Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / ethernet / intel / igb / igb_main.c
blobb88fae78536951cd76506a78cb19e044762fc943
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <net/pkt_sched.h>
38 #include <linux/net_tstamp.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/pci.h>
44 #include <linux/pci-aspm.h>
45 #include <linux/delay.h>
46 #include <linux/interrupt.h>
47 #include <linux/ip.h>
48 #include <linux/tcp.h>
49 #include <linux/sctp.h>
50 #include <linux/if_ether.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/etherdevice.h>
55 #ifdef CONFIG_IGB_DCA
56 #include <linux/dca.h>
57 #endif
58 #include <linux/i2c.h>
59 #include "igb.h"
61 #define MAJ 5
62 #define MIN 4
63 #define BUILD 0
64 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
65 __stringify(BUILD) "-k"
67 enum queue_mode {
68 QUEUE_MODE_STRICT_PRIORITY,
69 QUEUE_MODE_STREAM_RESERVATION,
72 enum tx_queue_prio {
73 TX_QUEUE_PRIO_HIGH,
74 TX_QUEUE_PRIO_LOW,
77 char igb_driver_name[] = "igb";
78 char igb_driver_version[] = DRV_VERSION;
79 static const char igb_driver_string[] =
80 "Intel(R) Gigabit Ethernet Network Driver";
81 static const char igb_copyright[] =
82 "Copyright (c) 2007-2014 Intel Corporation.";
84 static const struct e1000_info *igb_info_tbl[] = {
85 [board_82575] = &e1000_82575_info,
88 static const struct pci_device_id igb_pci_tbl[] = {
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
124 /* required last entry */
125 {0, }
128 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
130 static int igb_setup_all_tx_resources(struct igb_adapter *);
131 static int igb_setup_all_rx_resources(struct igb_adapter *);
132 static void igb_free_all_tx_resources(struct igb_adapter *);
133 static void igb_free_all_rx_resources(struct igb_adapter *);
134 static void igb_setup_mrqc(struct igb_adapter *);
135 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
136 static void igb_remove(struct pci_dev *pdev);
137 static int igb_sw_init(struct igb_adapter *);
138 int igb_open(struct net_device *);
139 int igb_close(struct net_device *);
140 static void igb_configure(struct igb_adapter *);
141 static void igb_configure_tx(struct igb_adapter *);
142 static void igb_configure_rx(struct igb_adapter *);
143 static void igb_clean_all_tx_rings(struct igb_adapter *);
144 static void igb_clean_all_rx_rings(struct igb_adapter *);
145 static void igb_clean_tx_ring(struct igb_ring *);
146 static void igb_clean_rx_ring(struct igb_ring *);
147 static void igb_set_rx_mode(struct net_device *);
148 static void igb_update_phy_info(struct timer_list *);
149 static void igb_watchdog(struct timer_list *);
150 static void igb_watchdog_task(struct work_struct *);
151 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
152 static void igb_get_stats64(struct net_device *dev,
153 struct rtnl_link_stats64 *stats);
154 static int igb_change_mtu(struct net_device *, int);
155 static int igb_set_mac(struct net_device *, void *);
156 static void igb_set_uta(struct igb_adapter *adapter, bool set);
157 static irqreturn_t igb_intr(int irq, void *);
158 static irqreturn_t igb_intr_msi(int irq, void *);
159 static irqreturn_t igb_msix_other(int irq, void *);
160 static irqreturn_t igb_msix_ring(int irq, void *);
161 #ifdef CONFIG_IGB_DCA
162 static void igb_update_dca(struct igb_q_vector *);
163 static void igb_setup_dca(struct igb_adapter *);
164 #endif /* CONFIG_IGB_DCA */
165 static int igb_poll(struct napi_struct *, int);
166 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
167 static int igb_clean_rx_irq(struct igb_q_vector *, int);
168 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
169 static void igb_tx_timeout(struct net_device *);
170 static void igb_reset_task(struct work_struct *);
171 static void igb_vlan_mode(struct net_device *netdev,
172 netdev_features_t features);
173 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
174 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
175 static void igb_restore_vlan(struct igb_adapter *);
176 static void igb_rar_set_index(struct igb_adapter *, u32);
177 static void igb_ping_all_vfs(struct igb_adapter *);
178 static void igb_msg_task(struct igb_adapter *);
179 static void igb_vmm_control(struct igb_adapter *);
180 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
181 static void igb_flush_mac_table(struct igb_adapter *);
182 static int igb_available_rars(struct igb_adapter *, u8);
183 static void igb_set_default_mac_filter(struct igb_adapter *);
184 static int igb_uc_sync(struct net_device *, const unsigned char *);
185 static int igb_uc_unsync(struct net_device *, const unsigned char *);
186 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
187 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
188 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
189 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
190 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
191 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
192 bool setting);
193 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
194 struct ifla_vf_info *ivi);
195 static void igb_check_vf_rate_limit(struct igb_adapter *);
196 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
197 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
199 #ifdef CONFIG_PCI_IOV
200 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
201 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
202 static int igb_disable_sriov(struct pci_dev *dev);
203 static int igb_pci_disable_sriov(struct pci_dev *dev);
204 #endif
206 static int igb_suspend(struct device *);
207 static int igb_resume(struct device *);
208 static int igb_runtime_suspend(struct device *dev);
209 static int igb_runtime_resume(struct device *dev);
210 static int igb_runtime_idle(struct device *dev);
211 static const struct dev_pm_ops igb_pm_ops = {
212 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
213 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
214 igb_runtime_idle)
216 static void igb_shutdown(struct pci_dev *);
217 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
218 #ifdef CONFIG_IGB_DCA
219 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
220 static struct notifier_block dca_notifier = {
221 .notifier_call = igb_notify_dca,
222 .next = NULL,
223 .priority = 0
225 #endif
226 #ifdef CONFIG_NET_POLL_CONTROLLER
227 /* for netdump / net console */
228 static void igb_netpoll(struct net_device *);
229 #endif
230 #ifdef CONFIG_PCI_IOV
231 static unsigned int max_vfs;
232 module_param(max_vfs, uint, 0);
233 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
234 #endif /* CONFIG_PCI_IOV */
236 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
237 pci_channel_state_t);
238 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
239 static void igb_io_resume(struct pci_dev *);
241 static const struct pci_error_handlers igb_err_handler = {
242 .error_detected = igb_io_error_detected,
243 .slot_reset = igb_io_slot_reset,
244 .resume = igb_io_resume,
247 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
249 static struct pci_driver igb_driver = {
250 .name = igb_driver_name,
251 .id_table = igb_pci_tbl,
252 .probe = igb_probe,
253 .remove = igb_remove,
254 #ifdef CONFIG_PM
255 .driver.pm = &igb_pm_ops,
256 #endif
257 .shutdown = igb_shutdown,
258 .sriov_configure = igb_pci_sriov_configure,
259 .err_handler = &igb_err_handler
262 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
263 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
264 MODULE_LICENSE("GPL");
265 MODULE_VERSION(DRV_VERSION);
267 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
268 static int debug = -1;
269 module_param(debug, int, 0);
270 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
272 struct igb_reg_info {
273 u32 ofs;
274 char *name;
277 static const struct igb_reg_info igb_reg_info_tbl[] = {
279 /* General Registers */
280 {E1000_CTRL, "CTRL"},
281 {E1000_STATUS, "STATUS"},
282 {E1000_CTRL_EXT, "CTRL_EXT"},
284 /* Interrupt Registers */
285 {E1000_ICR, "ICR"},
287 /* RX Registers */
288 {E1000_RCTL, "RCTL"},
289 {E1000_RDLEN(0), "RDLEN"},
290 {E1000_RDH(0), "RDH"},
291 {E1000_RDT(0), "RDT"},
292 {E1000_RXDCTL(0), "RXDCTL"},
293 {E1000_RDBAL(0), "RDBAL"},
294 {E1000_RDBAH(0), "RDBAH"},
296 /* TX Registers */
297 {E1000_TCTL, "TCTL"},
298 {E1000_TDBAL(0), "TDBAL"},
299 {E1000_TDBAH(0), "TDBAH"},
300 {E1000_TDLEN(0), "TDLEN"},
301 {E1000_TDH(0), "TDH"},
302 {E1000_TDT(0), "TDT"},
303 {E1000_TXDCTL(0), "TXDCTL"},
304 {E1000_TDFH, "TDFH"},
305 {E1000_TDFT, "TDFT"},
306 {E1000_TDFHS, "TDFHS"},
307 {E1000_TDFPC, "TDFPC"},
309 /* List Terminator */
313 /* igb_regdump - register printout routine */
314 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
316 int n = 0;
317 char rname[16];
318 u32 regs[8];
320 switch (reginfo->ofs) {
321 case E1000_RDLEN(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDLEN(n));
324 break;
325 case E1000_RDH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDH(n));
328 break;
329 case E1000_RDT(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDT(n));
332 break;
333 case E1000_RXDCTL(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_RXDCTL(n));
336 break;
337 case E1000_RDBAL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_RDBAL(n));
340 break;
341 case E1000_RDBAH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_RDBAH(n));
344 break;
345 case E1000_TDBAL(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_RDBAL(n));
348 break;
349 case E1000_TDBAH(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TDBAH(n));
352 break;
353 case E1000_TDLEN(0):
354 for (n = 0; n < 4; n++)
355 regs[n] = rd32(E1000_TDLEN(n));
356 break;
357 case E1000_TDH(0):
358 for (n = 0; n < 4; n++)
359 regs[n] = rd32(E1000_TDH(n));
360 break;
361 case E1000_TDT(0):
362 for (n = 0; n < 4; n++)
363 regs[n] = rd32(E1000_TDT(n));
364 break;
365 case E1000_TXDCTL(0):
366 for (n = 0; n < 4; n++)
367 regs[n] = rd32(E1000_TXDCTL(n));
368 break;
369 default:
370 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
371 return;
374 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
375 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
376 regs[2], regs[3]);
379 /* igb_dump - Print registers, Tx-rings and Rx-rings */
380 static void igb_dump(struct igb_adapter *adapter)
382 struct net_device *netdev = adapter->netdev;
383 struct e1000_hw *hw = &adapter->hw;
384 struct igb_reg_info *reginfo;
385 struct igb_ring *tx_ring;
386 union e1000_adv_tx_desc *tx_desc;
387 struct my_u0 { u64 a; u64 b; } *u0;
388 struct igb_ring *rx_ring;
389 union e1000_adv_rx_desc *rx_desc;
390 u32 staterr;
391 u16 i, n;
393 if (!netif_msg_hw(adapter))
394 return;
396 /* Print netdevice Info */
397 if (netdev) {
398 dev_info(&adapter->pdev->dev, "Net device Info\n");
399 pr_info("Device Name state trans_start\n");
400 pr_info("%-15s %016lX %016lX\n", netdev->name,
401 netdev->state, dev_trans_start(netdev));
404 /* Print Registers */
405 dev_info(&adapter->pdev->dev, "Register Dump\n");
406 pr_info(" Register Name Value\n");
407 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
408 reginfo->name; reginfo++) {
409 igb_regdump(hw, reginfo);
412 /* Print TX Ring Summary */
413 if (!netdev || !netif_running(netdev))
414 goto exit;
416 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
417 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
418 for (n = 0; n < adapter->num_tx_queues; n++) {
419 struct igb_tx_buffer *buffer_info;
420 tx_ring = adapter->tx_ring[n];
421 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
422 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
423 n, tx_ring->next_to_use, tx_ring->next_to_clean,
424 (u64)dma_unmap_addr(buffer_info, dma),
425 dma_unmap_len(buffer_info, len),
426 buffer_info->next_to_watch,
427 (u64)buffer_info->time_stamp);
430 /* Print TX Rings */
431 if (!netif_msg_tx_done(adapter))
432 goto rx_ring_summary;
434 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
436 /* Transmit Descriptor Formats
438 * Advanced Transmit Descriptor
439 * +--------------------------------------------------------------+
440 * 0 | Buffer Address [63:0] |
441 * +--------------------------------------------------------------+
442 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
443 * +--------------------------------------------------------------+
444 * 63 46 45 40 39 38 36 35 32 31 24 15 0
447 for (n = 0; n < adapter->num_tx_queues; n++) {
448 tx_ring = adapter->tx_ring[n];
449 pr_info("------------------------------------\n");
450 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
451 pr_info("------------------------------------\n");
452 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
454 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
455 const char *next_desc;
456 struct igb_tx_buffer *buffer_info;
457 tx_desc = IGB_TX_DESC(tx_ring, i);
458 buffer_info = &tx_ring->tx_buffer_info[i];
459 u0 = (struct my_u0 *)tx_desc;
460 if (i == tx_ring->next_to_use &&
461 i == tx_ring->next_to_clean)
462 next_desc = " NTC/U";
463 else if (i == tx_ring->next_to_use)
464 next_desc = " NTU";
465 else if (i == tx_ring->next_to_clean)
466 next_desc = " NTC";
467 else
468 next_desc = "";
470 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
471 i, le64_to_cpu(u0->a),
472 le64_to_cpu(u0->b),
473 (u64)dma_unmap_addr(buffer_info, dma),
474 dma_unmap_len(buffer_info, len),
475 buffer_info->next_to_watch,
476 (u64)buffer_info->time_stamp,
477 buffer_info->skb, next_desc);
479 if (netif_msg_pktdata(adapter) && buffer_info->skb)
480 print_hex_dump(KERN_INFO, "",
481 DUMP_PREFIX_ADDRESS,
482 16, 1, buffer_info->skb->data,
483 dma_unmap_len(buffer_info, len),
484 true);
488 /* Print RX Rings Summary */
489 rx_ring_summary:
490 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
491 pr_info("Queue [NTU] [NTC]\n");
492 for (n = 0; n < adapter->num_rx_queues; n++) {
493 rx_ring = adapter->rx_ring[n];
494 pr_info(" %5d %5X %5X\n",
495 n, rx_ring->next_to_use, rx_ring->next_to_clean);
498 /* Print RX Rings */
499 if (!netif_msg_rx_status(adapter))
500 goto exit;
502 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
504 /* Advanced Receive Descriptor (Read) Format
505 * 63 1 0
506 * +-----------------------------------------------------+
507 * 0 | Packet Buffer Address [63:1] |A0/NSE|
508 * +----------------------------------------------+------+
509 * 8 | Header Buffer Address [63:1] | DD |
510 * +-----------------------------------------------------+
513 * Advanced Receive Descriptor (Write-Back) Format
515 * 63 48 47 32 31 30 21 20 17 16 4 3 0
516 * +------------------------------------------------------+
517 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
518 * | Checksum Ident | | | | Type | Type |
519 * +------------------------------------------------------+
520 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
521 * +------------------------------------------------------+
522 * 63 48 47 32 31 20 19 0
525 for (n = 0; n < adapter->num_rx_queues; n++) {
526 rx_ring = adapter->rx_ring[n];
527 pr_info("------------------------------------\n");
528 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
529 pr_info("------------------------------------\n");
530 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
531 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
533 for (i = 0; i < rx_ring->count; i++) {
534 const char *next_desc;
535 struct igb_rx_buffer *buffer_info;
536 buffer_info = &rx_ring->rx_buffer_info[i];
537 rx_desc = IGB_RX_DESC(rx_ring, i);
538 u0 = (struct my_u0 *)rx_desc;
539 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
541 if (i == rx_ring->next_to_use)
542 next_desc = " NTU";
543 else if (i == rx_ring->next_to_clean)
544 next_desc = " NTC";
545 else
546 next_desc = "";
548 if (staterr & E1000_RXD_STAT_DD) {
549 /* Descriptor Done */
550 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
551 "RWB", i,
552 le64_to_cpu(u0->a),
553 le64_to_cpu(u0->b),
554 next_desc);
555 } else {
556 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
557 "R ", i,
558 le64_to_cpu(u0->a),
559 le64_to_cpu(u0->b),
560 (u64)buffer_info->dma,
561 next_desc);
563 if (netif_msg_pktdata(adapter) &&
564 buffer_info->dma && buffer_info->page) {
565 print_hex_dump(KERN_INFO, "",
566 DUMP_PREFIX_ADDRESS,
567 16, 1,
568 page_address(buffer_info->page) +
569 buffer_info->page_offset,
570 igb_rx_bufsz(rx_ring), true);
576 exit:
577 return;
581 * igb_get_i2c_data - Reads the I2C SDA data bit
582 * @hw: pointer to hardware structure
583 * @i2cctl: Current value of I2CCTL register
585 * Returns the I2C data bit value
587 static int igb_get_i2c_data(void *data)
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
593 return !!(i2cctl & E1000_I2C_DATA_IN);
597 * igb_set_i2c_data - Sets the I2C data bit
598 * @data: pointer to hardware structure
599 * @state: I2C data value (0 or 1) to set
601 * Sets the I2C data bit
603 static void igb_set_i2c_data(void *data, int state)
605 struct igb_adapter *adapter = (struct igb_adapter *)data;
606 struct e1000_hw *hw = &adapter->hw;
607 s32 i2cctl = rd32(E1000_I2CPARAMS);
609 if (state)
610 i2cctl |= E1000_I2C_DATA_OUT;
611 else
612 i2cctl &= ~E1000_I2C_DATA_OUT;
614 i2cctl &= ~E1000_I2C_DATA_OE_N;
615 i2cctl |= E1000_I2C_CLK_OE_N;
616 wr32(E1000_I2CPARAMS, i2cctl);
617 wrfl();
622 * igb_set_i2c_clk - Sets the I2C SCL clock
623 * @data: pointer to hardware structure
624 * @state: state to set clock
626 * Sets the I2C clock line to state
628 static void igb_set_i2c_clk(void *data, int state)
630 struct igb_adapter *adapter = (struct igb_adapter *)data;
631 struct e1000_hw *hw = &adapter->hw;
632 s32 i2cctl = rd32(E1000_I2CPARAMS);
634 if (state) {
635 i2cctl |= E1000_I2C_CLK_OUT;
636 i2cctl &= ~E1000_I2C_CLK_OE_N;
637 } else {
638 i2cctl &= ~E1000_I2C_CLK_OUT;
639 i2cctl &= ~E1000_I2C_CLK_OE_N;
641 wr32(E1000_I2CPARAMS, i2cctl);
642 wrfl();
646 * igb_get_i2c_clk - Gets the I2C SCL clock state
647 * @data: pointer to hardware structure
649 * Gets the I2C clock state
651 static int igb_get_i2c_clk(void *data)
653 struct igb_adapter *adapter = (struct igb_adapter *)data;
654 struct e1000_hw *hw = &adapter->hw;
655 s32 i2cctl = rd32(E1000_I2CPARAMS);
657 return !!(i2cctl & E1000_I2C_CLK_IN);
660 static const struct i2c_algo_bit_data igb_i2c_algo = {
661 .setsda = igb_set_i2c_data,
662 .setscl = igb_set_i2c_clk,
663 .getsda = igb_get_i2c_data,
664 .getscl = igb_get_i2c_clk,
665 .udelay = 5,
666 .timeout = 20,
670 * igb_get_hw_dev - return device
671 * @hw: pointer to hardware structure
673 * used by hardware layer to print debugging information
675 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
677 struct igb_adapter *adapter = hw->back;
678 return adapter->netdev;
682 * igb_init_module - Driver Registration Routine
684 * igb_init_module is the first routine called when the driver is
685 * loaded. All it does is register with the PCI subsystem.
687 static int __init igb_init_module(void)
689 int ret;
691 pr_info("%s - version %s\n",
692 igb_driver_string, igb_driver_version);
693 pr_info("%s\n", igb_copyright);
695 #ifdef CONFIG_IGB_DCA
696 dca_register_notify(&dca_notifier);
697 #endif
698 ret = pci_register_driver(&igb_driver);
699 return ret;
702 module_init(igb_init_module);
705 * igb_exit_module - Driver Exit Cleanup Routine
707 * igb_exit_module is called just before the driver is removed
708 * from memory.
710 static void __exit igb_exit_module(void)
712 #ifdef CONFIG_IGB_DCA
713 dca_unregister_notify(&dca_notifier);
714 #endif
715 pci_unregister_driver(&igb_driver);
718 module_exit(igb_exit_module);
720 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
722 * igb_cache_ring_register - Descriptor ring to register mapping
723 * @adapter: board private structure to initialize
725 * Once we know the feature-set enabled for the device, we'll cache
726 * the register offset the descriptor ring is assigned to.
728 static void igb_cache_ring_register(struct igb_adapter *adapter)
730 int i = 0, j = 0;
731 u32 rbase_offset = adapter->vfs_allocated_count;
733 switch (adapter->hw.mac.type) {
734 case e1000_82576:
735 /* The queues are allocated for virtualization such that VF 0
736 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
737 * In order to avoid collision we start at the first free queue
738 * and continue consuming queues in the same sequence
740 if (adapter->vfs_allocated_count) {
741 for (; i < adapter->rss_queues; i++)
742 adapter->rx_ring[i]->reg_idx = rbase_offset +
743 Q_IDX_82576(i);
745 /* Fall through */
746 case e1000_82575:
747 case e1000_82580:
748 case e1000_i350:
749 case e1000_i354:
750 case e1000_i210:
751 case e1000_i211:
752 /* Fall through */
753 default:
754 for (; i < adapter->num_rx_queues; i++)
755 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
756 for (; j < adapter->num_tx_queues; j++)
757 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
758 break;
762 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
764 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
765 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
766 u32 value = 0;
768 if (E1000_REMOVED(hw_addr))
769 return ~value;
771 value = readl(&hw_addr[reg]);
773 /* reads should not return all F's */
774 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
775 struct net_device *netdev = igb->netdev;
776 hw->hw_addr = NULL;
777 netif_device_detach(netdev);
778 netdev_err(netdev, "PCIe link lost, device now detached\n");
781 return value;
785 * igb_write_ivar - configure ivar for given MSI-X vector
786 * @hw: pointer to the HW structure
787 * @msix_vector: vector number we are allocating to a given ring
788 * @index: row index of IVAR register to write within IVAR table
789 * @offset: column offset of in IVAR, should be multiple of 8
791 * This function is intended to handle the writing of the IVAR register
792 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
793 * each containing an cause allocation for an Rx and Tx ring, and a
794 * variable number of rows depending on the number of queues supported.
796 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
797 int index, int offset)
799 u32 ivar = array_rd32(E1000_IVAR0, index);
801 /* clear any bits that are currently set */
802 ivar &= ~((u32)0xFF << offset);
804 /* write vector and valid bit */
805 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
807 array_wr32(E1000_IVAR0, index, ivar);
810 #define IGB_N0_QUEUE -1
811 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
813 struct igb_adapter *adapter = q_vector->adapter;
814 struct e1000_hw *hw = &adapter->hw;
815 int rx_queue = IGB_N0_QUEUE;
816 int tx_queue = IGB_N0_QUEUE;
817 u32 msixbm = 0;
819 if (q_vector->rx.ring)
820 rx_queue = q_vector->rx.ring->reg_idx;
821 if (q_vector->tx.ring)
822 tx_queue = q_vector->tx.ring->reg_idx;
824 switch (hw->mac.type) {
825 case e1000_82575:
826 /* The 82575 assigns vectors using a bitmask, which matches the
827 * bitmask for the EICR/EIMS/EIMC registers. To assign one
828 * or more queues to a vector, we write the appropriate bits
829 * into the MSIXBM register for that vector.
831 if (rx_queue > IGB_N0_QUEUE)
832 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
833 if (tx_queue > IGB_N0_QUEUE)
834 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
835 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
836 msixbm |= E1000_EIMS_OTHER;
837 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
838 q_vector->eims_value = msixbm;
839 break;
840 case e1000_82576:
841 /* 82576 uses a table that essentially consists of 2 columns
842 * with 8 rows. The ordering is column-major so we use the
843 * lower 3 bits as the row index, and the 4th bit as the
844 * column offset.
846 if (rx_queue > IGB_N0_QUEUE)
847 igb_write_ivar(hw, msix_vector,
848 rx_queue & 0x7,
849 (rx_queue & 0x8) << 1);
850 if (tx_queue > IGB_N0_QUEUE)
851 igb_write_ivar(hw, msix_vector,
852 tx_queue & 0x7,
853 ((tx_queue & 0x8) << 1) + 8);
854 q_vector->eims_value = BIT(msix_vector);
855 break;
856 case e1000_82580:
857 case e1000_i350:
858 case e1000_i354:
859 case e1000_i210:
860 case e1000_i211:
861 /* On 82580 and newer adapters the scheme is similar to 82576
862 * however instead of ordering column-major we have things
863 * ordered row-major. So we traverse the table by using
864 * bit 0 as the column offset, and the remaining bits as the
865 * row index.
867 if (rx_queue > IGB_N0_QUEUE)
868 igb_write_ivar(hw, msix_vector,
869 rx_queue >> 1,
870 (rx_queue & 0x1) << 4);
871 if (tx_queue > IGB_N0_QUEUE)
872 igb_write_ivar(hw, msix_vector,
873 tx_queue >> 1,
874 ((tx_queue & 0x1) << 4) + 8);
875 q_vector->eims_value = BIT(msix_vector);
876 break;
877 default:
878 BUG();
879 break;
882 /* add q_vector eims value to global eims_enable_mask */
883 adapter->eims_enable_mask |= q_vector->eims_value;
885 /* configure q_vector to set itr on first interrupt */
886 q_vector->set_itr = 1;
890 * igb_configure_msix - Configure MSI-X hardware
891 * @adapter: board private structure to initialize
893 * igb_configure_msix sets up the hardware to properly
894 * generate MSI-X interrupts.
896 static void igb_configure_msix(struct igb_adapter *adapter)
898 u32 tmp;
899 int i, vector = 0;
900 struct e1000_hw *hw = &adapter->hw;
902 adapter->eims_enable_mask = 0;
904 /* set vector for other causes, i.e. link changes */
905 switch (hw->mac.type) {
906 case e1000_82575:
907 tmp = rd32(E1000_CTRL_EXT);
908 /* enable MSI-X PBA support*/
909 tmp |= E1000_CTRL_EXT_PBA_CLR;
911 /* Auto-Mask interrupts upon ICR read. */
912 tmp |= E1000_CTRL_EXT_EIAME;
913 tmp |= E1000_CTRL_EXT_IRCA;
915 wr32(E1000_CTRL_EXT, tmp);
917 /* enable msix_other interrupt */
918 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
919 adapter->eims_other = E1000_EIMS_OTHER;
921 break;
923 case e1000_82576:
924 case e1000_82580:
925 case e1000_i350:
926 case e1000_i354:
927 case e1000_i210:
928 case e1000_i211:
929 /* Turn on MSI-X capability first, or our settings
930 * won't stick. And it will take days to debug.
932 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
933 E1000_GPIE_PBA | E1000_GPIE_EIAME |
934 E1000_GPIE_NSICR);
936 /* enable msix_other interrupt */
937 adapter->eims_other = BIT(vector);
938 tmp = (vector++ | E1000_IVAR_VALID) << 8;
940 wr32(E1000_IVAR_MISC, tmp);
941 break;
942 default:
943 /* do nothing, since nothing else supports MSI-X */
944 break;
945 } /* switch (hw->mac.type) */
947 adapter->eims_enable_mask |= adapter->eims_other;
949 for (i = 0; i < adapter->num_q_vectors; i++)
950 igb_assign_vector(adapter->q_vector[i], vector++);
952 wrfl();
956 * igb_request_msix - Initialize MSI-X interrupts
957 * @adapter: board private structure to initialize
959 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
960 * kernel.
962 static int igb_request_msix(struct igb_adapter *adapter)
964 struct net_device *netdev = adapter->netdev;
965 int i, err = 0, vector = 0, free_vector = 0;
967 err = request_irq(adapter->msix_entries[vector].vector,
968 igb_msix_other, 0, netdev->name, adapter);
969 if (err)
970 goto err_out;
972 for (i = 0; i < adapter->num_q_vectors; i++) {
973 struct igb_q_vector *q_vector = adapter->q_vector[i];
975 vector++;
977 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
979 if (q_vector->rx.ring && q_vector->tx.ring)
980 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
981 q_vector->rx.ring->queue_index);
982 else if (q_vector->tx.ring)
983 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
984 q_vector->tx.ring->queue_index);
985 else if (q_vector->rx.ring)
986 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
987 q_vector->rx.ring->queue_index);
988 else
989 sprintf(q_vector->name, "%s-unused", netdev->name);
991 err = request_irq(adapter->msix_entries[vector].vector,
992 igb_msix_ring, 0, q_vector->name,
993 q_vector);
994 if (err)
995 goto err_free;
998 igb_configure_msix(adapter);
999 return 0;
1001 err_free:
1002 /* free already assigned IRQs */
1003 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
1005 vector--;
1006 for (i = 0; i < vector; i++) {
1007 free_irq(adapter->msix_entries[free_vector++].vector,
1008 adapter->q_vector[i]);
1010 err_out:
1011 return err;
1015 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1016 * @adapter: board private structure to initialize
1017 * @v_idx: Index of vector to be freed
1019 * This function frees the memory allocated to the q_vector.
1021 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1023 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1025 adapter->q_vector[v_idx] = NULL;
1027 /* igb_get_stats64() might access the rings on this vector,
1028 * we must wait a grace period before freeing it.
1030 if (q_vector)
1031 kfree_rcu(q_vector, rcu);
1035 * igb_reset_q_vector - Reset config for interrupt vector
1036 * @adapter: board private structure to initialize
1037 * @v_idx: Index of vector to be reset
1039 * If NAPI is enabled it will delete any references to the
1040 * NAPI struct. This is preparation for igb_free_q_vector.
1042 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1044 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1046 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1047 * allocated. So, q_vector is NULL so we should stop here.
1049 if (!q_vector)
1050 return;
1052 if (q_vector->tx.ring)
1053 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1055 if (q_vector->rx.ring)
1056 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1058 netif_napi_del(&q_vector->napi);
1062 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1064 int v_idx = adapter->num_q_vectors;
1066 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1067 pci_disable_msix(adapter->pdev);
1068 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1069 pci_disable_msi(adapter->pdev);
1071 while (v_idx--)
1072 igb_reset_q_vector(adapter, v_idx);
1076 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1077 * @adapter: board private structure to initialize
1079 * This function frees the memory allocated to the q_vectors. In addition if
1080 * NAPI is enabled it will delete any references to the NAPI struct prior
1081 * to freeing the q_vector.
1083 static void igb_free_q_vectors(struct igb_adapter *adapter)
1085 int v_idx = adapter->num_q_vectors;
1087 adapter->num_tx_queues = 0;
1088 adapter->num_rx_queues = 0;
1089 adapter->num_q_vectors = 0;
1091 while (v_idx--) {
1092 igb_reset_q_vector(adapter, v_idx);
1093 igb_free_q_vector(adapter, v_idx);
1098 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1099 * @adapter: board private structure to initialize
1101 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1102 * MSI-X interrupts allocated.
1104 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1106 igb_free_q_vectors(adapter);
1107 igb_reset_interrupt_capability(adapter);
1111 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1112 * @adapter: board private structure to initialize
1113 * @msix: boolean value of MSIX capability
1115 * Attempt to configure interrupts using the best available
1116 * capabilities of the hardware and kernel.
1118 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1120 int err;
1121 int numvecs, i;
1123 if (!msix)
1124 goto msi_only;
1125 adapter->flags |= IGB_FLAG_HAS_MSIX;
1127 /* Number of supported queues. */
1128 adapter->num_rx_queues = adapter->rss_queues;
1129 if (adapter->vfs_allocated_count)
1130 adapter->num_tx_queues = 1;
1131 else
1132 adapter->num_tx_queues = adapter->rss_queues;
1134 /* start with one vector for every Rx queue */
1135 numvecs = adapter->num_rx_queues;
1137 /* if Tx handler is separate add 1 for every Tx queue */
1138 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1139 numvecs += adapter->num_tx_queues;
1141 /* store the number of vectors reserved for queues */
1142 adapter->num_q_vectors = numvecs;
1144 /* add 1 vector for link status interrupts */
1145 numvecs++;
1146 for (i = 0; i < numvecs; i++)
1147 adapter->msix_entries[i].entry = i;
1149 err = pci_enable_msix_range(adapter->pdev,
1150 adapter->msix_entries,
1151 numvecs,
1152 numvecs);
1153 if (err > 0)
1154 return;
1156 igb_reset_interrupt_capability(adapter);
1158 /* If we can't do MSI-X, try MSI */
1159 msi_only:
1160 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1161 #ifdef CONFIG_PCI_IOV
1162 /* disable SR-IOV for non MSI-X configurations */
1163 if (adapter->vf_data) {
1164 struct e1000_hw *hw = &adapter->hw;
1165 /* disable iov and allow time for transactions to clear */
1166 pci_disable_sriov(adapter->pdev);
1167 msleep(500);
1169 kfree(adapter->vf_mac_list);
1170 adapter->vf_mac_list = NULL;
1171 kfree(adapter->vf_data);
1172 adapter->vf_data = NULL;
1173 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1174 wrfl();
1175 msleep(100);
1176 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1178 #endif
1179 adapter->vfs_allocated_count = 0;
1180 adapter->rss_queues = 1;
1181 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1182 adapter->num_rx_queues = 1;
1183 adapter->num_tx_queues = 1;
1184 adapter->num_q_vectors = 1;
1185 if (!pci_enable_msi(adapter->pdev))
1186 adapter->flags |= IGB_FLAG_HAS_MSI;
1189 static void igb_add_ring(struct igb_ring *ring,
1190 struct igb_ring_container *head)
1192 head->ring = ring;
1193 head->count++;
1197 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1198 * @adapter: board private structure to initialize
1199 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1200 * @v_idx: index of vector in adapter struct
1201 * @txr_count: total number of Tx rings to allocate
1202 * @txr_idx: index of first Tx ring to allocate
1203 * @rxr_count: total number of Rx rings to allocate
1204 * @rxr_idx: index of first Rx ring to allocate
1206 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1208 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1209 int v_count, int v_idx,
1210 int txr_count, int txr_idx,
1211 int rxr_count, int rxr_idx)
1213 struct igb_q_vector *q_vector;
1214 struct igb_ring *ring;
1215 int ring_count, size;
1217 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1218 if (txr_count > 1 || rxr_count > 1)
1219 return -ENOMEM;
1221 ring_count = txr_count + rxr_count;
1222 size = sizeof(struct igb_q_vector) +
1223 (sizeof(struct igb_ring) * ring_count);
1225 /* allocate q_vector and rings */
1226 q_vector = adapter->q_vector[v_idx];
1227 if (!q_vector) {
1228 q_vector = kzalloc(size, GFP_KERNEL);
1229 } else if (size > ksize(q_vector)) {
1230 kfree_rcu(q_vector, rcu);
1231 q_vector = kzalloc(size, GFP_KERNEL);
1232 } else {
1233 memset(q_vector, 0, size);
1235 if (!q_vector)
1236 return -ENOMEM;
1238 /* initialize NAPI */
1239 netif_napi_add(adapter->netdev, &q_vector->napi,
1240 igb_poll, 64);
1242 /* tie q_vector and adapter together */
1243 adapter->q_vector[v_idx] = q_vector;
1244 q_vector->adapter = adapter;
1246 /* initialize work limits */
1247 q_vector->tx.work_limit = adapter->tx_work_limit;
1249 /* initialize ITR configuration */
1250 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1251 q_vector->itr_val = IGB_START_ITR;
1253 /* initialize pointer to rings */
1254 ring = q_vector->ring;
1256 /* intialize ITR */
1257 if (rxr_count) {
1258 /* rx or rx/tx vector */
1259 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1260 q_vector->itr_val = adapter->rx_itr_setting;
1261 } else {
1262 /* tx only vector */
1263 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1264 q_vector->itr_val = adapter->tx_itr_setting;
1267 if (txr_count) {
1268 /* assign generic ring traits */
1269 ring->dev = &adapter->pdev->dev;
1270 ring->netdev = adapter->netdev;
1272 /* configure backlink on ring */
1273 ring->q_vector = q_vector;
1275 /* update q_vector Tx values */
1276 igb_add_ring(ring, &q_vector->tx);
1278 /* For 82575, context index must be unique per ring. */
1279 if (adapter->hw.mac.type == e1000_82575)
1280 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1282 /* apply Tx specific ring traits */
1283 ring->count = adapter->tx_ring_count;
1284 ring->queue_index = txr_idx;
1286 ring->cbs_enable = false;
1287 ring->idleslope = 0;
1288 ring->sendslope = 0;
1289 ring->hicredit = 0;
1290 ring->locredit = 0;
1292 u64_stats_init(&ring->tx_syncp);
1293 u64_stats_init(&ring->tx_syncp2);
1295 /* assign ring to adapter */
1296 adapter->tx_ring[txr_idx] = ring;
1298 /* push pointer to next ring */
1299 ring++;
1302 if (rxr_count) {
1303 /* assign generic ring traits */
1304 ring->dev = &adapter->pdev->dev;
1305 ring->netdev = adapter->netdev;
1307 /* configure backlink on ring */
1308 ring->q_vector = q_vector;
1310 /* update q_vector Rx values */
1311 igb_add_ring(ring, &q_vector->rx);
1313 /* set flag indicating ring supports SCTP checksum offload */
1314 if (adapter->hw.mac.type >= e1000_82576)
1315 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1317 /* On i350, i354, i210, and i211, loopback VLAN packets
1318 * have the tag byte-swapped.
1320 if (adapter->hw.mac.type >= e1000_i350)
1321 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1323 /* apply Rx specific ring traits */
1324 ring->count = adapter->rx_ring_count;
1325 ring->queue_index = rxr_idx;
1327 u64_stats_init(&ring->rx_syncp);
1329 /* assign ring to adapter */
1330 adapter->rx_ring[rxr_idx] = ring;
1333 return 0;
1338 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1339 * @adapter: board private structure to initialize
1341 * We allocate one q_vector per queue interrupt. If allocation fails we
1342 * return -ENOMEM.
1344 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1346 int q_vectors = adapter->num_q_vectors;
1347 int rxr_remaining = adapter->num_rx_queues;
1348 int txr_remaining = adapter->num_tx_queues;
1349 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1350 int err;
1352 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1353 for (; rxr_remaining; v_idx++) {
1354 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1355 0, 0, 1, rxr_idx);
1357 if (err)
1358 goto err_out;
1360 /* update counts and index */
1361 rxr_remaining--;
1362 rxr_idx++;
1366 for (; v_idx < q_vectors; v_idx++) {
1367 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1368 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1370 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1371 tqpv, txr_idx, rqpv, rxr_idx);
1373 if (err)
1374 goto err_out;
1376 /* update counts and index */
1377 rxr_remaining -= rqpv;
1378 txr_remaining -= tqpv;
1379 rxr_idx++;
1380 txr_idx++;
1383 return 0;
1385 err_out:
1386 adapter->num_tx_queues = 0;
1387 adapter->num_rx_queues = 0;
1388 adapter->num_q_vectors = 0;
1390 while (v_idx--)
1391 igb_free_q_vector(adapter, v_idx);
1393 return -ENOMEM;
1397 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1398 * @adapter: board private structure to initialize
1399 * @msix: boolean value of MSIX capability
1401 * This function initializes the interrupts and allocates all of the queues.
1403 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1405 struct pci_dev *pdev = adapter->pdev;
1406 int err;
1408 igb_set_interrupt_capability(adapter, msix);
1410 err = igb_alloc_q_vectors(adapter);
1411 if (err) {
1412 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1413 goto err_alloc_q_vectors;
1416 igb_cache_ring_register(adapter);
1418 return 0;
1420 err_alloc_q_vectors:
1421 igb_reset_interrupt_capability(adapter);
1422 return err;
1426 * igb_request_irq - initialize interrupts
1427 * @adapter: board private structure to initialize
1429 * Attempts to configure interrupts using the best available
1430 * capabilities of the hardware and kernel.
1432 static int igb_request_irq(struct igb_adapter *adapter)
1434 struct net_device *netdev = adapter->netdev;
1435 struct pci_dev *pdev = adapter->pdev;
1436 int err = 0;
1438 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1439 err = igb_request_msix(adapter);
1440 if (!err)
1441 goto request_done;
1442 /* fall back to MSI */
1443 igb_free_all_tx_resources(adapter);
1444 igb_free_all_rx_resources(adapter);
1446 igb_clear_interrupt_scheme(adapter);
1447 err = igb_init_interrupt_scheme(adapter, false);
1448 if (err)
1449 goto request_done;
1451 igb_setup_all_tx_resources(adapter);
1452 igb_setup_all_rx_resources(adapter);
1453 igb_configure(adapter);
1456 igb_assign_vector(adapter->q_vector[0], 0);
1458 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1459 err = request_irq(pdev->irq, igb_intr_msi, 0,
1460 netdev->name, adapter);
1461 if (!err)
1462 goto request_done;
1464 /* fall back to legacy interrupts */
1465 igb_reset_interrupt_capability(adapter);
1466 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1469 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1470 netdev->name, adapter);
1472 if (err)
1473 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1474 err);
1476 request_done:
1477 return err;
1480 static void igb_free_irq(struct igb_adapter *adapter)
1482 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1483 int vector = 0, i;
1485 free_irq(adapter->msix_entries[vector++].vector, adapter);
1487 for (i = 0; i < adapter->num_q_vectors; i++)
1488 free_irq(adapter->msix_entries[vector++].vector,
1489 adapter->q_vector[i]);
1490 } else {
1491 free_irq(adapter->pdev->irq, adapter);
1496 * igb_irq_disable - Mask off interrupt generation on the NIC
1497 * @adapter: board private structure
1499 static void igb_irq_disable(struct igb_adapter *adapter)
1501 struct e1000_hw *hw = &adapter->hw;
1503 /* we need to be careful when disabling interrupts. The VFs are also
1504 * mapped into these registers and so clearing the bits can cause
1505 * issues on the VF drivers so we only need to clear what we set
1507 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508 u32 regval = rd32(E1000_EIAM);
1510 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1511 wr32(E1000_EIMC, adapter->eims_enable_mask);
1512 regval = rd32(E1000_EIAC);
1513 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1516 wr32(E1000_IAM, 0);
1517 wr32(E1000_IMC, ~0);
1518 wrfl();
1519 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1520 int i;
1522 for (i = 0; i < adapter->num_q_vectors; i++)
1523 synchronize_irq(adapter->msix_entries[i].vector);
1524 } else {
1525 synchronize_irq(adapter->pdev->irq);
1530 * igb_irq_enable - Enable default interrupt generation settings
1531 * @adapter: board private structure
1533 static void igb_irq_enable(struct igb_adapter *adapter)
1535 struct e1000_hw *hw = &adapter->hw;
1537 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1538 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1539 u32 regval = rd32(E1000_EIAC);
1541 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1542 regval = rd32(E1000_EIAM);
1543 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1544 wr32(E1000_EIMS, adapter->eims_enable_mask);
1545 if (adapter->vfs_allocated_count) {
1546 wr32(E1000_MBVFIMR, 0xFF);
1547 ims |= E1000_IMS_VMMB;
1549 wr32(E1000_IMS, ims);
1550 } else {
1551 wr32(E1000_IMS, IMS_ENABLE_MASK |
1552 E1000_IMS_DRSTA);
1553 wr32(E1000_IAM, IMS_ENABLE_MASK |
1554 E1000_IMS_DRSTA);
1558 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1560 struct e1000_hw *hw = &adapter->hw;
1561 u16 pf_id = adapter->vfs_allocated_count;
1562 u16 vid = adapter->hw.mng_cookie.vlan_id;
1563 u16 old_vid = adapter->mng_vlan_id;
1565 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1566 /* add VID to filter table */
1567 igb_vfta_set(hw, vid, pf_id, true, true);
1568 adapter->mng_vlan_id = vid;
1569 } else {
1570 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1573 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1574 (vid != old_vid) &&
1575 !test_bit(old_vid, adapter->active_vlans)) {
1576 /* remove VID from filter table */
1577 igb_vfta_set(hw, vid, pf_id, false, true);
1582 * igb_release_hw_control - release control of the h/w to f/w
1583 * @adapter: address of board private structure
1585 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1586 * For ASF and Pass Through versions of f/w this means that the
1587 * driver is no longer loaded.
1589 static void igb_release_hw_control(struct igb_adapter *adapter)
1591 struct e1000_hw *hw = &adapter->hw;
1592 u32 ctrl_ext;
1594 /* Let firmware take over control of h/w */
1595 ctrl_ext = rd32(E1000_CTRL_EXT);
1596 wr32(E1000_CTRL_EXT,
1597 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1601 * igb_get_hw_control - get control of the h/w from f/w
1602 * @adapter: address of board private structure
1604 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1605 * For ASF and Pass Through versions of f/w this means that
1606 * the driver is loaded.
1608 static void igb_get_hw_control(struct igb_adapter *adapter)
1610 struct e1000_hw *hw = &adapter->hw;
1611 u32 ctrl_ext;
1613 /* Let firmware know the driver has taken over */
1614 ctrl_ext = rd32(E1000_CTRL_EXT);
1615 wr32(E1000_CTRL_EXT,
1616 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1619 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1621 struct net_device *netdev = adapter->netdev;
1622 struct e1000_hw *hw = &adapter->hw;
1624 WARN_ON(hw->mac.type != e1000_i210);
1626 if (enable)
1627 adapter->flags |= IGB_FLAG_FQTSS;
1628 else
1629 adapter->flags &= ~IGB_FLAG_FQTSS;
1631 if (netif_running(netdev))
1632 schedule_work(&adapter->reset_task);
1635 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1637 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1640 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1641 enum tx_queue_prio prio)
1643 u32 val;
1645 WARN_ON(hw->mac.type != e1000_i210);
1646 WARN_ON(queue < 0 || queue > 4);
1648 val = rd32(E1000_I210_TXDCTL(queue));
1650 if (prio == TX_QUEUE_PRIO_HIGH)
1651 val |= E1000_TXDCTL_PRIORITY;
1652 else
1653 val &= ~E1000_TXDCTL_PRIORITY;
1655 wr32(E1000_I210_TXDCTL(queue), val);
1658 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1660 u32 val;
1662 WARN_ON(hw->mac.type != e1000_i210);
1663 WARN_ON(queue < 0 || queue > 1);
1665 val = rd32(E1000_I210_TQAVCC(queue));
1667 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1668 val |= E1000_TQAVCC_QUEUEMODE;
1669 else
1670 val &= ~E1000_TQAVCC_QUEUEMODE;
1672 wr32(E1000_I210_TQAVCC(queue), val);
1676 * igb_configure_cbs - Configure Credit-Based Shaper (CBS)
1677 * @adapter: pointer to adapter struct
1678 * @queue: queue number
1679 * @enable: true = enable CBS, false = disable CBS
1680 * @idleslope: idleSlope in kbps
1681 * @sendslope: sendSlope in kbps
1682 * @hicredit: hiCredit in bytes
1683 * @locredit: loCredit in bytes
1685 * Configure CBS for a given hardware queue. When disabling, idleslope,
1686 * sendslope, hicredit, locredit arguments are ignored. Returns 0 if
1687 * success. Negative otherwise.
1689 static void igb_configure_cbs(struct igb_adapter *adapter, int queue,
1690 bool enable, int idleslope, int sendslope,
1691 int hicredit, int locredit)
1693 struct net_device *netdev = adapter->netdev;
1694 struct e1000_hw *hw = &adapter->hw;
1695 u32 tqavcc;
1696 u16 value;
1698 WARN_ON(hw->mac.type != e1000_i210);
1699 WARN_ON(queue < 0 || queue > 1);
1701 if (enable) {
1702 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1705 /* According to i210 datasheet section 7.2.7.7, we should set
1706 * the 'idleSlope' field from TQAVCC register following the
1707 * equation:
1709 * For 100 Mbps link speed:
1711 * value = BW * 0x7735 * 0.2 (E1)
1713 * For 1000Mbps link speed:
1715 * value = BW * 0x7735 * 2 (E2)
1717 * E1 and E2 can be merged into one equation as shown below.
1718 * Note that 'link-speed' is in Mbps.
1720 * value = BW * 0x7735 * 2 * link-speed
1721 * -------------- (E3)
1722 * 1000
1724 * 'BW' is the percentage bandwidth out of full link speed
1725 * which can be found with the following equation. Note that
1726 * idleSlope here is the parameter from this function which
1727 * is in kbps.
1729 * BW = idleSlope
1730 * ----------------- (E4)
1731 * link-speed * 1000
1733 * That said, we can come up with a generic equation to
1734 * calculate the value we should set it TQAVCC register by
1735 * replacing 'BW' in E3 by E4. The resulting equation is:
1737 * value = idleSlope * 0x7735 * 2 * link-speed
1738 * ----------------- -------------- (E5)
1739 * link-speed * 1000 1000
1741 * 'link-speed' is present in both sides of the fraction so
1742 * it is canceled out. The final equation is the following:
1744 * value = idleSlope * 61034
1745 * ----------------- (E6)
1746 * 1000000
1748 * NOTE: For i210, given the above, we can see that idleslope
1749 * is represented in 16.38431 kbps units by the value at
1750 * the TQAVCC register (1Gbps / 61034), which reduces
1751 * the granularity for idleslope increments.
1752 * For instance, if you want to configure a 2576kbps
1753 * idleslope, the value to be written on the register
1754 * would have to be 157.23. If rounded down, you end
1755 * up with less bandwidth available than originally
1756 * required (~2572 kbps). If rounded up, you end up
1757 * with a higher bandwidth (~2589 kbps). Below the
1758 * approach we take is to always round up the
1759 * calculated value, so the resulting bandwidth might
1760 * be slightly higher for some configurations.
1762 value = DIV_ROUND_UP_ULL(idleslope * 61034ULL, 1000000);
1764 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1765 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1766 tqavcc |= value;
1767 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1769 wr32(E1000_I210_TQAVHC(queue), 0x80000000 + hicredit * 0x7735);
1770 } else {
1771 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1772 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1774 /* Set idleSlope to zero. */
1775 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1776 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1777 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1779 /* Set hiCredit to zero. */
1780 wr32(E1000_I210_TQAVHC(queue), 0);
1783 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1784 * CBS are not configurable by software so we don't do any 'controller
1785 * configuration' in respect to these parameters.
1788 netdev_dbg(netdev, "CBS %s: queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1789 (enable) ? "enabled" : "disabled", queue,
1790 idleslope, sendslope, hicredit, locredit);
1793 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1794 bool enable, int idleslope, int sendslope,
1795 int hicredit, int locredit)
1797 struct igb_ring *ring;
1799 if (queue < 0 || queue > adapter->num_tx_queues)
1800 return -EINVAL;
1802 ring = adapter->tx_ring[queue];
1804 ring->cbs_enable = enable;
1805 ring->idleslope = idleslope;
1806 ring->sendslope = sendslope;
1807 ring->hicredit = hicredit;
1808 ring->locredit = locredit;
1810 return 0;
1813 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1815 struct igb_ring *ring;
1816 int i;
1818 for (i = 0; i < adapter->num_tx_queues; i++) {
1819 ring = adapter->tx_ring[i];
1821 if (ring->cbs_enable)
1822 return true;
1825 return false;
1828 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1830 struct net_device *netdev = adapter->netdev;
1831 struct e1000_hw *hw = &adapter->hw;
1832 u32 val;
1834 /* Only i210 controller supports changing the transmission mode. */
1835 if (hw->mac.type != e1000_i210)
1836 return;
1838 if (is_fqtss_enabled(adapter)) {
1839 int i, max_queue;
1841 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1842 * set data fetch arbitration to 'round robin' and set data
1843 * transfer arbitration to 'credit shaper algorithm.
1845 val = rd32(E1000_I210_TQAVCTRL);
1846 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_DATATRANARB;
1847 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1848 wr32(E1000_I210_TQAVCTRL, val);
1850 /* Configure Tx and Rx packet buffers sizes as described in
1851 * i210 datasheet section 7.2.7.7.
1853 val = rd32(E1000_TXPBS);
1854 val &= ~I210_TXPBSIZE_MASK;
1855 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1856 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1857 wr32(E1000_TXPBS, val);
1859 val = rd32(E1000_RXPBS);
1860 val &= ~I210_RXPBSIZE_MASK;
1861 val |= I210_RXPBSIZE_PB_32KB;
1862 wr32(E1000_RXPBS, val);
1864 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1865 * register should not exceed the buffer size programmed in
1866 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1867 * so according to the datasheet we should set MAX_TPKT_SIZE to
1868 * 4kB / 64.
1870 * However, when we do so, no frame from queue 2 and 3 are
1871 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1872 * or _equal_ to the buffer size programmed in TXPBS. For this
1873 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1875 val = (4096 - 1) / 64;
1876 wr32(E1000_I210_DTXMXPKTSZ, val);
1878 /* Since FQTSS mode is enabled, apply any CBS configuration
1879 * previously set. If no previous CBS configuration has been
1880 * done, then the initial configuration is applied, which means
1881 * CBS is disabled.
1883 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1884 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1886 for (i = 0; i < max_queue; i++) {
1887 struct igb_ring *ring = adapter->tx_ring[i];
1889 igb_configure_cbs(adapter, i, ring->cbs_enable,
1890 ring->idleslope, ring->sendslope,
1891 ring->hicredit, ring->locredit);
1893 } else {
1894 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1895 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1896 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1898 val = rd32(E1000_I210_TQAVCTRL);
1899 /* According to Section 8.12.21, the other flags we've set when
1900 * enabling FQTSS are not relevant when disabling FQTSS so we
1901 * don't set they here.
1903 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1904 wr32(E1000_I210_TQAVCTRL, val);
1907 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1908 "enabled" : "disabled");
1912 * igb_configure - configure the hardware for RX and TX
1913 * @adapter: private board structure
1915 static void igb_configure(struct igb_adapter *adapter)
1917 struct net_device *netdev = adapter->netdev;
1918 int i;
1920 igb_get_hw_control(adapter);
1921 igb_set_rx_mode(netdev);
1922 igb_setup_tx_mode(adapter);
1924 igb_restore_vlan(adapter);
1926 igb_setup_tctl(adapter);
1927 igb_setup_mrqc(adapter);
1928 igb_setup_rctl(adapter);
1930 igb_nfc_filter_restore(adapter);
1931 igb_configure_tx(adapter);
1932 igb_configure_rx(adapter);
1934 igb_rx_fifo_flush_82575(&adapter->hw);
1936 /* call igb_desc_unused which always leaves
1937 * at least 1 descriptor unused to make sure
1938 * next_to_use != next_to_clean
1940 for (i = 0; i < adapter->num_rx_queues; i++) {
1941 struct igb_ring *ring = adapter->rx_ring[i];
1942 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1947 * igb_power_up_link - Power up the phy/serdes link
1948 * @adapter: address of board private structure
1950 void igb_power_up_link(struct igb_adapter *adapter)
1952 igb_reset_phy(&adapter->hw);
1954 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1955 igb_power_up_phy_copper(&adapter->hw);
1956 else
1957 igb_power_up_serdes_link_82575(&adapter->hw);
1959 igb_setup_link(&adapter->hw);
1963 * igb_power_down_link - Power down the phy/serdes link
1964 * @adapter: address of board private structure
1966 static void igb_power_down_link(struct igb_adapter *adapter)
1968 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1969 igb_power_down_phy_copper_82575(&adapter->hw);
1970 else
1971 igb_shutdown_serdes_link_82575(&adapter->hw);
1975 * Detect and switch function for Media Auto Sense
1976 * @adapter: address of the board private structure
1978 static void igb_check_swap_media(struct igb_adapter *adapter)
1980 struct e1000_hw *hw = &adapter->hw;
1981 u32 ctrl_ext, connsw;
1982 bool swap_now = false;
1984 ctrl_ext = rd32(E1000_CTRL_EXT);
1985 connsw = rd32(E1000_CONNSW);
1987 /* need to live swap if current media is copper and we have fiber/serdes
1988 * to go to.
1991 if ((hw->phy.media_type == e1000_media_type_copper) &&
1992 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1993 swap_now = true;
1994 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1995 /* copper signal takes time to appear */
1996 if (adapter->copper_tries < 4) {
1997 adapter->copper_tries++;
1998 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1999 wr32(E1000_CONNSW, connsw);
2000 return;
2001 } else {
2002 adapter->copper_tries = 0;
2003 if ((connsw & E1000_CONNSW_PHYSD) &&
2004 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2005 swap_now = true;
2006 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2007 wr32(E1000_CONNSW, connsw);
2012 if (!swap_now)
2013 return;
2015 switch (hw->phy.media_type) {
2016 case e1000_media_type_copper:
2017 netdev_info(adapter->netdev,
2018 "MAS: changing media to fiber/serdes\n");
2019 ctrl_ext |=
2020 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2021 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2022 adapter->copper_tries = 0;
2023 break;
2024 case e1000_media_type_internal_serdes:
2025 case e1000_media_type_fiber:
2026 netdev_info(adapter->netdev,
2027 "MAS: changing media to copper\n");
2028 ctrl_ext &=
2029 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2030 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2031 break;
2032 default:
2033 /* shouldn't get here during regular operation */
2034 netdev_err(adapter->netdev,
2035 "AMS: Invalid media type found, returning\n");
2036 break;
2038 wr32(E1000_CTRL_EXT, ctrl_ext);
2042 * igb_up - Open the interface and prepare it to handle traffic
2043 * @adapter: board private structure
2045 int igb_up(struct igb_adapter *adapter)
2047 struct e1000_hw *hw = &adapter->hw;
2048 int i;
2050 /* hardware has been reset, we need to reload some things */
2051 igb_configure(adapter);
2053 clear_bit(__IGB_DOWN, &adapter->state);
2055 for (i = 0; i < adapter->num_q_vectors; i++)
2056 napi_enable(&(adapter->q_vector[i]->napi));
2058 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2059 igb_configure_msix(adapter);
2060 else
2061 igb_assign_vector(adapter->q_vector[0], 0);
2063 /* Clear any pending interrupts. */
2064 rd32(E1000_ICR);
2065 igb_irq_enable(adapter);
2067 /* notify VFs that reset has been completed */
2068 if (adapter->vfs_allocated_count) {
2069 u32 reg_data = rd32(E1000_CTRL_EXT);
2071 reg_data |= E1000_CTRL_EXT_PFRSTD;
2072 wr32(E1000_CTRL_EXT, reg_data);
2075 netif_tx_start_all_queues(adapter->netdev);
2077 /* start the watchdog. */
2078 hw->mac.get_link_status = 1;
2079 schedule_work(&adapter->watchdog_task);
2081 if ((adapter->flags & IGB_FLAG_EEE) &&
2082 (!hw->dev_spec._82575.eee_disable))
2083 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2085 return 0;
2088 void igb_down(struct igb_adapter *adapter)
2090 struct net_device *netdev = adapter->netdev;
2091 struct e1000_hw *hw = &adapter->hw;
2092 u32 tctl, rctl;
2093 int i;
2095 /* signal that we're down so the interrupt handler does not
2096 * reschedule our watchdog timer
2098 set_bit(__IGB_DOWN, &adapter->state);
2100 /* disable receives in the hardware */
2101 rctl = rd32(E1000_RCTL);
2102 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2103 /* flush and sleep below */
2105 igb_nfc_filter_exit(adapter);
2107 netif_carrier_off(netdev);
2108 netif_tx_stop_all_queues(netdev);
2110 /* disable transmits in the hardware */
2111 tctl = rd32(E1000_TCTL);
2112 tctl &= ~E1000_TCTL_EN;
2113 wr32(E1000_TCTL, tctl);
2114 /* flush both disables and wait for them to finish */
2115 wrfl();
2116 usleep_range(10000, 11000);
2118 igb_irq_disable(adapter);
2120 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2122 for (i = 0; i < adapter->num_q_vectors; i++) {
2123 if (adapter->q_vector[i]) {
2124 napi_synchronize(&adapter->q_vector[i]->napi);
2125 napi_disable(&adapter->q_vector[i]->napi);
2129 del_timer_sync(&adapter->watchdog_timer);
2130 del_timer_sync(&adapter->phy_info_timer);
2132 /* record the stats before reset*/
2133 spin_lock(&adapter->stats64_lock);
2134 igb_update_stats(adapter);
2135 spin_unlock(&adapter->stats64_lock);
2137 adapter->link_speed = 0;
2138 adapter->link_duplex = 0;
2140 if (!pci_channel_offline(adapter->pdev))
2141 igb_reset(adapter);
2143 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2144 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2146 igb_clean_all_tx_rings(adapter);
2147 igb_clean_all_rx_rings(adapter);
2148 #ifdef CONFIG_IGB_DCA
2150 /* since we reset the hardware DCA settings were cleared */
2151 igb_setup_dca(adapter);
2152 #endif
2155 void igb_reinit_locked(struct igb_adapter *adapter)
2157 WARN_ON(in_interrupt());
2158 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2159 usleep_range(1000, 2000);
2160 igb_down(adapter);
2161 igb_up(adapter);
2162 clear_bit(__IGB_RESETTING, &adapter->state);
2165 /** igb_enable_mas - Media Autosense re-enable after swap
2167 * @adapter: adapter struct
2169 static void igb_enable_mas(struct igb_adapter *adapter)
2171 struct e1000_hw *hw = &adapter->hw;
2172 u32 connsw = rd32(E1000_CONNSW);
2174 /* configure for SerDes media detect */
2175 if ((hw->phy.media_type == e1000_media_type_copper) &&
2176 (!(connsw & E1000_CONNSW_SERDESD))) {
2177 connsw |= E1000_CONNSW_ENRGSRC;
2178 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2179 wr32(E1000_CONNSW, connsw);
2180 wrfl();
2184 void igb_reset(struct igb_adapter *adapter)
2186 struct pci_dev *pdev = adapter->pdev;
2187 struct e1000_hw *hw = &adapter->hw;
2188 struct e1000_mac_info *mac = &hw->mac;
2189 struct e1000_fc_info *fc = &hw->fc;
2190 u32 pba, hwm;
2192 /* Repartition Pba for greater than 9k mtu
2193 * To take effect CTRL.RST is required.
2195 switch (mac->type) {
2196 case e1000_i350:
2197 case e1000_i354:
2198 case e1000_82580:
2199 pba = rd32(E1000_RXPBS);
2200 pba = igb_rxpbs_adjust_82580(pba);
2201 break;
2202 case e1000_82576:
2203 pba = rd32(E1000_RXPBS);
2204 pba &= E1000_RXPBS_SIZE_MASK_82576;
2205 break;
2206 case e1000_82575:
2207 case e1000_i210:
2208 case e1000_i211:
2209 default:
2210 pba = E1000_PBA_34K;
2211 break;
2214 if (mac->type == e1000_82575) {
2215 u32 min_rx_space, min_tx_space, needed_tx_space;
2217 /* write Rx PBA so that hardware can report correct Tx PBA */
2218 wr32(E1000_PBA, pba);
2220 /* To maintain wire speed transmits, the Tx FIFO should be
2221 * large enough to accommodate two full transmit packets,
2222 * rounded up to the next 1KB and expressed in KB. Likewise,
2223 * the Rx FIFO should be large enough to accommodate at least
2224 * one full receive packet and is similarly rounded up and
2225 * expressed in KB.
2227 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2229 /* The Tx FIFO also stores 16 bytes of information about the Tx
2230 * but don't include Ethernet FCS because hardware appends it.
2231 * We only need to round down to the nearest 512 byte block
2232 * count since the value we care about is 2 frames, not 1.
2234 min_tx_space = adapter->max_frame_size;
2235 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2236 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2238 /* upper 16 bits has Tx packet buffer allocation size in KB */
2239 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2241 /* If current Tx allocation is less than the min Tx FIFO size,
2242 * and the min Tx FIFO size is less than the current Rx FIFO
2243 * allocation, take space away from current Rx allocation.
2245 if (needed_tx_space < pba) {
2246 pba -= needed_tx_space;
2248 /* if short on Rx space, Rx wins and must trump Tx
2249 * adjustment
2251 if (pba < min_rx_space)
2252 pba = min_rx_space;
2255 /* adjust PBA for jumbo frames */
2256 wr32(E1000_PBA, pba);
2259 /* flow control settings
2260 * The high water mark must be low enough to fit one full frame
2261 * after transmitting the pause frame. As such we must have enough
2262 * space to allow for us to complete our current transmit and then
2263 * receive the frame that is in progress from the link partner.
2264 * Set it to:
2265 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2267 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2269 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2270 fc->low_water = fc->high_water - 16;
2271 fc->pause_time = 0xFFFF;
2272 fc->send_xon = 1;
2273 fc->current_mode = fc->requested_mode;
2275 /* disable receive for all VFs and wait one second */
2276 if (adapter->vfs_allocated_count) {
2277 int i;
2279 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2280 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2282 /* ping all the active vfs to let them know we are going down */
2283 igb_ping_all_vfs(adapter);
2285 /* disable transmits and receives */
2286 wr32(E1000_VFRE, 0);
2287 wr32(E1000_VFTE, 0);
2290 /* Allow time for pending master requests to run */
2291 hw->mac.ops.reset_hw(hw);
2292 wr32(E1000_WUC, 0);
2294 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2295 /* need to resetup here after media swap */
2296 adapter->ei.get_invariants(hw);
2297 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2299 if ((mac->type == e1000_82575) &&
2300 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2301 igb_enable_mas(adapter);
2303 if (hw->mac.ops.init_hw(hw))
2304 dev_err(&pdev->dev, "Hardware Error\n");
2306 /* RAR registers were cleared during init_hw, clear mac table */
2307 igb_flush_mac_table(adapter);
2308 __dev_uc_unsync(adapter->netdev, NULL);
2310 /* Recover default RAR entry */
2311 igb_set_default_mac_filter(adapter);
2313 /* Flow control settings reset on hardware reset, so guarantee flow
2314 * control is off when forcing speed.
2316 if (!hw->mac.autoneg)
2317 igb_force_mac_fc(hw);
2319 igb_init_dmac(adapter, pba);
2320 #ifdef CONFIG_IGB_HWMON
2321 /* Re-initialize the thermal sensor on i350 devices. */
2322 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2323 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2324 /* If present, re-initialize the external thermal sensor
2325 * interface.
2327 if (adapter->ets)
2328 mac->ops.init_thermal_sensor_thresh(hw);
2331 #endif
2332 /* Re-establish EEE setting */
2333 if (hw->phy.media_type == e1000_media_type_copper) {
2334 switch (mac->type) {
2335 case e1000_i350:
2336 case e1000_i210:
2337 case e1000_i211:
2338 igb_set_eee_i350(hw, true, true);
2339 break;
2340 case e1000_i354:
2341 igb_set_eee_i354(hw, true, true);
2342 break;
2343 default:
2344 break;
2347 if (!netif_running(adapter->netdev))
2348 igb_power_down_link(adapter);
2350 igb_update_mng_vlan(adapter);
2352 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2353 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2355 /* Re-enable PTP, where applicable. */
2356 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2357 igb_ptp_reset(adapter);
2359 igb_get_phy_info(hw);
2362 static netdev_features_t igb_fix_features(struct net_device *netdev,
2363 netdev_features_t features)
2365 /* Since there is no support for separate Rx/Tx vlan accel
2366 * enable/disable make sure Tx flag is always in same state as Rx.
2368 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2369 features |= NETIF_F_HW_VLAN_CTAG_TX;
2370 else
2371 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2373 return features;
2376 static int igb_set_features(struct net_device *netdev,
2377 netdev_features_t features)
2379 netdev_features_t changed = netdev->features ^ features;
2380 struct igb_adapter *adapter = netdev_priv(netdev);
2382 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2383 igb_vlan_mode(netdev, features);
2385 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2386 return 0;
2388 if (!(features & NETIF_F_NTUPLE)) {
2389 struct hlist_node *node2;
2390 struct igb_nfc_filter *rule;
2392 spin_lock(&adapter->nfc_lock);
2393 hlist_for_each_entry_safe(rule, node2,
2394 &adapter->nfc_filter_list, nfc_node) {
2395 igb_erase_filter(adapter, rule);
2396 hlist_del(&rule->nfc_node);
2397 kfree(rule);
2399 spin_unlock(&adapter->nfc_lock);
2400 adapter->nfc_filter_count = 0;
2403 netdev->features = features;
2405 if (netif_running(netdev))
2406 igb_reinit_locked(adapter);
2407 else
2408 igb_reset(adapter);
2410 return 0;
2413 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2414 struct net_device *dev,
2415 const unsigned char *addr, u16 vid,
2416 u16 flags)
2418 /* guarantee we can provide a unique filter for the unicast address */
2419 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2420 struct igb_adapter *adapter = netdev_priv(dev);
2421 int vfn = adapter->vfs_allocated_count;
2423 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2424 return -ENOMEM;
2427 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2430 #define IGB_MAX_MAC_HDR_LEN 127
2431 #define IGB_MAX_NETWORK_HDR_LEN 511
2433 static netdev_features_t
2434 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2435 netdev_features_t features)
2437 unsigned int network_hdr_len, mac_hdr_len;
2439 /* Make certain the headers can be described by a context descriptor */
2440 mac_hdr_len = skb_network_header(skb) - skb->data;
2441 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2442 return features & ~(NETIF_F_HW_CSUM |
2443 NETIF_F_SCTP_CRC |
2444 NETIF_F_HW_VLAN_CTAG_TX |
2445 NETIF_F_TSO |
2446 NETIF_F_TSO6);
2448 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2449 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2450 return features & ~(NETIF_F_HW_CSUM |
2451 NETIF_F_SCTP_CRC |
2452 NETIF_F_TSO |
2453 NETIF_F_TSO6);
2455 /* We can only support IPV4 TSO in tunnels if we can mangle the
2456 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2458 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2459 features &= ~NETIF_F_TSO;
2461 return features;
2464 static int igb_offload_cbs(struct igb_adapter *adapter,
2465 struct tc_cbs_qopt_offload *qopt)
2467 struct e1000_hw *hw = &adapter->hw;
2468 int err;
2470 /* CBS offloading is only supported by i210 controller. */
2471 if (hw->mac.type != e1000_i210)
2472 return -EOPNOTSUPP;
2474 /* CBS offloading is only supported by queue 0 and queue 1. */
2475 if (qopt->queue < 0 || qopt->queue > 1)
2476 return -EINVAL;
2478 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2479 qopt->idleslope, qopt->sendslope,
2480 qopt->hicredit, qopt->locredit);
2481 if (err)
2482 return err;
2484 if (is_fqtss_enabled(adapter)) {
2485 igb_configure_cbs(adapter, qopt->queue, qopt->enable,
2486 qopt->idleslope, qopt->sendslope,
2487 qopt->hicredit, qopt->locredit);
2489 if (!is_any_cbs_enabled(adapter))
2490 enable_fqtss(adapter, false);
2492 } else {
2493 enable_fqtss(adapter, true);
2496 return 0;
2499 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2500 void *type_data)
2502 struct igb_adapter *adapter = netdev_priv(dev);
2504 switch (type) {
2505 case TC_SETUP_QDISC_CBS:
2506 return igb_offload_cbs(adapter, type_data);
2508 default:
2509 return -EOPNOTSUPP;
2513 static const struct net_device_ops igb_netdev_ops = {
2514 .ndo_open = igb_open,
2515 .ndo_stop = igb_close,
2516 .ndo_start_xmit = igb_xmit_frame,
2517 .ndo_get_stats64 = igb_get_stats64,
2518 .ndo_set_rx_mode = igb_set_rx_mode,
2519 .ndo_set_mac_address = igb_set_mac,
2520 .ndo_change_mtu = igb_change_mtu,
2521 .ndo_do_ioctl = igb_ioctl,
2522 .ndo_tx_timeout = igb_tx_timeout,
2523 .ndo_validate_addr = eth_validate_addr,
2524 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2525 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2526 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2527 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2528 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2529 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2530 .ndo_get_vf_config = igb_ndo_get_vf_config,
2531 #ifdef CONFIG_NET_POLL_CONTROLLER
2532 .ndo_poll_controller = igb_netpoll,
2533 #endif
2534 .ndo_fix_features = igb_fix_features,
2535 .ndo_set_features = igb_set_features,
2536 .ndo_fdb_add = igb_ndo_fdb_add,
2537 .ndo_features_check = igb_features_check,
2538 .ndo_setup_tc = igb_setup_tc,
2542 * igb_set_fw_version - Configure version string for ethtool
2543 * @adapter: adapter struct
2545 void igb_set_fw_version(struct igb_adapter *adapter)
2547 struct e1000_hw *hw = &adapter->hw;
2548 struct e1000_fw_version fw;
2550 igb_get_fw_version(hw, &fw);
2552 switch (hw->mac.type) {
2553 case e1000_i210:
2554 case e1000_i211:
2555 if (!(igb_get_flash_presence_i210(hw))) {
2556 snprintf(adapter->fw_version,
2557 sizeof(adapter->fw_version),
2558 "%2d.%2d-%d",
2559 fw.invm_major, fw.invm_minor,
2560 fw.invm_img_type);
2561 break;
2563 /* fall through */
2564 default:
2565 /* if option is rom valid, display its version too */
2566 if (fw.or_valid) {
2567 snprintf(adapter->fw_version,
2568 sizeof(adapter->fw_version),
2569 "%d.%d, 0x%08x, %d.%d.%d",
2570 fw.eep_major, fw.eep_minor, fw.etrack_id,
2571 fw.or_major, fw.or_build, fw.or_patch);
2572 /* no option rom */
2573 } else if (fw.etrack_id != 0X0000) {
2574 snprintf(adapter->fw_version,
2575 sizeof(adapter->fw_version),
2576 "%d.%d, 0x%08x",
2577 fw.eep_major, fw.eep_minor, fw.etrack_id);
2578 } else {
2579 snprintf(adapter->fw_version,
2580 sizeof(adapter->fw_version),
2581 "%d.%d.%d",
2582 fw.eep_major, fw.eep_minor, fw.eep_build);
2584 break;
2589 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2591 * @adapter: adapter struct
2593 static void igb_init_mas(struct igb_adapter *adapter)
2595 struct e1000_hw *hw = &adapter->hw;
2596 u16 eeprom_data;
2598 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2599 switch (hw->bus.func) {
2600 case E1000_FUNC_0:
2601 if (eeprom_data & IGB_MAS_ENABLE_0) {
2602 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2603 netdev_info(adapter->netdev,
2604 "MAS: Enabling Media Autosense for port %d\n",
2605 hw->bus.func);
2607 break;
2608 case E1000_FUNC_1:
2609 if (eeprom_data & IGB_MAS_ENABLE_1) {
2610 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2611 netdev_info(adapter->netdev,
2612 "MAS: Enabling Media Autosense for port %d\n",
2613 hw->bus.func);
2615 break;
2616 case E1000_FUNC_2:
2617 if (eeprom_data & IGB_MAS_ENABLE_2) {
2618 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2619 netdev_info(adapter->netdev,
2620 "MAS: Enabling Media Autosense for port %d\n",
2621 hw->bus.func);
2623 break;
2624 case E1000_FUNC_3:
2625 if (eeprom_data & IGB_MAS_ENABLE_3) {
2626 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2627 netdev_info(adapter->netdev,
2628 "MAS: Enabling Media Autosense for port %d\n",
2629 hw->bus.func);
2631 break;
2632 default:
2633 /* Shouldn't get here */
2634 netdev_err(adapter->netdev,
2635 "MAS: Invalid port configuration, returning\n");
2636 break;
2641 * igb_init_i2c - Init I2C interface
2642 * @adapter: pointer to adapter structure
2644 static s32 igb_init_i2c(struct igb_adapter *adapter)
2646 s32 status = 0;
2648 /* I2C interface supported on i350 devices */
2649 if (adapter->hw.mac.type != e1000_i350)
2650 return 0;
2652 /* Initialize the i2c bus which is controlled by the registers.
2653 * This bus will use the i2c_algo_bit structue that implements
2654 * the protocol through toggling of the 4 bits in the register.
2656 adapter->i2c_adap.owner = THIS_MODULE;
2657 adapter->i2c_algo = igb_i2c_algo;
2658 adapter->i2c_algo.data = adapter;
2659 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2660 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2661 strlcpy(adapter->i2c_adap.name, "igb BB",
2662 sizeof(adapter->i2c_adap.name));
2663 status = i2c_bit_add_bus(&adapter->i2c_adap);
2664 return status;
2668 * igb_probe - Device Initialization Routine
2669 * @pdev: PCI device information struct
2670 * @ent: entry in igb_pci_tbl
2672 * Returns 0 on success, negative on failure
2674 * igb_probe initializes an adapter identified by a pci_dev structure.
2675 * The OS initialization, configuring of the adapter private structure,
2676 * and a hardware reset occur.
2678 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2680 struct net_device *netdev;
2681 struct igb_adapter *adapter;
2682 struct e1000_hw *hw;
2683 u16 eeprom_data = 0;
2684 s32 ret_val;
2685 static int global_quad_port_a; /* global quad port a indication */
2686 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2687 int err, pci_using_dac;
2688 u8 part_str[E1000_PBANUM_LENGTH];
2690 /* Catch broken hardware that put the wrong VF device ID in
2691 * the PCIe SR-IOV capability.
2693 if (pdev->is_virtfn) {
2694 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2695 pci_name(pdev), pdev->vendor, pdev->device);
2696 return -EINVAL;
2699 err = pci_enable_device_mem(pdev);
2700 if (err)
2701 return err;
2703 pci_using_dac = 0;
2704 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2705 if (!err) {
2706 pci_using_dac = 1;
2707 } else {
2708 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2709 if (err) {
2710 dev_err(&pdev->dev,
2711 "No usable DMA configuration, aborting\n");
2712 goto err_dma;
2716 err = pci_request_mem_regions(pdev, igb_driver_name);
2717 if (err)
2718 goto err_pci_reg;
2720 pci_enable_pcie_error_reporting(pdev);
2722 pci_set_master(pdev);
2723 pci_save_state(pdev);
2725 err = -ENOMEM;
2726 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2727 IGB_MAX_TX_QUEUES);
2728 if (!netdev)
2729 goto err_alloc_etherdev;
2731 SET_NETDEV_DEV(netdev, &pdev->dev);
2733 pci_set_drvdata(pdev, netdev);
2734 adapter = netdev_priv(netdev);
2735 adapter->netdev = netdev;
2736 adapter->pdev = pdev;
2737 hw = &adapter->hw;
2738 hw->back = adapter;
2739 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2741 err = -EIO;
2742 adapter->io_addr = pci_iomap(pdev, 0, 0);
2743 if (!adapter->io_addr)
2744 goto err_ioremap;
2745 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2746 hw->hw_addr = adapter->io_addr;
2748 netdev->netdev_ops = &igb_netdev_ops;
2749 igb_set_ethtool_ops(netdev);
2750 netdev->watchdog_timeo = 5 * HZ;
2752 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2754 netdev->mem_start = pci_resource_start(pdev, 0);
2755 netdev->mem_end = pci_resource_end(pdev, 0);
2757 /* PCI config space info */
2758 hw->vendor_id = pdev->vendor;
2759 hw->device_id = pdev->device;
2760 hw->revision_id = pdev->revision;
2761 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2762 hw->subsystem_device_id = pdev->subsystem_device;
2764 /* Copy the default MAC, PHY and NVM function pointers */
2765 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2766 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2767 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2768 /* Initialize skew-specific constants */
2769 err = ei->get_invariants(hw);
2770 if (err)
2771 goto err_sw_init;
2773 /* setup the private structure */
2774 err = igb_sw_init(adapter);
2775 if (err)
2776 goto err_sw_init;
2778 igb_get_bus_info_pcie(hw);
2780 hw->phy.autoneg_wait_to_complete = false;
2782 /* Copper options */
2783 if (hw->phy.media_type == e1000_media_type_copper) {
2784 hw->phy.mdix = AUTO_ALL_MODES;
2785 hw->phy.disable_polarity_correction = false;
2786 hw->phy.ms_type = e1000_ms_hw_default;
2789 if (igb_check_reset_block(hw))
2790 dev_info(&pdev->dev,
2791 "PHY reset is blocked due to SOL/IDER session.\n");
2793 /* features is initialized to 0 in allocation, it might have bits
2794 * set by igb_sw_init so we should use an or instead of an
2795 * assignment.
2797 netdev->features |= NETIF_F_SG |
2798 NETIF_F_TSO |
2799 NETIF_F_TSO6 |
2800 NETIF_F_RXHASH |
2801 NETIF_F_RXCSUM |
2802 NETIF_F_HW_CSUM;
2804 if (hw->mac.type >= e1000_82576)
2805 netdev->features |= NETIF_F_SCTP_CRC;
2807 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2808 NETIF_F_GSO_GRE_CSUM | \
2809 NETIF_F_GSO_IPXIP4 | \
2810 NETIF_F_GSO_IPXIP6 | \
2811 NETIF_F_GSO_UDP_TUNNEL | \
2812 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2814 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2815 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2817 /* copy netdev features into list of user selectable features */
2818 netdev->hw_features |= netdev->features |
2819 NETIF_F_HW_VLAN_CTAG_RX |
2820 NETIF_F_HW_VLAN_CTAG_TX |
2821 NETIF_F_RXALL;
2823 if (hw->mac.type >= e1000_i350)
2824 netdev->hw_features |= NETIF_F_NTUPLE;
2826 if (pci_using_dac)
2827 netdev->features |= NETIF_F_HIGHDMA;
2829 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2830 netdev->mpls_features |= NETIF_F_HW_CSUM;
2831 netdev->hw_enc_features |= netdev->vlan_features;
2833 /* set this bit last since it cannot be part of vlan_features */
2834 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2835 NETIF_F_HW_VLAN_CTAG_RX |
2836 NETIF_F_HW_VLAN_CTAG_TX;
2838 netdev->priv_flags |= IFF_SUPP_NOFCS;
2840 netdev->priv_flags |= IFF_UNICAST_FLT;
2842 /* MTU range: 68 - 9216 */
2843 netdev->min_mtu = ETH_MIN_MTU;
2844 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2846 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2848 /* before reading the NVM, reset the controller to put the device in a
2849 * known good starting state
2851 hw->mac.ops.reset_hw(hw);
2853 /* make sure the NVM is good , i211/i210 parts can have special NVM
2854 * that doesn't contain a checksum
2856 switch (hw->mac.type) {
2857 case e1000_i210:
2858 case e1000_i211:
2859 if (igb_get_flash_presence_i210(hw)) {
2860 if (hw->nvm.ops.validate(hw) < 0) {
2861 dev_err(&pdev->dev,
2862 "The NVM Checksum Is Not Valid\n");
2863 err = -EIO;
2864 goto err_eeprom;
2867 break;
2868 default:
2869 if (hw->nvm.ops.validate(hw) < 0) {
2870 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2871 err = -EIO;
2872 goto err_eeprom;
2874 break;
2877 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2878 /* copy the MAC address out of the NVM */
2879 if (hw->mac.ops.read_mac_addr(hw))
2880 dev_err(&pdev->dev, "NVM Read Error\n");
2883 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2885 if (!is_valid_ether_addr(netdev->dev_addr)) {
2886 dev_err(&pdev->dev, "Invalid MAC Address\n");
2887 err = -EIO;
2888 goto err_eeprom;
2891 igb_set_default_mac_filter(adapter);
2893 /* get firmware version for ethtool -i */
2894 igb_set_fw_version(adapter);
2896 /* configure RXPBSIZE and TXPBSIZE */
2897 if (hw->mac.type == e1000_i210) {
2898 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2899 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2902 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
2903 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
2905 INIT_WORK(&adapter->reset_task, igb_reset_task);
2906 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2908 /* Initialize link properties that are user-changeable */
2909 adapter->fc_autoneg = true;
2910 hw->mac.autoneg = true;
2911 hw->phy.autoneg_advertised = 0x2f;
2913 hw->fc.requested_mode = e1000_fc_default;
2914 hw->fc.current_mode = e1000_fc_default;
2916 igb_validate_mdi_setting(hw);
2918 /* By default, support wake on port A */
2919 if (hw->bus.func == 0)
2920 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2922 /* Check the NVM for wake support on non-port A ports */
2923 if (hw->mac.type >= e1000_82580)
2924 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2925 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2926 &eeprom_data);
2927 else if (hw->bus.func == 1)
2928 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2930 if (eeprom_data & IGB_EEPROM_APME)
2931 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2933 /* now that we have the eeprom settings, apply the special cases where
2934 * the eeprom may be wrong or the board simply won't support wake on
2935 * lan on a particular port
2937 switch (pdev->device) {
2938 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2939 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2940 break;
2941 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2942 case E1000_DEV_ID_82576_FIBER:
2943 case E1000_DEV_ID_82576_SERDES:
2944 /* Wake events only supported on port A for dual fiber
2945 * regardless of eeprom setting
2947 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2948 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2949 break;
2950 case E1000_DEV_ID_82576_QUAD_COPPER:
2951 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2952 /* if quad port adapter, disable WoL on all but port A */
2953 if (global_quad_port_a != 0)
2954 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2955 else
2956 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2957 /* Reset for multiple quad port adapters */
2958 if (++global_quad_port_a == 4)
2959 global_quad_port_a = 0;
2960 break;
2961 default:
2962 /* If the device can't wake, don't set software support */
2963 if (!device_can_wakeup(&adapter->pdev->dev))
2964 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2967 /* initialize the wol settings based on the eeprom settings */
2968 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2969 adapter->wol |= E1000_WUFC_MAG;
2971 /* Some vendors want WoL disabled by default, but still supported */
2972 if ((hw->mac.type == e1000_i350) &&
2973 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2974 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2975 adapter->wol = 0;
2978 /* Some vendors want the ability to Use the EEPROM setting as
2979 * enable/disable only, and not for capability
2981 if (((hw->mac.type == e1000_i350) ||
2982 (hw->mac.type == e1000_i354)) &&
2983 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2984 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2985 adapter->wol = 0;
2987 if (hw->mac.type == e1000_i350) {
2988 if (((pdev->subsystem_device == 0x5001) ||
2989 (pdev->subsystem_device == 0x5002)) &&
2990 (hw->bus.func == 0)) {
2991 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2992 adapter->wol = 0;
2994 if (pdev->subsystem_device == 0x1F52)
2995 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2998 device_set_wakeup_enable(&adapter->pdev->dev,
2999 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3001 /* reset the hardware with the new settings */
3002 igb_reset(adapter);
3004 /* Init the I2C interface */
3005 err = igb_init_i2c(adapter);
3006 if (err) {
3007 dev_err(&pdev->dev, "failed to init i2c interface\n");
3008 goto err_eeprom;
3011 /* let the f/w know that the h/w is now under the control of the
3012 * driver.
3014 igb_get_hw_control(adapter);
3016 strcpy(netdev->name, "eth%d");
3017 err = register_netdev(netdev);
3018 if (err)
3019 goto err_register;
3021 /* carrier off reporting is important to ethtool even BEFORE open */
3022 netif_carrier_off(netdev);
3024 #ifdef CONFIG_IGB_DCA
3025 if (dca_add_requester(&pdev->dev) == 0) {
3026 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3027 dev_info(&pdev->dev, "DCA enabled\n");
3028 igb_setup_dca(adapter);
3031 #endif
3032 #ifdef CONFIG_IGB_HWMON
3033 /* Initialize the thermal sensor on i350 devices. */
3034 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3035 u16 ets_word;
3037 /* Read the NVM to determine if this i350 device supports an
3038 * external thermal sensor.
3040 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3041 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3042 adapter->ets = true;
3043 else
3044 adapter->ets = false;
3045 if (igb_sysfs_init(adapter))
3046 dev_err(&pdev->dev,
3047 "failed to allocate sysfs resources\n");
3048 } else {
3049 adapter->ets = false;
3051 #endif
3052 /* Check if Media Autosense is enabled */
3053 adapter->ei = *ei;
3054 if (hw->dev_spec._82575.mas_capable)
3055 igb_init_mas(adapter);
3057 /* do hw tstamp init after resetting */
3058 igb_ptp_init(adapter);
3060 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3061 /* print bus type/speed/width info, not applicable to i354 */
3062 if (hw->mac.type != e1000_i354) {
3063 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3064 netdev->name,
3065 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3066 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3067 "unknown"),
3068 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3069 "Width x4" :
3070 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3071 "Width x2" :
3072 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3073 "Width x1" : "unknown"), netdev->dev_addr);
3076 if ((hw->mac.type >= e1000_i210 ||
3077 igb_get_flash_presence_i210(hw))) {
3078 ret_val = igb_read_part_string(hw, part_str,
3079 E1000_PBANUM_LENGTH);
3080 } else {
3081 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3084 if (ret_val)
3085 strcpy(part_str, "Unknown");
3086 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3087 dev_info(&pdev->dev,
3088 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3089 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3090 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3091 adapter->num_rx_queues, adapter->num_tx_queues);
3092 if (hw->phy.media_type == e1000_media_type_copper) {
3093 switch (hw->mac.type) {
3094 case e1000_i350:
3095 case e1000_i210:
3096 case e1000_i211:
3097 /* Enable EEE for internal copper PHY devices */
3098 err = igb_set_eee_i350(hw, true, true);
3099 if ((!err) &&
3100 (!hw->dev_spec._82575.eee_disable)) {
3101 adapter->eee_advert =
3102 MDIO_EEE_100TX | MDIO_EEE_1000T;
3103 adapter->flags |= IGB_FLAG_EEE;
3105 break;
3106 case e1000_i354:
3107 if ((rd32(E1000_CTRL_EXT) &
3108 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3109 err = igb_set_eee_i354(hw, true, true);
3110 if ((!err) &&
3111 (!hw->dev_spec._82575.eee_disable)) {
3112 adapter->eee_advert =
3113 MDIO_EEE_100TX | MDIO_EEE_1000T;
3114 adapter->flags |= IGB_FLAG_EEE;
3117 break;
3118 default:
3119 break;
3122 pm_runtime_put_noidle(&pdev->dev);
3123 return 0;
3125 err_register:
3126 igb_release_hw_control(adapter);
3127 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3128 err_eeprom:
3129 if (!igb_check_reset_block(hw))
3130 igb_reset_phy(hw);
3132 if (hw->flash_address)
3133 iounmap(hw->flash_address);
3134 err_sw_init:
3135 kfree(adapter->mac_table);
3136 kfree(adapter->shadow_vfta);
3137 igb_clear_interrupt_scheme(adapter);
3138 #ifdef CONFIG_PCI_IOV
3139 igb_disable_sriov(pdev);
3140 #endif
3141 pci_iounmap(pdev, adapter->io_addr);
3142 err_ioremap:
3143 free_netdev(netdev);
3144 err_alloc_etherdev:
3145 pci_release_mem_regions(pdev);
3146 err_pci_reg:
3147 err_dma:
3148 pci_disable_device(pdev);
3149 return err;
3152 #ifdef CONFIG_PCI_IOV
3153 static int igb_disable_sriov(struct pci_dev *pdev)
3155 struct net_device *netdev = pci_get_drvdata(pdev);
3156 struct igb_adapter *adapter = netdev_priv(netdev);
3157 struct e1000_hw *hw = &adapter->hw;
3159 /* reclaim resources allocated to VFs */
3160 if (adapter->vf_data) {
3161 /* disable iov and allow time for transactions to clear */
3162 if (pci_vfs_assigned(pdev)) {
3163 dev_warn(&pdev->dev,
3164 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3165 return -EPERM;
3166 } else {
3167 pci_disable_sriov(pdev);
3168 msleep(500);
3171 kfree(adapter->vf_mac_list);
3172 adapter->vf_mac_list = NULL;
3173 kfree(adapter->vf_data);
3174 adapter->vf_data = NULL;
3175 adapter->vfs_allocated_count = 0;
3176 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3177 wrfl();
3178 msleep(100);
3179 dev_info(&pdev->dev, "IOV Disabled\n");
3181 /* Re-enable DMA Coalescing flag since IOV is turned off */
3182 adapter->flags |= IGB_FLAG_DMAC;
3185 return 0;
3188 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3190 struct net_device *netdev = pci_get_drvdata(pdev);
3191 struct igb_adapter *adapter = netdev_priv(netdev);
3192 int old_vfs = pci_num_vf(pdev);
3193 struct vf_mac_filter *mac_list;
3194 int err = 0;
3195 int num_vf_mac_filters, i;
3197 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3198 err = -EPERM;
3199 goto out;
3201 if (!num_vfs)
3202 goto out;
3204 if (old_vfs) {
3205 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3206 old_vfs, max_vfs);
3207 adapter->vfs_allocated_count = old_vfs;
3208 } else
3209 adapter->vfs_allocated_count = num_vfs;
3211 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3212 sizeof(struct vf_data_storage), GFP_KERNEL);
3214 /* if allocation failed then we do not support SR-IOV */
3215 if (!adapter->vf_data) {
3216 adapter->vfs_allocated_count = 0;
3217 err = -ENOMEM;
3218 goto out;
3221 /* Due to the limited number of RAR entries calculate potential
3222 * number of MAC filters available for the VFs. Reserve entries
3223 * for PF default MAC, PF MAC filters and at least one RAR entry
3224 * for each VF for VF MAC.
3226 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3227 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3228 adapter->vfs_allocated_count);
3230 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3231 sizeof(struct vf_mac_filter),
3232 GFP_KERNEL);
3234 mac_list = adapter->vf_mac_list;
3235 INIT_LIST_HEAD(&adapter->vf_macs.l);
3237 if (adapter->vf_mac_list) {
3238 /* Initialize list of VF MAC filters */
3239 for (i = 0; i < num_vf_mac_filters; i++) {
3240 mac_list->vf = -1;
3241 mac_list->free = true;
3242 list_add(&mac_list->l, &adapter->vf_macs.l);
3243 mac_list++;
3245 } else {
3246 /* If we could not allocate memory for the VF MAC filters
3247 * we can continue without this feature but warn user.
3249 dev_err(&pdev->dev,
3250 "Unable to allocate memory for VF MAC filter list\n");
3253 /* only call pci_enable_sriov() if no VFs are allocated already */
3254 if (!old_vfs) {
3255 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3256 if (err)
3257 goto err_out;
3259 dev_info(&pdev->dev, "%d VFs allocated\n",
3260 adapter->vfs_allocated_count);
3261 for (i = 0; i < adapter->vfs_allocated_count; i++)
3262 igb_vf_configure(adapter, i);
3264 /* DMA Coalescing is not supported in IOV mode. */
3265 adapter->flags &= ~IGB_FLAG_DMAC;
3266 goto out;
3268 err_out:
3269 kfree(adapter->vf_mac_list);
3270 adapter->vf_mac_list = NULL;
3271 kfree(adapter->vf_data);
3272 adapter->vf_data = NULL;
3273 adapter->vfs_allocated_count = 0;
3274 out:
3275 return err;
3278 #endif
3280 * igb_remove_i2c - Cleanup I2C interface
3281 * @adapter: pointer to adapter structure
3283 static void igb_remove_i2c(struct igb_adapter *adapter)
3285 /* free the adapter bus structure */
3286 i2c_del_adapter(&adapter->i2c_adap);
3290 * igb_remove - Device Removal Routine
3291 * @pdev: PCI device information struct
3293 * igb_remove is called by the PCI subsystem to alert the driver
3294 * that it should release a PCI device. The could be caused by a
3295 * Hot-Plug event, or because the driver is going to be removed from
3296 * memory.
3298 static void igb_remove(struct pci_dev *pdev)
3300 struct net_device *netdev = pci_get_drvdata(pdev);
3301 struct igb_adapter *adapter = netdev_priv(netdev);
3302 struct e1000_hw *hw = &adapter->hw;
3304 pm_runtime_get_noresume(&pdev->dev);
3305 #ifdef CONFIG_IGB_HWMON
3306 igb_sysfs_exit(adapter);
3307 #endif
3308 igb_remove_i2c(adapter);
3309 igb_ptp_stop(adapter);
3310 /* The watchdog timer may be rescheduled, so explicitly
3311 * disable watchdog from being rescheduled.
3313 set_bit(__IGB_DOWN, &adapter->state);
3314 del_timer_sync(&adapter->watchdog_timer);
3315 del_timer_sync(&adapter->phy_info_timer);
3317 cancel_work_sync(&adapter->reset_task);
3318 cancel_work_sync(&adapter->watchdog_task);
3320 #ifdef CONFIG_IGB_DCA
3321 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3322 dev_info(&pdev->dev, "DCA disabled\n");
3323 dca_remove_requester(&pdev->dev);
3324 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3325 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3327 #endif
3329 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3330 * would have already happened in close and is redundant.
3332 igb_release_hw_control(adapter);
3334 #ifdef CONFIG_PCI_IOV
3335 igb_disable_sriov(pdev);
3336 #endif
3338 unregister_netdev(netdev);
3340 igb_clear_interrupt_scheme(adapter);
3342 pci_iounmap(pdev, adapter->io_addr);
3343 if (hw->flash_address)
3344 iounmap(hw->flash_address);
3345 pci_release_mem_regions(pdev);
3347 kfree(adapter->mac_table);
3348 kfree(adapter->shadow_vfta);
3349 free_netdev(netdev);
3351 pci_disable_pcie_error_reporting(pdev);
3353 pci_disable_device(pdev);
3357 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3358 * @adapter: board private structure to initialize
3360 * This function initializes the vf specific data storage and then attempts to
3361 * allocate the VFs. The reason for ordering it this way is because it is much
3362 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3363 * the memory for the VFs.
3365 static void igb_probe_vfs(struct igb_adapter *adapter)
3367 #ifdef CONFIG_PCI_IOV
3368 struct pci_dev *pdev = adapter->pdev;
3369 struct e1000_hw *hw = &adapter->hw;
3371 /* Virtualization features not supported on i210 family. */
3372 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3373 return;
3375 /* Of the below we really only want the effect of getting
3376 * IGB_FLAG_HAS_MSIX set (if available), without which
3377 * igb_enable_sriov() has no effect.
3379 igb_set_interrupt_capability(adapter, true);
3380 igb_reset_interrupt_capability(adapter);
3382 pci_sriov_set_totalvfs(pdev, 7);
3383 igb_enable_sriov(pdev, max_vfs);
3385 #endif /* CONFIG_PCI_IOV */
3388 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3390 struct e1000_hw *hw = &adapter->hw;
3391 unsigned int max_rss_queues;
3393 /* Determine the maximum number of RSS queues supported. */
3394 switch (hw->mac.type) {
3395 case e1000_i211:
3396 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3397 break;
3398 case e1000_82575:
3399 case e1000_i210:
3400 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3401 break;
3402 case e1000_i350:
3403 /* I350 cannot do RSS and SR-IOV at the same time */
3404 if (!!adapter->vfs_allocated_count) {
3405 max_rss_queues = 1;
3406 break;
3408 /* fall through */
3409 case e1000_82576:
3410 if (!!adapter->vfs_allocated_count) {
3411 max_rss_queues = 2;
3412 break;
3414 /* fall through */
3415 case e1000_82580:
3416 case e1000_i354:
3417 default:
3418 max_rss_queues = IGB_MAX_RX_QUEUES;
3419 break;
3422 return max_rss_queues;
3425 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3427 u32 max_rss_queues;
3429 max_rss_queues = igb_get_max_rss_queues(adapter);
3430 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3432 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3435 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3436 const u32 max_rss_queues)
3438 struct e1000_hw *hw = &adapter->hw;
3440 /* Determine if we need to pair queues. */
3441 switch (hw->mac.type) {
3442 case e1000_82575:
3443 case e1000_i211:
3444 /* Device supports enough interrupts without queue pairing. */
3445 break;
3446 case e1000_82576:
3447 case e1000_82580:
3448 case e1000_i350:
3449 case e1000_i354:
3450 case e1000_i210:
3451 default:
3452 /* If rss_queues > half of max_rss_queues, pair the queues in
3453 * order to conserve interrupts due to limited supply.
3455 if (adapter->rss_queues > (max_rss_queues / 2))
3456 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3457 else
3458 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3459 break;
3464 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3465 * @adapter: board private structure to initialize
3467 * igb_sw_init initializes the Adapter private data structure.
3468 * Fields are initialized based on PCI device information and
3469 * OS network device settings (MTU size).
3471 static int igb_sw_init(struct igb_adapter *adapter)
3473 struct e1000_hw *hw = &adapter->hw;
3474 struct net_device *netdev = adapter->netdev;
3475 struct pci_dev *pdev = adapter->pdev;
3477 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3479 /* set default ring sizes */
3480 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3481 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3483 /* set default ITR values */
3484 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3485 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3487 /* set default work limits */
3488 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3490 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3491 VLAN_HLEN;
3492 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3494 spin_lock_init(&adapter->nfc_lock);
3495 spin_lock_init(&adapter->stats64_lock);
3496 #ifdef CONFIG_PCI_IOV
3497 switch (hw->mac.type) {
3498 case e1000_82576:
3499 case e1000_i350:
3500 if (max_vfs > 7) {
3501 dev_warn(&pdev->dev,
3502 "Maximum of 7 VFs per PF, using max\n");
3503 max_vfs = adapter->vfs_allocated_count = 7;
3504 } else
3505 adapter->vfs_allocated_count = max_vfs;
3506 if (adapter->vfs_allocated_count)
3507 dev_warn(&pdev->dev,
3508 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3509 break;
3510 default:
3511 break;
3513 #endif /* CONFIG_PCI_IOV */
3515 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3516 adapter->flags |= IGB_FLAG_HAS_MSIX;
3518 adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3519 hw->mac.rar_entry_count, GFP_ATOMIC);
3520 if (!adapter->mac_table)
3521 return -ENOMEM;
3523 igb_probe_vfs(adapter);
3525 igb_init_queue_configuration(adapter);
3527 /* Setup and initialize a copy of the hw vlan table array */
3528 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3529 GFP_ATOMIC);
3530 if (!adapter->shadow_vfta)
3531 return -ENOMEM;
3533 /* This call may decrease the number of queues */
3534 if (igb_init_interrupt_scheme(adapter, true)) {
3535 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3536 return -ENOMEM;
3539 /* Explicitly disable IRQ since the NIC can be in any state. */
3540 igb_irq_disable(adapter);
3542 if (hw->mac.type >= e1000_i350)
3543 adapter->flags &= ~IGB_FLAG_DMAC;
3545 set_bit(__IGB_DOWN, &adapter->state);
3546 return 0;
3550 * igb_open - Called when a network interface is made active
3551 * @netdev: network interface device structure
3553 * Returns 0 on success, negative value on failure
3555 * The open entry point is called when a network interface is made
3556 * active by the system (IFF_UP). At this point all resources needed
3557 * for transmit and receive operations are allocated, the interrupt
3558 * handler is registered with the OS, the watchdog timer is started,
3559 * and the stack is notified that the interface is ready.
3561 static int __igb_open(struct net_device *netdev, bool resuming)
3563 struct igb_adapter *adapter = netdev_priv(netdev);
3564 struct e1000_hw *hw = &adapter->hw;
3565 struct pci_dev *pdev = adapter->pdev;
3566 int err;
3567 int i;
3569 /* disallow open during test */
3570 if (test_bit(__IGB_TESTING, &adapter->state)) {
3571 WARN_ON(resuming);
3572 return -EBUSY;
3575 if (!resuming)
3576 pm_runtime_get_sync(&pdev->dev);
3578 netif_carrier_off(netdev);
3580 /* allocate transmit descriptors */
3581 err = igb_setup_all_tx_resources(adapter);
3582 if (err)
3583 goto err_setup_tx;
3585 /* allocate receive descriptors */
3586 err = igb_setup_all_rx_resources(adapter);
3587 if (err)
3588 goto err_setup_rx;
3590 igb_power_up_link(adapter);
3592 /* before we allocate an interrupt, we must be ready to handle it.
3593 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3594 * as soon as we call pci_request_irq, so we have to setup our
3595 * clean_rx handler before we do so.
3597 igb_configure(adapter);
3599 err = igb_request_irq(adapter);
3600 if (err)
3601 goto err_req_irq;
3603 /* Notify the stack of the actual queue counts. */
3604 err = netif_set_real_num_tx_queues(adapter->netdev,
3605 adapter->num_tx_queues);
3606 if (err)
3607 goto err_set_queues;
3609 err = netif_set_real_num_rx_queues(adapter->netdev,
3610 adapter->num_rx_queues);
3611 if (err)
3612 goto err_set_queues;
3614 /* From here on the code is the same as igb_up() */
3615 clear_bit(__IGB_DOWN, &adapter->state);
3617 for (i = 0; i < adapter->num_q_vectors; i++)
3618 napi_enable(&(adapter->q_vector[i]->napi));
3620 /* Clear any pending interrupts. */
3621 rd32(E1000_ICR);
3623 igb_irq_enable(adapter);
3625 /* notify VFs that reset has been completed */
3626 if (adapter->vfs_allocated_count) {
3627 u32 reg_data = rd32(E1000_CTRL_EXT);
3629 reg_data |= E1000_CTRL_EXT_PFRSTD;
3630 wr32(E1000_CTRL_EXT, reg_data);
3633 netif_tx_start_all_queues(netdev);
3635 if (!resuming)
3636 pm_runtime_put(&pdev->dev);
3638 /* start the watchdog. */
3639 hw->mac.get_link_status = 1;
3640 schedule_work(&adapter->watchdog_task);
3642 return 0;
3644 err_set_queues:
3645 igb_free_irq(adapter);
3646 err_req_irq:
3647 igb_release_hw_control(adapter);
3648 igb_power_down_link(adapter);
3649 igb_free_all_rx_resources(adapter);
3650 err_setup_rx:
3651 igb_free_all_tx_resources(adapter);
3652 err_setup_tx:
3653 igb_reset(adapter);
3654 if (!resuming)
3655 pm_runtime_put(&pdev->dev);
3657 return err;
3660 int igb_open(struct net_device *netdev)
3662 return __igb_open(netdev, false);
3666 * igb_close - Disables a network interface
3667 * @netdev: network interface device structure
3669 * Returns 0, this is not allowed to fail
3671 * The close entry point is called when an interface is de-activated
3672 * by the OS. The hardware is still under the driver's control, but
3673 * needs to be disabled. A global MAC reset is issued to stop the
3674 * hardware, and all transmit and receive resources are freed.
3676 static int __igb_close(struct net_device *netdev, bool suspending)
3678 struct igb_adapter *adapter = netdev_priv(netdev);
3679 struct pci_dev *pdev = adapter->pdev;
3681 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3683 if (!suspending)
3684 pm_runtime_get_sync(&pdev->dev);
3686 igb_down(adapter);
3687 igb_free_irq(adapter);
3689 igb_free_all_tx_resources(adapter);
3690 igb_free_all_rx_resources(adapter);
3692 if (!suspending)
3693 pm_runtime_put_sync(&pdev->dev);
3694 return 0;
3697 int igb_close(struct net_device *netdev)
3699 if (netif_device_present(netdev) || netdev->dismantle)
3700 return __igb_close(netdev, false);
3701 return 0;
3705 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3706 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3708 * Return 0 on success, negative on failure
3710 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3712 struct device *dev = tx_ring->dev;
3713 int size;
3715 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3717 tx_ring->tx_buffer_info = vmalloc(size);
3718 if (!tx_ring->tx_buffer_info)
3719 goto err;
3721 /* round up to nearest 4K */
3722 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3723 tx_ring->size = ALIGN(tx_ring->size, 4096);
3725 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3726 &tx_ring->dma, GFP_KERNEL);
3727 if (!tx_ring->desc)
3728 goto err;
3730 tx_ring->next_to_use = 0;
3731 tx_ring->next_to_clean = 0;
3733 return 0;
3735 err:
3736 vfree(tx_ring->tx_buffer_info);
3737 tx_ring->tx_buffer_info = NULL;
3738 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3739 return -ENOMEM;
3743 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3744 * (Descriptors) for all queues
3745 * @adapter: board private structure
3747 * Return 0 on success, negative on failure
3749 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3751 struct pci_dev *pdev = adapter->pdev;
3752 int i, err = 0;
3754 for (i = 0; i < adapter->num_tx_queues; i++) {
3755 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3756 if (err) {
3757 dev_err(&pdev->dev,
3758 "Allocation for Tx Queue %u failed\n", i);
3759 for (i--; i >= 0; i--)
3760 igb_free_tx_resources(adapter->tx_ring[i]);
3761 break;
3765 return err;
3769 * igb_setup_tctl - configure the transmit control registers
3770 * @adapter: Board private structure
3772 void igb_setup_tctl(struct igb_adapter *adapter)
3774 struct e1000_hw *hw = &adapter->hw;
3775 u32 tctl;
3777 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3778 wr32(E1000_TXDCTL(0), 0);
3780 /* Program the Transmit Control Register */
3781 tctl = rd32(E1000_TCTL);
3782 tctl &= ~E1000_TCTL_CT;
3783 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3784 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3786 igb_config_collision_dist(hw);
3788 /* Enable transmits */
3789 tctl |= E1000_TCTL_EN;
3791 wr32(E1000_TCTL, tctl);
3795 * igb_configure_tx_ring - Configure transmit ring after Reset
3796 * @adapter: board private structure
3797 * @ring: tx ring to configure
3799 * Configure a transmit ring after a reset.
3801 void igb_configure_tx_ring(struct igb_adapter *adapter,
3802 struct igb_ring *ring)
3804 struct e1000_hw *hw = &adapter->hw;
3805 u32 txdctl = 0;
3806 u64 tdba = ring->dma;
3807 int reg_idx = ring->reg_idx;
3809 /* disable the queue */
3810 wr32(E1000_TXDCTL(reg_idx), 0);
3811 wrfl();
3812 mdelay(10);
3814 wr32(E1000_TDLEN(reg_idx),
3815 ring->count * sizeof(union e1000_adv_tx_desc));
3816 wr32(E1000_TDBAL(reg_idx),
3817 tdba & 0x00000000ffffffffULL);
3818 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3820 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
3821 wr32(E1000_TDH(reg_idx), 0);
3822 writel(0, ring->tail);
3824 txdctl |= IGB_TX_PTHRESH;
3825 txdctl |= IGB_TX_HTHRESH << 8;
3826 txdctl |= IGB_TX_WTHRESH << 16;
3828 /* reinitialize tx_buffer_info */
3829 memset(ring->tx_buffer_info, 0,
3830 sizeof(struct igb_tx_buffer) * ring->count);
3832 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3833 wr32(E1000_TXDCTL(reg_idx), txdctl);
3837 * igb_configure_tx - Configure transmit Unit after Reset
3838 * @adapter: board private structure
3840 * Configure the Tx unit of the MAC after a reset.
3842 static void igb_configure_tx(struct igb_adapter *adapter)
3844 int i;
3846 for (i = 0; i < adapter->num_tx_queues; i++)
3847 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3851 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3852 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3854 * Returns 0 on success, negative on failure
3856 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3858 struct device *dev = rx_ring->dev;
3859 int size;
3861 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3863 rx_ring->rx_buffer_info = vmalloc(size);
3864 if (!rx_ring->rx_buffer_info)
3865 goto err;
3867 /* Round up to nearest 4K */
3868 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3869 rx_ring->size = ALIGN(rx_ring->size, 4096);
3871 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3872 &rx_ring->dma, GFP_KERNEL);
3873 if (!rx_ring->desc)
3874 goto err;
3876 rx_ring->next_to_alloc = 0;
3877 rx_ring->next_to_clean = 0;
3878 rx_ring->next_to_use = 0;
3880 return 0;
3882 err:
3883 vfree(rx_ring->rx_buffer_info);
3884 rx_ring->rx_buffer_info = NULL;
3885 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3886 return -ENOMEM;
3890 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3891 * (Descriptors) for all queues
3892 * @adapter: board private structure
3894 * Return 0 on success, negative on failure
3896 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3898 struct pci_dev *pdev = adapter->pdev;
3899 int i, err = 0;
3901 for (i = 0; i < adapter->num_rx_queues; i++) {
3902 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3903 if (err) {
3904 dev_err(&pdev->dev,
3905 "Allocation for Rx Queue %u failed\n", i);
3906 for (i--; i >= 0; i--)
3907 igb_free_rx_resources(adapter->rx_ring[i]);
3908 break;
3912 return err;
3916 * igb_setup_mrqc - configure the multiple receive queue control registers
3917 * @adapter: Board private structure
3919 static void igb_setup_mrqc(struct igb_adapter *adapter)
3921 struct e1000_hw *hw = &adapter->hw;
3922 u32 mrqc, rxcsum;
3923 u32 j, num_rx_queues;
3924 u32 rss_key[10];
3926 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3927 for (j = 0; j < 10; j++)
3928 wr32(E1000_RSSRK(j), rss_key[j]);
3930 num_rx_queues = adapter->rss_queues;
3932 switch (hw->mac.type) {
3933 case e1000_82576:
3934 /* 82576 supports 2 RSS queues for SR-IOV */
3935 if (adapter->vfs_allocated_count)
3936 num_rx_queues = 2;
3937 break;
3938 default:
3939 break;
3942 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3943 for (j = 0; j < IGB_RETA_SIZE; j++)
3944 adapter->rss_indir_tbl[j] =
3945 (j * num_rx_queues) / IGB_RETA_SIZE;
3946 adapter->rss_indir_tbl_init = num_rx_queues;
3948 igb_write_rss_indir_tbl(adapter);
3950 /* Disable raw packet checksumming so that RSS hash is placed in
3951 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3952 * offloads as they are enabled by default
3954 rxcsum = rd32(E1000_RXCSUM);
3955 rxcsum |= E1000_RXCSUM_PCSD;
3957 if (adapter->hw.mac.type >= e1000_82576)
3958 /* Enable Receive Checksum Offload for SCTP */
3959 rxcsum |= E1000_RXCSUM_CRCOFL;
3961 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3962 wr32(E1000_RXCSUM, rxcsum);
3964 /* Generate RSS hash based on packet types, TCP/UDP
3965 * port numbers and/or IPv4/v6 src and dst addresses
3967 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3968 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3969 E1000_MRQC_RSS_FIELD_IPV6 |
3970 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3971 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3973 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3974 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3975 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3976 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3978 /* If VMDq is enabled then we set the appropriate mode for that, else
3979 * we default to RSS so that an RSS hash is calculated per packet even
3980 * if we are only using one queue
3982 if (adapter->vfs_allocated_count) {
3983 if (hw->mac.type > e1000_82575) {
3984 /* Set the default pool for the PF's first queue */
3985 u32 vtctl = rd32(E1000_VT_CTL);
3987 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3988 E1000_VT_CTL_DISABLE_DEF_POOL);
3989 vtctl |= adapter->vfs_allocated_count <<
3990 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3991 wr32(E1000_VT_CTL, vtctl);
3993 if (adapter->rss_queues > 1)
3994 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3995 else
3996 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3997 } else {
3998 if (hw->mac.type != e1000_i211)
3999 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4001 igb_vmm_control(adapter);
4003 wr32(E1000_MRQC, mrqc);
4007 * igb_setup_rctl - configure the receive control registers
4008 * @adapter: Board private structure
4010 void igb_setup_rctl(struct igb_adapter *adapter)
4012 struct e1000_hw *hw = &adapter->hw;
4013 u32 rctl;
4015 rctl = rd32(E1000_RCTL);
4017 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4018 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4020 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4021 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4023 /* enable stripping of CRC. It's unlikely this will break BMC
4024 * redirection as it did with e1000. Newer features require
4025 * that the HW strips the CRC.
4027 rctl |= E1000_RCTL_SECRC;
4029 /* disable store bad packets and clear size bits. */
4030 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4032 /* enable LPE to allow for reception of jumbo frames */
4033 rctl |= E1000_RCTL_LPE;
4035 /* disable queue 0 to prevent tail write w/o re-config */
4036 wr32(E1000_RXDCTL(0), 0);
4038 /* Attention!!! For SR-IOV PF driver operations you must enable
4039 * queue drop for all VF and PF queues to prevent head of line blocking
4040 * if an un-trusted VF does not provide descriptors to hardware.
4042 if (adapter->vfs_allocated_count) {
4043 /* set all queue drop enable bits */
4044 wr32(E1000_QDE, ALL_QUEUES);
4047 /* This is useful for sniffing bad packets. */
4048 if (adapter->netdev->features & NETIF_F_RXALL) {
4049 /* UPE and MPE will be handled by normal PROMISC logic
4050 * in e1000e_set_rx_mode
4052 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4053 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4054 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4056 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4057 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4058 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4059 * and that breaks VLANs.
4063 wr32(E1000_RCTL, rctl);
4066 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4067 int vfn)
4069 struct e1000_hw *hw = &adapter->hw;
4070 u32 vmolr;
4072 if (size > MAX_JUMBO_FRAME_SIZE)
4073 size = MAX_JUMBO_FRAME_SIZE;
4075 vmolr = rd32(E1000_VMOLR(vfn));
4076 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4077 vmolr |= size | E1000_VMOLR_LPE;
4078 wr32(E1000_VMOLR(vfn), vmolr);
4080 return 0;
4083 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4084 int vfn, bool enable)
4086 struct e1000_hw *hw = &adapter->hw;
4087 u32 val, reg;
4089 if (hw->mac.type < e1000_82576)
4090 return;
4092 if (hw->mac.type == e1000_i350)
4093 reg = E1000_DVMOLR(vfn);
4094 else
4095 reg = E1000_VMOLR(vfn);
4097 val = rd32(reg);
4098 if (enable)
4099 val |= E1000_VMOLR_STRVLAN;
4100 else
4101 val &= ~(E1000_VMOLR_STRVLAN);
4102 wr32(reg, val);
4105 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4106 int vfn, bool aupe)
4108 struct e1000_hw *hw = &adapter->hw;
4109 u32 vmolr;
4111 /* This register exists only on 82576 and newer so if we are older then
4112 * we should exit and do nothing
4114 if (hw->mac.type < e1000_82576)
4115 return;
4117 vmolr = rd32(E1000_VMOLR(vfn));
4118 if (aupe)
4119 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4120 else
4121 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4123 /* clear all bits that might not be set */
4124 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4126 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4127 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4128 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4129 * multicast packets
4131 if (vfn <= adapter->vfs_allocated_count)
4132 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4134 wr32(E1000_VMOLR(vfn), vmolr);
4138 * igb_configure_rx_ring - Configure a receive ring after Reset
4139 * @adapter: board private structure
4140 * @ring: receive ring to be configured
4142 * Configure the Rx unit of the MAC after a reset.
4144 void igb_configure_rx_ring(struct igb_adapter *adapter,
4145 struct igb_ring *ring)
4147 struct e1000_hw *hw = &adapter->hw;
4148 union e1000_adv_rx_desc *rx_desc;
4149 u64 rdba = ring->dma;
4150 int reg_idx = ring->reg_idx;
4151 u32 srrctl = 0, rxdctl = 0;
4153 /* disable the queue */
4154 wr32(E1000_RXDCTL(reg_idx), 0);
4156 /* Set DMA base address registers */
4157 wr32(E1000_RDBAL(reg_idx),
4158 rdba & 0x00000000ffffffffULL);
4159 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4160 wr32(E1000_RDLEN(reg_idx),
4161 ring->count * sizeof(union e1000_adv_rx_desc));
4163 /* initialize head and tail */
4164 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4165 wr32(E1000_RDH(reg_idx), 0);
4166 writel(0, ring->tail);
4168 /* set descriptor configuration */
4169 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4170 if (ring_uses_large_buffer(ring))
4171 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4172 else
4173 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4174 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4175 if (hw->mac.type >= e1000_82580)
4176 srrctl |= E1000_SRRCTL_TIMESTAMP;
4177 /* Only set Drop Enable if we are supporting multiple queues */
4178 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4179 srrctl |= E1000_SRRCTL_DROP_EN;
4181 wr32(E1000_SRRCTL(reg_idx), srrctl);
4183 /* set filtering for VMDQ pools */
4184 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4186 rxdctl |= IGB_RX_PTHRESH;
4187 rxdctl |= IGB_RX_HTHRESH << 8;
4188 rxdctl |= IGB_RX_WTHRESH << 16;
4190 /* initialize rx_buffer_info */
4191 memset(ring->rx_buffer_info, 0,
4192 sizeof(struct igb_rx_buffer) * ring->count);
4194 /* initialize Rx descriptor 0 */
4195 rx_desc = IGB_RX_DESC(ring, 0);
4196 rx_desc->wb.upper.length = 0;
4198 /* enable receive descriptor fetching */
4199 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4200 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4203 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4204 struct igb_ring *rx_ring)
4206 /* set build_skb and buffer size flags */
4207 clear_ring_build_skb_enabled(rx_ring);
4208 clear_ring_uses_large_buffer(rx_ring);
4210 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4211 return;
4213 set_ring_build_skb_enabled(rx_ring);
4215 #if (PAGE_SIZE < 8192)
4216 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4217 return;
4219 set_ring_uses_large_buffer(rx_ring);
4220 #endif
4224 * igb_configure_rx - Configure receive Unit after Reset
4225 * @adapter: board private structure
4227 * Configure the Rx unit of the MAC after a reset.
4229 static void igb_configure_rx(struct igb_adapter *adapter)
4231 int i;
4233 /* set the correct pool for the PF default MAC address in entry 0 */
4234 igb_set_default_mac_filter(adapter);
4236 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4237 * the Base and Length of the Rx Descriptor Ring
4239 for (i = 0; i < adapter->num_rx_queues; i++) {
4240 struct igb_ring *rx_ring = adapter->rx_ring[i];
4242 igb_set_rx_buffer_len(adapter, rx_ring);
4243 igb_configure_rx_ring(adapter, rx_ring);
4248 * igb_free_tx_resources - Free Tx Resources per Queue
4249 * @tx_ring: Tx descriptor ring for a specific queue
4251 * Free all transmit software resources
4253 void igb_free_tx_resources(struct igb_ring *tx_ring)
4255 igb_clean_tx_ring(tx_ring);
4257 vfree(tx_ring->tx_buffer_info);
4258 tx_ring->tx_buffer_info = NULL;
4260 /* if not set, then don't free */
4261 if (!tx_ring->desc)
4262 return;
4264 dma_free_coherent(tx_ring->dev, tx_ring->size,
4265 tx_ring->desc, tx_ring->dma);
4267 tx_ring->desc = NULL;
4271 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4272 * @adapter: board private structure
4274 * Free all transmit software resources
4276 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4278 int i;
4280 for (i = 0; i < adapter->num_tx_queues; i++)
4281 if (adapter->tx_ring[i])
4282 igb_free_tx_resources(adapter->tx_ring[i]);
4286 * igb_clean_tx_ring - Free Tx Buffers
4287 * @tx_ring: ring to be cleaned
4289 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4291 u16 i = tx_ring->next_to_clean;
4292 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4294 while (i != tx_ring->next_to_use) {
4295 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4297 /* Free all the Tx ring sk_buffs */
4298 dev_kfree_skb_any(tx_buffer->skb);
4300 /* unmap skb header data */
4301 dma_unmap_single(tx_ring->dev,
4302 dma_unmap_addr(tx_buffer, dma),
4303 dma_unmap_len(tx_buffer, len),
4304 DMA_TO_DEVICE);
4306 /* check for eop_desc to determine the end of the packet */
4307 eop_desc = tx_buffer->next_to_watch;
4308 tx_desc = IGB_TX_DESC(tx_ring, i);
4310 /* unmap remaining buffers */
4311 while (tx_desc != eop_desc) {
4312 tx_buffer++;
4313 tx_desc++;
4314 i++;
4315 if (unlikely(i == tx_ring->count)) {
4316 i = 0;
4317 tx_buffer = tx_ring->tx_buffer_info;
4318 tx_desc = IGB_TX_DESC(tx_ring, 0);
4321 /* unmap any remaining paged data */
4322 if (dma_unmap_len(tx_buffer, len))
4323 dma_unmap_page(tx_ring->dev,
4324 dma_unmap_addr(tx_buffer, dma),
4325 dma_unmap_len(tx_buffer, len),
4326 DMA_TO_DEVICE);
4329 /* move us one more past the eop_desc for start of next pkt */
4330 tx_buffer++;
4331 i++;
4332 if (unlikely(i == tx_ring->count)) {
4333 i = 0;
4334 tx_buffer = tx_ring->tx_buffer_info;
4338 /* reset BQL for queue */
4339 netdev_tx_reset_queue(txring_txq(tx_ring));
4341 /* reset next_to_use and next_to_clean */
4342 tx_ring->next_to_use = 0;
4343 tx_ring->next_to_clean = 0;
4347 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4348 * @adapter: board private structure
4350 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4352 int i;
4354 for (i = 0; i < adapter->num_tx_queues; i++)
4355 if (adapter->tx_ring[i])
4356 igb_clean_tx_ring(adapter->tx_ring[i]);
4360 * igb_free_rx_resources - Free Rx Resources
4361 * @rx_ring: ring to clean the resources from
4363 * Free all receive software resources
4365 void igb_free_rx_resources(struct igb_ring *rx_ring)
4367 igb_clean_rx_ring(rx_ring);
4369 vfree(rx_ring->rx_buffer_info);
4370 rx_ring->rx_buffer_info = NULL;
4372 /* if not set, then don't free */
4373 if (!rx_ring->desc)
4374 return;
4376 dma_free_coherent(rx_ring->dev, rx_ring->size,
4377 rx_ring->desc, rx_ring->dma);
4379 rx_ring->desc = NULL;
4383 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4384 * @adapter: board private structure
4386 * Free all receive software resources
4388 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4390 int i;
4392 for (i = 0; i < adapter->num_rx_queues; i++)
4393 if (adapter->rx_ring[i])
4394 igb_free_rx_resources(adapter->rx_ring[i]);
4398 * igb_clean_rx_ring - Free Rx Buffers per Queue
4399 * @rx_ring: ring to free buffers from
4401 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4403 u16 i = rx_ring->next_to_clean;
4405 if (rx_ring->skb)
4406 dev_kfree_skb(rx_ring->skb);
4407 rx_ring->skb = NULL;
4409 /* Free all the Rx ring sk_buffs */
4410 while (i != rx_ring->next_to_alloc) {
4411 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4413 /* Invalidate cache lines that may have been written to by
4414 * device so that we avoid corrupting memory.
4416 dma_sync_single_range_for_cpu(rx_ring->dev,
4417 buffer_info->dma,
4418 buffer_info->page_offset,
4419 igb_rx_bufsz(rx_ring),
4420 DMA_FROM_DEVICE);
4422 /* free resources associated with mapping */
4423 dma_unmap_page_attrs(rx_ring->dev,
4424 buffer_info->dma,
4425 igb_rx_pg_size(rx_ring),
4426 DMA_FROM_DEVICE,
4427 IGB_RX_DMA_ATTR);
4428 __page_frag_cache_drain(buffer_info->page,
4429 buffer_info->pagecnt_bias);
4431 i++;
4432 if (i == rx_ring->count)
4433 i = 0;
4436 rx_ring->next_to_alloc = 0;
4437 rx_ring->next_to_clean = 0;
4438 rx_ring->next_to_use = 0;
4442 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4443 * @adapter: board private structure
4445 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4447 int i;
4449 for (i = 0; i < adapter->num_rx_queues; i++)
4450 if (adapter->rx_ring[i])
4451 igb_clean_rx_ring(adapter->rx_ring[i]);
4455 * igb_set_mac - Change the Ethernet Address of the NIC
4456 * @netdev: network interface device structure
4457 * @p: pointer to an address structure
4459 * Returns 0 on success, negative on failure
4461 static int igb_set_mac(struct net_device *netdev, void *p)
4463 struct igb_adapter *adapter = netdev_priv(netdev);
4464 struct e1000_hw *hw = &adapter->hw;
4465 struct sockaddr *addr = p;
4467 if (!is_valid_ether_addr(addr->sa_data))
4468 return -EADDRNOTAVAIL;
4470 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4471 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4473 /* set the correct pool for the new PF MAC address in entry 0 */
4474 igb_set_default_mac_filter(adapter);
4476 return 0;
4480 * igb_write_mc_addr_list - write multicast addresses to MTA
4481 * @netdev: network interface device structure
4483 * Writes multicast address list to the MTA hash table.
4484 * Returns: -ENOMEM on failure
4485 * 0 on no addresses written
4486 * X on writing X addresses to MTA
4488 static int igb_write_mc_addr_list(struct net_device *netdev)
4490 struct igb_adapter *adapter = netdev_priv(netdev);
4491 struct e1000_hw *hw = &adapter->hw;
4492 struct netdev_hw_addr *ha;
4493 u8 *mta_list;
4494 int i;
4496 if (netdev_mc_empty(netdev)) {
4497 /* nothing to program, so clear mc list */
4498 igb_update_mc_addr_list(hw, NULL, 0);
4499 igb_restore_vf_multicasts(adapter);
4500 return 0;
4503 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4504 if (!mta_list)
4505 return -ENOMEM;
4507 /* The shared function expects a packed array of only addresses. */
4508 i = 0;
4509 netdev_for_each_mc_addr(ha, netdev)
4510 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4512 igb_update_mc_addr_list(hw, mta_list, i);
4513 kfree(mta_list);
4515 return netdev_mc_count(netdev);
4518 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4520 struct e1000_hw *hw = &adapter->hw;
4521 u32 i, pf_id;
4523 switch (hw->mac.type) {
4524 case e1000_i210:
4525 case e1000_i211:
4526 case e1000_i350:
4527 /* VLAN filtering needed for VLAN prio filter */
4528 if (adapter->netdev->features & NETIF_F_NTUPLE)
4529 break;
4530 /* fall through */
4531 case e1000_82576:
4532 case e1000_82580:
4533 case e1000_i354:
4534 /* VLAN filtering needed for pool filtering */
4535 if (adapter->vfs_allocated_count)
4536 break;
4537 /* fall through */
4538 default:
4539 return 1;
4542 /* We are already in VLAN promisc, nothing to do */
4543 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4544 return 0;
4546 if (!adapter->vfs_allocated_count)
4547 goto set_vfta;
4549 /* Add PF to all active pools */
4550 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4552 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4553 u32 vlvf = rd32(E1000_VLVF(i));
4555 vlvf |= BIT(pf_id);
4556 wr32(E1000_VLVF(i), vlvf);
4559 set_vfta:
4560 /* Set all bits in the VLAN filter table array */
4561 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4562 hw->mac.ops.write_vfta(hw, i, ~0U);
4564 /* Set flag so we don't redo unnecessary work */
4565 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4567 return 0;
4570 #define VFTA_BLOCK_SIZE 8
4571 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4573 struct e1000_hw *hw = &adapter->hw;
4574 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4575 u32 vid_start = vfta_offset * 32;
4576 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4577 u32 i, vid, word, bits, pf_id;
4579 /* guarantee that we don't scrub out management VLAN */
4580 vid = adapter->mng_vlan_id;
4581 if (vid >= vid_start && vid < vid_end)
4582 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4584 if (!adapter->vfs_allocated_count)
4585 goto set_vfta;
4587 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4589 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4590 u32 vlvf = rd32(E1000_VLVF(i));
4592 /* pull VLAN ID from VLVF */
4593 vid = vlvf & VLAN_VID_MASK;
4595 /* only concern ourselves with a certain range */
4596 if (vid < vid_start || vid >= vid_end)
4597 continue;
4599 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4600 /* record VLAN ID in VFTA */
4601 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4603 /* if PF is part of this then continue */
4604 if (test_bit(vid, adapter->active_vlans))
4605 continue;
4608 /* remove PF from the pool */
4609 bits = ~BIT(pf_id);
4610 bits &= rd32(E1000_VLVF(i));
4611 wr32(E1000_VLVF(i), bits);
4614 set_vfta:
4615 /* extract values from active_vlans and write back to VFTA */
4616 for (i = VFTA_BLOCK_SIZE; i--;) {
4617 vid = (vfta_offset + i) * 32;
4618 word = vid / BITS_PER_LONG;
4619 bits = vid % BITS_PER_LONG;
4621 vfta[i] |= adapter->active_vlans[word] >> bits;
4623 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4627 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4629 u32 i;
4631 /* We are not in VLAN promisc, nothing to do */
4632 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4633 return;
4635 /* Set flag so we don't redo unnecessary work */
4636 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4638 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4639 igb_scrub_vfta(adapter, i);
4643 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4644 * @netdev: network interface device structure
4646 * The set_rx_mode entry point is called whenever the unicast or multicast
4647 * address lists or the network interface flags are updated. This routine is
4648 * responsible for configuring the hardware for proper unicast, multicast,
4649 * promiscuous mode, and all-multi behavior.
4651 static void igb_set_rx_mode(struct net_device *netdev)
4653 struct igb_adapter *adapter = netdev_priv(netdev);
4654 struct e1000_hw *hw = &adapter->hw;
4655 unsigned int vfn = adapter->vfs_allocated_count;
4656 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4657 int count;
4659 /* Check for Promiscuous and All Multicast modes */
4660 if (netdev->flags & IFF_PROMISC) {
4661 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4662 vmolr |= E1000_VMOLR_MPME;
4664 /* enable use of UTA filter to force packets to default pool */
4665 if (hw->mac.type == e1000_82576)
4666 vmolr |= E1000_VMOLR_ROPE;
4667 } else {
4668 if (netdev->flags & IFF_ALLMULTI) {
4669 rctl |= E1000_RCTL_MPE;
4670 vmolr |= E1000_VMOLR_MPME;
4671 } else {
4672 /* Write addresses to the MTA, if the attempt fails
4673 * then we should just turn on promiscuous mode so
4674 * that we can at least receive multicast traffic
4676 count = igb_write_mc_addr_list(netdev);
4677 if (count < 0) {
4678 rctl |= E1000_RCTL_MPE;
4679 vmolr |= E1000_VMOLR_MPME;
4680 } else if (count) {
4681 vmolr |= E1000_VMOLR_ROMPE;
4686 /* Write addresses to available RAR registers, if there is not
4687 * sufficient space to store all the addresses then enable
4688 * unicast promiscuous mode
4690 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
4691 rctl |= E1000_RCTL_UPE;
4692 vmolr |= E1000_VMOLR_ROPE;
4695 /* enable VLAN filtering by default */
4696 rctl |= E1000_RCTL_VFE;
4698 /* disable VLAN filtering for modes that require it */
4699 if ((netdev->flags & IFF_PROMISC) ||
4700 (netdev->features & NETIF_F_RXALL)) {
4701 /* if we fail to set all rules then just clear VFE */
4702 if (igb_vlan_promisc_enable(adapter))
4703 rctl &= ~E1000_RCTL_VFE;
4704 } else {
4705 igb_vlan_promisc_disable(adapter);
4708 /* update state of unicast, multicast, and VLAN filtering modes */
4709 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4710 E1000_RCTL_VFE);
4711 wr32(E1000_RCTL, rctl);
4713 #if (PAGE_SIZE < 8192)
4714 if (!adapter->vfs_allocated_count) {
4715 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4716 rlpml = IGB_MAX_FRAME_BUILD_SKB;
4718 #endif
4719 wr32(E1000_RLPML, rlpml);
4721 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4722 * the VMOLR to enable the appropriate modes. Without this workaround
4723 * we will have issues with VLAN tag stripping not being done for frames
4724 * that are only arriving because we are the default pool
4726 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4727 return;
4729 /* set UTA to appropriate mode */
4730 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4732 vmolr |= rd32(E1000_VMOLR(vfn)) &
4733 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4735 /* enable Rx jumbo frames, restrict as needed to support build_skb */
4736 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4737 #if (PAGE_SIZE < 8192)
4738 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4739 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
4740 else
4741 #endif
4742 vmolr |= MAX_JUMBO_FRAME_SIZE;
4743 vmolr |= E1000_VMOLR_LPE;
4745 wr32(E1000_VMOLR(vfn), vmolr);
4747 igb_restore_vf_multicasts(adapter);
4750 static void igb_check_wvbr(struct igb_adapter *adapter)
4752 struct e1000_hw *hw = &adapter->hw;
4753 u32 wvbr = 0;
4755 switch (hw->mac.type) {
4756 case e1000_82576:
4757 case e1000_i350:
4758 wvbr = rd32(E1000_WVBR);
4759 if (!wvbr)
4760 return;
4761 break;
4762 default:
4763 break;
4766 adapter->wvbr |= wvbr;
4769 #define IGB_STAGGERED_QUEUE_OFFSET 8
4771 static void igb_spoof_check(struct igb_adapter *adapter)
4773 int j;
4775 if (!adapter->wvbr)
4776 return;
4778 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4779 if (adapter->wvbr & BIT(j) ||
4780 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4781 dev_warn(&adapter->pdev->dev,
4782 "Spoof event(s) detected on VF %d\n", j);
4783 adapter->wvbr &=
4784 ~(BIT(j) |
4785 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4790 /* Need to wait a few seconds after link up to get diagnostic information from
4791 * the phy
4793 static void igb_update_phy_info(struct timer_list *t)
4795 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4796 igb_get_phy_info(&adapter->hw);
4800 * igb_has_link - check shared code for link and determine up/down
4801 * @adapter: pointer to driver private info
4803 bool igb_has_link(struct igb_adapter *adapter)
4805 struct e1000_hw *hw = &adapter->hw;
4806 bool link_active = false;
4808 /* get_link_status is set on LSC (link status) interrupt or
4809 * rx sequence error interrupt. get_link_status will stay
4810 * false until the e1000_check_for_link establishes link
4811 * for copper adapters ONLY
4813 switch (hw->phy.media_type) {
4814 case e1000_media_type_copper:
4815 if (!hw->mac.get_link_status)
4816 return true;
4817 case e1000_media_type_internal_serdes:
4818 hw->mac.ops.check_for_link(hw);
4819 link_active = !hw->mac.get_link_status;
4820 break;
4821 default:
4822 case e1000_media_type_unknown:
4823 break;
4826 if (((hw->mac.type == e1000_i210) ||
4827 (hw->mac.type == e1000_i211)) &&
4828 (hw->phy.id == I210_I_PHY_ID)) {
4829 if (!netif_carrier_ok(adapter->netdev)) {
4830 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4831 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4832 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4833 adapter->link_check_timeout = jiffies;
4837 return link_active;
4840 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4842 bool ret = false;
4843 u32 ctrl_ext, thstat;
4845 /* check for thermal sensor event on i350 copper only */
4846 if (hw->mac.type == e1000_i350) {
4847 thstat = rd32(E1000_THSTAT);
4848 ctrl_ext = rd32(E1000_CTRL_EXT);
4850 if ((hw->phy.media_type == e1000_media_type_copper) &&
4851 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4852 ret = !!(thstat & event);
4855 return ret;
4859 * igb_check_lvmmc - check for malformed packets received
4860 * and indicated in LVMMC register
4861 * @adapter: pointer to adapter
4863 static void igb_check_lvmmc(struct igb_adapter *adapter)
4865 struct e1000_hw *hw = &adapter->hw;
4866 u32 lvmmc;
4868 lvmmc = rd32(E1000_LVMMC);
4869 if (lvmmc) {
4870 if (unlikely(net_ratelimit())) {
4871 netdev_warn(adapter->netdev,
4872 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4873 lvmmc);
4879 * igb_watchdog - Timer Call-back
4880 * @data: pointer to adapter cast into an unsigned long
4882 static void igb_watchdog(struct timer_list *t)
4884 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4885 /* Do the rest outside of interrupt context */
4886 schedule_work(&adapter->watchdog_task);
4889 static void igb_watchdog_task(struct work_struct *work)
4891 struct igb_adapter *adapter = container_of(work,
4892 struct igb_adapter,
4893 watchdog_task);
4894 struct e1000_hw *hw = &adapter->hw;
4895 struct e1000_phy_info *phy = &hw->phy;
4896 struct net_device *netdev = adapter->netdev;
4897 u32 link;
4898 int i;
4899 u32 connsw;
4900 u16 phy_data, retry_count = 20;
4902 link = igb_has_link(adapter);
4904 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4905 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4906 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4907 else
4908 link = false;
4911 /* Force link down if we have fiber to swap to */
4912 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4913 if (hw->phy.media_type == e1000_media_type_copper) {
4914 connsw = rd32(E1000_CONNSW);
4915 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4916 link = 0;
4919 if (link) {
4920 /* Perform a reset if the media type changed. */
4921 if (hw->dev_spec._82575.media_changed) {
4922 hw->dev_spec._82575.media_changed = false;
4923 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4924 igb_reset(adapter);
4926 /* Cancel scheduled suspend requests. */
4927 pm_runtime_resume(netdev->dev.parent);
4929 if (!netif_carrier_ok(netdev)) {
4930 u32 ctrl;
4932 hw->mac.ops.get_speed_and_duplex(hw,
4933 &adapter->link_speed,
4934 &adapter->link_duplex);
4936 ctrl = rd32(E1000_CTRL);
4937 /* Links status message must follow this format */
4938 netdev_info(netdev,
4939 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4940 netdev->name,
4941 adapter->link_speed,
4942 adapter->link_duplex == FULL_DUPLEX ?
4943 "Full" : "Half",
4944 (ctrl & E1000_CTRL_TFCE) &&
4945 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4946 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4947 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4949 /* disable EEE if enabled */
4950 if ((adapter->flags & IGB_FLAG_EEE) &&
4951 (adapter->link_duplex == HALF_DUPLEX)) {
4952 dev_info(&adapter->pdev->dev,
4953 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4954 adapter->hw.dev_spec._82575.eee_disable = true;
4955 adapter->flags &= ~IGB_FLAG_EEE;
4958 /* check if SmartSpeed worked */
4959 igb_check_downshift(hw);
4960 if (phy->speed_downgraded)
4961 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4963 /* check for thermal sensor event */
4964 if (igb_thermal_sensor_event(hw,
4965 E1000_THSTAT_LINK_THROTTLE))
4966 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4968 /* adjust timeout factor according to speed/duplex */
4969 adapter->tx_timeout_factor = 1;
4970 switch (adapter->link_speed) {
4971 case SPEED_10:
4972 adapter->tx_timeout_factor = 14;
4973 break;
4974 case SPEED_100:
4975 /* maybe add some timeout factor ? */
4976 break;
4979 if (adapter->link_speed != SPEED_1000)
4980 goto no_wait;
4982 /* wait for Remote receiver status OK */
4983 retry_read_status:
4984 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4985 &phy_data)) {
4986 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4987 retry_count) {
4988 msleep(100);
4989 retry_count--;
4990 goto retry_read_status;
4991 } else if (!retry_count) {
4992 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4994 } else {
4995 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4997 no_wait:
4998 netif_carrier_on(netdev);
5000 igb_ping_all_vfs(adapter);
5001 igb_check_vf_rate_limit(adapter);
5003 /* link state has changed, schedule phy info update */
5004 if (!test_bit(__IGB_DOWN, &adapter->state))
5005 mod_timer(&adapter->phy_info_timer,
5006 round_jiffies(jiffies + 2 * HZ));
5008 } else {
5009 if (netif_carrier_ok(netdev)) {
5010 adapter->link_speed = 0;
5011 adapter->link_duplex = 0;
5013 /* check for thermal sensor event */
5014 if (igb_thermal_sensor_event(hw,
5015 E1000_THSTAT_PWR_DOWN)) {
5016 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5019 /* Links status message must follow this format */
5020 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5021 netdev->name);
5022 netif_carrier_off(netdev);
5024 igb_ping_all_vfs(adapter);
5026 /* link state has changed, schedule phy info update */
5027 if (!test_bit(__IGB_DOWN, &adapter->state))
5028 mod_timer(&adapter->phy_info_timer,
5029 round_jiffies(jiffies + 2 * HZ));
5031 /* link is down, time to check for alternate media */
5032 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5033 igb_check_swap_media(adapter);
5034 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5035 schedule_work(&adapter->reset_task);
5036 /* return immediately */
5037 return;
5040 pm_schedule_suspend(netdev->dev.parent,
5041 MSEC_PER_SEC * 5);
5043 /* also check for alternate media here */
5044 } else if (!netif_carrier_ok(netdev) &&
5045 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5046 igb_check_swap_media(adapter);
5047 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5048 schedule_work(&adapter->reset_task);
5049 /* return immediately */
5050 return;
5055 spin_lock(&adapter->stats64_lock);
5056 igb_update_stats(adapter);
5057 spin_unlock(&adapter->stats64_lock);
5059 for (i = 0; i < adapter->num_tx_queues; i++) {
5060 struct igb_ring *tx_ring = adapter->tx_ring[i];
5061 if (!netif_carrier_ok(netdev)) {
5062 /* We've lost link, so the controller stops DMA,
5063 * but we've got queued Tx work that's never going
5064 * to get done, so reset controller to flush Tx.
5065 * (Do the reset outside of interrupt context).
5067 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5068 adapter->tx_timeout_count++;
5069 schedule_work(&adapter->reset_task);
5070 /* return immediately since reset is imminent */
5071 return;
5075 /* Force detection of hung controller every watchdog period */
5076 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5079 /* Cause software interrupt to ensure Rx ring is cleaned */
5080 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5081 u32 eics = 0;
5083 for (i = 0; i < adapter->num_q_vectors; i++)
5084 eics |= adapter->q_vector[i]->eims_value;
5085 wr32(E1000_EICS, eics);
5086 } else {
5087 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5090 igb_spoof_check(adapter);
5091 igb_ptp_rx_hang(adapter);
5092 igb_ptp_tx_hang(adapter);
5094 /* Check LVMMC register on i350/i354 only */
5095 if ((adapter->hw.mac.type == e1000_i350) ||
5096 (adapter->hw.mac.type == e1000_i354))
5097 igb_check_lvmmc(adapter);
5099 /* Reset the timer */
5100 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5101 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5102 mod_timer(&adapter->watchdog_timer,
5103 round_jiffies(jiffies + HZ));
5104 else
5105 mod_timer(&adapter->watchdog_timer,
5106 round_jiffies(jiffies + 2 * HZ));
5110 enum latency_range {
5111 lowest_latency = 0,
5112 low_latency = 1,
5113 bulk_latency = 2,
5114 latency_invalid = 255
5118 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5119 * @q_vector: pointer to q_vector
5121 * Stores a new ITR value based on strictly on packet size. This
5122 * algorithm is less sophisticated than that used in igb_update_itr,
5123 * due to the difficulty of synchronizing statistics across multiple
5124 * receive rings. The divisors and thresholds used by this function
5125 * were determined based on theoretical maximum wire speed and testing
5126 * data, in order to minimize response time while increasing bulk
5127 * throughput.
5128 * This functionality is controlled by ethtool's coalescing settings.
5129 * NOTE: This function is called only when operating in a multiqueue
5130 * receive environment.
5132 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5134 int new_val = q_vector->itr_val;
5135 int avg_wire_size = 0;
5136 struct igb_adapter *adapter = q_vector->adapter;
5137 unsigned int packets;
5139 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5140 * ints/sec - ITR timer value of 120 ticks.
5142 if (adapter->link_speed != SPEED_1000) {
5143 new_val = IGB_4K_ITR;
5144 goto set_itr_val;
5147 packets = q_vector->rx.total_packets;
5148 if (packets)
5149 avg_wire_size = q_vector->rx.total_bytes / packets;
5151 packets = q_vector->tx.total_packets;
5152 if (packets)
5153 avg_wire_size = max_t(u32, avg_wire_size,
5154 q_vector->tx.total_bytes / packets);
5156 /* if avg_wire_size isn't set no work was done */
5157 if (!avg_wire_size)
5158 goto clear_counts;
5160 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5161 avg_wire_size += 24;
5163 /* Don't starve jumbo frames */
5164 avg_wire_size = min(avg_wire_size, 3000);
5166 /* Give a little boost to mid-size frames */
5167 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5168 new_val = avg_wire_size / 3;
5169 else
5170 new_val = avg_wire_size / 2;
5172 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5173 if (new_val < IGB_20K_ITR &&
5174 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5175 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5176 new_val = IGB_20K_ITR;
5178 set_itr_val:
5179 if (new_val != q_vector->itr_val) {
5180 q_vector->itr_val = new_val;
5181 q_vector->set_itr = 1;
5183 clear_counts:
5184 q_vector->rx.total_bytes = 0;
5185 q_vector->rx.total_packets = 0;
5186 q_vector->tx.total_bytes = 0;
5187 q_vector->tx.total_packets = 0;
5191 * igb_update_itr - update the dynamic ITR value based on statistics
5192 * @q_vector: pointer to q_vector
5193 * @ring_container: ring info to update the itr for
5195 * Stores a new ITR value based on packets and byte
5196 * counts during the last interrupt. The advantage of per interrupt
5197 * computation is faster updates and more accurate ITR for the current
5198 * traffic pattern. Constants in this function were computed
5199 * based on theoretical maximum wire speed and thresholds were set based
5200 * on testing data as well as attempting to minimize response time
5201 * while increasing bulk throughput.
5202 * This functionality is controlled by ethtool's coalescing settings.
5203 * NOTE: These calculations are only valid when operating in a single-
5204 * queue environment.
5206 static void igb_update_itr(struct igb_q_vector *q_vector,
5207 struct igb_ring_container *ring_container)
5209 unsigned int packets = ring_container->total_packets;
5210 unsigned int bytes = ring_container->total_bytes;
5211 u8 itrval = ring_container->itr;
5213 /* no packets, exit with status unchanged */
5214 if (packets == 0)
5215 return;
5217 switch (itrval) {
5218 case lowest_latency:
5219 /* handle TSO and jumbo frames */
5220 if (bytes/packets > 8000)
5221 itrval = bulk_latency;
5222 else if ((packets < 5) && (bytes > 512))
5223 itrval = low_latency;
5224 break;
5225 case low_latency: /* 50 usec aka 20000 ints/s */
5226 if (bytes > 10000) {
5227 /* this if handles the TSO accounting */
5228 if (bytes/packets > 8000)
5229 itrval = bulk_latency;
5230 else if ((packets < 10) || ((bytes/packets) > 1200))
5231 itrval = bulk_latency;
5232 else if ((packets > 35))
5233 itrval = lowest_latency;
5234 } else if (bytes/packets > 2000) {
5235 itrval = bulk_latency;
5236 } else if (packets <= 2 && bytes < 512) {
5237 itrval = lowest_latency;
5239 break;
5240 case bulk_latency: /* 250 usec aka 4000 ints/s */
5241 if (bytes > 25000) {
5242 if (packets > 35)
5243 itrval = low_latency;
5244 } else if (bytes < 1500) {
5245 itrval = low_latency;
5247 break;
5250 /* clear work counters since we have the values we need */
5251 ring_container->total_bytes = 0;
5252 ring_container->total_packets = 0;
5254 /* write updated itr to ring container */
5255 ring_container->itr = itrval;
5258 static void igb_set_itr(struct igb_q_vector *q_vector)
5260 struct igb_adapter *adapter = q_vector->adapter;
5261 u32 new_itr = q_vector->itr_val;
5262 u8 current_itr = 0;
5264 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5265 if (adapter->link_speed != SPEED_1000) {
5266 current_itr = 0;
5267 new_itr = IGB_4K_ITR;
5268 goto set_itr_now;
5271 igb_update_itr(q_vector, &q_vector->tx);
5272 igb_update_itr(q_vector, &q_vector->rx);
5274 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5276 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5277 if (current_itr == lowest_latency &&
5278 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5279 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5280 current_itr = low_latency;
5282 switch (current_itr) {
5283 /* counts and packets in update_itr are dependent on these numbers */
5284 case lowest_latency:
5285 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5286 break;
5287 case low_latency:
5288 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5289 break;
5290 case bulk_latency:
5291 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5292 break;
5293 default:
5294 break;
5297 set_itr_now:
5298 if (new_itr != q_vector->itr_val) {
5299 /* this attempts to bias the interrupt rate towards Bulk
5300 * by adding intermediate steps when interrupt rate is
5301 * increasing
5303 new_itr = new_itr > q_vector->itr_val ?
5304 max((new_itr * q_vector->itr_val) /
5305 (new_itr + (q_vector->itr_val >> 2)),
5306 new_itr) : new_itr;
5307 /* Don't write the value here; it resets the adapter's
5308 * internal timer, and causes us to delay far longer than
5309 * we should between interrupts. Instead, we write the ITR
5310 * value at the beginning of the next interrupt so the timing
5311 * ends up being correct.
5313 q_vector->itr_val = new_itr;
5314 q_vector->set_itr = 1;
5318 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
5319 u32 type_tucmd, u32 mss_l4len_idx)
5321 struct e1000_adv_tx_context_desc *context_desc;
5322 u16 i = tx_ring->next_to_use;
5324 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5326 i++;
5327 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5329 /* set bits to identify this as an advanced context descriptor */
5330 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5332 /* For 82575, context index must be unique per ring. */
5333 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5334 mss_l4len_idx |= tx_ring->reg_idx << 4;
5336 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5337 context_desc->seqnum_seed = 0;
5338 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5339 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5342 static int igb_tso(struct igb_ring *tx_ring,
5343 struct igb_tx_buffer *first,
5344 u8 *hdr_len)
5346 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5347 struct sk_buff *skb = first->skb;
5348 union {
5349 struct iphdr *v4;
5350 struct ipv6hdr *v6;
5351 unsigned char *hdr;
5352 } ip;
5353 union {
5354 struct tcphdr *tcp;
5355 unsigned char *hdr;
5356 } l4;
5357 u32 paylen, l4_offset;
5358 int err;
5360 if (skb->ip_summed != CHECKSUM_PARTIAL)
5361 return 0;
5363 if (!skb_is_gso(skb))
5364 return 0;
5366 err = skb_cow_head(skb, 0);
5367 if (err < 0)
5368 return err;
5370 ip.hdr = skb_network_header(skb);
5371 l4.hdr = skb_checksum_start(skb);
5373 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5374 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5376 /* initialize outer IP header fields */
5377 if (ip.v4->version == 4) {
5378 unsigned char *csum_start = skb_checksum_start(skb);
5379 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5381 /* IP header will have to cancel out any data that
5382 * is not a part of the outer IP header
5384 ip.v4->check = csum_fold(csum_partial(trans_start,
5385 csum_start - trans_start,
5386 0));
5387 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5389 ip.v4->tot_len = 0;
5390 first->tx_flags |= IGB_TX_FLAGS_TSO |
5391 IGB_TX_FLAGS_CSUM |
5392 IGB_TX_FLAGS_IPV4;
5393 } else {
5394 ip.v6->payload_len = 0;
5395 first->tx_flags |= IGB_TX_FLAGS_TSO |
5396 IGB_TX_FLAGS_CSUM;
5399 /* determine offset of inner transport header */
5400 l4_offset = l4.hdr - skb->data;
5402 /* compute length of segmentation header */
5403 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5405 /* remove payload length from inner checksum */
5406 paylen = skb->len - l4_offset;
5407 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5409 /* update gso size and bytecount with header size */
5410 first->gso_segs = skb_shinfo(skb)->gso_segs;
5411 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5413 /* MSS L4LEN IDX */
5414 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5415 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5417 /* VLAN MACLEN IPLEN */
5418 vlan_macip_lens = l4.hdr - ip.hdr;
5419 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5420 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5422 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5424 return 1;
5427 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5429 unsigned int offset = 0;
5431 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5433 return offset == skb_checksum_start_offset(skb);
5436 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5438 struct sk_buff *skb = first->skb;
5439 u32 vlan_macip_lens = 0;
5440 u32 type_tucmd = 0;
5442 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5443 csum_failed:
5444 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5445 return;
5446 goto no_csum;
5449 switch (skb->csum_offset) {
5450 case offsetof(struct tcphdr, check):
5451 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5452 /* fall through */
5453 case offsetof(struct udphdr, check):
5454 break;
5455 case offsetof(struct sctphdr, checksum):
5456 /* validate that this is actually an SCTP request */
5457 if (((first->protocol == htons(ETH_P_IP)) &&
5458 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5459 ((first->protocol == htons(ETH_P_IPV6)) &&
5460 igb_ipv6_csum_is_sctp(skb))) {
5461 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5462 break;
5464 default:
5465 skb_checksum_help(skb);
5466 goto csum_failed;
5469 /* update TX checksum flag */
5470 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5471 vlan_macip_lens = skb_checksum_start_offset(skb) -
5472 skb_network_offset(skb);
5473 no_csum:
5474 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5475 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5477 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5480 #define IGB_SET_FLAG(_input, _flag, _result) \
5481 ((_flag <= _result) ? \
5482 ((u32)(_input & _flag) * (_result / _flag)) : \
5483 ((u32)(_input & _flag) / (_flag / _result)))
5485 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5487 /* set type for advanced descriptor with frame checksum insertion */
5488 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5489 E1000_ADVTXD_DCMD_DEXT |
5490 E1000_ADVTXD_DCMD_IFCS;
5492 /* set HW vlan bit if vlan is present */
5493 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5494 (E1000_ADVTXD_DCMD_VLE));
5496 /* set segmentation bits for TSO */
5497 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5498 (E1000_ADVTXD_DCMD_TSE));
5500 /* set timestamp bit if present */
5501 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5502 (E1000_ADVTXD_MAC_TSTAMP));
5504 /* insert frame checksum */
5505 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5507 return cmd_type;
5510 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5511 union e1000_adv_tx_desc *tx_desc,
5512 u32 tx_flags, unsigned int paylen)
5514 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5516 /* 82575 requires a unique index per ring */
5517 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5518 olinfo_status |= tx_ring->reg_idx << 4;
5520 /* insert L4 checksum */
5521 olinfo_status |= IGB_SET_FLAG(tx_flags,
5522 IGB_TX_FLAGS_CSUM,
5523 (E1000_TXD_POPTS_TXSM << 8));
5525 /* insert IPv4 checksum */
5526 olinfo_status |= IGB_SET_FLAG(tx_flags,
5527 IGB_TX_FLAGS_IPV4,
5528 (E1000_TXD_POPTS_IXSM << 8));
5530 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5533 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5535 struct net_device *netdev = tx_ring->netdev;
5537 netif_stop_subqueue(netdev, tx_ring->queue_index);
5539 /* Herbert's original patch had:
5540 * smp_mb__after_netif_stop_queue();
5541 * but since that doesn't exist yet, just open code it.
5543 smp_mb();
5545 /* We need to check again in a case another CPU has just
5546 * made room available.
5548 if (igb_desc_unused(tx_ring) < size)
5549 return -EBUSY;
5551 /* A reprieve! */
5552 netif_wake_subqueue(netdev, tx_ring->queue_index);
5554 u64_stats_update_begin(&tx_ring->tx_syncp2);
5555 tx_ring->tx_stats.restart_queue2++;
5556 u64_stats_update_end(&tx_ring->tx_syncp2);
5558 return 0;
5561 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5563 if (igb_desc_unused(tx_ring) >= size)
5564 return 0;
5565 return __igb_maybe_stop_tx(tx_ring, size);
5568 static int igb_tx_map(struct igb_ring *tx_ring,
5569 struct igb_tx_buffer *first,
5570 const u8 hdr_len)
5572 struct sk_buff *skb = first->skb;
5573 struct igb_tx_buffer *tx_buffer;
5574 union e1000_adv_tx_desc *tx_desc;
5575 struct skb_frag_struct *frag;
5576 dma_addr_t dma;
5577 unsigned int data_len, size;
5578 u32 tx_flags = first->tx_flags;
5579 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5580 u16 i = tx_ring->next_to_use;
5582 tx_desc = IGB_TX_DESC(tx_ring, i);
5584 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5586 size = skb_headlen(skb);
5587 data_len = skb->data_len;
5589 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5591 tx_buffer = first;
5593 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5594 if (dma_mapping_error(tx_ring->dev, dma))
5595 goto dma_error;
5597 /* record length, and DMA address */
5598 dma_unmap_len_set(tx_buffer, len, size);
5599 dma_unmap_addr_set(tx_buffer, dma, dma);
5601 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5603 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5604 tx_desc->read.cmd_type_len =
5605 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5607 i++;
5608 tx_desc++;
5609 if (i == tx_ring->count) {
5610 tx_desc = IGB_TX_DESC(tx_ring, 0);
5611 i = 0;
5613 tx_desc->read.olinfo_status = 0;
5615 dma += IGB_MAX_DATA_PER_TXD;
5616 size -= IGB_MAX_DATA_PER_TXD;
5618 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5621 if (likely(!data_len))
5622 break;
5624 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5626 i++;
5627 tx_desc++;
5628 if (i == tx_ring->count) {
5629 tx_desc = IGB_TX_DESC(tx_ring, 0);
5630 i = 0;
5632 tx_desc->read.olinfo_status = 0;
5634 size = skb_frag_size(frag);
5635 data_len -= size;
5637 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5638 size, DMA_TO_DEVICE);
5640 tx_buffer = &tx_ring->tx_buffer_info[i];
5643 /* write last descriptor with RS and EOP bits */
5644 cmd_type |= size | IGB_TXD_DCMD;
5645 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5647 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5649 /* set the timestamp */
5650 first->time_stamp = jiffies;
5652 /* Force memory writes to complete before letting h/w know there
5653 * are new descriptors to fetch. (Only applicable for weak-ordered
5654 * memory model archs, such as IA-64).
5656 * We also need this memory barrier to make certain all of the
5657 * status bits have been updated before next_to_watch is written.
5659 wmb();
5661 /* set next_to_watch value indicating a packet is present */
5662 first->next_to_watch = tx_desc;
5664 i++;
5665 if (i == tx_ring->count)
5666 i = 0;
5668 tx_ring->next_to_use = i;
5670 /* Make sure there is space in the ring for the next send. */
5671 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5673 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5674 writel(i, tx_ring->tail);
5676 /* we need this if more than one processor can write to our tail
5677 * at a time, it synchronizes IO on IA64/Altix systems
5679 mmiowb();
5681 return 0;
5683 dma_error:
5684 dev_err(tx_ring->dev, "TX DMA map failed\n");
5685 tx_buffer = &tx_ring->tx_buffer_info[i];
5687 /* clear dma mappings for failed tx_buffer_info map */
5688 while (tx_buffer != first) {
5689 if (dma_unmap_len(tx_buffer, len))
5690 dma_unmap_page(tx_ring->dev,
5691 dma_unmap_addr(tx_buffer, dma),
5692 dma_unmap_len(tx_buffer, len),
5693 DMA_TO_DEVICE);
5694 dma_unmap_len_set(tx_buffer, len, 0);
5696 if (i-- == 0)
5697 i += tx_ring->count;
5698 tx_buffer = &tx_ring->tx_buffer_info[i];
5701 if (dma_unmap_len(tx_buffer, len))
5702 dma_unmap_single(tx_ring->dev,
5703 dma_unmap_addr(tx_buffer, dma),
5704 dma_unmap_len(tx_buffer, len),
5705 DMA_TO_DEVICE);
5706 dma_unmap_len_set(tx_buffer, len, 0);
5708 dev_kfree_skb_any(tx_buffer->skb);
5709 tx_buffer->skb = NULL;
5711 tx_ring->next_to_use = i;
5713 return -1;
5716 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5717 struct igb_ring *tx_ring)
5719 struct igb_tx_buffer *first;
5720 int tso;
5721 u32 tx_flags = 0;
5722 unsigned short f;
5723 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5724 __be16 protocol = vlan_get_protocol(skb);
5725 u8 hdr_len = 0;
5727 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5728 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5729 * + 2 desc gap to keep tail from touching head,
5730 * + 1 desc for context descriptor,
5731 * otherwise try next time
5733 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5734 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5736 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5737 /* this is a hard error */
5738 return NETDEV_TX_BUSY;
5741 /* record the location of the first descriptor for this packet */
5742 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5743 first->skb = skb;
5744 first->bytecount = skb->len;
5745 first->gso_segs = 1;
5747 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5748 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5750 if (adapter->tstamp_config.tx_type & HWTSTAMP_TX_ON &&
5751 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5752 &adapter->state)) {
5753 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5754 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5756 adapter->ptp_tx_skb = skb_get(skb);
5757 adapter->ptp_tx_start = jiffies;
5758 if (adapter->hw.mac.type == e1000_82576)
5759 schedule_work(&adapter->ptp_tx_work);
5760 } else {
5761 adapter->tx_hwtstamp_skipped++;
5765 skb_tx_timestamp(skb);
5767 if (skb_vlan_tag_present(skb)) {
5768 tx_flags |= IGB_TX_FLAGS_VLAN;
5769 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5772 /* record initial flags and protocol */
5773 first->tx_flags = tx_flags;
5774 first->protocol = protocol;
5776 tso = igb_tso(tx_ring, first, &hdr_len);
5777 if (tso < 0)
5778 goto out_drop;
5779 else if (!tso)
5780 igb_tx_csum(tx_ring, first);
5782 if (igb_tx_map(tx_ring, first, hdr_len))
5783 goto cleanup_tx_tstamp;
5785 return NETDEV_TX_OK;
5787 out_drop:
5788 dev_kfree_skb_any(first->skb);
5789 first->skb = NULL;
5790 cleanup_tx_tstamp:
5791 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
5792 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5794 dev_kfree_skb_any(adapter->ptp_tx_skb);
5795 adapter->ptp_tx_skb = NULL;
5796 if (adapter->hw.mac.type == e1000_82576)
5797 cancel_work_sync(&adapter->ptp_tx_work);
5798 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
5801 return NETDEV_TX_OK;
5804 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5805 struct sk_buff *skb)
5807 unsigned int r_idx = skb->queue_mapping;
5809 if (r_idx >= adapter->num_tx_queues)
5810 r_idx = r_idx % adapter->num_tx_queues;
5812 return adapter->tx_ring[r_idx];
5815 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5816 struct net_device *netdev)
5818 struct igb_adapter *adapter = netdev_priv(netdev);
5820 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5821 * in order to meet this minimum size requirement.
5823 if (skb_put_padto(skb, 17))
5824 return NETDEV_TX_OK;
5826 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5830 * igb_tx_timeout - Respond to a Tx Hang
5831 * @netdev: network interface device structure
5833 static void igb_tx_timeout(struct net_device *netdev)
5835 struct igb_adapter *adapter = netdev_priv(netdev);
5836 struct e1000_hw *hw = &adapter->hw;
5838 /* Do the reset outside of interrupt context */
5839 adapter->tx_timeout_count++;
5841 if (hw->mac.type >= e1000_82580)
5842 hw->dev_spec._82575.global_device_reset = true;
5844 schedule_work(&adapter->reset_task);
5845 wr32(E1000_EICS,
5846 (adapter->eims_enable_mask & ~adapter->eims_other));
5849 static void igb_reset_task(struct work_struct *work)
5851 struct igb_adapter *adapter;
5852 adapter = container_of(work, struct igb_adapter, reset_task);
5854 igb_dump(adapter);
5855 netdev_err(adapter->netdev, "Reset adapter\n");
5856 igb_reinit_locked(adapter);
5860 * igb_get_stats64 - Get System Network Statistics
5861 * @netdev: network interface device structure
5862 * @stats: rtnl_link_stats64 pointer
5864 static void igb_get_stats64(struct net_device *netdev,
5865 struct rtnl_link_stats64 *stats)
5867 struct igb_adapter *adapter = netdev_priv(netdev);
5869 spin_lock(&adapter->stats64_lock);
5870 igb_update_stats(adapter);
5871 memcpy(stats, &adapter->stats64, sizeof(*stats));
5872 spin_unlock(&adapter->stats64_lock);
5876 * igb_change_mtu - Change the Maximum Transfer Unit
5877 * @netdev: network interface device structure
5878 * @new_mtu: new value for maximum frame size
5880 * Returns 0 on success, negative on failure
5882 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5884 struct igb_adapter *adapter = netdev_priv(netdev);
5885 struct pci_dev *pdev = adapter->pdev;
5886 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5888 /* adjust max frame to be at least the size of a standard frame */
5889 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5890 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5892 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5893 usleep_range(1000, 2000);
5895 /* igb_down has a dependency on max_frame_size */
5896 adapter->max_frame_size = max_frame;
5898 if (netif_running(netdev))
5899 igb_down(adapter);
5901 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5902 netdev->mtu, new_mtu);
5903 netdev->mtu = new_mtu;
5905 if (netif_running(netdev))
5906 igb_up(adapter);
5907 else
5908 igb_reset(adapter);
5910 clear_bit(__IGB_RESETTING, &adapter->state);
5912 return 0;
5916 * igb_update_stats - Update the board statistics counters
5917 * @adapter: board private structure
5919 void igb_update_stats(struct igb_adapter *adapter)
5921 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5922 struct e1000_hw *hw = &adapter->hw;
5923 struct pci_dev *pdev = adapter->pdev;
5924 u32 reg, mpc;
5925 int i;
5926 u64 bytes, packets;
5927 unsigned int start;
5928 u64 _bytes, _packets;
5930 /* Prevent stats update while adapter is being reset, or if the pci
5931 * connection is down.
5933 if (adapter->link_speed == 0)
5934 return;
5935 if (pci_channel_offline(pdev))
5936 return;
5938 bytes = 0;
5939 packets = 0;
5941 rcu_read_lock();
5942 for (i = 0; i < adapter->num_rx_queues; i++) {
5943 struct igb_ring *ring = adapter->rx_ring[i];
5944 u32 rqdpc = rd32(E1000_RQDPC(i));
5945 if (hw->mac.type >= e1000_i210)
5946 wr32(E1000_RQDPC(i), 0);
5948 if (rqdpc) {
5949 ring->rx_stats.drops += rqdpc;
5950 net_stats->rx_fifo_errors += rqdpc;
5953 do {
5954 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5955 _bytes = ring->rx_stats.bytes;
5956 _packets = ring->rx_stats.packets;
5957 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5958 bytes += _bytes;
5959 packets += _packets;
5962 net_stats->rx_bytes = bytes;
5963 net_stats->rx_packets = packets;
5965 bytes = 0;
5966 packets = 0;
5967 for (i = 0; i < adapter->num_tx_queues; i++) {
5968 struct igb_ring *ring = adapter->tx_ring[i];
5969 do {
5970 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5971 _bytes = ring->tx_stats.bytes;
5972 _packets = ring->tx_stats.packets;
5973 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5974 bytes += _bytes;
5975 packets += _packets;
5977 net_stats->tx_bytes = bytes;
5978 net_stats->tx_packets = packets;
5979 rcu_read_unlock();
5981 /* read stats registers */
5982 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5983 adapter->stats.gprc += rd32(E1000_GPRC);
5984 adapter->stats.gorc += rd32(E1000_GORCL);
5985 rd32(E1000_GORCH); /* clear GORCL */
5986 adapter->stats.bprc += rd32(E1000_BPRC);
5987 adapter->stats.mprc += rd32(E1000_MPRC);
5988 adapter->stats.roc += rd32(E1000_ROC);
5990 adapter->stats.prc64 += rd32(E1000_PRC64);
5991 adapter->stats.prc127 += rd32(E1000_PRC127);
5992 adapter->stats.prc255 += rd32(E1000_PRC255);
5993 adapter->stats.prc511 += rd32(E1000_PRC511);
5994 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5995 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5996 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5997 adapter->stats.sec += rd32(E1000_SEC);
5999 mpc = rd32(E1000_MPC);
6000 adapter->stats.mpc += mpc;
6001 net_stats->rx_fifo_errors += mpc;
6002 adapter->stats.scc += rd32(E1000_SCC);
6003 adapter->stats.ecol += rd32(E1000_ECOL);
6004 adapter->stats.mcc += rd32(E1000_MCC);
6005 adapter->stats.latecol += rd32(E1000_LATECOL);
6006 adapter->stats.dc += rd32(E1000_DC);
6007 adapter->stats.rlec += rd32(E1000_RLEC);
6008 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6009 adapter->stats.xontxc += rd32(E1000_XONTXC);
6010 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6011 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6012 adapter->stats.fcruc += rd32(E1000_FCRUC);
6013 adapter->stats.gptc += rd32(E1000_GPTC);
6014 adapter->stats.gotc += rd32(E1000_GOTCL);
6015 rd32(E1000_GOTCH); /* clear GOTCL */
6016 adapter->stats.rnbc += rd32(E1000_RNBC);
6017 adapter->stats.ruc += rd32(E1000_RUC);
6018 adapter->stats.rfc += rd32(E1000_RFC);
6019 adapter->stats.rjc += rd32(E1000_RJC);
6020 adapter->stats.tor += rd32(E1000_TORH);
6021 adapter->stats.tot += rd32(E1000_TOTH);
6022 adapter->stats.tpr += rd32(E1000_TPR);
6024 adapter->stats.ptc64 += rd32(E1000_PTC64);
6025 adapter->stats.ptc127 += rd32(E1000_PTC127);
6026 adapter->stats.ptc255 += rd32(E1000_PTC255);
6027 adapter->stats.ptc511 += rd32(E1000_PTC511);
6028 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6029 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6031 adapter->stats.mptc += rd32(E1000_MPTC);
6032 adapter->stats.bptc += rd32(E1000_BPTC);
6034 adapter->stats.tpt += rd32(E1000_TPT);
6035 adapter->stats.colc += rd32(E1000_COLC);
6037 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6038 /* read internal phy specific stats */
6039 reg = rd32(E1000_CTRL_EXT);
6040 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6041 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6043 /* this stat has invalid values on i210/i211 */
6044 if ((hw->mac.type != e1000_i210) &&
6045 (hw->mac.type != e1000_i211))
6046 adapter->stats.tncrs += rd32(E1000_TNCRS);
6049 adapter->stats.tsctc += rd32(E1000_TSCTC);
6050 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6052 adapter->stats.iac += rd32(E1000_IAC);
6053 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6054 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6055 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6056 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6057 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6058 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6059 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6060 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6062 /* Fill out the OS statistics structure */
6063 net_stats->multicast = adapter->stats.mprc;
6064 net_stats->collisions = adapter->stats.colc;
6066 /* Rx Errors */
6068 /* RLEC on some newer hardware can be incorrect so build
6069 * our own version based on RUC and ROC
6071 net_stats->rx_errors = adapter->stats.rxerrc +
6072 adapter->stats.crcerrs + adapter->stats.algnerrc +
6073 adapter->stats.ruc + adapter->stats.roc +
6074 adapter->stats.cexterr;
6075 net_stats->rx_length_errors = adapter->stats.ruc +
6076 adapter->stats.roc;
6077 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6078 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6079 net_stats->rx_missed_errors = adapter->stats.mpc;
6081 /* Tx Errors */
6082 net_stats->tx_errors = adapter->stats.ecol +
6083 adapter->stats.latecol;
6084 net_stats->tx_aborted_errors = adapter->stats.ecol;
6085 net_stats->tx_window_errors = adapter->stats.latecol;
6086 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6088 /* Tx Dropped needs to be maintained elsewhere */
6090 /* Management Stats */
6091 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6092 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6093 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6095 /* OS2BMC Stats */
6096 reg = rd32(E1000_MANC);
6097 if (reg & E1000_MANC_EN_BMC2OS) {
6098 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6099 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6100 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6101 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6105 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6107 struct e1000_hw *hw = &adapter->hw;
6108 struct ptp_clock_event event;
6109 struct timespec64 ts;
6110 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6112 if (tsicr & TSINTR_SYS_WRAP) {
6113 event.type = PTP_CLOCK_PPS;
6114 if (adapter->ptp_caps.pps)
6115 ptp_clock_event(adapter->ptp_clock, &event);
6116 ack |= TSINTR_SYS_WRAP;
6119 if (tsicr & E1000_TSICR_TXTS) {
6120 /* retrieve hardware timestamp */
6121 schedule_work(&adapter->ptp_tx_work);
6122 ack |= E1000_TSICR_TXTS;
6125 if (tsicr & TSINTR_TT0) {
6126 spin_lock(&adapter->tmreg_lock);
6127 ts = timespec64_add(adapter->perout[0].start,
6128 adapter->perout[0].period);
6129 /* u32 conversion of tv_sec is safe until y2106 */
6130 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6131 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6132 tsauxc = rd32(E1000_TSAUXC);
6133 tsauxc |= TSAUXC_EN_TT0;
6134 wr32(E1000_TSAUXC, tsauxc);
6135 adapter->perout[0].start = ts;
6136 spin_unlock(&adapter->tmreg_lock);
6137 ack |= TSINTR_TT0;
6140 if (tsicr & TSINTR_TT1) {
6141 spin_lock(&adapter->tmreg_lock);
6142 ts = timespec64_add(adapter->perout[1].start,
6143 adapter->perout[1].period);
6144 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6145 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6146 tsauxc = rd32(E1000_TSAUXC);
6147 tsauxc |= TSAUXC_EN_TT1;
6148 wr32(E1000_TSAUXC, tsauxc);
6149 adapter->perout[1].start = ts;
6150 spin_unlock(&adapter->tmreg_lock);
6151 ack |= TSINTR_TT1;
6154 if (tsicr & TSINTR_AUTT0) {
6155 nsec = rd32(E1000_AUXSTMPL0);
6156 sec = rd32(E1000_AUXSTMPH0);
6157 event.type = PTP_CLOCK_EXTTS;
6158 event.index = 0;
6159 event.timestamp = sec * 1000000000ULL + nsec;
6160 ptp_clock_event(adapter->ptp_clock, &event);
6161 ack |= TSINTR_AUTT0;
6164 if (tsicr & TSINTR_AUTT1) {
6165 nsec = rd32(E1000_AUXSTMPL1);
6166 sec = rd32(E1000_AUXSTMPH1);
6167 event.type = PTP_CLOCK_EXTTS;
6168 event.index = 1;
6169 event.timestamp = sec * 1000000000ULL + nsec;
6170 ptp_clock_event(adapter->ptp_clock, &event);
6171 ack |= TSINTR_AUTT1;
6174 /* acknowledge the interrupts */
6175 wr32(E1000_TSICR, ack);
6178 static irqreturn_t igb_msix_other(int irq, void *data)
6180 struct igb_adapter *adapter = data;
6181 struct e1000_hw *hw = &adapter->hw;
6182 u32 icr = rd32(E1000_ICR);
6183 /* reading ICR causes bit 31 of EICR to be cleared */
6185 if (icr & E1000_ICR_DRSTA)
6186 schedule_work(&adapter->reset_task);
6188 if (icr & E1000_ICR_DOUTSYNC) {
6189 /* HW is reporting DMA is out of sync */
6190 adapter->stats.doosync++;
6191 /* The DMA Out of Sync is also indication of a spoof event
6192 * in IOV mode. Check the Wrong VM Behavior register to
6193 * see if it is really a spoof event.
6195 igb_check_wvbr(adapter);
6198 /* Check for a mailbox event */
6199 if (icr & E1000_ICR_VMMB)
6200 igb_msg_task(adapter);
6202 if (icr & E1000_ICR_LSC) {
6203 hw->mac.get_link_status = 1;
6204 /* guard against interrupt when we're going down */
6205 if (!test_bit(__IGB_DOWN, &adapter->state))
6206 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6209 if (icr & E1000_ICR_TS)
6210 igb_tsync_interrupt(adapter);
6212 wr32(E1000_EIMS, adapter->eims_other);
6214 return IRQ_HANDLED;
6217 static void igb_write_itr(struct igb_q_vector *q_vector)
6219 struct igb_adapter *adapter = q_vector->adapter;
6220 u32 itr_val = q_vector->itr_val & 0x7FFC;
6222 if (!q_vector->set_itr)
6223 return;
6225 if (!itr_val)
6226 itr_val = 0x4;
6228 if (adapter->hw.mac.type == e1000_82575)
6229 itr_val |= itr_val << 16;
6230 else
6231 itr_val |= E1000_EITR_CNT_IGNR;
6233 writel(itr_val, q_vector->itr_register);
6234 q_vector->set_itr = 0;
6237 static irqreturn_t igb_msix_ring(int irq, void *data)
6239 struct igb_q_vector *q_vector = data;
6241 /* Write the ITR value calculated from the previous interrupt. */
6242 igb_write_itr(q_vector);
6244 napi_schedule(&q_vector->napi);
6246 return IRQ_HANDLED;
6249 #ifdef CONFIG_IGB_DCA
6250 static void igb_update_tx_dca(struct igb_adapter *adapter,
6251 struct igb_ring *tx_ring,
6252 int cpu)
6254 struct e1000_hw *hw = &adapter->hw;
6255 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6257 if (hw->mac.type != e1000_82575)
6258 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6260 /* We can enable relaxed ordering for reads, but not writes when
6261 * DCA is enabled. This is due to a known issue in some chipsets
6262 * which will cause the DCA tag to be cleared.
6264 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6265 E1000_DCA_TXCTRL_DATA_RRO_EN |
6266 E1000_DCA_TXCTRL_DESC_DCA_EN;
6268 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6271 static void igb_update_rx_dca(struct igb_adapter *adapter,
6272 struct igb_ring *rx_ring,
6273 int cpu)
6275 struct e1000_hw *hw = &adapter->hw;
6276 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6278 if (hw->mac.type != e1000_82575)
6279 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6281 /* We can enable relaxed ordering for reads, but not writes when
6282 * DCA is enabled. This is due to a known issue in some chipsets
6283 * which will cause the DCA tag to be cleared.
6285 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6286 E1000_DCA_RXCTRL_DESC_DCA_EN;
6288 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6291 static void igb_update_dca(struct igb_q_vector *q_vector)
6293 struct igb_adapter *adapter = q_vector->adapter;
6294 int cpu = get_cpu();
6296 if (q_vector->cpu == cpu)
6297 goto out_no_update;
6299 if (q_vector->tx.ring)
6300 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6302 if (q_vector->rx.ring)
6303 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6305 q_vector->cpu = cpu;
6306 out_no_update:
6307 put_cpu();
6310 static void igb_setup_dca(struct igb_adapter *adapter)
6312 struct e1000_hw *hw = &adapter->hw;
6313 int i;
6315 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6316 return;
6318 /* Always use CB2 mode, difference is masked in the CB driver. */
6319 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6321 for (i = 0; i < adapter->num_q_vectors; i++) {
6322 adapter->q_vector[i]->cpu = -1;
6323 igb_update_dca(adapter->q_vector[i]);
6327 static int __igb_notify_dca(struct device *dev, void *data)
6329 struct net_device *netdev = dev_get_drvdata(dev);
6330 struct igb_adapter *adapter = netdev_priv(netdev);
6331 struct pci_dev *pdev = adapter->pdev;
6332 struct e1000_hw *hw = &adapter->hw;
6333 unsigned long event = *(unsigned long *)data;
6335 switch (event) {
6336 case DCA_PROVIDER_ADD:
6337 /* if already enabled, don't do it again */
6338 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6339 break;
6340 if (dca_add_requester(dev) == 0) {
6341 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6342 dev_info(&pdev->dev, "DCA enabled\n");
6343 igb_setup_dca(adapter);
6344 break;
6346 /* Fall Through since DCA is disabled. */
6347 case DCA_PROVIDER_REMOVE:
6348 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6349 /* without this a class_device is left
6350 * hanging around in the sysfs model
6352 dca_remove_requester(dev);
6353 dev_info(&pdev->dev, "DCA disabled\n");
6354 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6355 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6357 break;
6360 return 0;
6363 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6364 void *p)
6366 int ret_val;
6368 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6369 __igb_notify_dca);
6371 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6373 #endif /* CONFIG_IGB_DCA */
6375 #ifdef CONFIG_PCI_IOV
6376 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6378 unsigned char mac_addr[ETH_ALEN];
6380 eth_zero_addr(mac_addr);
6381 igb_set_vf_mac(adapter, vf, mac_addr);
6383 /* By default spoof check is enabled for all VFs */
6384 adapter->vf_data[vf].spoofchk_enabled = true;
6386 return 0;
6389 #endif
6390 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6392 struct e1000_hw *hw = &adapter->hw;
6393 u32 ping;
6394 int i;
6396 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6397 ping = E1000_PF_CONTROL_MSG;
6398 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6399 ping |= E1000_VT_MSGTYPE_CTS;
6400 igb_write_mbx(hw, &ping, 1, i);
6404 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6406 struct e1000_hw *hw = &adapter->hw;
6407 u32 vmolr = rd32(E1000_VMOLR(vf));
6408 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6410 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6411 IGB_VF_FLAG_MULTI_PROMISC);
6412 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6414 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6415 vmolr |= E1000_VMOLR_MPME;
6416 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6417 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6418 } else {
6419 /* if we have hashes and we are clearing a multicast promisc
6420 * flag we need to write the hashes to the MTA as this step
6421 * was previously skipped
6423 if (vf_data->num_vf_mc_hashes > 30) {
6424 vmolr |= E1000_VMOLR_MPME;
6425 } else if (vf_data->num_vf_mc_hashes) {
6426 int j;
6428 vmolr |= E1000_VMOLR_ROMPE;
6429 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6430 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6434 wr32(E1000_VMOLR(vf), vmolr);
6436 /* there are flags left unprocessed, likely not supported */
6437 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6438 return -EINVAL;
6440 return 0;
6443 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6444 u32 *msgbuf, u32 vf)
6446 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6447 u16 *hash_list = (u16 *)&msgbuf[1];
6448 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6449 int i;
6451 /* salt away the number of multicast addresses assigned
6452 * to this VF for later use to restore when the PF multi cast
6453 * list changes
6455 vf_data->num_vf_mc_hashes = n;
6457 /* only up to 30 hash values supported */
6458 if (n > 30)
6459 n = 30;
6461 /* store the hashes for later use */
6462 for (i = 0; i < n; i++)
6463 vf_data->vf_mc_hashes[i] = hash_list[i];
6465 /* Flush and reset the mta with the new values */
6466 igb_set_rx_mode(adapter->netdev);
6468 return 0;
6471 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6473 struct e1000_hw *hw = &adapter->hw;
6474 struct vf_data_storage *vf_data;
6475 int i, j;
6477 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6478 u32 vmolr = rd32(E1000_VMOLR(i));
6480 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6482 vf_data = &adapter->vf_data[i];
6484 if ((vf_data->num_vf_mc_hashes > 30) ||
6485 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6486 vmolr |= E1000_VMOLR_MPME;
6487 } else if (vf_data->num_vf_mc_hashes) {
6488 vmolr |= E1000_VMOLR_ROMPE;
6489 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6490 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6492 wr32(E1000_VMOLR(i), vmolr);
6496 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6498 struct e1000_hw *hw = &adapter->hw;
6499 u32 pool_mask, vlvf_mask, i;
6501 /* create mask for VF and other pools */
6502 pool_mask = E1000_VLVF_POOLSEL_MASK;
6503 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6505 /* drop PF from pool bits */
6506 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6507 adapter->vfs_allocated_count);
6509 /* Find the vlan filter for this id */
6510 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6511 u32 vlvf = rd32(E1000_VLVF(i));
6512 u32 vfta_mask, vid, vfta;
6514 /* remove the vf from the pool */
6515 if (!(vlvf & vlvf_mask))
6516 continue;
6518 /* clear out bit from VLVF */
6519 vlvf ^= vlvf_mask;
6521 /* if other pools are present, just remove ourselves */
6522 if (vlvf & pool_mask)
6523 goto update_vlvfb;
6525 /* if PF is present, leave VFTA */
6526 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6527 goto update_vlvf;
6529 vid = vlvf & E1000_VLVF_VLANID_MASK;
6530 vfta_mask = BIT(vid % 32);
6532 /* clear bit from VFTA */
6533 vfta = adapter->shadow_vfta[vid / 32];
6534 if (vfta & vfta_mask)
6535 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6536 update_vlvf:
6537 /* clear pool selection enable */
6538 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6539 vlvf &= E1000_VLVF_POOLSEL_MASK;
6540 else
6541 vlvf = 0;
6542 update_vlvfb:
6543 /* clear pool bits */
6544 wr32(E1000_VLVF(i), vlvf);
6548 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6550 u32 vlvf;
6551 int idx;
6553 /* short cut the special case */
6554 if (vlan == 0)
6555 return 0;
6557 /* Search for the VLAN id in the VLVF entries */
6558 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6559 vlvf = rd32(E1000_VLVF(idx));
6560 if ((vlvf & VLAN_VID_MASK) == vlan)
6561 break;
6564 return idx;
6567 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6569 struct e1000_hw *hw = &adapter->hw;
6570 u32 bits, pf_id;
6571 int idx;
6573 idx = igb_find_vlvf_entry(hw, vid);
6574 if (!idx)
6575 return;
6577 /* See if any other pools are set for this VLAN filter
6578 * entry other than the PF.
6580 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6581 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6582 bits &= rd32(E1000_VLVF(idx));
6584 /* Disable the filter so this falls into the default pool. */
6585 if (!bits) {
6586 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6587 wr32(E1000_VLVF(idx), BIT(pf_id));
6588 else
6589 wr32(E1000_VLVF(idx), 0);
6593 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6594 bool add, u32 vf)
6596 int pf_id = adapter->vfs_allocated_count;
6597 struct e1000_hw *hw = &adapter->hw;
6598 int err;
6600 /* If VLAN overlaps with one the PF is currently monitoring make
6601 * sure that we are able to allocate a VLVF entry. This may be
6602 * redundant but it guarantees PF will maintain visibility to
6603 * the VLAN.
6605 if (add && test_bit(vid, adapter->active_vlans)) {
6606 err = igb_vfta_set(hw, vid, pf_id, true, false);
6607 if (err)
6608 return err;
6611 err = igb_vfta_set(hw, vid, vf, add, false);
6613 if (add && !err)
6614 return err;
6616 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6617 * we may need to drop the PF pool bit in order to allow us to free
6618 * up the VLVF resources.
6620 if (test_bit(vid, adapter->active_vlans) ||
6621 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6622 igb_update_pf_vlvf(adapter, vid);
6624 return err;
6627 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6629 struct e1000_hw *hw = &adapter->hw;
6631 if (vid)
6632 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6633 else
6634 wr32(E1000_VMVIR(vf), 0);
6637 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6638 u16 vlan, u8 qos)
6640 int err;
6642 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6643 if (err)
6644 return err;
6646 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6647 igb_set_vmolr(adapter, vf, !vlan);
6649 /* revoke access to previous VLAN */
6650 if (vlan != adapter->vf_data[vf].pf_vlan)
6651 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6652 false, vf);
6654 adapter->vf_data[vf].pf_vlan = vlan;
6655 adapter->vf_data[vf].pf_qos = qos;
6656 igb_set_vf_vlan_strip(adapter, vf, true);
6657 dev_info(&adapter->pdev->dev,
6658 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6659 if (test_bit(__IGB_DOWN, &adapter->state)) {
6660 dev_warn(&adapter->pdev->dev,
6661 "The VF VLAN has been set, but the PF device is not up.\n");
6662 dev_warn(&adapter->pdev->dev,
6663 "Bring the PF device up before attempting to use the VF device.\n");
6666 return err;
6669 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6671 /* Restore tagless access via VLAN 0 */
6672 igb_set_vf_vlan(adapter, 0, true, vf);
6674 igb_set_vmvir(adapter, 0, vf);
6675 igb_set_vmolr(adapter, vf, true);
6677 /* Remove any PF assigned VLAN */
6678 if (adapter->vf_data[vf].pf_vlan)
6679 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6680 false, vf);
6682 adapter->vf_data[vf].pf_vlan = 0;
6683 adapter->vf_data[vf].pf_qos = 0;
6684 igb_set_vf_vlan_strip(adapter, vf, false);
6686 return 0;
6689 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6690 u16 vlan, u8 qos, __be16 vlan_proto)
6692 struct igb_adapter *adapter = netdev_priv(netdev);
6694 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6695 return -EINVAL;
6697 if (vlan_proto != htons(ETH_P_8021Q))
6698 return -EPROTONOSUPPORT;
6700 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6701 igb_disable_port_vlan(adapter, vf);
6704 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6706 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6707 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6708 int ret;
6710 if (adapter->vf_data[vf].pf_vlan)
6711 return -1;
6713 /* VLAN 0 is a special case, don't allow it to be removed */
6714 if (!vid && !add)
6715 return 0;
6717 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6718 if (!ret)
6719 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6720 return ret;
6723 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6725 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6727 /* clear flags - except flag that indicates PF has set the MAC */
6728 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6729 vf_data->last_nack = jiffies;
6731 /* reset vlans for device */
6732 igb_clear_vf_vfta(adapter, vf);
6733 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6734 igb_set_vmvir(adapter, vf_data->pf_vlan |
6735 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6736 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6737 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6739 /* reset multicast table array for vf */
6740 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6742 /* Flush and reset the mta with the new values */
6743 igb_set_rx_mode(adapter->netdev);
6746 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6748 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6750 /* clear mac address as we were hotplug removed/added */
6751 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6752 eth_zero_addr(vf_mac);
6754 /* process remaining reset events */
6755 igb_vf_reset(adapter, vf);
6758 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6760 struct e1000_hw *hw = &adapter->hw;
6761 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6762 u32 reg, msgbuf[3];
6763 u8 *addr = (u8 *)(&msgbuf[1]);
6765 /* process all the same items cleared in a function level reset */
6766 igb_vf_reset(adapter, vf);
6768 /* set vf mac address */
6769 igb_set_vf_mac(adapter, vf, vf_mac);
6771 /* enable transmit and receive for vf */
6772 reg = rd32(E1000_VFTE);
6773 wr32(E1000_VFTE, reg | BIT(vf));
6774 reg = rd32(E1000_VFRE);
6775 wr32(E1000_VFRE, reg | BIT(vf));
6777 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6779 /* reply to reset with ack and vf mac address */
6780 if (!is_zero_ether_addr(vf_mac)) {
6781 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6782 memcpy(addr, vf_mac, ETH_ALEN);
6783 } else {
6784 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6786 igb_write_mbx(hw, msgbuf, 3, vf);
6789 static void igb_flush_mac_table(struct igb_adapter *adapter)
6791 struct e1000_hw *hw = &adapter->hw;
6792 int i;
6794 for (i = 0; i < hw->mac.rar_entry_count; i++) {
6795 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6796 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6797 adapter->mac_table[i].queue = 0;
6798 igb_rar_set_index(adapter, i);
6802 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
6804 struct e1000_hw *hw = &adapter->hw;
6805 /* do not count rar entries reserved for VFs MAC addresses */
6806 int rar_entries = hw->mac.rar_entry_count -
6807 adapter->vfs_allocated_count;
6808 int i, count = 0;
6810 for (i = 0; i < rar_entries; i++) {
6811 /* do not count default entries */
6812 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
6813 continue;
6815 /* do not count "in use" entries for different queues */
6816 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
6817 (adapter->mac_table[i].queue != queue))
6818 continue;
6820 count++;
6823 return count;
6826 /* Set default MAC address for the PF in the first RAR entry */
6827 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
6829 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
6831 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
6832 mac_table->queue = adapter->vfs_allocated_count;
6833 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
6835 igb_rar_set_index(adapter, 0);
6838 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6839 const u8 queue)
6841 struct e1000_hw *hw = &adapter->hw;
6842 int rar_entries = hw->mac.rar_entry_count -
6843 adapter->vfs_allocated_count;
6844 int i;
6846 if (is_zero_ether_addr(addr))
6847 return -EINVAL;
6849 /* Search for the first empty entry in the MAC table.
6850 * Do not touch entries at the end of the table reserved for the VF MAC
6851 * addresses.
6853 for (i = 0; i < rar_entries; i++) {
6854 if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
6855 continue;
6857 ether_addr_copy(adapter->mac_table[i].addr, addr);
6858 adapter->mac_table[i].queue = queue;
6859 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE;
6861 igb_rar_set_index(adapter, i);
6862 return i;
6865 return -ENOSPC;
6868 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6869 const u8 queue)
6871 struct e1000_hw *hw = &adapter->hw;
6872 int rar_entries = hw->mac.rar_entry_count -
6873 adapter->vfs_allocated_count;
6874 int i;
6876 if (is_zero_ether_addr(addr))
6877 return -EINVAL;
6879 /* Search for matching entry in the MAC table based on given address
6880 * and queue. Do not touch entries at the end of the table reserved
6881 * for the VF MAC addresses.
6883 for (i = 0; i < rar_entries; i++) {
6884 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
6885 continue;
6886 if (adapter->mac_table[i].queue != queue)
6887 continue;
6888 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
6889 continue;
6891 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6892 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6893 adapter->mac_table[i].queue = 0;
6895 igb_rar_set_index(adapter, i);
6896 return 0;
6899 return -ENOENT;
6902 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
6904 struct igb_adapter *adapter = netdev_priv(netdev);
6905 int ret;
6907 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6909 return min_t(int, ret, 0);
6912 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
6914 struct igb_adapter *adapter = netdev_priv(netdev);
6916 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6918 return 0;
6921 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
6922 const u32 info, const u8 *addr)
6924 struct pci_dev *pdev = adapter->pdev;
6925 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6926 struct list_head *pos;
6927 struct vf_mac_filter *entry = NULL;
6928 int ret = 0;
6930 switch (info) {
6931 case E1000_VF_MAC_FILTER_CLR:
6932 /* remove all unicast MAC filters related to the current VF */
6933 list_for_each(pos, &adapter->vf_macs.l) {
6934 entry = list_entry(pos, struct vf_mac_filter, l);
6935 if (entry->vf == vf) {
6936 entry->vf = -1;
6937 entry->free = true;
6938 igb_del_mac_filter(adapter, entry->vf_mac, vf);
6941 break;
6942 case E1000_VF_MAC_FILTER_ADD:
6943 if (vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) {
6944 dev_warn(&pdev->dev,
6945 "VF %d requested MAC filter but is administratively denied\n",
6946 vf);
6947 return -EINVAL;
6950 if (!is_valid_ether_addr(addr)) {
6951 dev_warn(&pdev->dev,
6952 "VF %d attempted to set invalid MAC filter\n",
6953 vf);
6954 return -EINVAL;
6957 /* try to find empty slot in the list */
6958 list_for_each(pos, &adapter->vf_macs.l) {
6959 entry = list_entry(pos, struct vf_mac_filter, l);
6960 if (entry->free)
6961 break;
6964 if (entry && entry->free) {
6965 entry->free = false;
6966 entry->vf = vf;
6967 ether_addr_copy(entry->vf_mac, addr);
6969 ret = igb_add_mac_filter(adapter, addr, vf);
6970 ret = min_t(int, ret, 0);
6971 } else {
6972 ret = -ENOSPC;
6975 if (ret == -ENOSPC)
6976 dev_warn(&pdev->dev,
6977 "VF %d has requested MAC filter but there is no space for it\n",
6978 vf);
6979 break;
6980 default:
6981 ret = -EINVAL;
6982 break;
6985 return ret;
6988 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6990 struct pci_dev *pdev = adapter->pdev;
6991 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6992 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
6994 /* The VF MAC Address is stored in a packed array of bytes
6995 * starting at the second 32 bit word of the msg array
6997 unsigned char *addr = (unsigned char *)&msg[1];
6998 int ret = 0;
7000 if (!info) {
7001 if (vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) {
7002 dev_warn(&pdev->dev,
7003 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7004 vf);
7005 return -EINVAL;
7008 if (!is_valid_ether_addr(addr)) {
7009 dev_warn(&pdev->dev,
7010 "VF %d attempted to set invalid MAC\n",
7011 vf);
7012 return -EINVAL;
7015 ret = igb_set_vf_mac(adapter, vf, addr);
7016 } else {
7017 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7020 return ret;
7023 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7025 struct e1000_hw *hw = &adapter->hw;
7026 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7027 u32 msg = E1000_VT_MSGTYPE_NACK;
7029 /* if device isn't clear to send it shouldn't be reading either */
7030 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7031 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7032 igb_write_mbx(hw, &msg, 1, vf);
7033 vf_data->last_nack = jiffies;
7037 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7039 struct pci_dev *pdev = adapter->pdev;
7040 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7041 struct e1000_hw *hw = &adapter->hw;
7042 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7043 s32 retval;
7045 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7047 if (retval) {
7048 /* if receive failed revoke VF CTS stats and restart init */
7049 dev_err(&pdev->dev, "Error receiving message from VF\n");
7050 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7051 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7052 goto unlock;
7053 goto out;
7056 /* this is a message we already processed, do nothing */
7057 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7058 goto unlock;
7060 /* until the vf completes a reset it should not be
7061 * allowed to start any configuration.
7063 if (msgbuf[0] == E1000_VF_RESET) {
7064 /* unlocks mailbox */
7065 igb_vf_reset_msg(adapter, vf);
7066 return;
7069 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7070 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7071 goto unlock;
7072 retval = -1;
7073 goto out;
7076 switch ((msgbuf[0] & 0xFFFF)) {
7077 case E1000_VF_SET_MAC_ADDR:
7078 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7079 break;
7080 case E1000_VF_SET_PROMISC:
7081 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7082 break;
7083 case E1000_VF_SET_MULTICAST:
7084 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7085 break;
7086 case E1000_VF_SET_LPE:
7087 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7088 break;
7089 case E1000_VF_SET_VLAN:
7090 retval = -1;
7091 if (vf_data->pf_vlan)
7092 dev_warn(&pdev->dev,
7093 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7094 vf);
7095 else
7096 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7097 break;
7098 default:
7099 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7100 retval = -1;
7101 break;
7104 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7105 out:
7106 /* notify the VF of the results of what it sent us */
7107 if (retval)
7108 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7109 else
7110 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7112 /* unlocks mailbox */
7113 igb_write_mbx(hw, msgbuf, 1, vf);
7114 return;
7116 unlock:
7117 igb_unlock_mbx(hw, vf);
7120 static void igb_msg_task(struct igb_adapter *adapter)
7122 struct e1000_hw *hw = &adapter->hw;
7123 u32 vf;
7125 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7126 /* process any reset requests */
7127 if (!igb_check_for_rst(hw, vf))
7128 igb_vf_reset_event(adapter, vf);
7130 /* process any messages pending */
7131 if (!igb_check_for_msg(hw, vf))
7132 igb_rcv_msg_from_vf(adapter, vf);
7134 /* process any acks */
7135 if (!igb_check_for_ack(hw, vf))
7136 igb_rcv_ack_from_vf(adapter, vf);
7141 * igb_set_uta - Set unicast filter table address
7142 * @adapter: board private structure
7143 * @set: boolean indicating if we are setting or clearing bits
7145 * The unicast table address is a register array of 32-bit registers.
7146 * The table is meant to be used in a way similar to how the MTA is used
7147 * however due to certain limitations in the hardware it is necessary to
7148 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7149 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7151 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7153 struct e1000_hw *hw = &adapter->hw;
7154 u32 uta = set ? ~0 : 0;
7155 int i;
7157 /* we only need to do this if VMDq is enabled */
7158 if (!adapter->vfs_allocated_count)
7159 return;
7161 for (i = hw->mac.uta_reg_count; i--;)
7162 array_wr32(E1000_UTA, i, uta);
7166 * igb_intr_msi - Interrupt Handler
7167 * @irq: interrupt number
7168 * @data: pointer to a network interface device structure
7170 static irqreturn_t igb_intr_msi(int irq, void *data)
7172 struct igb_adapter *adapter = data;
7173 struct igb_q_vector *q_vector = adapter->q_vector[0];
7174 struct e1000_hw *hw = &adapter->hw;
7175 /* read ICR disables interrupts using IAM */
7176 u32 icr = rd32(E1000_ICR);
7178 igb_write_itr(q_vector);
7180 if (icr & E1000_ICR_DRSTA)
7181 schedule_work(&adapter->reset_task);
7183 if (icr & E1000_ICR_DOUTSYNC) {
7184 /* HW is reporting DMA is out of sync */
7185 adapter->stats.doosync++;
7188 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7189 hw->mac.get_link_status = 1;
7190 if (!test_bit(__IGB_DOWN, &adapter->state))
7191 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7194 if (icr & E1000_ICR_TS)
7195 igb_tsync_interrupt(adapter);
7197 napi_schedule(&q_vector->napi);
7199 return IRQ_HANDLED;
7203 * igb_intr - Legacy Interrupt Handler
7204 * @irq: interrupt number
7205 * @data: pointer to a network interface device structure
7207 static irqreturn_t igb_intr(int irq, void *data)
7209 struct igb_adapter *adapter = data;
7210 struct igb_q_vector *q_vector = adapter->q_vector[0];
7211 struct e1000_hw *hw = &adapter->hw;
7212 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7213 * need for the IMC write
7215 u32 icr = rd32(E1000_ICR);
7217 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7218 * not set, then the adapter didn't send an interrupt
7220 if (!(icr & E1000_ICR_INT_ASSERTED))
7221 return IRQ_NONE;
7223 igb_write_itr(q_vector);
7225 if (icr & E1000_ICR_DRSTA)
7226 schedule_work(&adapter->reset_task);
7228 if (icr & E1000_ICR_DOUTSYNC) {
7229 /* HW is reporting DMA is out of sync */
7230 adapter->stats.doosync++;
7233 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7234 hw->mac.get_link_status = 1;
7235 /* guard against interrupt when we're going down */
7236 if (!test_bit(__IGB_DOWN, &adapter->state))
7237 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7240 if (icr & E1000_ICR_TS)
7241 igb_tsync_interrupt(adapter);
7243 napi_schedule(&q_vector->napi);
7245 return IRQ_HANDLED;
7248 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7250 struct igb_adapter *adapter = q_vector->adapter;
7251 struct e1000_hw *hw = &adapter->hw;
7253 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7254 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7255 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7256 igb_set_itr(q_vector);
7257 else
7258 igb_update_ring_itr(q_vector);
7261 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7262 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7263 wr32(E1000_EIMS, q_vector->eims_value);
7264 else
7265 igb_irq_enable(adapter);
7270 * igb_poll - NAPI Rx polling callback
7271 * @napi: napi polling structure
7272 * @budget: count of how many packets we should handle
7274 static int igb_poll(struct napi_struct *napi, int budget)
7276 struct igb_q_vector *q_vector = container_of(napi,
7277 struct igb_q_vector,
7278 napi);
7279 bool clean_complete = true;
7280 int work_done = 0;
7282 #ifdef CONFIG_IGB_DCA
7283 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7284 igb_update_dca(q_vector);
7285 #endif
7286 if (q_vector->tx.ring)
7287 clean_complete = igb_clean_tx_irq(q_vector, budget);
7289 if (q_vector->rx.ring) {
7290 int cleaned = igb_clean_rx_irq(q_vector, budget);
7292 work_done += cleaned;
7293 if (cleaned >= budget)
7294 clean_complete = false;
7297 /* If all work not completed, return budget and keep polling */
7298 if (!clean_complete)
7299 return budget;
7301 /* If not enough Rx work done, exit the polling mode */
7302 napi_complete_done(napi, work_done);
7303 igb_ring_irq_enable(q_vector);
7305 return 0;
7309 * igb_clean_tx_irq - Reclaim resources after transmit completes
7310 * @q_vector: pointer to q_vector containing needed info
7311 * @napi_budget: Used to determine if we are in netpoll
7313 * returns true if ring is completely cleaned
7315 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7317 struct igb_adapter *adapter = q_vector->adapter;
7318 struct igb_ring *tx_ring = q_vector->tx.ring;
7319 struct igb_tx_buffer *tx_buffer;
7320 union e1000_adv_tx_desc *tx_desc;
7321 unsigned int total_bytes = 0, total_packets = 0;
7322 unsigned int budget = q_vector->tx.work_limit;
7323 unsigned int i = tx_ring->next_to_clean;
7325 if (test_bit(__IGB_DOWN, &adapter->state))
7326 return true;
7328 tx_buffer = &tx_ring->tx_buffer_info[i];
7329 tx_desc = IGB_TX_DESC(tx_ring, i);
7330 i -= tx_ring->count;
7332 do {
7333 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7335 /* if next_to_watch is not set then there is no work pending */
7336 if (!eop_desc)
7337 break;
7339 /* prevent any other reads prior to eop_desc */
7340 smp_rmb();
7342 /* if DD is not set pending work has not been completed */
7343 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7344 break;
7346 /* clear next_to_watch to prevent false hangs */
7347 tx_buffer->next_to_watch = NULL;
7349 /* update the statistics for this packet */
7350 total_bytes += tx_buffer->bytecount;
7351 total_packets += tx_buffer->gso_segs;
7353 /* free the skb */
7354 napi_consume_skb(tx_buffer->skb, napi_budget);
7356 /* unmap skb header data */
7357 dma_unmap_single(tx_ring->dev,
7358 dma_unmap_addr(tx_buffer, dma),
7359 dma_unmap_len(tx_buffer, len),
7360 DMA_TO_DEVICE);
7362 /* clear tx_buffer data */
7363 dma_unmap_len_set(tx_buffer, len, 0);
7365 /* clear last DMA location and unmap remaining buffers */
7366 while (tx_desc != eop_desc) {
7367 tx_buffer++;
7368 tx_desc++;
7369 i++;
7370 if (unlikely(!i)) {
7371 i -= tx_ring->count;
7372 tx_buffer = tx_ring->tx_buffer_info;
7373 tx_desc = IGB_TX_DESC(tx_ring, 0);
7376 /* unmap any remaining paged data */
7377 if (dma_unmap_len(tx_buffer, len)) {
7378 dma_unmap_page(tx_ring->dev,
7379 dma_unmap_addr(tx_buffer, dma),
7380 dma_unmap_len(tx_buffer, len),
7381 DMA_TO_DEVICE);
7382 dma_unmap_len_set(tx_buffer, len, 0);
7386 /* move us one more past the eop_desc for start of next pkt */
7387 tx_buffer++;
7388 tx_desc++;
7389 i++;
7390 if (unlikely(!i)) {
7391 i -= tx_ring->count;
7392 tx_buffer = tx_ring->tx_buffer_info;
7393 tx_desc = IGB_TX_DESC(tx_ring, 0);
7396 /* issue prefetch for next Tx descriptor */
7397 prefetch(tx_desc);
7399 /* update budget accounting */
7400 budget--;
7401 } while (likely(budget));
7403 netdev_tx_completed_queue(txring_txq(tx_ring),
7404 total_packets, total_bytes);
7405 i += tx_ring->count;
7406 tx_ring->next_to_clean = i;
7407 u64_stats_update_begin(&tx_ring->tx_syncp);
7408 tx_ring->tx_stats.bytes += total_bytes;
7409 tx_ring->tx_stats.packets += total_packets;
7410 u64_stats_update_end(&tx_ring->tx_syncp);
7411 q_vector->tx.total_bytes += total_bytes;
7412 q_vector->tx.total_packets += total_packets;
7414 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7415 struct e1000_hw *hw = &adapter->hw;
7417 /* Detect a transmit hang in hardware, this serializes the
7418 * check with the clearing of time_stamp and movement of i
7420 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7421 if (tx_buffer->next_to_watch &&
7422 time_after(jiffies, tx_buffer->time_stamp +
7423 (adapter->tx_timeout_factor * HZ)) &&
7424 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7426 /* detected Tx unit hang */
7427 dev_err(tx_ring->dev,
7428 "Detected Tx Unit Hang\n"
7429 " Tx Queue <%d>\n"
7430 " TDH <%x>\n"
7431 " TDT <%x>\n"
7432 " next_to_use <%x>\n"
7433 " next_to_clean <%x>\n"
7434 "buffer_info[next_to_clean]\n"
7435 " time_stamp <%lx>\n"
7436 " next_to_watch <%p>\n"
7437 " jiffies <%lx>\n"
7438 " desc.status <%x>\n",
7439 tx_ring->queue_index,
7440 rd32(E1000_TDH(tx_ring->reg_idx)),
7441 readl(tx_ring->tail),
7442 tx_ring->next_to_use,
7443 tx_ring->next_to_clean,
7444 tx_buffer->time_stamp,
7445 tx_buffer->next_to_watch,
7446 jiffies,
7447 tx_buffer->next_to_watch->wb.status);
7448 netif_stop_subqueue(tx_ring->netdev,
7449 tx_ring->queue_index);
7451 /* we are about to reset, no point in enabling stuff */
7452 return true;
7456 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7457 if (unlikely(total_packets &&
7458 netif_carrier_ok(tx_ring->netdev) &&
7459 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7460 /* Make sure that anybody stopping the queue after this
7461 * sees the new next_to_clean.
7463 smp_mb();
7464 if (__netif_subqueue_stopped(tx_ring->netdev,
7465 tx_ring->queue_index) &&
7466 !(test_bit(__IGB_DOWN, &adapter->state))) {
7467 netif_wake_subqueue(tx_ring->netdev,
7468 tx_ring->queue_index);
7470 u64_stats_update_begin(&tx_ring->tx_syncp);
7471 tx_ring->tx_stats.restart_queue++;
7472 u64_stats_update_end(&tx_ring->tx_syncp);
7476 return !!budget;
7480 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7481 * @rx_ring: rx descriptor ring to store buffers on
7482 * @old_buff: donor buffer to have page reused
7484 * Synchronizes page for reuse by the adapter
7486 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7487 struct igb_rx_buffer *old_buff)
7489 struct igb_rx_buffer *new_buff;
7490 u16 nta = rx_ring->next_to_alloc;
7492 new_buff = &rx_ring->rx_buffer_info[nta];
7494 /* update, and store next to alloc */
7495 nta++;
7496 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7498 /* Transfer page from old buffer to new buffer.
7499 * Move each member individually to avoid possible store
7500 * forwarding stalls.
7502 new_buff->dma = old_buff->dma;
7503 new_buff->page = old_buff->page;
7504 new_buff->page_offset = old_buff->page_offset;
7505 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7508 static inline bool igb_page_is_reserved(struct page *page)
7510 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7513 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7515 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7516 struct page *page = rx_buffer->page;
7518 /* avoid re-using remote pages */
7519 if (unlikely(igb_page_is_reserved(page)))
7520 return false;
7522 #if (PAGE_SIZE < 8192)
7523 /* if we are only owner of page we can reuse it */
7524 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7525 return false;
7526 #else
7527 #define IGB_LAST_OFFSET \
7528 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7530 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7531 return false;
7532 #endif
7534 /* If we have drained the page fragment pool we need to update
7535 * the pagecnt_bias and page count so that we fully restock the
7536 * number of references the driver holds.
7538 if (unlikely(!pagecnt_bias)) {
7539 page_ref_add(page, USHRT_MAX);
7540 rx_buffer->pagecnt_bias = USHRT_MAX;
7543 return true;
7547 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7548 * @rx_ring: rx descriptor ring to transact packets on
7549 * @rx_buffer: buffer containing page to add
7550 * @skb: sk_buff to place the data into
7551 * @size: size of buffer to be added
7553 * This function will add the data contained in rx_buffer->page to the skb.
7555 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7556 struct igb_rx_buffer *rx_buffer,
7557 struct sk_buff *skb,
7558 unsigned int size)
7560 #if (PAGE_SIZE < 8192)
7561 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7562 #else
7563 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7564 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7565 SKB_DATA_ALIGN(size);
7566 #endif
7567 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7568 rx_buffer->page_offset, size, truesize);
7569 #if (PAGE_SIZE < 8192)
7570 rx_buffer->page_offset ^= truesize;
7571 #else
7572 rx_buffer->page_offset += truesize;
7573 #endif
7576 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
7577 struct igb_rx_buffer *rx_buffer,
7578 union e1000_adv_rx_desc *rx_desc,
7579 unsigned int size)
7581 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7582 #if (PAGE_SIZE < 8192)
7583 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7584 #else
7585 unsigned int truesize = SKB_DATA_ALIGN(size);
7586 #endif
7587 unsigned int headlen;
7588 struct sk_buff *skb;
7590 /* prefetch first cache line of first page */
7591 prefetch(va);
7592 #if L1_CACHE_BYTES < 128
7593 prefetch(va + L1_CACHE_BYTES);
7594 #endif
7596 /* allocate a skb to store the frags */
7597 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
7598 if (unlikely(!skb))
7599 return NULL;
7601 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
7602 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7603 va += IGB_TS_HDR_LEN;
7604 size -= IGB_TS_HDR_LEN;
7607 /* Determine available headroom for copy */
7608 headlen = size;
7609 if (headlen > IGB_RX_HDR_LEN)
7610 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
7612 /* align pull length to size of long to optimize memcpy performance */
7613 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
7615 /* update all of the pointers */
7616 size -= headlen;
7617 if (size) {
7618 skb_add_rx_frag(skb, 0, rx_buffer->page,
7619 (va + headlen) - page_address(rx_buffer->page),
7620 size, truesize);
7621 #if (PAGE_SIZE < 8192)
7622 rx_buffer->page_offset ^= truesize;
7623 #else
7624 rx_buffer->page_offset += truesize;
7625 #endif
7626 } else {
7627 rx_buffer->pagecnt_bias++;
7630 return skb;
7633 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
7634 struct igb_rx_buffer *rx_buffer,
7635 union e1000_adv_rx_desc *rx_desc,
7636 unsigned int size)
7638 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7639 #if (PAGE_SIZE < 8192)
7640 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7641 #else
7642 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
7643 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
7644 #endif
7645 struct sk_buff *skb;
7647 /* prefetch first cache line of first page */
7648 prefetch(va);
7649 #if L1_CACHE_BYTES < 128
7650 prefetch(va + L1_CACHE_BYTES);
7651 #endif
7653 /* build an skb around the page buffer */
7654 skb = build_skb(va - IGB_SKB_PAD, truesize);
7655 if (unlikely(!skb))
7656 return NULL;
7658 /* update pointers within the skb to store the data */
7659 skb_reserve(skb, IGB_SKB_PAD);
7660 __skb_put(skb, size);
7662 /* pull timestamp out of packet data */
7663 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7664 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
7665 __skb_pull(skb, IGB_TS_HDR_LEN);
7668 /* update buffer offset */
7669 #if (PAGE_SIZE < 8192)
7670 rx_buffer->page_offset ^= truesize;
7671 #else
7672 rx_buffer->page_offset += truesize;
7673 #endif
7675 return skb;
7678 static inline void igb_rx_checksum(struct igb_ring *ring,
7679 union e1000_adv_rx_desc *rx_desc,
7680 struct sk_buff *skb)
7682 skb_checksum_none_assert(skb);
7684 /* Ignore Checksum bit is set */
7685 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7686 return;
7688 /* Rx checksum disabled via ethtool */
7689 if (!(ring->netdev->features & NETIF_F_RXCSUM))
7690 return;
7692 /* TCP/UDP checksum error bit is set */
7693 if (igb_test_staterr(rx_desc,
7694 E1000_RXDEXT_STATERR_TCPE |
7695 E1000_RXDEXT_STATERR_IPE)) {
7696 /* work around errata with sctp packets where the TCPE aka
7697 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7698 * packets, (aka let the stack check the crc32c)
7700 if (!((skb->len == 60) &&
7701 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7702 u64_stats_update_begin(&ring->rx_syncp);
7703 ring->rx_stats.csum_err++;
7704 u64_stats_update_end(&ring->rx_syncp);
7706 /* let the stack verify checksum errors */
7707 return;
7709 /* It must be a TCP or UDP packet with a valid checksum */
7710 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7711 E1000_RXD_STAT_UDPCS))
7712 skb->ip_summed = CHECKSUM_UNNECESSARY;
7714 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7715 le32_to_cpu(rx_desc->wb.upper.status_error));
7718 static inline void igb_rx_hash(struct igb_ring *ring,
7719 union e1000_adv_rx_desc *rx_desc,
7720 struct sk_buff *skb)
7722 if (ring->netdev->features & NETIF_F_RXHASH)
7723 skb_set_hash(skb,
7724 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7725 PKT_HASH_TYPE_L3);
7729 * igb_is_non_eop - process handling of non-EOP buffers
7730 * @rx_ring: Rx ring being processed
7731 * @rx_desc: Rx descriptor for current buffer
7732 * @skb: current socket buffer containing buffer in progress
7734 * This function updates next to clean. If the buffer is an EOP buffer
7735 * this function exits returning false, otherwise it will place the
7736 * sk_buff in the next buffer to be chained and return true indicating
7737 * that this is in fact a non-EOP buffer.
7739 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7740 union e1000_adv_rx_desc *rx_desc)
7742 u32 ntc = rx_ring->next_to_clean + 1;
7744 /* fetch, update, and store next to clean */
7745 ntc = (ntc < rx_ring->count) ? ntc : 0;
7746 rx_ring->next_to_clean = ntc;
7748 prefetch(IGB_RX_DESC(rx_ring, ntc));
7750 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7751 return false;
7753 return true;
7757 * igb_cleanup_headers - Correct corrupted or empty headers
7758 * @rx_ring: rx descriptor ring packet is being transacted on
7759 * @rx_desc: pointer to the EOP Rx descriptor
7760 * @skb: pointer to current skb being fixed
7762 * Address the case where we are pulling data in on pages only
7763 * and as such no data is present in the skb header.
7765 * In addition if skb is not at least 60 bytes we need to pad it so that
7766 * it is large enough to qualify as a valid Ethernet frame.
7768 * Returns true if an error was encountered and skb was freed.
7770 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7771 union e1000_adv_rx_desc *rx_desc,
7772 struct sk_buff *skb)
7774 if (unlikely((igb_test_staterr(rx_desc,
7775 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7776 struct net_device *netdev = rx_ring->netdev;
7777 if (!(netdev->features & NETIF_F_RXALL)) {
7778 dev_kfree_skb_any(skb);
7779 return true;
7783 /* if eth_skb_pad returns an error the skb was freed */
7784 if (eth_skb_pad(skb))
7785 return true;
7787 return false;
7791 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7792 * @rx_ring: rx descriptor ring packet is being transacted on
7793 * @rx_desc: pointer to the EOP Rx descriptor
7794 * @skb: pointer to current skb being populated
7796 * This function checks the ring, descriptor, and packet information in
7797 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7798 * other fields within the skb.
7800 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7801 union e1000_adv_rx_desc *rx_desc,
7802 struct sk_buff *skb)
7804 struct net_device *dev = rx_ring->netdev;
7806 igb_rx_hash(rx_ring, rx_desc, skb);
7808 igb_rx_checksum(rx_ring, rx_desc, skb);
7810 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7811 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7812 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7814 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7815 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7816 u16 vid;
7818 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7819 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7820 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7821 else
7822 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7824 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7827 skb_record_rx_queue(skb, rx_ring->queue_index);
7829 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7832 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
7833 const unsigned int size)
7835 struct igb_rx_buffer *rx_buffer;
7837 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7838 prefetchw(rx_buffer->page);
7840 /* we are reusing so sync this buffer for CPU use */
7841 dma_sync_single_range_for_cpu(rx_ring->dev,
7842 rx_buffer->dma,
7843 rx_buffer->page_offset,
7844 size,
7845 DMA_FROM_DEVICE);
7847 rx_buffer->pagecnt_bias--;
7849 return rx_buffer;
7852 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
7853 struct igb_rx_buffer *rx_buffer)
7855 if (igb_can_reuse_rx_page(rx_buffer)) {
7856 /* hand second half of page back to the ring */
7857 igb_reuse_rx_page(rx_ring, rx_buffer);
7858 } else {
7859 /* We are not reusing the buffer so unmap it and free
7860 * any references we are holding to it
7862 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
7863 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
7864 IGB_RX_DMA_ATTR);
7865 __page_frag_cache_drain(rx_buffer->page,
7866 rx_buffer->pagecnt_bias);
7869 /* clear contents of rx_buffer */
7870 rx_buffer->page = NULL;
7873 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7875 struct igb_ring *rx_ring = q_vector->rx.ring;
7876 struct sk_buff *skb = rx_ring->skb;
7877 unsigned int total_bytes = 0, total_packets = 0;
7878 u16 cleaned_count = igb_desc_unused(rx_ring);
7880 while (likely(total_packets < budget)) {
7881 union e1000_adv_rx_desc *rx_desc;
7882 struct igb_rx_buffer *rx_buffer;
7883 unsigned int size;
7885 /* return some buffers to hardware, one at a time is too slow */
7886 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7887 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7888 cleaned_count = 0;
7891 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7892 size = le16_to_cpu(rx_desc->wb.upper.length);
7893 if (!size)
7894 break;
7896 /* This memory barrier is needed to keep us from reading
7897 * any other fields out of the rx_desc until we know the
7898 * descriptor has been written back
7900 dma_rmb();
7902 rx_buffer = igb_get_rx_buffer(rx_ring, size);
7904 /* retrieve a buffer from the ring */
7905 if (skb)
7906 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
7907 else if (ring_uses_build_skb(rx_ring))
7908 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
7909 else
7910 skb = igb_construct_skb(rx_ring, rx_buffer,
7911 rx_desc, size);
7913 /* exit if we failed to retrieve a buffer */
7914 if (!skb) {
7915 rx_ring->rx_stats.alloc_failed++;
7916 rx_buffer->pagecnt_bias++;
7917 break;
7920 igb_put_rx_buffer(rx_ring, rx_buffer);
7921 cleaned_count++;
7923 /* fetch next buffer in frame if non-eop */
7924 if (igb_is_non_eop(rx_ring, rx_desc))
7925 continue;
7927 /* verify the packet layout is correct */
7928 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7929 skb = NULL;
7930 continue;
7933 /* probably a little skewed due to removing CRC */
7934 total_bytes += skb->len;
7936 /* populate checksum, timestamp, VLAN, and protocol */
7937 igb_process_skb_fields(rx_ring, rx_desc, skb);
7939 napi_gro_receive(&q_vector->napi, skb);
7941 /* reset skb pointer */
7942 skb = NULL;
7944 /* update budget accounting */
7945 total_packets++;
7948 /* place incomplete frames back on ring for completion */
7949 rx_ring->skb = skb;
7951 u64_stats_update_begin(&rx_ring->rx_syncp);
7952 rx_ring->rx_stats.packets += total_packets;
7953 rx_ring->rx_stats.bytes += total_bytes;
7954 u64_stats_update_end(&rx_ring->rx_syncp);
7955 q_vector->rx.total_packets += total_packets;
7956 q_vector->rx.total_bytes += total_bytes;
7958 if (cleaned_count)
7959 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7961 return total_packets;
7964 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
7966 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
7969 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7970 struct igb_rx_buffer *bi)
7972 struct page *page = bi->page;
7973 dma_addr_t dma;
7975 /* since we are recycling buffers we should seldom need to alloc */
7976 if (likely(page))
7977 return true;
7979 /* alloc new page for storage */
7980 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
7981 if (unlikely(!page)) {
7982 rx_ring->rx_stats.alloc_failed++;
7983 return false;
7986 /* map page for use */
7987 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
7988 igb_rx_pg_size(rx_ring),
7989 DMA_FROM_DEVICE,
7990 IGB_RX_DMA_ATTR);
7992 /* if mapping failed free memory back to system since
7993 * there isn't much point in holding memory we can't use
7995 if (dma_mapping_error(rx_ring->dev, dma)) {
7996 __free_pages(page, igb_rx_pg_order(rx_ring));
7998 rx_ring->rx_stats.alloc_failed++;
7999 return false;
8002 bi->dma = dma;
8003 bi->page = page;
8004 bi->page_offset = igb_rx_offset(rx_ring);
8005 bi->pagecnt_bias = 1;
8007 return true;
8011 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8012 * @adapter: address of board private structure
8014 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8016 union e1000_adv_rx_desc *rx_desc;
8017 struct igb_rx_buffer *bi;
8018 u16 i = rx_ring->next_to_use;
8019 u16 bufsz;
8021 /* nothing to do */
8022 if (!cleaned_count)
8023 return;
8025 rx_desc = IGB_RX_DESC(rx_ring, i);
8026 bi = &rx_ring->rx_buffer_info[i];
8027 i -= rx_ring->count;
8029 bufsz = igb_rx_bufsz(rx_ring);
8031 do {
8032 if (!igb_alloc_mapped_page(rx_ring, bi))
8033 break;
8035 /* sync the buffer for use by the device */
8036 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8037 bi->page_offset, bufsz,
8038 DMA_FROM_DEVICE);
8040 /* Refresh the desc even if buffer_addrs didn't change
8041 * because each write-back erases this info.
8043 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8045 rx_desc++;
8046 bi++;
8047 i++;
8048 if (unlikely(!i)) {
8049 rx_desc = IGB_RX_DESC(rx_ring, 0);
8050 bi = rx_ring->rx_buffer_info;
8051 i -= rx_ring->count;
8054 /* clear the length for the next_to_use descriptor */
8055 rx_desc->wb.upper.length = 0;
8057 cleaned_count--;
8058 } while (cleaned_count);
8060 i += rx_ring->count;
8062 if (rx_ring->next_to_use != i) {
8063 /* record the next descriptor to use */
8064 rx_ring->next_to_use = i;
8066 /* update next to alloc since we have filled the ring */
8067 rx_ring->next_to_alloc = i;
8069 /* Force memory writes to complete before letting h/w
8070 * know there are new descriptors to fetch. (Only
8071 * applicable for weak-ordered memory model archs,
8072 * such as IA-64).
8074 wmb();
8075 writel(i, rx_ring->tail);
8080 * igb_mii_ioctl -
8081 * @netdev:
8082 * @ifreq:
8083 * @cmd:
8085 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8087 struct igb_adapter *adapter = netdev_priv(netdev);
8088 struct mii_ioctl_data *data = if_mii(ifr);
8090 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8091 return -EOPNOTSUPP;
8093 switch (cmd) {
8094 case SIOCGMIIPHY:
8095 data->phy_id = adapter->hw.phy.addr;
8096 break;
8097 case SIOCGMIIREG:
8098 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8099 &data->val_out))
8100 return -EIO;
8101 break;
8102 case SIOCSMIIREG:
8103 default:
8104 return -EOPNOTSUPP;
8106 return 0;
8110 * igb_ioctl -
8111 * @netdev:
8112 * @ifreq:
8113 * @cmd:
8115 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8117 switch (cmd) {
8118 case SIOCGMIIPHY:
8119 case SIOCGMIIREG:
8120 case SIOCSMIIREG:
8121 return igb_mii_ioctl(netdev, ifr, cmd);
8122 case SIOCGHWTSTAMP:
8123 return igb_ptp_get_ts_config(netdev, ifr);
8124 case SIOCSHWTSTAMP:
8125 return igb_ptp_set_ts_config(netdev, ifr);
8126 default:
8127 return -EOPNOTSUPP;
8131 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8133 struct igb_adapter *adapter = hw->back;
8135 pci_read_config_word(adapter->pdev, reg, value);
8138 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8140 struct igb_adapter *adapter = hw->back;
8142 pci_write_config_word(adapter->pdev, reg, *value);
8145 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8147 struct igb_adapter *adapter = hw->back;
8149 if (pcie_capability_read_word(adapter->pdev, reg, value))
8150 return -E1000_ERR_CONFIG;
8152 return 0;
8155 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8157 struct igb_adapter *adapter = hw->back;
8159 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8160 return -E1000_ERR_CONFIG;
8162 return 0;
8165 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8167 struct igb_adapter *adapter = netdev_priv(netdev);
8168 struct e1000_hw *hw = &adapter->hw;
8169 u32 ctrl, rctl;
8170 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8172 if (enable) {
8173 /* enable VLAN tag insert/strip */
8174 ctrl = rd32(E1000_CTRL);
8175 ctrl |= E1000_CTRL_VME;
8176 wr32(E1000_CTRL, ctrl);
8178 /* Disable CFI check */
8179 rctl = rd32(E1000_RCTL);
8180 rctl &= ~E1000_RCTL_CFIEN;
8181 wr32(E1000_RCTL, rctl);
8182 } else {
8183 /* disable VLAN tag insert/strip */
8184 ctrl = rd32(E1000_CTRL);
8185 ctrl &= ~E1000_CTRL_VME;
8186 wr32(E1000_CTRL, ctrl);
8189 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8192 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8193 __be16 proto, u16 vid)
8195 struct igb_adapter *adapter = netdev_priv(netdev);
8196 struct e1000_hw *hw = &adapter->hw;
8197 int pf_id = adapter->vfs_allocated_count;
8199 /* add the filter since PF can receive vlans w/o entry in vlvf */
8200 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8201 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8203 set_bit(vid, adapter->active_vlans);
8205 return 0;
8208 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8209 __be16 proto, u16 vid)
8211 struct igb_adapter *adapter = netdev_priv(netdev);
8212 int pf_id = adapter->vfs_allocated_count;
8213 struct e1000_hw *hw = &adapter->hw;
8215 /* remove VID from filter table */
8216 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8217 igb_vfta_set(hw, vid, pf_id, false, true);
8219 clear_bit(vid, adapter->active_vlans);
8221 return 0;
8224 static void igb_restore_vlan(struct igb_adapter *adapter)
8226 u16 vid = 1;
8228 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8229 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8231 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8232 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8235 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8237 struct pci_dev *pdev = adapter->pdev;
8238 struct e1000_mac_info *mac = &adapter->hw.mac;
8240 mac->autoneg = 0;
8242 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8243 * for the switch() below to work
8245 if ((spd & 1) || (dplx & ~1))
8246 goto err_inval;
8248 /* Fiber NIC's only allow 1000 gbps Full duplex
8249 * and 100Mbps Full duplex for 100baseFx sfp
8251 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8252 switch (spd + dplx) {
8253 case SPEED_10 + DUPLEX_HALF:
8254 case SPEED_10 + DUPLEX_FULL:
8255 case SPEED_100 + DUPLEX_HALF:
8256 goto err_inval;
8257 default:
8258 break;
8262 switch (spd + dplx) {
8263 case SPEED_10 + DUPLEX_HALF:
8264 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8265 break;
8266 case SPEED_10 + DUPLEX_FULL:
8267 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8268 break;
8269 case SPEED_100 + DUPLEX_HALF:
8270 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8271 break;
8272 case SPEED_100 + DUPLEX_FULL:
8273 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8274 break;
8275 case SPEED_1000 + DUPLEX_FULL:
8276 mac->autoneg = 1;
8277 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8278 break;
8279 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8280 default:
8281 goto err_inval;
8284 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8285 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8287 return 0;
8289 err_inval:
8290 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8291 return -EINVAL;
8294 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8295 bool runtime)
8297 struct net_device *netdev = pci_get_drvdata(pdev);
8298 struct igb_adapter *adapter = netdev_priv(netdev);
8299 struct e1000_hw *hw = &adapter->hw;
8300 u32 ctrl, rctl, status;
8301 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8302 #ifdef CONFIG_PM
8303 int retval = 0;
8304 #endif
8306 rtnl_lock();
8307 netif_device_detach(netdev);
8309 if (netif_running(netdev))
8310 __igb_close(netdev, true);
8312 igb_ptp_suspend(adapter);
8314 igb_clear_interrupt_scheme(adapter);
8315 rtnl_unlock();
8317 #ifdef CONFIG_PM
8318 retval = pci_save_state(pdev);
8319 if (retval)
8320 return retval;
8321 #endif
8323 status = rd32(E1000_STATUS);
8324 if (status & E1000_STATUS_LU)
8325 wufc &= ~E1000_WUFC_LNKC;
8327 if (wufc) {
8328 igb_setup_rctl(adapter);
8329 igb_set_rx_mode(netdev);
8331 /* turn on all-multi mode if wake on multicast is enabled */
8332 if (wufc & E1000_WUFC_MC) {
8333 rctl = rd32(E1000_RCTL);
8334 rctl |= E1000_RCTL_MPE;
8335 wr32(E1000_RCTL, rctl);
8338 ctrl = rd32(E1000_CTRL);
8339 /* advertise wake from D3Cold */
8340 #define E1000_CTRL_ADVD3WUC 0x00100000
8341 /* phy power management enable */
8342 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8343 ctrl |= E1000_CTRL_ADVD3WUC;
8344 wr32(E1000_CTRL, ctrl);
8346 /* Allow time for pending master requests to run */
8347 igb_disable_pcie_master(hw);
8349 wr32(E1000_WUC, E1000_WUC_PME_EN);
8350 wr32(E1000_WUFC, wufc);
8351 } else {
8352 wr32(E1000_WUC, 0);
8353 wr32(E1000_WUFC, 0);
8356 *enable_wake = wufc || adapter->en_mng_pt;
8357 if (!*enable_wake)
8358 igb_power_down_link(adapter);
8359 else
8360 igb_power_up_link(adapter);
8362 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8363 * would have already happened in close and is redundant.
8365 igb_release_hw_control(adapter);
8367 pci_disable_device(pdev);
8369 return 0;
8372 static void igb_deliver_wake_packet(struct net_device *netdev)
8374 struct igb_adapter *adapter = netdev_priv(netdev);
8375 struct e1000_hw *hw = &adapter->hw;
8376 struct sk_buff *skb;
8377 u32 wupl;
8379 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8381 /* WUPM stores only the first 128 bytes of the wake packet.
8382 * Read the packet only if we have the whole thing.
8384 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8385 return;
8387 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8388 if (!skb)
8389 return;
8391 skb_put(skb, wupl);
8393 /* Ensure reads are 32-bit aligned */
8394 wupl = roundup(wupl, 4);
8396 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8398 skb->protocol = eth_type_trans(skb, netdev);
8399 netif_rx(skb);
8402 static int __maybe_unused igb_suspend(struct device *dev)
8404 int retval;
8405 bool wake;
8406 struct pci_dev *pdev = to_pci_dev(dev);
8408 retval = __igb_shutdown(pdev, &wake, 0);
8409 if (retval)
8410 return retval;
8412 if (wake) {
8413 pci_prepare_to_sleep(pdev);
8414 } else {
8415 pci_wake_from_d3(pdev, false);
8416 pci_set_power_state(pdev, PCI_D3hot);
8419 return 0;
8422 static int __maybe_unused igb_resume(struct device *dev)
8424 struct pci_dev *pdev = to_pci_dev(dev);
8425 struct net_device *netdev = pci_get_drvdata(pdev);
8426 struct igb_adapter *adapter = netdev_priv(netdev);
8427 struct e1000_hw *hw = &adapter->hw;
8428 u32 err, val;
8430 pci_set_power_state(pdev, PCI_D0);
8431 pci_restore_state(pdev);
8432 pci_save_state(pdev);
8434 if (!pci_device_is_present(pdev))
8435 return -ENODEV;
8436 err = pci_enable_device_mem(pdev);
8437 if (err) {
8438 dev_err(&pdev->dev,
8439 "igb: Cannot enable PCI device from suspend\n");
8440 return err;
8442 pci_set_master(pdev);
8444 pci_enable_wake(pdev, PCI_D3hot, 0);
8445 pci_enable_wake(pdev, PCI_D3cold, 0);
8447 if (igb_init_interrupt_scheme(adapter, true)) {
8448 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8449 return -ENOMEM;
8452 igb_reset(adapter);
8454 /* let the f/w know that the h/w is now under the control of the
8455 * driver.
8457 igb_get_hw_control(adapter);
8459 val = rd32(E1000_WUS);
8460 if (val & WAKE_PKT_WUS)
8461 igb_deliver_wake_packet(netdev);
8463 wr32(E1000_WUS, ~0);
8465 rtnl_lock();
8466 if (!err && netif_running(netdev))
8467 err = __igb_open(netdev, true);
8469 if (!err)
8470 netif_device_attach(netdev);
8471 rtnl_unlock();
8473 return err;
8476 static int __maybe_unused igb_runtime_idle(struct device *dev)
8478 struct pci_dev *pdev = to_pci_dev(dev);
8479 struct net_device *netdev = pci_get_drvdata(pdev);
8480 struct igb_adapter *adapter = netdev_priv(netdev);
8482 if (!igb_has_link(adapter))
8483 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8485 return -EBUSY;
8488 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8490 struct pci_dev *pdev = to_pci_dev(dev);
8491 int retval;
8492 bool wake;
8494 retval = __igb_shutdown(pdev, &wake, 1);
8495 if (retval)
8496 return retval;
8498 if (wake) {
8499 pci_prepare_to_sleep(pdev);
8500 } else {
8501 pci_wake_from_d3(pdev, false);
8502 pci_set_power_state(pdev, PCI_D3hot);
8505 return 0;
8508 static int __maybe_unused igb_runtime_resume(struct device *dev)
8510 return igb_resume(dev);
8513 static void igb_shutdown(struct pci_dev *pdev)
8515 bool wake;
8517 __igb_shutdown(pdev, &wake, 0);
8519 if (system_state == SYSTEM_POWER_OFF) {
8520 pci_wake_from_d3(pdev, wake);
8521 pci_set_power_state(pdev, PCI_D3hot);
8525 #ifdef CONFIG_PCI_IOV
8526 static int igb_sriov_reinit(struct pci_dev *dev)
8528 struct net_device *netdev = pci_get_drvdata(dev);
8529 struct igb_adapter *adapter = netdev_priv(netdev);
8530 struct pci_dev *pdev = adapter->pdev;
8532 rtnl_lock();
8534 if (netif_running(netdev))
8535 igb_close(netdev);
8536 else
8537 igb_reset(adapter);
8539 igb_clear_interrupt_scheme(adapter);
8541 igb_init_queue_configuration(adapter);
8543 if (igb_init_interrupt_scheme(adapter, true)) {
8544 rtnl_unlock();
8545 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8546 return -ENOMEM;
8549 if (netif_running(netdev))
8550 igb_open(netdev);
8552 rtnl_unlock();
8554 return 0;
8557 static int igb_pci_disable_sriov(struct pci_dev *dev)
8559 int err = igb_disable_sriov(dev);
8561 if (!err)
8562 err = igb_sriov_reinit(dev);
8564 return err;
8567 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8569 int err = igb_enable_sriov(dev, num_vfs);
8571 if (err)
8572 goto out;
8574 err = igb_sriov_reinit(dev);
8575 if (!err)
8576 return num_vfs;
8578 out:
8579 return err;
8582 #endif
8583 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8585 #ifdef CONFIG_PCI_IOV
8586 if (num_vfs == 0)
8587 return igb_pci_disable_sriov(dev);
8588 else
8589 return igb_pci_enable_sriov(dev, num_vfs);
8590 #endif
8591 return 0;
8594 #ifdef CONFIG_NET_POLL_CONTROLLER
8595 /* Polling 'interrupt' - used by things like netconsole to send skbs
8596 * without having to re-enable interrupts. It's not called while
8597 * the interrupt routine is executing.
8599 static void igb_netpoll(struct net_device *netdev)
8601 struct igb_adapter *adapter = netdev_priv(netdev);
8602 struct e1000_hw *hw = &adapter->hw;
8603 struct igb_q_vector *q_vector;
8604 int i;
8606 for (i = 0; i < adapter->num_q_vectors; i++) {
8607 q_vector = adapter->q_vector[i];
8608 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8609 wr32(E1000_EIMC, q_vector->eims_value);
8610 else
8611 igb_irq_disable(adapter);
8612 napi_schedule(&q_vector->napi);
8615 #endif /* CONFIG_NET_POLL_CONTROLLER */
8618 * igb_io_error_detected - called when PCI error is detected
8619 * @pdev: Pointer to PCI device
8620 * @state: The current pci connection state
8622 * This function is called after a PCI bus error affecting
8623 * this device has been detected.
8625 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8626 pci_channel_state_t state)
8628 struct net_device *netdev = pci_get_drvdata(pdev);
8629 struct igb_adapter *adapter = netdev_priv(netdev);
8631 netif_device_detach(netdev);
8633 if (state == pci_channel_io_perm_failure)
8634 return PCI_ERS_RESULT_DISCONNECT;
8636 if (netif_running(netdev))
8637 igb_down(adapter);
8638 pci_disable_device(pdev);
8640 /* Request a slot slot reset. */
8641 return PCI_ERS_RESULT_NEED_RESET;
8645 * igb_io_slot_reset - called after the pci bus has been reset.
8646 * @pdev: Pointer to PCI device
8648 * Restart the card from scratch, as if from a cold-boot. Implementation
8649 * resembles the first-half of the igb_resume routine.
8651 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
8653 struct net_device *netdev = pci_get_drvdata(pdev);
8654 struct igb_adapter *adapter = netdev_priv(netdev);
8655 struct e1000_hw *hw = &adapter->hw;
8656 pci_ers_result_t result;
8657 int err;
8659 if (pci_enable_device_mem(pdev)) {
8660 dev_err(&pdev->dev,
8661 "Cannot re-enable PCI device after reset.\n");
8662 result = PCI_ERS_RESULT_DISCONNECT;
8663 } else {
8664 pci_set_master(pdev);
8665 pci_restore_state(pdev);
8666 pci_save_state(pdev);
8668 pci_enable_wake(pdev, PCI_D3hot, 0);
8669 pci_enable_wake(pdev, PCI_D3cold, 0);
8671 /* In case of PCI error, adapter lose its HW address
8672 * so we should re-assign it here.
8674 hw->hw_addr = adapter->io_addr;
8676 igb_reset(adapter);
8677 wr32(E1000_WUS, ~0);
8678 result = PCI_ERS_RESULT_RECOVERED;
8681 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8682 if (err) {
8683 dev_err(&pdev->dev,
8684 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8685 err);
8686 /* non-fatal, continue */
8689 return result;
8693 * igb_io_resume - called when traffic can start flowing again.
8694 * @pdev: Pointer to PCI device
8696 * This callback is called when the error recovery driver tells us that
8697 * its OK to resume normal operation. Implementation resembles the
8698 * second-half of the igb_resume routine.
8700 static void igb_io_resume(struct pci_dev *pdev)
8702 struct net_device *netdev = pci_get_drvdata(pdev);
8703 struct igb_adapter *adapter = netdev_priv(netdev);
8705 if (netif_running(netdev)) {
8706 if (igb_up(adapter)) {
8707 dev_err(&pdev->dev, "igb_up failed after reset\n");
8708 return;
8712 netif_device_attach(netdev);
8714 /* let the f/w know that the h/w is now under the control of the
8715 * driver.
8717 igb_get_hw_control(adapter);
8721 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
8722 * @adapter: Pointer to adapter structure
8723 * @index: Index of the RAR entry which need to be synced with MAC table
8725 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
8727 struct e1000_hw *hw = &adapter->hw;
8728 u32 rar_low, rar_high;
8729 u8 *addr = adapter->mac_table[index].addr;
8731 /* HW expects these to be in network order when they are plugged
8732 * into the registers which are little endian. In order to guarantee
8733 * that ordering we need to do an leXX_to_cpup here in order to be
8734 * ready for the byteswap that occurs with writel
8736 rar_low = le32_to_cpup((__le32 *)(addr));
8737 rar_high = le16_to_cpup((__le16 *)(addr + 4));
8739 /* Indicate to hardware the Address is Valid. */
8740 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
8741 if (is_valid_ether_addr(addr))
8742 rar_high |= E1000_RAH_AV;
8744 if (hw->mac.type == e1000_82575)
8745 rar_high |= E1000_RAH_POOL_1 *
8746 adapter->mac_table[index].queue;
8747 else
8748 rar_high |= E1000_RAH_POOL_1 <<
8749 adapter->mac_table[index].queue;
8752 wr32(E1000_RAL(index), rar_low);
8753 wrfl();
8754 wr32(E1000_RAH(index), rar_high);
8755 wrfl();
8758 static int igb_set_vf_mac(struct igb_adapter *adapter,
8759 int vf, unsigned char *mac_addr)
8761 struct e1000_hw *hw = &adapter->hw;
8762 /* VF MAC addresses start at end of receive addresses and moves
8763 * towards the first, as a result a collision should not be possible
8765 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
8766 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
8768 ether_addr_copy(vf_mac_addr, mac_addr);
8769 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
8770 adapter->mac_table[rar_entry].queue = vf;
8771 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
8772 igb_rar_set_index(adapter, rar_entry);
8774 return 0;
8777 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
8779 struct igb_adapter *adapter = netdev_priv(netdev);
8781 if (vf >= adapter->vfs_allocated_count)
8782 return -EINVAL;
8784 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
8785 * flag and allows to overwrite the MAC via VF netdev. This
8786 * is necessary to allow libvirt a way to restore the original
8787 * MAC after unbinding vfio-pci and reloading igbvf after shutting
8788 * down a VM.
8790 if (is_zero_ether_addr(mac)) {
8791 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
8792 dev_info(&adapter->pdev->dev,
8793 "remove administratively set MAC on VF %d\n",
8794 vf);
8795 } else if (is_valid_ether_addr(mac)) {
8796 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
8797 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
8798 mac, vf);
8799 dev_info(&adapter->pdev->dev,
8800 "Reload the VF driver to make this change effective.");
8801 /* Generate additional warning if PF is down */
8802 if (test_bit(__IGB_DOWN, &adapter->state)) {
8803 dev_warn(&adapter->pdev->dev,
8804 "The VF MAC address has been set, but the PF device is not up.\n");
8805 dev_warn(&adapter->pdev->dev,
8806 "Bring the PF device up before attempting to use the VF device.\n");
8808 } else {
8809 return -EINVAL;
8811 return igb_set_vf_mac(adapter, vf, mac);
8814 static int igb_link_mbps(int internal_link_speed)
8816 switch (internal_link_speed) {
8817 case SPEED_100:
8818 return 100;
8819 case SPEED_1000:
8820 return 1000;
8821 default:
8822 return 0;
8826 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8827 int link_speed)
8829 int rf_dec, rf_int;
8830 u32 bcnrc_val;
8832 if (tx_rate != 0) {
8833 /* Calculate the rate factor values to set */
8834 rf_int = link_speed / tx_rate;
8835 rf_dec = (link_speed - (rf_int * tx_rate));
8836 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8837 tx_rate;
8839 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8840 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8841 E1000_RTTBCNRC_RF_INT_MASK);
8842 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8843 } else {
8844 bcnrc_val = 0;
8847 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8848 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8849 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8851 wr32(E1000_RTTBCNRM, 0x14);
8852 wr32(E1000_RTTBCNRC, bcnrc_val);
8855 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8857 int actual_link_speed, i;
8858 bool reset_rate = false;
8860 /* VF TX rate limit was not set or not supported */
8861 if ((adapter->vf_rate_link_speed == 0) ||
8862 (adapter->hw.mac.type != e1000_82576))
8863 return;
8865 actual_link_speed = igb_link_mbps(adapter->link_speed);
8866 if (actual_link_speed != adapter->vf_rate_link_speed) {
8867 reset_rate = true;
8868 adapter->vf_rate_link_speed = 0;
8869 dev_info(&adapter->pdev->dev,
8870 "Link speed has been changed. VF Transmit rate is disabled\n");
8873 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8874 if (reset_rate)
8875 adapter->vf_data[i].tx_rate = 0;
8877 igb_set_vf_rate_limit(&adapter->hw, i,
8878 adapter->vf_data[i].tx_rate,
8879 actual_link_speed);
8883 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8884 int min_tx_rate, int max_tx_rate)
8886 struct igb_adapter *adapter = netdev_priv(netdev);
8887 struct e1000_hw *hw = &adapter->hw;
8888 int actual_link_speed;
8890 if (hw->mac.type != e1000_82576)
8891 return -EOPNOTSUPP;
8893 if (min_tx_rate)
8894 return -EINVAL;
8896 actual_link_speed = igb_link_mbps(adapter->link_speed);
8897 if ((vf >= adapter->vfs_allocated_count) ||
8898 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8899 (max_tx_rate < 0) ||
8900 (max_tx_rate > actual_link_speed))
8901 return -EINVAL;
8903 adapter->vf_rate_link_speed = actual_link_speed;
8904 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8905 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8907 return 0;
8910 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8911 bool setting)
8913 struct igb_adapter *adapter = netdev_priv(netdev);
8914 struct e1000_hw *hw = &adapter->hw;
8915 u32 reg_val, reg_offset;
8917 if (!adapter->vfs_allocated_count)
8918 return -EOPNOTSUPP;
8920 if (vf >= adapter->vfs_allocated_count)
8921 return -EINVAL;
8923 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8924 reg_val = rd32(reg_offset);
8925 if (setting)
8926 reg_val |= (BIT(vf) |
8927 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8928 else
8929 reg_val &= ~(BIT(vf) |
8930 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8931 wr32(reg_offset, reg_val);
8933 adapter->vf_data[vf].spoofchk_enabled = setting;
8934 return 0;
8937 static int igb_ndo_get_vf_config(struct net_device *netdev,
8938 int vf, struct ifla_vf_info *ivi)
8940 struct igb_adapter *adapter = netdev_priv(netdev);
8941 if (vf >= adapter->vfs_allocated_count)
8942 return -EINVAL;
8943 ivi->vf = vf;
8944 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8945 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8946 ivi->min_tx_rate = 0;
8947 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8948 ivi->qos = adapter->vf_data[vf].pf_qos;
8949 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8950 return 0;
8953 static void igb_vmm_control(struct igb_adapter *adapter)
8955 struct e1000_hw *hw = &adapter->hw;
8956 u32 reg;
8958 switch (hw->mac.type) {
8959 case e1000_82575:
8960 case e1000_i210:
8961 case e1000_i211:
8962 case e1000_i354:
8963 default:
8964 /* replication is not supported for 82575 */
8965 return;
8966 case e1000_82576:
8967 /* notify HW that the MAC is adding vlan tags */
8968 reg = rd32(E1000_DTXCTL);
8969 reg |= E1000_DTXCTL_VLAN_ADDED;
8970 wr32(E1000_DTXCTL, reg);
8971 /* Fall through */
8972 case e1000_82580:
8973 /* enable replication vlan tag stripping */
8974 reg = rd32(E1000_RPLOLR);
8975 reg |= E1000_RPLOLR_STRVLAN;
8976 wr32(E1000_RPLOLR, reg);
8977 /* Fall through */
8978 case e1000_i350:
8979 /* none of the above registers are supported by i350 */
8980 break;
8983 if (adapter->vfs_allocated_count) {
8984 igb_vmdq_set_loopback_pf(hw, true);
8985 igb_vmdq_set_replication_pf(hw, true);
8986 igb_vmdq_set_anti_spoofing_pf(hw, true,
8987 adapter->vfs_allocated_count);
8988 } else {
8989 igb_vmdq_set_loopback_pf(hw, false);
8990 igb_vmdq_set_replication_pf(hw, false);
8994 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8996 struct e1000_hw *hw = &adapter->hw;
8997 u32 dmac_thr;
8998 u16 hwm;
9000 if (hw->mac.type > e1000_82580) {
9001 if (adapter->flags & IGB_FLAG_DMAC) {
9002 u32 reg;
9004 /* force threshold to 0. */
9005 wr32(E1000_DMCTXTH, 0);
9007 /* DMA Coalescing high water mark needs to be greater
9008 * than the Rx threshold. Set hwm to PBA - max frame
9009 * size in 16B units, capping it at PBA - 6KB.
9011 hwm = 64 * (pba - 6);
9012 reg = rd32(E1000_FCRTC);
9013 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9014 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9015 & E1000_FCRTC_RTH_COAL_MASK);
9016 wr32(E1000_FCRTC, reg);
9018 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9019 * frame size, capping it at PBA - 10KB.
9021 dmac_thr = pba - 10;
9022 reg = rd32(E1000_DMACR);
9023 reg &= ~E1000_DMACR_DMACTHR_MASK;
9024 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9025 & E1000_DMACR_DMACTHR_MASK);
9027 /* transition to L0x or L1 if available..*/
9028 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9030 /* watchdog timer= +-1000 usec in 32usec intervals */
9031 reg |= (1000 >> 5);
9033 /* Disable BMC-to-OS Watchdog Enable */
9034 if (hw->mac.type != e1000_i354)
9035 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9037 wr32(E1000_DMACR, reg);
9039 /* no lower threshold to disable
9040 * coalescing(smart fifb)-UTRESH=0
9042 wr32(E1000_DMCRTRH, 0);
9044 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9046 wr32(E1000_DMCTLX, reg);
9048 /* free space in tx packet buffer to wake from
9049 * DMA coal
9051 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9052 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9054 /* make low power state decision controlled
9055 * by DMA coal
9057 reg = rd32(E1000_PCIEMISC);
9058 reg &= ~E1000_PCIEMISC_LX_DECISION;
9059 wr32(E1000_PCIEMISC, reg);
9060 } /* endif adapter->dmac is not disabled */
9061 } else if (hw->mac.type == e1000_82580) {
9062 u32 reg = rd32(E1000_PCIEMISC);
9064 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9065 wr32(E1000_DMACR, 0);
9070 * igb_read_i2c_byte - Reads 8 bit word over I2C
9071 * @hw: pointer to hardware structure
9072 * @byte_offset: byte offset to read
9073 * @dev_addr: device address
9074 * @data: value read
9076 * Performs byte read operation over I2C interface at
9077 * a specified device address.
9079 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9080 u8 dev_addr, u8 *data)
9082 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9083 struct i2c_client *this_client = adapter->i2c_client;
9084 s32 status;
9085 u16 swfw_mask = 0;
9087 if (!this_client)
9088 return E1000_ERR_I2C;
9090 swfw_mask = E1000_SWFW_PHY0_SM;
9092 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9093 return E1000_ERR_SWFW_SYNC;
9095 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9096 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9098 if (status < 0)
9099 return E1000_ERR_I2C;
9100 else {
9101 *data = status;
9102 return 0;
9107 * igb_write_i2c_byte - Writes 8 bit word over I2C
9108 * @hw: pointer to hardware structure
9109 * @byte_offset: byte offset to write
9110 * @dev_addr: device address
9111 * @data: value to write
9113 * Performs byte write operation over I2C interface at
9114 * a specified device address.
9116 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9117 u8 dev_addr, u8 data)
9119 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9120 struct i2c_client *this_client = adapter->i2c_client;
9121 s32 status;
9122 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9124 if (!this_client)
9125 return E1000_ERR_I2C;
9127 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9128 return E1000_ERR_SWFW_SYNC;
9129 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9130 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9132 if (status)
9133 return E1000_ERR_I2C;
9134 else
9135 return 0;
9139 int igb_reinit_queues(struct igb_adapter *adapter)
9141 struct net_device *netdev = adapter->netdev;
9142 struct pci_dev *pdev = adapter->pdev;
9143 int err = 0;
9145 if (netif_running(netdev))
9146 igb_close(netdev);
9148 igb_reset_interrupt_capability(adapter);
9150 if (igb_init_interrupt_scheme(adapter, true)) {
9151 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9152 return -ENOMEM;
9155 if (netif_running(netdev))
9156 err = igb_open(netdev);
9158 return err;
9161 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9163 struct igb_nfc_filter *rule;
9165 spin_lock(&adapter->nfc_lock);
9167 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9168 igb_erase_filter(adapter, rule);
9170 spin_unlock(&adapter->nfc_lock);
9173 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9175 struct igb_nfc_filter *rule;
9177 spin_lock(&adapter->nfc_lock);
9179 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9180 igb_add_filter(adapter, rule);
9182 spin_unlock(&adapter->nfc_lock);
9184 /* igb_main.c */