Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / ethernet / intel / igbvf / netdev.c
blob4214c1519a879c9cb70cd1791b361657a5615d1e
1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *******************************************************************************/
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46 #include <linux/sctp.h>
48 #include "igbvf.h"
50 #define DRV_VERSION "2.4.0-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
68 static struct igbvf_info igbvf_vf_info = {
69 .mac = e1000_vfadapt,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
75 static struct igbvf_info igbvf_i350_vf_info = {
76 .mac = e1000_vfadapt_i350,
77 .flags = 0,
78 .pba = 10,
79 .init_ops = e1000_init_function_pointers_vf,
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83 [board_vf] = &igbvf_vf_info,
84 [board_i350_vf] = &igbvf_i350_vf_info,
87 /**
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 * @rx_ring: address of receive ring structure
90 **/
91 static int igbvf_desc_unused(struct igbvf_ring *ring)
93 if (ring->next_to_clean > ring->next_to_use)
94 return ring->next_to_clean - ring->next_to_use - 1;
96 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
99 /**
100 * igbvf_receive_skb - helper function to handle Rx indications
101 * @adapter: board private structure
102 * @status: descriptor status field as written by hardware
103 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
104 * @skb: pointer to sk_buff to be indicated to stack
106 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
107 struct net_device *netdev,
108 struct sk_buff *skb,
109 u32 status, u16 vlan)
111 u16 vid;
113 if (status & E1000_RXD_STAT_VP) {
114 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
115 (status & E1000_RXDEXT_STATERR_LB))
116 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
117 else
118 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
119 if (test_bit(vid, adapter->active_vlans))
120 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
123 napi_gro_receive(&adapter->rx_ring->napi, skb);
126 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
127 u32 status_err, struct sk_buff *skb)
129 skb_checksum_none_assert(skb);
131 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
132 if ((status_err & E1000_RXD_STAT_IXSM) ||
133 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
134 return;
136 /* TCP/UDP checksum error bit is set */
137 if (status_err &
138 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
139 /* let the stack verify checksum errors */
140 adapter->hw_csum_err++;
141 return;
144 /* It must be a TCP or UDP packet with a valid checksum */
145 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
146 skb->ip_summed = CHECKSUM_UNNECESSARY;
148 adapter->hw_csum_good++;
152 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
153 * @rx_ring: address of ring structure to repopulate
154 * @cleaned_count: number of buffers to repopulate
156 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
157 int cleaned_count)
159 struct igbvf_adapter *adapter = rx_ring->adapter;
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 union e1000_adv_rx_desc *rx_desc;
163 struct igbvf_buffer *buffer_info;
164 struct sk_buff *skb;
165 unsigned int i;
166 int bufsz;
168 i = rx_ring->next_to_use;
169 buffer_info = &rx_ring->buffer_info[i];
171 if (adapter->rx_ps_hdr_size)
172 bufsz = adapter->rx_ps_hdr_size;
173 else
174 bufsz = adapter->rx_buffer_len;
176 while (cleaned_count--) {
177 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
179 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
180 if (!buffer_info->page) {
181 buffer_info->page = alloc_page(GFP_ATOMIC);
182 if (!buffer_info->page) {
183 adapter->alloc_rx_buff_failed++;
184 goto no_buffers;
186 buffer_info->page_offset = 0;
187 } else {
188 buffer_info->page_offset ^= PAGE_SIZE / 2;
190 buffer_info->page_dma =
191 dma_map_page(&pdev->dev, buffer_info->page,
192 buffer_info->page_offset,
193 PAGE_SIZE / 2,
194 DMA_FROM_DEVICE);
195 if (dma_mapping_error(&pdev->dev,
196 buffer_info->page_dma)) {
197 __free_page(buffer_info->page);
198 buffer_info->page = NULL;
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 break;
204 if (!buffer_info->skb) {
205 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
206 if (!skb) {
207 adapter->alloc_rx_buff_failed++;
208 goto no_buffers;
211 buffer_info->skb = skb;
212 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
213 bufsz,
214 DMA_FROM_DEVICE);
215 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
216 dev_kfree_skb(buffer_info->skb);
217 buffer_info->skb = NULL;
218 dev_err(&pdev->dev, "RX DMA map failed\n");
219 goto no_buffers;
222 /* Refresh the desc even if buffer_addrs didn't change because
223 * each write-back erases this info.
225 if (adapter->rx_ps_hdr_size) {
226 rx_desc->read.pkt_addr =
227 cpu_to_le64(buffer_info->page_dma);
228 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
229 } else {
230 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
231 rx_desc->read.hdr_addr = 0;
234 i++;
235 if (i == rx_ring->count)
236 i = 0;
237 buffer_info = &rx_ring->buffer_info[i];
240 no_buffers:
241 if (rx_ring->next_to_use != i) {
242 rx_ring->next_to_use = i;
243 if (i == 0)
244 i = (rx_ring->count - 1);
245 else
246 i--;
248 /* Force memory writes to complete before letting h/w
249 * know there are new descriptors to fetch. (Only
250 * applicable for weak-ordered memory model archs,
251 * such as IA-64).
253 wmb();
254 writel(i, adapter->hw.hw_addr + rx_ring->tail);
259 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
260 * @adapter: board private structure
262 * the return value indicates whether actual cleaning was done, there
263 * is no guarantee that everything was cleaned
265 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
266 int *work_done, int work_to_do)
268 struct igbvf_ring *rx_ring = adapter->rx_ring;
269 struct net_device *netdev = adapter->netdev;
270 struct pci_dev *pdev = adapter->pdev;
271 union e1000_adv_rx_desc *rx_desc, *next_rxd;
272 struct igbvf_buffer *buffer_info, *next_buffer;
273 struct sk_buff *skb;
274 bool cleaned = false;
275 int cleaned_count = 0;
276 unsigned int total_bytes = 0, total_packets = 0;
277 unsigned int i;
278 u32 length, hlen, staterr;
280 i = rx_ring->next_to_clean;
281 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
282 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
284 while (staterr & E1000_RXD_STAT_DD) {
285 if (*work_done >= work_to_do)
286 break;
287 (*work_done)++;
288 rmb(); /* read descriptor and rx_buffer_info after status DD */
290 buffer_info = &rx_ring->buffer_info[i];
292 /* HW will not DMA in data larger than the given buffer, even
293 * if it parses the (NFS, of course) header to be larger. In
294 * that case, it fills the header buffer and spills the rest
295 * into the page.
297 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
298 & E1000_RXDADV_HDRBUFLEN_MASK) >>
299 E1000_RXDADV_HDRBUFLEN_SHIFT;
300 if (hlen > adapter->rx_ps_hdr_size)
301 hlen = adapter->rx_ps_hdr_size;
303 length = le16_to_cpu(rx_desc->wb.upper.length);
304 cleaned = true;
305 cleaned_count++;
307 skb = buffer_info->skb;
308 prefetch(skb->data - NET_IP_ALIGN);
309 buffer_info->skb = NULL;
310 if (!adapter->rx_ps_hdr_size) {
311 dma_unmap_single(&pdev->dev, buffer_info->dma,
312 adapter->rx_buffer_len,
313 DMA_FROM_DEVICE);
314 buffer_info->dma = 0;
315 skb_put(skb, length);
316 goto send_up;
319 if (!skb_shinfo(skb)->nr_frags) {
320 dma_unmap_single(&pdev->dev, buffer_info->dma,
321 adapter->rx_ps_hdr_size,
322 DMA_FROM_DEVICE);
323 buffer_info->dma = 0;
324 skb_put(skb, hlen);
327 if (length) {
328 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
329 PAGE_SIZE / 2,
330 DMA_FROM_DEVICE);
331 buffer_info->page_dma = 0;
333 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
334 buffer_info->page,
335 buffer_info->page_offset,
336 length);
338 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
339 (page_count(buffer_info->page) != 1))
340 buffer_info->page = NULL;
341 else
342 get_page(buffer_info->page);
344 skb->len += length;
345 skb->data_len += length;
346 skb->truesize += PAGE_SIZE / 2;
348 send_up:
349 i++;
350 if (i == rx_ring->count)
351 i = 0;
352 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
353 prefetch(next_rxd);
354 next_buffer = &rx_ring->buffer_info[i];
356 if (!(staterr & E1000_RXD_STAT_EOP)) {
357 buffer_info->skb = next_buffer->skb;
358 buffer_info->dma = next_buffer->dma;
359 next_buffer->skb = skb;
360 next_buffer->dma = 0;
361 goto next_desc;
364 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
365 dev_kfree_skb_irq(skb);
366 goto next_desc;
369 total_bytes += skb->len;
370 total_packets++;
372 igbvf_rx_checksum_adv(adapter, staterr, skb);
374 skb->protocol = eth_type_trans(skb, netdev);
376 igbvf_receive_skb(adapter, netdev, skb, staterr,
377 rx_desc->wb.upper.vlan);
379 next_desc:
380 rx_desc->wb.upper.status_error = 0;
382 /* return some buffers to hardware, one at a time is too slow */
383 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
384 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
385 cleaned_count = 0;
388 /* use prefetched values */
389 rx_desc = next_rxd;
390 buffer_info = next_buffer;
392 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
395 rx_ring->next_to_clean = i;
396 cleaned_count = igbvf_desc_unused(rx_ring);
398 if (cleaned_count)
399 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
401 adapter->total_rx_packets += total_packets;
402 adapter->total_rx_bytes += total_bytes;
403 netdev->stats.rx_bytes += total_bytes;
404 netdev->stats.rx_packets += total_packets;
405 return cleaned;
408 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
409 struct igbvf_buffer *buffer_info)
411 if (buffer_info->dma) {
412 if (buffer_info->mapped_as_page)
413 dma_unmap_page(&adapter->pdev->dev,
414 buffer_info->dma,
415 buffer_info->length,
416 DMA_TO_DEVICE);
417 else
418 dma_unmap_single(&adapter->pdev->dev,
419 buffer_info->dma,
420 buffer_info->length,
421 DMA_TO_DEVICE);
422 buffer_info->dma = 0;
424 if (buffer_info->skb) {
425 dev_kfree_skb_any(buffer_info->skb);
426 buffer_info->skb = NULL;
428 buffer_info->time_stamp = 0;
432 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
433 * @adapter: board private structure
435 * Return 0 on success, negative on failure
437 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
438 struct igbvf_ring *tx_ring)
440 struct pci_dev *pdev = adapter->pdev;
441 int size;
443 size = sizeof(struct igbvf_buffer) * tx_ring->count;
444 tx_ring->buffer_info = vzalloc(size);
445 if (!tx_ring->buffer_info)
446 goto err;
448 /* round up to nearest 4K */
449 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
450 tx_ring->size = ALIGN(tx_ring->size, 4096);
452 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
453 &tx_ring->dma, GFP_KERNEL);
454 if (!tx_ring->desc)
455 goto err;
457 tx_ring->adapter = adapter;
458 tx_ring->next_to_use = 0;
459 tx_ring->next_to_clean = 0;
461 return 0;
462 err:
463 vfree(tx_ring->buffer_info);
464 dev_err(&adapter->pdev->dev,
465 "Unable to allocate memory for the transmit descriptor ring\n");
466 return -ENOMEM;
470 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
471 * @adapter: board private structure
473 * Returns 0 on success, negative on failure
475 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
476 struct igbvf_ring *rx_ring)
478 struct pci_dev *pdev = adapter->pdev;
479 int size, desc_len;
481 size = sizeof(struct igbvf_buffer) * rx_ring->count;
482 rx_ring->buffer_info = vzalloc(size);
483 if (!rx_ring->buffer_info)
484 goto err;
486 desc_len = sizeof(union e1000_adv_rx_desc);
488 /* Round up to nearest 4K */
489 rx_ring->size = rx_ring->count * desc_len;
490 rx_ring->size = ALIGN(rx_ring->size, 4096);
492 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
493 &rx_ring->dma, GFP_KERNEL);
494 if (!rx_ring->desc)
495 goto err;
497 rx_ring->next_to_clean = 0;
498 rx_ring->next_to_use = 0;
500 rx_ring->adapter = adapter;
502 return 0;
504 err:
505 vfree(rx_ring->buffer_info);
506 rx_ring->buffer_info = NULL;
507 dev_err(&adapter->pdev->dev,
508 "Unable to allocate memory for the receive descriptor ring\n");
509 return -ENOMEM;
513 * igbvf_clean_tx_ring - Free Tx Buffers
514 * @tx_ring: ring to be cleaned
516 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
518 struct igbvf_adapter *adapter = tx_ring->adapter;
519 struct igbvf_buffer *buffer_info;
520 unsigned long size;
521 unsigned int i;
523 if (!tx_ring->buffer_info)
524 return;
526 /* Free all the Tx ring sk_buffs */
527 for (i = 0; i < tx_ring->count; i++) {
528 buffer_info = &tx_ring->buffer_info[i];
529 igbvf_put_txbuf(adapter, buffer_info);
532 size = sizeof(struct igbvf_buffer) * tx_ring->count;
533 memset(tx_ring->buffer_info, 0, size);
535 /* Zero out the descriptor ring */
536 memset(tx_ring->desc, 0, tx_ring->size);
538 tx_ring->next_to_use = 0;
539 tx_ring->next_to_clean = 0;
541 writel(0, adapter->hw.hw_addr + tx_ring->head);
542 writel(0, adapter->hw.hw_addr + tx_ring->tail);
546 * igbvf_free_tx_resources - Free Tx Resources per Queue
547 * @tx_ring: ring to free resources from
549 * Free all transmit software resources
551 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
553 struct pci_dev *pdev = tx_ring->adapter->pdev;
555 igbvf_clean_tx_ring(tx_ring);
557 vfree(tx_ring->buffer_info);
558 tx_ring->buffer_info = NULL;
560 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
561 tx_ring->dma);
563 tx_ring->desc = NULL;
567 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
568 * @adapter: board private structure
570 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
572 struct igbvf_adapter *adapter = rx_ring->adapter;
573 struct igbvf_buffer *buffer_info;
574 struct pci_dev *pdev = adapter->pdev;
575 unsigned long size;
576 unsigned int i;
578 if (!rx_ring->buffer_info)
579 return;
581 /* Free all the Rx ring sk_buffs */
582 for (i = 0; i < rx_ring->count; i++) {
583 buffer_info = &rx_ring->buffer_info[i];
584 if (buffer_info->dma) {
585 if (adapter->rx_ps_hdr_size) {
586 dma_unmap_single(&pdev->dev, buffer_info->dma,
587 adapter->rx_ps_hdr_size,
588 DMA_FROM_DEVICE);
589 } else {
590 dma_unmap_single(&pdev->dev, buffer_info->dma,
591 adapter->rx_buffer_len,
592 DMA_FROM_DEVICE);
594 buffer_info->dma = 0;
597 if (buffer_info->skb) {
598 dev_kfree_skb(buffer_info->skb);
599 buffer_info->skb = NULL;
602 if (buffer_info->page) {
603 if (buffer_info->page_dma)
604 dma_unmap_page(&pdev->dev,
605 buffer_info->page_dma,
606 PAGE_SIZE / 2,
607 DMA_FROM_DEVICE);
608 put_page(buffer_info->page);
609 buffer_info->page = NULL;
610 buffer_info->page_dma = 0;
611 buffer_info->page_offset = 0;
615 size = sizeof(struct igbvf_buffer) * rx_ring->count;
616 memset(rx_ring->buffer_info, 0, size);
618 /* Zero out the descriptor ring */
619 memset(rx_ring->desc, 0, rx_ring->size);
621 rx_ring->next_to_clean = 0;
622 rx_ring->next_to_use = 0;
624 writel(0, adapter->hw.hw_addr + rx_ring->head);
625 writel(0, adapter->hw.hw_addr + rx_ring->tail);
629 * igbvf_free_rx_resources - Free Rx Resources
630 * @rx_ring: ring to clean the resources from
632 * Free all receive software resources
635 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
637 struct pci_dev *pdev = rx_ring->adapter->pdev;
639 igbvf_clean_rx_ring(rx_ring);
641 vfree(rx_ring->buffer_info);
642 rx_ring->buffer_info = NULL;
644 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
645 rx_ring->dma);
646 rx_ring->desc = NULL;
650 * igbvf_update_itr - update the dynamic ITR value based on statistics
651 * @adapter: pointer to adapter
652 * @itr_setting: current adapter->itr
653 * @packets: the number of packets during this measurement interval
654 * @bytes: the number of bytes during this measurement interval
656 * Stores a new ITR value based on packets and byte counts during the last
657 * interrupt. The advantage of per interrupt computation is faster updates
658 * and more accurate ITR for the current traffic pattern. Constants in this
659 * function were computed based on theoretical maximum wire speed and thresholds
660 * were set based on testing data as well as attempting to minimize response
661 * time while increasing bulk throughput.
663 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
664 enum latency_range itr_setting,
665 int packets, int bytes)
667 enum latency_range retval = itr_setting;
669 if (packets == 0)
670 goto update_itr_done;
672 switch (itr_setting) {
673 case lowest_latency:
674 /* handle TSO and jumbo frames */
675 if (bytes/packets > 8000)
676 retval = bulk_latency;
677 else if ((packets < 5) && (bytes > 512))
678 retval = low_latency;
679 break;
680 case low_latency: /* 50 usec aka 20000 ints/s */
681 if (bytes > 10000) {
682 /* this if handles the TSO accounting */
683 if (bytes/packets > 8000)
684 retval = bulk_latency;
685 else if ((packets < 10) || ((bytes/packets) > 1200))
686 retval = bulk_latency;
687 else if ((packets > 35))
688 retval = lowest_latency;
689 } else if (bytes/packets > 2000) {
690 retval = bulk_latency;
691 } else if (packets <= 2 && bytes < 512) {
692 retval = lowest_latency;
694 break;
695 case bulk_latency: /* 250 usec aka 4000 ints/s */
696 if (bytes > 25000) {
697 if (packets > 35)
698 retval = low_latency;
699 } else if (bytes < 6000) {
700 retval = low_latency;
702 break;
703 default:
704 break;
707 update_itr_done:
708 return retval;
711 static int igbvf_range_to_itr(enum latency_range current_range)
713 int new_itr;
715 switch (current_range) {
716 /* counts and packets in update_itr are dependent on these numbers */
717 case lowest_latency:
718 new_itr = IGBVF_70K_ITR;
719 break;
720 case low_latency:
721 new_itr = IGBVF_20K_ITR;
722 break;
723 case bulk_latency:
724 new_itr = IGBVF_4K_ITR;
725 break;
726 default:
727 new_itr = IGBVF_START_ITR;
728 break;
730 return new_itr;
733 static void igbvf_set_itr(struct igbvf_adapter *adapter)
735 u32 new_itr;
737 adapter->tx_ring->itr_range =
738 igbvf_update_itr(adapter,
739 adapter->tx_ring->itr_val,
740 adapter->total_tx_packets,
741 adapter->total_tx_bytes);
743 /* conservative mode (itr 3) eliminates the lowest_latency setting */
744 if (adapter->requested_itr == 3 &&
745 adapter->tx_ring->itr_range == lowest_latency)
746 adapter->tx_ring->itr_range = low_latency;
748 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
750 if (new_itr != adapter->tx_ring->itr_val) {
751 u32 current_itr = adapter->tx_ring->itr_val;
752 /* this attempts to bias the interrupt rate towards Bulk
753 * by adding intermediate steps when interrupt rate is
754 * increasing
756 new_itr = new_itr > current_itr ?
757 min(current_itr + (new_itr >> 2), new_itr) :
758 new_itr;
759 adapter->tx_ring->itr_val = new_itr;
761 adapter->tx_ring->set_itr = 1;
764 adapter->rx_ring->itr_range =
765 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
766 adapter->total_rx_packets,
767 adapter->total_rx_bytes);
768 if (adapter->requested_itr == 3 &&
769 adapter->rx_ring->itr_range == lowest_latency)
770 adapter->rx_ring->itr_range = low_latency;
772 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
774 if (new_itr != adapter->rx_ring->itr_val) {
775 u32 current_itr = adapter->rx_ring->itr_val;
777 new_itr = new_itr > current_itr ?
778 min(current_itr + (new_itr >> 2), new_itr) :
779 new_itr;
780 adapter->rx_ring->itr_val = new_itr;
782 adapter->rx_ring->set_itr = 1;
787 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788 * @adapter: board private structure
790 * returns true if ring is completely cleaned
792 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
794 struct igbvf_adapter *adapter = tx_ring->adapter;
795 struct net_device *netdev = adapter->netdev;
796 struct igbvf_buffer *buffer_info;
797 struct sk_buff *skb;
798 union e1000_adv_tx_desc *tx_desc, *eop_desc;
799 unsigned int total_bytes = 0, total_packets = 0;
800 unsigned int i, count = 0;
801 bool cleaned = false;
803 i = tx_ring->next_to_clean;
804 buffer_info = &tx_ring->buffer_info[i];
805 eop_desc = buffer_info->next_to_watch;
807 do {
808 /* if next_to_watch is not set then there is no work pending */
809 if (!eop_desc)
810 break;
812 /* prevent any other reads prior to eop_desc */
813 smp_rmb();
815 /* if DD is not set pending work has not been completed */
816 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
817 break;
819 /* clear next_to_watch to prevent false hangs */
820 buffer_info->next_to_watch = NULL;
822 for (cleaned = false; !cleaned; count++) {
823 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
824 cleaned = (tx_desc == eop_desc);
825 skb = buffer_info->skb;
827 if (skb) {
828 unsigned int segs, bytecount;
830 /* gso_segs is currently only valid for tcp */
831 segs = skb_shinfo(skb)->gso_segs ?: 1;
832 /* multiply data chunks by size of headers */
833 bytecount = ((segs - 1) * skb_headlen(skb)) +
834 skb->len;
835 total_packets += segs;
836 total_bytes += bytecount;
839 igbvf_put_txbuf(adapter, buffer_info);
840 tx_desc->wb.status = 0;
842 i++;
843 if (i == tx_ring->count)
844 i = 0;
846 buffer_info = &tx_ring->buffer_info[i];
849 eop_desc = buffer_info->next_to_watch;
850 } while (count < tx_ring->count);
852 tx_ring->next_to_clean = i;
854 if (unlikely(count && netif_carrier_ok(netdev) &&
855 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
856 /* Make sure that anybody stopping the queue after this
857 * sees the new next_to_clean.
859 smp_mb();
860 if (netif_queue_stopped(netdev) &&
861 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
862 netif_wake_queue(netdev);
863 ++adapter->restart_queue;
867 netdev->stats.tx_bytes += total_bytes;
868 netdev->stats.tx_packets += total_packets;
869 return count < tx_ring->count;
872 static irqreturn_t igbvf_msix_other(int irq, void *data)
874 struct net_device *netdev = data;
875 struct igbvf_adapter *adapter = netdev_priv(netdev);
876 struct e1000_hw *hw = &adapter->hw;
878 adapter->int_counter1++;
880 hw->mac.get_link_status = 1;
881 if (!test_bit(__IGBVF_DOWN, &adapter->state))
882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
884 ew32(EIMS, adapter->eims_other);
886 return IRQ_HANDLED;
889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
891 struct net_device *netdev = data;
892 struct igbvf_adapter *adapter = netdev_priv(netdev);
893 struct e1000_hw *hw = &adapter->hw;
894 struct igbvf_ring *tx_ring = adapter->tx_ring;
896 if (tx_ring->set_itr) {
897 writel(tx_ring->itr_val,
898 adapter->hw.hw_addr + tx_ring->itr_register);
899 adapter->tx_ring->set_itr = 0;
902 adapter->total_tx_bytes = 0;
903 adapter->total_tx_packets = 0;
905 /* auto mask will automatically re-enable the interrupt when we write
906 * EICS
908 if (!igbvf_clean_tx_irq(tx_ring))
909 /* Ring was not completely cleaned, so fire another interrupt */
910 ew32(EICS, tx_ring->eims_value);
911 else
912 ew32(EIMS, tx_ring->eims_value);
914 return IRQ_HANDLED;
917 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
919 struct net_device *netdev = data;
920 struct igbvf_adapter *adapter = netdev_priv(netdev);
922 adapter->int_counter0++;
924 /* Write the ITR value calculated at the end of the
925 * previous interrupt.
927 if (adapter->rx_ring->set_itr) {
928 writel(adapter->rx_ring->itr_val,
929 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
930 adapter->rx_ring->set_itr = 0;
933 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
934 adapter->total_rx_bytes = 0;
935 adapter->total_rx_packets = 0;
936 __napi_schedule(&adapter->rx_ring->napi);
939 return IRQ_HANDLED;
942 #define IGBVF_NO_QUEUE -1
944 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
945 int tx_queue, int msix_vector)
947 struct e1000_hw *hw = &adapter->hw;
948 u32 ivar, index;
950 /* 82576 uses a table-based method for assigning vectors.
951 * Each queue has a single entry in the table to which we write
952 * a vector number along with a "valid" bit. Sadly, the layout
953 * of the table is somewhat counterintuitive.
955 if (rx_queue > IGBVF_NO_QUEUE) {
956 index = (rx_queue >> 1);
957 ivar = array_er32(IVAR0, index);
958 if (rx_queue & 0x1) {
959 /* vector goes into third byte of register */
960 ivar = ivar & 0xFF00FFFF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
962 } else {
963 /* vector goes into low byte of register */
964 ivar = ivar & 0xFFFFFF00;
965 ivar |= msix_vector | E1000_IVAR_VALID;
967 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
968 array_ew32(IVAR0, index, ivar);
970 if (tx_queue > IGBVF_NO_QUEUE) {
971 index = (tx_queue >> 1);
972 ivar = array_er32(IVAR0, index);
973 if (tx_queue & 0x1) {
974 /* vector goes into high byte of register */
975 ivar = ivar & 0x00FFFFFF;
976 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
977 } else {
978 /* vector goes into second byte of register */
979 ivar = ivar & 0xFFFF00FF;
980 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
982 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
983 array_ew32(IVAR0, index, ivar);
988 * igbvf_configure_msix - Configure MSI-X hardware
989 * @adapter: board private structure
991 * igbvf_configure_msix sets up the hardware to properly
992 * generate MSI-X interrupts.
994 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
996 u32 tmp;
997 struct e1000_hw *hw = &adapter->hw;
998 struct igbvf_ring *tx_ring = adapter->tx_ring;
999 struct igbvf_ring *rx_ring = adapter->rx_ring;
1000 int vector = 0;
1002 adapter->eims_enable_mask = 0;
1004 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005 adapter->eims_enable_mask |= tx_ring->eims_value;
1006 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008 adapter->eims_enable_mask |= rx_ring->eims_value;
1009 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1011 /* set vector for other causes, i.e. link changes */
1013 tmp = (vector++ | E1000_IVAR_VALID);
1015 ew32(IVAR_MISC, tmp);
1017 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1018 adapter->eims_other = BIT(vector - 1);
1019 e1e_flush();
1022 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1024 if (adapter->msix_entries) {
1025 pci_disable_msix(adapter->pdev);
1026 kfree(adapter->msix_entries);
1027 adapter->msix_entries = NULL;
1032 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033 * @adapter: board private structure
1035 * Attempt to configure interrupts using the best available
1036 * capabilities of the hardware and kernel.
1038 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1040 int err = -ENOMEM;
1041 int i;
1043 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045 GFP_KERNEL);
1046 if (adapter->msix_entries) {
1047 for (i = 0; i < 3; i++)
1048 adapter->msix_entries[i].entry = i;
1050 err = pci_enable_msix_range(adapter->pdev,
1051 adapter->msix_entries, 3, 3);
1054 if (err < 0) {
1055 /* MSI-X failed */
1056 dev_err(&adapter->pdev->dev,
1057 "Failed to initialize MSI-X interrupts.\n");
1058 igbvf_reset_interrupt_capability(adapter);
1063 * igbvf_request_msix - Initialize MSI-X interrupts
1064 * @adapter: board private structure
1066 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067 * kernel.
1069 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1071 struct net_device *netdev = adapter->netdev;
1072 int err = 0, vector = 0;
1074 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077 } else {
1078 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1082 err = request_irq(adapter->msix_entries[vector].vector,
1083 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084 netdev);
1085 if (err)
1086 goto out;
1088 adapter->tx_ring->itr_register = E1000_EITR(vector);
1089 adapter->tx_ring->itr_val = adapter->current_itr;
1090 vector++;
1092 err = request_irq(adapter->msix_entries[vector].vector,
1093 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094 netdev);
1095 if (err)
1096 goto out;
1098 adapter->rx_ring->itr_register = E1000_EITR(vector);
1099 adapter->rx_ring->itr_val = adapter->current_itr;
1100 vector++;
1102 err = request_irq(adapter->msix_entries[vector].vector,
1103 igbvf_msix_other, 0, netdev->name, netdev);
1104 if (err)
1105 goto out;
1107 igbvf_configure_msix(adapter);
1108 return 0;
1109 out:
1110 return err;
1114 * igbvf_alloc_queues - Allocate memory for all rings
1115 * @adapter: board private structure to initialize
1117 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1119 struct net_device *netdev = adapter->netdev;
1121 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122 if (!adapter->tx_ring)
1123 return -ENOMEM;
1125 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126 if (!adapter->rx_ring) {
1127 kfree(adapter->tx_ring);
1128 return -ENOMEM;
1131 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1133 return 0;
1137 * igbvf_request_irq - initialize interrupts
1138 * @adapter: board private structure
1140 * Attempts to configure interrupts using the best available
1141 * capabilities of the hardware and kernel.
1143 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1145 int err = -1;
1147 /* igbvf supports msi-x only */
1148 if (adapter->msix_entries)
1149 err = igbvf_request_msix(adapter);
1151 if (!err)
1152 return err;
1154 dev_err(&adapter->pdev->dev,
1155 "Unable to allocate interrupt, Error: %d\n", err);
1157 return err;
1160 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1162 struct net_device *netdev = adapter->netdev;
1163 int vector;
1165 if (adapter->msix_entries) {
1166 for (vector = 0; vector < 3; vector++)
1167 free_irq(adapter->msix_entries[vector].vector, netdev);
1172 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173 * @adapter: board private structure
1175 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1177 struct e1000_hw *hw = &adapter->hw;
1179 ew32(EIMC, ~0);
1181 if (adapter->msix_entries)
1182 ew32(EIAC, 0);
1186 * igbvf_irq_enable - Enable default interrupt generation settings
1187 * @adapter: board private structure
1189 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1191 struct e1000_hw *hw = &adapter->hw;
1193 ew32(EIAC, adapter->eims_enable_mask);
1194 ew32(EIAM, adapter->eims_enable_mask);
1195 ew32(EIMS, adapter->eims_enable_mask);
1199 * igbvf_poll - NAPI Rx polling callback
1200 * @napi: struct associated with this polling callback
1201 * @budget: amount of packets driver is allowed to process this poll
1203 static int igbvf_poll(struct napi_struct *napi, int budget)
1205 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206 struct igbvf_adapter *adapter = rx_ring->adapter;
1207 struct e1000_hw *hw = &adapter->hw;
1208 int work_done = 0;
1210 igbvf_clean_rx_irq(adapter, &work_done, budget);
1212 /* If not enough Rx work done, exit the polling mode */
1213 if (work_done < budget) {
1214 napi_complete_done(napi, work_done);
1216 if (adapter->requested_itr & 3)
1217 igbvf_set_itr(adapter);
1219 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220 ew32(EIMS, adapter->rx_ring->eims_value);
1223 return work_done;
1227 * igbvf_set_rlpml - set receive large packet maximum length
1228 * @adapter: board private structure
1230 * Configure the maximum size of packets that will be received
1232 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1234 int max_frame_size;
1235 struct e1000_hw *hw = &adapter->hw;
1237 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1239 spin_lock_bh(&hw->mbx_lock);
1241 e1000_rlpml_set_vf(hw, max_frame_size);
1243 spin_unlock_bh(&hw->mbx_lock);
1246 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1247 __be16 proto, u16 vid)
1249 struct igbvf_adapter *adapter = netdev_priv(netdev);
1250 struct e1000_hw *hw = &adapter->hw;
1252 spin_lock_bh(&hw->mbx_lock);
1254 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1255 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1256 spin_unlock_bh(&hw->mbx_lock);
1257 return -EINVAL;
1260 spin_unlock_bh(&hw->mbx_lock);
1262 set_bit(vid, adapter->active_vlans);
1263 return 0;
1266 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1267 __be16 proto, u16 vid)
1269 struct igbvf_adapter *adapter = netdev_priv(netdev);
1270 struct e1000_hw *hw = &adapter->hw;
1272 spin_lock_bh(&hw->mbx_lock);
1274 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1275 dev_err(&adapter->pdev->dev,
1276 "Failed to remove vlan id %d\n", vid);
1277 spin_unlock_bh(&hw->mbx_lock);
1278 return -EINVAL;
1281 spin_unlock_bh(&hw->mbx_lock);
1283 clear_bit(vid, adapter->active_vlans);
1284 return 0;
1287 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1289 u16 vid;
1291 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1292 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1296 * igbvf_configure_tx - Configure Transmit Unit after Reset
1297 * @adapter: board private structure
1299 * Configure the Tx unit of the MAC after a reset.
1301 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1303 struct e1000_hw *hw = &adapter->hw;
1304 struct igbvf_ring *tx_ring = adapter->tx_ring;
1305 u64 tdba;
1306 u32 txdctl, dca_txctrl;
1308 /* disable transmits */
1309 txdctl = er32(TXDCTL(0));
1310 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1311 e1e_flush();
1312 msleep(10);
1314 /* Setup the HW Tx Head and Tail descriptor pointers */
1315 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1316 tdba = tx_ring->dma;
1317 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1318 ew32(TDBAH(0), (tdba >> 32));
1319 ew32(TDH(0), 0);
1320 ew32(TDT(0), 0);
1321 tx_ring->head = E1000_TDH(0);
1322 tx_ring->tail = E1000_TDT(0);
1324 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1325 * MUST be delivered in order or it will completely screw up
1326 * our bookkeeping.
1328 dca_txctrl = er32(DCA_TXCTRL(0));
1329 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1330 ew32(DCA_TXCTRL(0), dca_txctrl);
1332 /* enable transmits */
1333 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1334 ew32(TXDCTL(0), txdctl);
1336 /* Setup Transmit Descriptor Settings for eop descriptor */
1337 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1339 /* enable Report Status bit */
1340 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1344 * igbvf_setup_srrctl - configure the receive control registers
1345 * @adapter: Board private structure
1347 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1349 struct e1000_hw *hw = &adapter->hw;
1350 u32 srrctl = 0;
1352 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1353 E1000_SRRCTL_BSIZEHDR_MASK |
1354 E1000_SRRCTL_BSIZEPKT_MASK);
1356 /* Enable queue drop to avoid head of line blocking */
1357 srrctl |= E1000_SRRCTL_DROP_EN;
1359 /* Setup buffer sizes */
1360 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1361 E1000_SRRCTL_BSIZEPKT_SHIFT;
1363 if (adapter->rx_buffer_len < 2048) {
1364 adapter->rx_ps_hdr_size = 0;
1365 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1366 } else {
1367 adapter->rx_ps_hdr_size = 128;
1368 srrctl |= adapter->rx_ps_hdr_size <<
1369 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1370 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1373 ew32(SRRCTL(0), srrctl);
1377 * igbvf_configure_rx - Configure Receive Unit after Reset
1378 * @adapter: board private structure
1380 * Configure the Rx unit of the MAC after a reset.
1382 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1384 struct e1000_hw *hw = &adapter->hw;
1385 struct igbvf_ring *rx_ring = adapter->rx_ring;
1386 u64 rdba;
1387 u32 rxdctl;
1389 /* disable receives */
1390 rxdctl = er32(RXDCTL(0));
1391 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1392 e1e_flush();
1393 msleep(10);
1395 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1396 * the Base and Length of the Rx Descriptor Ring
1398 rdba = rx_ring->dma;
1399 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1400 ew32(RDBAH(0), (rdba >> 32));
1401 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1402 rx_ring->head = E1000_RDH(0);
1403 rx_ring->tail = E1000_RDT(0);
1404 ew32(RDH(0), 0);
1405 ew32(RDT(0), 0);
1407 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1408 rxdctl &= 0xFFF00000;
1409 rxdctl |= IGBVF_RX_PTHRESH;
1410 rxdctl |= IGBVF_RX_HTHRESH << 8;
1411 rxdctl |= IGBVF_RX_WTHRESH << 16;
1413 igbvf_set_rlpml(adapter);
1415 /* enable receives */
1416 ew32(RXDCTL(0), rxdctl);
1420 * igbvf_set_multi - Multicast and Promiscuous mode set
1421 * @netdev: network interface device structure
1423 * The set_multi entry point is called whenever the multicast address
1424 * list or the network interface flags are updated. This routine is
1425 * responsible for configuring the hardware for proper multicast,
1426 * promiscuous mode, and all-multi behavior.
1428 static void igbvf_set_multi(struct net_device *netdev)
1430 struct igbvf_adapter *adapter = netdev_priv(netdev);
1431 struct e1000_hw *hw = &adapter->hw;
1432 struct netdev_hw_addr *ha;
1433 u8 *mta_list = NULL;
1434 int i;
1436 if (!netdev_mc_empty(netdev)) {
1437 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1438 GFP_ATOMIC);
1439 if (!mta_list)
1440 return;
1443 /* prepare a packed array of only addresses. */
1444 i = 0;
1445 netdev_for_each_mc_addr(ha, netdev)
1446 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1448 spin_lock_bh(&hw->mbx_lock);
1450 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1452 spin_unlock_bh(&hw->mbx_lock);
1453 kfree(mta_list);
1457 * igbvf_set_uni - Configure unicast MAC filters
1458 * @netdev: network interface device structure
1460 * This routine is responsible for configuring the hardware for proper
1461 * unicast filters.
1463 static int igbvf_set_uni(struct net_device *netdev)
1465 struct igbvf_adapter *adapter = netdev_priv(netdev);
1466 struct e1000_hw *hw = &adapter->hw;
1468 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1469 pr_err("Too many unicast filters - No Space\n");
1470 return -ENOSPC;
1473 spin_lock_bh(&hw->mbx_lock);
1475 /* Clear all unicast MAC filters */
1476 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1478 spin_unlock_bh(&hw->mbx_lock);
1480 if (!netdev_uc_empty(netdev)) {
1481 struct netdev_hw_addr *ha;
1483 /* Add MAC filters one by one */
1484 netdev_for_each_uc_addr(ha, netdev) {
1485 spin_lock_bh(&hw->mbx_lock);
1487 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1488 ha->addr);
1490 spin_unlock_bh(&hw->mbx_lock);
1491 udelay(200);
1495 return 0;
1498 static void igbvf_set_rx_mode(struct net_device *netdev)
1500 igbvf_set_multi(netdev);
1501 igbvf_set_uni(netdev);
1505 * igbvf_configure - configure the hardware for Rx and Tx
1506 * @adapter: private board structure
1508 static void igbvf_configure(struct igbvf_adapter *adapter)
1510 igbvf_set_rx_mode(adapter->netdev);
1512 igbvf_restore_vlan(adapter);
1514 igbvf_configure_tx(adapter);
1515 igbvf_setup_srrctl(adapter);
1516 igbvf_configure_rx(adapter);
1517 igbvf_alloc_rx_buffers(adapter->rx_ring,
1518 igbvf_desc_unused(adapter->rx_ring));
1521 /* igbvf_reset - bring the hardware into a known good state
1522 * @adapter: private board structure
1524 * This function boots the hardware and enables some settings that
1525 * require a configuration cycle of the hardware - those cannot be
1526 * set/changed during runtime. After reset the device needs to be
1527 * properly configured for Rx, Tx etc.
1529 static void igbvf_reset(struct igbvf_adapter *adapter)
1531 struct e1000_mac_info *mac = &adapter->hw.mac;
1532 struct net_device *netdev = adapter->netdev;
1533 struct e1000_hw *hw = &adapter->hw;
1535 spin_lock_bh(&hw->mbx_lock);
1537 /* Allow time for pending master requests to run */
1538 if (mac->ops.reset_hw(hw))
1539 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1541 mac->ops.init_hw(hw);
1543 spin_unlock_bh(&hw->mbx_lock);
1545 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1546 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1547 netdev->addr_len);
1548 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1549 netdev->addr_len);
1552 adapter->last_reset = jiffies;
1555 int igbvf_up(struct igbvf_adapter *adapter)
1557 struct e1000_hw *hw = &adapter->hw;
1559 /* hardware has been reset, we need to reload some things */
1560 igbvf_configure(adapter);
1562 clear_bit(__IGBVF_DOWN, &adapter->state);
1564 napi_enable(&adapter->rx_ring->napi);
1565 if (adapter->msix_entries)
1566 igbvf_configure_msix(adapter);
1568 /* Clear any pending interrupts. */
1569 er32(EICR);
1570 igbvf_irq_enable(adapter);
1572 /* start the watchdog */
1573 hw->mac.get_link_status = 1;
1574 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1576 return 0;
1579 void igbvf_down(struct igbvf_adapter *adapter)
1581 struct net_device *netdev = adapter->netdev;
1582 struct e1000_hw *hw = &adapter->hw;
1583 u32 rxdctl, txdctl;
1585 /* signal that we're down so the interrupt handler does not
1586 * reschedule our watchdog timer
1588 set_bit(__IGBVF_DOWN, &adapter->state);
1590 /* disable receives in the hardware */
1591 rxdctl = er32(RXDCTL(0));
1592 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1594 netif_carrier_off(netdev);
1595 netif_stop_queue(netdev);
1597 /* disable transmits in the hardware */
1598 txdctl = er32(TXDCTL(0));
1599 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1601 /* flush both disables and wait for them to finish */
1602 e1e_flush();
1603 msleep(10);
1605 napi_disable(&adapter->rx_ring->napi);
1607 igbvf_irq_disable(adapter);
1609 del_timer_sync(&adapter->watchdog_timer);
1611 /* record the stats before reset*/
1612 igbvf_update_stats(adapter);
1614 adapter->link_speed = 0;
1615 adapter->link_duplex = 0;
1617 igbvf_reset(adapter);
1618 igbvf_clean_tx_ring(adapter->tx_ring);
1619 igbvf_clean_rx_ring(adapter->rx_ring);
1622 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1624 might_sleep();
1625 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1626 usleep_range(1000, 2000);
1627 igbvf_down(adapter);
1628 igbvf_up(adapter);
1629 clear_bit(__IGBVF_RESETTING, &adapter->state);
1633 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1634 * @adapter: board private structure to initialize
1636 * igbvf_sw_init initializes the Adapter private data structure.
1637 * Fields are initialized based on PCI device information and
1638 * OS network device settings (MTU size).
1640 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1642 struct net_device *netdev = adapter->netdev;
1643 s32 rc;
1645 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1646 adapter->rx_ps_hdr_size = 0;
1647 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1648 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1650 adapter->tx_int_delay = 8;
1651 adapter->tx_abs_int_delay = 32;
1652 adapter->rx_int_delay = 0;
1653 adapter->rx_abs_int_delay = 8;
1654 adapter->requested_itr = 3;
1655 adapter->current_itr = IGBVF_START_ITR;
1657 /* Set various function pointers */
1658 adapter->ei->init_ops(&adapter->hw);
1660 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1661 if (rc)
1662 return rc;
1664 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1665 if (rc)
1666 return rc;
1668 igbvf_set_interrupt_capability(adapter);
1670 if (igbvf_alloc_queues(adapter))
1671 return -ENOMEM;
1673 spin_lock_init(&adapter->tx_queue_lock);
1675 /* Explicitly disable IRQ since the NIC can be in any state. */
1676 igbvf_irq_disable(adapter);
1678 spin_lock_init(&adapter->stats_lock);
1679 spin_lock_init(&adapter->hw.mbx_lock);
1681 set_bit(__IGBVF_DOWN, &adapter->state);
1682 return 0;
1685 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1687 struct e1000_hw *hw = &adapter->hw;
1689 adapter->stats.last_gprc = er32(VFGPRC);
1690 adapter->stats.last_gorc = er32(VFGORC);
1691 adapter->stats.last_gptc = er32(VFGPTC);
1692 adapter->stats.last_gotc = er32(VFGOTC);
1693 adapter->stats.last_mprc = er32(VFMPRC);
1694 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1695 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1696 adapter->stats.last_gorlbc = er32(VFGORLBC);
1697 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1699 adapter->stats.base_gprc = er32(VFGPRC);
1700 adapter->stats.base_gorc = er32(VFGORC);
1701 adapter->stats.base_gptc = er32(VFGPTC);
1702 adapter->stats.base_gotc = er32(VFGOTC);
1703 adapter->stats.base_mprc = er32(VFMPRC);
1704 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1705 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1706 adapter->stats.base_gorlbc = er32(VFGORLBC);
1707 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1711 * igbvf_open - Called when a network interface is made active
1712 * @netdev: network interface device structure
1714 * Returns 0 on success, negative value on failure
1716 * The open entry point is called when a network interface is made
1717 * active by the system (IFF_UP). At this point all resources needed
1718 * for transmit and receive operations are allocated, the interrupt
1719 * handler is registered with the OS, the watchdog timer is started,
1720 * and the stack is notified that the interface is ready.
1722 static int igbvf_open(struct net_device *netdev)
1724 struct igbvf_adapter *adapter = netdev_priv(netdev);
1725 struct e1000_hw *hw = &adapter->hw;
1726 int err;
1728 /* disallow open during test */
1729 if (test_bit(__IGBVF_TESTING, &adapter->state))
1730 return -EBUSY;
1732 /* allocate transmit descriptors */
1733 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1734 if (err)
1735 goto err_setup_tx;
1737 /* allocate receive descriptors */
1738 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1739 if (err)
1740 goto err_setup_rx;
1742 /* before we allocate an interrupt, we must be ready to handle it.
1743 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1744 * as soon as we call pci_request_irq, so we have to setup our
1745 * clean_rx handler before we do so.
1747 igbvf_configure(adapter);
1749 err = igbvf_request_irq(adapter);
1750 if (err)
1751 goto err_req_irq;
1753 /* From here on the code is the same as igbvf_up() */
1754 clear_bit(__IGBVF_DOWN, &adapter->state);
1756 napi_enable(&adapter->rx_ring->napi);
1758 /* clear any pending interrupts */
1759 er32(EICR);
1761 igbvf_irq_enable(adapter);
1763 /* start the watchdog */
1764 hw->mac.get_link_status = 1;
1765 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1767 return 0;
1769 err_req_irq:
1770 igbvf_free_rx_resources(adapter->rx_ring);
1771 err_setup_rx:
1772 igbvf_free_tx_resources(adapter->tx_ring);
1773 err_setup_tx:
1774 igbvf_reset(adapter);
1776 return err;
1780 * igbvf_close - Disables a network interface
1781 * @netdev: network interface device structure
1783 * Returns 0, this is not allowed to fail
1785 * The close entry point is called when an interface is de-activated
1786 * by the OS. The hardware is still under the drivers control, but
1787 * needs to be disabled. A global MAC reset is issued to stop the
1788 * hardware, and all transmit and receive resources are freed.
1790 static int igbvf_close(struct net_device *netdev)
1792 struct igbvf_adapter *adapter = netdev_priv(netdev);
1794 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1795 igbvf_down(adapter);
1797 igbvf_free_irq(adapter);
1799 igbvf_free_tx_resources(adapter->tx_ring);
1800 igbvf_free_rx_resources(adapter->rx_ring);
1802 return 0;
1806 * igbvf_set_mac - Change the Ethernet Address of the NIC
1807 * @netdev: network interface device structure
1808 * @p: pointer to an address structure
1810 * Returns 0 on success, negative on failure
1812 static int igbvf_set_mac(struct net_device *netdev, void *p)
1814 struct igbvf_adapter *adapter = netdev_priv(netdev);
1815 struct e1000_hw *hw = &adapter->hw;
1816 struct sockaddr *addr = p;
1818 if (!is_valid_ether_addr(addr->sa_data))
1819 return -EADDRNOTAVAIL;
1821 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1823 spin_lock_bh(&hw->mbx_lock);
1825 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1827 spin_unlock_bh(&hw->mbx_lock);
1829 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1830 return -EADDRNOTAVAIL;
1832 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1834 return 0;
1837 #define UPDATE_VF_COUNTER(reg, name) \
1839 u32 current_counter = er32(reg); \
1840 if (current_counter < adapter->stats.last_##name) \
1841 adapter->stats.name += 0x100000000LL; \
1842 adapter->stats.last_##name = current_counter; \
1843 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1844 adapter->stats.name |= current_counter; \
1848 * igbvf_update_stats - Update the board statistics counters
1849 * @adapter: board private structure
1851 void igbvf_update_stats(struct igbvf_adapter *adapter)
1853 struct e1000_hw *hw = &adapter->hw;
1854 struct pci_dev *pdev = adapter->pdev;
1856 /* Prevent stats update while adapter is being reset, link is down
1857 * or if the pci connection is down.
1859 if (adapter->link_speed == 0)
1860 return;
1862 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1863 return;
1865 if (pci_channel_offline(pdev))
1866 return;
1868 UPDATE_VF_COUNTER(VFGPRC, gprc);
1869 UPDATE_VF_COUNTER(VFGORC, gorc);
1870 UPDATE_VF_COUNTER(VFGPTC, gptc);
1871 UPDATE_VF_COUNTER(VFGOTC, gotc);
1872 UPDATE_VF_COUNTER(VFMPRC, mprc);
1873 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1874 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1875 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1876 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1878 /* Fill out the OS statistics structure */
1879 adapter->netdev->stats.multicast = adapter->stats.mprc;
1882 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1884 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1885 adapter->link_speed,
1886 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1889 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1891 struct e1000_hw *hw = &adapter->hw;
1892 s32 ret_val = E1000_SUCCESS;
1893 bool link_active;
1895 /* If interface is down, stay link down */
1896 if (test_bit(__IGBVF_DOWN, &adapter->state))
1897 return false;
1899 spin_lock_bh(&hw->mbx_lock);
1901 ret_val = hw->mac.ops.check_for_link(hw);
1903 spin_unlock_bh(&hw->mbx_lock);
1905 link_active = !hw->mac.get_link_status;
1907 /* if check for link returns error we will need to reset */
1908 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1909 schedule_work(&adapter->reset_task);
1911 return link_active;
1915 * igbvf_watchdog - Timer Call-back
1916 * @data: pointer to adapter cast into an unsigned long
1918 static void igbvf_watchdog(struct timer_list *t)
1920 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1922 /* Do the rest outside of interrupt context */
1923 schedule_work(&adapter->watchdog_task);
1926 static void igbvf_watchdog_task(struct work_struct *work)
1928 struct igbvf_adapter *adapter = container_of(work,
1929 struct igbvf_adapter,
1930 watchdog_task);
1931 struct net_device *netdev = adapter->netdev;
1932 struct e1000_mac_info *mac = &adapter->hw.mac;
1933 struct igbvf_ring *tx_ring = adapter->tx_ring;
1934 struct e1000_hw *hw = &adapter->hw;
1935 u32 link;
1936 int tx_pending = 0;
1938 link = igbvf_has_link(adapter);
1940 if (link) {
1941 if (!netif_carrier_ok(netdev)) {
1942 mac->ops.get_link_up_info(&adapter->hw,
1943 &adapter->link_speed,
1944 &adapter->link_duplex);
1945 igbvf_print_link_info(adapter);
1947 netif_carrier_on(netdev);
1948 netif_wake_queue(netdev);
1950 } else {
1951 if (netif_carrier_ok(netdev)) {
1952 adapter->link_speed = 0;
1953 adapter->link_duplex = 0;
1954 dev_info(&adapter->pdev->dev, "Link is Down\n");
1955 netif_carrier_off(netdev);
1956 netif_stop_queue(netdev);
1960 if (netif_carrier_ok(netdev)) {
1961 igbvf_update_stats(adapter);
1962 } else {
1963 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1964 tx_ring->count);
1965 if (tx_pending) {
1966 /* We've lost link, so the controller stops DMA,
1967 * but we've got queued Tx work that's never going
1968 * to get done, so reset controller to flush Tx.
1969 * (Do the reset outside of interrupt context).
1971 adapter->tx_timeout_count++;
1972 schedule_work(&adapter->reset_task);
1976 /* Cause software interrupt to ensure Rx ring is cleaned */
1977 ew32(EICS, adapter->rx_ring->eims_value);
1979 /* Reset the timer */
1980 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1981 mod_timer(&adapter->watchdog_timer,
1982 round_jiffies(jiffies + (2 * HZ)));
1985 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1986 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1987 #define IGBVF_TX_FLAGS_TSO 0x00000004
1988 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1989 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1990 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1992 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1993 u32 type_tucmd, u32 mss_l4len_idx)
1995 struct e1000_adv_tx_context_desc *context_desc;
1996 struct igbvf_buffer *buffer_info;
1997 u16 i = tx_ring->next_to_use;
1999 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2000 buffer_info = &tx_ring->buffer_info[i];
2002 i++;
2003 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2005 /* set bits to identify this as an advanced context descriptor */
2006 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2008 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2009 context_desc->seqnum_seed = 0;
2010 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
2011 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2013 buffer_info->time_stamp = jiffies;
2014 buffer_info->dma = 0;
2017 static int igbvf_tso(struct igbvf_ring *tx_ring,
2018 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2020 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2021 union {
2022 struct iphdr *v4;
2023 struct ipv6hdr *v6;
2024 unsigned char *hdr;
2025 } ip;
2026 union {
2027 struct tcphdr *tcp;
2028 unsigned char *hdr;
2029 } l4;
2030 u32 paylen, l4_offset;
2031 int err;
2033 if (skb->ip_summed != CHECKSUM_PARTIAL)
2034 return 0;
2036 if (!skb_is_gso(skb))
2037 return 0;
2039 err = skb_cow_head(skb, 0);
2040 if (err < 0)
2041 return err;
2043 ip.hdr = skb_network_header(skb);
2044 l4.hdr = skb_checksum_start(skb);
2046 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2047 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2049 /* initialize outer IP header fields */
2050 if (ip.v4->version == 4) {
2051 unsigned char *csum_start = skb_checksum_start(skb);
2052 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2054 /* IP header will have to cancel out any data that
2055 * is not a part of the outer IP header
2057 ip.v4->check = csum_fold(csum_partial(trans_start,
2058 csum_start - trans_start,
2059 0));
2060 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2062 ip.v4->tot_len = 0;
2063 } else {
2064 ip.v6->payload_len = 0;
2067 /* determine offset of inner transport header */
2068 l4_offset = l4.hdr - skb->data;
2070 /* compute length of segmentation header */
2071 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2073 /* remove payload length from inner checksum */
2074 paylen = skb->len - l4_offset;
2075 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2077 /* MSS L4LEN IDX */
2078 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2079 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2081 /* VLAN MACLEN IPLEN */
2082 vlan_macip_lens = l4.hdr - ip.hdr;
2083 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2084 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2086 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2088 return 1;
2091 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2093 unsigned int offset = 0;
2095 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2097 return offset == skb_checksum_start_offset(skb);
2100 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2101 u32 tx_flags, __be16 protocol)
2103 u32 vlan_macip_lens = 0;
2104 u32 type_tucmd = 0;
2106 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2107 csum_failed:
2108 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2109 return false;
2110 goto no_csum;
2113 switch (skb->csum_offset) {
2114 case offsetof(struct tcphdr, check):
2115 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2116 /* fall through */
2117 case offsetof(struct udphdr, check):
2118 break;
2119 case offsetof(struct sctphdr, checksum):
2120 /* validate that this is actually an SCTP request */
2121 if (((protocol == htons(ETH_P_IP)) &&
2122 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2123 ((protocol == htons(ETH_P_IPV6)) &&
2124 igbvf_ipv6_csum_is_sctp(skb))) {
2125 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2126 break;
2128 default:
2129 skb_checksum_help(skb);
2130 goto csum_failed;
2133 vlan_macip_lens = skb_checksum_start_offset(skb) -
2134 skb_network_offset(skb);
2135 no_csum:
2136 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2137 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2139 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2140 return true;
2143 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2145 struct igbvf_adapter *adapter = netdev_priv(netdev);
2147 /* there is enough descriptors then we don't need to worry */
2148 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2149 return 0;
2151 netif_stop_queue(netdev);
2153 /* Herbert's original patch had:
2154 * smp_mb__after_netif_stop_queue();
2155 * but since that doesn't exist yet, just open code it.
2157 smp_mb();
2159 /* We need to check again just in case room has been made available */
2160 if (igbvf_desc_unused(adapter->tx_ring) < size)
2161 return -EBUSY;
2163 netif_wake_queue(netdev);
2165 ++adapter->restart_queue;
2166 return 0;
2169 #define IGBVF_MAX_TXD_PWR 16
2170 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2172 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2173 struct igbvf_ring *tx_ring,
2174 struct sk_buff *skb)
2176 struct igbvf_buffer *buffer_info;
2177 struct pci_dev *pdev = adapter->pdev;
2178 unsigned int len = skb_headlen(skb);
2179 unsigned int count = 0, i;
2180 unsigned int f;
2182 i = tx_ring->next_to_use;
2184 buffer_info = &tx_ring->buffer_info[i];
2185 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2186 buffer_info->length = len;
2187 /* set time_stamp *before* dma to help avoid a possible race */
2188 buffer_info->time_stamp = jiffies;
2189 buffer_info->mapped_as_page = false;
2190 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2191 DMA_TO_DEVICE);
2192 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2193 goto dma_error;
2195 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2196 const struct skb_frag_struct *frag;
2198 count++;
2199 i++;
2200 if (i == tx_ring->count)
2201 i = 0;
2203 frag = &skb_shinfo(skb)->frags[f];
2204 len = skb_frag_size(frag);
2206 buffer_info = &tx_ring->buffer_info[i];
2207 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2208 buffer_info->length = len;
2209 buffer_info->time_stamp = jiffies;
2210 buffer_info->mapped_as_page = true;
2211 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2212 DMA_TO_DEVICE);
2213 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2214 goto dma_error;
2217 tx_ring->buffer_info[i].skb = skb;
2219 return ++count;
2221 dma_error:
2222 dev_err(&pdev->dev, "TX DMA map failed\n");
2224 /* clear timestamp and dma mappings for failed buffer_info mapping */
2225 buffer_info->dma = 0;
2226 buffer_info->time_stamp = 0;
2227 buffer_info->length = 0;
2228 buffer_info->mapped_as_page = false;
2229 if (count)
2230 count--;
2232 /* clear timestamp and dma mappings for remaining portion of packet */
2233 while (count--) {
2234 if (i == 0)
2235 i += tx_ring->count;
2236 i--;
2237 buffer_info = &tx_ring->buffer_info[i];
2238 igbvf_put_txbuf(adapter, buffer_info);
2241 return 0;
2244 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2245 struct igbvf_ring *tx_ring,
2246 int tx_flags, int count,
2247 unsigned int first, u32 paylen,
2248 u8 hdr_len)
2250 union e1000_adv_tx_desc *tx_desc = NULL;
2251 struct igbvf_buffer *buffer_info;
2252 u32 olinfo_status = 0, cmd_type_len;
2253 unsigned int i;
2255 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2256 E1000_ADVTXD_DCMD_DEXT);
2258 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2259 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2261 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2262 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2264 /* insert tcp checksum */
2265 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2267 /* insert ip checksum */
2268 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2269 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2271 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2272 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2275 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2277 i = tx_ring->next_to_use;
2278 while (count--) {
2279 buffer_info = &tx_ring->buffer_info[i];
2280 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2281 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2282 tx_desc->read.cmd_type_len =
2283 cpu_to_le32(cmd_type_len | buffer_info->length);
2284 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2285 i++;
2286 if (i == tx_ring->count)
2287 i = 0;
2290 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2291 /* Force memory writes to complete before letting h/w
2292 * know there are new descriptors to fetch. (Only
2293 * applicable for weak-ordered memory model archs,
2294 * such as IA-64).
2296 wmb();
2298 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2299 tx_ring->next_to_use = i;
2300 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2301 /* we need this if more than one processor can write to our tail
2302 * at a time, it synchronizes IO on IA64/Altix systems
2304 mmiowb();
2307 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2308 struct net_device *netdev,
2309 struct igbvf_ring *tx_ring)
2311 struct igbvf_adapter *adapter = netdev_priv(netdev);
2312 unsigned int first, tx_flags = 0;
2313 u8 hdr_len = 0;
2314 int count = 0;
2315 int tso = 0;
2316 __be16 protocol = vlan_get_protocol(skb);
2318 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2319 dev_kfree_skb_any(skb);
2320 return NETDEV_TX_OK;
2323 if (skb->len <= 0) {
2324 dev_kfree_skb_any(skb);
2325 return NETDEV_TX_OK;
2328 /* need: count + 4 desc gap to keep tail from touching
2329 * + 2 desc gap to keep tail from touching head,
2330 * + 1 desc for skb->data,
2331 * + 1 desc for context descriptor,
2332 * head, otherwise try next time
2334 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2335 /* this is a hard error */
2336 return NETDEV_TX_BUSY;
2339 if (skb_vlan_tag_present(skb)) {
2340 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2341 tx_flags |= (skb_vlan_tag_get(skb) <<
2342 IGBVF_TX_FLAGS_VLAN_SHIFT);
2345 if (protocol == htons(ETH_P_IP))
2346 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2348 first = tx_ring->next_to_use;
2350 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2351 if (unlikely(tso < 0)) {
2352 dev_kfree_skb_any(skb);
2353 return NETDEV_TX_OK;
2356 if (tso)
2357 tx_flags |= IGBVF_TX_FLAGS_TSO;
2358 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2359 (skb->ip_summed == CHECKSUM_PARTIAL))
2360 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2362 /* count reflects descriptors mapped, if 0 then mapping error
2363 * has occurred and we need to rewind the descriptor queue
2365 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2367 if (count) {
2368 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2369 first, skb->len, hdr_len);
2370 /* Make sure there is space in the ring for the next send. */
2371 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2372 } else {
2373 dev_kfree_skb_any(skb);
2374 tx_ring->buffer_info[first].time_stamp = 0;
2375 tx_ring->next_to_use = first;
2378 return NETDEV_TX_OK;
2381 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2382 struct net_device *netdev)
2384 struct igbvf_adapter *adapter = netdev_priv(netdev);
2385 struct igbvf_ring *tx_ring;
2387 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2388 dev_kfree_skb_any(skb);
2389 return NETDEV_TX_OK;
2392 tx_ring = &adapter->tx_ring[0];
2394 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2398 * igbvf_tx_timeout - Respond to a Tx Hang
2399 * @netdev: network interface device structure
2401 static void igbvf_tx_timeout(struct net_device *netdev)
2403 struct igbvf_adapter *adapter = netdev_priv(netdev);
2405 /* Do the reset outside of interrupt context */
2406 adapter->tx_timeout_count++;
2407 schedule_work(&adapter->reset_task);
2410 static void igbvf_reset_task(struct work_struct *work)
2412 struct igbvf_adapter *adapter;
2414 adapter = container_of(work, struct igbvf_adapter, reset_task);
2416 igbvf_reinit_locked(adapter);
2420 * igbvf_change_mtu - Change the Maximum Transfer Unit
2421 * @netdev: network interface device structure
2422 * @new_mtu: new value for maximum frame size
2424 * Returns 0 on success, negative on failure
2426 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2428 struct igbvf_adapter *adapter = netdev_priv(netdev);
2429 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2431 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2432 usleep_range(1000, 2000);
2433 /* igbvf_down has a dependency on max_frame_size */
2434 adapter->max_frame_size = max_frame;
2435 if (netif_running(netdev))
2436 igbvf_down(adapter);
2438 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2439 * means we reserve 2 more, this pushes us to allocate from the next
2440 * larger slab size.
2441 * i.e. RXBUFFER_2048 --> size-4096 slab
2442 * However with the new *_jumbo_rx* routines, jumbo receives will use
2443 * fragmented skbs
2446 if (max_frame <= 1024)
2447 adapter->rx_buffer_len = 1024;
2448 else if (max_frame <= 2048)
2449 adapter->rx_buffer_len = 2048;
2450 else
2451 #if (PAGE_SIZE / 2) > 16384
2452 adapter->rx_buffer_len = 16384;
2453 #else
2454 adapter->rx_buffer_len = PAGE_SIZE / 2;
2455 #endif
2457 /* adjust allocation if LPE protects us, and we aren't using SBP */
2458 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2459 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2460 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2461 ETH_FCS_LEN;
2463 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2464 netdev->mtu, new_mtu);
2465 netdev->mtu = new_mtu;
2467 if (netif_running(netdev))
2468 igbvf_up(adapter);
2469 else
2470 igbvf_reset(adapter);
2472 clear_bit(__IGBVF_RESETTING, &adapter->state);
2474 return 0;
2477 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2479 switch (cmd) {
2480 default:
2481 return -EOPNOTSUPP;
2485 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2487 struct net_device *netdev = pci_get_drvdata(pdev);
2488 struct igbvf_adapter *adapter = netdev_priv(netdev);
2489 #ifdef CONFIG_PM
2490 int retval = 0;
2491 #endif
2493 netif_device_detach(netdev);
2495 if (netif_running(netdev)) {
2496 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2497 igbvf_down(adapter);
2498 igbvf_free_irq(adapter);
2501 #ifdef CONFIG_PM
2502 retval = pci_save_state(pdev);
2503 if (retval)
2504 return retval;
2505 #endif
2507 pci_disable_device(pdev);
2509 return 0;
2512 #ifdef CONFIG_PM
2513 static int igbvf_resume(struct pci_dev *pdev)
2515 struct net_device *netdev = pci_get_drvdata(pdev);
2516 struct igbvf_adapter *adapter = netdev_priv(netdev);
2517 u32 err;
2519 pci_restore_state(pdev);
2520 err = pci_enable_device_mem(pdev);
2521 if (err) {
2522 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2523 return err;
2526 pci_set_master(pdev);
2528 if (netif_running(netdev)) {
2529 err = igbvf_request_irq(adapter);
2530 if (err)
2531 return err;
2534 igbvf_reset(adapter);
2536 if (netif_running(netdev))
2537 igbvf_up(adapter);
2539 netif_device_attach(netdev);
2541 return 0;
2543 #endif
2545 static void igbvf_shutdown(struct pci_dev *pdev)
2547 igbvf_suspend(pdev, PMSG_SUSPEND);
2550 #ifdef CONFIG_NET_POLL_CONTROLLER
2551 /* Polling 'interrupt' - used by things like netconsole to send skbs
2552 * without having to re-enable interrupts. It's not called while
2553 * the interrupt routine is executing.
2555 static void igbvf_netpoll(struct net_device *netdev)
2557 struct igbvf_adapter *adapter = netdev_priv(netdev);
2559 disable_irq(adapter->pdev->irq);
2561 igbvf_clean_tx_irq(adapter->tx_ring);
2563 enable_irq(adapter->pdev->irq);
2565 #endif
2568 * igbvf_io_error_detected - called when PCI error is detected
2569 * @pdev: Pointer to PCI device
2570 * @state: The current pci connection state
2572 * This function is called after a PCI bus error affecting
2573 * this device has been detected.
2575 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2576 pci_channel_state_t state)
2578 struct net_device *netdev = pci_get_drvdata(pdev);
2579 struct igbvf_adapter *adapter = netdev_priv(netdev);
2581 netif_device_detach(netdev);
2583 if (state == pci_channel_io_perm_failure)
2584 return PCI_ERS_RESULT_DISCONNECT;
2586 if (netif_running(netdev))
2587 igbvf_down(adapter);
2588 pci_disable_device(pdev);
2590 /* Request a slot slot reset. */
2591 return PCI_ERS_RESULT_NEED_RESET;
2595 * igbvf_io_slot_reset - called after the pci bus has been reset.
2596 * @pdev: Pointer to PCI device
2598 * Restart the card from scratch, as if from a cold-boot. Implementation
2599 * resembles the first-half of the igbvf_resume routine.
2601 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2603 struct net_device *netdev = pci_get_drvdata(pdev);
2604 struct igbvf_adapter *adapter = netdev_priv(netdev);
2606 if (pci_enable_device_mem(pdev)) {
2607 dev_err(&pdev->dev,
2608 "Cannot re-enable PCI device after reset.\n");
2609 return PCI_ERS_RESULT_DISCONNECT;
2611 pci_set_master(pdev);
2613 igbvf_reset(adapter);
2615 return PCI_ERS_RESULT_RECOVERED;
2619 * igbvf_io_resume - called when traffic can start flowing again.
2620 * @pdev: Pointer to PCI device
2622 * This callback is called when the error recovery driver tells us that
2623 * its OK to resume normal operation. Implementation resembles the
2624 * second-half of the igbvf_resume routine.
2626 static void igbvf_io_resume(struct pci_dev *pdev)
2628 struct net_device *netdev = pci_get_drvdata(pdev);
2629 struct igbvf_adapter *adapter = netdev_priv(netdev);
2631 if (netif_running(netdev)) {
2632 if (igbvf_up(adapter)) {
2633 dev_err(&pdev->dev,
2634 "can't bring device back up after reset\n");
2635 return;
2639 netif_device_attach(netdev);
2642 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2644 struct e1000_hw *hw = &adapter->hw;
2645 struct net_device *netdev = adapter->netdev;
2646 struct pci_dev *pdev = adapter->pdev;
2648 if (hw->mac.type == e1000_vfadapt_i350)
2649 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2650 else
2651 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2652 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2655 static int igbvf_set_features(struct net_device *netdev,
2656 netdev_features_t features)
2658 struct igbvf_adapter *adapter = netdev_priv(netdev);
2660 if (features & NETIF_F_RXCSUM)
2661 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2662 else
2663 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2665 return 0;
2668 #define IGBVF_MAX_MAC_HDR_LEN 127
2669 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2671 static netdev_features_t
2672 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2673 netdev_features_t features)
2675 unsigned int network_hdr_len, mac_hdr_len;
2677 /* Make certain the headers can be described by a context descriptor */
2678 mac_hdr_len = skb_network_header(skb) - skb->data;
2679 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2680 return features & ~(NETIF_F_HW_CSUM |
2681 NETIF_F_SCTP_CRC |
2682 NETIF_F_HW_VLAN_CTAG_TX |
2683 NETIF_F_TSO |
2684 NETIF_F_TSO6);
2686 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2687 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2688 return features & ~(NETIF_F_HW_CSUM |
2689 NETIF_F_SCTP_CRC |
2690 NETIF_F_TSO |
2691 NETIF_F_TSO6);
2693 /* We can only support IPV4 TSO in tunnels if we can mangle the
2694 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2696 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2697 features &= ~NETIF_F_TSO;
2699 return features;
2702 static const struct net_device_ops igbvf_netdev_ops = {
2703 .ndo_open = igbvf_open,
2704 .ndo_stop = igbvf_close,
2705 .ndo_start_xmit = igbvf_xmit_frame,
2706 .ndo_set_rx_mode = igbvf_set_rx_mode,
2707 .ndo_set_mac_address = igbvf_set_mac,
2708 .ndo_change_mtu = igbvf_change_mtu,
2709 .ndo_do_ioctl = igbvf_ioctl,
2710 .ndo_tx_timeout = igbvf_tx_timeout,
2711 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2712 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2713 #ifdef CONFIG_NET_POLL_CONTROLLER
2714 .ndo_poll_controller = igbvf_netpoll,
2715 #endif
2716 .ndo_set_features = igbvf_set_features,
2717 .ndo_features_check = igbvf_features_check,
2721 * igbvf_probe - Device Initialization Routine
2722 * @pdev: PCI device information struct
2723 * @ent: entry in igbvf_pci_tbl
2725 * Returns 0 on success, negative on failure
2727 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2728 * The OS initialization, configuring of the adapter private structure,
2729 * and a hardware reset occur.
2731 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2733 struct net_device *netdev;
2734 struct igbvf_adapter *adapter;
2735 struct e1000_hw *hw;
2736 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2738 static int cards_found;
2739 int err, pci_using_dac;
2741 err = pci_enable_device_mem(pdev);
2742 if (err)
2743 return err;
2745 pci_using_dac = 0;
2746 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2747 if (!err) {
2748 pci_using_dac = 1;
2749 } else {
2750 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2751 if (err) {
2752 dev_err(&pdev->dev,
2753 "No usable DMA configuration, aborting\n");
2754 goto err_dma;
2758 err = pci_request_regions(pdev, igbvf_driver_name);
2759 if (err)
2760 goto err_pci_reg;
2762 pci_set_master(pdev);
2764 err = -ENOMEM;
2765 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2766 if (!netdev)
2767 goto err_alloc_etherdev;
2769 SET_NETDEV_DEV(netdev, &pdev->dev);
2771 pci_set_drvdata(pdev, netdev);
2772 adapter = netdev_priv(netdev);
2773 hw = &adapter->hw;
2774 adapter->netdev = netdev;
2775 adapter->pdev = pdev;
2776 adapter->ei = ei;
2777 adapter->pba = ei->pba;
2778 adapter->flags = ei->flags;
2779 adapter->hw.back = adapter;
2780 adapter->hw.mac.type = ei->mac;
2781 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2783 /* PCI config space info */
2785 hw->vendor_id = pdev->vendor;
2786 hw->device_id = pdev->device;
2787 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2788 hw->subsystem_device_id = pdev->subsystem_device;
2789 hw->revision_id = pdev->revision;
2791 err = -EIO;
2792 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2793 pci_resource_len(pdev, 0));
2795 if (!adapter->hw.hw_addr)
2796 goto err_ioremap;
2798 if (ei->get_variants) {
2799 err = ei->get_variants(adapter);
2800 if (err)
2801 goto err_get_variants;
2804 /* setup adapter struct */
2805 err = igbvf_sw_init(adapter);
2806 if (err)
2807 goto err_sw_init;
2809 /* construct the net_device struct */
2810 netdev->netdev_ops = &igbvf_netdev_ops;
2812 igbvf_set_ethtool_ops(netdev);
2813 netdev->watchdog_timeo = 5 * HZ;
2814 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2816 adapter->bd_number = cards_found++;
2818 netdev->hw_features = NETIF_F_SG |
2819 NETIF_F_TSO |
2820 NETIF_F_TSO6 |
2821 NETIF_F_RXCSUM |
2822 NETIF_F_HW_CSUM |
2823 NETIF_F_SCTP_CRC;
2825 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2826 NETIF_F_GSO_GRE_CSUM | \
2827 NETIF_F_GSO_IPXIP4 | \
2828 NETIF_F_GSO_IPXIP6 | \
2829 NETIF_F_GSO_UDP_TUNNEL | \
2830 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2832 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2833 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2834 IGBVF_GSO_PARTIAL_FEATURES;
2836 netdev->features = netdev->hw_features;
2838 if (pci_using_dac)
2839 netdev->features |= NETIF_F_HIGHDMA;
2841 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2842 netdev->mpls_features |= NETIF_F_HW_CSUM;
2843 netdev->hw_enc_features |= netdev->vlan_features;
2845 /* set this bit last since it cannot be part of vlan_features */
2846 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2847 NETIF_F_HW_VLAN_CTAG_RX |
2848 NETIF_F_HW_VLAN_CTAG_TX;
2850 /* MTU range: 68 - 9216 */
2851 netdev->min_mtu = ETH_MIN_MTU;
2852 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2854 spin_lock_bh(&hw->mbx_lock);
2856 /*reset the controller to put the device in a known good state */
2857 err = hw->mac.ops.reset_hw(hw);
2858 if (err) {
2859 dev_info(&pdev->dev,
2860 "PF still in reset state. Is the PF interface up?\n");
2861 } else {
2862 err = hw->mac.ops.read_mac_addr(hw);
2863 if (err)
2864 dev_info(&pdev->dev, "Error reading MAC address.\n");
2865 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2866 dev_info(&pdev->dev,
2867 "MAC address not assigned by administrator.\n");
2868 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2869 netdev->addr_len);
2872 spin_unlock_bh(&hw->mbx_lock);
2874 if (!is_valid_ether_addr(netdev->dev_addr)) {
2875 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2876 eth_hw_addr_random(netdev);
2877 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2878 netdev->addr_len);
2881 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2883 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2884 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2886 /* ring size defaults */
2887 adapter->rx_ring->count = 1024;
2888 adapter->tx_ring->count = 1024;
2890 /* reset the hardware with the new settings */
2891 igbvf_reset(adapter);
2893 /* set hardware-specific flags */
2894 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2895 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2897 strcpy(netdev->name, "eth%d");
2898 err = register_netdev(netdev);
2899 if (err)
2900 goto err_hw_init;
2902 /* tell the stack to leave us alone until igbvf_open() is called */
2903 netif_carrier_off(netdev);
2904 netif_stop_queue(netdev);
2906 igbvf_print_device_info(adapter);
2908 igbvf_initialize_last_counter_stats(adapter);
2910 return 0;
2912 err_hw_init:
2913 kfree(adapter->tx_ring);
2914 kfree(adapter->rx_ring);
2915 err_sw_init:
2916 igbvf_reset_interrupt_capability(adapter);
2917 err_get_variants:
2918 iounmap(adapter->hw.hw_addr);
2919 err_ioremap:
2920 free_netdev(netdev);
2921 err_alloc_etherdev:
2922 pci_release_regions(pdev);
2923 err_pci_reg:
2924 err_dma:
2925 pci_disable_device(pdev);
2926 return err;
2930 * igbvf_remove - Device Removal Routine
2931 * @pdev: PCI device information struct
2933 * igbvf_remove is called by the PCI subsystem to alert the driver
2934 * that it should release a PCI device. The could be caused by a
2935 * Hot-Plug event, or because the driver is going to be removed from
2936 * memory.
2938 static void igbvf_remove(struct pci_dev *pdev)
2940 struct net_device *netdev = pci_get_drvdata(pdev);
2941 struct igbvf_adapter *adapter = netdev_priv(netdev);
2942 struct e1000_hw *hw = &adapter->hw;
2944 /* The watchdog timer may be rescheduled, so explicitly
2945 * disable it from being rescheduled.
2947 set_bit(__IGBVF_DOWN, &adapter->state);
2948 del_timer_sync(&adapter->watchdog_timer);
2950 cancel_work_sync(&adapter->reset_task);
2951 cancel_work_sync(&adapter->watchdog_task);
2953 unregister_netdev(netdev);
2955 igbvf_reset_interrupt_capability(adapter);
2957 /* it is important to delete the NAPI struct prior to freeing the
2958 * Rx ring so that you do not end up with null pointer refs
2960 netif_napi_del(&adapter->rx_ring->napi);
2961 kfree(adapter->tx_ring);
2962 kfree(adapter->rx_ring);
2964 iounmap(hw->hw_addr);
2965 if (hw->flash_address)
2966 iounmap(hw->flash_address);
2967 pci_release_regions(pdev);
2969 free_netdev(netdev);
2971 pci_disable_device(pdev);
2974 /* PCI Error Recovery (ERS) */
2975 static const struct pci_error_handlers igbvf_err_handler = {
2976 .error_detected = igbvf_io_error_detected,
2977 .slot_reset = igbvf_io_slot_reset,
2978 .resume = igbvf_io_resume,
2981 static const struct pci_device_id igbvf_pci_tbl[] = {
2982 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2983 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2984 { } /* terminate list */
2986 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2988 /* PCI Device API Driver */
2989 static struct pci_driver igbvf_driver = {
2990 .name = igbvf_driver_name,
2991 .id_table = igbvf_pci_tbl,
2992 .probe = igbvf_probe,
2993 .remove = igbvf_remove,
2994 #ifdef CONFIG_PM
2995 /* Power Management Hooks */
2996 .suspend = igbvf_suspend,
2997 .resume = igbvf_resume,
2998 #endif
2999 .shutdown = igbvf_shutdown,
3000 .err_handler = &igbvf_err_handler
3004 * igbvf_init_module - Driver Registration Routine
3006 * igbvf_init_module is the first routine called when the driver is
3007 * loaded. All it does is register with the PCI subsystem.
3009 static int __init igbvf_init_module(void)
3011 int ret;
3013 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
3014 pr_info("%s\n", igbvf_copyright);
3016 ret = pci_register_driver(&igbvf_driver);
3018 return ret;
3020 module_init(igbvf_init_module);
3023 * igbvf_exit_module - Driver Exit Cleanup Routine
3025 * igbvf_exit_module is called just before the driver is removed
3026 * from memory.
3028 static void __exit igbvf_exit_module(void)
3030 pci_unregister_driver(&igbvf_driver);
3032 module_exit(igbvf_exit_module);
3034 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3035 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3036 MODULE_LICENSE("GPL");
3037 MODULE_VERSION(DRV_VERSION);
3039 /* netdev.c */