1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
25 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
26 u16
*data
, bool read
, bool page_set
);
27 static u32
e1000_get_phy_addr_for_hv_page(u32 page
);
28 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
29 u16
*data
, bool read
);
31 /* Cable length tables */
32 static const u16 e1000_m88_cable_length_table
[] = {
33 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
36 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
37 ARRAY_SIZE(e1000_m88_cable_length_table)
39 static const u16 e1000_igp_2_cable_length_table
[] = {
40 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
41 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
42 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
43 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
44 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
45 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
46 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
50 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
51 ARRAY_SIZE(e1000_igp_2_cable_length_table)
54 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
55 * @hw: pointer to the HW structure
57 * Read the PHY management control register and check whether a PHY reset
58 * is blocked. If a reset is not blocked return 0, otherwise
59 * return E1000_BLK_PHY_RESET (12).
61 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
67 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ? E1000_BLK_PHY_RESET
: 0;
71 * e1000e_get_phy_id - Retrieve the PHY ID and revision
72 * @hw: pointer to the HW structure
74 * Reads the PHY registers and stores the PHY ID and possibly the PHY
75 * revision in the hardware structure.
77 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
79 struct e1000_phy_info
*phy
= &hw
->phy
;
84 if (!phy
->ops
.read_reg
)
87 while (retry_count
< 2) {
88 ret_val
= e1e_rphy(hw
, MII_PHYSID1
, &phy_id
);
92 phy
->id
= (u32
)(phy_id
<< 16);
94 ret_val
= e1e_rphy(hw
, MII_PHYSID2
, &phy_id
);
98 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
99 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
101 if (phy
->id
!= 0 && phy
->id
!= PHY_REVISION_MASK
)
111 * e1000e_phy_reset_dsp - Reset PHY DSP
112 * @hw: pointer to the HW structure
114 * Reset the digital signal processor.
116 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
120 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
124 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
128 * e1000e_read_phy_reg_mdic - Read MDI control register
129 * @hw: pointer to the HW structure
130 * @offset: register offset to be read
131 * @data: pointer to the read data
133 * Reads the MDI control register in the PHY at offset and stores the
134 * information read to data.
136 s32
e1000e_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
138 struct e1000_phy_info
*phy
= &hw
->phy
;
141 if (offset
> MAX_PHY_REG_ADDRESS
) {
142 e_dbg("PHY Address %d is out of range\n", offset
);
143 return -E1000_ERR_PARAM
;
146 /* Set up Op-code, Phy Address, and register offset in the MDI
147 * Control register. The MAC will take care of interfacing with the
148 * PHY to retrieve the desired data.
150 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
151 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
152 (E1000_MDIC_OP_READ
));
156 /* Poll the ready bit to see if the MDI read completed
157 * Increasing the time out as testing showed failures with
160 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
163 if (mdic
& E1000_MDIC_READY
)
166 if (!(mdic
& E1000_MDIC_READY
)) {
167 e_dbg("MDI Read did not complete\n");
168 return -E1000_ERR_PHY
;
170 if (mdic
& E1000_MDIC_ERROR
) {
171 e_dbg("MDI Error\n");
172 return -E1000_ERR_PHY
;
174 if (((mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
) != offset
) {
175 e_dbg("MDI Read offset error - requested %d, returned %d\n",
177 (mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
178 return -E1000_ERR_PHY
;
182 /* Allow some time after each MDIC transaction to avoid
183 * reading duplicate data in the next MDIC transaction.
185 if (hw
->mac
.type
== e1000_pch2lan
)
192 * e1000e_write_phy_reg_mdic - Write MDI control register
193 * @hw: pointer to the HW structure
194 * @offset: register offset to write to
195 * @data: data to write to register at offset
197 * Writes data to MDI control register in the PHY at offset.
199 s32
e1000e_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
201 struct e1000_phy_info
*phy
= &hw
->phy
;
204 if (offset
> MAX_PHY_REG_ADDRESS
) {
205 e_dbg("PHY Address %d is out of range\n", offset
);
206 return -E1000_ERR_PARAM
;
209 /* Set up Op-code, Phy Address, and register offset in the MDI
210 * Control register. The MAC will take care of interfacing with the
211 * PHY to retrieve the desired data.
213 mdic
= (((u32
)data
) |
214 (offset
<< E1000_MDIC_REG_SHIFT
) |
215 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
216 (E1000_MDIC_OP_WRITE
));
220 /* Poll the ready bit to see if the MDI read completed
221 * Increasing the time out as testing showed failures with
224 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
227 if (mdic
& E1000_MDIC_READY
)
230 if (!(mdic
& E1000_MDIC_READY
)) {
231 e_dbg("MDI Write did not complete\n");
232 return -E1000_ERR_PHY
;
234 if (mdic
& E1000_MDIC_ERROR
) {
235 e_dbg("MDI Error\n");
236 return -E1000_ERR_PHY
;
238 if (((mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
) != offset
) {
239 e_dbg("MDI Write offset error - requested %d, returned %d\n",
241 (mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
242 return -E1000_ERR_PHY
;
245 /* Allow some time after each MDIC transaction to avoid
246 * reading duplicate data in the next MDIC transaction.
248 if (hw
->mac
.type
== e1000_pch2lan
)
255 * e1000e_read_phy_reg_m88 - Read m88 PHY register
256 * @hw: pointer to the HW structure
257 * @offset: register offset to be read
258 * @data: pointer to the read data
260 * Acquires semaphore, if necessary, then reads the PHY register at offset
261 * and storing the retrieved information in data. Release any acquired
262 * semaphores before exiting.
264 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
268 ret_val
= hw
->phy
.ops
.acquire(hw
);
272 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
275 hw
->phy
.ops
.release(hw
);
281 * e1000e_write_phy_reg_m88 - Write m88 PHY register
282 * @hw: pointer to the HW structure
283 * @offset: register offset to write to
284 * @data: data to write at register offset
286 * Acquires semaphore, if necessary, then writes the data to PHY register
287 * at the offset. Release any acquired semaphores before exiting.
289 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
293 ret_val
= hw
->phy
.ops
.acquire(hw
);
297 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
300 hw
->phy
.ops
.release(hw
);
306 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
307 * @hw: pointer to the HW structure
308 * @page: page to set (shifted left when necessary)
310 * Sets PHY page required for PHY register access. Assumes semaphore is
311 * already acquired. Note, this function sets phy.addr to 1 so the caller
312 * must set it appropriately (if necessary) after this function returns.
314 s32
e1000_set_page_igp(struct e1000_hw
*hw
, u16 page
)
316 e_dbg("Setting page 0x%x\n", page
);
320 return e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, page
);
324 * __e1000e_read_phy_reg_igp - Read igp PHY register
325 * @hw: pointer to the HW structure
326 * @offset: register offset to be read
327 * @data: pointer to the read data
328 * @locked: semaphore has already been acquired or not
330 * Acquires semaphore, if necessary, then reads the PHY register at offset
331 * and stores the retrieved information in data. Release any acquired
332 * semaphores before exiting.
334 static s32
__e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
340 if (!hw
->phy
.ops
.acquire
)
343 ret_val
= hw
->phy
.ops
.acquire(hw
);
348 if (offset
> MAX_PHY_MULTI_PAGE_REG
)
349 ret_val
= e1000e_write_phy_reg_mdic(hw
,
350 IGP01E1000_PHY_PAGE_SELECT
,
353 ret_val
= e1000e_read_phy_reg_mdic(hw
,
354 MAX_PHY_REG_ADDRESS
& offset
,
357 hw
->phy
.ops
.release(hw
);
363 * e1000e_read_phy_reg_igp - Read igp PHY register
364 * @hw: pointer to the HW structure
365 * @offset: register offset to be read
366 * @data: pointer to the read data
368 * Acquires semaphore then reads the PHY register at offset and stores the
369 * retrieved information in data.
370 * Release the acquired semaphore before exiting.
372 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
374 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, false);
378 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
379 * @hw: pointer to the HW structure
380 * @offset: register offset to be read
381 * @data: pointer to the read data
383 * Reads the PHY register at offset and stores the retrieved information
384 * in data. Assumes semaphore already acquired.
386 s32
e1000e_read_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
388 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, true);
392 * e1000e_write_phy_reg_igp - Write igp PHY register
393 * @hw: pointer to the HW structure
394 * @offset: register offset to write to
395 * @data: data to write at register offset
396 * @locked: semaphore has already been acquired or not
398 * Acquires semaphore, if necessary, then writes the data to PHY register
399 * at the offset. Release any acquired semaphores before exiting.
401 static s32
__e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
,
407 if (!hw
->phy
.ops
.acquire
)
410 ret_val
= hw
->phy
.ops
.acquire(hw
);
415 if (offset
> MAX_PHY_MULTI_PAGE_REG
)
416 ret_val
= e1000e_write_phy_reg_mdic(hw
,
417 IGP01E1000_PHY_PAGE_SELECT
,
420 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
&
423 hw
->phy
.ops
.release(hw
);
429 * e1000e_write_phy_reg_igp - Write igp PHY register
430 * @hw: pointer to the HW structure
431 * @offset: register offset to write to
432 * @data: data to write at register offset
434 * Acquires semaphore then writes the data to PHY register
435 * at the offset. Release any acquired semaphores before exiting.
437 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
439 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, false);
443 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
444 * @hw: pointer to the HW structure
445 * @offset: register offset to write to
446 * @data: data to write at register offset
448 * Writes the data to PHY register at the offset.
449 * Assumes semaphore already acquired.
451 s32
e1000e_write_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
453 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, true);
457 * __e1000_read_kmrn_reg - Read kumeran register
458 * @hw: pointer to the HW structure
459 * @offset: register offset to be read
460 * @data: pointer to the read data
461 * @locked: semaphore has already been acquired or not
463 * Acquires semaphore, if necessary. Then reads the PHY register at offset
464 * using the kumeran interface. The information retrieved is stored in data.
465 * Release any acquired semaphores before exiting.
467 static s32
__e1000_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
475 if (!hw
->phy
.ops
.acquire
)
478 ret_val
= hw
->phy
.ops
.acquire(hw
);
483 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
484 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
485 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
490 kmrnctrlsta
= er32(KMRNCTRLSTA
);
491 *data
= (u16
)kmrnctrlsta
;
494 hw
->phy
.ops
.release(hw
);
500 * e1000e_read_kmrn_reg - Read kumeran register
501 * @hw: pointer to the HW structure
502 * @offset: register offset to be read
503 * @data: pointer to the read data
505 * Acquires semaphore then reads the PHY register at offset using the
506 * kumeran interface. The information retrieved is stored in data.
507 * Release the acquired semaphore before exiting.
509 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
511 return __e1000_read_kmrn_reg(hw
, offset
, data
, false);
515 * e1000e_read_kmrn_reg_locked - Read kumeran register
516 * @hw: pointer to the HW structure
517 * @offset: register offset to be read
518 * @data: pointer to the read data
520 * Reads the PHY register at offset using the kumeran interface. The
521 * information retrieved is stored in data.
522 * Assumes semaphore already acquired.
524 s32
e1000e_read_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
526 return __e1000_read_kmrn_reg(hw
, offset
, data
, true);
530 * __e1000_write_kmrn_reg - Write kumeran register
531 * @hw: pointer to the HW structure
532 * @offset: register offset to write to
533 * @data: data to write at register offset
534 * @locked: semaphore has already been acquired or not
536 * Acquires semaphore, if necessary. Then write the data to PHY register
537 * at the offset using the kumeran interface. Release any acquired semaphores
540 static s32
__e1000_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
,
548 if (!hw
->phy
.ops
.acquire
)
551 ret_val
= hw
->phy
.ops
.acquire(hw
);
556 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
557 E1000_KMRNCTRLSTA_OFFSET
) | data
;
558 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
564 hw
->phy
.ops
.release(hw
);
570 * e1000e_write_kmrn_reg - Write kumeran register
571 * @hw: pointer to the HW structure
572 * @offset: register offset to write to
573 * @data: data to write at register offset
575 * Acquires semaphore then writes the data to the PHY register at the offset
576 * using the kumeran interface. Release the acquired semaphore before exiting.
578 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
580 return __e1000_write_kmrn_reg(hw
, offset
, data
, false);
584 * e1000e_write_kmrn_reg_locked - Write kumeran register
585 * @hw: pointer to the HW structure
586 * @offset: register offset to write to
587 * @data: data to write at register offset
589 * Write the data to PHY register at the offset using the kumeran interface.
590 * Assumes semaphore already acquired.
592 s32
e1000e_write_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
594 return __e1000_write_kmrn_reg(hw
, offset
, data
, true);
598 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
599 * @hw: pointer to the HW structure
601 * Sets up Master/slave mode
603 static s32
e1000_set_master_slave_mode(struct e1000_hw
*hw
)
608 /* Resolve Master/Slave mode */
609 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &phy_data
);
613 /* load defaults for future use */
614 hw
->phy
.original_ms_type
= (phy_data
& CTL1000_ENABLE_MASTER
) ?
615 ((phy_data
& CTL1000_AS_MASTER
) ?
616 e1000_ms_force_master
: e1000_ms_force_slave
) : e1000_ms_auto
;
618 switch (hw
->phy
.ms_type
) {
619 case e1000_ms_force_master
:
620 phy_data
|= (CTL1000_ENABLE_MASTER
| CTL1000_AS_MASTER
);
622 case e1000_ms_force_slave
:
623 phy_data
|= CTL1000_ENABLE_MASTER
;
624 phy_data
&= ~(CTL1000_AS_MASTER
);
627 phy_data
&= ~CTL1000_ENABLE_MASTER
;
633 return e1e_wphy(hw
, MII_CTRL1000
, phy_data
);
637 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
638 * @hw: pointer to the HW structure
640 * Sets up Carrier-sense on Transmit and downshift values.
642 s32
e1000_copper_link_setup_82577(struct e1000_hw
*hw
)
647 /* Enable CRS on Tx. This must be set for half-duplex operation. */
648 ret_val
= e1e_rphy(hw
, I82577_CFG_REG
, &phy_data
);
652 phy_data
|= I82577_CFG_ASSERT_CRS_ON_TX
;
654 /* Enable downshift */
655 phy_data
|= I82577_CFG_ENABLE_DOWNSHIFT
;
657 ret_val
= e1e_wphy(hw
, I82577_CFG_REG
, phy_data
);
661 /* Set MDI/MDIX mode */
662 ret_val
= e1e_rphy(hw
, I82577_PHY_CTRL_2
, &phy_data
);
665 phy_data
&= ~I82577_PHY_CTRL2_MDIX_CFG_MASK
;
671 switch (hw
->phy
.mdix
) {
675 phy_data
|= I82577_PHY_CTRL2_MANUAL_MDIX
;
679 phy_data
|= I82577_PHY_CTRL2_AUTO_MDI_MDIX
;
682 ret_val
= e1e_wphy(hw
, I82577_PHY_CTRL_2
, phy_data
);
686 return e1000_set_master_slave_mode(hw
);
690 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
691 * @hw: pointer to the HW structure
693 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
694 * and downshift values are set also.
696 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
698 struct e1000_phy_info
*phy
= &hw
->phy
;
702 /* Enable CRS on Tx. This must be set for half-duplex operation. */
703 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
707 /* For BM PHY this bit is downshift enable */
708 if (phy
->type
!= e1000_phy_bm
)
709 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
712 * MDI/MDI-X = 0 (default)
713 * 0 - Auto for all speeds
716 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
718 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
722 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
725 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
728 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
732 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
737 * disable_polarity_correction = 0 (default)
738 * Automatic Correction for Reversed Cable Polarity
742 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
743 if (phy
->disable_polarity_correction
)
744 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
746 /* Enable downshift on BM (disabled by default) */
747 if (phy
->type
== e1000_phy_bm
) {
748 /* For 82574/82583, first disable then enable downshift */
749 if (phy
->id
== BME1000_E_PHY_ID_R2
) {
750 phy_data
&= ~BME1000_PSCR_ENABLE_DOWNSHIFT
;
751 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
,
755 /* Commit the changes. */
756 ret_val
= phy
->ops
.commit(hw
);
758 e_dbg("Error committing the PHY changes\n");
763 phy_data
|= BME1000_PSCR_ENABLE_DOWNSHIFT
;
766 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
770 if ((phy
->type
== e1000_phy_m88
) &&
771 (phy
->revision
< E1000_REVISION_4
) &&
772 (phy
->id
!= BME1000_E_PHY_ID_R2
)) {
773 /* Force TX_CLK in the Extended PHY Specific Control Register
776 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
780 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
782 if ((phy
->revision
== 2) && (phy
->id
== M88E1111_I_PHY_ID
)) {
783 /* 82573L PHY - set the downshift counter to 5x. */
784 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
785 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
787 /* Configure Master and Slave downshift values */
788 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
789 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
790 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
791 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
793 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
798 if ((phy
->type
== e1000_phy_bm
) && (phy
->id
== BME1000_E_PHY_ID_R2
)) {
799 /* Set PHY page 0, register 29 to 0x0003 */
800 ret_val
= e1e_wphy(hw
, 29, 0x0003);
804 /* Set PHY page 0, register 30 to 0x0000 */
805 ret_val
= e1e_wphy(hw
, 30, 0x0000);
810 /* Commit the changes. */
811 if (phy
->ops
.commit
) {
812 ret_val
= phy
->ops
.commit(hw
);
814 e_dbg("Error committing the PHY changes\n");
819 if (phy
->type
== e1000_phy_82578
) {
820 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
824 /* 82578 PHY - set the downshift count to 1x. */
825 phy_data
|= I82578_EPSCR_DOWNSHIFT_ENABLE
;
826 phy_data
&= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK
;
827 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
836 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
837 * @hw: pointer to the HW structure
839 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
842 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
844 struct e1000_phy_info
*phy
= &hw
->phy
;
848 ret_val
= e1000_phy_hw_reset(hw
);
850 e_dbg("Error resetting the PHY.\n");
854 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
855 * timeout issues when LFS is enabled.
859 /* disable lplu d0 during driver init */
860 if (hw
->phy
.ops
.set_d0_lplu_state
) {
861 ret_val
= hw
->phy
.ops
.set_d0_lplu_state(hw
, false);
863 e_dbg("Error Disabling LPLU D0\n");
867 /* Configure mdi-mdix settings */
868 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
872 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
876 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
879 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
883 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
886 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
890 /* set auto-master slave resolution settings */
891 if (hw
->mac
.autoneg
) {
892 /* when autonegotiation advertisement is only 1000Mbps then we
893 * should disable SmartSpeed and enable Auto MasterSlave
894 * resolution as hardware default.
896 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
897 /* Disable SmartSpeed */
898 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
903 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
904 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
909 /* Set auto Master/Slave resolution process */
910 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &data
);
914 data
&= ~CTL1000_ENABLE_MASTER
;
915 ret_val
= e1e_wphy(hw
, MII_CTRL1000
, data
);
920 ret_val
= e1000_set_master_slave_mode(hw
);
927 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
928 * @hw: pointer to the HW structure
930 * Reads the MII auto-neg advertisement register and/or the 1000T control
931 * register and if the PHY is already setup for auto-negotiation, then
932 * return successful. Otherwise, setup advertisement and flow control to
933 * the appropriate values for the wanted auto-negotiation.
935 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
937 struct e1000_phy_info
*phy
= &hw
->phy
;
939 u16 mii_autoneg_adv_reg
;
940 u16 mii_1000t_ctrl_reg
= 0;
942 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
944 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
945 ret_val
= e1e_rphy(hw
, MII_ADVERTISE
, &mii_autoneg_adv_reg
);
949 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
950 /* Read the MII 1000Base-T Control Register (Address 9). */
951 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &mii_1000t_ctrl_reg
);
956 /* Need to parse both autoneg_advertised and fc and set up
957 * the appropriate PHY registers. First we will parse for
958 * autoneg_advertised software override. Since we can advertise
959 * a plethora of combinations, we need to check each bit
963 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
964 * Advertisement Register (Address 4) and the 1000 mb speed bits in
965 * the 1000Base-T Control Register (Address 9).
967 mii_autoneg_adv_reg
&= ~(ADVERTISE_100FULL
|
969 ADVERTISE_10FULL
| ADVERTISE_10HALF
);
970 mii_1000t_ctrl_reg
&= ~(ADVERTISE_1000HALF
| ADVERTISE_1000FULL
);
972 e_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
974 /* Do we want to advertise 10 Mb Half Duplex? */
975 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
976 e_dbg("Advertise 10mb Half duplex\n");
977 mii_autoneg_adv_reg
|= ADVERTISE_10HALF
;
980 /* Do we want to advertise 10 Mb Full Duplex? */
981 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
982 e_dbg("Advertise 10mb Full duplex\n");
983 mii_autoneg_adv_reg
|= ADVERTISE_10FULL
;
986 /* Do we want to advertise 100 Mb Half Duplex? */
987 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
988 e_dbg("Advertise 100mb Half duplex\n");
989 mii_autoneg_adv_reg
|= ADVERTISE_100HALF
;
992 /* Do we want to advertise 100 Mb Full Duplex? */
993 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
994 e_dbg("Advertise 100mb Full duplex\n");
995 mii_autoneg_adv_reg
|= ADVERTISE_100FULL
;
998 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
999 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
1000 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1002 /* Do we want to advertise 1000 Mb Full Duplex? */
1003 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
1004 e_dbg("Advertise 1000mb Full duplex\n");
1005 mii_1000t_ctrl_reg
|= ADVERTISE_1000FULL
;
1008 /* Check for a software override of the flow control settings, and
1009 * setup the PHY advertisement registers accordingly. If
1010 * auto-negotiation is enabled, then software will have to set the
1011 * "PAUSE" bits to the correct value in the Auto-Negotiation
1012 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1015 * The possible values of the "fc" parameter are:
1016 * 0: Flow control is completely disabled
1017 * 1: Rx flow control is enabled (we can receive pause frames
1018 * but not send pause frames).
1019 * 2: Tx flow control is enabled (we can send pause frames
1020 * but we do not support receiving pause frames).
1021 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1022 * other: No software override. The flow control configuration
1023 * in the EEPROM is used.
1025 switch (hw
->fc
.current_mode
) {
1027 /* Flow control (Rx & Tx) is completely disabled by a
1028 * software over-ride.
1030 mii_autoneg_adv_reg
&=
1031 ~(ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1033 case e1000_fc_rx_pause
:
1034 /* Rx Flow control is enabled, and Tx Flow control is
1035 * disabled, by a software over-ride.
1037 * Since there really isn't a way to advertise that we are
1038 * capable of Rx Pause ONLY, we will advertise that we
1039 * support both symmetric and asymmetric Rx PAUSE. Later
1040 * (in e1000e_config_fc_after_link_up) we will disable the
1041 * hw's ability to send PAUSE frames.
1043 mii_autoneg_adv_reg
|=
1044 (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1046 case e1000_fc_tx_pause
:
1047 /* Tx Flow control is enabled, and Rx Flow control is
1048 * disabled, by a software over-ride.
1050 mii_autoneg_adv_reg
|= ADVERTISE_PAUSE_ASYM
;
1051 mii_autoneg_adv_reg
&= ~ADVERTISE_PAUSE_CAP
;
1054 /* Flow control (both Rx and Tx) is enabled by a software
1057 mii_autoneg_adv_reg
|=
1058 (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1061 e_dbg("Flow control param set incorrectly\n");
1062 return -E1000_ERR_CONFIG
;
1065 ret_val
= e1e_wphy(hw
, MII_ADVERTISE
, mii_autoneg_adv_reg
);
1069 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1071 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
)
1072 ret_val
= e1e_wphy(hw
, MII_CTRL1000
, mii_1000t_ctrl_reg
);
1078 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1079 * @hw: pointer to the HW structure
1081 * Performs initial bounds checking on autoneg advertisement parameter, then
1082 * configure to advertise the full capability. Setup the PHY to autoneg
1083 * and restart the negotiation process between the link partner. If
1084 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1086 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
1088 struct e1000_phy_info
*phy
= &hw
->phy
;
1092 /* Perform some bounds checking on the autoneg advertisement
1095 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
1097 /* If autoneg_advertised is zero, we assume it was not defaulted
1098 * by the calling code so we set to advertise full capability.
1100 if (!phy
->autoneg_advertised
)
1101 phy
->autoneg_advertised
= phy
->autoneg_mask
;
1103 e_dbg("Reconfiguring auto-neg advertisement params\n");
1104 ret_val
= e1000_phy_setup_autoneg(hw
);
1106 e_dbg("Error Setting up Auto-Negotiation\n");
1109 e_dbg("Restarting Auto-Neg\n");
1111 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1112 * the Auto Neg Restart bit in the PHY control register.
1114 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_ctrl
);
1118 phy_ctrl
|= (BMCR_ANENABLE
| BMCR_ANRESTART
);
1119 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_ctrl
);
1123 /* Does the user want to wait for Auto-Neg to complete here, or
1124 * check at a later time (for example, callback routine).
1126 if (phy
->autoneg_wait_to_complete
) {
1127 ret_val
= e1000_wait_autoneg(hw
);
1129 e_dbg("Error while waiting for autoneg to complete\n");
1134 hw
->mac
.get_link_status
= true;
1140 * e1000e_setup_copper_link - Configure copper link settings
1141 * @hw: pointer to the HW structure
1143 * Calls the appropriate function to configure the link for auto-neg or forced
1144 * speed and duplex. Then we check for link, once link is established calls
1145 * to configure collision distance and flow control are called. If link is
1146 * not established, we return -E1000_ERR_PHY (-2).
1148 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
1153 if (hw
->mac
.autoneg
) {
1154 /* Setup autoneg and flow control advertisement and perform
1157 ret_val
= e1000_copper_link_autoneg(hw
);
1161 /* PHY will be set to 10H, 10F, 100H or 100F
1162 * depending on user settings.
1164 e_dbg("Forcing Speed and Duplex\n");
1165 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1167 e_dbg("Error Forcing Speed and Duplex\n");
1172 /* Check link status. Wait up to 100 microseconds for link to become
1175 ret_val
= e1000e_phy_has_link_generic(hw
, COPPER_LINK_UP_LIMIT
, 10,
1181 e_dbg("Valid link established!!!\n");
1182 hw
->mac
.ops
.config_collision_dist(hw
);
1183 ret_val
= e1000e_config_fc_after_link_up(hw
);
1185 e_dbg("Unable to establish link!!!\n");
1192 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1193 * @hw: pointer to the HW structure
1195 * Calls the PHY setup function to force speed and duplex. Clears the
1196 * auto-crossover to force MDI manually. Waits for link and returns
1197 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1199 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1201 struct e1000_phy_info
*phy
= &hw
->phy
;
1206 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
1210 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1212 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
1216 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1217 * forced whenever speed and duplex are forced.
1219 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1223 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1224 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1226 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1230 e_dbg("IGP PSCR: %X\n", phy_data
);
1234 if (phy
->autoneg_wait_to_complete
) {
1235 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1237 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1243 e_dbg("Link taking longer than expected.\n");
1246 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1254 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1255 * @hw: pointer to the HW structure
1257 * Calls the PHY setup function to force speed and duplex. Clears the
1258 * auto-crossover to force MDI manually. Resets the PHY to commit the
1259 * changes. If time expires while waiting for link up, we reset the DSP.
1260 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1261 * successful completion, else return corresponding error code.
1263 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1265 struct e1000_phy_info
*phy
= &hw
->phy
;
1270 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1271 * forced whenever speed and duplex are forced.
1273 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1277 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1278 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1282 e_dbg("M88E1000 PSCR: %X\n", phy_data
);
1284 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
1288 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1290 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
1294 /* Reset the phy to commit changes. */
1295 if (hw
->phy
.ops
.commit
) {
1296 ret_val
= hw
->phy
.ops
.commit(hw
);
1301 if (phy
->autoneg_wait_to_complete
) {
1302 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1304 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1310 if (hw
->phy
.type
!= e1000_phy_m88
) {
1311 e_dbg("Link taking longer than expected.\n");
1313 /* We didn't get link.
1314 * Reset the DSP and cross our fingers.
1316 ret_val
= e1e_wphy(hw
, M88E1000_PHY_PAGE_SELECT
,
1320 ret_val
= e1000e_phy_reset_dsp(hw
);
1327 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1333 if (hw
->phy
.type
!= e1000_phy_m88
)
1336 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1340 /* Resetting the phy means we need to re-force TX_CLK in the
1341 * Extended PHY Specific Control Register to 25MHz clock from
1342 * the reset value of 2.5MHz.
1344 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1345 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1349 /* In addition, we must re-enable CRS on Tx for both half and full
1352 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1356 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1357 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1363 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1364 * @hw: pointer to the HW structure
1366 * Forces the speed and duplex settings of the PHY.
1367 * This is a function pointer entry point only called by
1368 * PHY setup routines.
1370 s32
e1000_phy_force_speed_duplex_ife(struct e1000_hw
*hw
)
1372 struct e1000_phy_info
*phy
= &hw
->phy
;
1377 ret_val
= e1e_rphy(hw
, MII_BMCR
, &data
);
1381 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
1383 ret_val
= e1e_wphy(hw
, MII_BMCR
, data
);
1387 /* Disable MDI-X support for 10/100 */
1388 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
1392 data
&= ~IFE_PMC_AUTO_MDIX
;
1393 data
&= ~IFE_PMC_FORCE_MDIX
;
1395 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
1399 e_dbg("IFE PMC: %X\n", data
);
1403 if (phy
->autoneg_wait_to_complete
) {
1404 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1406 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1412 e_dbg("Link taking longer than expected.\n");
1415 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1425 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1426 * @hw: pointer to the HW structure
1427 * @phy_ctrl: pointer to current value of MII_BMCR
1429 * Forces speed and duplex on the PHY by doing the following: disable flow
1430 * control, force speed/duplex on the MAC, disable auto speed detection,
1431 * disable auto-negotiation, configure duplex, configure speed, configure
1432 * the collision distance, write configuration to CTRL register. The
1433 * caller must write to the MII_BMCR register for these settings to
1436 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1438 struct e1000_mac_info
*mac
= &hw
->mac
;
1441 /* Turn off flow control when forcing speed/duplex */
1442 hw
->fc
.current_mode
= e1000_fc_none
;
1444 /* Force speed/duplex on the mac */
1446 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1447 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1449 /* Disable Auto Speed Detection */
1450 ctrl
&= ~E1000_CTRL_ASDE
;
1452 /* Disable autoneg on the phy */
1453 *phy_ctrl
&= ~BMCR_ANENABLE
;
1455 /* Forcing Full or Half Duplex? */
1456 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1457 ctrl
&= ~E1000_CTRL_FD
;
1458 *phy_ctrl
&= ~BMCR_FULLDPLX
;
1459 e_dbg("Half Duplex\n");
1461 ctrl
|= E1000_CTRL_FD
;
1462 *phy_ctrl
|= BMCR_FULLDPLX
;
1463 e_dbg("Full Duplex\n");
1466 /* Forcing 10mb or 100mb? */
1467 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1468 ctrl
|= E1000_CTRL_SPD_100
;
1469 *phy_ctrl
|= BMCR_SPEED100
;
1470 *phy_ctrl
&= ~BMCR_SPEED1000
;
1471 e_dbg("Forcing 100mb\n");
1473 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1474 *phy_ctrl
&= ~(BMCR_SPEED1000
| BMCR_SPEED100
);
1475 e_dbg("Forcing 10mb\n");
1478 hw
->mac
.ops
.config_collision_dist(hw
);
1484 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1485 * @hw: pointer to the HW structure
1486 * @active: boolean used to enable/disable lplu
1488 * Success returns 0, Failure returns 1
1490 * The low power link up (lplu) state is set to the power management level D3
1491 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1492 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1493 * is used during Dx states where the power conservation is most important.
1494 * During driver activity, SmartSpeed should be enabled so performance is
1497 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1499 struct e1000_phy_info
*phy
= &hw
->phy
;
1503 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1508 data
&= ~IGP02E1000_PM_D3_LPLU
;
1509 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1512 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1513 * during Dx states where the power conservation is most
1514 * important. During driver activity we should enable
1515 * SmartSpeed, so performance is maintained.
1517 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1518 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1523 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1524 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1528 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1529 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1534 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1535 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1540 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1541 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1542 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1543 data
|= IGP02E1000_PM_D3_LPLU
;
1544 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1548 /* When LPLU is enabled, we should disable SmartSpeed */
1549 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1553 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1554 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1561 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1562 * @hw: pointer to the HW structure
1564 * Success returns 0, Failure returns 1
1566 * A downshift is detected by querying the PHY link health.
1568 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1570 struct e1000_phy_info
*phy
= &hw
->phy
;
1572 u16 phy_data
, offset
, mask
;
1574 switch (phy
->type
) {
1576 case e1000_phy_gg82563
:
1578 case e1000_phy_82578
:
1579 offset
= M88E1000_PHY_SPEC_STATUS
;
1580 mask
= M88E1000_PSSR_DOWNSHIFT
;
1582 case e1000_phy_igp_2
:
1583 case e1000_phy_igp_3
:
1584 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1585 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1588 /* speed downshift not supported */
1589 phy
->speed_downgraded
= false;
1593 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1596 phy
->speed_downgraded
= !!(phy_data
& mask
);
1602 * e1000_check_polarity_m88 - Checks the polarity.
1603 * @hw: pointer to the HW structure
1605 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1607 * Polarity is determined based on the PHY specific status register.
1609 s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1611 struct e1000_phy_info
*phy
= &hw
->phy
;
1615 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1618 phy
->cable_polarity
= ((data
& M88E1000_PSSR_REV_POLARITY
)
1619 ? e1000_rev_polarity_reversed
1620 : e1000_rev_polarity_normal
);
1626 * e1000_check_polarity_igp - Checks the polarity.
1627 * @hw: pointer to the HW structure
1629 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1631 * Polarity is determined based on the PHY port status register, and the
1632 * current speed (since there is no polarity at 100Mbps).
1634 s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1636 struct e1000_phy_info
*phy
= &hw
->phy
;
1638 u16 data
, offset
, mask
;
1640 /* Polarity is determined based on the speed of
1643 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1647 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1648 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1649 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1650 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1652 /* This really only applies to 10Mbps since
1653 * there is no polarity for 100Mbps (always 0).
1655 offset
= IGP01E1000_PHY_PORT_STATUS
;
1656 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1659 ret_val
= e1e_rphy(hw
, offset
, &data
);
1662 phy
->cable_polarity
= ((data
& mask
)
1663 ? e1000_rev_polarity_reversed
1664 : e1000_rev_polarity_normal
);
1670 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1671 * @hw: pointer to the HW structure
1673 * Polarity is determined on the polarity reversal feature being enabled.
1675 s32
e1000_check_polarity_ife(struct e1000_hw
*hw
)
1677 struct e1000_phy_info
*phy
= &hw
->phy
;
1679 u16 phy_data
, offset
, mask
;
1681 /* Polarity is determined based on the reversal feature being enabled.
1683 if (phy
->polarity_correction
) {
1684 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1685 mask
= IFE_PESC_POLARITY_REVERSED
;
1687 offset
= IFE_PHY_SPECIAL_CONTROL
;
1688 mask
= IFE_PSC_FORCE_POLARITY
;
1691 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1694 phy
->cable_polarity
= ((phy_data
& mask
)
1695 ? e1000_rev_polarity_reversed
1696 : e1000_rev_polarity_normal
);
1702 * e1000_wait_autoneg - Wait for auto-neg completion
1703 * @hw: pointer to the HW structure
1705 * Waits for auto-negotiation to complete or for the auto-negotiation time
1706 * limit to expire, which ever happens first.
1708 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1713 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1714 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1715 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1718 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1721 if (phy_status
& BMSR_ANEGCOMPLETE
)
1726 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1733 * e1000e_phy_has_link_generic - Polls PHY for link
1734 * @hw: pointer to the HW structure
1735 * @iterations: number of times to poll for link
1736 * @usec_interval: delay between polling attempts
1737 * @success: pointer to whether polling was successful or not
1739 * Polls the PHY status register for link, 'iterations' number of times.
1741 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1742 u32 usec_interval
, bool *success
)
1748 for (i
= 0; i
< iterations
; i
++) {
1749 /* Some PHYs require the MII_BMSR register to be read
1750 * twice due to the link bit being sticky. No harm doing
1751 * it across the board.
1753 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1755 /* If the first read fails, another entity may have
1756 * ownership of the resources, wait and try again to
1757 * see if they have relinquished the resources yet.
1759 if (usec_interval
>= 1000)
1760 msleep(usec_interval
/ 1000);
1762 udelay(usec_interval
);
1764 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1767 if (phy_status
& BMSR_LSTATUS
) {
1771 if (usec_interval
>= 1000)
1772 msleep(usec_interval
/ 1000);
1774 udelay(usec_interval
);
1781 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1782 * @hw: pointer to the HW structure
1784 * Reads the PHY specific status register to retrieve the cable length
1785 * information. The cable length is determined by averaging the minimum and
1786 * maximum values to get the "average" cable length. The m88 PHY has four
1787 * possible cable length values, which are:
1788 * Register Value Cable Length
1792 * 3 110 - 140 meters
1795 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1797 struct e1000_phy_info
*phy
= &hw
->phy
;
1799 u16 phy_data
, index
;
1801 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1805 index
= ((phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1806 M88E1000_PSSR_CABLE_LENGTH_SHIFT
);
1808 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1)
1809 return -E1000_ERR_PHY
;
1811 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1812 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1814 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1820 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1821 * @hw: pointer to the HW structure
1823 * The automatic gain control (agc) normalizes the amplitude of the
1824 * received signal, adjusting for the attenuation produced by the
1825 * cable. By reading the AGC registers, which represent the
1826 * combination of coarse and fine gain value, the value can be put
1827 * into a lookup table to obtain the approximate cable length
1830 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1832 struct e1000_phy_info
*phy
= &hw
->phy
;
1834 u16 phy_data
, i
, agc_value
= 0;
1835 u16 cur_agc_index
, max_agc_index
= 0;
1836 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1837 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1838 IGP02E1000_PHY_AGC_A
,
1839 IGP02E1000_PHY_AGC_B
,
1840 IGP02E1000_PHY_AGC_C
,
1841 IGP02E1000_PHY_AGC_D
1844 /* Read the AGC registers for all channels */
1845 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1846 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1850 /* Getting bits 15:9, which represent the combination of
1851 * coarse and fine gain values. The result is a number
1852 * that can be put into the lookup table to obtain the
1853 * approximate cable length.
1855 cur_agc_index
= ((phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1856 IGP02E1000_AGC_LENGTH_MASK
);
1858 /* Array index bound check. */
1859 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1860 (cur_agc_index
== 0))
1861 return -E1000_ERR_PHY
;
1863 /* Remove min & max AGC values from calculation. */
1864 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1865 e1000_igp_2_cable_length_table
[cur_agc_index
])
1866 min_agc_index
= cur_agc_index
;
1867 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1868 e1000_igp_2_cable_length_table
[cur_agc_index
])
1869 max_agc_index
= cur_agc_index
;
1871 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1874 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1875 e1000_igp_2_cable_length_table
[max_agc_index
]);
1876 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1878 /* Calculate cable length with the error range of +/- 10 meters. */
1879 phy
->min_cable_length
= (((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1880 (agc_value
- IGP02E1000_AGC_RANGE
) : 0);
1881 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1883 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1889 * e1000e_get_phy_info_m88 - Retrieve PHY information
1890 * @hw: pointer to the HW structure
1892 * Valid for only copper links. Read the PHY status register (sticky read)
1893 * to verify that link is up. Read the PHY special control register to
1894 * determine the polarity and 10base-T extended distance. Read the PHY
1895 * special status register to determine MDI/MDIx and current speed. If
1896 * speed is 1000, then determine cable length, local and remote receiver.
1898 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1900 struct e1000_phy_info
*phy
= &hw
->phy
;
1905 if (phy
->media_type
!= e1000_media_type_copper
) {
1906 e_dbg("Phy info is only valid for copper media\n");
1907 return -E1000_ERR_CONFIG
;
1910 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1915 e_dbg("Phy info is only valid if link is up\n");
1916 return -E1000_ERR_CONFIG
;
1919 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1923 phy
->polarity_correction
= !!(phy_data
&
1924 M88E1000_PSCR_POLARITY_REVERSAL
);
1926 ret_val
= e1000_check_polarity_m88(hw
);
1930 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1934 phy
->is_mdix
= !!(phy_data
& M88E1000_PSSR_MDIX
);
1936 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1937 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
1941 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &phy_data
);
1945 phy
->local_rx
= (phy_data
& LPA_1000LOCALRXOK
)
1946 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1948 phy
->remote_rx
= (phy_data
& LPA_1000REMRXOK
)
1949 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1951 /* Set values to "undefined" */
1952 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1953 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1954 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1961 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1962 * @hw: pointer to the HW structure
1964 * Read PHY status to determine if link is up. If link is up, then
1965 * set/determine 10base-T extended distance and polarity correction. Read
1966 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1967 * determine on the cable length, local and remote receiver.
1969 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
1971 struct e1000_phy_info
*phy
= &hw
->phy
;
1976 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1981 e_dbg("Phy info is only valid if link is up\n");
1982 return -E1000_ERR_CONFIG
;
1985 phy
->polarity_correction
= true;
1987 ret_val
= e1000_check_polarity_igp(hw
);
1991 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1995 phy
->is_mdix
= !!(data
& IGP01E1000_PSSR_MDIX
);
1997 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1998 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1999 ret_val
= phy
->ops
.get_cable_length(hw
);
2003 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &data
);
2007 phy
->local_rx
= (data
& LPA_1000LOCALRXOK
)
2008 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
2010 phy
->remote_rx
= (data
& LPA_1000REMRXOK
)
2011 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
2013 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2014 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2015 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2022 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2023 * @hw: pointer to the HW structure
2025 * Populates "phy" structure with various feature states.
2027 s32
e1000_get_phy_info_ife(struct e1000_hw
*hw
)
2029 struct e1000_phy_info
*phy
= &hw
->phy
;
2034 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2039 e_dbg("Phy info is only valid if link is up\n");
2040 return -E1000_ERR_CONFIG
;
2043 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
2046 phy
->polarity_correction
= !(data
& IFE_PSC_AUTO_POLARITY_DISABLE
);
2048 if (phy
->polarity_correction
) {
2049 ret_val
= e1000_check_polarity_ife(hw
);
2053 /* Polarity is forced */
2054 phy
->cable_polarity
= ((data
& IFE_PSC_FORCE_POLARITY
)
2055 ? e1000_rev_polarity_reversed
2056 : e1000_rev_polarity_normal
);
2059 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
2063 phy
->is_mdix
= !!(data
& IFE_PMC_MDIX_STATUS
);
2065 /* The following parameters are undefined for 10/100 operation. */
2066 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2067 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2068 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2074 * e1000e_phy_sw_reset - PHY software reset
2075 * @hw: pointer to the HW structure
2077 * Does a software reset of the PHY by reading the PHY control register and
2078 * setting/write the control register reset bit to the PHY.
2080 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
2085 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_ctrl
);
2089 phy_ctrl
|= BMCR_RESET
;
2090 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_ctrl
);
2100 * e1000e_phy_hw_reset_generic - PHY hardware reset
2101 * @hw: pointer to the HW structure
2103 * Verify the reset block is not blocking us from resetting. Acquire
2104 * semaphore (if necessary) and read/set/write the device control reset
2105 * bit in the PHY. Wait the appropriate delay time for the device to
2106 * reset and release the semaphore (if necessary).
2108 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
2110 struct e1000_phy_info
*phy
= &hw
->phy
;
2114 if (phy
->ops
.check_reset_block
) {
2115 ret_val
= phy
->ops
.check_reset_block(hw
);
2120 ret_val
= phy
->ops
.acquire(hw
);
2125 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2128 udelay(phy
->reset_delay_us
);
2133 usleep_range(150, 300);
2135 phy
->ops
.release(hw
);
2137 return phy
->ops
.get_cfg_done(hw
);
2141 * e1000e_get_cfg_done_generic - Generic configuration done
2142 * @hw: pointer to the HW structure
2144 * Generic function to wait 10 milli-seconds for configuration to complete
2145 * and return success.
2147 s32
e1000e_get_cfg_done_generic(struct e1000_hw __always_unused
*hw
)
2155 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2156 * @hw: pointer to the HW structure
2158 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2160 s32
e1000e_phy_init_script_igp3(struct e1000_hw
*hw
)
2162 e_dbg("Running IGP 3 PHY init script\n");
2164 /* PHY init IGP 3 */
2165 /* Enable rise/fall, 10-mode work in class-A */
2166 e1e_wphy(hw
, 0x2F5B, 0x9018);
2167 /* Remove all caps from Replica path filter */
2168 e1e_wphy(hw
, 0x2F52, 0x0000);
2169 /* Bias trimming for ADC, AFE and Driver (Default) */
2170 e1e_wphy(hw
, 0x2FB1, 0x8B24);
2171 /* Increase Hybrid poly bias */
2172 e1e_wphy(hw
, 0x2FB2, 0xF8F0);
2173 /* Add 4% to Tx amplitude in Gig mode */
2174 e1e_wphy(hw
, 0x2010, 0x10B0);
2175 /* Disable trimming (TTT) */
2176 e1e_wphy(hw
, 0x2011, 0x0000);
2177 /* Poly DC correction to 94.6% + 2% for all channels */
2178 e1e_wphy(hw
, 0x20DD, 0x249A);
2179 /* ABS DC correction to 95.9% */
2180 e1e_wphy(hw
, 0x20DE, 0x00D3);
2181 /* BG temp curve trim */
2182 e1e_wphy(hw
, 0x28B4, 0x04CE);
2183 /* Increasing ADC OPAMP stage 1 currents to max */
2184 e1e_wphy(hw
, 0x2F70, 0x29E4);
2185 /* Force 1000 ( required for enabling PHY regs configuration) */
2186 e1e_wphy(hw
, 0x0000, 0x0140);
2187 /* Set upd_freq to 6 */
2188 e1e_wphy(hw
, 0x1F30, 0x1606);
2190 e1e_wphy(hw
, 0x1F31, 0xB814);
2191 /* Disable adaptive fixed FFE (Default) */
2192 e1e_wphy(hw
, 0x1F35, 0x002A);
2193 /* Enable FFE hysteresis */
2194 e1e_wphy(hw
, 0x1F3E, 0x0067);
2195 /* Fixed FFE for short cable lengths */
2196 e1e_wphy(hw
, 0x1F54, 0x0065);
2197 /* Fixed FFE for medium cable lengths */
2198 e1e_wphy(hw
, 0x1F55, 0x002A);
2199 /* Fixed FFE for long cable lengths */
2200 e1e_wphy(hw
, 0x1F56, 0x002A);
2201 /* Enable Adaptive Clip Threshold */
2202 e1e_wphy(hw
, 0x1F72, 0x3FB0);
2203 /* AHT reset limit to 1 */
2204 e1e_wphy(hw
, 0x1F76, 0xC0FF);
2205 /* Set AHT master delay to 127 msec */
2206 e1e_wphy(hw
, 0x1F77, 0x1DEC);
2207 /* Set scan bits for AHT */
2208 e1e_wphy(hw
, 0x1F78, 0xF9EF);
2209 /* Set AHT Preset bits */
2210 e1e_wphy(hw
, 0x1F79, 0x0210);
2211 /* Change integ_factor of channel A to 3 */
2212 e1e_wphy(hw
, 0x1895, 0x0003);
2213 /* Change prop_factor of channels BCD to 8 */
2214 e1e_wphy(hw
, 0x1796, 0x0008);
2215 /* Change cg_icount + enable integbp for channels BCD */
2216 e1e_wphy(hw
, 0x1798, 0xD008);
2217 /* Change cg_icount + enable integbp + change prop_factor_master
2218 * to 8 for channel A
2220 e1e_wphy(hw
, 0x1898, 0xD918);
2221 /* Disable AHT in Slave mode on channel A */
2222 e1e_wphy(hw
, 0x187A, 0x0800);
2223 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2226 e1e_wphy(hw
, 0x0019, 0x008D);
2227 /* Enable restart AN on an1000_dis change */
2228 e1e_wphy(hw
, 0x001B, 0x2080);
2229 /* Enable wh_fifo read clock in 10/100 modes */
2230 e1e_wphy(hw
, 0x0014, 0x0045);
2231 /* Restart AN, Speed selection is 1000 */
2232 e1e_wphy(hw
, 0x0000, 0x1340);
2238 * e1000e_get_phy_type_from_id - Get PHY type from id
2239 * @phy_id: phy_id read from the phy
2241 * Returns the phy type from the id.
2243 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
2245 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2248 case M88E1000_I_PHY_ID
:
2249 case M88E1000_E_PHY_ID
:
2250 case M88E1111_I_PHY_ID
:
2251 case M88E1011_I_PHY_ID
:
2252 phy_type
= e1000_phy_m88
;
2254 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
2255 phy_type
= e1000_phy_igp_2
;
2257 case GG82563_E_PHY_ID
:
2258 phy_type
= e1000_phy_gg82563
;
2260 case IGP03E1000_E_PHY_ID
:
2261 phy_type
= e1000_phy_igp_3
;
2264 case IFE_PLUS_E_PHY_ID
:
2265 case IFE_C_E_PHY_ID
:
2266 phy_type
= e1000_phy_ife
;
2268 case BME1000_E_PHY_ID
:
2269 case BME1000_E_PHY_ID_R2
:
2270 phy_type
= e1000_phy_bm
;
2272 case I82578_E_PHY_ID
:
2273 phy_type
= e1000_phy_82578
;
2275 case I82577_E_PHY_ID
:
2276 phy_type
= e1000_phy_82577
;
2278 case I82579_E_PHY_ID
:
2279 phy_type
= e1000_phy_82579
;
2282 phy_type
= e1000_phy_i217
;
2285 phy_type
= e1000_phy_unknown
;
2292 * e1000e_determine_phy_address - Determines PHY address.
2293 * @hw: pointer to the HW structure
2295 * This uses a trial and error method to loop through possible PHY
2296 * addresses. It tests each by reading the PHY ID registers and
2297 * checking for a match.
2299 s32
e1000e_determine_phy_address(struct e1000_hw
*hw
)
2303 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2305 hw
->phy
.id
= phy_type
;
2307 for (phy_addr
= 0; phy_addr
< E1000_MAX_PHY_ADDR
; phy_addr
++) {
2308 hw
->phy
.addr
= phy_addr
;
2312 e1000e_get_phy_id(hw
);
2313 phy_type
= e1000e_get_phy_type_from_id(hw
->phy
.id
);
2315 /* If phy_type is valid, break - we found our
2318 if (phy_type
!= e1000_phy_unknown
)
2321 usleep_range(1000, 2000);
2326 return -E1000_ERR_PHY_TYPE
;
2330 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2331 * @page: page to access
2333 * Returns the phy address for the page requested.
2335 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
)
2339 if ((page
>= 768) || (page
== 0 && reg
== 25) || (reg
== 31))
2346 * e1000e_write_phy_reg_bm - Write BM PHY register
2347 * @hw: pointer to the HW structure
2348 * @offset: register offset to write to
2349 * @data: data to write at register offset
2351 * Acquires semaphore, if necessary, then writes the data to PHY register
2352 * at the offset. Release any acquired semaphores before exiting.
2354 s32
e1000e_write_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2357 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2359 ret_val
= hw
->phy
.ops
.acquire(hw
);
2363 /* Page 800 works differently than the rest so it has its own func */
2364 if (page
== BM_WUC_PAGE
) {
2365 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2370 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2372 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2373 u32 page_shift
, page_select
;
2375 /* Page select is register 31 for phy address 1 and 22 for
2376 * phy address 2 and 3. Page select is shifted only for
2379 if (hw
->phy
.addr
== 1) {
2380 page_shift
= IGP_PAGE_SHIFT
;
2381 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2384 page_select
= BM_PHY_PAGE_SELECT
;
2387 /* Page is shifted left, PHY expects (page x 32) */
2388 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2389 (page
<< page_shift
));
2394 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2398 hw
->phy
.ops
.release(hw
);
2403 * e1000e_read_phy_reg_bm - Read BM PHY register
2404 * @hw: pointer to the HW structure
2405 * @offset: register offset to be read
2406 * @data: pointer to the read data
2408 * Acquires semaphore, if necessary, then reads the PHY register at offset
2409 * and storing the retrieved information in data. Release any acquired
2410 * semaphores before exiting.
2412 s32
e1000e_read_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2415 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2417 ret_val
= hw
->phy
.ops
.acquire(hw
);
2421 /* Page 800 works differently than the rest so it has its own func */
2422 if (page
== BM_WUC_PAGE
) {
2423 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2428 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2430 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2431 u32 page_shift
, page_select
;
2433 /* Page select is register 31 for phy address 1 and 22 for
2434 * phy address 2 and 3. Page select is shifted only for
2437 if (hw
->phy
.addr
== 1) {
2438 page_shift
= IGP_PAGE_SHIFT
;
2439 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2442 page_select
= BM_PHY_PAGE_SELECT
;
2445 /* Page is shifted left, PHY expects (page x 32) */
2446 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2447 (page
<< page_shift
));
2452 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2455 hw
->phy
.ops
.release(hw
);
2460 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2461 * @hw: pointer to the HW structure
2462 * @offset: register offset to be read
2463 * @data: pointer to the read data
2465 * Acquires semaphore, if necessary, then reads the PHY register at offset
2466 * and storing the retrieved information in data. Release any acquired
2467 * semaphores before exiting.
2469 s32
e1000e_read_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2472 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2474 ret_val
= hw
->phy
.ops
.acquire(hw
);
2478 /* Page 800 works differently than the rest so it has its own func */
2479 if (page
== BM_WUC_PAGE
) {
2480 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2487 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2488 /* Page is shifted left, PHY expects (page x 32) */
2489 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2496 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2499 hw
->phy
.ops
.release(hw
);
2504 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2505 * @hw: pointer to the HW structure
2506 * @offset: register offset to write to
2507 * @data: data to write at register offset
2509 * Acquires semaphore, if necessary, then writes the data to PHY register
2510 * at the offset. Release any acquired semaphores before exiting.
2512 s32
e1000e_write_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2515 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2517 ret_val
= hw
->phy
.ops
.acquire(hw
);
2521 /* Page 800 works differently than the rest so it has its own func */
2522 if (page
== BM_WUC_PAGE
) {
2523 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2530 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2531 /* Page is shifted left, PHY expects (page x 32) */
2532 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2539 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2543 hw
->phy
.ops
.release(hw
);
2548 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2549 * @hw: pointer to the HW structure
2550 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2552 * Assumes semaphore already acquired and phy_reg points to a valid memory
2553 * address to store contents of the BM_WUC_ENABLE_REG register.
2555 s32
e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2560 /* All page select, port ctrl and wakeup registers use phy address 1 */
2563 /* Select Port Control Registers page */
2564 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2566 e_dbg("Could not set Port Control page\n");
2570 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
2572 e_dbg("Could not read PHY register %d.%d\n",
2573 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2577 /* Enable both PHY wakeup mode and Wakeup register page writes.
2578 * Prevent a power state change by disabling ME and Host PHY wakeup.
2581 temp
|= BM_WUC_ENABLE_BIT
;
2582 temp
&= ~(BM_WUC_ME_WU_BIT
| BM_WUC_HOST_WU_BIT
);
2584 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, temp
);
2586 e_dbg("Could not write PHY register %d.%d\n",
2587 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2591 /* Select Host Wakeup Registers page - caller now able to write
2592 * registers on the Wakeup registers page
2594 return e1000_set_page_igp(hw
, (BM_WUC_PAGE
<< IGP_PAGE_SHIFT
));
2598 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2599 * @hw: pointer to the HW structure
2600 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2602 * Restore BM_WUC_ENABLE_REG to its original value.
2604 * Assumes semaphore already acquired and *phy_reg is the contents of the
2605 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2608 s32
e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2612 /* Select Port Control Registers page */
2613 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2615 e_dbg("Could not set Port Control page\n");
2619 /* Restore 769.17 to its original value */
2620 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, *phy_reg
);
2622 e_dbg("Could not restore PHY register %d.%d\n",
2623 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2629 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2630 * @hw: pointer to the HW structure
2631 * @offset: register offset to be read or written
2632 * @data: pointer to the data to read or write
2633 * @read: determines if operation is read or write
2634 * @page_set: BM_WUC_PAGE already set and access enabled
2636 * Read the PHY register at offset and store the retrieved information in
2637 * data, or write data to PHY register at offset. Note the procedure to
2638 * access the PHY wakeup registers is different than reading the other PHY
2639 * registers. It works as such:
2640 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2641 * 2) Set page to 800 for host (801 if we were manageability)
2642 * 3) Write the address using the address opcode (0x11)
2643 * 4) Read or write the data using the data opcode (0x12)
2644 * 5) Restore 769.17.2 to its original value
2646 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2647 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2649 * Assumes semaphore is already acquired. When page_set==true, assumes
2650 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2651 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2653 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
2654 u16
*data
, bool read
, bool page_set
)
2657 u16 reg
= BM_PHY_REG_NUM(offset
);
2658 u16 page
= BM_PHY_REG_PAGE(offset
);
2661 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2662 if ((hw
->mac
.type
== e1000_pchlan
) &&
2663 (!(er32(PHY_CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)))
2664 e_dbg("Attempting to access page %d while gig enabled.\n",
2668 /* Enable access to PHY wakeup registers */
2669 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2671 e_dbg("Could not enable PHY wakeup reg access\n");
2676 e_dbg("Accessing PHY page %d reg 0x%x\n", page
, reg
);
2678 /* Write the Wakeup register page offset value using opcode 0x11 */
2679 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ADDRESS_OPCODE
, reg
);
2681 e_dbg("Could not write address opcode to page %d\n", page
);
2686 /* Read the Wakeup register page value using opcode 0x12 */
2687 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2690 /* Write the Wakeup register page value using opcode 0x12 */
2691 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2696 e_dbg("Could not access PHY reg %d.%d\n", page
, reg
);
2701 ret_val
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2707 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2708 * @hw: pointer to the HW structure
2710 * In the case of a PHY power down to save power, or to turn off link during a
2711 * driver unload, or wake on lan is not enabled, restore the link to previous
2714 void e1000_power_up_phy_copper(struct e1000_hw
*hw
)
2718 /* The PHY will retain its settings across a power down/up cycle */
2719 e1e_rphy(hw
, MII_BMCR
, &mii_reg
);
2720 mii_reg
&= ~BMCR_PDOWN
;
2721 e1e_wphy(hw
, MII_BMCR
, mii_reg
);
2725 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2726 * @hw: pointer to the HW structure
2728 * In the case of a PHY power down to save power, or to turn off link during a
2729 * driver unload, or wake on lan is not enabled, restore the link to previous
2732 void e1000_power_down_phy_copper(struct e1000_hw
*hw
)
2736 /* The PHY will retain its settings across a power down/up cycle */
2737 e1e_rphy(hw
, MII_BMCR
, &mii_reg
);
2738 mii_reg
|= BMCR_PDOWN
;
2739 e1e_wphy(hw
, MII_BMCR
, mii_reg
);
2740 usleep_range(1000, 2000);
2744 * __e1000_read_phy_reg_hv - Read HV PHY register
2745 * @hw: pointer to the HW structure
2746 * @offset: register offset to be read
2747 * @data: pointer to the read data
2748 * @locked: semaphore has already been acquired or not
2750 * Acquires semaphore, if necessary, then reads the PHY register at offset
2751 * and stores the retrieved information in data. Release any acquired
2752 * semaphore before exiting.
2754 static s32
__e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
2755 bool locked
, bool page_set
)
2758 u16 page
= BM_PHY_REG_PAGE(offset
);
2759 u16 reg
= BM_PHY_REG_NUM(offset
);
2760 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2763 ret_val
= hw
->phy
.ops
.acquire(hw
);
2768 /* Page 800 works differently than the rest so it has its own func */
2769 if (page
== BM_WUC_PAGE
) {
2770 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2775 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2776 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2782 if (page
== HV_INTC_FC_PAGE_START
)
2785 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2786 /* Page is shifted left, PHY expects (page x 32) */
2787 ret_val
= e1000_set_page_igp(hw
,
2788 (page
<< IGP_PAGE_SHIFT
));
2790 hw
->phy
.addr
= phy_addr
;
2797 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2798 page
<< IGP_PAGE_SHIFT
, reg
);
2800 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
, data
);
2803 hw
->phy
.ops
.release(hw
);
2809 * e1000_read_phy_reg_hv - Read HV PHY register
2810 * @hw: pointer to the HW structure
2811 * @offset: register offset to be read
2812 * @data: pointer to the read data
2814 * Acquires semaphore then reads the PHY register at offset and stores
2815 * the retrieved information in data. Release the acquired semaphore
2818 s32
e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2820 return __e1000_read_phy_reg_hv(hw
, offset
, data
, false, false);
2824 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2825 * @hw: pointer to the HW structure
2826 * @offset: register offset to be read
2827 * @data: pointer to the read data
2829 * Reads the PHY register at offset and stores the retrieved information
2830 * in data. Assumes semaphore already acquired.
2832 s32
e1000_read_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2834 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, false);
2838 * e1000_read_phy_reg_page_hv - Read HV PHY register
2839 * @hw: pointer to the HW structure
2840 * @offset: register offset to write to
2841 * @data: data to write at register offset
2843 * Reads the PHY register at offset and stores the retrieved information
2844 * in data. Assumes semaphore already acquired and page already set.
2846 s32
e1000_read_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2848 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, true);
2852 * __e1000_write_phy_reg_hv - Write HV PHY register
2853 * @hw: pointer to the HW structure
2854 * @offset: register offset to write to
2855 * @data: data to write at register offset
2856 * @locked: semaphore has already been acquired or not
2858 * Acquires semaphore, if necessary, then writes the data to PHY register
2859 * at the offset. Release any acquired semaphores before exiting.
2861 static s32
__e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
,
2862 bool locked
, bool page_set
)
2865 u16 page
= BM_PHY_REG_PAGE(offset
);
2866 u16 reg
= BM_PHY_REG_NUM(offset
);
2867 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2870 ret_val
= hw
->phy
.ops
.acquire(hw
);
2875 /* Page 800 works differently than the rest so it has its own func */
2876 if (page
== BM_WUC_PAGE
) {
2877 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2882 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2883 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2889 if (page
== HV_INTC_FC_PAGE_START
)
2892 /* Workaround MDIO accesses being disabled after entering IEEE
2893 * Power Down (when bit 11 of the PHY Control register is set)
2895 if ((hw
->phy
.type
== e1000_phy_82578
) &&
2896 (hw
->phy
.revision
>= 1) &&
2897 (hw
->phy
.addr
== 2) &&
2898 !(MAX_PHY_REG_ADDRESS
& reg
) && (data
& BIT(11))) {
2901 ret_val
= e1000_access_phy_debug_regs_hv(hw
,
2908 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2909 /* Page is shifted left, PHY expects (page x 32) */
2910 ret_val
= e1000_set_page_igp(hw
,
2911 (page
<< IGP_PAGE_SHIFT
));
2913 hw
->phy
.addr
= phy_addr
;
2920 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2921 page
<< IGP_PAGE_SHIFT
, reg
);
2923 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
2928 hw
->phy
.ops
.release(hw
);
2934 * e1000_write_phy_reg_hv - Write HV PHY register
2935 * @hw: pointer to the HW structure
2936 * @offset: register offset to write to
2937 * @data: data to write at register offset
2939 * Acquires semaphore then writes the data to PHY register at the offset.
2940 * Release the acquired semaphores before exiting.
2942 s32
e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2944 return __e1000_write_phy_reg_hv(hw
, offset
, data
, false, false);
2948 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2949 * @hw: pointer to the HW structure
2950 * @offset: register offset to write to
2951 * @data: data to write at register offset
2953 * Writes the data to PHY register at the offset. Assumes semaphore
2956 s32
e1000_write_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2958 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, false);
2962 * e1000_write_phy_reg_page_hv - Write HV PHY register
2963 * @hw: pointer to the HW structure
2964 * @offset: register offset to write to
2965 * @data: data to write at register offset
2967 * Writes the data to PHY register at the offset. Assumes semaphore
2968 * already acquired and page already set.
2970 s32
e1000_write_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2972 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, true);
2976 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2977 * @page: page to be accessed
2979 static u32
e1000_get_phy_addr_for_hv_page(u32 page
)
2983 if (page
>= HV_INTC_FC_PAGE_START
)
2990 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2991 * @hw: pointer to the HW structure
2992 * @offset: register offset to be read or written
2993 * @data: pointer to the data to be read or written
2994 * @read: determines if operation is read or write
2996 * Reads the PHY register at offset and stores the retreived information
2997 * in data. Assumes semaphore already acquired. Note that the procedure
2998 * to access these regs uses the address port and data port to read/write.
2999 * These accesses done with PHY address 2 and without using pages.
3001 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
3002 u16
*data
, bool read
)
3008 /* This takes care of the difference with desktop vs mobile phy */
3009 addr_reg
= ((hw
->phy
.type
== e1000_phy_82578
) ?
3010 I82578_ADDR_REG
: I82577_ADDR_REG
);
3011 data_reg
= addr_reg
+ 1;
3013 /* All operations in this function are phy address 2 */
3016 /* masking with 0x3F to remove the page from offset */
3017 ret_val
= e1000e_write_phy_reg_mdic(hw
, addr_reg
, (u16
)offset
& 0x3F);
3019 e_dbg("Could not write the Address Offset port register\n");
3023 /* Read or write the data value next */
3025 ret_val
= e1000e_read_phy_reg_mdic(hw
, data_reg
, data
);
3027 ret_val
= e1000e_write_phy_reg_mdic(hw
, data_reg
, *data
);
3030 e_dbg("Could not access the Data port register\n");
3036 * e1000_link_stall_workaround_hv - Si workaround
3037 * @hw: pointer to the HW structure
3039 * This function works around a Si bug where the link partner can get
3040 * a link up indication before the PHY does. If small packets are sent
3041 * by the link partner they can be placed in the packet buffer without
3042 * being properly accounted for by the PHY and will stall preventing
3043 * further packets from being received. The workaround is to clear the
3044 * packet buffer after the PHY detects link up.
3046 s32
e1000_link_stall_workaround_hv(struct e1000_hw
*hw
)
3051 if (hw
->phy
.type
!= e1000_phy_82578
)
3054 /* Do not apply workaround if in PHY loopback bit 14 set */
3055 e1e_rphy(hw
, MII_BMCR
, &data
);
3056 if (data
& BMCR_LOOPBACK
)
3059 /* check if link is up and at 1Gbps */
3060 ret_val
= e1e_rphy(hw
, BM_CS_STATUS
, &data
);
3064 data
&= (BM_CS_STATUS_LINK_UP
| BM_CS_STATUS_RESOLVED
|
3065 BM_CS_STATUS_SPEED_MASK
);
3067 if (data
!= (BM_CS_STATUS_LINK_UP
| BM_CS_STATUS_RESOLVED
|
3068 BM_CS_STATUS_SPEED_1000
))
3073 /* flush the packets in the fifo buffer */
3074 ret_val
= e1e_wphy(hw
, HV_MUX_DATA_CTRL
,
3075 (HV_MUX_DATA_CTRL_GEN_TO_MAC
|
3076 HV_MUX_DATA_CTRL_FORCE_SPEED
));
3080 return e1e_wphy(hw
, HV_MUX_DATA_CTRL
, HV_MUX_DATA_CTRL_GEN_TO_MAC
);
3084 * e1000_check_polarity_82577 - Checks the polarity.
3085 * @hw: pointer to the HW structure
3087 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3089 * Polarity is determined based on the PHY specific status register.
3091 s32
e1000_check_polarity_82577(struct e1000_hw
*hw
)
3093 struct e1000_phy_info
*phy
= &hw
->phy
;
3097 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3100 phy
->cable_polarity
= ((data
& I82577_PHY_STATUS2_REV_POLARITY
)
3101 ? e1000_rev_polarity_reversed
3102 : e1000_rev_polarity_normal
);
3108 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3109 * @hw: pointer to the HW structure
3111 * Calls the PHY setup function to force speed and duplex.
3113 s32
e1000_phy_force_speed_duplex_82577(struct e1000_hw
*hw
)
3115 struct e1000_phy_info
*phy
= &hw
->phy
;
3120 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
3124 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
3126 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
3132 if (phy
->autoneg_wait_to_complete
) {
3133 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3135 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
3141 e_dbg("Link taking longer than expected.\n");
3144 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
3152 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3153 * @hw: pointer to the HW structure
3155 * Read PHY status to determine if link is up. If link is up, then
3156 * set/determine 10base-T extended distance and polarity correction. Read
3157 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3158 * determine on the cable length, local and remote receiver.
3160 s32
e1000_get_phy_info_82577(struct e1000_hw
*hw
)
3162 struct e1000_phy_info
*phy
= &hw
->phy
;
3167 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3172 e_dbg("Phy info is only valid if link is up\n");
3173 return -E1000_ERR_CONFIG
;
3176 phy
->polarity_correction
= true;
3178 ret_val
= e1000_check_polarity_82577(hw
);
3182 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3186 phy
->is_mdix
= !!(data
& I82577_PHY_STATUS2_MDIX
);
3188 if ((data
& I82577_PHY_STATUS2_SPEED_MASK
) ==
3189 I82577_PHY_STATUS2_SPEED_1000MBPS
) {
3190 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
3194 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &data
);
3198 phy
->local_rx
= (data
& LPA_1000LOCALRXOK
)
3199 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
3201 phy
->remote_rx
= (data
& LPA_1000REMRXOK
)
3202 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
3204 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
3205 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
3206 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
3213 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3214 * @hw: pointer to the HW structure
3216 * Reads the diagnostic status register and verifies result is valid before
3217 * placing it in the phy_cable_length field.
3219 s32
e1000_get_cable_length_82577(struct e1000_hw
*hw
)
3221 struct e1000_phy_info
*phy
= &hw
->phy
;
3223 u16 phy_data
, length
;
3225 ret_val
= e1e_rphy(hw
, I82577_PHY_DIAG_STATUS
, &phy_data
);
3229 length
= ((phy_data
& I82577_DSTATUS_CABLE_LENGTH
) >>
3230 I82577_DSTATUS_CABLE_LENGTH_SHIFT
);
3232 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
3233 return -E1000_ERR_PHY
;
3235 phy
->cable_length
= length
;