1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2014 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
34 #include "ixgbe_phy.h"
36 static void ixgbe_i2c_start(struct ixgbe_hw
*hw
);
37 static void ixgbe_i2c_stop(struct ixgbe_hw
*hw
);
38 static s32
ixgbe_clock_in_i2c_byte(struct ixgbe_hw
*hw
, u8
*data
);
39 static s32
ixgbe_clock_out_i2c_byte(struct ixgbe_hw
*hw
, u8 data
);
40 static s32
ixgbe_get_i2c_ack(struct ixgbe_hw
*hw
);
41 static s32
ixgbe_clock_in_i2c_bit(struct ixgbe_hw
*hw
, bool *data
);
42 static s32
ixgbe_clock_out_i2c_bit(struct ixgbe_hw
*hw
, bool data
);
43 static void ixgbe_raise_i2c_clk(struct ixgbe_hw
*hw
, u32
*i2cctl
);
44 static void ixgbe_lower_i2c_clk(struct ixgbe_hw
*hw
, u32
*i2cctl
);
45 static s32
ixgbe_set_i2c_data(struct ixgbe_hw
*hw
, u32
*i2cctl
, bool data
);
46 static bool ixgbe_get_i2c_data(struct ixgbe_hw
*hw
, u32
*i2cctl
);
47 static void ixgbe_i2c_bus_clear(struct ixgbe_hw
*hw
);
48 static enum ixgbe_phy_type
ixgbe_get_phy_type_from_id(u32 phy_id
);
49 static s32
ixgbe_get_phy_id(struct ixgbe_hw
*hw
);
50 static s32
ixgbe_identify_qsfp_module_generic(struct ixgbe_hw
*hw
);
53 * ixgbe_out_i2c_byte_ack - Send I2C byte with ack
54 * @hw: pointer to the hardware structure
57 * Returns an error code on error.
59 static s32
ixgbe_out_i2c_byte_ack(struct ixgbe_hw
*hw
, u8 byte
)
63 status
= ixgbe_clock_out_i2c_byte(hw
, byte
);
66 return ixgbe_get_i2c_ack(hw
);
70 * ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
71 * @hw: pointer to the hardware structure
72 * @byte: pointer to a u8 to receive the byte
74 * Returns an error code on error.
76 static s32
ixgbe_in_i2c_byte_ack(struct ixgbe_hw
*hw
, u8
*byte
)
80 status
= ixgbe_clock_in_i2c_byte(hw
, byte
);
84 return ixgbe_clock_out_i2c_bit(hw
, false);
88 * ixgbe_ones_comp_byte_add - Perform one's complement addition
92 * Returns one's complement 8-bit sum.
94 static u8
ixgbe_ones_comp_byte_add(u8 add1
, u8 add2
)
96 u16 sum
= add1
+ add2
;
98 sum
= (sum
& 0xFF) + (sum
>> 8);
103 * ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
104 * @hw: pointer to the hardware structure
105 * @addr: I2C bus address to read from
106 * @reg: I2C device register to read from
107 * @val: pointer to location to receive read value
108 * @lock: true if to take and release semaphore
110 * Returns an error code on error.
112 s32
ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw
*hw
, u8 addr
,
113 u16 reg
, u16
*val
, bool lock
)
115 u32 swfw_mask
= hw
->phy
.phy_semaphore_mask
;
124 reg_high
= ((reg
>> 7) & 0xFE) | 1; /* Indicate read combined */
125 csum
= ixgbe_ones_comp_byte_add(reg_high
, reg
& 0xFF);
128 if (lock
&& hw
->mac
.ops
.acquire_swfw_sync(hw
, swfw_mask
))
129 return IXGBE_ERR_SWFW_SYNC
;
131 /* Device Address and write indication */
132 if (ixgbe_out_i2c_byte_ack(hw
, addr
))
134 /* Write bits 14:8 */
135 if (ixgbe_out_i2c_byte_ack(hw
, reg_high
))
138 if (ixgbe_out_i2c_byte_ack(hw
, reg
& 0xFF))
141 if (ixgbe_out_i2c_byte_ack(hw
, csum
))
143 /* Re-start condition */
145 /* Device Address and read indication */
146 if (ixgbe_out_i2c_byte_ack(hw
, addr
| 1))
149 if (ixgbe_in_i2c_byte_ack(hw
, &high_bits
))
152 if (ixgbe_in_i2c_byte_ack(hw
, &low_bits
))
155 if (ixgbe_clock_in_i2c_byte(hw
, &csum_byte
))
158 if (ixgbe_clock_out_i2c_bit(hw
, false))
162 hw
->mac
.ops
.release_swfw_sync(hw
, swfw_mask
);
163 *val
= (high_bits
<< 8) | low_bits
;
167 ixgbe_i2c_bus_clear(hw
);
169 hw
->mac
.ops
.release_swfw_sync(hw
, swfw_mask
);
171 if (retry
< max_retry
)
172 hw_dbg(hw
, "I2C byte read combined error - Retry.\n");
174 hw_dbg(hw
, "I2C byte read combined error.\n");
175 } while (retry
< max_retry
);
177 return IXGBE_ERR_I2C
;
181 * ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
182 * @hw: pointer to the hardware structure
183 * @addr: I2C bus address to write to
184 * @reg: I2C device register to write to
185 * @val: value to write
186 * @lock: true if to take and release semaphore
188 * Returns an error code on error.
190 s32
ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw
*hw
, u8 addr
,
191 u16 reg
, u16 val
, bool lock
)
193 u32 swfw_mask
= hw
->phy
.phy_semaphore_mask
;
199 reg_high
= (reg
>> 7) & 0xFE; /* Indicate write combined */
200 csum
= ixgbe_ones_comp_byte_add(reg_high
, reg
& 0xFF);
201 csum
= ixgbe_ones_comp_byte_add(csum
, val
>> 8);
202 csum
= ixgbe_ones_comp_byte_add(csum
, val
& 0xFF);
205 if (lock
&& hw
->mac
.ops
.acquire_swfw_sync(hw
, swfw_mask
))
206 return IXGBE_ERR_SWFW_SYNC
;
208 /* Device Address and write indication */
209 if (ixgbe_out_i2c_byte_ack(hw
, addr
))
211 /* Write bits 14:8 */
212 if (ixgbe_out_i2c_byte_ack(hw
, reg_high
))
215 if (ixgbe_out_i2c_byte_ack(hw
, reg
& 0xFF))
217 /* Write data 15:8 */
218 if (ixgbe_out_i2c_byte_ack(hw
, val
>> 8))
221 if (ixgbe_out_i2c_byte_ack(hw
, val
& 0xFF))
224 if (ixgbe_out_i2c_byte_ack(hw
, csum
))
228 hw
->mac
.ops
.release_swfw_sync(hw
, swfw_mask
);
232 ixgbe_i2c_bus_clear(hw
);
234 hw
->mac
.ops
.release_swfw_sync(hw
, swfw_mask
);
236 if (retry
< max_retry
)
237 hw_dbg(hw
, "I2C byte write combined error - Retry.\n");
239 hw_dbg(hw
, "I2C byte write combined error.\n");
240 } while (retry
< max_retry
);
242 return IXGBE_ERR_I2C
;
246 * ixgbe_probe_phy - Probe a single address for a PHY
247 * @hw: pointer to hardware structure
248 * @phy_addr: PHY address to probe
250 * Returns true if PHY found
252 static bool ixgbe_probe_phy(struct ixgbe_hw
*hw
, u16 phy_addr
)
256 hw
->phy
.mdio
.prtad
= phy_addr
;
257 if (mdio45_probe(&hw
->phy
.mdio
, phy_addr
) != 0)
260 if (ixgbe_get_phy_id(hw
))
263 hw
->phy
.type
= ixgbe_get_phy_type_from_id(hw
->phy
.id
);
265 if (hw
->phy
.type
== ixgbe_phy_unknown
) {
266 hw
->phy
.ops
.read_reg(hw
,
271 (MDIO_PMA_EXTABLE_10GBT
|
272 MDIO_PMA_EXTABLE_1000BT
))
273 hw
->phy
.type
= ixgbe_phy_cu_unknown
;
275 hw
->phy
.type
= ixgbe_phy_generic
;
282 * ixgbe_identify_phy_generic - Get physical layer module
283 * @hw: pointer to hardware structure
285 * Determines the physical layer module found on the current adapter.
287 s32
ixgbe_identify_phy_generic(struct ixgbe_hw
*hw
)
290 u32 status
= IXGBE_ERR_PHY_ADDR_INVALID
;
292 if (!hw
->phy
.phy_semaphore_mask
) {
294 hw
->phy
.phy_semaphore_mask
= IXGBE_GSSR_PHY1_SM
;
296 hw
->phy
.phy_semaphore_mask
= IXGBE_GSSR_PHY0_SM
;
299 if (hw
->phy
.type
!= ixgbe_phy_unknown
)
302 if (hw
->phy
.nw_mng_if_sel
) {
303 phy_addr
= (hw
->phy
.nw_mng_if_sel
&
304 IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD
) >>
305 IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT
;
306 if (ixgbe_probe_phy(hw
, phy_addr
))
309 return IXGBE_ERR_PHY_ADDR_INVALID
;
312 for (phy_addr
= 0; phy_addr
< IXGBE_MAX_PHY_ADDR
; phy_addr
++) {
313 if (ixgbe_probe_phy(hw
, phy_addr
)) {
319 /* Certain media types do not have a phy so an address will not
320 * be found and the code will take this path. Caller has to
321 * decide if it is an error or not.
324 hw
->phy
.mdio
.prtad
= MDIO_PRTAD_NONE
;
330 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
331 * @hw: pointer to the hardware structure
333 * This function checks the MMNGC.MNG_VETO bit to see if there are
334 * any constraints on link from manageability. For MAC's that don't
335 * have this bit just return false since the link can not be blocked
338 bool ixgbe_check_reset_blocked(struct ixgbe_hw
*hw
)
342 /* If we don't have this bit, it can't be blocking */
343 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
346 mmngc
= IXGBE_READ_REG(hw
, IXGBE_MMNGC
);
347 if (mmngc
& IXGBE_MMNGC_MNG_VETO
) {
348 hw_dbg(hw
, "MNG_VETO bit detected.\n");
356 * ixgbe_get_phy_id - Get the phy type
357 * @hw: pointer to hardware structure
360 static s32
ixgbe_get_phy_id(struct ixgbe_hw
*hw
)
366 status
= hw
->phy
.ops
.read_reg(hw
, MDIO_DEVID1
, MDIO_MMD_PMAPMD
,
370 hw
->phy
.id
= (u32
)(phy_id_high
<< 16);
371 status
= hw
->phy
.ops
.read_reg(hw
, MDIO_DEVID2
, MDIO_MMD_PMAPMD
,
373 hw
->phy
.id
|= (u32
)(phy_id_low
& IXGBE_PHY_REVISION_MASK
);
374 hw
->phy
.revision
= (u32
)(phy_id_low
& ~IXGBE_PHY_REVISION_MASK
);
380 * ixgbe_get_phy_type_from_id - Get the phy type
381 * @phy_id: hardware phy id
384 static enum ixgbe_phy_type
ixgbe_get_phy_type_from_id(u32 phy_id
)
386 enum ixgbe_phy_type phy_type
;
390 phy_type
= ixgbe_phy_tn
;
395 phy_type
= ixgbe_phy_aq
;
398 phy_type
= ixgbe_phy_qt
;
401 phy_type
= ixgbe_phy_nl
;
405 phy_type
= ixgbe_phy_x550em_ext_t
;
408 phy_type
= ixgbe_phy_unknown
;
416 * ixgbe_reset_phy_generic - Performs a PHY reset
417 * @hw: pointer to hardware structure
419 s32
ixgbe_reset_phy_generic(struct ixgbe_hw
*hw
)
425 if (hw
->phy
.type
== ixgbe_phy_unknown
)
426 status
= ixgbe_identify_phy_generic(hw
);
428 if (status
!= 0 || hw
->phy
.type
== ixgbe_phy_none
)
431 /* Don't reset PHY if it's shut down due to overtemp. */
432 if (!hw
->phy
.reset_if_overtemp
&&
433 (IXGBE_ERR_OVERTEMP
== hw
->phy
.ops
.check_overtemp(hw
)))
436 /* Blocked by MNG FW so bail */
437 if (ixgbe_check_reset_blocked(hw
))
441 * Perform soft PHY reset to the PHY_XS.
442 * This will cause a soft reset to the PHY
444 hw
->phy
.ops
.write_reg(hw
, MDIO_CTRL1
,
449 * Poll for reset bit to self-clear indicating reset is complete.
450 * Some PHYs could take up to 3 seconds to complete and need about
451 * 1.7 usec delay after the reset is complete.
453 for (i
= 0; i
< 30; i
++) {
455 if (hw
->phy
.type
== ixgbe_phy_x550em_ext_t
) {
456 status
= hw
->phy
.ops
.read_reg(hw
,
457 IXGBE_MDIO_TX_VENDOR_ALARMS_3
,
458 MDIO_MMD_PMAPMD
, &ctrl
);
462 if (ctrl
& IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK
) {
467 status
= hw
->phy
.ops
.read_reg(hw
, MDIO_CTRL1
,
468 MDIO_MMD_PHYXS
, &ctrl
);
472 if (!(ctrl
& MDIO_CTRL1_RESET
)) {
479 if (ctrl
& MDIO_CTRL1_RESET
) {
480 hw_dbg(hw
, "PHY reset polling failed to complete.\n");
481 return IXGBE_ERR_RESET_FAILED
;
488 * ixgbe_read_phy_mdi - Reads a value from a specified PHY register without
490 * @hw: pointer to hardware structure
491 * @reg_addr: 32 bit address of PHY register to read
492 * @device_type: 5 bit device type
493 * @phy_data: Pointer to read data from PHY register
495 s32
ixgbe_read_phy_reg_mdi(struct ixgbe_hw
*hw
, u32 reg_addr
, u32 device_type
,
498 u32 i
, data
, command
;
500 /* Setup and write the address cycle command */
501 command
= ((reg_addr
<< IXGBE_MSCA_NP_ADDR_SHIFT
) |
502 (device_type
<< IXGBE_MSCA_DEV_TYPE_SHIFT
) |
503 (hw
->phy
.mdio
.prtad
<< IXGBE_MSCA_PHY_ADDR_SHIFT
) |
504 (IXGBE_MSCA_ADDR_CYCLE
| IXGBE_MSCA_MDI_COMMAND
));
506 IXGBE_WRITE_REG(hw
, IXGBE_MSCA
, command
);
508 /* Check every 10 usec to see if the address cycle completed.
509 * The MDI Command bit will clear when the operation is
512 for (i
= 0; i
< IXGBE_MDIO_COMMAND_TIMEOUT
; i
++) {
515 command
= IXGBE_READ_REG(hw
, IXGBE_MSCA
);
516 if ((command
& IXGBE_MSCA_MDI_COMMAND
) == 0)
521 if ((command
& IXGBE_MSCA_MDI_COMMAND
) != 0) {
522 hw_dbg(hw
, "PHY address command did not complete.\n");
523 return IXGBE_ERR_PHY
;
526 /* Address cycle complete, setup and write the read
529 command
= ((reg_addr
<< IXGBE_MSCA_NP_ADDR_SHIFT
) |
530 (device_type
<< IXGBE_MSCA_DEV_TYPE_SHIFT
) |
531 (hw
->phy
.mdio
.prtad
<< IXGBE_MSCA_PHY_ADDR_SHIFT
) |
532 (IXGBE_MSCA_READ
| IXGBE_MSCA_MDI_COMMAND
));
534 IXGBE_WRITE_REG(hw
, IXGBE_MSCA
, command
);
536 /* Check every 10 usec to see if the address cycle
537 * completed. The MDI Command bit will clear when the
538 * operation is complete
540 for (i
= 0; i
< IXGBE_MDIO_COMMAND_TIMEOUT
; i
++) {
543 command
= IXGBE_READ_REG(hw
, IXGBE_MSCA
);
544 if ((command
& IXGBE_MSCA_MDI_COMMAND
) == 0)
548 if ((command
& IXGBE_MSCA_MDI_COMMAND
) != 0) {
549 hw_dbg(hw
, "PHY read command didn't complete\n");
550 return IXGBE_ERR_PHY
;
553 /* Read operation is complete. Get the data
556 data
= IXGBE_READ_REG(hw
, IXGBE_MSRWD
);
557 data
>>= IXGBE_MSRWD_READ_DATA_SHIFT
;
558 *phy_data
= (u16
)(data
);
564 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
565 * using the SWFW lock - this function is needed in most cases
566 * @hw: pointer to hardware structure
567 * @reg_addr: 32 bit address of PHY register to read
568 * @device_type: 5 bit device type
569 * @phy_data: Pointer to read data from PHY register
571 s32
ixgbe_read_phy_reg_generic(struct ixgbe_hw
*hw
, u32 reg_addr
,
572 u32 device_type
, u16
*phy_data
)
575 u32 gssr
= hw
->phy
.phy_semaphore_mask
;
577 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, gssr
) == 0) {
578 status
= ixgbe_read_phy_reg_mdi(hw
, reg_addr
, device_type
,
580 hw
->mac
.ops
.release_swfw_sync(hw
, gssr
);
582 return IXGBE_ERR_SWFW_SYNC
;
589 * ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
591 * @hw: pointer to hardware structure
592 * @reg_addr: 32 bit PHY register to write
593 * @device_type: 5 bit device type
594 * @phy_data: Data to write to the PHY register
596 s32
ixgbe_write_phy_reg_mdi(struct ixgbe_hw
*hw
, u32 reg_addr
,
597 u32 device_type
, u16 phy_data
)
601 /* Put the data in the MDI single read and write data register*/
602 IXGBE_WRITE_REG(hw
, IXGBE_MSRWD
, (u32
)phy_data
);
604 /* Setup and write the address cycle command */
605 command
= ((reg_addr
<< IXGBE_MSCA_NP_ADDR_SHIFT
) |
606 (device_type
<< IXGBE_MSCA_DEV_TYPE_SHIFT
) |
607 (hw
->phy
.mdio
.prtad
<< IXGBE_MSCA_PHY_ADDR_SHIFT
) |
608 (IXGBE_MSCA_ADDR_CYCLE
| IXGBE_MSCA_MDI_COMMAND
));
610 IXGBE_WRITE_REG(hw
, IXGBE_MSCA
, command
);
613 * Check every 10 usec to see if the address cycle completed.
614 * The MDI Command bit will clear when the operation is
617 for (i
= 0; i
< IXGBE_MDIO_COMMAND_TIMEOUT
; i
++) {
620 command
= IXGBE_READ_REG(hw
, IXGBE_MSCA
);
621 if ((command
& IXGBE_MSCA_MDI_COMMAND
) == 0)
625 if ((command
& IXGBE_MSCA_MDI_COMMAND
) != 0) {
626 hw_dbg(hw
, "PHY address cmd didn't complete\n");
627 return IXGBE_ERR_PHY
;
631 * Address cycle complete, setup and write the write
634 command
= ((reg_addr
<< IXGBE_MSCA_NP_ADDR_SHIFT
) |
635 (device_type
<< IXGBE_MSCA_DEV_TYPE_SHIFT
) |
636 (hw
->phy
.mdio
.prtad
<< IXGBE_MSCA_PHY_ADDR_SHIFT
) |
637 (IXGBE_MSCA_WRITE
| IXGBE_MSCA_MDI_COMMAND
));
639 IXGBE_WRITE_REG(hw
, IXGBE_MSCA
, command
);
641 /* Check every 10 usec to see if the address cycle
642 * completed. The MDI Command bit will clear when the
643 * operation is complete
645 for (i
= 0; i
< IXGBE_MDIO_COMMAND_TIMEOUT
; i
++) {
648 command
= IXGBE_READ_REG(hw
, IXGBE_MSCA
);
649 if ((command
& IXGBE_MSCA_MDI_COMMAND
) == 0)
653 if ((command
& IXGBE_MSCA_MDI_COMMAND
) != 0) {
654 hw_dbg(hw
, "PHY write cmd didn't complete\n");
655 return IXGBE_ERR_PHY
;
662 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
663 * using SWFW lock- this function is needed in most cases
664 * @hw: pointer to hardware structure
665 * @reg_addr: 32 bit PHY register to write
666 * @device_type: 5 bit device type
667 * @phy_data: Data to write to the PHY register
669 s32
ixgbe_write_phy_reg_generic(struct ixgbe_hw
*hw
, u32 reg_addr
,
670 u32 device_type
, u16 phy_data
)
673 u32 gssr
= hw
->phy
.phy_semaphore_mask
;
675 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, gssr
) == 0) {
676 status
= ixgbe_write_phy_reg_mdi(hw
, reg_addr
, device_type
,
678 hw
->mac
.ops
.release_swfw_sync(hw
, gssr
);
680 return IXGBE_ERR_SWFW_SYNC
;
687 * ixgbe_setup_phy_link_generic - Set and restart autoneg
688 * @hw: pointer to hardware structure
690 * Restart autonegotiation and PHY and waits for completion.
692 s32
ixgbe_setup_phy_link_generic(struct ixgbe_hw
*hw
)
695 u16 autoneg_reg
= IXGBE_MII_AUTONEG_REG
;
696 bool autoneg
= false;
697 ixgbe_link_speed speed
;
699 ixgbe_get_copper_link_capabilities_generic(hw
, &speed
, &autoneg
);
701 /* Set or unset auto-negotiation 10G advertisement */
702 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_10GBT_CTRL
, MDIO_MMD_AN
, &autoneg_reg
);
704 autoneg_reg
&= ~MDIO_AN_10GBT_CTRL_ADV10G
;
705 if ((hw
->phy
.autoneg_advertised
& IXGBE_LINK_SPEED_10GB_FULL
) &&
706 (speed
& IXGBE_LINK_SPEED_10GB_FULL
))
707 autoneg_reg
|= MDIO_AN_10GBT_CTRL_ADV10G
;
709 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_10GBT_CTRL
, MDIO_MMD_AN
, autoneg_reg
);
711 hw
->phy
.ops
.read_reg(hw
, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG
,
712 MDIO_MMD_AN
, &autoneg_reg
);
714 if (hw
->mac
.type
== ixgbe_mac_X550
) {
715 /* Set or unset auto-negotiation 5G advertisement */
716 autoneg_reg
&= ~IXGBE_MII_5GBASE_T_ADVERTISE
;
717 if ((hw
->phy
.autoneg_advertised
& IXGBE_LINK_SPEED_5GB_FULL
) &&
718 (speed
& IXGBE_LINK_SPEED_5GB_FULL
))
719 autoneg_reg
|= IXGBE_MII_5GBASE_T_ADVERTISE
;
721 /* Set or unset auto-negotiation 2.5G advertisement */
722 autoneg_reg
&= ~IXGBE_MII_2_5GBASE_T_ADVERTISE
;
723 if ((hw
->phy
.autoneg_advertised
&
724 IXGBE_LINK_SPEED_2_5GB_FULL
) &&
725 (speed
& IXGBE_LINK_SPEED_2_5GB_FULL
))
726 autoneg_reg
|= IXGBE_MII_2_5GBASE_T_ADVERTISE
;
729 /* Set or unset auto-negotiation 1G advertisement */
730 autoneg_reg
&= ~IXGBE_MII_1GBASE_T_ADVERTISE
;
731 if ((hw
->phy
.autoneg_advertised
& IXGBE_LINK_SPEED_1GB_FULL
) &&
732 (speed
& IXGBE_LINK_SPEED_1GB_FULL
))
733 autoneg_reg
|= IXGBE_MII_1GBASE_T_ADVERTISE
;
735 hw
->phy
.ops
.write_reg(hw
, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG
,
736 MDIO_MMD_AN
, autoneg_reg
);
738 /* Set or unset auto-negotiation 100M advertisement */
739 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
, MDIO_MMD_AN
, &autoneg_reg
);
741 autoneg_reg
&= ~(ADVERTISE_100FULL
| ADVERTISE_100HALF
);
742 if ((hw
->phy
.autoneg_advertised
& IXGBE_LINK_SPEED_100_FULL
) &&
743 (speed
& IXGBE_LINK_SPEED_100_FULL
))
744 autoneg_reg
|= ADVERTISE_100FULL
;
746 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_ADVERTISE
, MDIO_MMD_AN
, autoneg_reg
);
748 /* Blocked by MNG FW so don't reset PHY */
749 if (ixgbe_check_reset_blocked(hw
))
752 /* Restart PHY autonegotiation and wait for completion */
753 hw
->phy
.ops
.read_reg(hw
, MDIO_CTRL1
,
754 MDIO_MMD_AN
, &autoneg_reg
);
756 autoneg_reg
|= MDIO_AN_CTRL1_RESTART
;
758 hw
->phy
.ops
.write_reg(hw
, MDIO_CTRL1
,
759 MDIO_MMD_AN
, autoneg_reg
);
765 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
766 * @hw: pointer to hardware structure
767 * @speed: new link speed
768 * @autoneg_wait_to_complete: unused
770 s32
ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw
*hw
,
771 ixgbe_link_speed speed
,
772 bool autoneg_wait_to_complete
)
774 /* Clear autoneg_advertised and set new values based on input link
777 hw
->phy
.autoneg_advertised
= 0;
779 if (speed
& IXGBE_LINK_SPEED_10GB_FULL
)
780 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_10GB_FULL
;
782 if (speed
& IXGBE_LINK_SPEED_5GB_FULL
)
783 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_5GB_FULL
;
785 if (speed
& IXGBE_LINK_SPEED_2_5GB_FULL
)
786 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_2_5GB_FULL
;
788 if (speed
& IXGBE_LINK_SPEED_1GB_FULL
)
789 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_1GB_FULL
;
791 if (speed
& IXGBE_LINK_SPEED_100_FULL
)
792 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_100_FULL
;
794 if (speed
& IXGBE_LINK_SPEED_10_FULL
)
795 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_10_FULL
;
797 /* Setup link based on the new speed settings */
798 if (hw
->phy
.ops
.setup_link
)
799 hw
->phy
.ops
.setup_link(hw
);
805 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
806 * @hw: pointer to hardware structure
808 * Determines the supported link capabilities by reading the PHY auto
809 * negotiation register.
811 static s32
ixgbe_get_copper_speeds_supported(struct ixgbe_hw
*hw
)
816 status
= hw
->phy
.ops
.read_reg(hw
, MDIO_SPEED
, MDIO_MMD_PMAPMD
,
821 if (speed_ability
& MDIO_SPEED_10G
)
822 hw
->phy
.speeds_supported
|= IXGBE_LINK_SPEED_10GB_FULL
;
823 if (speed_ability
& MDIO_PMA_SPEED_1000
)
824 hw
->phy
.speeds_supported
|= IXGBE_LINK_SPEED_1GB_FULL
;
825 if (speed_ability
& MDIO_PMA_SPEED_100
)
826 hw
->phy
.speeds_supported
|= IXGBE_LINK_SPEED_100_FULL
;
828 switch (hw
->mac
.type
) {
830 hw
->phy
.speeds_supported
|= IXGBE_LINK_SPEED_2_5GB_FULL
;
831 hw
->phy
.speeds_supported
|= IXGBE_LINK_SPEED_5GB_FULL
;
833 case ixgbe_mac_X550EM_x
:
834 case ixgbe_mac_x550em_a
:
835 hw
->phy
.speeds_supported
&= ~IXGBE_LINK_SPEED_100_FULL
;
845 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
846 * @hw: pointer to hardware structure
847 * @speed: pointer to link speed
848 * @autoneg: boolean auto-negotiation value
850 s32
ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw
*hw
,
851 ixgbe_link_speed
*speed
,
857 if (!hw
->phy
.speeds_supported
)
858 status
= ixgbe_get_copper_speeds_supported(hw
);
860 *speed
= hw
->phy
.speeds_supported
;
865 * ixgbe_check_phy_link_tnx - Determine link and speed status
866 * @hw: pointer to hardware structure
868 * @link_up: status of link
870 * Reads the VS1 register to determine if link is up and the current speed for
873 s32
ixgbe_check_phy_link_tnx(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
878 u32 max_time_out
= 10;
883 /* Initialize speed and link to default case */
885 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
888 * Check current speed and link status of the PHY register.
889 * This is a vendor specific register and may have to
890 * be changed for other copper PHYs.
892 for (time_out
= 0; time_out
< max_time_out
; time_out
++) {
894 status
= hw
->phy
.ops
.read_reg(hw
,
898 phy_link
= phy_data
&
899 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS
;
900 phy_speed
= phy_data
&
901 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS
;
902 if (phy_link
== IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS
) {
905 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS
)
906 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
915 * ixgbe_setup_phy_link_tnx - Set and restart autoneg
916 * @hw: pointer to hardware structure
918 * Restart autonegotiation and PHY and waits for completion.
919 * This function always returns success, this is nessary since
920 * it is called via a function pointer that could call other
921 * functions that could return an error.
923 s32
ixgbe_setup_phy_link_tnx(struct ixgbe_hw
*hw
)
925 u16 autoneg_reg
= IXGBE_MII_AUTONEG_REG
;
926 bool autoneg
= false;
927 ixgbe_link_speed speed
;
929 ixgbe_get_copper_link_capabilities_generic(hw
, &speed
, &autoneg
);
931 if (speed
& IXGBE_LINK_SPEED_10GB_FULL
) {
932 /* Set or unset auto-negotiation 10G advertisement */
933 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_10GBT_CTRL
,
937 autoneg_reg
&= ~MDIO_AN_10GBT_CTRL_ADV10G
;
938 if (hw
->phy
.autoneg_advertised
& IXGBE_LINK_SPEED_10GB_FULL
)
939 autoneg_reg
|= MDIO_AN_10GBT_CTRL_ADV10G
;
941 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_10GBT_CTRL
,
946 if (speed
& IXGBE_LINK_SPEED_1GB_FULL
) {
947 /* Set or unset auto-negotiation 1G advertisement */
948 hw
->phy
.ops
.read_reg(hw
, IXGBE_MII_AUTONEG_XNP_TX_REG
,
952 autoneg_reg
&= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX
;
953 if (hw
->phy
.autoneg_advertised
& IXGBE_LINK_SPEED_1GB_FULL
)
954 autoneg_reg
|= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX
;
956 hw
->phy
.ops
.write_reg(hw
, IXGBE_MII_AUTONEG_XNP_TX_REG
,
961 if (speed
& IXGBE_LINK_SPEED_100_FULL
) {
962 /* Set or unset auto-negotiation 100M advertisement */
963 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
967 autoneg_reg
&= ~(ADVERTISE_100FULL
|
969 if (hw
->phy
.autoneg_advertised
& IXGBE_LINK_SPEED_100_FULL
)
970 autoneg_reg
|= ADVERTISE_100FULL
;
972 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_ADVERTISE
,
977 /* Blocked by MNG FW so don't reset PHY */
978 if (ixgbe_check_reset_blocked(hw
))
981 /* Restart PHY autonegotiation and wait for completion */
982 hw
->phy
.ops
.read_reg(hw
, MDIO_CTRL1
,
983 MDIO_MMD_AN
, &autoneg_reg
);
985 autoneg_reg
|= MDIO_AN_CTRL1_RESTART
;
987 hw
->phy
.ops
.write_reg(hw
, MDIO_CTRL1
,
988 MDIO_MMD_AN
, autoneg_reg
);
993 * ixgbe_reset_phy_nl - Performs a PHY reset
994 * @hw: pointer to hardware structure
996 s32
ixgbe_reset_phy_nl(struct ixgbe_hw
*hw
)
998 u16 phy_offset
, control
, eword
, edata
, block_crc
;
999 bool end_data
= false;
1000 u16 list_offset
, data_offset
;
1005 /* Blocked by MNG FW so bail */
1006 if (ixgbe_check_reset_blocked(hw
))
1009 hw
->phy
.ops
.read_reg(hw
, MDIO_CTRL1
, MDIO_MMD_PHYXS
, &phy_data
);
1011 /* reset the PHY and poll for completion */
1012 hw
->phy
.ops
.write_reg(hw
, MDIO_CTRL1
, MDIO_MMD_PHYXS
,
1013 (phy_data
| MDIO_CTRL1_RESET
));
1015 for (i
= 0; i
< 100; i
++) {
1016 hw
->phy
.ops
.read_reg(hw
, MDIO_CTRL1
, MDIO_MMD_PHYXS
,
1018 if ((phy_data
& MDIO_CTRL1_RESET
) == 0)
1020 usleep_range(10000, 20000);
1023 if ((phy_data
& MDIO_CTRL1_RESET
) != 0) {
1024 hw_dbg(hw
, "PHY reset did not complete.\n");
1025 return IXGBE_ERR_PHY
;
1028 /* Get init offsets */
1029 ret_val
= ixgbe_get_sfp_init_sequence_offsets(hw
, &list_offset
,
1034 ret_val
= hw
->eeprom
.ops
.read(hw
, data_offset
, &block_crc
);
1038 * Read control word from PHY init contents offset
1040 ret_val
= hw
->eeprom
.ops
.read(hw
, data_offset
, &eword
);
1043 control
= (eword
& IXGBE_CONTROL_MASK_NL
) >>
1044 IXGBE_CONTROL_SHIFT_NL
;
1045 edata
= eword
& IXGBE_DATA_MASK_NL
;
1047 case IXGBE_DELAY_NL
:
1049 hw_dbg(hw
, "DELAY: %d MS\n", edata
);
1050 usleep_range(edata
* 1000, edata
* 2000);
1053 hw_dbg(hw
, "DATA:\n");
1055 ret_val
= hw
->eeprom
.ops
.read(hw
, data_offset
++,
1059 for (i
= 0; i
< edata
; i
++) {
1060 ret_val
= hw
->eeprom
.ops
.read(hw
, data_offset
,
1064 hw
->phy
.ops
.write_reg(hw
, phy_offset
,
1065 MDIO_MMD_PMAPMD
, eword
);
1066 hw_dbg(hw
, "Wrote %4.4x to %4.4x\n", eword
,
1072 case IXGBE_CONTROL_NL
:
1074 hw_dbg(hw
, "CONTROL:\n");
1075 if (edata
== IXGBE_CONTROL_EOL_NL
) {
1076 hw_dbg(hw
, "EOL\n");
1078 } else if (edata
== IXGBE_CONTROL_SOL_NL
) {
1079 hw_dbg(hw
, "SOL\n");
1081 hw_dbg(hw
, "Bad control value\n");
1082 return IXGBE_ERR_PHY
;
1086 hw_dbg(hw
, "Bad control type\n");
1087 return IXGBE_ERR_PHY
;
1094 hw_err(hw
, "eeprom read at offset %d failed\n", data_offset
);
1095 return IXGBE_ERR_PHY
;
1099 * ixgbe_identify_module_generic - Identifies module type
1100 * @hw: pointer to hardware structure
1102 * Determines HW type and calls appropriate function.
1104 s32
ixgbe_identify_module_generic(struct ixgbe_hw
*hw
)
1106 switch (hw
->mac
.ops
.get_media_type(hw
)) {
1107 case ixgbe_media_type_fiber
:
1108 return ixgbe_identify_sfp_module_generic(hw
);
1109 case ixgbe_media_type_fiber_qsfp
:
1110 return ixgbe_identify_qsfp_module_generic(hw
);
1112 hw
->phy
.sfp_type
= ixgbe_sfp_type_not_present
;
1113 return IXGBE_ERR_SFP_NOT_PRESENT
;
1116 return IXGBE_ERR_SFP_NOT_PRESENT
;
1120 * ixgbe_identify_sfp_module_generic - Identifies SFP modules
1121 * @hw: pointer to hardware structure
1123 * Searches for and identifies the SFP module and assigns appropriate PHY type.
1125 s32
ixgbe_identify_sfp_module_generic(struct ixgbe_hw
*hw
)
1127 struct ixgbe_adapter
*adapter
= hw
->back
;
1130 enum ixgbe_sfp_type stored_sfp_type
= hw
->phy
.sfp_type
;
1132 u8 comp_codes_1g
= 0;
1133 u8 comp_codes_10g
= 0;
1134 u8 oui_bytes
[3] = {0, 0, 0};
1137 u16 enforce_sfp
= 0;
1139 if (hw
->mac
.ops
.get_media_type(hw
) != ixgbe_media_type_fiber
) {
1140 hw
->phy
.sfp_type
= ixgbe_sfp_type_not_present
;
1141 return IXGBE_ERR_SFP_NOT_PRESENT
;
1144 /* LAN ID is needed for sfp_type determination */
1145 hw
->mac
.ops
.set_lan_id(hw
);
1147 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
,
1148 IXGBE_SFF_IDENTIFIER
,
1152 goto err_read_i2c_eeprom
;
1154 if (identifier
!= IXGBE_SFF_IDENTIFIER_SFP
) {
1155 hw
->phy
.type
= ixgbe_phy_sfp_unsupported
;
1156 return IXGBE_ERR_SFP_NOT_SUPPORTED
;
1158 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
,
1159 IXGBE_SFF_1GBE_COMP_CODES
,
1163 goto err_read_i2c_eeprom
;
1165 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
,
1166 IXGBE_SFF_10GBE_COMP_CODES
,
1170 goto err_read_i2c_eeprom
;
1171 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
,
1172 IXGBE_SFF_CABLE_TECHNOLOGY
,
1176 goto err_read_i2c_eeprom
;
1183 * 3 SFP_DA_CORE0 - 82599-specific
1184 * 4 SFP_DA_CORE1 - 82599-specific
1185 * 5 SFP_SR/LR_CORE0 - 82599-specific
1186 * 6 SFP_SR/LR_CORE1 - 82599-specific
1187 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
1188 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
1189 * 9 SFP_1g_cu_CORE0 - 82599-specific
1190 * 10 SFP_1g_cu_CORE1 - 82599-specific
1191 * 11 SFP_1g_sx_CORE0 - 82599-specific
1192 * 12 SFP_1g_sx_CORE1 - 82599-specific
1194 if (hw
->mac
.type
== ixgbe_mac_82598EB
) {
1195 if (cable_tech
& IXGBE_SFF_DA_PASSIVE_CABLE
)
1196 hw
->phy
.sfp_type
= ixgbe_sfp_type_da_cu
;
1197 else if (comp_codes_10g
& IXGBE_SFF_10GBASESR_CAPABLE
)
1198 hw
->phy
.sfp_type
= ixgbe_sfp_type_sr
;
1199 else if (comp_codes_10g
& IXGBE_SFF_10GBASELR_CAPABLE
)
1200 hw
->phy
.sfp_type
= ixgbe_sfp_type_lr
;
1202 hw
->phy
.sfp_type
= ixgbe_sfp_type_unknown
;
1204 if (cable_tech
& IXGBE_SFF_DA_PASSIVE_CABLE
) {
1205 if (hw
->bus
.lan_id
== 0)
1207 ixgbe_sfp_type_da_cu_core0
;
1210 ixgbe_sfp_type_da_cu_core1
;
1211 } else if (cable_tech
& IXGBE_SFF_DA_ACTIVE_CABLE
) {
1212 hw
->phy
.ops
.read_i2c_eeprom(
1213 hw
, IXGBE_SFF_CABLE_SPEC_COMP
,
1216 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING
) {
1217 if (hw
->bus
.lan_id
== 0)
1219 ixgbe_sfp_type_da_act_lmt_core0
;
1222 ixgbe_sfp_type_da_act_lmt_core1
;
1225 ixgbe_sfp_type_unknown
;
1227 } else if (comp_codes_10g
&
1228 (IXGBE_SFF_10GBASESR_CAPABLE
|
1229 IXGBE_SFF_10GBASELR_CAPABLE
)) {
1230 if (hw
->bus
.lan_id
== 0)
1232 ixgbe_sfp_type_srlr_core0
;
1235 ixgbe_sfp_type_srlr_core1
;
1236 } else if (comp_codes_1g
& IXGBE_SFF_1GBASET_CAPABLE
) {
1237 if (hw
->bus
.lan_id
== 0)
1239 ixgbe_sfp_type_1g_cu_core0
;
1242 ixgbe_sfp_type_1g_cu_core1
;
1243 } else if (comp_codes_1g
& IXGBE_SFF_1GBASESX_CAPABLE
) {
1244 if (hw
->bus
.lan_id
== 0)
1246 ixgbe_sfp_type_1g_sx_core0
;
1249 ixgbe_sfp_type_1g_sx_core1
;
1250 } else if (comp_codes_1g
& IXGBE_SFF_1GBASELX_CAPABLE
) {
1251 if (hw
->bus
.lan_id
== 0)
1253 ixgbe_sfp_type_1g_lx_core0
;
1256 ixgbe_sfp_type_1g_lx_core1
;
1258 hw
->phy
.sfp_type
= ixgbe_sfp_type_unknown
;
1262 if (hw
->phy
.sfp_type
!= stored_sfp_type
)
1263 hw
->phy
.sfp_setup_needed
= true;
1265 /* Determine if the SFP+ PHY is dual speed or not. */
1266 hw
->phy
.multispeed_fiber
= false;
1267 if (((comp_codes_1g
& IXGBE_SFF_1GBASESX_CAPABLE
) &&
1268 (comp_codes_10g
& IXGBE_SFF_10GBASESR_CAPABLE
)) ||
1269 ((comp_codes_1g
& IXGBE_SFF_1GBASELX_CAPABLE
) &&
1270 (comp_codes_10g
& IXGBE_SFF_10GBASELR_CAPABLE
)))
1271 hw
->phy
.multispeed_fiber
= true;
1273 /* Determine PHY vendor */
1274 if (hw
->phy
.type
!= ixgbe_phy_nl
) {
1275 hw
->phy
.id
= identifier
;
1276 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
,
1277 IXGBE_SFF_VENDOR_OUI_BYTE0
,
1281 goto err_read_i2c_eeprom
;
1283 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
,
1284 IXGBE_SFF_VENDOR_OUI_BYTE1
,
1288 goto err_read_i2c_eeprom
;
1290 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
,
1291 IXGBE_SFF_VENDOR_OUI_BYTE2
,
1295 goto err_read_i2c_eeprom
;
1298 ((oui_bytes
[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT
) |
1299 (oui_bytes
[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT
) |
1300 (oui_bytes
[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT
));
1302 switch (vendor_oui
) {
1303 case IXGBE_SFF_VENDOR_OUI_TYCO
:
1304 if (cable_tech
& IXGBE_SFF_DA_PASSIVE_CABLE
)
1306 ixgbe_phy_sfp_passive_tyco
;
1308 case IXGBE_SFF_VENDOR_OUI_FTL
:
1309 if (cable_tech
& IXGBE_SFF_DA_ACTIVE_CABLE
)
1310 hw
->phy
.type
= ixgbe_phy_sfp_ftl_active
;
1312 hw
->phy
.type
= ixgbe_phy_sfp_ftl
;
1314 case IXGBE_SFF_VENDOR_OUI_AVAGO
:
1315 hw
->phy
.type
= ixgbe_phy_sfp_avago
;
1317 case IXGBE_SFF_VENDOR_OUI_INTEL
:
1318 hw
->phy
.type
= ixgbe_phy_sfp_intel
;
1321 if (cable_tech
& IXGBE_SFF_DA_PASSIVE_CABLE
)
1323 ixgbe_phy_sfp_passive_unknown
;
1324 else if (cable_tech
& IXGBE_SFF_DA_ACTIVE_CABLE
)
1326 ixgbe_phy_sfp_active_unknown
;
1328 hw
->phy
.type
= ixgbe_phy_sfp_unknown
;
1333 /* Allow any DA cable vendor */
1334 if (cable_tech
& (IXGBE_SFF_DA_PASSIVE_CABLE
|
1335 IXGBE_SFF_DA_ACTIVE_CABLE
))
1338 /* Verify supported 1G SFP modules */
1339 if (comp_codes_10g
== 0 &&
1340 !(hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_cu_core1
||
1341 hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_cu_core0
||
1342 hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_lx_core0
||
1343 hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_lx_core1
||
1344 hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_sx_core0
||
1345 hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_sx_core1
)) {
1346 hw
->phy
.type
= ixgbe_phy_sfp_unsupported
;
1347 return IXGBE_ERR_SFP_NOT_SUPPORTED
;
1350 /* Anything else 82598-based is supported */
1351 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
1354 hw
->mac
.ops
.get_device_caps(hw
, &enforce_sfp
);
1355 if (!(enforce_sfp
& IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP
) &&
1356 !(hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_cu_core0
||
1357 hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_cu_core1
||
1358 hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_lx_core0
||
1359 hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_lx_core1
||
1360 hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_sx_core0
||
1361 hw
->phy
.sfp_type
== ixgbe_sfp_type_1g_sx_core1
)) {
1362 /* Make sure we're a supported PHY type */
1363 if (hw
->phy
.type
== ixgbe_phy_sfp_intel
)
1365 if (hw
->allow_unsupported_sfp
) {
1366 e_warn(drv
, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1369 hw_dbg(hw
, "SFP+ module not supported\n");
1370 hw
->phy
.type
= ixgbe_phy_sfp_unsupported
;
1371 return IXGBE_ERR_SFP_NOT_SUPPORTED
;
1375 err_read_i2c_eeprom
:
1376 hw
->phy
.sfp_type
= ixgbe_sfp_type_not_present
;
1377 if (hw
->phy
.type
!= ixgbe_phy_nl
) {
1379 hw
->phy
.type
= ixgbe_phy_unknown
;
1381 return IXGBE_ERR_SFP_NOT_PRESENT
;
1385 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1386 * @hw: pointer to hardware structure
1388 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1390 static s32
ixgbe_identify_qsfp_module_generic(struct ixgbe_hw
*hw
)
1392 struct ixgbe_adapter
*adapter
= hw
->back
;
1395 enum ixgbe_sfp_type stored_sfp_type
= hw
->phy
.sfp_type
;
1397 u8 comp_codes_1g
= 0;
1398 u8 comp_codes_10g
= 0;
1399 u8 oui_bytes
[3] = {0, 0, 0};
1400 u16 enforce_sfp
= 0;
1402 u8 cable_length
= 0;
1404 bool active_cable
= false;
1406 if (hw
->mac
.ops
.get_media_type(hw
) != ixgbe_media_type_fiber_qsfp
) {
1407 hw
->phy
.sfp_type
= ixgbe_sfp_type_not_present
;
1408 return IXGBE_ERR_SFP_NOT_PRESENT
;
1411 /* LAN ID is needed for sfp_type determination */
1412 hw
->mac
.ops
.set_lan_id(hw
);
1414 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
, IXGBE_SFF_IDENTIFIER
,
1418 goto err_read_i2c_eeprom
;
1420 if (identifier
!= IXGBE_SFF_IDENTIFIER_QSFP_PLUS
) {
1421 hw
->phy
.type
= ixgbe_phy_sfp_unsupported
;
1422 return IXGBE_ERR_SFP_NOT_SUPPORTED
;
1425 hw
->phy
.id
= identifier
;
1427 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
, IXGBE_SFF_QSFP_10GBE_COMP
,
1431 goto err_read_i2c_eeprom
;
1433 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
, IXGBE_SFF_QSFP_1GBE_COMP
,
1437 goto err_read_i2c_eeprom
;
1439 if (comp_codes_10g
& IXGBE_SFF_QSFP_DA_PASSIVE_CABLE
) {
1440 hw
->phy
.type
= ixgbe_phy_qsfp_passive_unknown
;
1441 if (hw
->bus
.lan_id
== 0)
1442 hw
->phy
.sfp_type
= ixgbe_sfp_type_da_cu_core0
;
1444 hw
->phy
.sfp_type
= ixgbe_sfp_type_da_cu_core1
;
1445 } else if (comp_codes_10g
& (IXGBE_SFF_10GBASESR_CAPABLE
|
1446 IXGBE_SFF_10GBASELR_CAPABLE
)) {
1447 if (hw
->bus
.lan_id
== 0)
1448 hw
->phy
.sfp_type
= ixgbe_sfp_type_srlr_core0
;
1450 hw
->phy
.sfp_type
= ixgbe_sfp_type_srlr_core1
;
1452 if (comp_codes_10g
& IXGBE_SFF_QSFP_DA_ACTIVE_CABLE
)
1453 active_cable
= true;
1455 if (!active_cable
) {
1456 /* check for active DA cables that pre-date
1459 hw
->phy
.ops
.read_i2c_eeprom(hw
,
1460 IXGBE_SFF_QSFP_CONNECTOR
,
1463 hw
->phy
.ops
.read_i2c_eeprom(hw
,
1464 IXGBE_SFF_QSFP_CABLE_LENGTH
,
1467 hw
->phy
.ops
.read_i2c_eeprom(hw
,
1468 IXGBE_SFF_QSFP_DEVICE_TECH
,
1472 IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE
) &&
1473 (cable_length
> 0) &&
1474 ((device_tech
>> 4) ==
1475 IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL
))
1476 active_cable
= true;
1480 hw
->phy
.type
= ixgbe_phy_qsfp_active_unknown
;
1481 if (hw
->bus
.lan_id
== 0)
1483 ixgbe_sfp_type_da_act_lmt_core0
;
1486 ixgbe_sfp_type_da_act_lmt_core1
;
1488 /* unsupported module type */
1489 hw
->phy
.type
= ixgbe_phy_sfp_unsupported
;
1490 return IXGBE_ERR_SFP_NOT_SUPPORTED
;
1494 if (hw
->phy
.sfp_type
!= stored_sfp_type
)
1495 hw
->phy
.sfp_setup_needed
= true;
1497 /* Determine if the QSFP+ PHY is dual speed or not. */
1498 hw
->phy
.multispeed_fiber
= false;
1499 if (((comp_codes_1g
& IXGBE_SFF_1GBASESX_CAPABLE
) &&
1500 (comp_codes_10g
& IXGBE_SFF_10GBASESR_CAPABLE
)) ||
1501 ((comp_codes_1g
& IXGBE_SFF_1GBASELX_CAPABLE
) &&
1502 (comp_codes_10g
& IXGBE_SFF_10GBASELR_CAPABLE
)))
1503 hw
->phy
.multispeed_fiber
= true;
1505 /* Determine PHY vendor for optical modules */
1506 if (comp_codes_10g
& (IXGBE_SFF_10GBASESR_CAPABLE
|
1507 IXGBE_SFF_10GBASELR_CAPABLE
)) {
1508 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
,
1509 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0
,
1513 goto err_read_i2c_eeprom
;
1515 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
,
1516 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1
,
1520 goto err_read_i2c_eeprom
;
1522 status
= hw
->phy
.ops
.read_i2c_eeprom(hw
,
1523 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2
,
1527 goto err_read_i2c_eeprom
;
1530 ((oui_bytes
[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT
) |
1531 (oui_bytes
[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT
) |
1532 (oui_bytes
[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT
));
1534 if (vendor_oui
== IXGBE_SFF_VENDOR_OUI_INTEL
)
1535 hw
->phy
.type
= ixgbe_phy_qsfp_intel
;
1537 hw
->phy
.type
= ixgbe_phy_qsfp_unknown
;
1539 hw
->mac
.ops
.get_device_caps(hw
, &enforce_sfp
);
1540 if (!(enforce_sfp
& IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP
)) {
1541 /* Make sure we're a supported PHY type */
1542 if (hw
->phy
.type
== ixgbe_phy_qsfp_intel
)
1544 if (hw
->allow_unsupported_sfp
) {
1545 e_warn(drv
, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1548 hw_dbg(hw
, "QSFP module not supported\n");
1549 hw
->phy
.type
= ixgbe_phy_sfp_unsupported
;
1550 return IXGBE_ERR_SFP_NOT_SUPPORTED
;
1556 err_read_i2c_eeprom
:
1557 hw
->phy
.sfp_type
= ixgbe_sfp_type_not_present
;
1559 hw
->phy
.type
= ixgbe_phy_unknown
;
1561 return IXGBE_ERR_SFP_NOT_PRESENT
;
1565 * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1566 * @hw: pointer to hardware structure
1567 * @list_offset: offset to the SFP ID list
1568 * @data_offset: offset to the SFP data block
1570 * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1571 * so it returns the offsets to the phy init sequence block.
1573 s32
ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw
*hw
,
1578 u16 sfp_type
= hw
->phy
.sfp_type
;
1580 if (hw
->phy
.sfp_type
== ixgbe_sfp_type_unknown
)
1581 return IXGBE_ERR_SFP_NOT_SUPPORTED
;
1583 if (hw
->phy
.sfp_type
== ixgbe_sfp_type_not_present
)
1584 return IXGBE_ERR_SFP_NOT_PRESENT
;
1586 if ((hw
->device_id
== IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM
) &&
1587 (hw
->phy
.sfp_type
== ixgbe_sfp_type_da_cu
))
1588 return IXGBE_ERR_SFP_NOT_SUPPORTED
;
1591 * Limiting active cables and 1G Phys must be initialized as
1594 if (sfp_type
== ixgbe_sfp_type_da_act_lmt_core0
||
1595 sfp_type
== ixgbe_sfp_type_1g_lx_core0
||
1596 sfp_type
== ixgbe_sfp_type_1g_cu_core0
||
1597 sfp_type
== ixgbe_sfp_type_1g_sx_core0
)
1598 sfp_type
= ixgbe_sfp_type_srlr_core0
;
1599 else if (sfp_type
== ixgbe_sfp_type_da_act_lmt_core1
||
1600 sfp_type
== ixgbe_sfp_type_1g_lx_core1
||
1601 sfp_type
== ixgbe_sfp_type_1g_cu_core1
||
1602 sfp_type
== ixgbe_sfp_type_1g_sx_core1
)
1603 sfp_type
= ixgbe_sfp_type_srlr_core1
;
1605 /* Read offset to PHY init contents */
1606 if (hw
->eeprom
.ops
.read(hw
, IXGBE_PHY_INIT_OFFSET_NL
, list_offset
)) {
1607 hw_err(hw
, "eeprom read at %d failed\n",
1608 IXGBE_PHY_INIT_OFFSET_NL
);
1609 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT
;
1612 if ((!*list_offset
) || (*list_offset
== 0xFFFF))
1613 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT
;
1615 /* Shift offset to first ID word */
1619 * Find the matching SFP ID in the EEPROM
1620 * and program the init sequence
1622 if (hw
->eeprom
.ops
.read(hw
, *list_offset
, &sfp_id
))
1625 while (sfp_id
!= IXGBE_PHY_INIT_END_NL
) {
1626 if (sfp_id
== sfp_type
) {
1628 if (hw
->eeprom
.ops
.read(hw
, *list_offset
, data_offset
))
1630 if ((!*data_offset
) || (*data_offset
== 0xFFFF)) {
1631 hw_dbg(hw
, "SFP+ module not supported\n");
1632 return IXGBE_ERR_SFP_NOT_SUPPORTED
;
1637 (*list_offset
) += 2;
1638 if (hw
->eeprom
.ops
.read(hw
, *list_offset
, &sfp_id
))
1643 if (sfp_id
== IXGBE_PHY_INIT_END_NL
) {
1644 hw_dbg(hw
, "No matching SFP+ module found\n");
1645 return IXGBE_ERR_SFP_NOT_SUPPORTED
;
1651 hw_err(hw
, "eeprom read at offset %d failed\n", *list_offset
);
1652 return IXGBE_ERR_PHY
;
1656 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1657 * @hw: pointer to hardware structure
1658 * @byte_offset: EEPROM byte offset to read
1659 * @eeprom_data: value read
1661 * Performs byte read operation to SFP module's EEPROM over I2C interface.
1663 s32
ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw
*hw
, u8 byte_offset
,
1666 return hw
->phy
.ops
.read_i2c_byte(hw
, byte_offset
,
1667 IXGBE_I2C_EEPROM_DEV_ADDR
,
1672 * ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1673 * @hw: pointer to hardware structure
1674 * @byte_offset: byte offset at address 0xA2
1675 * @sff8472_data: value read
1677 * Performs byte read operation to SFP module's SFF-8472 data over I2C
1679 s32
ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw
*hw
, u8 byte_offset
,
1682 return hw
->phy
.ops
.read_i2c_byte(hw
, byte_offset
,
1683 IXGBE_I2C_EEPROM_DEV_ADDR2
,
1688 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1689 * @hw: pointer to hardware structure
1690 * @byte_offset: EEPROM byte offset to write
1691 * @eeprom_data: value to write
1693 * Performs byte write operation to SFP module's EEPROM over I2C interface.
1695 s32
ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw
*hw
, u8 byte_offset
,
1698 return hw
->phy
.ops
.write_i2c_byte(hw
, byte_offset
,
1699 IXGBE_I2C_EEPROM_DEV_ADDR
,
1704 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1705 * @hw: pointer to hardware structure
1706 * @offset: eeprom offset to be read
1707 * @addr: I2C address to be read
1709 static bool ixgbe_is_sfp_probe(struct ixgbe_hw
*hw
, u8 offset
, u8 addr
)
1711 if (addr
== IXGBE_I2C_EEPROM_DEV_ADDR
&&
1712 offset
== IXGBE_SFF_IDENTIFIER
&&
1713 hw
->phy
.sfp_type
== ixgbe_sfp_type_not_present
)
1719 * ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
1720 * @hw: pointer to hardware structure
1721 * @byte_offset: byte offset to read
1722 * @dev_addr: device address
1724 * @lock: true if to take and release semaphore
1726 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1727 * a specified device address.
1729 static s32
ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw
*hw
, u8 byte_offset
,
1730 u8 dev_addr
, u8
*data
, bool lock
)
1735 u32 swfw_mask
= hw
->phy
.phy_semaphore_mask
;
1738 if (hw
->mac
.type
>= ixgbe_mac_X550
)
1740 if (ixgbe_is_sfp_probe(hw
, byte_offset
, dev_addr
))
1741 max_retry
= IXGBE_SFP_DETECT_RETRIES
;
1746 if (lock
&& hw
->mac
.ops
.acquire_swfw_sync(hw
, swfw_mask
))
1747 return IXGBE_ERR_SWFW_SYNC
;
1749 ixgbe_i2c_start(hw
);
1751 /* Device Address and write indication */
1752 status
= ixgbe_clock_out_i2c_byte(hw
, dev_addr
);
1756 status
= ixgbe_get_i2c_ack(hw
);
1760 status
= ixgbe_clock_out_i2c_byte(hw
, byte_offset
);
1764 status
= ixgbe_get_i2c_ack(hw
);
1768 ixgbe_i2c_start(hw
);
1770 /* Device Address and read indication */
1771 status
= ixgbe_clock_out_i2c_byte(hw
, (dev_addr
| 0x1));
1775 status
= ixgbe_get_i2c_ack(hw
);
1779 status
= ixgbe_clock_in_i2c_byte(hw
, data
);
1783 status
= ixgbe_clock_out_i2c_bit(hw
, nack
);
1789 hw
->mac
.ops
.release_swfw_sync(hw
, swfw_mask
);
1793 ixgbe_i2c_bus_clear(hw
);
1795 hw
->mac
.ops
.release_swfw_sync(hw
, swfw_mask
);
1799 if (retry
< max_retry
)
1800 hw_dbg(hw
, "I2C byte read error - Retrying.\n");
1802 hw_dbg(hw
, "I2C byte read error.\n");
1804 } while (retry
< max_retry
);
1810 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1811 * @hw: pointer to hardware structure
1812 * @byte_offset: byte offset to read
1813 * @dev_addr: device address
1816 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1817 * a specified device address.
1819 s32
ixgbe_read_i2c_byte_generic(struct ixgbe_hw
*hw
, u8 byte_offset
,
1820 u8 dev_addr
, u8
*data
)
1822 return ixgbe_read_i2c_byte_generic_int(hw
, byte_offset
, dev_addr
,
1827 * ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
1828 * @hw: pointer to hardware structure
1829 * @byte_offset: byte offset to read
1830 * @dev_addr: device address
1833 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1834 * a specified device address.
1836 s32
ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw
*hw
, u8 byte_offset
,
1837 u8 dev_addr
, u8
*data
)
1839 return ixgbe_read_i2c_byte_generic_int(hw
, byte_offset
, dev_addr
,
1844 * ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
1845 * @hw: pointer to hardware structure
1846 * @byte_offset: byte offset to write
1847 * @dev_addr: device address
1848 * @data: value to write
1849 * @lock: true if to take and release semaphore
1851 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1852 * a specified device address.
1854 static s32
ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw
*hw
, u8 byte_offset
,
1855 u8 dev_addr
, u8 data
, bool lock
)
1860 u32 swfw_mask
= hw
->phy
.phy_semaphore_mask
;
1862 if (lock
&& hw
->mac
.ops
.acquire_swfw_sync(hw
, swfw_mask
))
1863 return IXGBE_ERR_SWFW_SYNC
;
1866 ixgbe_i2c_start(hw
);
1868 status
= ixgbe_clock_out_i2c_byte(hw
, dev_addr
);
1872 status
= ixgbe_get_i2c_ack(hw
);
1876 status
= ixgbe_clock_out_i2c_byte(hw
, byte_offset
);
1880 status
= ixgbe_get_i2c_ack(hw
);
1884 status
= ixgbe_clock_out_i2c_byte(hw
, data
);
1888 status
= ixgbe_get_i2c_ack(hw
);
1894 hw
->mac
.ops
.release_swfw_sync(hw
, swfw_mask
);
1898 ixgbe_i2c_bus_clear(hw
);
1900 if (retry
< max_retry
)
1901 hw_dbg(hw
, "I2C byte write error - Retrying.\n");
1903 hw_dbg(hw
, "I2C byte write error.\n");
1904 } while (retry
< max_retry
);
1907 hw
->mac
.ops
.release_swfw_sync(hw
, swfw_mask
);
1913 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1914 * @hw: pointer to hardware structure
1915 * @byte_offset: byte offset to write
1916 * @dev_addr: device address
1917 * @data: value to write
1919 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1920 * a specified device address.
1922 s32
ixgbe_write_i2c_byte_generic(struct ixgbe_hw
*hw
, u8 byte_offset
,
1923 u8 dev_addr
, u8 data
)
1925 return ixgbe_write_i2c_byte_generic_int(hw
, byte_offset
, dev_addr
,
1930 * ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
1931 * @hw: pointer to hardware structure
1932 * @byte_offset: byte offset to write
1933 * @dev_addr: device address
1934 * @data: value to write
1936 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1937 * a specified device address.
1939 s32
ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw
*hw
, u8 byte_offset
,
1940 u8 dev_addr
, u8 data
)
1942 return ixgbe_write_i2c_byte_generic_int(hw
, byte_offset
, dev_addr
,
1947 * ixgbe_i2c_start - Sets I2C start condition
1948 * @hw: pointer to hardware structure
1950 * Sets I2C start condition (High -> Low on SDA while SCL is High)
1951 * Set bit-bang mode on X550 hardware.
1953 static void ixgbe_i2c_start(struct ixgbe_hw
*hw
)
1955 u32 i2cctl
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
1957 i2cctl
|= IXGBE_I2C_BB_EN(hw
);
1959 /* Start condition must begin with data and clock high */
1960 ixgbe_set_i2c_data(hw
, &i2cctl
, 1);
1961 ixgbe_raise_i2c_clk(hw
, &i2cctl
);
1963 /* Setup time for start condition (4.7us) */
1964 udelay(IXGBE_I2C_T_SU_STA
);
1966 ixgbe_set_i2c_data(hw
, &i2cctl
, 0);
1968 /* Hold time for start condition (4us) */
1969 udelay(IXGBE_I2C_T_HD_STA
);
1971 ixgbe_lower_i2c_clk(hw
, &i2cctl
);
1973 /* Minimum low period of clock is 4.7 us */
1974 udelay(IXGBE_I2C_T_LOW
);
1979 * ixgbe_i2c_stop - Sets I2C stop condition
1980 * @hw: pointer to hardware structure
1982 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
1983 * Disables bit-bang mode and negates data output enable on X550
1986 static void ixgbe_i2c_stop(struct ixgbe_hw
*hw
)
1988 u32 i2cctl
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
1989 u32 data_oe_bit
= IXGBE_I2C_DATA_OE_N_EN(hw
);
1990 u32 clk_oe_bit
= IXGBE_I2C_CLK_OE_N_EN(hw
);
1991 u32 bb_en_bit
= IXGBE_I2C_BB_EN(hw
);
1993 /* Stop condition must begin with data low and clock high */
1994 ixgbe_set_i2c_data(hw
, &i2cctl
, 0);
1995 ixgbe_raise_i2c_clk(hw
, &i2cctl
);
1997 /* Setup time for stop condition (4us) */
1998 udelay(IXGBE_I2C_T_SU_STO
);
2000 ixgbe_set_i2c_data(hw
, &i2cctl
, 1);
2002 /* bus free time between stop and start (4.7us)*/
2003 udelay(IXGBE_I2C_T_BUF
);
2005 if (bb_en_bit
|| data_oe_bit
|| clk_oe_bit
) {
2006 i2cctl
&= ~bb_en_bit
;
2007 i2cctl
|= data_oe_bit
| clk_oe_bit
;
2008 IXGBE_WRITE_REG(hw
, IXGBE_I2CCTL(hw
), i2cctl
);
2009 IXGBE_WRITE_FLUSH(hw
);
2014 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2015 * @hw: pointer to hardware structure
2016 * @data: data byte to clock in
2018 * Clocks in one byte data via I2C data/clock
2020 static s32
ixgbe_clock_in_i2c_byte(struct ixgbe_hw
*hw
, u8
*data
)
2026 for (i
= 7; i
>= 0; i
--) {
2027 ixgbe_clock_in_i2c_bit(hw
, &bit
);
2035 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2036 * @hw: pointer to hardware structure
2037 * @data: data byte clocked out
2039 * Clocks out one byte data via I2C data/clock
2041 static s32
ixgbe_clock_out_i2c_byte(struct ixgbe_hw
*hw
, u8 data
)
2048 for (i
= 7; i
>= 0; i
--) {
2049 bit
= (data
>> i
) & 0x1;
2050 status
= ixgbe_clock_out_i2c_bit(hw
, bit
);
2056 /* Release SDA line (set high) */
2057 i2cctl
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
2058 i2cctl
|= IXGBE_I2C_DATA_OUT(hw
);
2059 i2cctl
|= IXGBE_I2C_DATA_OE_N_EN(hw
);
2060 IXGBE_WRITE_REG(hw
, IXGBE_I2CCTL(hw
), i2cctl
);
2061 IXGBE_WRITE_FLUSH(hw
);
2067 * ixgbe_get_i2c_ack - Polls for I2C ACK
2068 * @hw: pointer to hardware structure
2070 * Clocks in/out one bit via I2C data/clock
2072 static s32
ixgbe_get_i2c_ack(struct ixgbe_hw
*hw
)
2074 u32 data_oe_bit
= IXGBE_I2C_DATA_OE_N_EN(hw
);
2077 u32 i2cctl
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
2082 i2cctl
|= IXGBE_I2C_DATA_OUT(hw
);
2083 i2cctl
|= data_oe_bit
;
2084 IXGBE_WRITE_REG(hw
, IXGBE_I2CCTL(hw
), i2cctl
);
2085 IXGBE_WRITE_FLUSH(hw
);
2087 ixgbe_raise_i2c_clk(hw
, &i2cctl
);
2089 /* Minimum high period of clock is 4us */
2090 udelay(IXGBE_I2C_T_HIGH
);
2092 /* Poll for ACK. Note that ACK in I2C spec is
2093 * transition from 1 to 0 */
2094 for (i
= 0; i
< timeout
; i
++) {
2095 i2cctl
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
2096 ack
= ixgbe_get_i2c_data(hw
, &i2cctl
);
2104 hw_dbg(hw
, "I2C ack was not received.\n");
2105 status
= IXGBE_ERR_I2C
;
2108 ixgbe_lower_i2c_clk(hw
, &i2cctl
);
2110 /* Minimum low period of clock is 4.7 us */
2111 udelay(IXGBE_I2C_T_LOW
);
2117 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2118 * @hw: pointer to hardware structure
2119 * @data: read data value
2121 * Clocks in one bit via I2C data/clock
2123 static s32
ixgbe_clock_in_i2c_bit(struct ixgbe_hw
*hw
, bool *data
)
2125 u32 i2cctl
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
2126 u32 data_oe_bit
= IXGBE_I2C_DATA_OE_N_EN(hw
);
2129 i2cctl
|= IXGBE_I2C_DATA_OUT(hw
);
2130 i2cctl
|= data_oe_bit
;
2131 IXGBE_WRITE_REG(hw
, IXGBE_I2CCTL(hw
), i2cctl
);
2132 IXGBE_WRITE_FLUSH(hw
);
2134 ixgbe_raise_i2c_clk(hw
, &i2cctl
);
2136 /* Minimum high period of clock is 4us */
2137 udelay(IXGBE_I2C_T_HIGH
);
2139 i2cctl
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
2140 *data
= ixgbe_get_i2c_data(hw
, &i2cctl
);
2142 ixgbe_lower_i2c_clk(hw
, &i2cctl
);
2144 /* Minimum low period of clock is 4.7 us */
2145 udelay(IXGBE_I2C_T_LOW
);
2151 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2152 * @hw: pointer to hardware structure
2153 * @data: data value to write
2155 * Clocks out one bit via I2C data/clock
2157 static s32
ixgbe_clock_out_i2c_bit(struct ixgbe_hw
*hw
, bool data
)
2160 u32 i2cctl
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
2162 status
= ixgbe_set_i2c_data(hw
, &i2cctl
, data
);
2164 ixgbe_raise_i2c_clk(hw
, &i2cctl
);
2166 /* Minimum high period of clock is 4us */
2167 udelay(IXGBE_I2C_T_HIGH
);
2169 ixgbe_lower_i2c_clk(hw
, &i2cctl
);
2171 /* Minimum low period of clock is 4.7 us.
2172 * This also takes care of the data hold time.
2174 udelay(IXGBE_I2C_T_LOW
);
2176 hw_dbg(hw
, "I2C data was not set to %X\n", data
);
2177 return IXGBE_ERR_I2C
;
2183 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2184 * @hw: pointer to hardware structure
2185 * @i2cctl: Current value of I2CCTL register
2187 * Raises the I2C clock line '0'->'1'
2188 * Negates the I2C clock output enable on X550 hardware.
2190 static void ixgbe_raise_i2c_clk(struct ixgbe_hw
*hw
, u32
*i2cctl
)
2192 u32 clk_oe_bit
= IXGBE_I2C_CLK_OE_N_EN(hw
);
2194 u32 timeout
= IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT
;
2198 *i2cctl
|= clk_oe_bit
;
2199 IXGBE_WRITE_REG(hw
, IXGBE_I2CCTL(hw
), *i2cctl
);
2202 for (i
= 0; i
< timeout
; i
++) {
2203 *i2cctl
|= IXGBE_I2C_CLK_OUT(hw
);
2204 IXGBE_WRITE_REG(hw
, IXGBE_I2CCTL(hw
), *i2cctl
);
2205 IXGBE_WRITE_FLUSH(hw
);
2206 /* SCL rise time (1000ns) */
2207 udelay(IXGBE_I2C_T_RISE
);
2209 i2cctl_r
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
2210 if (i2cctl_r
& IXGBE_I2C_CLK_IN(hw
))
2216 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2217 * @hw: pointer to hardware structure
2218 * @i2cctl: Current value of I2CCTL register
2220 * Lowers the I2C clock line '1'->'0'
2221 * Asserts the I2C clock output enable on X550 hardware.
2223 static void ixgbe_lower_i2c_clk(struct ixgbe_hw
*hw
, u32
*i2cctl
)
2226 *i2cctl
&= ~IXGBE_I2C_CLK_OUT(hw
);
2227 *i2cctl
&= ~IXGBE_I2C_CLK_OE_N_EN(hw
);
2229 IXGBE_WRITE_REG(hw
, IXGBE_I2CCTL(hw
), *i2cctl
);
2230 IXGBE_WRITE_FLUSH(hw
);
2232 /* SCL fall time (300ns) */
2233 udelay(IXGBE_I2C_T_FALL
);
2237 * ixgbe_set_i2c_data - Sets the I2C data bit
2238 * @hw: pointer to hardware structure
2239 * @i2cctl: Current value of I2CCTL register
2240 * @data: I2C data value (0 or 1) to set
2242 * Sets the I2C data bit
2243 * Asserts the I2C data output enable on X550 hardware.
2245 static s32
ixgbe_set_i2c_data(struct ixgbe_hw
*hw
, u32
*i2cctl
, bool data
)
2247 u32 data_oe_bit
= IXGBE_I2C_DATA_OE_N_EN(hw
);
2250 *i2cctl
|= IXGBE_I2C_DATA_OUT(hw
);
2252 *i2cctl
&= ~IXGBE_I2C_DATA_OUT(hw
);
2253 *i2cctl
&= ~data_oe_bit
;
2255 IXGBE_WRITE_REG(hw
, IXGBE_I2CCTL(hw
), *i2cctl
);
2256 IXGBE_WRITE_FLUSH(hw
);
2258 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2259 udelay(IXGBE_I2C_T_RISE
+ IXGBE_I2C_T_FALL
+ IXGBE_I2C_T_SU_DATA
);
2261 if (!data
) /* Can't verify data in this case */
2264 *i2cctl
|= data_oe_bit
;
2265 IXGBE_WRITE_REG(hw
, IXGBE_I2CCTL(hw
), *i2cctl
);
2266 IXGBE_WRITE_FLUSH(hw
);
2269 /* Verify data was set correctly */
2270 *i2cctl
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
2271 if (data
!= ixgbe_get_i2c_data(hw
, i2cctl
)) {
2272 hw_dbg(hw
, "Error - I2C data was not set to %X.\n", data
);
2273 return IXGBE_ERR_I2C
;
2280 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
2281 * @hw: pointer to hardware structure
2282 * @i2cctl: Current value of I2CCTL register
2284 * Returns the I2C data bit value
2285 * Negates the I2C data output enable on X550 hardware.
2287 static bool ixgbe_get_i2c_data(struct ixgbe_hw
*hw
, u32
*i2cctl
)
2289 u32 data_oe_bit
= IXGBE_I2C_DATA_OE_N_EN(hw
);
2292 *i2cctl
|= data_oe_bit
;
2293 IXGBE_WRITE_REG(hw
, IXGBE_I2CCTL(hw
), *i2cctl
);
2294 IXGBE_WRITE_FLUSH(hw
);
2295 udelay(IXGBE_I2C_T_FALL
);
2298 if (*i2cctl
& IXGBE_I2C_DATA_IN(hw
))
2304 * ixgbe_i2c_bus_clear - Clears the I2C bus
2305 * @hw: pointer to hardware structure
2307 * Clears the I2C bus by sending nine clock pulses.
2308 * Used when data line is stuck low.
2310 static void ixgbe_i2c_bus_clear(struct ixgbe_hw
*hw
)
2315 ixgbe_i2c_start(hw
);
2316 i2cctl
= IXGBE_READ_REG(hw
, IXGBE_I2CCTL(hw
));
2318 ixgbe_set_i2c_data(hw
, &i2cctl
, 1);
2320 for (i
= 0; i
< 9; i
++) {
2321 ixgbe_raise_i2c_clk(hw
, &i2cctl
);
2323 /* Min high period of clock is 4us */
2324 udelay(IXGBE_I2C_T_HIGH
);
2326 ixgbe_lower_i2c_clk(hw
, &i2cctl
);
2328 /* Min low period of clock is 4.7us*/
2329 udelay(IXGBE_I2C_T_LOW
);
2332 ixgbe_i2c_start(hw
);
2334 /* Put the i2c bus back to default state */
2339 * ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2340 * @hw: pointer to hardware structure
2342 * Checks if the LASI temp alarm status was triggered due to overtemp
2344 s32
ixgbe_tn_check_overtemp(struct ixgbe_hw
*hw
)
2348 if (hw
->device_id
!= IXGBE_DEV_ID_82599_T3_LOM
)
2351 /* Check that the LASI temp alarm status was triggered */
2352 hw
->phy
.ops
.read_reg(hw
, IXGBE_TN_LASI_STATUS_REG
,
2353 MDIO_MMD_PMAPMD
, &phy_data
);
2355 if (!(phy_data
& IXGBE_TN_LASI_STATUS_TEMP_ALARM
))
2358 return IXGBE_ERR_OVERTEMP
;
2361 /** ixgbe_set_copper_phy_power - Control power for copper phy
2362 * @hw: pointer to hardware structure
2363 * @on: true for on, false for off
2365 s32
ixgbe_set_copper_phy_power(struct ixgbe_hw
*hw
, bool on
)
2370 /* Bail if we don't have copper phy */
2371 if (hw
->mac
.ops
.get_media_type(hw
) != ixgbe_media_type_copper
)
2374 if (!on
&& ixgbe_mng_present(hw
))
2377 status
= hw
->phy
.ops
.read_reg(hw
, MDIO_CTRL1
, MDIO_MMD_VEND1
, ®
);
2382 reg
&= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE
;
2384 if (ixgbe_check_reset_blocked(hw
))
2386 reg
|= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE
;
2389 status
= hw
->phy
.ops
.write_reg(hw
, MDIO_CTRL1
, MDIO_MMD_VEND1
, reg
);