1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *******************************************************************************/
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46 #include <linux/sctp.h>
50 #define DRV_VERSION "2.4.0-k"
51 char igbvf_driver_name
[] = "igbvf";
52 const char igbvf_driver_version
[] = DRV_VERSION
;
53 static const char igbvf_driver_string
[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright
[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug
= -1;
60 module_param(debug
, int, 0);
61 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
63 static int igbvf_poll(struct napi_struct
*napi
, int budget
);
64 static void igbvf_reset(struct igbvf_adapter
*);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*);
68 static struct igbvf_info igbvf_vf_info
= {
72 .init_ops
= e1000_init_function_pointers_vf
,
75 static struct igbvf_info igbvf_i350_vf_info
= {
76 .mac
= e1000_vfadapt_i350
,
79 .init_ops
= e1000_init_function_pointers_vf
,
82 static const struct igbvf_info
*igbvf_info_tbl
[] = {
83 [board_vf
] = &igbvf_vf_info
,
84 [board_i350_vf
] = &igbvf_i350_vf_info
,
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 * @rx_ring: address of receive ring structure
91 static int igbvf_desc_unused(struct igbvf_ring
*ring
)
93 if (ring
->next_to_clean
> ring
->next_to_use
)
94 return ring
->next_to_clean
- ring
->next_to_use
- 1;
96 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
100 * igbvf_receive_skb - helper function to handle Rx indications
101 * @adapter: board private structure
102 * @status: descriptor status field as written by hardware
103 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
104 * @skb: pointer to sk_buff to be indicated to stack
106 static void igbvf_receive_skb(struct igbvf_adapter
*adapter
,
107 struct net_device
*netdev
,
109 u32 status
, u16 vlan
)
113 if (status
& E1000_RXD_STAT_VP
) {
114 if ((adapter
->flags
& IGBVF_FLAG_RX_LB_VLAN_BSWAP
) &&
115 (status
& E1000_RXDEXT_STATERR_LB
))
116 vid
= be16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
118 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
119 if (test_bit(vid
, adapter
->active_vlans
))
120 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vid
);
123 napi_gro_receive(&adapter
->rx_ring
->napi
, skb
);
126 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter
*adapter
,
127 u32 status_err
, struct sk_buff
*skb
)
129 skb_checksum_none_assert(skb
);
131 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
132 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
133 (adapter
->flags
& IGBVF_FLAG_RX_CSUM_DISABLED
))
136 /* TCP/UDP checksum error bit is set */
138 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
139 /* let the stack verify checksum errors */
140 adapter
->hw_csum_err
++;
144 /* It must be a TCP or UDP packet with a valid checksum */
145 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
146 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
148 adapter
->hw_csum_good
++;
152 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
153 * @rx_ring: address of ring structure to repopulate
154 * @cleaned_count: number of buffers to repopulate
156 static void igbvf_alloc_rx_buffers(struct igbvf_ring
*rx_ring
,
159 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
160 struct net_device
*netdev
= adapter
->netdev
;
161 struct pci_dev
*pdev
= adapter
->pdev
;
162 union e1000_adv_rx_desc
*rx_desc
;
163 struct igbvf_buffer
*buffer_info
;
168 i
= rx_ring
->next_to_use
;
169 buffer_info
= &rx_ring
->buffer_info
[i
];
171 if (adapter
->rx_ps_hdr_size
)
172 bufsz
= adapter
->rx_ps_hdr_size
;
174 bufsz
= adapter
->rx_buffer_len
;
176 while (cleaned_count
--) {
177 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
179 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
180 if (!buffer_info
->page
) {
181 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
182 if (!buffer_info
->page
) {
183 adapter
->alloc_rx_buff_failed
++;
186 buffer_info
->page_offset
= 0;
188 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
190 buffer_info
->page_dma
=
191 dma_map_page(&pdev
->dev
, buffer_info
->page
,
192 buffer_info
->page_offset
,
195 if (dma_mapping_error(&pdev
->dev
,
196 buffer_info
->page_dma
)) {
197 __free_page(buffer_info
->page
);
198 buffer_info
->page
= NULL
;
199 dev_err(&pdev
->dev
, "RX DMA map failed\n");
204 if (!buffer_info
->skb
) {
205 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
207 adapter
->alloc_rx_buff_failed
++;
211 buffer_info
->skb
= skb
;
212 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
215 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
216 dev_kfree_skb(buffer_info
->skb
);
217 buffer_info
->skb
= NULL
;
218 dev_err(&pdev
->dev
, "RX DMA map failed\n");
222 /* Refresh the desc even if buffer_addrs didn't change because
223 * each write-back erases this info.
225 if (adapter
->rx_ps_hdr_size
) {
226 rx_desc
->read
.pkt_addr
=
227 cpu_to_le64(buffer_info
->page_dma
);
228 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
230 rx_desc
->read
.pkt_addr
= cpu_to_le64(buffer_info
->dma
);
231 rx_desc
->read
.hdr_addr
= 0;
235 if (i
== rx_ring
->count
)
237 buffer_info
= &rx_ring
->buffer_info
[i
];
241 if (rx_ring
->next_to_use
!= i
) {
242 rx_ring
->next_to_use
= i
;
244 i
= (rx_ring
->count
- 1);
248 /* Force memory writes to complete before letting h/w
249 * know there are new descriptors to fetch. (Only
250 * applicable for weak-ordered memory model archs,
254 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
259 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
260 * @adapter: board private structure
262 * the return value indicates whether actual cleaning was done, there
263 * is no guarantee that everything was cleaned
265 static bool igbvf_clean_rx_irq(struct igbvf_adapter
*adapter
,
266 int *work_done
, int work_to_do
)
268 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
269 struct net_device
*netdev
= adapter
->netdev
;
270 struct pci_dev
*pdev
= adapter
->pdev
;
271 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
272 struct igbvf_buffer
*buffer_info
, *next_buffer
;
274 bool cleaned
= false;
275 int cleaned_count
= 0;
276 unsigned int total_bytes
= 0, total_packets
= 0;
278 u32 length
, hlen
, staterr
;
280 i
= rx_ring
->next_to_clean
;
281 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
282 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
284 while (staterr
& E1000_RXD_STAT_DD
) {
285 if (*work_done
>= work_to_do
)
288 rmb(); /* read descriptor and rx_buffer_info after status DD */
290 buffer_info
= &rx_ring
->buffer_info
[i
];
292 /* HW will not DMA in data larger than the given buffer, even
293 * if it parses the (NFS, of course) header to be larger. In
294 * that case, it fills the header buffer and spills the rest
297 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hs_rss
.hdr_info
)
298 & E1000_RXDADV_HDRBUFLEN_MASK
) >>
299 E1000_RXDADV_HDRBUFLEN_SHIFT
;
300 if (hlen
> adapter
->rx_ps_hdr_size
)
301 hlen
= adapter
->rx_ps_hdr_size
;
303 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
307 skb
= buffer_info
->skb
;
308 prefetch(skb
->data
- NET_IP_ALIGN
);
309 buffer_info
->skb
= NULL
;
310 if (!adapter
->rx_ps_hdr_size
) {
311 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
312 adapter
->rx_buffer_len
,
314 buffer_info
->dma
= 0;
315 skb_put(skb
, length
);
319 if (!skb_shinfo(skb
)->nr_frags
) {
320 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
321 adapter
->rx_ps_hdr_size
,
323 buffer_info
->dma
= 0;
328 dma_unmap_page(&pdev
->dev
, buffer_info
->page_dma
,
331 buffer_info
->page_dma
= 0;
333 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
335 buffer_info
->page_offset
,
338 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
339 (page_count(buffer_info
->page
) != 1))
340 buffer_info
->page
= NULL
;
342 get_page(buffer_info
->page
);
345 skb
->data_len
+= length
;
346 skb
->truesize
+= PAGE_SIZE
/ 2;
350 if (i
== rx_ring
->count
)
352 next_rxd
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
354 next_buffer
= &rx_ring
->buffer_info
[i
];
356 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
357 buffer_info
->skb
= next_buffer
->skb
;
358 buffer_info
->dma
= next_buffer
->dma
;
359 next_buffer
->skb
= skb
;
360 next_buffer
->dma
= 0;
364 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
365 dev_kfree_skb_irq(skb
);
369 total_bytes
+= skb
->len
;
372 igbvf_rx_checksum_adv(adapter
, staterr
, skb
);
374 skb
->protocol
= eth_type_trans(skb
, netdev
);
376 igbvf_receive_skb(adapter
, netdev
, skb
, staterr
,
377 rx_desc
->wb
.upper
.vlan
);
380 rx_desc
->wb
.upper
.status_error
= 0;
382 /* return some buffers to hardware, one at a time is too slow */
383 if (cleaned_count
>= IGBVF_RX_BUFFER_WRITE
) {
384 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
388 /* use prefetched values */
390 buffer_info
= next_buffer
;
392 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
395 rx_ring
->next_to_clean
= i
;
396 cleaned_count
= igbvf_desc_unused(rx_ring
);
399 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
401 adapter
->total_rx_packets
+= total_packets
;
402 adapter
->total_rx_bytes
+= total_bytes
;
403 netdev
->stats
.rx_bytes
+= total_bytes
;
404 netdev
->stats
.rx_packets
+= total_packets
;
408 static void igbvf_put_txbuf(struct igbvf_adapter
*adapter
,
409 struct igbvf_buffer
*buffer_info
)
411 if (buffer_info
->dma
) {
412 if (buffer_info
->mapped_as_page
)
413 dma_unmap_page(&adapter
->pdev
->dev
,
418 dma_unmap_single(&adapter
->pdev
->dev
,
422 buffer_info
->dma
= 0;
424 if (buffer_info
->skb
) {
425 dev_kfree_skb_any(buffer_info
->skb
);
426 buffer_info
->skb
= NULL
;
428 buffer_info
->time_stamp
= 0;
432 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
433 * @adapter: board private structure
435 * Return 0 on success, negative on failure
437 int igbvf_setup_tx_resources(struct igbvf_adapter
*adapter
,
438 struct igbvf_ring
*tx_ring
)
440 struct pci_dev
*pdev
= adapter
->pdev
;
443 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
444 tx_ring
->buffer_info
= vzalloc(size
);
445 if (!tx_ring
->buffer_info
)
448 /* round up to nearest 4K */
449 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
450 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
452 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
453 &tx_ring
->dma
, GFP_KERNEL
);
457 tx_ring
->adapter
= adapter
;
458 tx_ring
->next_to_use
= 0;
459 tx_ring
->next_to_clean
= 0;
463 vfree(tx_ring
->buffer_info
);
464 dev_err(&adapter
->pdev
->dev
,
465 "Unable to allocate memory for the transmit descriptor ring\n");
470 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
471 * @adapter: board private structure
473 * Returns 0 on success, negative on failure
475 int igbvf_setup_rx_resources(struct igbvf_adapter
*adapter
,
476 struct igbvf_ring
*rx_ring
)
478 struct pci_dev
*pdev
= adapter
->pdev
;
481 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
482 rx_ring
->buffer_info
= vzalloc(size
);
483 if (!rx_ring
->buffer_info
)
486 desc_len
= sizeof(union e1000_adv_rx_desc
);
488 /* Round up to nearest 4K */
489 rx_ring
->size
= rx_ring
->count
* desc_len
;
490 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
492 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
493 &rx_ring
->dma
, GFP_KERNEL
);
497 rx_ring
->next_to_clean
= 0;
498 rx_ring
->next_to_use
= 0;
500 rx_ring
->adapter
= adapter
;
505 vfree(rx_ring
->buffer_info
);
506 rx_ring
->buffer_info
= NULL
;
507 dev_err(&adapter
->pdev
->dev
,
508 "Unable to allocate memory for the receive descriptor ring\n");
513 * igbvf_clean_tx_ring - Free Tx Buffers
514 * @tx_ring: ring to be cleaned
516 static void igbvf_clean_tx_ring(struct igbvf_ring
*tx_ring
)
518 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
519 struct igbvf_buffer
*buffer_info
;
523 if (!tx_ring
->buffer_info
)
526 /* Free all the Tx ring sk_buffs */
527 for (i
= 0; i
< tx_ring
->count
; i
++) {
528 buffer_info
= &tx_ring
->buffer_info
[i
];
529 igbvf_put_txbuf(adapter
, buffer_info
);
532 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
533 memset(tx_ring
->buffer_info
, 0, size
);
535 /* Zero out the descriptor ring */
536 memset(tx_ring
->desc
, 0, tx_ring
->size
);
538 tx_ring
->next_to_use
= 0;
539 tx_ring
->next_to_clean
= 0;
541 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
542 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
546 * igbvf_free_tx_resources - Free Tx Resources per Queue
547 * @tx_ring: ring to free resources from
549 * Free all transmit software resources
551 void igbvf_free_tx_resources(struct igbvf_ring
*tx_ring
)
553 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
555 igbvf_clean_tx_ring(tx_ring
);
557 vfree(tx_ring
->buffer_info
);
558 tx_ring
->buffer_info
= NULL
;
560 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
563 tx_ring
->desc
= NULL
;
567 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
568 * @adapter: board private structure
570 static void igbvf_clean_rx_ring(struct igbvf_ring
*rx_ring
)
572 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
573 struct igbvf_buffer
*buffer_info
;
574 struct pci_dev
*pdev
= adapter
->pdev
;
578 if (!rx_ring
->buffer_info
)
581 /* Free all the Rx ring sk_buffs */
582 for (i
= 0; i
< rx_ring
->count
; i
++) {
583 buffer_info
= &rx_ring
->buffer_info
[i
];
584 if (buffer_info
->dma
) {
585 if (adapter
->rx_ps_hdr_size
) {
586 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
587 adapter
->rx_ps_hdr_size
,
590 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
591 adapter
->rx_buffer_len
,
594 buffer_info
->dma
= 0;
597 if (buffer_info
->skb
) {
598 dev_kfree_skb(buffer_info
->skb
);
599 buffer_info
->skb
= NULL
;
602 if (buffer_info
->page
) {
603 if (buffer_info
->page_dma
)
604 dma_unmap_page(&pdev
->dev
,
605 buffer_info
->page_dma
,
608 put_page(buffer_info
->page
);
609 buffer_info
->page
= NULL
;
610 buffer_info
->page_dma
= 0;
611 buffer_info
->page_offset
= 0;
615 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
616 memset(rx_ring
->buffer_info
, 0, size
);
618 /* Zero out the descriptor ring */
619 memset(rx_ring
->desc
, 0, rx_ring
->size
);
621 rx_ring
->next_to_clean
= 0;
622 rx_ring
->next_to_use
= 0;
624 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
625 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
629 * igbvf_free_rx_resources - Free Rx Resources
630 * @rx_ring: ring to clean the resources from
632 * Free all receive software resources
635 void igbvf_free_rx_resources(struct igbvf_ring
*rx_ring
)
637 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
639 igbvf_clean_rx_ring(rx_ring
);
641 vfree(rx_ring
->buffer_info
);
642 rx_ring
->buffer_info
= NULL
;
644 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
646 rx_ring
->desc
= NULL
;
650 * igbvf_update_itr - update the dynamic ITR value based on statistics
651 * @adapter: pointer to adapter
652 * @itr_setting: current adapter->itr
653 * @packets: the number of packets during this measurement interval
654 * @bytes: the number of bytes during this measurement interval
656 * Stores a new ITR value based on packets and byte counts during the last
657 * interrupt. The advantage of per interrupt computation is faster updates
658 * and more accurate ITR for the current traffic pattern. Constants in this
659 * function were computed based on theoretical maximum wire speed and thresholds
660 * were set based on testing data as well as attempting to minimize response
661 * time while increasing bulk throughput.
663 static enum latency_range
igbvf_update_itr(struct igbvf_adapter
*adapter
,
664 enum latency_range itr_setting
,
665 int packets
, int bytes
)
667 enum latency_range retval
= itr_setting
;
670 goto update_itr_done
;
672 switch (itr_setting
) {
674 /* handle TSO and jumbo frames */
675 if (bytes
/packets
> 8000)
676 retval
= bulk_latency
;
677 else if ((packets
< 5) && (bytes
> 512))
678 retval
= low_latency
;
680 case low_latency
: /* 50 usec aka 20000 ints/s */
682 /* this if handles the TSO accounting */
683 if (bytes
/packets
> 8000)
684 retval
= bulk_latency
;
685 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
686 retval
= bulk_latency
;
687 else if ((packets
> 35))
688 retval
= lowest_latency
;
689 } else if (bytes
/packets
> 2000) {
690 retval
= bulk_latency
;
691 } else if (packets
<= 2 && bytes
< 512) {
692 retval
= lowest_latency
;
695 case bulk_latency
: /* 250 usec aka 4000 ints/s */
698 retval
= low_latency
;
699 } else if (bytes
< 6000) {
700 retval
= low_latency
;
711 static int igbvf_range_to_itr(enum latency_range current_range
)
715 switch (current_range
) {
716 /* counts and packets in update_itr are dependent on these numbers */
718 new_itr
= IGBVF_70K_ITR
;
721 new_itr
= IGBVF_20K_ITR
;
724 new_itr
= IGBVF_4K_ITR
;
727 new_itr
= IGBVF_START_ITR
;
733 static void igbvf_set_itr(struct igbvf_adapter
*adapter
)
737 adapter
->tx_ring
->itr_range
=
738 igbvf_update_itr(adapter
,
739 adapter
->tx_ring
->itr_val
,
740 adapter
->total_tx_packets
,
741 adapter
->total_tx_bytes
);
743 /* conservative mode (itr 3) eliminates the lowest_latency setting */
744 if (adapter
->requested_itr
== 3 &&
745 adapter
->tx_ring
->itr_range
== lowest_latency
)
746 adapter
->tx_ring
->itr_range
= low_latency
;
748 new_itr
= igbvf_range_to_itr(adapter
->tx_ring
->itr_range
);
750 if (new_itr
!= adapter
->tx_ring
->itr_val
) {
751 u32 current_itr
= adapter
->tx_ring
->itr_val
;
752 /* this attempts to bias the interrupt rate towards Bulk
753 * by adding intermediate steps when interrupt rate is
756 new_itr
= new_itr
> current_itr
?
757 min(current_itr
+ (new_itr
>> 2), new_itr
) :
759 adapter
->tx_ring
->itr_val
= new_itr
;
761 adapter
->tx_ring
->set_itr
= 1;
764 adapter
->rx_ring
->itr_range
=
765 igbvf_update_itr(adapter
, adapter
->rx_ring
->itr_val
,
766 adapter
->total_rx_packets
,
767 adapter
->total_rx_bytes
);
768 if (adapter
->requested_itr
== 3 &&
769 adapter
->rx_ring
->itr_range
== lowest_latency
)
770 adapter
->rx_ring
->itr_range
= low_latency
;
772 new_itr
= igbvf_range_to_itr(adapter
->rx_ring
->itr_range
);
774 if (new_itr
!= adapter
->rx_ring
->itr_val
) {
775 u32 current_itr
= adapter
->rx_ring
->itr_val
;
777 new_itr
= new_itr
> current_itr
?
778 min(current_itr
+ (new_itr
>> 2), new_itr
) :
780 adapter
->rx_ring
->itr_val
= new_itr
;
782 adapter
->rx_ring
->set_itr
= 1;
787 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788 * @adapter: board private structure
790 * returns true if ring is completely cleaned
792 static bool igbvf_clean_tx_irq(struct igbvf_ring
*tx_ring
)
794 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
795 struct net_device
*netdev
= adapter
->netdev
;
796 struct igbvf_buffer
*buffer_info
;
798 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
799 unsigned int total_bytes
= 0, total_packets
= 0;
800 unsigned int i
, count
= 0;
801 bool cleaned
= false;
803 i
= tx_ring
->next_to_clean
;
804 buffer_info
= &tx_ring
->buffer_info
[i
];
805 eop_desc
= buffer_info
->next_to_watch
;
808 /* if next_to_watch is not set then there is no work pending */
812 /* prevent any other reads prior to eop_desc */
815 /* if DD is not set pending work has not been completed */
816 if (!(eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)))
819 /* clear next_to_watch to prevent false hangs */
820 buffer_info
->next_to_watch
= NULL
;
822 for (cleaned
= false; !cleaned
; count
++) {
823 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
824 cleaned
= (tx_desc
== eop_desc
);
825 skb
= buffer_info
->skb
;
828 unsigned int segs
, bytecount
;
830 /* gso_segs is currently only valid for tcp */
831 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
832 /* multiply data chunks by size of headers */
833 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
835 total_packets
+= segs
;
836 total_bytes
+= bytecount
;
839 igbvf_put_txbuf(adapter
, buffer_info
);
840 tx_desc
->wb
.status
= 0;
843 if (i
== tx_ring
->count
)
846 buffer_info
= &tx_ring
->buffer_info
[i
];
849 eop_desc
= buffer_info
->next_to_watch
;
850 } while (count
< tx_ring
->count
);
852 tx_ring
->next_to_clean
= i
;
854 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
855 igbvf_desc_unused(tx_ring
) >= IGBVF_TX_QUEUE_WAKE
)) {
856 /* Make sure that anybody stopping the queue after this
857 * sees the new next_to_clean.
860 if (netif_queue_stopped(netdev
) &&
861 !(test_bit(__IGBVF_DOWN
, &adapter
->state
))) {
862 netif_wake_queue(netdev
);
863 ++adapter
->restart_queue
;
867 netdev
->stats
.tx_bytes
+= total_bytes
;
868 netdev
->stats
.tx_packets
+= total_packets
;
869 return count
< tx_ring
->count
;
872 static irqreturn_t
igbvf_msix_other(int irq
, void *data
)
874 struct net_device
*netdev
= data
;
875 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
876 struct e1000_hw
*hw
= &adapter
->hw
;
878 adapter
->int_counter1
++;
880 hw
->mac
.get_link_status
= 1;
881 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
882 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
884 ew32(EIMS
, adapter
->eims_other
);
889 static irqreturn_t
igbvf_intr_msix_tx(int irq
, void *data
)
891 struct net_device
*netdev
= data
;
892 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
893 struct e1000_hw
*hw
= &adapter
->hw
;
894 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
896 if (tx_ring
->set_itr
) {
897 writel(tx_ring
->itr_val
,
898 adapter
->hw
.hw_addr
+ tx_ring
->itr_register
);
899 adapter
->tx_ring
->set_itr
= 0;
902 adapter
->total_tx_bytes
= 0;
903 adapter
->total_tx_packets
= 0;
905 /* auto mask will automatically re-enable the interrupt when we write
908 if (!igbvf_clean_tx_irq(tx_ring
))
909 /* Ring was not completely cleaned, so fire another interrupt */
910 ew32(EICS
, tx_ring
->eims_value
);
912 ew32(EIMS
, tx_ring
->eims_value
);
917 static irqreturn_t
igbvf_intr_msix_rx(int irq
, void *data
)
919 struct net_device
*netdev
= data
;
920 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
922 adapter
->int_counter0
++;
924 /* Write the ITR value calculated at the end of the
925 * previous interrupt.
927 if (adapter
->rx_ring
->set_itr
) {
928 writel(adapter
->rx_ring
->itr_val
,
929 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
930 adapter
->rx_ring
->set_itr
= 0;
933 if (napi_schedule_prep(&adapter
->rx_ring
->napi
)) {
934 adapter
->total_rx_bytes
= 0;
935 adapter
->total_rx_packets
= 0;
936 __napi_schedule(&adapter
->rx_ring
->napi
);
942 #define IGBVF_NO_QUEUE -1
944 static void igbvf_assign_vector(struct igbvf_adapter
*adapter
, int rx_queue
,
945 int tx_queue
, int msix_vector
)
947 struct e1000_hw
*hw
= &adapter
->hw
;
950 /* 82576 uses a table-based method for assigning vectors.
951 * Each queue has a single entry in the table to which we write
952 * a vector number along with a "valid" bit. Sadly, the layout
953 * of the table is somewhat counterintuitive.
955 if (rx_queue
> IGBVF_NO_QUEUE
) {
956 index
= (rx_queue
>> 1);
957 ivar
= array_er32(IVAR0
, index
);
958 if (rx_queue
& 0x1) {
959 /* vector goes into third byte of register */
960 ivar
= ivar
& 0xFF00FFFF;
961 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
963 /* vector goes into low byte of register */
964 ivar
= ivar
& 0xFFFFFF00;
965 ivar
|= msix_vector
| E1000_IVAR_VALID
;
967 adapter
->rx_ring
[rx_queue
].eims_value
= BIT(msix_vector
);
968 array_ew32(IVAR0
, index
, ivar
);
970 if (tx_queue
> IGBVF_NO_QUEUE
) {
971 index
= (tx_queue
>> 1);
972 ivar
= array_er32(IVAR0
, index
);
973 if (tx_queue
& 0x1) {
974 /* vector goes into high byte of register */
975 ivar
= ivar
& 0x00FFFFFF;
976 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
978 /* vector goes into second byte of register */
979 ivar
= ivar
& 0xFFFF00FF;
980 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
982 adapter
->tx_ring
[tx_queue
].eims_value
= BIT(msix_vector
);
983 array_ew32(IVAR0
, index
, ivar
);
988 * igbvf_configure_msix - Configure MSI-X hardware
989 * @adapter: board private structure
991 * igbvf_configure_msix sets up the hardware to properly
992 * generate MSI-X interrupts.
994 static void igbvf_configure_msix(struct igbvf_adapter
*adapter
)
997 struct e1000_hw
*hw
= &adapter
->hw
;
998 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
999 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1002 adapter
->eims_enable_mask
= 0;
1004 igbvf_assign_vector(adapter
, IGBVF_NO_QUEUE
, 0, vector
++);
1005 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
1006 writel(tx_ring
->itr_val
, hw
->hw_addr
+ tx_ring
->itr_register
);
1007 igbvf_assign_vector(adapter
, 0, IGBVF_NO_QUEUE
, vector
++);
1008 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
1009 writel(rx_ring
->itr_val
, hw
->hw_addr
+ rx_ring
->itr_register
);
1011 /* set vector for other causes, i.e. link changes */
1013 tmp
= (vector
++ | E1000_IVAR_VALID
);
1015 ew32(IVAR_MISC
, tmp
);
1017 adapter
->eims_enable_mask
= GENMASK(vector
- 1, 0);
1018 adapter
->eims_other
= BIT(vector
- 1);
1022 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*adapter
)
1024 if (adapter
->msix_entries
) {
1025 pci_disable_msix(adapter
->pdev
);
1026 kfree(adapter
->msix_entries
);
1027 adapter
->msix_entries
= NULL
;
1032 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033 * @adapter: board private structure
1035 * Attempt to configure interrupts using the best available
1036 * capabilities of the hardware and kernel.
1038 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*adapter
)
1043 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044 adapter
->msix_entries
= kcalloc(3, sizeof(struct msix_entry
),
1046 if (adapter
->msix_entries
) {
1047 for (i
= 0; i
< 3; i
++)
1048 adapter
->msix_entries
[i
].entry
= i
;
1050 err
= pci_enable_msix_range(adapter
->pdev
,
1051 adapter
->msix_entries
, 3, 3);
1056 dev_err(&adapter
->pdev
->dev
,
1057 "Failed to initialize MSI-X interrupts.\n");
1058 igbvf_reset_interrupt_capability(adapter
);
1063 * igbvf_request_msix - Initialize MSI-X interrupts
1064 * @adapter: board private structure
1066 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1069 static int igbvf_request_msix(struct igbvf_adapter
*adapter
)
1071 struct net_device
*netdev
= adapter
->netdev
;
1072 int err
= 0, vector
= 0;
1074 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5)) {
1075 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1076 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1078 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1079 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1082 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1083 igbvf_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1088 adapter
->tx_ring
->itr_register
= E1000_EITR(vector
);
1089 adapter
->tx_ring
->itr_val
= adapter
->current_itr
;
1092 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1093 igbvf_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1098 adapter
->rx_ring
->itr_register
= E1000_EITR(vector
);
1099 adapter
->rx_ring
->itr_val
= adapter
->current_itr
;
1102 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1103 igbvf_msix_other
, 0, netdev
->name
, netdev
);
1107 igbvf_configure_msix(adapter
);
1114 * igbvf_alloc_queues - Allocate memory for all rings
1115 * @adapter: board private structure to initialize
1117 static int igbvf_alloc_queues(struct igbvf_adapter
*adapter
)
1119 struct net_device
*netdev
= adapter
->netdev
;
1121 adapter
->tx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1122 if (!adapter
->tx_ring
)
1125 adapter
->rx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1126 if (!adapter
->rx_ring
) {
1127 kfree(adapter
->tx_ring
);
1131 netif_napi_add(netdev
, &adapter
->rx_ring
->napi
, igbvf_poll
, 64);
1137 * igbvf_request_irq - initialize interrupts
1138 * @adapter: board private structure
1140 * Attempts to configure interrupts using the best available
1141 * capabilities of the hardware and kernel.
1143 static int igbvf_request_irq(struct igbvf_adapter
*adapter
)
1147 /* igbvf supports msi-x only */
1148 if (adapter
->msix_entries
)
1149 err
= igbvf_request_msix(adapter
);
1154 dev_err(&adapter
->pdev
->dev
,
1155 "Unable to allocate interrupt, Error: %d\n", err
);
1160 static void igbvf_free_irq(struct igbvf_adapter
*adapter
)
1162 struct net_device
*netdev
= adapter
->netdev
;
1165 if (adapter
->msix_entries
) {
1166 for (vector
= 0; vector
< 3; vector
++)
1167 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1172 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173 * @adapter: board private structure
1175 static void igbvf_irq_disable(struct igbvf_adapter
*adapter
)
1177 struct e1000_hw
*hw
= &adapter
->hw
;
1181 if (adapter
->msix_entries
)
1186 * igbvf_irq_enable - Enable default interrupt generation settings
1187 * @adapter: board private structure
1189 static void igbvf_irq_enable(struct igbvf_adapter
*adapter
)
1191 struct e1000_hw
*hw
= &adapter
->hw
;
1193 ew32(EIAC
, adapter
->eims_enable_mask
);
1194 ew32(EIAM
, adapter
->eims_enable_mask
);
1195 ew32(EIMS
, adapter
->eims_enable_mask
);
1199 * igbvf_poll - NAPI Rx polling callback
1200 * @napi: struct associated with this polling callback
1201 * @budget: amount of packets driver is allowed to process this poll
1203 static int igbvf_poll(struct napi_struct
*napi
, int budget
)
1205 struct igbvf_ring
*rx_ring
= container_of(napi
, struct igbvf_ring
, napi
);
1206 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
1207 struct e1000_hw
*hw
= &adapter
->hw
;
1210 igbvf_clean_rx_irq(adapter
, &work_done
, budget
);
1212 /* If not enough Rx work done, exit the polling mode */
1213 if (work_done
< budget
) {
1214 napi_complete_done(napi
, work_done
);
1216 if (adapter
->requested_itr
& 3)
1217 igbvf_set_itr(adapter
);
1219 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1220 ew32(EIMS
, adapter
->rx_ring
->eims_value
);
1227 * igbvf_set_rlpml - set receive large packet maximum length
1228 * @adapter: board private structure
1230 * Configure the maximum size of packets that will be received
1232 static void igbvf_set_rlpml(struct igbvf_adapter
*adapter
)
1235 struct e1000_hw
*hw
= &adapter
->hw
;
1237 max_frame_size
= adapter
->max_frame_size
+ VLAN_TAG_SIZE
;
1239 spin_lock_bh(&hw
->mbx_lock
);
1241 e1000_rlpml_set_vf(hw
, max_frame_size
);
1243 spin_unlock_bh(&hw
->mbx_lock
);
1246 static int igbvf_vlan_rx_add_vid(struct net_device
*netdev
,
1247 __be16 proto
, u16 vid
)
1249 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1250 struct e1000_hw
*hw
= &adapter
->hw
;
1252 spin_lock_bh(&hw
->mbx_lock
);
1254 if (hw
->mac
.ops
.set_vfta(hw
, vid
, true)) {
1255 dev_err(&adapter
->pdev
->dev
, "Failed to add vlan id %d\n", vid
);
1256 spin_unlock_bh(&hw
->mbx_lock
);
1260 spin_unlock_bh(&hw
->mbx_lock
);
1262 set_bit(vid
, adapter
->active_vlans
);
1266 static int igbvf_vlan_rx_kill_vid(struct net_device
*netdev
,
1267 __be16 proto
, u16 vid
)
1269 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1270 struct e1000_hw
*hw
= &adapter
->hw
;
1272 spin_lock_bh(&hw
->mbx_lock
);
1274 if (hw
->mac
.ops
.set_vfta(hw
, vid
, false)) {
1275 dev_err(&adapter
->pdev
->dev
,
1276 "Failed to remove vlan id %d\n", vid
);
1277 spin_unlock_bh(&hw
->mbx_lock
);
1281 spin_unlock_bh(&hw
->mbx_lock
);
1283 clear_bit(vid
, adapter
->active_vlans
);
1287 static void igbvf_restore_vlan(struct igbvf_adapter
*adapter
)
1291 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
1292 igbvf_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
1296 * igbvf_configure_tx - Configure Transmit Unit after Reset
1297 * @adapter: board private structure
1299 * Configure the Tx unit of the MAC after a reset.
1301 static void igbvf_configure_tx(struct igbvf_adapter
*adapter
)
1303 struct e1000_hw
*hw
= &adapter
->hw
;
1304 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1306 u32 txdctl
, dca_txctrl
;
1308 /* disable transmits */
1309 txdctl
= er32(TXDCTL(0));
1310 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1314 /* Setup the HW Tx Head and Tail descriptor pointers */
1315 ew32(TDLEN(0), tx_ring
->count
* sizeof(union e1000_adv_tx_desc
));
1316 tdba
= tx_ring
->dma
;
1317 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
1318 ew32(TDBAH(0), (tdba
>> 32));
1321 tx_ring
->head
= E1000_TDH(0);
1322 tx_ring
->tail
= E1000_TDT(0);
1324 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1325 * MUST be delivered in order or it will completely screw up
1328 dca_txctrl
= er32(DCA_TXCTRL(0));
1329 dca_txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1330 ew32(DCA_TXCTRL(0), dca_txctrl
);
1332 /* enable transmits */
1333 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1334 ew32(TXDCTL(0), txdctl
);
1336 /* Setup Transmit Descriptor Settings for eop descriptor */
1337 adapter
->txd_cmd
= E1000_ADVTXD_DCMD_EOP
| E1000_ADVTXD_DCMD_IFCS
;
1339 /* enable Report Status bit */
1340 adapter
->txd_cmd
|= E1000_ADVTXD_DCMD_RS
;
1344 * igbvf_setup_srrctl - configure the receive control registers
1345 * @adapter: Board private structure
1347 static void igbvf_setup_srrctl(struct igbvf_adapter
*adapter
)
1349 struct e1000_hw
*hw
= &adapter
->hw
;
1352 srrctl
&= ~(E1000_SRRCTL_DESCTYPE_MASK
|
1353 E1000_SRRCTL_BSIZEHDR_MASK
|
1354 E1000_SRRCTL_BSIZEPKT_MASK
);
1356 /* Enable queue drop to avoid head of line blocking */
1357 srrctl
|= E1000_SRRCTL_DROP_EN
;
1359 /* Setup buffer sizes */
1360 srrctl
|= ALIGN(adapter
->rx_buffer_len
, 1024) >>
1361 E1000_SRRCTL_BSIZEPKT_SHIFT
;
1363 if (adapter
->rx_buffer_len
< 2048) {
1364 adapter
->rx_ps_hdr_size
= 0;
1365 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1367 adapter
->rx_ps_hdr_size
= 128;
1368 srrctl
|= adapter
->rx_ps_hdr_size
<<
1369 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1370 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1373 ew32(SRRCTL(0), srrctl
);
1377 * igbvf_configure_rx - Configure Receive Unit after Reset
1378 * @adapter: board private structure
1380 * Configure the Rx unit of the MAC after a reset.
1382 static void igbvf_configure_rx(struct igbvf_adapter
*adapter
)
1384 struct e1000_hw
*hw
= &adapter
->hw
;
1385 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1389 /* disable receives */
1390 rxdctl
= er32(RXDCTL(0));
1391 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1395 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1396 * the Base and Length of the Rx Descriptor Ring
1398 rdba
= rx_ring
->dma
;
1399 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
1400 ew32(RDBAH(0), (rdba
>> 32));
1401 ew32(RDLEN(0), rx_ring
->count
* sizeof(union e1000_adv_rx_desc
));
1402 rx_ring
->head
= E1000_RDH(0);
1403 rx_ring
->tail
= E1000_RDT(0);
1407 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1408 rxdctl
&= 0xFFF00000;
1409 rxdctl
|= IGBVF_RX_PTHRESH
;
1410 rxdctl
|= IGBVF_RX_HTHRESH
<< 8;
1411 rxdctl
|= IGBVF_RX_WTHRESH
<< 16;
1413 igbvf_set_rlpml(adapter
);
1415 /* enable receives */
1416 ew32(RXDCTL(0), rxdctl
);
1420 * igbvf_set_multi - Multicast and Promiscuous mode set
1421 * @netdev: network interface device structure
1423 * The set_multi entry point is called whenever the multicast address
1424 * list or the network interface flags are updated. This routine is
1425 * responsible for configuring the hardware for proper multicast,
1426 * promiscuous mode, and all-multi behavior.
1428 static void igbvf_set_multi(struct net_device
*netdev
)
1430 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1431 struct e1000_hw
*hw
= &adapter
->hw
;
1432 struct netdev_hw_addr
*ha
;
1433 u8
*mta_list
= NULL
;
1436 if (!netdev_mc_empty(netdev
)) {
1437 mta_list
= kmalloc_array(netdev_mc_count(netdev
), ETH_ALEN
,
1443 /* prepare a packed array of only addresses. */
1445 netdev_for_each_mc_addr(ha
, netdev
)
1446 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
1448 spin_lock_bh(&hw
->mbx_lock
);
1450 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
, 0, 0);
1452 spin_unlock_bh(&hw
->mbx_lock
);
1457 * igbvf_set_uni - Configure unicast MAC filters
1458 * @netdev: network interface device structure
1460 * This routine is responsible for configuring the hardware for proper
1463 static int igbvf_set_uni(struct net_device
*netdev
)
1465 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1466 struct e1000_hw
*hw
= &adapter
->hw
;
1468 if (netdev_uc_count(netdev
) > IGBVF_MAX_MAC_FILTERS
) {
1469 pr_err("Too many unicast filters - No Space\n");
1473 spin_lock_bh(&hw
->mbx_lock
);
1475 /* Clear all unicast MAC filters */
1476 hw
->mac
.ops
.set_uc_addr(hw
, E1000_VF_MAC_FILTER_CLR
, NULL
);
1478 spin_unlock_bh(&hw
->mbx_lock
);
1480 if (!netdev_uc_empty(netdev
)) {
1481 struct netdev_hw_addr
*ha
;
1483 /* Add MAC filters one by one */
1484 netdev_for_each_uc_addr(ha
, netdev
) {
1485 spin_lock_bh(&hw
->mbx_lock
);
1487 hw
->mac
.ops
.set_uc_addr(hw
, E1000_VF_MAC_FILTER_ADD
,
1490 spin_unlock_bh(&hw
->mbx_lock
);
1498 static void igbvf_set_rx_mode(struct net_device
*netdev
)
1500 igbvf_set_multi(netdev
);
1501 igbvf_set_uni(netdev
);
1505 * igbvf_configure - configure the hardware for Rx and Tx
1506 * @adapter: private board structure
1508 static void igbvf_configure(struct igbvf_adapter
*adapter
)
1510 igbvf_set_rx_mode(adapter
->netdev
);
1512 igbvf_restore_vlan(adapter
);
1514 igbvf_configure_tx(adapter
);
1515 igbvf_setup_srrctl(adapter
);
1516 igbvf_configure_rx(adapter
);
1517 igbvf_alloc_rx_buffers(adapter
->rx_ring
,
1518 igbvf_desc_unused(adapter
->rx_ring
));
1521 /* igbvf_reset - bring the hardware into a known good state
1522 * @adapter: private board structure
1524 * This function boots the hardware and enables some settings that
1525 * require a configuration cycle of the hardware - those cannot be
1526 * set/changed during runtime. After reset the device needs to be
1527 * properly configured for Rx, Tx etc.
1529 static void igbvf_reset(struct igbvf_adapter
*adapter
)
1531 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1532 struct net_device
*netdev
= adapter
->netdev
;
1533 struct e1000_hw
*hw
= &adapter
->hw
;
1535 spin_lock_bh(&hw
->mbx_lock
);
1537 /* Allow time for pending master requests to run */
1538 if (mac
->ops
.reset_hw(hw
))
1539 dev_err(&adapter
->pdev
->dev
, "PF still resetting\n");
1541 mac
->ops
.init_hw(hw
);
1543 spin_unlock_bh(&hw
->mbx_lock
);
1545 if (is_valid_ether_addr(adapter
->hw
.mac
.addr
)) {
1546 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
1548 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
,
1552 adapter
->last_reset
= jiffies
;
1555 int igbvf_up(struct igbvf_adapter
*adapter
)
1557 struct e1000_hw
*hw
= &adapter
->hw
;
1559 /* hardware has been reset, we need to reload some things */
1560 igbvf_configure(adapter
);
1562 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1564 napi_enable(&adapter
->rx_ring
->napi
);
1565 if (adapter
->msix_entries
)
1566 igbvf_configure_msix(adapter
);
1568 /* Clear any pending interrupts. */
1570 igbvf_irq_enable(adapter
);
1572 /* start the watchdog */
1573 hw
->mac
.get_link_status
= 1;
1574 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1579 void igbvf_down(struct igbvf_adapter
*adapter
)
1581 struct net_device
*netdev
= adapter
->netdev
;
1582 struct e1000_hw
*hw
= &adapter
->hw
;
1585 /* signal that we're down so the interrupt handler does not
1586 * reschedule our watchdog timer
1588 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1590 /* disable receives in the hardware */
1591 rxdctl
= er32(RXDCTL(0));
1592 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1594 netif_carrier_off(netdev
);
1595 netif_stop_queue(netdev
);
1597 /* disable transmits in the hardware */
1598 txdctl
= er32(TXDCTL(0));
1599 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1601 /* flush both disables and wait for them to finish */
1605 napi_disable(&adapter
->rx_ring
->napi
);
1607 igbvf_irq_disable(adapter
);
1609 del_timer_sync(&adapter
->watchdog_timer
);
1611 /* record the stats before reset*/
1612 igbvf_update_stats(adapter
);
1614 adapter
->link_speed
= 0;
1615 adapter
->link_duplex
= 0;
1617 igbvf_reset(adapter
);
1618 igbvf_clean_tx_ring(adapter
->tx_ring
);
1619 igbvf_clean_rx_ring(adapter
->rx_ring
);
1622 void igbvf_reinit_locked(struct igbvf_adapter
*adapter
)
1625 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
1626 usleep_range(1000, 2000);
1627 igbvf_down(adapter
);
1629 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
1633 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1634 * @adapter: board private structure to initialize
1636 * igbvf_sw_init initializes the Adapter private data structure.
1637 * Fields are initialized based on PCI device information and
1638 * OS network device settings (MTU size).
1640 static int igbvf_sw_init(struct igbvf_adapter
*adapter
)
1642 struct net_device
*netdev
= adapter
->netdev
;
1645 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
1646 adapter
->rx_ps_hdr_size
= 0;
1647 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1648 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1650 adapter
->tx_int_delay
= 8;
1651 adapter
->tx_abs_int_delay
= 32;
1652 adapter
->rx_int_delay
= 0;
1653 adapter
->rx_abs_int_delay
= 8;
1654 adapter
->requested_itr
= 3;
1655 adapter
->current_itr
= IGBVF_START_ITR
;
1657 /* Set various function pointers */
1658 adapter
->ei
->init_ops(&adapter
->hw
);
1660 rc
= adapter
->hw
.mac
.ops
.init_params(&adapter
->hw
);
1664 rc
= adapter
->hw
.mbx
.ops
.init_params(&adapter
->hw
);
1668 igbvf_set_interrupt_capability(adapter
);
1670 if (igbvf_alloc_queues(adapter
))
1673 spin_lock_init(&adapter
->tx_queue_lock
);
1675 /* Explicitly disable IRQ since the NIC can be in any state. */
1676 igbvf_irq_disable(adapter
);
1678 spin_lock_init(&adapter
->stats_lock
);
1679 spin_lock_init(&adapter
->hw
.mbx_lock
);
1681 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1685 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter
*adapter
)
1687 struct e1000_hw
*hw
= &adapter
->hw
;
1689 adapter
->stats
.last_gprc
= er32(VFGPRC
);
1690 adapter
->stats
.last_gorc
= er32(VFGORC
);
1691 adapter
->stats
.last_gptc
= er32(VFGPTC
);
1692 adapter
->stats
.last_gotc
= er32(VFGOTC
);
1693 adapter
->stats
.last_mprc
= er32(VFMPRC
);
1694 adapter
->stats
.last_gotlbc
= er32(VFGOTLBC
);
1695 adapter
->stats
.last_gptlbc
= er32(VFGPTLBC
);
1696 adapter
->stats
.last_gorlbc
= er32(VFGORLBC
);
1697 adapter
->stats
.last_gprlbc
= er32(VFGPRLBC
);
1699 adapter
->stats
.base_gprc
= er32(VFGPRC
);
1700 adapter
->stats
.base_gorc
= er32(VFGORC
);
1701 adapter
->stats
.base_gptc
= er32(VFGPTC
);
1702 adapter
->stats
.base_gotc
= er32(VFGOTC
);
1703 adapter
->stats
.base_mprc
= er32(VFMPRC
);
1704 adapter
->stats
.base_gotlbc
= er32(VFGOTLBC
);
1705 adapter
->stats
.base_gptlbc
= er32(VFGPTLBC
);
1706 adapter
->stats
.base_gorlbc
= er32(VFGORLBC
);
1707 adapter
->stats
.base_gprlbc
= er32(VFGPRLBC
);
1711 * igbvf_open - Called when a network interface is made active
1712 * @netdev: network interface device structure
1714 * Returns 0 on success, negative value on failure
1716 * The open entry point is called when a network interface is made
1717 * active by the system (IFF_UP). At this point all resources needed
1718 * for transmit and receive operations are allocated, the interrupt
1719 * handler is registered with the OS, the watchdog timer is started,
1720 * and the stack is notified that the interface is ready.
1722 static int igbvf_open(struct net_device
*netdev
)
1724 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1725 struct e1000_hw
*hw
= &adapter
->hw
;
1728 /* disallow open during test */
1729 if (test_bit(__IGBVF_TESTING
, &adapter
->state
))
1732 /* allocate transmit descriptors */
1733 err
= igbvf_setup_tx_resources(adapter
, adapter
->tx_ring
);
1737 /* allocate receive descriptors */
1738 err
= igbvf_setup_rx_resources(adapter
, adapter
->rx_ring
);
1742 /* before we allocate an interrupt, we must be ready to handle it.
1743 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1744 * as soon as we call pci_request_irq, so we have to setup our
1745 * clean_rx handler before we do so.
1747 igbvf_configure(adapter
);
1749 err
= igbvf_request_irq(adapter
);
1753 /* From here on the code is the same as igbvf_up() */
1754 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1756 napi_enable(&adapter
->rx_ring
->napi
);
1758 /* clear any pending interrupts */
1761 igbvf_irq_enable(adapter
);
1763 /* start the watchdog */
1764 hw
->mac
.get_link_status
= 1;
1765 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1770 igbvf_free_rx_resources(adapter
->rx_ring
);
1772 igbvf_free_tx_resources(adapter
->tx_ring
);
1774 igbvf_reset(adapter
);
1780 * igbvf_close - Disables a network interface
1781 * @netdev: network interface device structure
1783 * Returns 0, this is not allowed to fail
1785 * The close entry point is called when an interface is de-activated
1786 * by the OS. The hardware is still under the drivers control, but
1787 * needs to be disabled. A global MAC reset is issued to stop the
1788 * hardware, and all transmit and receive resources are freed.
1790 static int igbvf_close(struct net_device
*netdev
)
1792 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1794 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
1795 igbvf_down(adapter
);
1797 igbvf_free_irq(adapter
);
1799 igbvf_free_tx_resources(adapter
->tx_ring
);
1800 igbvf_free_rx_resources(adapter
->rx_ring
);
1806 * igbvf_set_mac - Change the Ethernet Address of the NIC
1807 * @netdev: network interface device structure
1808 * @p: pointer to an address structure
1810 * Returns 0 on success, negative on failure
1812 static int igbvf_set_mac(struct net_device
*netdev
, void *p
)
1814 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1815 struct e1000_hw
*hw
= &adapter
->hw
;
1816 struct sockaddr
*addr
= p
;
1818 if (!is_valid_ether_addr(addr
->sa_data
))
1819 return -EADDRNOTAVAIL
;
1821 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1823 spin_lock_bh(&hw
->mbx_lock
);
1825 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
1827 spin_unlock_bh(&hw
->mbx_lock
);
1829 if (!ether_addr_equal(addr
->sa_data
, hw
->mac
.addr
))
1830 return -EADDRNOTAVAIL
;
1832 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1837 #define UPDATE_VF_COUNTER(reg, name) \
1839 u32 current_counter = er32(reg); \
1840 if (current_counter < adapter->stats.last_##name) \
1841 adapter->stats.name += 0x100000000LL; \
1842 adapter->stats.last_##name = current_counter; \
1843 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1844 adapter->stats.name |= current_counter; \
1848 * igbvf_update_stats - Update the board statistics counters
1849 * @adapter: board private structure
1851 void igbvf_update_stats(struct igbvf_adapter
*adapter
)
1853 struct e1000_hw
*hw
= &adapter
->hw
;
1854 struct pci_dev
*pdev
= adapter
->pdev
;
1856 /* Prevent stats update while adapter is being reset, link is down
1857 * or if the pci connection is down.
1859 if (adapter
->link_speed
== 0)
1862 if (test_bit(__IGBVF_RESETTING
, &adapter
->state
))
1865 if (pci_channel_offline(pdev
))
1868 UPDATE_VF_COUNTER(VFGPRC
, gprc
);
1869 UPDATE_VF_COUNTER(VFGORC
, gorc
);
1870 UPDATE_VF_COUNTER(VFGPTC
, gptc
);
1871 UPDATE_VF_COUNTER(VFGOTC
, gotc
);
1872 UPDATE_VF_COUNTER(VFMPRC
, mprc
);
1873 UPDATE_VF_COUNTER(VFGOTLBC
, gotlbc
);
1874 UPDATE_VF_COUNTER(VFGPTLBC
, gptlbc
);
1875 UPDATE_VF_COUNTER(VFGORLBC
, gorlbc
);
1876 UPDATE_VF_COUNTER(VFGPRLBC
, gprlbc
);
1878 /* Fill out the OS statistics structure */
1879 adapter
->netdev
->stats
.multicast
= adapter
->stats
.mprc
;
1882 static void igbvf_print_link_info(struct igbvf_adapter
*adapter
)
1884 dev_info(&adapter
->pdev
->dev
, "Link is Up %d Mbps %s Duplex\n",
1885 adapter
->link_speed
,
1886 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half");
1889 static bool igbvf_has_link(struct igbvf_adapter
*adapter
)
1891 struct e1000_hw
*hw
= &adapter
->hw
;
1892 s32 ret_val
= E1000_SUCCESS
;
1895 /* If interface is down, stay link down */
1896 if (test_bit(__IGBVF_DOWN
, &adapter
->state
))
1899 spin_lock_bh(&hw
->mbx_lock
);
1901 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1903 spin_unlock_bh(&hw
->mbx_lock
);
1905 link_active
= !hw
->mac
.get_link_status
;
1907 /* if check for link returns error we will need to reset */
1908 if (ret_val
&& time_after(jiffies
, adapter
->last_reset
+ (10 * HZ
)))
1909 schedule_work(&adapter
->reset_task
);
1915 * igbvf_watchdog - Timer Call-back
1916 * @data: pointer to adapter cast into an unsigned long
1918 static void igbvf_watchdog(struct timer_list
*t
)
1920 struct igbvf_adapter
*adapter
= from_timer(adapter
, t
, watchdog_timer
);
1922 /* Do the rest outside of interrupt context */
1923 schedule_work(&adapter
->watchdog_task
);
1926 static void igbvf_watchdog_task(struct work_struct
*work
)
1928 struct igbvf_adapter
*adapter
= container_of(work
,
1929 struct igbvf_adapter
,
1931 struct net_device
*netdev
= adapter
->netdev
;
1932 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1933 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1934 struct e1000_hw
*hw
= &adapter
->hw
;
1938 link
= igbvf_has_link(adapter
);
1941 if (!netif_carrier_ok(netdev
)) {
1942 mac
->ops
.get_link_up_info(&adapter
->hw
,
1943 &adapter
->link_speed
,
1944 &adapter
->link_duplex
);
1945 igbvf_print_link_info(adapter
);
1947 netif_carrier_on(netdev
);
1948 netif_wake_queue(netdev
);
1951 if (netif_carrier_ok(netdev
)) {
1952 adapter
->link_speed
= 0;
1953 adapter
->link_duplex
= 0;
1954 dev_info(&adapter
->pdev
->dev
, "Link is Down\n");
1955 netif_carrier_off(netdev
);
1956 netif_stop_queue(netdev
);
1960 if (netif_carrier_ok(netdev
)) {
1961 igbvf_update_stats(adapter
);
1963 tx_pending
= (igbvf_desc_unused(tx_ring
) + 1 <
1966 /* We've lost link, so the controller stops DMA,
1967 * but we've got queued Tx work that's never going
1968 * to get done, so reset controller to flush Tx.
1969 * (Do the reset outside of interrupt context).
1971 adapter
->tx_timeout_count
++;
1972 schedule_work(&adapter
->reset_task
);
1976 /* Cause software interrupt to ensure Rx ring is cleaned */
1977 ew32(EICS
, adapter
->rx_ring
->eims_value
);
1979 /* Reset the timer */
1980 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1981 mod_timer(&adapter
->watchdog_timer
,
1982 round_jiffies(jiffies
+ (2 * HZ
)));
1985 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1986 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1987 #define IGBVF_TX_FLAGS_TSO 0x00000004
1988 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1989 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1990 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1992 static void igbvf_tx_ctxtdesc(struct igbvf_ring
*tx_ring
, u32 vlan_macip_lens
,
1993 u32 type_tucmd
, u32 mss_l4len_idx
)
1995 struct e1000_adv_tx_context_desc
*context_desc
;
1996 struct igbvf_buffer
*buffer_info
;
1997 u16 i
= tx_ring
->next_to_use
;
1999 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
2000 buffer_info
= &tx_ring
->buffer_info
[i
];
2003 tx_ring
->next_to_use
= (i
< tx_ring
->count
) ? i
: 0;
2005 /* set bits to identify this as an advanced context descriptor */
2006 type_tucmd
|= E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
;
2008 context_desc
->vlan_macip_lens
= cpu_to_le32(vlan_macip_lens
);
2009 context_desc
->seqnum_seed
= 0;
2010 context_desc
->type_tucmd_mlhl
= cpu_to_le32(type_tucmd
);
2011 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
2013 buffer_info
->time_stamp
= jiffies
;
2014 buffer_info
->dma
= 0;
2017 static int igbvf_tso(struct igbvf_ring
*tx_ring
,
2018 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2020 u32 vlan_macip_lens
, type_tucmd
, mss_l4len_idx
;
2030 u32 paylen
, l4_offset
;
2033 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2036 if (!skb_is_gso(skb
))
2039 err
= skb_cow_head(skb
, 0);
2043 ip
.hdr
= skb_network_header(skb
);
2044 l4
.hdr
= skb_checksum_start(skb
);
2046 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2047 type_tucmd
= E1000_ADVTXD_TUCMD_L4T_TCP
;
2049 /* initialize outer IP header fields */
2050 if (ip
.v4
->version
== 4) {
2051 unsigned char *csum_start
= skb_checksum_start(skb
);
2052 unsigned char *trans_start
= ip
.hdr
+ (ip
.v4
->ihl
* 4);
2054 /* IP header will have to cancel out any data that
2055 * is not a part of the outer IP header
2057 ip
.v4
->check
= csum_fold(csum_partial(trans_start
,
2058 csum_start
- trans_start
,
2060 type_tucmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2064 ip
.v6
->payload_len
= 0;
2067 /* determine offset of inner transport header */
2068 l4_offset
= l4
.hdr
- skb
->data
;
2070 /* compute length of segmentation header */
2071 *hdr_len
= (l4
.tcp
->doff
* 4) + l4_offset
;
2073 /* remove payload length from inner checksum */
2074 paylen
= skb
->len
- l4_offset
;
2075 csum_replace_by_diff(&l4
.tcp
->check
, htonl(paylen
));
2078 mss_l4len_idx
= (*hdr_len
- l4_offset
) << E1000_ADVTXD_L4LEN_SHIFT
;
2079 mss_l4len_idx
|= skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
;
2081 /* VLAN MACLEN IPLEN */
2082 vlan_macip_lens
= l4
.hdr
- ip
.hdr
;
2083 vlan_macip_lens
|= (ip
.hdr
- skb
->data
) << E1000_ADVTXD_MACLEN_SHIFT
;
2084 vlan_macip_lens
|= tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
;
2086 igbvf_tx_ctxtdesc(tx_ring
, vlan_macip_lens
, type_tucmd
, mss_l4len_idx
);
2091 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff
*skb
)
2093 unsigned int offset
= 0;
2095 ipv6_find_hdr(skb
, &offset
, IPPROTO_SCTP
, NULL
, NULL
);
2097 return offset
== skb_checksum_start_offset(skb
);
2100 static bool igbvf_tx_csum(struct igbvf_ring
*tx_ring
, struct sk_buff
*skb
,
2101 u32 tx_flags
, __be16 protocol
)
2103 u32 vlan_macip_lens
= 0;
2106 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
2108 if (!(tx_flags
& IGBVF_TX_FLAGS_VLAN
))
2113 switch (skb
->csum_offset
) {
2114 case offsetof(struct tcphdr
, check
):
2115 type_tucmd
= E1000_ADVTXD_TUCMD_L4T_TCP
;
2117 case offsetof(struct udphdr
, check
):
2119 case offsetof(struct sctphdr
, checksum
):
2120 /* validate that this is actually an SCTP request */
2121 if (((protocol
== htons(ETH_P_IP
)) &&
2122 (ip_hdr(skb
)->protocol
== IPPROTO_SCTP
)) ||
2123 ((protocol
== htons(ETH_P_IPV6
)) &&
2124 igbvf_ipv6_csum_is_sctp(skb
))) {
2125 type_tucmd
= E1000_ADVTXD_TUCMD_L4T_SCTP
;
2129 skb_checksum_help(skb
);
2133 vlan_macip_lens
= skb_checksum_start_offset(skb
) -
2134 skb_network_offset(skb
);
2136 vlan_macip_lens
|= skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
;
2137 vlan_macip_lens
|= tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
;
2139 igbvf_tx_ctxtdesc(tx_ring
, vlan_macip_lens
, type_tucmd
, 0);
2143 static int igbvf_maybe_stop_tx(struct net_device
*netdev
, int size
)
2145 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2147 /* there is enough descriptors then we don't need to worry */
2148 if (igbvf_desc_unused(adapter
->tx_ring
) >= size
)
2151 netif_stop_queue(netdev
);
2153 /* Herbert's original patch had:
2154 * smp_mb__after_netif_stop_queue();
2155 * but since that doesn't exist yet, just open code it.
2159 /* We need to check again just in case room has been made available */
2160 if (igbvf_desc_unused(adapter
->tx_ring
) < size
)
2163 netif_wake_queue(netdev
);
2165 ++adapter
->restart_queue
;
2169 #define IGBVF_MAX_TXD_PWR 16
2170 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2172 static inline int igbvf_tx_map_adv(struct igbvf_adapter
*adapter
,
2173 struct igbvf_ring
*tx_ring
,
2174 struct sk_buff
*skb
)
2176 struct igbvf_buffer
*buffer_info
;
2177 struct pci_dev
*pdev
= adapter
->pdev
;
2178 unsigned int len
= skb_headlen(skb
);
2179 unsigned int count
= 0, i
;
2182 i
= tx_ring
->next_to_use
;
2184 buffer_info
= &tx_ring
->buffer_info
[i
];
2185 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2186 buffer_info
->length
= len
;
2187 /* set time_stamp *before* dma to help avoid a possible race */
2188 buffer_info
->time_stamp
= jiffies
;
2189 buffer_info
->mapped_as_page
= false;
2190 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
, len
,
2192 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2195 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2196 const struct skb_frag_struct
*frag
;
2200 if (i
== tx_ring
->count
)
2203 frag
= &skb_shinfo(skb
)->frags
[f
];
2204 len
= skb_frag_size(frag
);
2206 buffer_info
= &tx_ring
->buffer_info
[i
];
2207 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2208 buffer_info
->length
= len
;
2209 buffer_info
->time_stamp
= jiffies
;
2210 buffer_info
->mapped_as_page
= true;
2211 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
, 0, len
,
2213 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2217 tx_ring
->buffer_info
[i
].skb
= skb
;
2222 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2224 /* clear timestamp and dma mappings for failed buffer_info mapping */
2225 buffer_info
->dma
= 0;
2226 buffer_info
->time_stamp
= 0;
2227 buffer_info
->length
= 0;
2228 buffer_info
->mapped_as_page
= false;
2232 /* clear timestamp and dma mappings for remaining portion of packet */
2235 i
+= tx_ring
->count
;
2237 buffer_info
= &tx_ring
->buffer_info
[i
];
2238 igbvf_put_txbuf(adapter
, buffer_info
);
2244 static inline void igbvf_tx_queue_adv(struct igbvf_adapter
*adapter
,
2245 struct igbvf_ring
*tx_ring
,
2246 int tx_flags
, int count
,
2247 unsigned int first
, u32 paylen
,
2250 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2251 struct igbvf_buffer
*buffer_info
;
2252 u32 olinfo_status
= 0, cmd_type_len
;
2255 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2256 E1000_ADVTXD_DCMD_DEXT
);
2258 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2259 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2261 if (tx_flags
& IGBVF_TX_FLAGS_TSO
) {
2262 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2264 /* insert tcp checksum */
2265 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2267 /* insert ip checksum */
2268 if (tx_flags
& IGBVF_TX_FLAGS_IPV4
)
2269 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2271 } else if (tx_flags
& IGBVF_TX_FLAGS_CSUM
) {
2272 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2275 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2277 i
= tx_ring
->next_to_use
;
2279 buffer_info
= &tx_ring
->buffer_info
[i
];
2280 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
2281 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2282 tx_desc
->read
.cmd_type_len
=
2283 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2284 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2286 if (i
== tx_ring
->count
)
2290 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2291 /* Force memory writes to complete before letting h/w
2292 * know there are new descriptors to fetch. (Only
2293 * applicable for weak-ordered memory model archs,
2298 tx_ring
->buffer_info
[first
].next_to_watch
= tx_desc
;
2299 tx_ring
->next_to_use
= i
;
2300 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2301 /* we need this if more than one processor can write to our tail
2302 * at a time, it synchronizes IO on IA64/Altix systems
2307 static netdev_tx_t
igbvf_xmit_frame_ring_adv(struct sk_buff
*skb
,
2308 struct net_device
*netdev
,
2309 struct igbvf_ring
*tx_ring
)
2311 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2312 unsigned int first
, tx_flags
= 0;
2316 __be16 protocol
= vlan_get_protocol(skb
);
2318 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2319 dev_kfree_skb_any(skb
);
2320 return NETDEV_TX_OK
;
2323 if (skb
->len
<= 0) {
2324 dev_kfree_skb_any(skb
);
2325 return NETDEV_TX_OK
;
2328 /* need: count + 4 desc gap to keep tail from touching
2329 * + 2 desc gap to keep tail from touching head,
2330 * + 1 desc for skb->data,
2331 * + 1 desc for context descriptor,
2332 * head, otherwise try next time
2334 if (igbvf_maybe_stop_tx(netdev
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2335 /* this is a hard error */
2336 return NETDEV_TX_BUSY
;
2339 if (skb_vlan_tag_present(skb
)) {
2340 tx_flags
|= IGBVF_TX_FLAGS_VLAN
;
2341 tx_flags
|= (skb_vlan_tag_get(skb
) <<
2342 IGBVF_TX_FLAGS_VLAN_SHIFT
);
2345 if (protocol
== htons(ETH_P_IP
))
2346 tx_flags
|= IGBVF_TX_FLAGS_IPV4
;
2348 first
= tx_ring
->next_to_use
;
2350 tso
= igbvf_tso(tx_ring
, skb
, tx_flags
, &hdr_len
);
2351 if (unlikely(tso
< 0)) {
2352 dev_kfree_skb_any(skb
);
2353 return NETDEV_TX_OK
;
2357 tx_flags
|= IGBVF_TX_FLAGS_TSO
;
2358 else if (igbvf_tx_csum(tx_ring
, skb
, tx_flags
, protocol
) &&
2359 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2360 tx_flags
|= IGBVF_TX_FLAGS_CSUM
;
2362 /* count reflects descriptors mapped, if 0 then mapping error
2363 * has occurred and we need to rewind the descriptor queue
2365 count
= igbvf_tx_map_adv(adapter
, tx_ring
, skb
);
2368 igbvf_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
2369 first
, skb
->len
, hdr_len
);
2370 /* Make sure there is space in the ring for the next send. */
2371 igbvf_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 4);
2373 dev_kfree_skb_any(skb
);
2374 tx_ring
->buffer_info
[first
].time_stamp
= 0;
2375 tx_ring
->next_to_use
= first
;
2378 return NETDEV_TX_OK
;
2381 static netdev_tx_t
igbvf_xmit_frame(struct sk_buff
*skb
,
2382 struct net_device
*netdev
)
2384 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2385 struct igbvf_ring
*tx_ring
;
2387 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2388 dev_kfree_skb_any(skb
);
2389 return NETDEV_TX_OK
;
2392 tx_ring
= &adapter
->tx_ring
[0];
2394 return igbvf_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
2398 * igbvf_tx_timeout - Respond to a Tx Hang
2399 * @netdev: network interface device structure
2401 static void igbvf_tx_timeout(struct net_device
*netdev
)
2403 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2405 /* Do the reset outside of interrupt context */
2406 adapter
->tx_timeout_count
++;
2407 schedule_work(&adapter
->reset_task
);
2410 static void igbvf_reset_task(struct work_struct
*work
)
2412 struct igbvf_adapter
*adapter
;
2414 adapter
= container_of(work
, struct igbvf_adapter
, reset_task
);
2416 igbvf_reinit_locked(adapter
);
2420 * igbvf_change_mtu - Change the Maximum Transfer Unit
2421 * @netdev: network interface device structure
2422 * @new_mtu: new value for maximum frame size
2424 * Returns 0 on success, negative on failure
2426 static int igbvf_change_mtu(struct net_device
*netdev
, int new_mtu
)
2428 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2429 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2431 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2432 usleep_range(1000, 2000);
2433 /* igbvf_down has a dependency on max_frame_size */
2434 adapter
->max_frame_size
= max_frame
;
2435 if (netif_running(netdev
))
2436 igbvf_down(adapter
);
2438 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2439 * means we reserve 2 more, this pushes us to allocate from the next
2441 * i.e. RXBUFFER_2048 --> size-4096 slab
2442 * However with the new *_jumbo_rx* routines, jumbo receives will use
2446 if (max_frame
<= 1024)
2447 adapter
->rx_buffer_len
= 1024;
2448 else if (max_frame
<= 2048)
2449 adapter
->rx_buffer_len
= 2048;
2451 #if (PAGE_SIZE / 2) > 16384
2452 adapter
->rx_buffer_len
= 16384;
2454 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
2457 /* adjust allocation if LPE protects us, and we aren't using SBP */
2458 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2459 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
2460 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+
2463 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2464 netdev
->mtu
, new_mtu
);
2465 netdev
->mtu
= new_mtu
;
2467 if (netif_running(netdev
))
2470 igbvf_reset(adapter
);
2472 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2477 static int igbvf_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2485 static int igbvf_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2487 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2488 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2493 netif_device_detach(netdev
);
2495 if (netif_running(netdev
)) {
2496 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
2497 igbvf_down(adapter
);
2498 igbvf_free_irq(adapter
);
2502 retval
= pci_save_state(pdev
);
2507 pci_disable_device(pdev
);
2513 static int igbvf_resume(struct pci_dev
*pdev
)
2515 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2516 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2519 pci_restore_state(pdev
);
2520 err
= pci_enable_device_mem(pdev
);
2522 dev_err(&pdev
->dev
, "Cannot enable PCI device from suspend\n");
2526 pci_set_master(pdev
);
2528 if (netif_running(netdev
)) {
2529 err
= igbvf_request_irq(adapter
);
2534 igbvf_reset(adapter
);
2536 if (netif_running(netdev
))
2539 netif_device_attach(netdev
);
2545 static void igbvf_shutdown(struct pci_dev
*pdev
)
2547 igbvf_suspend(pdev
, PMSG_SUSPEND
);
2550 #ifdef CONFIG_NET_POLL_CONTROLLER
2551 /* Polling 'interrupt' - used by things like netconsole to send skbs
2552 * without having to re-enable interrupts. It's not called while
2553 * the interrupt routine is executing.
2555 static void igbvf_netpoll(struct net_device
*netdev
)
2557 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2559 disable_irq(adapter
->pdev
->irq
);
2561 igbvf_clean_tx_irq(adapter
->tx_ring
);
2563 enable_irq(adapter
->pdev
->irq
);
2568 * igbvf_io_error_detected - called when PCI error is detected
2569 * @pdev: Pointer to PCI device
2570 * @state: The current pci connection state
2572 * This function is called after a PCI bus error affecting
2573 * this device has been detected.
2575 static pci_ers_result_t
igbvf_io_error_detected(struct pci_dev
*pdev
,
2576 pci_channel_state_t state
)
2578 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2579 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2581 netif_device_detach(netdev
);
2583 if (state
== pci_channel_io_perm_failure
)
2584 return PCI_ERS_RESULT_DISCONNECT
;
2586 if (netif_running(netdev
))
2587 igbvf_down(adapter
);
2588 pci_disable_device(pdev
);
2590 /* Request a slot slot reset. */
2591 return PCI_ERS_RESULT_NEED_RESET
;
2595 * igbvf_io_slot_reset - called after the pci bus has been reset.
2596 * @pdev: Pointer to PCI device
2598 * Restart the card from scratch, as if from a cold-boot. Implementation
2599 * resembles the first-half of the igbvf_resume routine.
2601 static pci_ers_result_t
igbvf_io_slot_reset(struct pci_dev
*pdev
)
2603 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2604 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2606 if (pci_enable_device_mem(pdev
)) {
2608 "Cannot re-enable PCI device after reset.\n");
2609 return PCI_ERS_RESULT_DISCONNECT
;
2611 pci_set_master(pdev
);
2613 igbvf_reset(adapter
);
2615 return PCI_ERS_RESULT_RECOVERED
;
2619 * igbvf_io_resume - called when traffic can start flowing again.
2620 * @pdev: Pointer to PCI device
2622 * This callback is called when the error recovery driver tells us that
2623 * its OK to resume normal operation. Implementation resembles the
2624 * second-half of the igbvf_resume routine.
2626 static void igbvf_io_resume(struct pci_dev
*pdev
)
2628 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2629 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2631 if (netif_running(netdev
)) {
2632 if (igbvf_up(adapter
)) {
2634 "can't bring device back up after reset\n");
2639 netif_device_attach(netdev
);
2642 static void igbvf_print_device_info(struct igbvf_adapter
*adapter
)
2644 struct e1000_hw
*hw
= &adapter
->hw
;
2645 struct net_device
*netdev
= adapter
->netdev
;
2646 struct pci_dev
*pdev
= adapter
->pdev
;
2648 if (hw
->mac
.type
== e1000_vfadapt_i350
)
2649 dev_info(&pdev
->dev
, "Intel(R) I350 Virtual Function\n");
2651 dev_info(&pdev
->dev
, "Intel(R) 82576 Virtual Function\n");
2652 dev_info(&pdev
->dev
, "Address: %pM\n", netdev
->dev_addr
);
2655 static int igbvf_set_features(struct net_device
*netdev
,
2656 netdev_features_t features
)
2658 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2660 if (features
& NETIF_F_RXCSUM
)
2661 adapter
->flags
&= ~IGBVF_FLAG_RX_CSUM_DISABLED
;
2663 adapter
->flags
|= IGBVF_FLAG_RX_CSUM_DISABLED
;
2668 #define IGBVF_MAX_MAC_HDR_LEN 127
2669 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2671 static netdev_features_t
2672 igbvf_features_check(struct sk_buff
*skb
, struct net_device
*dev
,
2673 netdev_features_t features
)
2675 unsigned int network_hdr_len
, mac_hdr_len
;
2677 /* Make certain the headers can be described by a context descriptor */
2678 mac_hdr_len
= skb_network_header(skb
) - skb
->data
;
2679 if (unlikely(mac_hdr_len
> IGBVF_MAX_MAC_HDR_LEN
))
2680 return features
& ~(NETIF_F_HW_CSUM
|
2682 NETIF_F_HW_VLAN_CTAG_TX
|
2686 network_hdr_len
= skb_checksum_start(skb
) - skb_network_header(skb
);
2687 if (unlikely(network_hdr_len
> IGBVF_MAX_NETWORK_HDR_LEN
))
2688 return features
& ~(NETIF_F_HW_CSUM
|
2693 /* We can only support IPV4 TSO in tunnels if we can mangle the
2694 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2696 if (skb
->encapsulation
&& !(features
& NETIF_F_TSO_MANGLEID
))
2697 features
&= ~NETIF_F_TSO
;
2702 static const struct net_device_ops igbvf_netdev_ops
= {
2703 .ndo_open
= igbvf_open
,
2704 .ndo_stop
= igbvf_close
,
2705 .ndo_start_xmit
= igbvf_xmit_frame
,
2706 .ndo_set_rx_mode
= igbvf_set_rx_mode
,
2707 .ndo_set_mac_address
= igbvf_set_mac
,
2708 .ndo_change_mtu
= igbvf_change_mtu
,
2709 .ndo_do_ioctl
= igbvf_ioctl
,
2710 .ndo_tx_timeout
= igbvf_tx_timeout
,
2711 .ndo_vlan_rx_add_vid
= igbvf_vlan_rx_add_vid
,
2712 .ndo_vlan_rx_kill_vid
= igbvf_vlan_rx_kill_vid
,
2713 #ifdef CONFIG_NET_POLL_CONTROLLER
2714 .ndo_poll_controller
= igbvf_netpoll
,
2716 .ndo_set_features
= igbvf_set_features
,
2717 .ndo_features_check
= igbvf_features_check
,
2721 * igbvf_probe - Device Initialization Routine
2722 * @pdev: PCI device information struct
2723 * @ent: entry in igbvf_pci_tbl
2725 * Returns 0 on success, negative on failure
2727 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2728 * The OS initialization, configuring of the adapter private structure,
2729 * and a hardware reset occur.
2731 static int igbvf_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2733 struct net_device
*netdev
;
2734 struct igbvf_adapter
*adapter
;
2735 struct e1000_hw
*hw
;
2736 const struct igbvf_info
*ei
= igbvf_info_tbl
[ent
->driver_data
];
2738 static int cards_found
;
2739 int err
, pci_using_dac
;
2741 err
= pci_enable_device_mem(pdev
);
2746 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
2750 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
2753 "No usable DMA configuration, aborting\n");
2758 err
= pci_request_regions(pdev
, igbvf_driver_name
);
2762 pci_set_master(pdev
);
2765 netdev
= alloc_etherdev(sizeof(struct igbvf_adapter
));
2767 goto err_alloc_etherdev
;
2769 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2771 pci_set_drvdata(pdev
, netdev
);
2772 adapter
= netdev_priv(netdev
);
2774 adapter
->netdev
= netdev
;
2775 adapter
->pdev
= pdev
;
2777 adapter
->pba
= ei
->pba
;
2778 adapter
->flags
= ei
->flags
;
2779 adapter
->hw
.back
= adapter
;
2780 adapter
->hw
.mac
.type
= ei
->mac
;
2781 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
2783 /* PCI config space info */
2785 hw
->vendor_id
= pdev
->vendor
;
2786 hw
->device_id
= pdev
->device
;
2787 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
2788 hw
->subsystem_device_id
= pdev
->subsystem_device
;
2789 hw
->revision_id
= pdev
->revision
;
2792 adapter
->hw
.hw_addr
= ioremap(pci_resource_start(pdev
, 0),
2793 pci_resource_len(pdev
, 0));
2795 if (!adapter
->hw
.hw_addr
)
2798 if (ei
->get_variants
) {
2799 err
= ei
->get_variants(adapter
);
2801 goto err_get_variants
;
2804 /* setup adapter struct */
2805 err
= igbvf_sw_init(adapter
);
2809 /* construct the net_device struct */
2810 netdev
->netdev_ops
= &igbvf_netdev_ops
;
2812 igbvf_set_ethtool_ops(netdev
);
2813 netdev
->watchdog_timeo
= 5 * HZ
;
2814 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2816 adapter
->bd_number
= cards_found
++;
2818 netdev
->hw_features
= NETIF_F_SG
|
2825 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2826 NETIF_F_GSO_GRE_CSUM | \
2827 NETIF_F_GSO_IPXIP4 | \
2828 NETIF_F_GSO_IPXIP6 | \
2829 NETIF_F_GSO_UDP_TUNNEL | \
2830 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2832 netdev
->gso_partial_features
= IGBVF_GSO_PARTIAL_FEATURES
;
2833 netdev
->hw_features
|= NETIF_F_GSO_PARTIAL
|
2834 IGBVF_GSO_PARTIAL_FEATURES
;
2836 netdev
->features
= netdev
->hw_features
;
2839 netdev
->features
|= NETIF_F_HIGHDMA
;
2841 netdev
->vlan_features
|= netdev
->features
| NETIF_F_TSO_MANGLEID
;
2842 netdev
->mpls_features
|= NETIF_F_HW_CSUM
;
2843 netdev
->hw_enc_features
|= netdev
->vlan_features
;
2845 /* set this bit last since it cannot be part of vlan_features */
2846 netdev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
|
2847 NETIF_F_HW_VLAN_CTAG_RX
|
2848 NETIF_F_HW_VLAN_CTAG_TX
;
2850 /* MTU range: 68 - 9216 */
2851 netdev
->min_mtu
= ETH_MIN_MTU
;
2852 netdev
->max_mtu
= MAX_STD_JUMBO_FRAME_SIZE
;
2854 spin_lock_bh(&hw
->mbx_lock
);
2856 /*reset the controller to put the device in a known good state */
2857 err
= hw
->mac
.ops
.reset_hw(hw
);
2859 dev_info(&pdev
->dev
,
2860 "PF still in reset state. Is the PF interface up?\n");
2862 err
= hw
->mac
.ops
.read_mac_addr(hw
);
2864 dev_info(&pdev
->dev
, "Error reading MAC address.\n");
2865 else if (is_zero_ether_addr(adapter
->hw
.mac
.addr
))
2866 dev_info(&pdev
->dev
,
2867 "MAC address not assigned by administrator.\n");
2868 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
2872 spin_unlock_bh(&hw
->mbx_lock
);
2874 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
2875 dev_info(&pdev
->dev
, "Assigning random MAC address.\n");
2876 eth_hw_addr_random(netdev
);
2877 memcpy(adapter
->hw
.mac
.addr
, netdev
->dev_addr
,
2881 timer_setup(&adapter
->watchdog_timer
, igbvf_watchdog
, 0);
2883 INIT_WORK(&adapter
->reset_task
, igbvf_reset_task
);
2884 INIT_WORK(&adapter
->watchdog_task
, igbvf_watchdog_task
);
2886 /* ring size defaults */
2887 adapter
->rx_ring
->count
= 1024;
2888 adapter
->tx_ring
->count
= 1024;
2890 /* reset the hardware with the new settings */
2891 igbvf_reset(adapter
);
2893 /* set hardware-specific flags */
2894 if (adapter
->hw
.mac
.type
== e1000_vfadapt_i350
)
2895 adapter
->flags
|= IGBVF_FLAG_RX_LB_VLAN_BSWAP
;
2897 strcpy(netdev
->name
, "eth%d");
2898 err
= register_netdev(netdev
);
2902 /* tell the stack to leave us alone until igbvf_open() is called */
2903 netif_carrier_off(netdev
);
2904 netif_stop_queue(netdev
);
2906 igbvf_print_device_info(adapter
);
2908 igbvf_initialize_last_counter_stats(adapter
);
2913 kfree(adapter
->tx_ring
);
2914 kfree(adapter
->rx_ring
);
2916 igbvf_reset_interrupt_capability(adapter
);
2918 iounmap(adapter
->hw
.hw_addr
);
2920 free_netdev(netdev
);
2922 pci_release_regions(pdev
);
2925 pci_disable_device(pdev
);
2930 * igbvf_remove - Device Removal Routine
2931 * @pdev: PCI device information struct
2933 * igbvf_remove is called by the PCI subsystem to alert the driver
2934 * that it should release a PCI device. The could be caused by a
2935 * Hot-Plug event, or because the driver is going to be removed from
2938 static void igbvf_remove(struct pci_dev
*pdev
)
2940 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2941 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2942 struct e1000_hw
*hw
= &adapter
->hw
;
2944 /* The watchdog timer may be rescheduled, so explicitly
2945 * disable it from being rescheduled.
2947 set_bit(__IGBVF_DOWN
, &adapter
->state
);
2948 del_timer_sync(&adapter
->watchdog_timer
);
2950 cancel_work_sync(&adapter
->reset_task
);
2951 cancel_work_sync(&adapter
->watchdog_task
);
2953 unregister_netdev(netdev
);
2955 igbvf_reset_interrupt_capability(adapter
);
2957 /* it is important to delete the NAPI struct prior to freeing the
2958 * Rx ring so that you do not end up with null pointer refs
2960 netif_napi_del(&adapter
->rx_ring
->napi
);
2961 kfree(adapter
->tx_ring
);
2962 kfree(adapter
->rx_ring
);
2964 iounmap(hw
->hw_addr
);
2965 if (hw
->flash_address
)
2966 iounmap(hw
->flash_address
);
2967 pci_release_regions(pdev
);
2969 free_netdev(netdev
);
2971 pci_disable_device(pdev
);
2974 /* PCI Error Recovery (ERS) */
2975 static const struct pci_error_handlers igbvf_err_handler
= {
2976 .error_detected
= igbvf_io_error_detected
,
2977 .slot_reset
= igbvf_io_slot_reset
,
2978 .resume
= igbvf_io_resume
,
2981 static const struct pci_device_id igbvf_pci_tbl
[] = {
2982 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_VF
), board_vf
},
2983 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_VF
), board_i350_vf
},
2984 { } /* terminate list */
2986 MODULE_DEVICE_TABLE(pci
, igbvf_pci_tbl
);
2988 /* PCI Device API Driver */
2989 static struct pci_driver igbvf_driver
= {
2990 .name
= igbvf_driver_name
,
2991 .id_table
= igbvf_pci_tbl
,
2992 .probe
= igbvf_probe
,
2993 .remove
= igbvf_remove
,
2995 /* Power Management Hooks */
2996 .suspend
= igbvf_suspend
,
2997 .resume
= igbvf_resume
,
2999 .shutdown
= igbvf_shutdown
,
3000 .err_handler
= &igbvf_err_handler
3004 * igbvf_init_module - Driver Registration Routine
3006 * igbvf_init_module is the first routine called when the driver is
3007 * loaded. All it does is register with the PCI subsystem.
3009 static int __init
igbvf_init_module(void)
3013 pr_info("%s - version %s\n", igbvf_driver_string
, igbvf_driver_version
);
3014 pr_info("%s\n", igbvf_copyright
);
3016 ret
= pci_register_driver(&igbvf_driver
);
3020 module_init(igbvf_init_module
);
3023 * igbvf_exit_module - Driver Exit Cleanup Routine
3025 * igbvf_exit_module is called just before the driver is removed
3028 static void __exit
igbvf_exit_module(void)
3030 pci_unregister_driver(&igbvf_driver
);
3032 module_exit(igbvf_exit_module
);
3034 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3035 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3036 MODULE_LICENSE("GPL");
3037 MODULE_VERSION(DRV_VERSION
);