Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
blob0746b19ec6d3765ac43b44c850c077050d9f02a0
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
23 #include "igb.h"
25 #define INCVALUE_MASK 0x7fffffff
26 #define ISGN 0x80000000
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not available. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits. As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
51 * SYSTIMH SYSTIML
52 * +--------------+ +---+---+------+
53 * 82576 | 32 | | 8 | 5 | 19 |
54 * +--------------+ +---+---+------+
55 * \________ 45 bits _______/ fract
57 * +----------+---+ +--------------+
58 * 82580 | 24 | 8 | | 32 |
59 * +----------+---+ +--------------+
60 * reserved \______ 40 bits _____/
63 * The 45 bit 82576 SYSTIM overflows every
64 * 2^45 * 10^-9 / 3600 = 9.77 hours.
66 * The 40 bit 82580 SYSTIM overflows every
67 * 2^40 * 10^-9 / 60 = 18.3 minutes.
70 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
72 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
74 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580 40
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
79 /* SYSTIM read access for the 82576 */
80 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
82 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 struct e1000_hw *hw = &igb->hw;
84 u64 val;
85 u32 lo, hi;
87 lo = rd32(E1000_SYSTIML);
88 hi = rd32(E1000_SYSTIMH);
90 val = ((u64) hi) << 32;
91 val |= lo;
93 return val;
96 /* SYSTIM read access for the 82580 */
97 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
99 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 struct e1000_hw *hw = &igb->hw;
101 u32 lo, hi;
102 u64 val;
104 /* The timestamp latches on lowest register read. For the 82580
105 * the lowest register is SYSTIMR instead of SYSTIML. However we only
106 * need to provide nanosecond resolution, so we just ignore it.
108 rd32(E1000_SYSTIMR);
109 lo = rd32(E1000_SYSTIML);
110 hi = rd32(E1000_SYSTIMH);
112 val = ((u64) hi) << 32;
113 val |= lo;
115 return val;
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter,
120 struct timespec64 *ts)
122 struct e1000_hw *hw = &adapter->hw;
123 u32 sec, nsec;
125 /* The timestamp latches on lowest register read. For I210/I211, the
126 * lowest register is SYSTIMR. Since we only need to provide nanosecond
127 * resolution, we can ignore it.
129 rd32(E1000_SYSTIMR);
130 nsec = rd32(E1000_SYSTIML);
131 sec = rd32(E1000_SYSTIMH);
133 ts->tv_sec = sec;
134 ts->tv_nsec = nsec;
137 static void igb_ptp_write_i210(struct igb_adapter *adapter,
138 const struct timespec64 *ts)
140 struct e1000_hw *hw = &adapter->hw;
142 /* Writing the SYSTIMR register is not necessary as it only provides
143 * sub-nanosecond resolution.
145 wr32(E1000_SYSTIML, ts->tv_nsec);
146 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
151 * @adapter: board private structure
152 * @hwtstamps: timestamp structure to update
153 * @systim: unsigned 64bit system time value.
155 * We need to convert the system time value stored in the RX/TXSTMP registers
156 * into a hwtstamp which can be used by the upper level timestamping functions.
158 * The 'tmreg_lock' spinlock is used to protect the consistency of the
159 * system time value. This is needed because reading the 64 bit time
160 * value involves reading two (or three) 32 bit registers. The first
161 * read latches the value. Ditto for writing.
163 * In addition, here have extended the system time with an overflow
164 * counter in software.
166 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
167 struct skb_shared_hwtstamps *hwtstamps,
168 u64 systim)
170 unsigned long flags;
171 u64 ns;
173 switch (adapter->hw.mac.type) {
174 case e1000_82576:
175 case e1000_82580:
176 case e1000_i354:
177 case e1000_i350:
178 spin_lock_irqsave(&adapter->tmreg_lock, flags);
180 ns = timecounter_cyc2time(&adapter->tc, systim);
182 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
184 memset(hwtstamps, 0, sizeof(*hwtstamps));
185 hwtstamps->hwtstamp = ns_to_ktime(ns);
186 break;
187 case e1000_i210:
188 case e1000_i211:
189 memset(hwtstamps, 0, sizeof(*hwtstamps));
190 /* Upper 32 bits contain s, lower 32 bits contain ns. */
191 hwtstamps->hwtstamp = ktime_set(systim >> 32,
192 systim & 0xFFFFFFFF);
193 break;
194 default:
195 break;
199 /* PTP clock operations */
200 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
202 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
203 ptp_caps);
204 struct e1000_hw *hw = &igb->hw;
205 int neg_adj = 0;
206 u64 rate;
207 u32 incvalue;
209 if (ppb < 0) {
210 neg_adj = 1;
211 ppb = -ppb;
213 rate = ppb;
214 rate <<= 14;
215 rate = div_u64(rate, 1953125);
217 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
219 if (neg_adj)
220 incvalue -= rate;
221 else
222 incvalue += rate;
224 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
226 return 0;
229 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
231 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
232 ptp_caps);
233 struct e1000_hw *hw = &igb->hw;
234 int neg_adj = 0;
235 u64 rate;
236 u32 inca;
238 if (scaled_ppm < 0) {
239 neg_adj = 1;
240 scaled_ppm = -scaled_ppm;
242 rate = scaled_ppm;
243 rate <<= 13;
244 rate = div_u64(rate, 15625);
246 inca = rate & INCVALUE_MASK;
247 if (neg_adj)
248 inca |= ISGN;
250 wr32(E1000_TIMINCA, inca);
252 return 0;
255 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
257 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
258 ptp_caps);
259 unsigned long flags;
261 spin_lock_irqsave(&igb->tmreg_lock, flags);
262 timecounter_adjtime(&igb->tc, delta);
263 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
265 return 0;
268 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
270 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
271 ptp_caps);
272 unsigned long flags;
273 struct timespec64 now, then = ns_to_timespec64(delta);
275 spin_lock_irqsave(&igb->tmreg_lock, flags);
277 igb_ptp_read_i210(igb, &now);
278 now = timespec64_add(now, then);
279 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
281 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
283 return 0;
286 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
287 struct timespec64 *ts)
289 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
290 ptp_caps);
291 unsigned long flags;
292 u64 ns;
294 spin_lock_irqsave(&igb->tmreg_lock, flags);
296 ns = timecounter_read(&igb->tc);
298 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
300 *ts = ns_to_timespec64(ns);
302 return 0;
305 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
306 struct timespec64 *ts)
308 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
309 ptp_caps);
310 unsigned long flags;
312 spin_lock_irqsave(&igb->tmreg_lock, flags);
314 igb_ptp_read_i210(igb, ts);
316 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
318 return 0;
321 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
322 const struct timespec64 *ts)
324 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
325 ptp_caps);
326 unsigned long flags;
327 u64 ns;
329 ns = timespec64_to_ns(ts);
331 spin_lock_irqsave(&igb->tmreg_lock, flags);
333 timecounter_init(&igb->tc, &igb->cc, ns);
335 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
337 return 0;
340 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
341 const struct timespec64 *ts)
343 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344 ptp_caps);
345 unsigned long flags;
347 spin_lock_irqsave(&igb->tmreg_lock, flags);
349 igb_ptp_write_i210(igb, ts);
351 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
353 return 0;
356 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
358 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
359 static const u32 mask[IGB_N_SDP] = {
360 E1000_CTRL_SDP0_DIR,
361 E1000_CTRL_SDP1_DIR,
362 E1000_CTRL_EXT_SDP2_DIR,
363 E1000_CTRL_EXT_SDP3_DIR,
366 if (input)
367 *ptr &= ~mask[pin];
368 else
369 *ptr |= mask[pin];
372 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
374 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
375 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
377 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
378 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
380 static const u32 ts_sdp_en[IGB_N_SDP] = {
381 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
383 struct e1000_hw *hw = &igb->hw;
384 u32 ctrl, ctrl_ext, tssdp = 0;
386 ctrl = rd32(E1000_CTRL);
387 ctrl_ext = rd32(E1000_CTRL_EXT);
388 tssdp = rd32(E1000_TSSDP);
390 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
392 /* Make sure this pin is not enabled as an output. */
393 tssdp &= ~ts_sdp_en[pin];
395 if (chan == 1) {
396 tssdp &= ~AUX1_SEL_SDP3;
397 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
398 } else {
399 tssdp &= ~AUX0_SEL_SDP3;
400 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
403 wr32(E1000_TSSDP, tssdp);
404 wr32(E1000_CTRL, ctrl);
405 wr32(E1000_CTRL_EXT, ctrl_ext);
408 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
410 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
413 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
416 static const u32 ts_sdp_en[IGB_N_SDP] = {
417 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
419 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
420 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
421 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
423 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
424 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
425 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
427 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
428 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
429 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
431 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
432 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
433 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
435 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
436 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
437 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
439 struct e1000_hw *hw = &igb->hw;
440 u32 ctrl, ctrl_ext, tssdp = 0;
442 ctrl = rd32(E1000_CTRL);
443 ctrl_ext = rd32(E1000_CTRL_EXT);
444 tssdp = rd32(E1000_TSSDP);
446 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
448 /* Make sure this pin is not enabled as an input. */
449 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
450 tssdp &= ~AUX0_TS_SDP_EN;
452 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
453 tssdp &= ~AUX1_TS_SDP_EN;
455 tssdp &= ~ts_sdp_sel_clr[pin];
456 if (freq) {
457 if (chan == 1)
458 tssdp |= ts_sdp_sel_fc1[pin];
459 else
460 tssdp |= ts_sdp_sel_fc0[pin];
461 } else {
462 if (chan == 1)
463 tssdp |= ts_sdp_sel_tt1[pin];
464 else
465 tssdp |= ts_sdp_sel_tt0[pin];
467 tssdp |= ts_sdp_en[pin];
469 wr32(E1000_TSSDP, tssdp);
470 wr32(E1000_CTRL, ctrl);
471 wr32(E1000_CTRL_EXT, ctrl_ext);
474 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
475 struct ptp_clock_request *rq, int on)
477 struct igb_adapter *igb =
478 container_of(ptp, struct igb_adapter, ptp_caps);
479 struct e1000_hw *hw = &igb->hw;
480 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
481 unsigned long flags;
482 struct timespec64 ts;
483 int use_freq = 0, pin = -1;
484 s64 ns;
486 switch (rq->type) {
487 case PTP_CLK_REQ_EXTTS:
488 if (on) {
489 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
490 rq->extts.index);
491 if (pin < 0)
492 return -EBUSY;
494 if (rq->extts.index == 1) {
495 tsauxc_mask = TSAUXC_EN_TS1;
496 tsim_mask = TSINTR_AUTT1;
497 } else {
498 tsauxc_mask = TSAUXC_EN_TS0;
499 tsim_mask = TSINTR_AUTT0;
501 spin_lock_irqsave(&igb->tmreg_lock, flags);
502 tsauxc = rd32(E1000_TSAUXC);
503 tsim = rd32(E1000_TSIM);
504 if (on) {
505 igb_pin_extts(igb, rq->extts.index, pin);
506 tsauxc |= tsauxc_mask;
507 tsim |= tsim_mask;
508 } else {
509 tsauxc &= ~tsauxc_mask;
510 tsim &= ~tsim_mask;
512 wr32(E1000_TSAUXC, tsauxc);
513 wr32(E1000_TSIM, tsim);
514 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
515 return 0;
517 case PTP_CLK_REQ_PEROUT:
518 if (on) {
519 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
520 rq->perout.index);
521 if (pin < 0)
522 return -EBUSY;
524 ts.tv_sec = rq->perout.period.sec;
525 ts.tv_nsec = rq->perout.period.nsec;
526 ns = timespec64_to_ns(&ts);
527 ns = ns >> 1;
528 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
529 (ns == 250000000LL) || (ns == 500000000LL))) {
530 if (ns < 8LL)
531 return -EINVAL;
532 use_freq = 1;
534 ts = ns_to_timespec64(ns);
535 if (rq->perout.index == 1) {
536 if (use_freq) {
537 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
538 tsim_mask = 0;
539 } else {
540 tsauxc_mask = TSAUXC_EN_TT1;
541 tsim_mask = TSINTR_TT1;
543 trgttiml = E1000_TRGTTIML1;
544 trgttimh = E1000_TRGTTIMH1;
545 freqout = E1000_FREQOUT1;
546 } else {
547 if (use_freq) {
548 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
549 tsim_mask = 0;
550 } else {
551 tsauxc_mask = TSAUXC_EN_TT0;
552 tsim_mask = TSINTR_TT0;
554 trgttiml = E1000_TRGTTIML0;
555 trgttimh = E1000_TRGTTIMH0;
556 freqout = E1000_FREQOUT0;
558 spin_lock_irqsave(&igb->tmreg_lock, flags);
559 tsauxc = rd32(E1000_TSAUXC);
560 tsim = rd32(E1000_TSIM);
561 if (rq->perout.index == 1) {
562 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
563 tsim &= ~TSINTR_TT1;
564 } else {
565 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
566 tsim &= ~TSINTR_TT0;
568 if (on) {
569 int i = rq->perout.index;
570 igb_pin_perout(igb, i, pin, use_freq);
571 igb->perout[i].start.tv_sec = rq->perout.start.sec;
572 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
573 igb->perout[i].period.tv_sec = ts.tv_sec;
574 igb->perout[i].period.tv_nsec = ts.tv_nsec;
575 wr32(trgttimh, rq->perout.start.sec);
576 wr32(trgttiml, rq->perout.start.nsec);
577 if (use_freq)
578 wr32(freqout, ns);
579 tsauxc |= tsauxc_mask;
580 tsim |= tsim_mask;
582 wr32(E1000_TSAUXC, tsauxc);
583 wr32(E1000_TSIM, tsim);
584 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
585 return 0;
587 case PTP_CLK_REQ_PPS:
588 spin_lock_irqsave(&igb->tmreg_lock, flags);
589 tsim = rd32(E1000_TSIM);
590 if (on)
591 tsim |= TSINTR_SYS_WRAP;
592 else
593 tsim &= ~TSINTR_SYS_WRAP;
594 igb->pps_sys_wrap_on = !!on;
595 wr32(E1000_TSIM, tsim);
596 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
597 return 0;
600 return -EOPNOTSUPP;
603 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
604 struct ptp_clock_request *rq, int on)
606 return -EOPNOTSUPP;
609 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
610 enum ptp_pin_function func, unsigned int chan)
612 switch (func) {
613 case PTP_PF_NONE:
614 case PTP_PF_EXTTS:
615 case PTP_PF_PEROUT:
616 break;
617 case PTP_PF_PHYSYNC:
618 return -1;
620 return 0;
624 * igb_ptp_tx_work
625 * @work: pointer to work struct
627 * This work function polls the TSYNCTXCTL valid bit to determine when a
628 * timestamp has been taken for the current stored skb.
630 static void igb_ptp_tx_work(struct work_struct *work)
632 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
633 ptp_tx_work);
634 struct e1000_hw *hw = &adapter->hw;
635 u32 tsynctxctl;
637 if (!adapter->ptp_tx_skb)
638 return;
640 if (time_is_before_jiffies(adapter->ptp_tx_start +
641 IGB_PTP_TX_TIMEOUT)) {
642 dev_kfree_skb_any(adapter->ptp_tx_skb);
643 adapter->ptp_tx_skb = NULL;
644 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
645 adapter->tx_hwtstamp_timeouts++;
646 /* Clear the tx valid bit in TSYNCTXCTL register to enable
647 * interrupt
649 rd32(E1000_TXSTMPH);
650 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
651 return;
654 tsynctxctl = rd32(E1000_TSYNCTXCTL);
655 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
656 igb_ptp_tx_hwtstamp(adapter);
657 else
658 /* reschedule to check later */
659 schedule_work(&adapter->ptp_tx_work);
662 static void igb_ptp_overflow_check(struct work_struct *work)
664 struct igb_adapter *igb =
665 container_of(work, struct igb_adapter, ptp_overflow_work.work);
666 struct timespec64 ts;
668 igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
670 pr_debug("igb overflow check at %lld.%09lu\n",
671 (long long) ts.tv_sec, ts.tv_nsec);
673 schedule_delayed_work(&igb->ptp_overflow_work,
674 IGB_SYSTIM_OVERFLOW_PERIOD);
678 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
679 * @adapter: private network adapter structure
681 * This watchdog task is scheduled to detect error case where hardware has
682 * dropped an Rx packet that was timestamped when the ring is full. The
683 * particular error is rare but leaves the device in a state unable to timestamp
684 * any future packets.
686 void igb_ptp_rx_hang(struct igb_adapter *adapter)
688 struct e1000_hw *hw = &adapter->hw;
689 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
690 unsigned long rx_event;
692 /* Other hardware uses per-packet timestamps */
693 if (hw->mac.type != e1000_82576)
694 return;
696 /* If we don't have a valid timestamp in the registers, just update the
697 * timeout counter and exit
699 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
700 adapter->last_rx_ptp_check = jiffies;
701 return;
704 /* Determine the most recent watchdog or rx_timestamp event */
705 rx_event = adapter->last_rx_ptp_check;
706 if (time_after(adapter->last_rx_timestamp, rx_event))
707 rx_event = adapter->last_rx_timestamp;
709 /* Only need to read the high RXSTMP register to clear the lock */
710 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
711 rd32(E1000_RXSTMPH);
712 adapter->last_rx_ptp_check = jiffies;
713 adapter->rx_hwtstamp_cleared++;
714 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
719 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
720 * @adapter: private network adapter structure
722 void igb_ptp_tx_hang(struct igb_adapter *adapter)
724 struct e1000_hw *hw = &adapter->hw;
725 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
726 IGB_PTP_TX_TIMEOUT);
728 if (!adapter->ptp_tx_skb)
729 return;
731 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
732 return;
734 /* If we haven't received a timestamp within the timeout, it is
735 * reasonable to assume that it will never occur, so we can unlock the
736 * timestamp bit when this occurs.
738 if (timeout) {
739 cancel_work_sync(&adapter->ptp_tx_work);
740 dev_kfree_skb_any(adapter->ptp_tx_skb);
741 adapter->ptp_tx_skb = NULL;
742 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
743 adapter->tx_hwtstamp_timeouts++;
744 /* Clear the tx valid bit in TSYNCTXCTL register to enable
745 * interrupt
747 rd32(E1000_TXSTMPH);
748 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
753 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
754 * @adapter: Board private structure.
756 * If we were asked to do hardware stamping and such a time stamp is
757 * available, then it must have been for this skb here because we only
758 * allow only one such packet into the queue.
760 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
762 struct sk_buff *skb = adapter->ptp_tx_skb;
763 struct e1000_hw *hw = &adapter->hw;
764 struct skb_shared_hwtstamps shhwtstamps;
765 u64 regval;
766 int adjust = 0;
768 regval = rd32(E1000_TXSTMPL);
769 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
771 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
772 /* adjust timestamp for the TX latency based on link speed */
773 if (adapter->hw.mac.type == e1000_i210) {
774 switch (adapter->link_speed) {
775 case SPEED_10:
776 adjust = IGB_I210_TX_LATENCY_10;
777 break;
778 case SPEED_100:
779 adjust = IGB_I210_TX_LATENCY_100;
780 break;
781 case SPEED_1000:
782 adjust = IGB_I210_TX_LATENCY_1000;
783 break;
787 shhwtstamps.hwtstamp =
788 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
790 /* Clear the lock early before calling skb_tstamp_tx so that
791 * applications are not woken up before the lock bit is clear. We use
792 * a copy of the skb pointer to ensure other threads can't change it
793 * while we're notifying the stack.
795 adapter->ptp_tx_skb = NULL;
796 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
798 /* Notify the stack and free the skb after we've unlocked */
799 skb_tstamp_tx(skb, &shhwtstamps);
800 dev_kfree_skb_any(skb);
804 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
805 * @q_vector: Pointer to interrupt specific structure
806 * @va: Pointer to address containing Rx buffer
807 * @skb: Buffer containing timestamp and packet
809 * This function is meant to retrieve a timestamp from the first buffer of an
810 * incoming frame. The value is stored in little endian format starting on
811 * byte 8.
813 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
814 struct sk_buff *skb)
816 __le64 *regval = (__le64 *)va;
817 struct igb_adapter *adapter = q_vector->adapter;
818 int adjust = 0;
820 /* The timestamp is recorded in little endian format.
821 * DWORD: 0 1 2 3
822 * Field: Reserved Reserved SYSTIML SYSTIMH
824 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
825 le64_to_cpu(regval[1]));
827 /* adjust timestamp for the RX latency based on link speed */
828 if (adapter->hw.mac.type == e1000_i210) {
829 switch (adapter->link_speed) {
830 case SPEED_10:
831 adjust = IGB_I210_RX_LATENCY_10;
832 break;
833 case SPEED_100:
834 adjust = IGB_I210_RX_LATENCY_100;
835 break;
836 case SPEED_1000:
837 adjust = IGB_I210_RX_LATENCY_1000;
838 break;
841 skb_hwtstamps(skb)->hwtstamp =
842 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
846 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
847 * @q_vector: Pointer to interrupt specific structure
848 * @skb: Buffer containing timestamp and packet
850 * This function is meant to retrieve a timestamp from the internal registers
851 * of the adapter and store it in the skb.
853 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
854 struct sk_buff *skb)
856 struct igb_adapter *adapter = q_vector->adapter;
857 struct e1000_hw *hw = &adapter->hw;
858 u64 regval;
859 int adjust = 0;
861 /* If this bit is set, then the RX registers contain the time stamp. No
862 * other packet will be time stamped until we read these registers, so
863 * read the registers to make them available again. Because only one
864 * packet can be time stamped at a time, we know that the register
865 * values must belong to this one here and therefore we don't need to
866 * compare any of the additional attributes stored for it.
868 * If nothing went wrong, then it should have a shared tx_flags that we
869 * can turn into a skb_shared_hwtstamps.
871 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
872 return;
874 regval = rd32(E1000_RXSTMPL);
875 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
877 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
879 /* adjust timestamp for the RX latency based on link speed */
880 if (adapter->hw.mac.type == e1000_i210) {
881 switch (adapter->link_speed) {
882 case SPEED_10:
883 adjust = IGB_I210_RX_LATENCY_10;
884 break;
885 case SPEED_100:
886 adjust = IGB_I210_RX_LATENCY_100;
887 break;
888 case SPEED_1000:
889 adjust = IGB_I210_RX_LATENCY_1000;
890 break;
893 skb_hwtstamps(skb)->hwtstamp =
894 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
896 /* Update the last_rx_timestamp timer in order to enable watchdog check
897 * for error case of latched timestamp on a dropped packet.
899 adapter->last_rx_timestamp = jiffies;
903 * igb_ptp_get_ts_config - get hardware time stamping config
904 * @netdev:
905 * @ifreq:
907 * Get the hwtstamp_config settings to return to the user. Rather than attempt
908 * to deconstruct the settings from the registers, just return a shadow copy
909 * of the last known settings.
911 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
913 struct igb_adapter *adapter = netdev_priv(netdev);
914 struct hwtstamp_config *config = &adapter->tstamp_config;
916 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
917 -EFAULT : 0;
921 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
922 * @adapter: networking device structure
923 * @config: hwtstamp configuration
925 * Outgoing time stamping can be enabled and disabled. Play nice and
926 * disable it when requested, although it shouldn't case any overhead
927 * when no packet needs it. At most one packet in the queue may be
928 * marked for time stamping, otherwise it would be impossible to tell
929 * for sure to which packet the hardware time stamp belongs.
931 * Incoming time stamping has to be configured via the hardware
932 * filters. Not all combinations are supported, in particular event
933 * type has to be specified. Matching the kind of event packet is
934 * not supported, with the exception of "all V2 events regardless of
935 * level 2 or 4".
937 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
938 struct hwtstamp_config *config)
940 struct e1000_hw *hw = &adapter->hw;
941 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
942 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
943 u32 tsync_rx_cfg = 0;
944 bool is_l4 = false;
945 bool is_l2 = false;
946 u32 regval;
948 /* reserved for future extensions */
949 if (config->flags)
950 return -EINVAL;
952 switch (config->tx_type) {
953 case HWTSTAMP_TX_OFF:
954 tsync_tx_ctl = 0;
955 case HWTSTAMP_TX_ON:
956 break;
957 default:
958 return -ERANGE;
961 switch (config->rx_filter) {
962 case HWTSTAMP_FILTER_NONE:
963 tsync_rx_ctl = 0;
964 break;
965 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
966 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
967 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
968 is_l4 = true;
969 break;
970 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
971 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
972 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
973 is_l4 = true;
974 break;
975 case HWTSTAMP_FILTER_PTP_V2_EVENT:
976 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
977 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
978 case HWTSTAMP_FILTER_PTP_V2_SYNC:
979 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
980 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
981 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
982 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
983 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
984 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
985 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
986 is_l2 = true;
987 is_l4 = true;
988 break;
989 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
990 case HWTSTAMP_FILTER_NTP_ALL:
991 case HWTSTAMP_FILTER_ALL:
992 /* 82576 cannot timestamp all packets, which it needs to do to
993 * support both V1 Sync and Delay_Req messages
995 if (hw->mac.type != e1000_82576) {
996 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
997 config->rx_filter = HWTSTAMP_FILTER_ALL;
998 break;
1000 /* fall through */
1001 default:
1002 config->rx_filter = HWTSTAMP_FILTER_NONE;
1003 return -ERANGE;
1006 if (hw->mac.type == e1000_82575) {
1007 if (tsync_rx_ctl | tsync_tx_ctl)
1008 return -EINVAL;
1009 return 0;
1012 /* Per-packet timestamping only works if all packets are
1013 * timestamped, so enable timestamping in all packets as
1014 * long as one Rx filter was configured.
1016 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1017 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1018 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1019 config->rx_filter = HWTSTAMP_FILTER_ALL;
1020 is_l2 = true;
1021 is_l4 = true;
1023 if ((hw->mac.type == e1000_i210) ||
1024 (hw->mac.type == e1000_i211)) {
1025 regval = rd32(E1000_RXPBS);
1026 regval |= E1000_RXPBS_CFG_TS_EN;
1027 wr32(E1000_RXPBS, regval);
1031 /* enable/disable TX */
1032 regval = rd32(E1000_TSYNCTXCTL);
1033 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1034 regval |= tsync_tx_ctl;
1035 wr32(E1000_TSYNCTXCTL, regval);
1037 /* enable/disable RX */
1038 regval = rd32(E1000_TSYNCRXCTL);
1039 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1040 regval |= tsync_rx_ctl;
1041 wr32(E1000_TSYNCRXCTL, regval);
1043 /* define which PTP packets are time stamped */
1044 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1046 /* define ethertype filter for timestamped packets */
1047 if (is_l2)
1048 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1049 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1050 E1000_ETQF_1588 | /* enable timestamping */
1051 ETH_P_1588)); /* 1588 eth protocol type */
1052 else
1053 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1055 /* L4 Queue Filter[3]: filter by destination port and protocol */
1056 if (is_l4) {
1057 u32 ftqf = (IPPROTO_UDP /* UDP */
1058 | E1000_FTQF_VF_BP /* VF not compared */
1059 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1060 | E1000_FTQF_MASK); /* mask all inputs */
1061 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1063 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1064 wr32(E1000_IMIREXT(3),
1065 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1066 if (hw->mac.type == e1000_82576) {
1067 /* enable source port check */
1068 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1069 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1071 wr32(E1000_FTQF(3), ftqf);
1072 } else {
1073 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1075 wrfl();
1077 /* clear TX/RX time stamp registers, just to be sure */
1078 regval = rd32(E1000_TXSTMPL);
1079 regval = rd32(E1000_TXSTMPH);
1080 regval = rd32(E1000_RXSTMPL);
1081 regval = rd32(E1000_RXSTMPH);
1083 return 0;
1087 * igb_ptp_set_ts_config - set hardware time stamping config
1088 * @netdev:
1089 * @ifreq:
1092 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1094 struct igb_adapter *adapter = netdev_priv(netdev);
1095 struct hwtstamp_config config;
1096 int err;
1098 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1099 return -EFAULT;
1101 err = igb_ptp_set_timestamp_mode(adapter, &config);
1102 if (err)
1103 return err;
1105 /* save these settings for future reference */
1106 memcpy(&adapter->tstamp_config, &config,
1107 sizeof(adapter->tstamp_config));
1109 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1110 -EFAULT : 0;
1114 * igb_ptp_init - Initialize PTP functionality
1115 * @adapter: Board private structure
1117 * This function is called at device probe to initialize the PTP
1118 * functionality.
1120 void igb_ptp_init(struct igb_adapter *adapter)
1122 struct e1000_hw *hw = &adapter->hw;
1123 struct net_device *netdev = adapter->netdev;
1124 int i;
1126 switch (hw->mac.type) {
1127 case e1000_82576:
1128 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1129 adapter->ptp_caps.owner = THIS_MODULE;
1130 adapter->ptp_caps.max_adj = 999999881;
1131 adapter->ptp_caps.n_ext_ts = 0;
1132 adapter->ptp_caps.pps = 0;
1133 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1134 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1135 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1136 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1137 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1138 adapter->cc.read = igb_ptp_read_82576;
1139 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1140 adapter->cc.mult = 1;
1141 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1142 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1143 break;
1144 case e1000_82580:
1145 case e1000_i354:
1146 case e1000_i350:
1147 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1148 adapter->ptp_caps.owner = THIS_MODULE;
1149 adapter->ptp_caps.max_adj = 62499999;
1150 adapter->ptp_caps.n_ext_ts = 0;
1151 adapter->ptp_caps.pps = 0;
1152 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1153 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1154 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1155 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1156 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1157 adapter->cc.read = igb_ptp_read_82580;
1158 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1159 adapter->cc.mult = 1;
1160 adapter->cc.shift = 0;
1161 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1162 break;
1163 case e1000_i210:
1164 case e1000_i211:
1165 for (i = 0; i < IGB_N_SDP; i++) {
1166 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1168 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1169 ppd->index = i;
1170 ppd->func = PTP_PF_NONE;
1172 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1173 adapter->ptp_caps.owner = THIS_MODULE;
1174 adapter->ptp_caps.max_adj = 62499999;
1175 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1176 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1177 adapter->ptp_caps.n_pins = IGB_N_SDP;
1178 adapter->ptp_caps.pps = 1;
1179 adapter->ptp_caps.pin_config = adapter->sdp_config;
1180 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1181 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1182 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1183 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1184 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1185 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1186 break;
1187 default:
1188 adapter->ptp_clock = NULL;
1189 return;
1192 spin_lock_init(&adapter->tmreg_lock);
1193 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1195 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1196 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1197 igb_ptp_overflow_check);
1199 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1200 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1202 igb_ptp_reset(adapter);
1204 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1205 &adapter->pdev->dev);
1206 if (IS_ERR(adapter->ptp_clock)) {
1207 adapter->ptp_clock = NULL;
1208 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1209 } else if (adapter->ptp_clock) {
1210 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1211 adapter->netdev->name);
1212 adapter->ptp_flags |= IGB_PTP_ENABLED;
1217 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1218 * @adapter: Board private structure
1220 * This function stops the overflow check work and PTP Tx timestamp work, and
1221 * will prepare the device for OS suspend.
1223 void igb_ptp_suspend(struct igb_adapter *adapter)
1225 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1226 return;
1228 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1229 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1231 cancel_work_sync(&adapter->ptp_tx_work);
1232 if (adapter->ptp_tx_skb) {
1233 dev_kfree_skb_any(adapter->ptp_tx_skb);
1234 adapter->ptp_tx_skb = NULL;
1235 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1240 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1241 * @adapter: Board private structure.
1243 * This function stops the PTP support and cancels the delayed work.
1245 void igb_ptp_stop(struct igb_adapter *adapter)
1247 igb_ptp_suspend(adapter);
1249 if (adapter->ptp_clock) {
1250 ptp_clock_unregister(adapter->ptp_clock);
1251 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1252 adapter->netdev->name);
1253 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1258 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1259 * @adapter: Board private structure.
1261 * This function handles the reset work required to re-enable the PTP device.
1263 void igb_ptp_reset(struct igb_adapter *adapter)
1265 struct e1000_hw *hw = &adapter->hw;
1266 unsigned long flags;
1268 /* reset the tstamp_config */
1269 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1271 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1273 switch (adapter->hw.mac.type) {
1274 case e1000_82576:
1275 /* Dial the nominal frequency. */
1276 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1277 break;
1278 case e1000_82580:
1279 case e1000_i354:
1280 case e1000_i350:
1281 case e1000_i210:
1282 case e1000_i211:
1283 wr32(E1000_TSAUXC, 0x0);
1284 wr32(E1000_TSSDP, 0x0);
1285 wr32(E1000_TSIM,
1286 TSYNC_INTERRUPTS |
1287 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1288 wr32(E1000_IMS, E1000_IMS_TS);
1289 break;
1290 default:
1291 /* No work to do. */
1292 goto out;
1295 /* Re-initialize the timer. */
1296 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1297 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1299 igb_ptp_write_i210(adapter, &ts);
1300 } else {
1301 timecounter_init(&adapter->tc, &adapter->cc,
1302 ktime_to_ns(ktime_get_real()));
1304 out:
1305 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1307 wrfl();
1309 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1310 schedule_delayed_work(&adapter->ptp_overflow_work,
1311 IGB_SYSTIM_OVERFLOW_PERIOD);