1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 #include <linux/if_ether.h>
25 #include <linux/delay.h>
27 #include "e1000_mac.h"
28 #include "e1000_phy.h"
30 static s32
igb_phy_setup_autoneg(struct e1000_hw
*hw
);
31 static void igb_phy_force_speed_duplex_setup(struct e1000_hw
*hw
,
33 static s32
igb_wait_autoneg(struct e1000_hw
*hw
);
34 static s32
igb_set_master_slave_mode(struct e1000_hw
*hw
);
36 /* Cable length tables */
37 static const u16 e1000_m88_cable_length_table
[] = {
38 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
40 static const u16 e1000_igp_2_cable_length_table
[] = {
41 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
42 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
43 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
44 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
45 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
46 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
47 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
48 104, 109, 114, 118, 121, 124};
51 * igb_check_reset_block - Check if PHY reset is blocked
52 * @hw: pointer to the HW structure
54 * Read the PHY management control register and check whether a PHY reset
55 * is blocked. If a reset is not blocked return 0, otherwise
56 * return E1000_BLK_PHY_RESET (12).
58 s32
igb_check_reset_block(struct e1000_hw
*hw
)
62 manc
= rd32(E1000_MANC
);
64 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ? E1000_BLK_PHY_RESET
: 0;
68 * igb_get_phy_id - Retrieve the PHY ID and revision
69 * @hw: pointer to the HW structure
71 * Reads the PHY registers and stores the PHY ID and possibly the PHY
72 * revision in the hardware structure.
74 s32
igb_get_phy_id(struct e1000_hw
*hw
)
76 struct e1000_phy_info
*phy
= &hw
->phy
;
80 /* ensure PHY page selection to fix misconfigured i210 */
81 if ((hw
->mac
.type
== e1000_i210
) || (hw
->mac
.type
== e1000_i211
))
82 phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
, 0);
84 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID1
, &phy_id
);
88 phy
->id
= (u32
)(phy_id
<< 16);
90 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID2
, &phy_id
);
94 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
95 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
102 * igb_phy_reset_dsp - Reset PHY DSP
103 * @hw: pointer to the HW structure
105 * Reset the digital signal processor.
107 static s32
igb_phy_reset_dsp(struct e1000_hw
*hw
)
111 if (!(hw
->phy
.ops
.write_reg
))
114 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
118 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
125 * igb_read_phy_reg_mdic - Read MDI control register
126 * @hw: pointer to the HW structure
127 * @offset: register offset to be read
128 * @data: pointer to the read data
130 * Reads the MDI control register in the PHY at offset and stores the
131 * information read to data.
133 s32
igb_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
135 struct e1000_phy_info
*phy
= &hw
->phy
;
139 if (offset
> MAX_PHY_REG_ADDRESS
) {
140 hw_dbg("PHY Address %d is out of range\n", offset
);
141 ret_val
= -E1000_ERR_PARAM
;
145 /* Set up Op-code, Phy Address, and register offset in the MDI
146 * Control register. The MAC will take care of interfacing with the
147 * PHY to retrieve the desired data.
149 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
150 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
151 (E1000_MDIC_OP_READ
));
153 wr32(E1000_MDIC
, mdic
);
155 /* Poll the ready bit to see if the MDI read completed
156 * Increasing the time out as testing showed failures with
159 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
161 mdic
= rd32(E1000_MDIC
);
162 if (mdic
& E1000_MDIC_READY
)
165 if (!(mdic
& E1000_MDIC_READY
)) {
166 hw_dbg("MDI Read did not complete\n");
167 ret_val
= -E1000_ERR_PHY
;
170 if (mdic
& E1000_MDIC_ERROR
) {
171 hw_dbg("MDI Error\n");
172 ret_val
= -E1000_ERR_PHY
;
182 * igb_write_phy_reg_mdic - Write MDI control register
183 * @hw: pointer to the HW structure
184 * @offset: register offset to write to
185 * @data: data to write to register at offset
187 * Writes data to MDI control register in the PHY at offset.
189 s32
igb_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
191 struct e1000_phy_info
*phy
= &hw
->phy
;
195 if (offset
> MAX_PHY_REG_ADDRESS
) {
196 hw_dbg("PHY Address %d is out of range\n", offset
);
197 ret_val
= -E1000_ERR_PARAM
;
201 /* Set up Op-code, Phy Address, and register offset in the MDI
202 * Control register. The MAC will take care of interfacing with the
203 * PHY to retrieve the desired data.
205 mdic
= (((u32
)data
) |
206 (offset
<< E1000_MDIC_REG_SHIFT
) |
207 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
208 (E1000_MDIC_OP_WRITE
));
210 wr32(E1000_MDIC
, mdic
);
212 /* Poll the ready bit to see if the MDI read completed
213 * Increasing the time out as testing showed failures with
216 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
218 mdic
= rd32(E1000_MDIC
);
219 if (mdic
& E1000_MDIC_READY
)
222 if (!(mdic
& E1000_MDIC_READY
)) {
223 hw_dbg("MDI Write did not complete\n");
224 ret_val
= -E1000_ERR_PHY
;
227 if (mdic
& E1000_MDIC_ERROR
) {
228 hw_dbg("MDI Error\n");
229 ret_val
= -E1000_ERR_PHY
;
238 * igb_read_phy_reg_i2c - Read PHY register using i2c
239 * @hw: pointer to the HW structure
240 * @offset: register offset to be read
241 * @data: pointer to the read data
243 * Reads the PHY register at offset using the i2c interface and stores the
244 * retrieved information in data.
246 s32
igb_read_phy_reg_i2c(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
248 struct e1000_phy_info
*phy
= &hw
->phy
;
251 /* Set up Op-code, Phy Address, and register address in the I2CCMD
252 * register. The MAC will take care of interfacing with the
253 * PHY to retrieve the desired data.
255 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
256 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
257 (E1000_I2CCMD_OPCODE_READ
));
259 wr32(E1000_I2CCMD
, i2ccmd
);
261 /* Poll the ready bit to see if the I2C read completed */
262 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
264 i2ccmd
= rd32(E1000_I2CCMD
);
265 if (i2ccmd
& E1000_I2CCMD_READY
)
268 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
269 hw_dbg("I2CCMD Read did not complete\n");
270 return -E1000_ERR_PHY
;
272 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
273 hw_dbg("I2CCMD Error bit set\n");
274 return -E1000_ERR_PHY
;
277 /* Need to byte-swap the 16-bit value. */
278 *data
= ((i2ccmd
>> 8) & 0x00FF) | ((i2ccmd
<< 8) & 0xFF00);
284 * igb_write_phy_reg_i2c - Write PHY register using i2c
285 * @hw: pointer to the HW structure
286 * @offset: register offset to write to
287 * @data: data to write at register offset
289 * Writes the data to PHY register at the offset using the i2c interface.
291 s32
igb_write_phy_reg_i2c(struct e1000_hw
*hw
, u32 offset
, u16 data
)
293 struct e1000_phy_info
*phy
= &hw
->phy
;
295 u16 phy_data_swapped
;
297 /* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
298 if ((hw
->phy
.addr
== 0) || (hw
->phy
.addr
> 7)) {
299 hw_dbg("PHY I2C Address %d is out of range.\n",
301 return -E1000_ERR_CONFIG
;
304 /* Swap the data bytes for the I2C interface */
305 phy_data_swapped
= ((data
>> 8) & 0x00FF) | ((data
<< 8) & 0xFF00);
307 /* Set up Op-code, Phy Address, and register address in the I2CCMD
308 * register. The MAC will take care of interfacing with the
309 * PHY to retrieve the desired data.
311 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
312 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
313 E1000_I2CCMD_OPCODE_WRITE
|
316 wr32(E1000_I2CCMD
, i2ccmd
);
318 /* Poll the ready bit to see if the I2C read completed */
319 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
321 i2ccmd
= rd32(E1000_I2CCMD
);
322 if (i2ccmd
& E1000_I2CCMD_READY
)
325 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
326 hw_dbg("I2CCMD Write did not complete\n");
327 return -E1000_ERR_PHY
;
329 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
330 hw_dbg("I2CCMD Error bit set\n");
331 return -E1000_ERR_PHY
;
338 * igb_read_sfp_data_byte - Reads SFP module data.
339 * @hw: pointer to the HW structure
340 * @offset: byte location offset to be read
341 * @data: read data buffer pointer
343 * Reads one byte from SFP module data stored
344 * in SFP resided EEPROM memory or SFP diagnostic area.
345 * Function should be called with
346 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
347 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
350 s32
igb_read_sfp_data_byte(struct e1000_hw
*hw
, u16 offset
, u8
*data
)
356 if (offset
> E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
357 hw_dbg("I2CCMD command address exceeds upper limit\n");
358 return -E1000_ERR_PHY
;
361 /* Set up Op-code, EEPROM Address,in the I2CCMD
362 * register. The MAC will take care of interfacing with the
363 * EEPROM to retrieve the desired data.
365 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
366 E1000_I2CCMD_OPCODE_READ
);
368 wr32(E1000_I2CCMD
, i2ccmd
);
370 /* Poll the ready bit to see if the I2C read completed */
371 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
373 data_local
= rd32(E1000_I2CCMD
);
374 if (data_local
& E1000_I2CCMD_READY
)
377 if (!(data_local
& E1000_I2CCMD_READY
)) {
378 hw_dbg("I2CCMD Read did not complete\n");
379 return -E1000_ERR_PHY
;
381 if (data_local
& E1000_I2CCMD_ERROR
) {
382 hw_dbg("I2CCMD Error bit set\n");
383 return -E1000_ERR_PHY
;
385 *data
= (u8
) data_local
& 0xFF;
391 * igb_read_phy_reg_igp - Read igp PHY register
392 * @hw: pointer to the HW structure
393 * @offset: register offset to be read
394 * @data: pointer to the read data
396 * Acquires semaphore, if necessary, then reads the PHY register at offset
397 * and storing the retrieved information in data. Release any acquired
398 * semaphores before exiting.
400 s32
igb_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
404 if (!(hw
->phy
.ops
.acquire
))
407 ret_val
= hw
->phy
.ops
.acquire(hw
);
411 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
412 ret_val
= igb_write_phy_reg_mdic(hw
,
413 IGP01E1000_PHY_PAGE_SELECT
,
416 hw
->phy
.ops
.release(hw
);
421 ret_val
= igb_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
424 hw
->phy
.ops
.release(hw
);
431 * igb_write_phy_reg_igp - Write igp PHY register
432 * @hw: pointer to the HW structure
433 * @offset: register offset to write to
434 * @data: data to write at register offset
436 * Acquires semaphore, if necessary, then writes the data to PHY register
437 * at the offset. Release any acquired semaphores before exiting.
439 s32
igb_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
443 if (!(hw
->phy
.ops
.acquire
))
446 ret_val
= hw
->phy
.ops
.acquire(hw
);
450 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
451 ret_val
= igb_write_phy_reg_mdic(hw
,
452 IGP01E1000_PHY_PAGE_SELECT
,
455 hw
->phy
.ops
.release(hw
);
460 ret_val
= igb_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
463 hw
->phy
.ops
.release(hw
);
470 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
471 * @hw: pointer to the HW structure
473 * Sets up Carrier-sense on Transmit and downshift values.
475 s32
igb_copper_link_setup_82580(struct e1000_hw
*hw
)
477 struct e1000_phy_info
*phy
= &hw
->phy
;
481 if (phy
->reset_disable
) {
486 if (phy
->type
== e1000_phy_82580
) {
487 ret_val
= hw
->phy
.ops
.reset(hw
);
489 hw_dbg("Error resetting the PHY.\n");
494 /* Enable CRS on TX. This must be set for half-duplex operation. */
495 ret_val
= phy
->ops
.read_reg(hw
, I82580_CFG_REG
, &phy_data
);
499 phy_data
|= I82580_CFG_ASSERT_CRS_ON_TX
;
501 /* Enable downshift */
502 phy_data
|= I82580_CFG_ENABLE_DOWNSHIFT
;
504 ret_val
= phy
->ops
.write_reg(hw
, I82580_CFG_REG
, phy_data
);
508 /* Set MDI/MDIX mode */
509 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_CTRL_2
, &phy_data
);
512 phy_data
&= ~I82580_PHY_CTRL2_MDIX_CFG_MASK
;
518 switch (hw
->phy
.mdix
) {
522 phy_data
|= I82580_PHY_CTRL2_MANUAL_MDIX
;
526 phy_data
|= I82580_PHY_CTRL2_AUTO_MDI_MDIX
;
529 ret_val
= hw
->phy
.ops
.write_reg(hw
, I82580_PHY_CTRL_2
, phy_data
);
536 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
537 * @hw: pointer to the HW structure
539 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
540 * and downshift values are set also.
542 s32
igb_copper_link_setup_m88(struct e1000_hw
*hw
)
544 struct e1000_phy_info
*phy
= &hw
->phy
;
548 if (phy
->reset_disable
) {
553 /* Enable CRS on TX. This must be set for half-duplex operation. */
554 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
558 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
561 * MDI/MDI-X = 0 (default)
562 * 0 - Auto for all speeds
565 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
567 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
571 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
574 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
577 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
581 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
586 * disable_polarity_correction = 0 (default)
587 * Automatic Correction for Reversed Cable Polarity
591 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
592 if (phy
->disable_polarity_correction
== 1)
593 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
595 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
599 if (phy
->revision
< E1000_REVISION_4
) {
600 /* Force TX_CLK in the Extended PHY Specific Control Register
603 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
608 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
610 if ((phy
->revision
== E1000_REVISION_2
) &&
611 (phy
->id
== M88E1111_I_PHY_ID
)) {
612 /* 82573L PHY - set the downshift counter to 5x. */
613 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
614 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
616 /* Configure Master and Slave downshift values */
617 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
618 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
619 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
620 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
622 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
628 /* Commit the changes. */
629 ret_val
= igb_phy_sw_reset(hw
);
631 hw_dbg("Error committing the PHY changes\n");
640 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
641 * @hw: pointer to the HW structure
643 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
644 * Also enables and sets the downshift parameters.
646 s32
igb_copper_link_setup_m88_gen2(struct e1000_hw
*hw
)
648 struct e1000_phy_info
*phy
= &hw
->phy
;
652 if (phy
->reset_disable
)
655 /* Enable CRS on Tx. This must be set for half-duplex operation. */
656 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
661 * MDI/MDI-X = 0 (default)
662 * 0 - Auto for all speeds
665 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
667 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
671 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
674 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
677 /* M88E1112 does not support this mode) */
678 if (phy
->id
!= M88E1112_E_PHY_ID
) {
679 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
684 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
689 * disable_polarity_correction = 0 (default)
690 * Automatic Correction for Reversed Cable Polarity
694 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
695 if (phy
->disable_polarity_correction
== 1)
696 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
698 /* Enable downshift and setting it to X6 */
699 if (phy
->id
== M88E1543_E_PHY_ID
) {
700 phy_data
&= ~I347AT4_PSCR_DOWNSHIFT_ENABLE
;
702 phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
706 ret_val
= igb_phy_sw_reset(hw
);
708 hw_dbg("Error committing the PHY changes\n");
713 phy_data
&= ~I347AT4_PSCR_DOWNSHIFT_MASK
;
714 phy_data
|= I347AT4_PSCR_DOWNSHIFT_6X
;
715 phy_data
|= I347AT4_PSCR_DOWNSHIFT_ENABLE
;
717 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
721 /* Commit the changes. */
722 ret_val
= igb_phy_sw_reset(hw
);
724 hw_dbg("Error committing the PHY changes\n");
727 ret_val
= igb_set_master_slave_mode(hw
);
735 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
736 * @hw: pointer to the HW structure
738 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
741 s32
igb_copper_link_setup_igp(struct e1000_hw
*hw
)
743 struct e1000_phy_info
*phy
= &hw
->phy
;
747 if (phy
->reset_disable
) {
752 ret_val
= phy
->ops
.reset(hw
);
754 hw_dbg("Error resetting the PHY.\n");
758 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
759 * timeout issues when LFS is enabled.
763 /* The NVM settings will configure LPLU in D3 for
766 if (phy
->type
== e1000_phy_igp
) {
767 /* disable lplu d3 during driver init */
768 if (phy
->ops
.set_d3_lplu_state
)
769 ret_val
= phy
->ops
.set_d3_lplu_state(hw
, false);
771 hw_dbg("Error Disabling LPLU D3\n");
776 /* disable lplu d0 during driver init */
777 ret_val
= phy
->ops
.set_d0_lplu_state(hw
, false);
779 hw_dbg("Error Disabling LPLU D0\n");
782 /* Configure mdi-mdix settings */
783 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
787 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
791 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
794 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
798 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
801 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
805 /* set auto-master slave resolution settings */
806 if (hw
->mac
.autoneg
) {
807 /* when autonegotiation advertisement is only 1000Mbps then we
808 * should disable SmartSpeed and enable Auto MasterSlave
809 * resolution as hardware default.
811 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
812 /* Disable SmartSpeed */
813 ret_val
= phy
->ops
.read_reg(hw
,
814 IGP01E1000_PHY_PORT_CONFIG
,
819 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
820 ret_val
= phy
->ops
.write_reg(hw
,
821 IGP01E1000_PHY_PORT_CONFIG
,
826 /* Set auto Master/Slave resolution process */
827 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
831 data
&= ~CR_1000T_MS_ENABLE
;
832 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
837 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
841 /* load defaults for future use */
842 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
843 ((data
& CR_1000T_MS_VALUE
) ?
844 e1000_ms_force_master
:
845 e1000_ms_force_slave
) :
848 switch (phy
->ms_type
) {
849 case e1000_ms_force_master
:
850 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
852 case e1000_ms_force_slave
:
853 data
|= CR_1000T_MS_ENABLE
;
854 data
&= ~(CR_1000T_MS_VALUE
);
857 data
&= ~CR_1000T_MS_ENABLE
;
861 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
871 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
872 * @hw: pointer to the HW structure
874 * Performs initial bounds checking on autoneg advertisement parameter, then
875 * configure to advertise the full capability. Setup the PHY to autoneg
876 * and restart the negotiation process between the link partner. If
877 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
879 static s32
igb_copper_link_autoneg(struct e1000_hw
*hw
)
881 struct e1000_phy_info
*phy
= &hw
->phy
;
885 /* Perform some bounds checking on the autoneg advertisement
888 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
890 /* If autoneg_advertised is zero, we assume it was not defaulted
891 * by the calling code so we set to advertise full capability.
893 if (phy
->autoneg_advertised
== 0)
894 phy
->autoneg_advertised
= phy
->autoneg_mask
;
896 hw_dbg("Reconfiguring auto-neg advertisement params\n");
897 ret_val
= igb_phy_setup_autoneg(hw
);
899 hw_dbg("Error Setting up Auto-Negotiation\n");
902 hw_dbg("Restarting Auto-Neg\n");
904 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
905 * the Auto Neg Restart bit in the PHY control register.
907 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
911 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
912 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
916 /* Does the user want to wait for Auto-Neg to complete here, or
917 * check at a later time (for example, callback routine).
919 if (phy
->autoneg_wait_to_complete
) {
920 ret_val
= igb_wait_autoneg(hw
);
922 hw_dbg("Error while waiting for autoneg to complete\n");
927 hw
->mac
.get_link_status
= true;
934 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
935 * @hw: pointer to the HW structure
937 * Reads the MII auto-neg advertisement register and/or the 1000T control
938 * register and if the PHY is already setup for auto-negotiation, then
939 * return successful. Otherwise, setup advertisement and flow control to
940 * the appropriate values for the wanted auto-negotiation.
942 static s32
igb_phy_setup_autoneg(struct e1000_hw
*hw
)
944 struct e1000_phy_info
*phy
= &hw
->phy
;
946 u16 mii_autoneg_adv_reg
;
947 u16 mii_1000t_ctrl_reg
= 0;
949 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
951 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
952 ret_val
= phy
->ops
.read_reg(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
956 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
957 /* Read the MII 1000Base-T Control Register (Address 9). */
958 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
,
959 &mii_1000t_ctrl_reg
);
964 /* Need to parse both autoneg_advertised and fc and set up
965 * the appropriate PHY registers. First we will parse for
966 * autoneg_advertised software override. Since we can advertise
967 * a plethora of combinations, we need to check each bit
971 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
972 * Advertisement Register (Address 4) and the 1000 mb speed bits in
973 * the 1000Base-T Control Register (Address 9).
975 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
976 NWAY_AR_100TX_HD_CAPS
|
977 NWAY_AR_10T_FD_CAPS
|
978 NWAY_AR_10T_HD_CAPS
);
979 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
981 hw_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
983 /* Do we want to advertise 10 Mb Half Duplex? */
984 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
985 hw_dbg("Advertise 10mb Half duplex\n");
986 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
989 /* Do we want to advertise 10 Mb Full Duplex? */
990 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
991 hw_dbg("Advertise 10mb Full duplex\n");
992 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
995 /* Do we want to advertise 100 Mb Half Duplex? */
996 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
997 hw_dbg("Advertise 100mb Half duplex\n");
998 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
1001 /* Do we want to advertise 100 Mb Full Duplex? */
1002 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
1003 hw_dbg("Advertise 100mb Full duplex\n");
1004 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
1007 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1008 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
1009 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1011 /* Do we want to advertise 1000 Mb Full Duplex? */
1012 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
1013 hw_dbg("Advertise 1000mb Full duplex\n");
1014 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
1017 /* Check for a software override of the flow control settings, and
1018 * setup the PHY advertisement registers accordingly. If
1019 * auto-negotiation is enabled, then software will have to set the
1020 * "PAUSE" bits to the correct value in the Auto-Negotiation
1021 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1024 * The possible values of the "fc" parameter are:
1025 * 0: Flow control is completely disabled
1026 * 1: Rx flow control is enabled (we can receive pause frames
1027 * but not send pause frames).
1028 * 2: Tx flow control is enabled (we can send pause frames
1029 * but we do not support receiving pause frames).
1030 * 3: Both Rx and TX flow control (symmetric) are enabled.
1031 * other: No software override. The flow control configuration
1032 * in the EEPROM is used.
1034 switch (hw
->fc
.current_mode
) {
1036 /* Flow control (RX & TX) is completely disabled by a
1037 * software over-ride.
1039 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1041 case e1000_fc_rx_pause
:
1042 /* RX Flow control is enabled, and TX Flow control is
1043 * disabled, by a software over-ride.
1045 * Since there really isn't a way to advertise that we are
1046 * capable of RX Pause ONLY, we will advertise that we
1047 * support both symmetric and asymmetric RX PAUSE. Later
1048 * (in e1000_config_fc_after_link_up) we will disable the
1049 * hw's ability to send PAUSE frames.
1051 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1053 case e1000_fc_tx_pause
:
1054 /* TX Flow control is enabled, and RX Flow control is
1055 * disabled, by a software over-ride.
1057 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
1058 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
1061 /* Flow control (both RX and TX) is enabled by a software
1064 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1067 hw_dbg("Flow control param set incorrectly\n");
1068 ret_val
= -E1000_ERR_CONFIG
;
1072 ret_val
= phy
->ops
.write_reg(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
1076 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1078 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
1079 ret_val
= phy
->ops
.write_reg(hw
,
1081 mii_1000t_ctrl_reg
);
1091 * igb_setup_copper_link - Configure copper link settings
1092 * @hw: pointer to the HW structure
1094 * Calls the appropriate function to configure the link for auto-neg or forced
1095 * speed and duplex. Then we check for link, once link is established calls
1096 * to configure collision distance and flow control are called. If link is
1097 * not established, we return -E1000_ERR_PHY (-2).
1099 s32
igb_setup_copper_link(struct e1000_hw
*hw
)
1104 if (hw
->mac
.autoneg
) {
1105 /* Setup autoneg and flow control advertisement and perform
1108 ret_val
= igb_copper_link_autoneg(hw
);
1112 /* PHY will be set to 10H, 10F, 100H or 100F
1113 * depending on user settings.
1115 hw_dbg("Forcing Speed and Duplex\n");
1116 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1118 hw_dbg("Error Forcing Speed and Duplex\n");
1123 /* Check link status. Wait up to 100 microseconds for link to become
1126 ret_val
= igb_phy_has_link(hw
, COPPER_LINK_UP_LIMIT
, 10, &link
);
1131 hw_dbg("Valid link established!!!\n");
1132 igb_config_collision_dist(hw
);
1133 ret_val
= igb_config_fc_after_link_up(hw
);
1135 hw_dbg("Unable to establish link!!!\n");
1143 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1144 * @hw: pointer to the HW structure
1146 * Calls the PHY setup function to force speed and duplex. Clears the
1147 * auto-crossover to force MDI manually. Waits for link and returns
1148 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1150 s32
igb_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1152 struct e1000_phy_info
*phy
= &hw
->phy
;
1157 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1161 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
1163 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1167 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1168 * forced whenever speed and duplex are forced.
1170 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1174 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1175 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1177 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1181 hw_dbg("IGP PSCR: %X\n", phy_data
);
1185 if (phy
->autoneg_wait_to_complete
) {
1186 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1188 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 10000, &link
);
1193 hw_dbg("Link taking longer than expected.\n");
1196 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 10000, &link
);
1206 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1207 * @hw: pointer to the HW structure
1209 * Calls the PHY setup function to force speed and duplex. Clears the
1210 * auto-crossover to force MDI manually. Resets the PHY to commit the
1211 * changes. If time expires while waiting for link up, we reset the DSP.
1212 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1213 * successful completion, else return corresponding error code.
1215 s32
igb_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1217 struct e1000_phy_info
*phy
= &hw
->phy
;
1222 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1223 if (phy
->type
!= e1000_phy_i210
) {
1224 /* Clear Auto-Crossover to force MDI manually. M88E1000
1225 * requires MDI forced whenever speed and duplex are forced.
1227 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
,
1232 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1233 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
,
1238 hw_dbg("M88E1000 PSCR: %X\n", phy_data
);
1241 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1245 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
1247 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1251 /* Reset the phy to commit changes. */
1252 ret_val
= igb_phy_sw_reset(hw
);
1256 if (phy
->autoneg_wait_to_complete
) {
1257 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1259 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
1264 bool reset_dsp
= true;
1266 switch (hw
->phy
.id
) {
1267 case I347AT4_E_PHY_ID
:
1268 case M88E1112_E_PHY_ID
:
1269 case M88E1543_E_PHY_ID
:
1270 case M88E1512_E_PHY_ID
:
1275 if (hw
->phy
.type
!= e1000_phy_m88
)
1280 hw_dbg("Link taking longer than expected.\n");
1282 /* We didn't get link.
1283 * Reset the DSP and cross our fingers.
1285 ret_val
= phy
->ops
.write_reg(hw
,
1286 M88E1000_PHY_PAGE_SELECT
,
1290 ret_val
= igb_phy_reset_dsp(hw
);
1297 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
,
1303 if (hw
->phy
.type
!= e1000_phy_m88
||
1304 hw
->phy
.id
== I347AT4_E_PHY_ID
||
1305 hw
->phy
.id
== M88E1112_E_PHY_ID
||
1306 hw
->phy
.id
== M88E1543_E_PHY_ID
||
1307 hw
->phy
.id
== M88E1512_E_PHY_ID
||
1308 hw
->phy
.id
== I210_I_PHY_ID
)
1311 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1315 /* Resetting the phy means we need to re-force TX_CLK in the
1316 * Extended PHY Specific Control Register to 25MHz clock from
1317 * the reset value of 2.5MHz.
1319 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1320 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1324 /* In addition, we must re-enable CRS on Tx for both half and full
1327 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1331 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1332 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1339 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1340 * @hw: pointer to the HW structure
1341 * @phy_ctrl: pointer to current value of PHY_CONTROL
1343 * Forces speed and duplex on the PHY by doing the following: disable flow
1344 * control, force speed/duplex on the MAC, disable auto speed detection,
1345 * disable auto-negotiation, configure duplex, configure speed, configure
1346 * the collision distance, write configuration to CTRL register. The
1347 * caller must write to the PHY_CONTROL register for these settings to
1350 static void igb_phy_force_speed_duplex_setup(struct e1000_hw
*hw
,
1353 struct e1000_mac_info
*mac
= &hw
->mac
;
1356 /* Turn off flow control when forcing speed/duplex */
1357 hw
->fc
.current_mode
= e1000_fc_none
;
1359 /* Force speed/duplex on the mac */
1360 ctrl
= rd32(E1000_CTRL
);
1361 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1362 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1364 /* Disable Auto Speed Detection */
1365 ctrl
&= ~E1000_CTRL_ASDE
;
1367 /* Disable autoneg on the phy */
1368 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1370 /* Forcing Full or Half Duplex? */
1371 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1372 ctrl
&= ~E1000_CTRL_FD
;
1373 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1374 hw_dbg("Half Duplex\n");
1376 ctrl
|= E1000_CTRL_FD
;
1377 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1378 hw_dbg("Full Duplex\n");
1381 /* Forcing 10mb or 100mb? */
1382 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1383 ctrl
|= E1000_CTRL_SPD_100
;
1384 *phy_ctrl
|= MII_CR_SPEED_100
;
1385 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1386 hw_dbg("Forcing 100mb\n");
1388 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1389 *phy_ctrl
|= MII_CR_SPEED_10
;
1390 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1391 hw_dbg("Forcing 10mb\n");
1394 igb_config_collision_dist(hw
);
1396 wr32(E1000_CTRL
, ctrl
);
1400 * igb_set_d3_lplu_state - Sets low power link up state for D3
1401 * @hw: pointer to the HW structure
1402 * @active: boolean used to enable/disable lplu
1404 * Success returns 0, Failure returns 1
1406 * The low power link up (lplu) state is set to the power management level D3
1407 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1408 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1409 * is used during Dx states where the power conservation is most important.
1410 * During driver activity, SmartSpeed should be enabled so performance is
1413 s32
igb_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1415 struct e1000_phy_info
*phy
= &hw
->phy
;
1419 if (!(hw
->phy
.ops
.read_reg
))
1422 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1427 data
&= ~IGP02E1000_PM_D3_LPLU
;
1428 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1432 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1433 * during Dx states where the power conservation is most
1434 * important. During driver activity we should enable
1435 * SmartSpeed, so performance is maintained.
1437 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1438 ret_val
= phy
->ops
.read_reg(hw
,
1439 IGP01E1000_PHY_PORT_CONFIG
,
1444 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1445 ret_val
= phy
->ops
.write_reg(hw
,
1446 IGP01E1000_PHY_PORT_CONFIG
,
1450 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1451 ret_val
= phy
->ops
.read_reg(hw
,
1452 IGP01E1000_PHY_PORT_CONFIG
,
1457 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1458 ret_val
= phy
->ops
.write_reg(hw
,
1459 IGP01E1000_PHY_PORT_CONFIG
,
1464 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1465 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1466 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1467 data
|= IGP02E1000_PM_D3_LPLU
;
1468 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1473 /* When LPLU is enabled, we should disable SmartSpeed */
1474 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1479 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1480 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1489 * igb_check_downshift - Checks whether a downshift in speed occurred
1490 * @hw: pointer to the HW structure
1492 * Success returns 0, Failure returns 1
1494 * A downshift is detected by querying the PHY link health.
1496 s32
igb_check_downshift(struct e1000_hw
*hw
)
1498 struct e1000_phy_info
*phy
= &hw
->phy
;
1500 u16 phy_data
, offset
, mask
;
1502 switch (phy
->type
) {
1503 case e1000_phy_i210
:
1505 case e1000_phy_gg82563
:
1506 offset
= M88E1000_PHY_SPEC_STATUS
;
1507 mask
= M88E1000_PSSR_DOWNSHIFT
;
1509 case e1000_phy_igp_2
:
1511 case e1000_phy_igp_3
:
1512 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1513 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1516 /* speed downshift not supported */
1517 phy
->speed_downgraded
= false;
1522 ret_val
= phy
->ops
.read_reg(hw
, offset
, &phy_data
);
1525 phy
->speed_downgraded
= (phy_data
& mask
) ? true : false;
1532 * igb_check_polarity_m88 - Checks the polarity.
1533 * @hw: pointer to the HW structure
1535 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1537 * Polarity is determined based on the PHY specific status register.
1539 s32
igb_check_polarity_m88(struct e1000_hw
*hw
)
1541 struct e1000_phy_info
*phy
= &hw
->phy
;
1545 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1548 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1549 ? e1000_rev_polarity_reversed
1550 : e1000_rev_polarity_normal
;
1556 * igb_check_polarity_igp - Checks the polarity.
1557 * @hw: pointer to the HW structure
1559 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1561 * Polarity is determined based on the PHY port status register, and the
1562 * current speed (since there is no polarity at 100Mbps).
1564 static s32
igb_check_polarity_igp(struct e1000_hw
*hw
)
1566 struct e1000_phy_info
*phy
= &hw
->phy
;
1568 u16 data
, offset
, mask
;
1570 /* Polarity is determined based on the speed of
1573 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1577 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1578 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1579 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1580 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1582 /* This really only applies to 10Mbps since
1583 * there is no polarity for 100Mbps (always 0).
1585 offset
= IGP01E1000_PHY_PORT_STATUS
;
1586 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1589 ret_val
= phy
->ops
.read_reg(hw
, offset
, &data
);
1592 phy
->cable_polarity
= (data
& mask
)
1593 ? e1000_rev_polarity_reversed
1594 : e1000_rev_polarity_normal
;
1601 * igb_wait_autoneg - Wait for auto-neg completion
1602 * @hw: pointer to the HW structure
1604 * Waits for auto-negotiation to complete or for the auto-negotiation time
1605 * limit to expire, which ever happens first.
1607 static s32
igb_wait_autoneg(struct e1000_hw
*hw
)
1612 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1613 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1614 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1617 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1620 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1625 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1632 * igb_phy_has_link - Polls PHY for link
1633 * @hw: pointer to the HW structure
1634 * @iterations: number of times to poll for link
1635 * @usec_interval: delay between polling attempts
1636 * @success: pointer to whether polling was successful or not
1638 * Polls the PHY status register for link, 'iterations' number of times.
1640 s32
igb_phy_has_link(struct e1000_hw
*hw
, u32 iterations
,
1641 u32 usec_interval
, bool *success
)
1646 for (i
= 0; i
< iterations
; i
++) {
1647 /* Some PHYs require the PHY_STATUS register to be read
1648 * twice due to the link bit being sticky. No harm doing
1649 * it across the board.
1651 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1652 if (ret_val
&& usec_interval
> 0) {
1653 /* If the first read fails, another entity may have
1654 * ownership of the resources, wait and try again to
1655 * see if they have relinquished the resources yet.
1657 if (usec_interval
>= 1000)
1658 mdelay(usec_interval
/1000);
1660 udelay(usec_interval
);
1662 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1665 if (phy_status
& MII_SR_LINK_STATUS
)
1667 if (usec_interval
>= 1000)
1668 mdelay(usec_interval
/1000);
1670 udelay(usec_interval
);
1673 *success
= (i
< iterations
) ? true : false;
1679 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1680 * @hw: pointer to the HW structure
1682 * Reads the PHY specific status register to retrieve the cable length
1683 * information. The cable length is determined by averaging the minimum and
1684 * maximum values to get the "average" cable length. The m88 PHY has four
1685 * possible cable length values, which are:
1686 * Register Value Cable Length
1690 * 3 110 - 140 meters
1693 s32
igb_get_cable_length_m88(struct e1000_hw
*hw
)
1695 struct e1000_phy_info
*phy
= &hw
->phy
;
1697 u16 phy_data
, index
;
1699 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1703 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1704 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1705 if (index
>= ARRAY_SIZE(e1000_m88_cable_length_table
) - 1) {
1706 ret_val
= -E1000_ERR_PHY
;
1710 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1711 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1713 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1719 s32
igb_get_cable_length_m88_gen2(struct e1000_hw
*hw
)
1721 struct e1000_phy_info
*phy
= &hw
->phy
;
1723 u16 phy_data
, phy_data2
, index
, default_page
, is_cm
;
1728 switch (hw
->phy
.id
) {
1729 case M88E1543_E_PHY_ID
:
1730 case M88E1512_E_PHY_ID
:
1731 case I347AT4_E_PHY_ID
:
1733 /* Remember the original page select and set it to 7 */
1734 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PAGE_SELECT
,
1739 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
, 0x07);
1743 /* Check if the unit of cable length is meters or cm */
1744 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDC
, &phy_data2
);
1748 is_cm
= !(phy_data2
& I347AT4_PCDC_CABLE_LENGTH_UNIT
);
1750 /* Get cable length from Pair 0 length Regs */
1751 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDL0
, &phy_data
);
1755 phy
->pair_length
[0] = phy_data
/ (is_cm
? 100 : 1);
1756 len_tot
= phy
->pair_length
[0];
1757 len_min
= phy
->pair_length
[0];
1758 len_max
= phy
->pair_length
[0];
1760 /* Get cable length from Pair 1 length Regs */
1761 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDL1
, &phy_data
);
1765 phy
->pair_length
[1] = phy_data
/ (is_cm
? 100 : 1);
1766 len_tot
+= phy
->pair_length
[1];
1767 len_min
= min(len_min
, phy
->pair_length
[1]);
1768 len_max
= max(len_max
, phy
->pair_length
[1]);
1770 /* Get cable length from Pair 2 length Regs */
1771 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDL2
, &phy_data
);
1775 phy
->pair_length
[2] = phy_data
/ (is_cm
? 100 : 1);
1776 len_tot
+= phy
->pair_length
[2];
1777 len_min
= min(len_min
, phy
->pair_length
[2]);
1778 len_max
= max(len_max
, phy
->pair_length
[2]);
1780 /* Get cable length from Pair 3 length Regs */
1781 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDL3
, &phy_data
);
1785 phy
->pair_length
[3] = phy_data
/ (is_cm
? 100 : 1);
1786 len_tot
+= phy
->pair_length
[3];
1787 len_min
= min(len_min
, phy
->pair_length
[3]);
1788 len_max
= max(len_max
, phy
->pair_length
[3]);
1790 /* Populate the phy structure with cable length in meters */
1791 phy
->min_cable_length
= len_min
;
1792 phy
->max_cable_length
= len_max
;
1793 phy
->cable_length
= len_tot
/ 4;
1795 /* Reset the page selec to its original value */
1796 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
,
1801 case M88E1112_E_PHY_ID
:
1802 /* Remember the original page select and set it to 5 */
1803 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PAGE_SELECT
,
1808 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
, 0x05);
1812 ret_val
= phy
->ops
.read_reg(hw
, M88E1112_VCT_DSP_DISTANCE
,
1817 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1818 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1819 if (index
>= ARRAY_SIZE(e1000_m88_cable_length_table
) - 1) {
1820 ret_val
= -E1000_ERR_PHY
;
1824 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1825 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1827 phy
->cable_length
= (phy
->min_cable_length
+
1828 phy
->max_cable_length
) / 2;
1830 /* Reset the page select to its original value */
1831 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
,
1838 ret_val
= -E1000_ERR_PHY
;
1847 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1848 * @hw: pointer to the HW structure
1850 * The automatic gain control (agc) normalizes the amplitude of the
1851 * received signal, adjusting for the attenuation produced by the
1852 * cable. By reading the AGC registers, which represent the
1853 * combination of coarse and fine gain value, the value can be put
1854 * into a lookup table to obtain the approximate cable length
1857 s32
igb_get_cable_length_igp_2(struct e1000_hw
*hw
)
1859 struct e1000_phy_info
*phy
= &hw
->phy
;
1861 u16 phy_data
, i
, agc_value
= 0;
1862 u16 cur_agc_index
, max_agc_index
= 0;
1863 u16 min_agc_index
= ARRAY_SIZE(e1000_igp_2_cable_length_table
) - 1;
1864 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1865 IGP02E1000_PHY_AGC_A
,
1866 IGP02E1000_PHY_AGC_B
,
1867 IGP02E1000_PHY_AGC_C
,
1868 IGP02E1000_PHY_AGC_D
1871 /* Read the AGC registers for all channels */
1872 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1873 ret_val
= phy
->ops
.read_reg(hw
, agc_reg_array
[i
], &phy_data
);
1877 /* Getting bits 15:9, which represent the combination of
1878 * coarse and fine gain values. The result is a number
1879 * that can be put into the lookup table to obtain the
1880 * approximate cable length.
1882 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1883 IGP02E1000_AGC_LENGTH_MASK
;
1885 /* Array index bound check. */
1886 if ((cur_agc_index
>= ARRAY_SIZE(e1000_igp_2_cable_length_table
)) ||
1887 (cur_agc_index
== 0)) {
1888 ret_val
= -E1000_ERR_PHY
;
1892 /* Remove min & max AGC values from calculation. */
1893 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1894 e1000_igp_2_cable_length_table
[cur_agc_index
])
1895 min_agc_index
= cur_agc_index
;
1896 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1897 e1000_igp_2_cable_length_table
[cur_agc_index
])
1898 max_agc_index
= cur_agc_index
;
1900 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1903 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1904 e1000_igp_2_cable_length_table
[max_agc_index
]);
1905 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1907 /* Calculate cable length with the error range of +/- 10 meters. */
1908 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1909 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1910 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1912 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1919 * igb_get_phy_info_m88 - Retrieve PHY information
1920 * @hw: pointer to the HW structure
1922 * Valid for only copper links. Read the PHY status register (sticky read)
1923 * to verify that link is up. Read the PHY special control register to
1924 * determine the polarity and 10base-T extended distance. Read the PHY
1925 * special status register to determine MDI/MDIx and current speed. If
1926 * speed is 1000, then determine cable length, local and remote receiver.
1928 s32
igb_get_phy_info_m88(struct e1000_hw
*hw
)
1930 struct e1000_phy_info
*phy
= &hw
->phy
;
1935 if (phy
->media_type
!= e1000_media_type_copper
) {
1936 hw_dbg("Phy info is only valid for copper media\n");
1937 ret_val
= -E1000_ERR_CONFIG
;
1941 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
1946 hw_dbg("Phy info is only valid if link is up\n");
1947 ret_val
= -E1000_ERR_CONFIG
;
1951 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1955 phy
->polarity_correction
= (phy_data
& M88E1000_PSCR_POLARITY_REVERSAL
)
1958 ret_val
= igb_check_polarity_m88(hw
);
1962 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1966 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
) ? true : false;
1968 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1969 ret_val
= phy
->ops
.get_cable_length(hw
);
1973 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
1977 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1978 ? e1000_1000t_rx_status_ok
1979 : e1000_1000t_rx_status_not_ok
;
1981 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1982 ? e1000_1000t_rx_status_ok
1983 : e1000_1000t_rx_status_not_ok
;
1985 /* Set values to "undefined" */
1986 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1987 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1988 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1996 * igb_get_phy_info_igp - Retrieve igp PHY information
1997 * @hw: pointer to the HW structure
1999 * Read PHY status to determine if link is up. If link is up, then
2000 * set/determine 10base-T extended distance and polarity correction. Read
2001 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2002 * determine on the cable length, local and remote receiver.
2004 s32
igb_get_phy_info_igp(struct e1000_hw
*hw
)
2006 struct e1000_phy_info
*phy
= &hw
->phy
;
2011 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
2016 hw_dbg("Phy info is only valid if link is up\n");
2017 ret_val
= -E1000_ERR_CONFIG
;
2021 phy
->polarity_correction
= true;
2023 ret_val
= igb_check_polarity_igp(hw
);
2027 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
2031 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
) ? true : false;
2033 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
2034 IGP01E1000_PSSR_SPEED_1000MBPS
) {
2035 ret_val
= phy
->ops
.get_cable_length(hw
);
2039 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
2043 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2044 ? e1000_1000t_rx_status_ok
2045 : e1000_1000t_rx_status_not_ok
;
2047 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2048 ? e1000_1000t_rx_status_ok
2049 : e1000_1000t_rx_status_not_ok
;
2051 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2052 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2053 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2061 * igb_phy_sw_reset - PHY software reset
2062 * @hw: pointer to the HW structure
2064 * Does a software reset of the PHY by reading the PHY control register and
2065 * setting/write the control register reset bit to the PHY.
2067 s32
igb_phy_sw_reset(struct e1000_hw
*hw
)
2072 if (!(hw
->phy
.ops
.read_reg
))
2075 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
2079 phy_ctrl
|= MII_CR_RESET
;
2080 ret_val
= hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
2091 * igb_phy_hw_reset - PHY hardware reset
2092 * @hw: pointer to the HW structure
2094 * Verify the reset block is not blocking us from resetting. Acquire
2095 * semaphore (if necessary) and read/set/write the device control reset
2096 * bit in the PHY. Wait the appropriate delay time for the device to
2097 * reset and release the semaphore (if necessary).
2099 s32
igb_phy_hw_reset(struct e1000_hw
*hw
)
2101 struct e1000_phy_info
*phy
= &hw
->phy
;
2105 ret_val
= igb_check_reset_block(hw
);
2111 ret_val
= phy
->ops
.acquire(hw
);
2115 ctrl
= rd32(E1000_CTRL
);
2116 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2119 udelay(phy
->reset_delay_us
);
2121 wr32(E1000_CTRL
, ctrl
);
2126 phy
->ops
.release(hw
);
2128 ret_val
= phy
->ops
.get_cfg_done(hw
);
2135 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2136 * @hw: pointer to the HW structure
2138 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2140 s32
igb_phy_init_script_igp3(struct e1000_hw
*hw
)
2142 hw_dbg("Running IGP 3 PHY init script\n");
2144 /* PHY init IGP 3 */
2145 /* Enable rise/fall, 10-mode work in class-A */
2146 hw
->phy
.ops
.write_reg(hw
, 0x2F5B, 0x9018);
2147 /* Remove all caps from Replica path filter */
2148 hw
->phy
.ops
.write_reg(hw
, 0x2F52, 0x0000);
2149 /* Bias trimming for ADC, AFE and Driver (Default) */
2150 hw
->phy
.ops
.write_reg(hw
, 0x2FB1, 0x8B24);
2151 /* Increase Hybrid poly bias */
2152 hw
->phy
.ops
.write_reg(hw
, 0x2FB2, 0xF8F0);
2153 /* Add 4% to TX amplitude in Giga mode */
2154 hw
->phy
.ops
.write_reg(hw
, 0x2010, 0x10B0);
2155 /* Disable trimming (TTT) */
2156 hw
->phy
.ops
.write_reg(hw
, 0x2011, 0x0000);
2157 /* Poly DC correction to 94.6% + 2% for all channels */
2158 hw
->phy
.ops
.write_reg(hw
, 0x20DD, 0x249A);
2159 /* ABS DC correction to 95.9% */
2160 hw
->phy
.ops
.write_reg(hw
, 0x20DE, 0x00D3);
2161 /* BG temp curve trim */
2162 hw
->phy
.ops
.write_reg(hw
, 0x28B4, 0x04CE);
2163 /* Increasing ADC OPAMP stage 1 currents to max */
2164 hw
->phy
.ops
.write_reg(hw
, 0x2F70, 0x29E4);
2165 /* Force 1000 ( required for enabling PHY regs configuration) */
2166 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x0140);
2167 /* Set upd_freq to 6 */
2168 hw
->phy
.ops
.write_reg(hw
, 0x1F30, 0x1606);
2170 hw
->phy
.ops
.write_reg(hw
, 0x1F31, 0xB814);
2171 /* Disable adaptive fixed FFE (Default) */
2172 hw
->phy
.ops
.write_reg(hw
, 0x1F35, 0x002A);
2173 /* Enable FFE hysteresis */
2174 hw
->phy
.ops
.write_reg(hw
, 0x1F3E, 0x0067);
2175 /* Fixed FFE for short cable lengths */
2176 hw
->phy
.ops
.write_reg(hw
, 0x1F54, 0x0065);
2177 /* Fixed FFE for medium cable lengths */
2178 hw
->phy
.ops
.write_reg(hw
, 0x1F55, 0x002A);
2179 /* Fixed FFE for long cable lengths */
2180 hw
->phy
.ops
.write_reg(hw
, 0x1F56, 0x002A);
2181 /* Enable Adaptive Clip Threshold */
2182 hw
->phy
.ops
.write_reg(hw
, 0x1F72, 0x3FB0);
2183 /* AHT reset limit to 1 */
2184 hw
->phy
.ops
.write_reg(hw
, 0x1F76, 0xC0FF);
2185 /* Set AHT master delay to 127 msec */
2186 hw
->phy
.ops
.write_reg(hw
, 0x1F77, 0x1DEC);
2187 /* Set scan bits for AHT */
2188 hw
->phy
.ops
.write_reg(hw
, 0x1F78, 0xF9EF);
2189 /* Set AHT Preset bits */
2190 hw
->phy
.ops
.write_reg(hw
, 0x1F79, 0x0210);
2191 /* Change integ_factor of channel A to 3 */
2192 hw
->phy
.ops
.write_reg(hw
, 0x1895, 0x0003);
2193 /* Change prop_factor of channels BCD to 8 */
2194 hw
->phy
.ops
.write_reg(hw
, 0x1796, 0x0008);
2195 /* Change cg_icount + enable integbp for channels BCD */
2196 hw
->phy
.ops
.write_reg(hw
, 0x1798, 0xD008);
2197 /* Change cg_icount + enable integbp + change prop_factor_master
2198 * to 8 for channel A
2200 hw
->phy
.ops
.write_reg(hw
, 0x1898, 0xD918);
2201 /* Disable AHT in Slave mode on channel A */
2202 hw
->phy
.ops
.write_reg(hw
, 0x187A, 0x0800);
2203 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2206 hw
->phy
.ops
.write_reg(hw
, 0x0019, 0x008D);
2207 /* Enable restart AN on an1000_dis change */
2208 hw
->phy
.ops
.write_reg(hw
, 0x001B, 0x2080);
2209 /* Enable wh_fifo read clock in 10/100 modes */
2210 hw
->phy
.ops
.write_reg(hw
, 0x0014, 0x0045);
2211 /* Restart AN, Speed selection is 1000 */
2212 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x1340);
2218 * igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2219 * @hw: pointer to the HW structure
2221 * Initialize Marvel 1512 to work correctly with Avoton.
2223 s32
igb_initialize_M88E1512_phy(struct e1000_hw
*hw
)
2225 struct e1000_phy_info
*phy
= &hw
->phy
;
2228 /* Switch to PHY page 0xFF. */
2229 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x00FF);
2233 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0x214B);
2237 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2144);
2241 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0x0C28);
2245 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2146);
2249 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0xB233);
2253 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x214D);
2257 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0xCC0C);
2261 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2159);
2265 /* Switch to PHY page 0xFB. */
2266 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x00FB);
2270 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_3
, 0x000D);
2274 /* Switch to PHY page 0x12. */
2275 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x12);
2279 /* Change mode to SGMII-to-Copper */
2280 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_MODE
, 0x8001);
2284 /* Return the PHY to page 0. */
2285 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0);
2289 ret_val
= igb_phy_sw_reset(hw
);
2291 hw_dbg("Error committing the PHY changes\n");
2295 /* msec_delay(1000); */
2296 usleep_range(1000, 2000);
2302 * igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2303 * @hw: pointer to the HW structure
2305 * Initialize Marvell 1543 to work correctly with Avoton.
2307 s32
igb_initialize_M88E1543_phy(struct e1000_hw
*hw
)
2309 struct e1000_phy_info
*phy
= &hw
->phy
;
2312 /* Switch to PHY page 0xFF. */
2313 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x00FF);
2317 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0x214B);
2321 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2144);
2325 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0x0C28);
2329 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2146);
2333 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0xB233);
2337 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x214D);
2341 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0xDC0C);
2345 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2159);
2349 /* Switch to PHY page 0xFB. */
2350 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x00FB);
2354 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_3
, 0x0C0D);
2358 /* Switch to PHY page 0x12. */
2359 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x12);
2363 /* Change mode to SGMII-to-Copper */
2364 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_MODE
, 0x8001);
2368 /* Switch to PHY page 1. */
2369 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x1);
2373 /* Change mode to 1000BASE-X/SGMII and autoneg enable */
2374 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_FIBER_CTRL
, 0x9140);
2378 /* Return the PHY to page 0. */
2379 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0);
2383 ret_val
= igb_phy_sw_reset(hw
);
2385 hw_dbg("Error committing the PHY changes\n");
2389 /* msec_delay(1000); */
2390 usleep_range(1000, 2000);
2396 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2397 * @hw: pointer to the HW structure
2399 * In the case of a PHY power down to save power, or to turn off link during a
2400 * driver unload, restore the link to previous settings.
2402 void igb_power_up_phy_copper(struct e1000_hw
*hw
)
2406 /* The PHY will retain its settings across a power down/up cycle */
2407 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2408 mii_reg
&= ~MII_CR_POWER_DOWN
;
2409 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
2413 * igb_power_down_phy_copper - Power down copper PHY
2414 * @hw: pointer to the HW structure
2416 * Power down PHY to save power when interface is down and wake on lan
2419 void igb_power_down_phy_copper(struct e1000_hw
*hw
)
2423 /* The PHY will retain its settings across a power down/up cycle */
2424 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2425 mii_reg
|= MII_CR_POWER_DOWN
;
2426 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
2427 usleep_range(1000, 2000);
2431 * igb_check_polarity_82580 - Checks the polarity.
2432 * @hw: pointer to the HW structure
2434 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2436 * Polarity is determined based on the PHY specific status register.
2438 static s32
igb_check_polarity_82580(struct e1000_hw
*hw
)
2440 struct e1000_phy_info
*phy
= &hw
->phy
;
2445 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_STATUS_2
, &data
);
2448 phy
->cable_polarity
= (data
& I82580_PHY_STATUS2_REV_POLARITY
)
2449 ? e1000_rev_polarity_reversed
2450 : e1000_rev_polarity_normal
;
2456 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2457 * @hw: pointer to the HW structure
2459 * Calls the PHY setup function to force speed and duplex. Clears the
2460 * auto-crossover to force MDI manually. Waits for link and returns
2461 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2463 s32
igb_phy_force_speed_duplex_82580(struct e1000_hw
*hw
)
2465 struct e1000_phy_info
*phy
= &hw
->phy
;
2470 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
2474 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
2476 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
2480 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2481 * forced whenever speed and duplex are forced.
2483 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_CTRL_2
, &phy_data
);
2487 phy_data
&= ~I82580_PHY_CTRL2_MDIX_CFG_MASK
;
2489 ret_val
= phy
->ops
.write_reg(hw
, I82580_PHY_CTRL_2
, phy_data
);
2493 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data
);
2497 if (phy
->autoneg_wait_to_complete
) {
2498 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2500 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
2505 hw_dbg("Link taking longer than expected.\n");
2508 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
2518 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2519 * @hw: pointer to the HW structure
2521 * Read PHY status to determine if link is up. If link is up, then
2522 * set/determine 10base-T extended distance and polarity correction. Read
2523 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2524 * determine on the cable length, local and remote receiver.
2526 s32
igb_get_phy_info_82580(struct e1000_hw
*hw
)
2528 struct e1000_phy_info
*phy
= &hw
->phy
;
2533 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
2538 hw_dbg("Phy info is only valid if link is up\n");
2539 ret_val
= -E1000_ERR_CONFIG
;
2543 phy
->polarity_correction
= true;
2545 ret_val
= igb_check_polarity_82580(hw
);
2549 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_STATUS_2
, &data
);
2553 phy
->is_mdix
= (data
& I82580_PHY_STATUS2_MDIX
) ? true : false;
2555 if ((data
& I82580_PHY_STATUS2_SPEED_MASK
) ==
2556 I82580_PHY_STATUS2_SPEED_1000MBPS
) {
2557 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
2561 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
2565 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2566 ? e1000_1000t_rx_status_ok
2567 : e1000_1000t_rx_status_not_ok
;
2569 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2570 ? e1000_1000t_rx_status_ok
2571 : e1000_1000t_rx_status_not_ok
;
2573 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2574 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2575 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2583 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2584 * @hw: pointer to the HW structure
2586 * Reads the diagnostic status register and verifies result is valid before
2587 * placing it in the phy_cable_length field.
2589 s32
igb_get_cable_length_82580(struct e1000_hw
*hw
)
2591 struct e1000_phy_info
*phy
= &hw
->phy
;
2593 u16 phy_data
, length
;
2595 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_DIAG_STATUS
, &phy_data
);
2599 length
= (phy_data
& I82580_DSTATUS_CABLE_LENGTH
) >>
2600 I82580_DSTATUS_CABLE_LENGTH_SHIFT
;
2602 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
2603 ret_val
= -E1000_ERR_PHY
;
2605 phy
->cable_length
= length
;
2612 * igb_set_master_slave_mode - Setup PHY for Master/slave mode
2613 * @hw: pointer to the HW structure
2615 * Sets up Master/slave mode
2617 static s32
igb_set_master_slave_mode(struct e1000_hw
*hw
)
2622 /* Resolve Master/Slave mode */
2623 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_1000T_CTRL
, &phy_data
);
2627 /* load defaults for future use */
2628 hw
->phy
.original_ms_type
= (phy_data
& CR_1000T_MS_ENABLE
) ?
2629 ((phy_data
& CR_1000T_MS_VALUE
) ?
2630 e1000_ms_force_master
:
2631 e1000_ms_force_slave
) : e1000_ms_auto
;
2633 switch (hw
->phy
.ms_type
) {
2634 case e1000_ms_force_master
:
2635 phy_data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
2637 case e1000_ms_force_slave
:
2638 phy_data
|= CR_1000T_MS_ENABLE
;
2639 phy_data
&= ~(CR_1000T_MS_VALUE
);
2642 phy_data
&= ~CR_1000T_MS_ENABLE
;
2648 return hw
->phy
.ops
.write_reg(hw
, PHY_1000T_CTRL
, phy_data
);