read_status - Update the PHY register status snapshot
5035 * @adapter: board private structure
5037 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
5039 struct e1000_hw
*hw
= &adapter
->hw
;
5040 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
5042 if (!pm_runtime_suspended((&adapter
->pdev
->dev
)->parent
) &&
5043 (er32(STATUS
) & E1000_STATUS_LU
) &&
5044 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
5047 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy
->bmcr
);
5048 ret_val
|= e1e_rphy(hw
, MII_BMSR
, &phy
->bmsr
);
5049 ret_val
|= e1e_rphy(hw
, MII_ADVERTISE
, &phy
->advertise
);
5050 ret_val
|= e1e_rphy(hw
, MII_LPA
, &phy
->lpa
);
5051 ret_val
|= e1e_rphy(hw
, MII_EXPANSION
, &phy
->expansion
);
5052 ret_val
|= e1e_rphy(hw
, MII_CTRL1000
, &phy
->ctrl1000
);
5053 ret_val
|= e1e_rphy(hw
, MII_STAT1000
, &phy
->stat1000
);
5054 ret_val
|= e1e_rphy(hw
, MII_ESTATUS
, &phy
->estatus
);
5056 e_warn("Error reading PHY register\n");
5058 /* Do not read PHY registers if link is not up
5059 * Set values to typical power-on defaults
5061 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
5062 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
5063 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
5065 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
5066 ADVERTISE_ALL
| ADVERTISE_CSMA
);
5068 phy
->expansion
= EXPANSION_ENABLENPAGE
;
5069 phy
->ctrl1000
= ADVERTISE_1000FULL
;
5071 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
5075 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
5077 struct e1000_hw
*hw
= &adapter
->hw
;
5078 u32 ctrl
= er32(CTRL
);
5080 /* Link status message must follow this format for user tools */
5081 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5082 adapter
->netdev
->name
, adapter
->link_speed
,
5083 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half",
5084 (ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
) ? "Rx/Tx" :
5085 (ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
5086 (ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None");
5089 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
5091 struct e1000_hw
*hw
= &adapter
->hw
;
5092 bool link_active
= false;
5095 /* get_link_status is set on LSC (link status) interrupt or
5096 * Rx sequence error interrupt. get_link_status will stay
5097 * true until the check_for_link establishes link
5098 * for copper adapters ONLY
5100 switch (hw
->phy
.media_type
) {
5101 case e1000_media_type_copper
:
5102 if (hw
->mac
.get_link_status
) {
5103 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5104 link_active
= ret_val
> 0;
5109 case e1000_media_type_fiber
:
5110 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5111 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
5113 case e1000_media_type_internal_serdes
:
5114 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5115 link_active
= hw
->mac
.serdes_has_link
;
5118 case e1000_media_type_unknown
:
5122 if ((ret_val
== -E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
5123 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
5124 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5125 e_info("Gigabit has been disabled, downgrading speed\n");
5131 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
5133 /* make sure the receive unit is started */
5134 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
5135 (adapter
->flags
& FLAG_RESTART_NOW
)) {
5136 struct e1000_hw
*hw
= &adapter
->hw
;
5137 u32 rctl
= er32(RCTL
);
5139 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
5140 adapter
->flags
&= ~FLAG_RESTART_NOW
;
5144 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
5146 struct e1000_hw
*hw
= &adapter
->hw
;
5148 /* With 82574 controllers, PHY needs to be checked periodically
5149 * for hung state and reset, if two calls return true
5151 if (e1000_check_phy_82574(hw
))
5152 adapter
->phy_hang_count
++;
5154 adapter
->phy_hang_count
= 0;
5156 if (adapter
->phy_hang_count
> 1) {
5157 adapter
->phy_hang_count
= 0;
5158 e_dbg("PHY appears hung - resetting\n");
5159 schedule_work(&adapter
->reset_task
);
5164 * e1000_watchdog - Timer Call-back
5165 * @data: pointer to adapter cast into an unsigned long
5167 static void e1000_watchdog(struct timer_list
*t
)
5169 struct e1000_adapter
*adapter
= from_timer(adapter
, t
, watchdog_timer
);
5171 /* Do the rest outside of interrupt context */
5172 schedule_work(&adapter
->watchdog_task
);
5174 /* TODO: make this use queue_delayed_work() */
5177 static void e1000_watchdog_task(struct work_struct
*work
)
5179 struct e1000_adapter
*adapter
= container_of(work
,
5180 struct e1000_adapter
,
5182 struct net_device
*netdev
= adapter
->netdev
;
5183 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
5184 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
5185 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5186 struct e1000_hw
*hw
= &adapter
->hw
;
5189 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5192 link
= e1000e_has_link(adapter
);
5193 if ((netif_carrier_ok(netdev
)) && link
) {
5194 /* Cancel scheduled suspend requests. */
5195 pm_runtime_resume(netdev
->dev
.parent
);
5197 e1000e_enable_receives(adapter
);
5201 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
5202 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
5203 e1000_update_mng_vlan(adapter
);
5206 if (!netif_carrier_ok(netdev
)) {
5209 /* Cancel scheduled suspend requests. */
5210 pm_runtime_resume(netdev
->dev
.parent
);
5212 /* update snapshot of PHY registers on LSC */
5213 e1000_phy_read_status(adapter
);
5214 mac
->ops
.get_link_up_info(&adapter
->hw
,
5215 &adapter
->link_speed
,
5216 &adapter
->link_duplex
);
5217 e1000_print_link_info(adapter
);
5219 /* check if SmartSpeed worked */
5220 e1000e_check_downshift(hw
);
5221 if (phy
->speed_downgraded
)
5223 "Link Speed was downgraded by SmartSpeed\n");
5225 /* On supported PHYs, check for duplex mismatch only
5226 * if link has autonegotiated at 10/100 half
5228 if ((hw
->phy
.type
== e1000_phy_igp_3
||
5229 hw
->phy
.type
== e1000_phy_bm
) &&
5231 (adapter
->link_speed
== SPEED_10
||
5232 adapter
->link_speed
== SPEED_100
) &&
5233 (adapter
->link_duplex
== HALF_DUPLEX
)) {
5236 e1e_rphy(hw
, MII_EXPANSION
, &autoneg_exp
);
5238 if (!(autoneg_exp
& EXPANSION_NWAY
))
5239 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5242 /* adjust timeout factor according to speed/duplex */
5243 adapter
->tx_timeout_factor
= 1;
5244 switch (adapter
->link_speed
) {
5247 adapter
->tx_timeout_factor
= 16;
5251 adapter
->tx_timeout_factor
= 10;
5255 /* workaround: re-program speed mode bit after
5258 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
5262 tarc0
= er32(TARC(0));
5263 tarc0
&= ~SPEED_MODE_BIT
;
5264 ew32(TARC(0), tarc0
);
5267 /* disable TSO for pcie and 10/100 speeds, to avoid
5268 * some hardware issues
5270 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
5271 switch (adapter
->link_speed
) {
5274 e_info("10/100 speed: disabling TSO\n");
5275 netdev
->features
&= ~NETIF_F_TSO
;
5276 netdev
->features
&= ~NETIF_F_TSO6
;
5279 netdev
->features
|= NETIF_F_TSO
;
5280 netdev
->features
|= NETIF_F_TSO6
;
5288 /* enable transmits in the hardware, need to do this
5289 * after setting TARC(0)
5292 tctl
|= E1000_TCTL_EN
;
5295 /* Perform any post-link-up configuration before
5296 * reporting link up.
5298 if (phy
->ops
.cfg_on_link_up
)
5299 phy
->ops
.cfg_on_link_up(hw
);
5301 netif_carrier_on(netdev
);
5303 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5304 mod_timer(&adapter
->phy_info_timer
,
5305 round_jiffies(jiffies
+ 2 * HZ
));
5308 if (netif_carrier_ok(netdev
)) {
5309 adapter
->link_speed
= 0;
5310 adapter
->link_duplex
= 0;
5311 /* Link status message must follow this format */
5312 pr_info("%s NIC Link is Down\n", adapter
->netdev
->name
);
5313 netif_carrier_off(netdev
);
5314 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5315 mod_timer(&adapter
->phy_info_timer
,
5316 round_jiffies(jiffies
+ 2 * HZ
));
5318 /* 8000ES2LAN requires a Rx packet buffer work-around
5319 * on link down event; reset the controller to flush
5320 * the Rx packet buffer.
5322 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
5323 adapter
->flags
|= FLAG_RESTART_NOW
;
5325 pm_schedule_suspend(netdev
->dev
.parent
,
5331 spin_lock(&adapter
->stats64_lock
);
5332 e1000e_update_stats(adapter
);
5334 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
5335 adapter
->tpt_old
= adapter
->stats
.tpt
;
5336 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
5337 adapter
->colc_old
= adapter
->stats
.colc
;
5339 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
5340 adapter
->gorc_old
= adapter
->stats
.gorc
;
5341 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
5342 adapter
->gotc_old
= adapter
->stats
.gotc
;
5343 spin_unlock(&adapter
->stats64_lock
);
5345 /* If the link is lost the controller stops DMA, but
5346 * if there is queued Tx work it cannot be done. So
5347 * reset the controller to flush the Tx packet buffers.
5349 if (!netif_carrier_ok(netdev
) &&
5350 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
))
5351 adapter
->flags
|= FLAG_RESTART_NOW
;
5353 /* If reset is necessary, do it outside of interrupt context. */
5354 if (adapter
->flags
& FLAG_RESTART_NOW
) {
5355 schedule_work(&adapter
->reset_task
);
5356 /* return immediately since reset is imminent */
5360 e1000e_update_adaptive(&adapter
->hw
);
5362 /* Simple mode for Interrupt Throttle Rate (ITR) */
5363 if (adapter
->itr_setting
== 4) {
5364 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5365 * Total asymmetrical Tx or Rx gets ITR=8000;
5366 * everyone else is between 2000-8000.
5368 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
5369 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
5370 adapter
->gotc
- adapter
->gorc
:
5371 adapter
->gorc
- adapter
->gotc
) / 10000;
5372 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
5374 e1000e_write_itr(adapter
, itr
);
5377 /* Cause software interrupt to ensure Rx ring is cleaned */
5378 if (adapter
->msix_entries
)
5379 ew32(ICS
, adapter
->rx_ring
->ims_val
);
5381 ew32(ICS
, E1000_ICS_RXDMT0
);
5383 /* flush pending descriptors to memory before detecting Tx hang */
5384 e1000e_flush_descriptors(adapter
);
5386 /* Force detection of hung controller every watchdog period */
5387 adapter
->detect_tx_hung
= true;
5389 /* With 82571 controllers, LAA may be overwritten due to controller
5390 * reset from the other port. Set the appropriate LAA in RAR[0]
5392 if (e1000e_get_laa_state_82571(hw
))
5393 hw
->mac
.ops
.rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
5395 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
5396 e1000e_check_82574_phy_workaround(adapter
);
5398 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5399 if (adapter
->hwtstamp_config
.rx_filter
!= HWTSTAMP_FILTER_NONE
) {
5400 if ((adapter
->flags2
& FLAG2_CHECK_RX_HWTSTAMP
) &&
5401 (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
)) {
5403 adapter
->rx_hwtstamp_cleared
++;
5405 adapter
->flags2
|= FLAG2_CHECK_RX_HWTSTAMP
;
5409 /* Reset the timer */
5410 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5411 mod_timer(&adapter
->watchdog_timer
,
5412 round_jiffies(jiffies
+ 2 * HZ
));
5415 #define E1000_TX_FLAGS_CSUM 0x00000001
5416 #define E1000_TX_FLAGS_VLAN 0x00000002
5417 #define E1000_TX_FLAGS_TSO 0x00000004
5418 #define E1000_TX_FLAGS_IPV4 0x00000008
5419 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5420 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5421 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5422 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5424 static int e1000_tso(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5427 struct e1000_context_desc
*context_desc
;
5428 struct e1000_buffer
*buffer_info
;
5432 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
5435 if (!skb_is_gso(skb
))
5438 err
= skb_cow_head(skb
, 0);
5442 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5443 mss
= skb_shinfo(skb
)->gso_size
;
5444 if (protocol
== htons(ETH_P_IP
)) {
5445 struct iphdr
*iph
= ip_hdr(skb
);
5448 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
5450 cmd_length
= E1000_TXD_CMD_IP
;
5451 ipcse
= skb_transport_offset(skb
) - 1;
5452 } else if (skb_is_gso_v6(skb
)) {
5453 ipv6_hdr(skb
)->payload_len
= 0;
5454 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
5455 &ipv6_hdr(skb
)->daddr
,
5459 ipcss
= skb_network_offset(skb
);
5460 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
5461 tucss
= skb_transport_offset(skb
);
5462 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
5464 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
5465 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
5467 i
= tx_ring
->next_to_use
;
5468 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5469 buffer_info
= &tx_ring
->buffer_info
[i
];
5471 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
5472 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
5473 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
5474 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
5475 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
5476 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5477 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
5478 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
5479 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
5481 buffer_info
->time_stamp
= jiffies
;
5482 buffer_info
->next_to_watch
= i
;
5485 if (i
== tx_ring
->count
)
5487 tx_ring
->next_to_use
= i
;
5492 static bool e1000_tx_csum(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5495 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5496 struct e1000_context_desc
*context_desc
;
5497 struct e1000_buffer
*buffer_info
;
5500 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
5502 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
5506 case cpu_to_be16(ETH_P_IP
):
5507 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
5508 cmd_len
|= E1000_TXD_CMD_TCP
;
5510 case cpu_to_be16(ETH_P_IPV6
):
5511 /* XXX not handling all IPV6 headers */
5512 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
5513 cmd_len
|= E1000_TXD_CMD_TCP
;
5516 if (unlikely(net_ratelimit()))
5517 e_warn("checksum_partial proto=%x!\n",
5518 be16_to_cpu(protocol
));
5522 css
= skb_checksum_start_offset(skb
);
5524 i
= tx_ring
->next_to_use
;
5525 buffer_info
= &tx_ring
->buffer_info
[i
];
5526 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5528 context_desc
->lower_setup
.ip_config
= 0;
5529 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
5530 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum_offset
;
5531 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5532 context_desc
->tcp_seg_setup
.data
= 0;
5533 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
5535 buffer_info
->time_stamp
= jiffies
;
5536 buffer_info
->next_to_watch
= i
;
5539 if (i
== tx_ring
->count
)
5541 tx_ring
->next_to_use
= i
;
5546 static int e1000_tx_map(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5547 unsigned int first
, unsigned int max_per_txd
,
5548 unsigned int nr_frags
)
5550 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5551 struct pci_dev
*pdev
= adapter
->pdev
;
5552 struct e1000_buffer
*buffer_info
;
5553 unsigned int len
= skb_headlen(skb
);
5554 unsigned int offset
= 0, size
, count
= 0, i
;
5555 unsigned int f
, bytecount
, segs
;
5557 i
= tx_ring
->next_to_use
;
5560 buffer_info
= &tx_ring
->buffer_info
[i
];
5561 size
= min(len
, max_per_txd
);
5563 buffer_info
->length
= size
;
5564 buffer_info
->time_stamp
= jiffies
;
5565 buffer_info
->next_to_watch
= i
;
5566 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
5568 size
, DMA_TO_DEVICE
);
5569 buffer_info
->mapped_as_page
= false;
5570 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5579 if (i
== tx_ring
->count
)
5584 for (f
= 0; f
< nr_frags
; f
++) {
5585 const struct skb_frag_struct
*frag
;
5587 frag
= &skb_shinfo(skb
)->frags
[f
];
5588 len
= skb_frag_size(frag
);
5593 if (i
== tx_ring
->count
)
5596 buffer_info
= &tx_ring
->buffer_info
[i
];
5597 size
= min(len
, max_per_txd
);
5599 buffer_info
->length
= size
;
5600 buffer_info
->time_stamp
= jiffies
;
5601 buffer_info
->next_to_watch
= i
;
5602 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
5605 buffer_info
->mapped_as_page
= true;
5606 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5615 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
5616 /* multiply data chunks by size of headers */
5617 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
5619 tx_ring
->buffer_info
[i
].skb
= skb
;
5620 tx_ring
->buffer_info
[i
].segs
= segs
;
5621 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
5622 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
5627 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
5628 buffer_info
->dma
= 0;
5634 i
+= tx_ring
->count
;
5636 buffer_info
= &tx_ring
->buffer_info
[i
];
5637 e1000_put_txbuf(tx_ring
, buffer_info
, true);
5643 static void e1000_tx_queue(struct e1000_ring
*tx_ring
, int tx_flags
, int count
)
5645 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5646 struct e1000_tx_desc
*tx_desc
= NULL
;
5647 struct e1000_buffer
*buffer_info
;
5648 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
5651 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
5652 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
5654 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5656 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
5657 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
5660 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
5661 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5662 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5665 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
5666 txd_lower
|= E1000_TXD_CMD_VLE
;
5667 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
5670 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5671 txd_lower
&= ~(E1000_TXD_CMD_IFCS
);
5673 if (unlikely(tx_flags
& E1000_TX_FLAGS_HWTSTAMP
)) {
5674 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5675 txd_upper
|= E1000_TXD_EXTCMD_TSTAMP
;
5678 i
= tx_ring
->next_to_use
;
5681 buffer_info
= &tx_ring
->buffer_info
[i
];
5682 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
5683 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
5684 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
|
5685 buffer_info
->length
);
5686 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
5689 if (i
== tx_ring
->count
)
5691 } while (--count
> 0);
5693 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
5695 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5696 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5697 tx_desc
->lower
.data
&= ~(cpu_to_le32(E1000_TXD_CMD_IFCS
));
5699 /* Force memory writes to complete before letting h/w
5700 * know there are new descriptors to fetch. (Only
5701 * applicable for weak-ordered memory model archs,
5706 tx_ring
->next_to_use
= i
;
5709 #define MINIMUM_DHCP_PACKET_SIZE 282
5710 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
5711 struct sk_buff
*skb
)
5713 struct e1000_hw
*hw
= &adapter
->hw
;
5716 if (skb_vlan_tag_present(skb
) &&
5717 !((skb_vlan_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
5718 (adapter
->hw
.mng_cookie
.status
&
5719 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
5722 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
5725 if (((struct ethhdr
*)skb
->data
)->h_proto
!= htons(ETH_P_IP
))
5729 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+ 14);
5732 if (ip
->protocol
!= IPPROTO_UDP
)
5735 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
5736 if (ntohs(udp
->dest
) != 67)
5739 offset
= (u8
*)udp
+ 8 - skb
->data
;
5740 length
= skb
->len
- offset
;
5741 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
5747 static int __e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5749 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5751 netif_stop_queue(adapter
->netdev
);
5752 /* Herbert's original patch had:
5753 * smp_mb__after_netif_stop_queue();
5754 * but since that doesn't exist yet, just open code it.
5758 /* We need to check again in a case another CPU has just
5759 * made room available.
5761 if (e1000_desc_unused(tx_ring
) < size
)
5765 netif_start_queue(adapter
->netdev
);
5766 ++adapter
->restart_queue
;
5770 static int e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5772 BUG_ON(size
> tx_ring
->count
);
5774 if (e1000_desc_unused(tx_ring
) >= size
)
5776 return __e1000_maybe_stop_tx(tx_ring
, size
);
5779 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
5780 struct net_device
*netdev
)
5782 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5783 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5785 unsigned int tx_flags
= 0;
5786 unsigned int len
= skb_headlen(skb
);
5787 unsigned int nr_frags
;
5792 __be16 protocol
= vlan_get_protocol(skb
);
5794 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
5795 dev_kfree_skb_any(skb
);
5796 return NETDEV_TX_OK
;
5799 if (skb
->len
<= 0) {
5800 dev_kfree_skb_any(skb
);
5801 return NETDEV_TX_OK
;
5804 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5805 * pad skb in order to meet this minimum size requirement
5807 if (skb_put_padto(skb
, 17))
5808 return NETDEV_TX_OK
;
5810 mss
= skb_shinfo(skb
)->gso_size
;
5814 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5815 * points to just header, pull a few bytes of payload from
5816 * frags into skb->data
5818 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5819 /* we do this workaround for ES2LAN, but it is un-necessary,
5820 * avoiding it could save a lot of cycles
5822 if (skb
->data_len
&& (hdr_len
== len
)) {
5823 unsigned int pull_size
;
5825 pull_size
= min_t(unsigned int, 4, skb
->data_len
);
5826 if (!__pskb_pull_tail(skb
, pull_size
)) {
5827 e_err("__pskb_pull_tail failed.\n");
5828 dev_kfree_skb_any(skb
);
5829 return NETDEV_TX_OK
;
5831 len
= skb_headlen(skb
);
5835 /* reserve a descriptor for the offload context */
5836 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
5840 count
+= DIV_ROUND_UP(len
, adapter
->tx_fifo_limit
);
5842 nr_frags
= skb_shinfo(skb
)->nr_frags
;
5843 for (f
= 0; f
< nr_frags
; f
++)
5844 count
+= DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
5845 adapter
->tx_fifo_limit
);
5847 if (adapter
->hw
.mac
.tx_pkt_filtering
)
5848 e1000_transfer_dhcp_info(adapter
, skb
);
5850 /* need: count + 2 desc gap to keep tail from touching
5851 * head, otherwise try next time
5853 if (e1000_maybe_stop_tx(tx_ring
, count
+ 2))
5854 return NETDEV_TX_BUSY
;
5856 if (skb_vlan_tag_present(skb
)) {
5857 tx_flags
|= E1000_TX_FLAGS_VLAN
;
5858 tx_flags
|= (skb_vlan_tag_get(skb
) <<
5859 E1000_TX_FLAGS_VLAN_SHIFT
);
5862 first
= tx_ring
->next_to_use
;
5864 tso
= e1000_tso(tx_ring
, skb
, protocol
);
5866 dev_kfree_skb_any(skb
);
5867 return NETDEV_TX_OK
;
5871 tx_flags
|= E1000_TX_FLAGS_TSO
;
5872 else if (e1000_tx_csum(tx_ring
, skb
, protocol
))
5873 tx_flags
|= E1000_TX_FLAGS_CSUM
;
5875 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5876 * 82571 hardware supports TSO capabilities for IPv6 as well...
5877 * no longer assume, we must.
5879 if (protocol
== htons(ETH_P_IP
))
5880 tx_flags
|= E1000_TX_FLAGS_IPV4
;
5882 if (unlikely(skb
->no_fcs
))
5883 tx_flags
|= E1000_TX_FLAGS_NO_FCS
;
5885 /* if count is 0 then mapping error has occurred */
5886 count
= e1000_tx_map(tx_ring
, skb
, first
, adapter
->tx_fifo_limit
,
5889 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
5890 (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
)) {
5891 if (!adapter
->tx_hwtstamp_skb
) {
5892 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
5893 tx_flags
|= E1000_TX_FLAGS_HWTSTAMP
;
5894 adapter
->tx_hwtstamp_skb
= skb_get(skb
);
5895 adapter
->tx_hwtstamp_start
= jiffies
;
5896 schedule_work(&adapter
->tx_hwtstamp_work
);
5898 adapter
->tx_hwtstamp_skipped
++;
5902 skb_tx_timestamp(skb
);
5904 netdev_sent_queue(netdev
, skb
->len
);
5905 e1000_tx_queue(tx_ring
, tx_flags
, count
);
5906 /* Make sure there is space in the ring for the next send. */
5907 e1000_maybe_stop_tx(tx_ring
,
5909 DIV_ROUND_UP(PAGE_SIZE
,
5910 adapter
->tx_fifo_limit
) + 2));
5912 if (!skb
->xmit_more
||
5913 netif_xmit_stopped(netdev_get_tx_queue(netdev
, 0))) {
5914 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
5915 e1000e_update_tdt_wa(tx_ring
,
5916 tx_ring
->next_to_use
);
5918 writel(tx_ring
->next_to_use
, tx_ring
->tail
);
5920 /* we need this if more than one processor can write
5921 * to our tail at a time, it synchronizes IO on
5927 dev_kfree_skb_any(skb
);
5928 tx_ring
->buffer_info
[first
].time_stamp
= 0;
5929 tx_ring
->next_to_use
= first
;
5932 return NETDEV_TX_OK
;
5936 * e1000_tx_timeout - Respond to a Tx Hang
5937 * @netdev: network interface device structure
5939 static void e1000_tx_timeout(struct net_device
*netdev
)
5941 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5943 /* Do the reset outside of interrupt context */
5944 adapter
->tx_timeout_count
++;
5945 schedule_work(&adapter
->reset_task
);
5948 static void e1000_reset_task(struct work_struct
*work
)
5950 struct e1000_adapter
*adapter
;
5951 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
5953 /* don't run the task if already down */
5954 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5957 if (!(adapter
->flags
& FLAG_RESTART_NOW
)) {
5958 e1000e_dump(adapter
);
5959 e_err("Reset adapter unexpectedly\n");
5961 e1000e_reinit_locked(adapter
);
5965 * e1000_get_stats64 - Get System Network Statistics
5966 * @netdev: network interface device structure
5967 * @stats: rtnl_link_stats64 pointer
5969 * Returns the address of the device statistics structure.
5971 void e1000e_get_stats64(struct net_device
*netdev
,
5972 struct rtnl_link_stats64
*stats
)
5974 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5976 spin_lock(&adapter
->stats64_lock
);
5977 e1000e_update_stats(adapter
);
5978 /* Fill out the OS statistics structure */
5979 stats
->rx_bytes
= adapter
->stats
.gorc
;
5980 stats
->rx_packets
= adapter
->stats
.gprc
;
5981 stats
->tx_bytes
= adapter
->stats
.gotc
;
5982 stats
->tx_packets
= adapter
->stats
.gptc
;
5983 stats
->multicast
= adapter
->stats
.mprc
;
5984 stats
->collisions
= adapter
->stats
.colc
;
5988 /* RLEC on some newer hardware can be incorrect so build
5989 * our own version based on RUC and ROC
5991 stats
->rx_errors
= adapter
->stats
.rxerrc
+
5992 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5993 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
5994 stats
->rx_length_errors
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
5995 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
5996 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
5997 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
6000 stats
->tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
6001 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
6002 stats
->tx_window_errors
= adapter
->stats
.latecol
;
6003 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
6005 /* Tx Dropped needs to be maintained elsewhere */
6007 spin_unlock(&adapter
->stats64_lock
);
6011 * e1000_change_mtu - Change the Maximum Transfer Unit
6012 * @netdev: network interface device structure
6013 * @new_mtu: new value for maximum frame size
6015 * Returns 0 on success, negative on failure
6017 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
6019 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6020 int max_frame
= new_mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
6022 /* Jumbo frame support */
6023 if ((new_mtu
> ETH_DATA_LEN
) &&
6024 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
6025 e_err("Jumbo Frames not supported.\n");
6029 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6030 if ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
6031 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
6032 (new_mtu
> ETH_DATA_LEN
)) {
6033 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6037 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
6038 usleep_range(1000, 2000);
6039 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6040 adapter
->max_frame_size
= max_frame
;
6041 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
6042 netdev
->mtu
= new_mtu
;
6044 pm_runtime_get_sync(netdev
->dev
.parent
);
6046 if (netif_running(netdev
))
6047 e1000e_down(adapter
, true);
6049 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6050 * means we reserve 2 more, this pushes us to allocate from the next
6052 * i.e. RXBUFFER_2048 --> size-4096 slab
6053 * However with the new *_jumbo_rx* routines, jumbo receives will use
6057 if (max_frame
<= 2048)
6058 adapter
->rx_buffer_len
= 2048;
6060 adapter
->rx_buffer_len
= 4096;
6062 /* adjust allocation if LPE protects us, and we aren't using SBP */
6063 if (max_frame
<= (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
))
6064 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
6066 if (netif_running(netdev
))
6069 e1000e_reset(adapter
);
6071 pm_runtime_put_sync(netdev
->dev
.parent
);
6073 clear_bit(__E1000_RESETTING
, &adapter
->state
);
6078 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
6081 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6082 struct mii_ioctl_data
*data
= if_mii(ifr
);
6084 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
6089 data
->phy_id
= adapter
->hw
.phy
.addr
;
6092 e1000_phy_read_status(adapter
);
6094 switch (data
->reg_num
& 0x1F) {
6096 data
->val_out
= adapter
->phy_regs
.bmcr
;
6099 data
->val_out
= adapter
->phy_regs
.bmsr
;
6102 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
6105 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
6108 data
->val_out
= adapter
->phy_regs
.advertise
;
6111 data
->val_out
= adapter
->phy_regs
.lpa
;
6114 data
->val_out
= adapter
->phy_regs
.expansion
;
6117 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
6120 data
->val_out
= adapter
->phy_regs
.stat1000
;
6123 data
->val_out
= adapter
->phy_regs
.estatus
;
6137 * e1000e_hwtstamp_ioctl - control hardware time stamping
6138 * @netdev: network interface device structure
6139 * @ifreq: interface request
6141 * Outgoing time stamping can be enabled and disabled. Play nice and
6142 * disable it when requested, although it shouldn't cause any overhead
6143 * when no packet needs it. At most one packet in the queue may be
6144 * marked for time stamping, otherwise it would be impossible to tell
6145 * for sure to which packet the hardware time stamp belongs.
6147 * Incoming time stamping has to be configured via the hardware filters.
6148 * Not all combinations are supported, in particular event type has to be
6149 * specified. Matching the kind of event packet is not supported, with the
6150 * exception of "all V2 events regardless of level 2 or 4".
6152 static int e1000e_hwtstamp_set(struct net_device
*netdev
, struct ifreq
*ifr
)
6154 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6155 struct hwtstamp_config config
;
6158 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
6161 ret_val
= e1000e_config_hwtstamp(adapter
, &config
);
6165 switch (config
.rx_filter
) {
6166 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
6167 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
6168 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
6169 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
6170 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
6171 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
6172 /* With V2 type filters which specify a Sync or Delay Request,
6173 * Path Delay Request/Response messages are also time stamped
6174 * by hardware so notify the caller the requested packets plus
6175 * some others are time stamped.
6177 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
6183 return copy_to_user(ifr
->ifr_data
, &config
,
6184 sizeof(config
)) ? -EFAULT
: 0;
6187 static int e1000e_hwtstamp_get(struct net_device
*netdev
, struct ifreq
*ifr
)
6189 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6191 return copy_to_user(ifr
->ifr_data
, &adapter
->hwtstamp_config
,
6192 sizeof(adapter
->hwtstamp_config
)) ? -EFAULT
: 0;
6195 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
6201 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
6203 return e1000e_hwtstamp_set(netdev
, ifr
);
6205 return e1000e_hwtstamp_get(netdev
, ifr
);
6211 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
6213 struct e1000_hw
*hw
= &adapter
->hw
;
6214 u32 i
, mac_reg
, wuc
;
6215 u16 phy_reg
, wuc_enable
;
6218 /* copy MAC RARs to PHY RARs */
6219 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
6221 retval
= hw
->phy
.ops
.acquire(hw
);
6223 e_err("Could not acquire PHY\n");
6227 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6228 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6232 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6233 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
6234 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
6235 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
6236 (u16
)(mac_reg
& 0xFFFF));
6237 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
6238 (u16
)((mac_reg
>> 16) & 0xFFFF));
6241 /* configure PHY Rx Control register */
6242 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
6243 mac_reg
= er32(RCTL
);
6244 if (mac_reg
& E1000_RCTL_UPE
)
6245 phy_reg
|= BM_RCTL_UPE
;
6246 if (mac_reg
& E1000_RCTL_MPE
)
6247 phy_reg
|= BM_RCTL_MPE
;
6248 phy_reg
&= ~(BM_RCTL_MO_MASK
);
6249 if (mac_reg
& E1000_RCTL_MO_3
)
6250 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
6251 << BM_RCTL_MO_SHIFT
);
6252 if (mac_reg
& E1000_RCTL_BAM
)
6253 phy_reg
|= BM_RCTL_BAM
;
6254 if (mac_reg
& E1000_RCTL_PMCF
)
6255 phy_reg
|= BM_RCTL_PMCF
;
6256 mac_reg
= er32(CTRL
);
6257 if (mac_reg
& E1000_CTRL_RFCE
)
6258 phy_reg
|= BM_RCTL_RFCE
;
6259 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
6261 wuc
= E1000_WUC_PME_EN
;
6262 if (wufc
& (E1000_WUFC_MAG
| E1000_WUFC_LNKC
))
6263 wuc
|= E1000_WUC_APME
;
6265 /* enable PHY wakeup in MAC register */
6267 ew32(WUC
, (E1000_WUC_PHY_WAKE
| E1000_WUC_APMPME
|
6268 E1000_WUC_PME_STATUS
| wuc
));
6270 /* configure and enable PHY wakeup in PHY registers */
6271 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
6272 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, wuc
);
6274 /* activate PHY wakeup */
6275 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
6276 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6278 e_err("Could not set PHY Host Wakeup bit\n");
6280 hw
->phy
.ops
.release(hw
);
6285 static void e1000e_flush_lpic(struct pci_dev
*pdev
)
6287 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6288 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6289 struct e1000_hw
*hw
= &adapter
->hw
;
6292 pm_runtime_get_sync(netdev
->dev
.parent
);
6294 ret_val
= hw
->phy
.ops
.acquire(hw
);
6298 pr_info("EEE TX LPI TIMER: %08X\n",
6299 er32(LPIC
) >> E1000_LPIC_LPIET_SHIFT
);
6301 hw
->phy
.ops
.release(hw
);
6304 pm_runtime_put_sync(netdev
->dev
.parent
);
6307 static int e1000e_pm_freeze(struct device
*dev
)
6309 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6310 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6312 netif_device_detach(netdev
);
6314 if (netif_running(netdev
)) {
6315 int count
= E1000_CHECK_RESET_COUNT
;
6317 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
6318 usleep_range(10000, 20000);
6320 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
6322 /* Quiesce the device without resetting the hardware */
6323 e1000e_down(adapter
, false);
6324 e1000_free_irq(adapter
);
6326 e1000e_reset_interrupt_capability(adapter
);
6328 /* Allow time for pending master requests to run */
6329 e1000e_disable_pcie_master(&adapter
->hw
);
6334 static int __e1000_shutdown(struct pci_dev
*pdev
, bool runtime
)
6336 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6337 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6338 struct e1000_hw
*hw
= &adapter
->hw
;
6339 u32 ctrl
, ctrl_ext
, rctl
, status
;
6340 /* Runtime suspend should only enable wakeup for link changes */
6341 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
6344 status
= er32(STATUS
);
6345 if (status
& E1000_STATUS_LU
)
6346 wufc
&= ~E1000_WUFC_LNKC
;
6349 e1000_setup_rctl(adapter
);
6350 e1000e_set_rx_mode(netdev
);
6352 /* turn on all-multi mode if wake on multicast is enabled */
6353 if (wufc
& E1000_WUFC_MC
) {
6355 rctl
|= E1000_RCTL_MPE
;
6360 ctrl
|= E1000_CTRL_ADVD3WUC
;
6361 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
6362 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
6365 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
6366 adapter
->hw
.phy
.media_type
==
6367 e1000_media_type_internal_serdes
) {
6368 /* keep the laser running in D3 */
6369 ctrl_ext
= er32(CTRL_EXT
);
6370 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
6371 ew32(CTRL_EXT
, ctrl_ext
);
6375 e1000e_power_up_phy(adapter
);
6377 if (adapter
->flags
& FLAG_IS_ICH
)
6378 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
6380 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6381 /* enable wakeup by the PHY */
6382 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
6386 /* enable wakeup by the MAC */
6388 ew32(WUC
, E1000_WUC_PME_EN
);
6394 e1000_power_down_phy(adapter
);
6397 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
) {
6398 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
6399 } else if (hw
->mac
.type
>= e1000_pch_lpt
) {
6400 if (!(wufc
& (E1000_WUFC_EX
| E1000_WUFC_MC
| E1000_WUFC_BC
)))
6401 /* ULP does not support wake from unicast, multicast
6404 retval
= e1000_enable_ulp_lpt_lp(hw
, !runtime
);
6410 /* Ensure that the appropriate bits are set in LPI_CTRL
6413 if ((hw
->phy
.type
>= e1000_phy_i217
) &&
6414 adapter
->eee_advert
&& hw
->dev_spec
.ich8lan
.eee_lp_ability
) {
6417 retval
= hw
->phy
.ops
.acquire(hw
);
6419 retval
= e1e_rphy_locked(hw
, I82579_LPI_CTRL
,
6422 if (adapter
->eee_advert
&
6423 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6424 I82579_EEE_100_SUPPORTED
)
6425 lpi_ctrl
|= I82579_LPI_CTRL_100_ENABLE
;
6426 if (adapter
->eee_advert
&
6427 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6428 I82579_EEE_1000_SUPPORTED
)
6429 lpi_ctrl
|= I82579_LPI_CTRL_1000_ENABLE
;
6431 retval
= e1e_wphy_locked(hw
, I82579_LPI_CTRL
,
6435 hw
->phy
.ops
.release(hw
);
6438 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6439 * would have already happened in close and is redundant.
6441 e1000e_release_hw_control(adapter
);
6443 pci_clear_master(pdev
);
6445 /* The pci-e switch on some quad port adapters will report a
6446 * correctable error when the MAC transitions from D0 to D3. To
6447 * prevent this we need to mask off the correctable errors on the
6448 * downstream port of the pci-e switch.
6450 * We don't have the associated upstream bridge while assigning
6451 * the PCI device into guest. For example, the KVM on power is
6454 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
6455 struct pci_dev
*us_dev
= pdev
->bus
->self
;
6461 pcie_capability_read_word(us_dev
, PCI_EXP_DEVCTL
, &devctl
);
6462 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
,
6463 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
6465 pci_save_state(pdev
);
6466 pci_prepare_to_sleep(pdev
);
6468 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
, devctl
);
6475 * __e1000e_disable_aspm - Disable ASPM states
6476 * @pdev: pointer to PCI device struct
6477 * @state: bit-mask of ASPM states to disable
6478 * @locked: indication if this context holds pci_bus_sem locked.
6480 * Some devices *must* have certain ASPM states disabled per hardware errata.
6482 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
, int locked
)
6484 struct pci_dev
*parent
= pdev
->bus
->self
;
6485 u16 aspm_dis_mask
= 0;
6486 u16 pdev_aspmc
, parent_aspmc
;
6489 case PCIE_LINK_STATE_L0S
:
6490 case PCIE_LINK_STATE_L0S
| PCIE_LINK_STATE_L1
:
6491 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L0S
;
6492 /* fall-through - can't have L1 without L0s */
6493 case PCIE_LINK_STATE_L1
:
6494 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L1
;
6500 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6501 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6504 pcie_capability_read_word(parent
, PCI_EXP_LNKCTL
,
6506 parent_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6509 /* Nothing to do if the ASPM states to be disabled already are */
6510 if (!(pdev_aspmc
& aspm_dis_mask
) &&
6511 (!parent
|| !(parent_aspmc
& aspm_dis_mask
)))
6514 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
6515 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L0S
) ?
6517 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L1
) ?
6520 #ifdef CONFIG_PCIEASPM
6522 pci_disable_link_state_locked(pdev
, state
);
6524 pci_disable_link_state(pdev
, state
);
6526 /* Double-check ASPM control. If not disabled by the above, the
6527 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6528 * not enabled); override by writing PCI config space directly.
6530 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6531 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6533 if (!(aspm_dis_mask
& pdev_aspmc
))
6537 /* Both device and parent should have the same ASPM setting.
6538 * Disable ASPM in downstream component first and then upstream.
6540 pcie_capability_clear_word(pdev
, PCI_EXP_LNKCTL
, aspm_dis_mask
);
6543 pcie_capability_clear_word(parent
, PCI_EXP_LNKCTL
,
6548 * e1000e_disable_aspm - Disable ASPM states.
6549 * @pdev: pointer to PCI device struct
6550 * @state: bit-mask of ASPM states to disable
6552 * This function acquires the pci_bus_sem!
6553 * Some devices *must* have certain ASPM states disabled per hardware errata.
6555 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6557 __e1000e_disable_aspm(pdev
, state
, 0);
6561 * e1000e_disable_aspm_locked Disable ASPM states.
6562 * @pdev: pointer to PCI device struct
6563 * @state: bit-mask of ASPM states to disable
6565 * This function must be called with pci_bus_sem acquired!
6566 * Some devices *must* have certain ASPM states disabled per hardware errata.
6568 static void e1000e_disable_aspm_locked(struct pci_dev
*pdev
, u16 state
)
6570 __e1000e_disable_aspm(pdev
, state
, 1);
6574 static int __e1000_resume(struct pci_dev
*pdev
)
6576 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6577 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6578 struct e1000_hw
*hw
= &adapter
->hw
;
6579 u16 aspm_disable_flag
= 0;
6581 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6582 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6583 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6584 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6585 if (aspm_disable_flag
)
6586 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6588 pci_set_master(pdev
);
6590 if (hw
->mac
.type
>= e1000_pch2lan
)
6591 e1000_resume_workarounds_pchlan(&adapter
->hw
);
6593 e1000e_power_up_phy(adapter
);
6595 /* report the system wakeup cause from S3/S4 */
6596 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6599 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
6601 e_info("PHY Wakeup cause - %s\n",
6602 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
6603 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
6604 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
6605 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
6606 phy_data
& E1000_WUS_LNKC
?
6607 "Link Status Change" : "other");
6609 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
6611 u32 wus
= er32(WUS
);
6614 e_info("MAC Wakeup cause - %s\n",
6615 wus
& E1000_WUS_EX
? "Unicast Packet" :
6616 wus
& E1000_WUS_MC
? "Multicast Packet" :
6617 wus
& E1000_WUS_BC
? "Broadcast Packet" :
6618 wus
& E1000_WUS_MAG
? "Magic Packet" :
6619 wus
& E1000_WUS_LNKC
? "Link Status Change" :
6625 e1000e_reset(adapter
);
6627 e1000_init_manageability_pt(adapter
);
6629 /* If the controller has AMT, do not set DRV_LOAD until the interface
6630 * is up. For all other cases, let the f/w know that the h/w is now
6631 * under the control of the driver.
6633 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6634 e1000e_get_hw_control(adapter
);
6639 #ifdef CONFIG_PM_SLEEP
6640 static int e1000e_pm_thaw(struct device
*dev
)
6642 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6643 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6645 e1000e_set_interrupt_capability(adapter
);
6646 if (netif_running(netdev
)) {
6647 u32 err
= e1000_request_irq(adapter
);
6655 netif_device_attach(netdev
);
6660 static int e1000e_pm_suspend(struct device
*dev
)
6662 struct pci_dev
*pdev
= to_pci_dev(dev
);
6665 e1000e_flush_lpic(pdev
);
6667 e1000e_pm_freeze(dev
);
6669 rc
= __e1000_shutdown(pdev
, false);
6671 e1000e_pm_thaw(dev
);
6676 static int e1000e_pm_resume(struct device
*dev
)
6678 struct pci_dev
*pdev
= to_pci_dev(dev
);
6681 rc
= __e1000_resume(pdev
);
6685 return e1000e_pm_thaw(dev
);
6687 #endif /* CONFIG_PM_SLEEP */
6689 static int e1000e_pm_runtime_idle(struct device
*dev
)
6691 struct pci_dev
*pdev
= to_pci_dev(dev
);
6692 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6693 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6696 eee_lp
= adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
;
6698 if (!e1000e_has_link(adapter
)) {
6699 adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
= eee_lp
;
6700 pm_schedule_suspend(dev
, 5 * MSEC_PER_SEC
);
6706 static int e1000e_pm_runtime_resume(struct device
*dev
)
6708 struct pci_dev
*pdev
= to_pci_dev(dev
);
6709 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6710 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6713 rc
= __e1000_resume(pdev
);
6717 if (netdev
->flags
& IFF_UP
)
6723 static int e1000e_pm_runtime_suspend(struct device
*dev
)
6725 struct pci_dev
*pdev
= to_pci_dev(dev
);
6726 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6727 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6729 if (netdev
->flags
& IFF_UP
) {
6730 int count
= E1000_CHECK_RESET_COUNT
;
6732 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
6733 usleep_range(10000, 20000);
6735 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
6737 /* Down the device without resetting the hardware */
6738 e1000e_down(adapter
, false);
6741 if (__e1000_shutdown(pdev
, true)) {
6742 e1000e_pm_runtime_resume(dev
);
6748 #endif /* CONFIG_PM */
6750 static void e1000_shutdown(struct pci_dev
*pdev
)
6752 e1000e_flush_lpic(pdev
);
6754 e1000e_pm_freeze(&pdev
->dev
);
6756 __e1000_shutdown(pdev
, false);
6759 #ifdef CONFIG_NET_POLL_CONTROLLER
6761 static irqreturn_t
e1000_intr_msix(int __always_unused irq
, void *data
)
6763 struct net_device
*netdev
= data
;
6764 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6766 if (adapter
->msix_entries
) {
6767 int vector
, msix_irq
;
6770 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6771 if (disable_hardirq(msix_irq
))
6772 e1000_intr_msix_rx(msix_irq
, netdev
);
6773 enable_irq(msix_irq
);
6776 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6777 if (disable_hardirq(msix_irq
))
6778 e1000_intr_msix_tx(msix_irq
, netdev
);
6779 enable_irq(msix_irq
);
6782 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6783 if (disable_hardirq(msix_irq
))
6784 e1000_msix_other(msix_irq
, netdev
);
6785 enable_irq(msix_irq
);
6793 * @netdev: network interface device structure
6795 * Polling 'interrupt' - used by things like netconsole to send skbs
6796 * without having to re-enable interrupts. It's not called while
6797 * the interrupt routine is executing.
6799 static void e1000_netpoll(struct net_device
*netdev
)
6801 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6803 switch (adapter
->int_mode
) {
6804 case E1000E_INT_MODE_MSIX
:
6805 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
6807 case E1000E_INT_MODE_MSI
:
6808 if (disable_hardirq(adapter
->pdev
->irq
))
6809 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
6810 enable_irq(adapter
->pdev
->irq
);
6812 default: /* E1000E_INT_MODE_LEGACY */
6813 if (disable_hardirq(adapter
->pdev
->irq
))
6814 e1000_intr(adapter
->pdev
->irq
, netdev
);
6815 enable_irq(adapter
->pdev
->irq
);
6822 * e1000_io_error_detected - called when PCI error is detected
6823 * @pdev: Pointer to PCI device
6824 * @state: The current pci connection state
6826 * This function is called after a PCI bus error affecting
6827 * this device has been detected.
6829 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
6830 pci_channel_state_t state
)
6832 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6833 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6835 netif_device_detach(netdev
);
6837 if (state
== pci_channel_io_perm_failure
)
6838 return PCI_ERS_RESULT_DISCONNECT
;
6840 if (netif_running(netdev
))
6841 e1000e_down(adapter
, true);
6842 pci_disable_device(pdev
);
6844 /* Request a slot slot reset. */
6845 return PCI_ERS_RESULT_NEED_RESET
;
6849 * e1000_io_slot_reset - called after the pci bus has been reset.
6850 * @pdev: Pointer to PCI device
6852 * Restart the card from scratch, as if from a cold-boot. Implementation
6853 * resembles the first-half of the e1000e_pm_resume routine.
6855 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
6857 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6858 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6859 struct e1000_hw
*hw
= &adapter
->hw
;
6860 u16 aspm_disable_flag
= 0;
6862 pci_ers_result_t result
;
6864 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6865 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6866 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6867 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6868 if (aspm_disable_flag
)
6869 e1000e_disable_aspm_locked(pdev
, aspm_disable_flag
);
6871 err
= pci_enable_device_mem(pdev
);
6874 "Cannot re-enable PCI device after reset.\n");
6875 result
= PCI_ERS_RESULT_DISCONNECT
;
6877 pdev
->state_saved
= true;
6878 pci_restore_state(pdev
);
6879 pci_set_master(pdev
);
6881 pci_enable_wake(pdev
, PCI_D3hot
, 0);
6882 pci_enable_wake(pdev
, PCI_D3cold
, 0);
6884 e1000e_reset(adapter
);
6886 result
= PCI_ERS_RESULT_RECOVERED
;
6889 pci_cleanup_aer_uncorrect_error_status(pdev
);
6895 * e1000_io_resume - called when traffic can start flowing again.
6896 * @pdev: Pointer to PCI device
6898 * This callback is called when the error recovery driver tells us that
6899 * its OK to resume normal operation. Implementation resembles the
6900 * second-half of the e1000e_pm_resume routine.
6902 static void e1000_io_resume(struct pci_dev
*pdev
)
6904 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6905 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6907 e1000_init_manageability_pt(adapter
);
6909 if (netif_running(netdev
))
6912 netif_device_attach(netdev
);
6914 /* If the controller has AMT, do not set DRV_LOAD until the interface
6915 * is up. For all other cases, let the f/w know that the h/w is now
6916 * under the control of the driver.
6918 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6919 e1000e_get_hw_control(adapter
);
6922 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
6924 struct e1000_hw
*hw
= &adapter
->hw
;
6925 struct net_device
*netdev
= adapter
->netdev
;
6927 u8 pba_str
[E1000_PBANUM_LENGTH
];
6929 /* print bus type/speed/width info */
6930 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6932 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
6936 e_info("Intel(R) PRO/%s Network Connection\n",
6937 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
6938 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
6939 E1000_PBANUM_LENGTH
);
6941 strlcpy((char *)pba_str
, "Unknown", sizeof(pba_str
));
6942 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6943 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
6946 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
6948 struct e1000_hw
*hw
= &adapter
->hw
;
6952 if (hw
->mac
.type
!= e1000_82573
)
6955 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
6957 if (!ret_val
&& (!(buf
& BIT(0)))) {
6958 /* Deep Smart Power Down (DSPD) */
6959 dev_warn(&adapter
->pdev
->dev
,
6960 "Warning: detected DSPD enabled in EEPROM\n");
6964 static netdev_features_t
e1000_fix_features(struct net_device
*netdev
,
6965 netdev_features_t features
)
6967 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6968 struct e1000_hw
*hw
= &adapter
->hw
;
6970 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6971 if ((hw
->mac
.type
>= e1000_pch2lan
) && (netdev
->mtu
> ETH_DATA_LEN
))
6972 features
&= ~NETIF_F_RXFCS
;
6974 /* Since there is no support for separate Rx/Tx vlan accel
6975 * enable/disable make sure Tx flag is always in same state as Rx.
6977 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
6978 features
|= NETIF_F_HW_VLAN_CTAG_TX
;
6980 features
&= ~NETIF_F_HW_VLAN_CTAG_TX
;
6985 static int e1000_set_features(struct net_device
*netdev
,
6986 netdev_features_t features
)
6988 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6989 netdev_features_t changed
= features
^ netdev
->features
;
6991 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
))
6992 adapter
->flags
|= FLAG_TSO_FORCE
;
6994 if (!(changed
& (NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_TX
|
6995 NETIF_F_RXCSUM
| NETIF_F_RXHASH
| NETIF_F_RXFCS
|
6999 if (changed
& NETIF_F_RXFCS
) {
7000 if (features
& NETIF_F_RXFCS
) {
7001 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
7003 /* We need to take it back to defaults, which might mean
7004 * stripping is still disabled at the adapter level.
7006 if (adapter
->flags2
& FLAG2_DFLT_CRC_STRIPPING
)
7007 adapter
->flags2
|= FLAG2_CRC_STRIPPING
;
7009 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
7013 netdev
->features
= features
;
7015 if (netif_running(netdev
))
7016 e1000e_reinit_locked(adapter
);
7018 e1000e_reset(adapter
);
7023 static const struct net_device_ops e1000e_netdev_ops
= {
7024 .ndo_open
= e1000e_open
,
7025 .ndo_stop
= e1000e_close
,
7026 .ndo_start_xmit
= e1000_xmit_frame
,
7027 .ndo_get_stats64
= e1000e_get_stats64
,
7028 .ndo_set_rx_mode
= e1000e_set_rx_mode
,
7029 .ndo_set_mac_address
= e1000_set_mac
,
7030 .ndo_change_mtu
= e1000_change_mtu
,
7031 .ndo_do_ioctl
= e1000_ioctl
,
7032 .ndo_tx_timeout
= e1000_tx_timeout
,
7033 .ndo_validate_addr
= eth_validate_addr
,
7035 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
7036 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
7037 #ifdef CONFIG_NET_POLL_CONTROLLER
7038 .ndo_poll_controller
= e1000_netpoll
,
7040 .ndo_set_features
= e1000_set_features
,
7041 .ndo_fix_features
= e1000_fix_features
,
7042 .ndo_features_check
= passthru_features_check
,
7046 * e1000_probe - Device Initialization Routine
7047 * @pdev: PCI device information struct
7048 * @ent: entry in e1000_pci_tbl
7050 * Returns 0 on success, negative on failure
7052 * e1000_probe initializes an adapter identified by a pci_dev structure.
7053 * The OS initialization, configuring of the adapter private structure,
7054 * and a hardware reset occur.
7056 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7058 struct net_device
*netdev
;
7059 struct e1000_adapter
*adapter
;
7060 struct e1000_hw
*hw
;
7061 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
7062 resource_size_t mmio_start
, mmio_len
;
7063 resource_size_t flash_start
, flash_len
;
7064 static int cards_found
;
7065 u16 aspm_disable_flag
= 0;
7066 int bars
, i
, err
, pci_using_dac
;
7067 u16 eeprom_data
= 0;
7068 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
7071 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
7072 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
7073 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
7074 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
7075 if (aspm_disable_flag
)
7076 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
7078 err
= pci_enable_device_mem(pdev
);
7083 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
7087 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
7090 "No usable DMA configuration, aborting\n");
7095 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
7096 err
= pci_request_selected_regions_exclusive(pdev
, bars
,
7097 e1000e_driver_name
);
7101 /* AER (Advanced Error Reporting) hooks */
7102 pci_enable_pcie_error_reporting(pdev
);
7104 pci_set_master(pdev
);
7105 /* PCI config space info */
7106 err
= pci_save_state(pdev
);
7108 goto err_alloc_etherdev
;
7111 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
7113 goto err_alloc_etherdev
;
7115 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
7117 netdev
->irq
= pdev
->irq
;
7119 pci_set_drvdata(pdev
, netdev
);
7120 adapter
= netdev_priv(netdev
);
7122 adapter
->netdev
= netdev
;
7123 adapter
->pdev
= pdev
;
7125 adapter
->pba
= ei
->pba
;
7126 adapter
->flags
= ei
->flags
;
7127 adapter
->flags2
= ei
->flags2
;
7128 adapter
->hw
.adapter
= adapter
;
7129 adapter
->hw
.mac
.type
= ei
->mac
;
7130 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
7131 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
7133 mmio_start
= pci_resource_start(pdev
, 0);
7134 mmio_len
= pci_resource_len(pdev
, 0);
7137 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
7138 if (!adapter
->hw
.hw_addr
)
7141 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
7142 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
) &&
7143 (hw
->mac
.type
< e1000_pch_spt
)) {
7144 flash_start
= pci_resource_start(pdev
, 1);
7145 flash_len
= pci_resource_len(pdev
, 1);
7146 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
7147 if (!adapter
->hw
.flash_address
)
7151 /* Set default EEE advertisement */
7152 if (adapter
->flags2
& FLAG2_HAS_EEE
)
7153 adapter
->eee_advert
= MDIO_EEE_100TX
| MDIO_EEE_1000T
;
7155 /* construct the net_device struct */
7156 netdev
->netdev_ops
= &e1000e_netdev_ops
;
7157 e1000e_set_ethtool_ops(netdev
);
7158 netdev
->watchdog_timeo
= 5 * HZ
;
7159 netif_napi_add(netdev
, &adapter
->napi
, e1000e_poll
, 64);
7160 strlcpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
7162 netdev
->mem_start
= mmio_start
;
7163 netdev
->mem_end
= mmio_start
+ mmio_len
;
7165 adapter
->bd_number
= cards_found
++;
7167 e1000e_check_options(adapter
);
7169 /* setup adapter struct */
7170 err
= e1000_sw_init(adapter
);
7174 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
7175 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
7176 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
7178 err
= ei
->get_variants(adapter
);
7182 if ((adapter
->flags
& FLAG_IS_ICH
) &&
7183 (adapter
->flags
& FLAG_READ_ONLY_NVM
) &&
7184 (hw
->mac
.type
< e1000_pch_spt
))
7185 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
7187 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
7189 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
7191 /* Copper options */
7192 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
7193 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
7194 adapter
->hw
.phy
.disable_polarity_correction
= 0;
7195 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
7198 if (hw
->phy
.ops
.check_reset_block
&& hw
->phy
.ops
.check_reset_block(hw
))
7199 dev_info(&pdev
->dev
,
7200 "PHY reset is blocked due to SOL/IDER session.\n");
7202 /* Set initial default active device features */
7203 netdev
->features
= (NETIF_F_SG
|
7204 NETIF_F_HW_VLAN_CTAG_RX
|
7205 NETIF_F_HW_VLAN_CTAG_TX
|
7212 /* Set user-changeable features (subset of all device features) */
7213 netdev
->hw_features
= netdev
->features
;
7214 netdev
->hw_features
|= NETIF_F_RXFCS
;
7215 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
7216 netdev
->hw_features
|= NETIF_F_RXALL
;
7218 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
7219 netdev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
7221 netdev
->vlan_features
|= (NETIF_F_SG
|
7226 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
7228 if (pci_using_dac
) {
7229 netdev
->features
|= NETIF_F_HIGHDMA
;
7230 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
7233 /* MTU range: 68 - max_hw_frame_size */
7234 netdev
->min_mtu
= ETH_MIN_MTU
;
7235 netdev
->max_mtu
= adapter
->max_hw_frame_size
-
7236 (VLAN_ETH_HLEN
+ ETH_FCS_LEN
);
7238 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
7239 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
7241 /* before reading the NVM, reset the controller to
7242 * put the device in a known good starting state
7244 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
7246 /* systems with ASPM and others may see the checksum fail on the first
7247 * attempt. Let's give it a few tries
7250 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
7253 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
7259 e1000_eeprom_checks(adapter
);
7261 /* copy the MAC address */
7262 if (e1000e_read_mac_addr(&adapter
->hw
))
7264 "NVM Read Error while reading MAC address\n");
7266 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
7268 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
7269 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
7275 timer_setup(&adapter
->watchdog_timer
, e1000_watchdog
, 0);
7276 timer_setup(&adapter
->phy_info_timer
, e1000_update_phy_info
, 0);
7278 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
7279 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
7280 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
7281 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
7282 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
7284 /* Initialize link parameters. User can change them with ethtool */
7285 adapter
->hw
.mac
.autoneg
= 1;
7286 adapter
->fc_autoneg
= true;
7287 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
7288 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
7289 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
7291 /* Initial Wake on LAN setting - If APM wake is enabled in
7292 * the EEPROM, enable the ACPI Magic Packet filter
7294 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
7295 /* APME bit in EEPROM is mapped to WUC.APME */
7296 eeprom_data
= er32(WUC
);
7297 eeprom_apme_mask
= E1000_WUC_APME
;
7298 if ((hw
->mac
.type
> e1000_ich10lan
) &&
7299 (eeprom_data
& E1000_WUC_PHY_WAKE
))
7300 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
7301 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
7302 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
7303 (adapter
->hw
.bus
.func
== 1))
7304 ret_val
= e1000_read_nvm(&adapter
->hw
,
7305 NVM_INIT_CONTROL3_PORT_B
,
7308 ret_val
= e1000_read_nvm(&adapter
->hw
,
7309 NVM_INIT_CONTROL3_PORT_A
,
7313 /* fetch WoL from EEPROM */
7315 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val
);
7316 else if (eeprom_data
& eeprom_apme_mask
)
7317 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
7319 /* now that we have the eeprom settings, apply the special cases
7320 * where the eeprom may be wrong or the board simply won't support
7321 * wake on lan on a particular port
7323 if (!(adapter
->flags
& FLAG_HAS_WOL
))
7324 adapter
->eeprom_wol
= 0;
7326 /* initialize the wol settings based on the eeprom settings */
7327 adapter
->wol
= adapter
->eeprom_wol
;
7329 /* make sure adapter isn't asleep if manageability is enabled */
7330 if (adapter
->wol
|| (adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
7331 (hw
->mac
.ops
.check_mng_mode(hw
)))
7332 device_wakeup_enable(&pdev
->dev
);
7334 /* save off EEPROM version number */
7335 ret_val
= e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
7338 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val
);
7339 adapter
->eeprom_vers
= 0;
7342 /* init PTP hardware clock */
7343 e1000e_ptp_init(adapter
);
7345 /* reset the hardware with the new settings */
7346 e1000e_reset(adapter
);
7348 /* If the controller has AMT, do not set DRV_LOAD until the interface
7349 * is up. For all other cases, let the f/w know that the h/w is now
7350 * under the control of the driver.
7352 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7353 e1000e_get_hw_control(adapter
);
7355 strlcpy(netdev
->name
, "eth%d", sizeof(netdev
->name
));
7356 err
= register_netdev(netdev
);
7360 /* carrier off reporting is important to ethtool even BEFORE open */
7361 netif_carrier_off(netdev
);
7363 e1000_print_device_info(adapter
);
7365 if (pci_dev_run_wake(pdev
))
7366 pm_runtime_put_noidle(&pdev
->dev
);
7371 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7372 e1000e_release_hw_control(adapter
);
7374 if (hw
->phy
.ops
.check_reset_block
&& !hw
->phy
.ops
.check_reset_block(hw
))
7375 e1000_phy_hw_reset(&adapter
->hw
);
7377 kfree(adapter
->tx_ring
);
7378 kfree(adapter
->rx_ring
);
7380 if ((adapter
->hw
.flash_address
) && (hw
->mac
.type
< e1000_pch_spt
))
7381 iounmap(adapter
->hw
.flash_address
);
7382 e1000e_reset_interrupt_capability(adapter
);
7384 iounmap(adapter
->hw
.hw_addr
);
7386 free_netdev(netdev
);
7388 pci_release_mem_regions(pdev
);
7391 pci_disable_device(pdev
);
7396 * e1000_remove - Device Removal Routine
7397 * @pdev: PCI device information struct
7399 * e1000_remove is called by the PCI subsystem to alert the driver
7400 * that it should release a PCI device. The could be caused by a
7401 * Hot-Plug event, or because the driver is going to be removed from
7404 static void e1000_remove(struct pci_dev
*pdev
)
7406 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7407 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7408 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
7410 e1000e_ptp_remove(adapter
);
7412 /* The timers may be rescheduled, so explicitly disable them
7413 * from being rescheduled.
7416 set_bit(__E1000_DOWN
, &adapter
->state
);
7417 del_timer_sync(&adapter
->watchdog_timer
);
7418 del_timer_sync(&adapter
->phy_info_timer
);
7420 cancel_work_sync(&adapter
->reset_task
);
7421 cancel_work_sync(&adapter
->watchdog_task
);
7422 cancel_work_sync(&adapter
->downshift_task
);
7423 cancel_work_sync(&adapter
->update_phy_task
);
7424 cancel_work_sync(&adapter
->print_hang_task
);
7426 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
7427 cancel_work_sync(&adapter
->tx_hwtstamp_work
);
7428 if (adapter
->tx_hwtstamp_skb
) {
7429 dev_consume_skb_any(adapter
->tx_hwtstamp_skb
);
7430 adapter
->tx_hwtstamp_skb
= NULL
;
7434 /* Don't lie to e1000_close() down the road. */
7436 clear_bit(__E1000_DOWN
, &adapter
->state
);
7437 unregister_netdev(netdev
);
7439 if (pci_dev_run_wake(pdev
))
7440 pm_runtime_get_noresume(&pdev
->dev
);
7442 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7443 * would have already happened in close and is redundant.
7445 e1000e_release_hw_control(adapter
);
7447 e1000e_reset_interrupt_capability(adapter
);
7448 kfree(adapter
->tx_ring
);
7449 kfree(adapter
->rx_ring
);
7451 iounmap(adapter
->hw
.hw_addr
);
7452 if ((adapter
->hw
.flash_address
) &&
7453 (adapter
->hw
.mac
.type
< e1000_pch_spt
))
7454 iounmap(adapter
->hw
.flash_address
);
7455 pci_release_mem_regions(pdev
);
7457 free_netdev(netdev
);
7460 pci_disable_pcie_error_reporting(pdev
);
7462 pci_disable_device(pdev
);
7465 /* PCI Error Recovery (ERS) */
7466 static const struct pci_error_handlers e1000_err_handler
= {
7467 .error_detected
= e1000_io_error_detected
,
7468 .slot_reset
= e1000_io_slot_reset
,
7469 .resume
= e1000_io_resume
,
7472 static const struct pci_device_id e1000_pci_tbl
[] = {
7473 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
7474 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
7475 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
7476 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
),
7478 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
7479 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
7480 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
7481 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
7482 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
7484 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
7485 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
7486 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
7487 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
7489 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
7490 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
7491 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
7493 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
7494 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
7495 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
7497 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
7498 board_80003es2lan
},
7499 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
7500 board_80003es2lan
},
7501 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
7502 board_80003es2lan
},
7503 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
7504 board_80003es2lan
},
7506 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
7507 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
7508 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
7509 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
7510 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
7511 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
7512 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
7513 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
7515 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
7516 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
7517 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
7518 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
7519 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
7520 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
7521 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
7522 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
7523 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
7525 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
7526 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
7527 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
7529 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
7530 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
7531 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
7533 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
7534 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
7535 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
7536 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
7538 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
7539 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
7541 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_LM
), board_pch_lpt
},
7542 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_V
), board_pch_lpt
},
7543 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_LM
), board_pch_lpt
},
7544 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_V
), board_pch_lpt
},
7545 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM2
), board_pch_lpt
},
7546 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V2
), board_pch_lpt
},
7547 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM3
), board_pch_lpt
},
7548 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V3
), board_pch_lpt
},
7549 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM
), board_pch_spt
},
7550 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V
), board_pch_spt
},
7551 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM2
), board_pch_spt
},
7552 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V2
), board_pch_spt
},
7553 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LBG_I219_LM3
), board_pch_spt
},
7554 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM4
), board_pch_spt
},
7555 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V4
), board_pch_spt
},
7556 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM5
), board_pch_spt
},
7557 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V5
), board_pch_spt
},
7558 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_LM6
), board_pch_cnp
},
7559 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_V6
), board_pch_cnp
},
7560 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_LM7
), board_pch_cnp
},
7561 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_V7
), board_pch_cnp
},
7562 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_LM8
), board_pch_cnp
},
7563 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_V8
), board_pch_cnp
},
7564 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_LM9
), board_pch_cnp
},
7565 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_V9
), board_pch_cnp
},
7567 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7569 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
7571 static const struct dev_pm_ops e1000_pm_ops
= {
7572 #ifdef CONFIG_PM_SLEEP
7573 .suspend
= e1000e_pm_suspend
,
7574 .resume
= e1000e_pm_resume
,
7575 .freeze
= e1000e_pm_freeze
,
7576 .thaw
= e1000e_pm_thaw
,
7577 .poweroff
= e1000e_pm_suspend
,
7578 .restore
= e1000e_pm_resume
,
7580 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend
, e1000e_pm_runtime_resume
,
7581 e1000e_pm_runtime_idle
)
7584 /* PCI Device API Driver */
7585 static struct pci_driver e1000_driver
= {
7586 .name
= e1000e_driver_name
,
7587 .id_table
= e1000_pci_tbl
,
7588 .probe
= e1000_probe
,
7589 .remove
= e1000_remove
,
7591 .pm
= &e1000_pm_ops
,
7593 .shutdown
= e1000_shutdown
,
7594 .err_handler
= &e1000_err_handler
7598 * e1000_init_module - Driver Registration Routine
7600 * e1000_init_module is the first routine called when the driver is
7601 * loaded. All it does is register with the PCI subsystem.
7603 static int __init
e1000_init_module(void)
7605 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7606 e1000e_driver_version
);
7607 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7609 return pci_register_driver(&e1000_driver
);
7611 module_init(e1000_init_module
);
7614 * e1000_exit_module - Driver Exit Cleanup Routine
7616 * e1000_exit_module is called just before the driver is removed
7619 static void __exit
e1000_exit_module(void)
7621 pci_unregister_driver(&e1000_driver
);
7623 module_exit(e1000_exit_module
);
7625 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7626 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7627 MODULE_LICENSE("GPL");
7628 MODULE_VERSION(DRV_VERSION
);