1 /* Freescale QUICC Engine HDLC Device Driver
3 * Copyright 2016 Freescale Semiconductor Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/hdlc.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sched.h>
26 #include <linux/skbuff.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/stddef.h>
30 #include <soc/fsl/qe/qe_tdm.h>
31 #include <uapi/linux/if_arp.h>
33 #include "fsl_ucc_hdlc.h"
35 #define DRV_DESC "Freescale QE UCC HDLC Driver"
36 #define DRV_NAME "ucc_hdlc"
38 #define TDM_PPPOHT_SLIC_MAXIN
40 static struct ucc_tdm_info utdm_primary_info
= {
55 .mode
= UCC_FAST_PROTOCOL_MODE_HDLC
,
56 .ttx_trx
= UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL
,
57 .tenc
= UCC_FAST_TX_ENCODING_NRZ
,
58 .renc
= UCC_FAST_RX_ENCODING_NRZ
,
59 .tcrc
= UCC_FAST_16_BIT_CRC
,
60 .synl
= UCC_FAST_SYNC_LEN_NOT_USED
,
64 #ifdef TDM_PPPOHT_SLIC_MAXIN
79 static struct ucc_tdm_info utdm_info
[MAX_HDLC_NUM
];
81 static int uhdlc_init(struct ucc_hdlc_private
*priv
)
83 struct ucc_tdm_info
*ut_info
;
84 struct ucc_fast_info
*uf_info
;
89 dma_addr_t bd_dma_addr
;
94 ut_info
= priv
->ut_info
;
95 uf_info
= &ut_info
->uf_info
;
102 /* This sets HPM register in CMXUCR register which configures a
103 * open drain connected HDLC bus
106 uf_info
->brkpt_support
= 1;
108 uf_info
->uccm_mask
= ((UCC_HDLC_UCCE_RXB
| UCC_HDLC_UCCE_RXF
|
109 UCC_HDLC_UCCE_TXB
) << 16);
111 ret
= ucc_fast_init(uf_info
, &priv
->uccf
);
113 dev_err(priv
->dev
, "Failed to init uccf.");
117 priv
->uf_regs
= priv
->uccf
->uf_regs
;
118 ucc_fast_disable(priv
->uccf
, COMM_DIR_RX
| COMM_DIR_TX
);
121 if (priv
->loopback
) {
122 dev_info(priv
->dev
, "Loopback Mode\n");
123 /* use the same clock when work in loopback */
124 qe_setbrg(ut_info
->uf_info
.rx_clock
, 20000000, 1);
126 gumr
= ioread32be(&priv
->uf_regs
->gumr
);
127 gumr
|= (UCC_FAST_GUMR_LOOPBACK
| UCC_FAST_GUMR_CDS
|
129 gumr
&= ~(UCC_FAST_GUMR_CTSP
| UCC_FAST_GUMR_RSYN
);
130 iowrite32be(gumr
, &priv
->uf_regs
->gumr
);
135 ucc_tdm_init(priv
->utdm
, priv
->ut_info
);
137 /* Write to QE CECR, UCCx channel to Stop Transmission */
138 cecr_subblock
= ucc_fast_get_qe_cr_subblock(uf_info
->ucc_num
);
139 ret
= qe_issue_cmd(QE_STOP_TX
, cecr_subblock
,
140 QE_CR_PROTOCOL_UNSPECIFIED
, 0);
142 /* Set UPSMR normal mode (need fixed)*/
143 iowrite32be(0, &priv
->uf_regs
->upsmr
);
146 if (priv
->hdlc_bus
) {
149 dev_info(priv
->dev
, "HDLC bus Mode\n");
150 upsmr
= ioread32be(&priv
->uf_regs
->upsmr
);
152 /* bus mode and retransmit enable, with collision window
155 upsmr
|= UCC_HDLC_UPSMR_RTE
| UCC_HDLC_UPSMR_BUS
|
157 iowrite32be(upsmr
, &priv
->uf_regs
->upsmr
);
159 /* explicitly disable CDS & CTSP */
160 gumr
= ioread32be(&priv
->uf_regs
->gumr
);
161 gumr
&= ~(UCC_FAST_GUMR_CDS
| UCC_FAST_GUMR_CTSP
);
162 /* set automatic sync to explicitly ignore CD signal */
163 gumr
|= UCC_FAST_GUMR_SYNL_AUTO
;
164 iowrite32be(gumr
, &priv
->uf_regs
->gumr
);
167 priv
->rx_ring_size
= RX_BD_RING_LEN
;
168 priv
->tx_ring_size
= TX_BD_RING_LEN
;
170 priv
->rx_bd_base
= dma_alloc_coherent(priv
->dev
,
171 RX_BD_RING_LEN
* sizeof(struct qe_bd
),
172 &priv
->dma_rx_bd
, GFP_KERNEL
);
174 if (!priv
->rx_bd_base
) {
175 dev_err(priv
->dev
, "Cannot allocate MURAM memory for RxBDs\n");
181 priv
->tx_bd_base
= dma_alloc_coherent(priv
->dev
,
182 TX_BD_RING_LEN
* sizeof(struct qe_bd
),
183 &priv
->dma_tx_bd
, GFP_KERNEL
);
185 if (!priv
->tx_bd_base
) {
186 dev_err(priv
->dev
, "Cannot allocate MURAM memory for TxBDs\n");
191 /* Alloc parameter ram for ucc hdlc */
192 priv
->ucc_pram_offset
= qe_muram_alloc(sizeof(struct ucc_hdlc_param
),
193 ALIGNMENT_OF_UCC_HDLC_PRAM
);
195 if (priv
->ucc_pram_offset
< 0) {
196 dev_err(priv
->dev
, "Can not allocate MURAM for hdlc parameter.\n");
201 priv
->rx_skbuff
= kzalloc(priv
->rx_ring_size
* sizeof(*priv
->rx_skbuff
),
203 if (!priv
->rx_skbuff
)
206 priv
->tx_skbuff
= kzalloc(priv
->tx_ring_size
* sizeof(*priv
->tx_skbuff
),
208 if (!priv
->tx_skbuff
)
212 priv
->skb_dirtytx
= 0;
213 priv
->curtx_bd
= priv
->tx_bd_base
;
214 priv
->dirty_tx
= priv
->tx_bd_base
;
215 priv
->currx_bd
= priv
->rx_bd_base
;
216 priv
->currx_bdnum
= 0;
218 /* init parameter base */
219 cecr_subblock
= ucc_fast_get_qe_cr_subblock(uf_info
->ucc_num
);
220 ret
= qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE
, cecr_subblock
,
221 QE_CR_PROTOCOL_UNSPECIFIED
, priv
->ucc_pram_offset
);
223 priv
->ucc_pram
= (struct ucc_hdlc_param __iomem
*)
224 qe_muram_addr(priv
->ucc_pram_offset
);
226 /* Zero out parameter ram */
227 memset_io(priv
->ucc_pram
, 0, sizeof(struct ucc_hdlc_param
));
229 /* Alloc riptr, tiptr */
230 riptr
= qe_muram_alloc(32, 32);
232 dev_err(priv
->dev
, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
237 tiptr
= qe_muram_alloc(32, 32);
239 dev_err(priv
->dev
, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
244 /* Set RIPTR, TIPTR */
245 iowrite16be(riptr
, &priv
->ucc_pram
->riptr
);
246 iowrite16be(tiptr
, &priv
->ucc_pram
->tiptr
);
249 iowrite16be(MAX_RX_BUF_LENGTH
, &priv
->ucc_pram
->mrblr
);
251 /* Set RBASE, TBASE */
252 iowrite32be(priv
->dma_rx_bd
, &priv
->ucc_pram
->rbase
);
253 iowrite32be(priv
->dma_tx_bd
, &priv
->ucc_pram
->tbase
);
255 /* Set RSTATE, TSTATE */
256 iowrite32be(BMR_GBL
| BMR_BIG_ENDIAN
, &priv
->ucc_pram
->rstate
);
257 iowrite32be(BMR_GBL
| BMR_BIG_ENDIAN
, &priv
->ucc_pram
->tstate
);
259 /* Set C_MASK, C_PRES for 16bit CRC */
260 iowrite32be(CRC_16BIT_MASK
, &priv
->ucc_pram
->c_mask
);
261 iowrite32be(CRC_16BIT_PRES
, &priv
->ucc_pram
->c_pres
);
263 iowrite16be(MAX_FRAME_LENGTH
, &priv
->ucc_pram
->mflr
);
264 iowrite16be(DEFAULT_RFTHR
, &priv
->ucc_pram
->rfthr
);
265 iowrite16be(DEFAULT_RFTHR
, &priv
->ucc_pram
->rfcnt
);
266 iowrite16be(DEFAULT_ADDR_MASK
, &priv
->ucc_pram
->hmask
);
267 iowrite16be(DEFAULT_HDLC_ADDR
, &priv
->ucc_pram
->haddr1
);
268 iowrite16be(DEFAULT_HDLC_ADDR
, &priv
->ucc_pram
->haddr2
);
269 iowrite16be(DEFAULT_HDLC_ADDR
, &priv
->ucc_pram
->haddr3
);
270 iowrite16be(DEFAULT_HDLC_ADDR
, &priv
->ucc_pram
->haddr4
);
273 bd_buffer
= dma_alloc_coherent(priv
->dev
,
274 (RX_BD_RING_LEN
+ TX_BD_RING_LEN
) *
276 &bd_dma_addr
, GFP_KERNEL
);
279 dev_err(priv
->dev
, "Could not allocate buffer descriptors\n");
284 memset(bd_buffer
, 0, (RX_BD_RING_LEN
+ TX_BD_RING_LEN
)
285 * MAX_RX_BUF_LENGTH
);
287 priv
->rx_buffer
= bd_buffer
;
288 priv
->tx_buffer
= bd_buffer
+ RX_BD_RING_LEN
* MAX_RX_BUF_LENGTH
;
290 priv
->dma_rx_addr
= bd_dma_addr
;
291 priv
->dma_tx_addr
= bd_dma_addr
+ RX_BD_RING_LEN
* MAX_RX_BUF_LENGTH
;
293 for (i
= 0; i
< RX_BD_RING_LEN
; i
++) {
294 if (i
< (RX_BD_RING_LEN
- 1))
295 bd_status
= R_E_S
| R_I_S
;
297 bd_status
= R_E_S
| R_I_S
| R_W_S
;
299 iowrite16be(bd_status
, &priv
->rx_bd_base
[i
].status
);
300 iowrite32be(priv
->dma_rx_addr
+ i
* MAX_RX_BUF_LENGTH
,
301 &priv
->rx_bd_base
[i
].buf
);
304 for (i
= 0; i
< TX_BD_RING_LEN
; i
++) {
305 if (i
< (TX_BD_RING_LEN
- 1))
306 bd_status
= T_I_S
| T_TC_S
;
308 bd_status
= T_I_S
| T_TC_S
| T_W_S
;
310 iowrite16be(bd_status
, &priv
->tx_bd_base
[i
].status
);
311 iowrite32be(priv
->dma_tx_addr
+ i
* MAX_RX_BUF_LENGTH
,
312 &priv
->tx_bd_base
[i
].buf
);
318 qe_muram_free(tiptr
);
320 qe_muram_free(riptr
);
322 kfree(priv
->tx_skbuff
);
324 kfree(priv
->rx_skbuff
);
326 qe_muram_free(priv
->ucc_pram_offset
);
328 dma_free_coherent(priv
->dev
,
329 TX_BD_RING_LEN
* sizeof(struct qe_bd
),
330 priv
->tx_bd_base
, priv
->dma_tx_bd
);
332 dma_free_coherent(priv
->dev
,
333 RX_BD_RING_LEN
* sizeof(struct qe_bd
),
334 priv
->rx_bd_base
, priv
->dma_rx_bd
);
336 ucc_fast_free(priv
->uccf
);
341 static netdev_tx_t
ucc_hdlc_tx(struct sk_buff
*skb
, struct net_device
*dev
)
343 hdlc_device
*hdlc
= dev_to_hdlc(dev
);
344 struct ucc_hdlc_private
*priv
= (struct ucc_hdlc_private
*)hdlc
->priv
;
345 struct qe_bd __iomem
*bd
;
352 if (skb_headroom(skb
) < HDLC_HEAD_LEN
) {
353 dev
->stats
.tx_dropped
++;
355 netdev_err(dev
, "No enough space for hdlc head\n");
359 skb_push(skb
, HDLC_HEAD_LEN
);
361 proto_head
= (u16
*)skb
->data
;
362 *proto_head
= htons(DEFAULT_HDLC_HEAD
);
364 dev
->stats
.tx_bytes
+= skb
->len
;
368 proto_head
= (u16
*)skb
->data
;
369 if (*proto_head
!= htons(DEFAULT_PPP_HEAD
)) {
370 dev
->stats
.tx_dropped
++;
372 netdev_err(dev
, "Wrong ppp header\n");
376 dev
->stats
.tx_bytes
+= skb
->len
;
380 dev
->stats
.tx_dropped
++;
384 spin_lock_irqsave(&priv
->lock
, flags
);
386 /* Start from the next BD that should be filled */
388 bd_status
= ioread16be(&bd
->status
);
389 /* Save the skb pointer so we can free it later */
390 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
392 /* Update the current skb pointer (wrapping if this was the last) */
394 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN
);
396 /* copy skb data to tx buffer for sdma processing */
397 memcpy(priv
->tx_buffer
+ (be32_to_cpu(bd
->buf
) - priv
->dma_tx_addr
),
398 skb
->data
, skb
->len
);
400 /* set bd status and length */
401 bd_status
= (bd_status
& T_W_S
) | T_R_S
| T_I_S
| T_L_S
| T_TC_S
;
403 iowrite16be(skb
->len
, &bd
->length
);
404 iowrite16be(bd_status
, &bd
->status
);
406 /* Move to next BD in the ring */
407 if (!(bd_status
& T_W_S
))
410 bd
= priv
->tx_bd_base
;
412 if (bd
== priv
->dirty_tx
) {
413 if (!netif_queue_stopped(dev
))
414 netif_stop_queue(dev
);
419 spin_unlock_irqrestore(&priv
->lock
, flags
);
424 static int hdlc_tx_done(struct ucc_hdlc_private
*priv
)
426 /* Start from the next BD that should be filled */
427 struct net_device
*dev
= priv
->ndev
;
428 struct qe_bd
*bd
; /* BD pointer */
432 bd_status
= ioread16be(&bd
->status
);
434 /* Normal processing. */
435 while ((bd_status
& T_R_S
) == 0) {
438 /* BD contains already transmitted buffer. */
439 /* Handle the transmitted buffer and release */
440 /* the BD to be used with the current frame */
442 skb
= priv
->tx_skbuff
[priv
->skb_dirtytx
];
445 dev
->stats
.tx_packets
++;
446 memset(priv
->tx_buffer
+
447 (be32_to_cpu(bd
->buf
) - priv
->dma_tx_addr
),
449 dev_kfree_skb_irq(skb
);
451 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
454 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN
);
456 /* We freed a buffer, so now we can restart transmission */
457 if (netif_queue_stopped(dev
))
458 netif_wake_queue(dev
);
460 /* Advance the confirmation BD pointer */
461 if (!(bd_status
& T_W_S
))
464 bd
= priv
->tx_bd_base
;
465 bd_status
= ioread16be(&bd
->status
);
472 static int hdlc_rx_done(struct ucc_hdlc_private
*priv
, int rx_work_limit
)
474 struct net_device
*dev
= priv
->ndev
;
475 struct sk_buff
*skb
= NULL
;
476 hdlc_device
*hdlc
= dev_to_hdlc(dev
);
479 u16 length
, howmany
= 0;
483 bd_status
= ioread16be(&bd
->status
);
485 /* while there are received buffers and BD is full (~R_E) */
486 while (!((bd_status
& (R_E_S
)) || (--rx_work_limit
< 0))) {
487 if (bd_status
& R_OV_S
)
488 dev
->stats
.rx_over_errors
++;
489 if (bd_status
& R_CR_S
) {
490 dev
->stats
.rx_crc_errors
++;
491 dev
->stats
.rx_dropped
++;
494 bdbuffer
= priv
->rx_buffer
+
495 (priv
->currx_bdnum
* MAX_RX_BUF_LENGTH
);
496 length
= ioread16be(&bd
->length
);
500 bdbuffer
+= HDLC_HEAD_LEN
;
501 length
-= (HDLC_HEAD_LEN
+ HDLC_CRC_SIZE
);
503 skb
= dev_alloc_skb(length
);
505 dev
->stats
.rx_dropped
++;
509 skb_put(skb
, length
);
512 memcpy(skb
->data
, bdbuffer
, length
);
516 length
-= HDLC_CRC_SIZE
;
518 skb
= dev_alloc_skb(length
);
520 dev
->stats
.rx_dropped
++;
524 skb_put(skb
, length
);
527 memcpy(skb
->data
, bdbuffer
, length
);
531 dev
->stats
.rx_packets
++;
532 dev
->stats
.rx_bytes
+= skb
->len
;
535 skb
->protocol
= hdlc_type_trans(skb
, dev
);
536 netif_receive_skb(skb
);
539 iowrite16be(bd_status
| R_E_S
| R_I_S
, &bd
->status
);
541 /* update to point at the next bd */
542 if (bd_status
& R_W_S
) {
543 priv
->currx_bdnum
= 0;
544 bd
= priv
->rx_bd_base
;
546 if (priv
->currx_bdnum
< (RX_BD_RING_LEN
- 1))
547 priv
->currx_bdnum
+= 1;
549 priv
->currx_bdnum
= RX_BD_RING_LEN
- 1;
554 bd_status
= ioread16be(&bd
->status
);
561 static int ucc_hdlc_poll(struct napi_struct
*napi
, int budget
)
563 struct ucc_hdlc_private
*priv
= container_of(napi
,
564 struct ucc_hdlc_private
,
568 /* Tx event processing */
569 spin_lock(&priv
->lock
);
571 spin_unlock(&priv
->lock
);
574 howmany
+= hdlc_rx_done(priv
, budget
- howmany
);
576 if (howmany
< budget
) {
577 napi_complete_done(napi
, howmany
);
578 qe_setbits32(priv
->uccf
->p_uccm
,
579 (UCCE_HDLC_RX_EVENTS
| UCCE_HDLC_TX_EVENTS
) << 16);
585 static irqreturn_t
ucc_hdlc_irq_handler(int irq
, void *dev_id
)
587 struct ucc_hdlc_private
*priv
= (struct ucc_hdlc_private
*)dev_id
;
588 struct net_device
*dev
= priv
->ndev
;
589 struct ucc_fast_private
*uccf
;
590 struct ucc_tdm_info
*ut_info
;
594 ut_info
= priv
->ut_info
;
597 ucce
= ioread32be(uccf
->p_ucce
);
598 uccm
= ioread32be(uccf
->p_uccm
);
600 iowrite32be(ucce
, uccf
->p_ucce
);
604 if ((ucce
>> 16) & (UCCE_HDLC_RX_EVENTS
| UCCE_HDLC_TX_EVENTS
)) {
605 if (napi_schedule_prep(&priv
->napi
)) {
606 uccm
&= ~((UCCE_HDLC_RX_EVENTS
| UCCE_HDLC_TX_EVENTS
)
608 iowrite32be(uccm
, uccf
->p_uccm
);
609 __napi_schedule(&priv
->napi
);
613 /* Errors and other events */
614 if (ucce
>> 16 & UCC_HDLC_UCCE_BSY
)
615 dev
->stats
.rx_errors
++;
616 if (ucce
>> 16 & UCC_HDLC_UCCE_TXE
)
617 dev
->stats
.tx_errors
++;
622 static int uhdlc_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
624 const size_t size
= sizeof(te1_settings
);
626 struct ucc_hdlc_private
*priv
= netdev_priv(dev
);
628 if (cmd
!= SIOCWANDEV
)
629 return hdlc_ioctl(dev
, ifr
, cmd
);
631 switch (ifr
->ifr_settings
.type
) {
633 ifr
->ifr_settings
.type
= IF_IFACE_E1
;
634 if (ifr
->ifr_settings
.size
< size
) {
635 ifr
->ifr_settings
.size
= size
; /* data size wanted */
638 memset(&line
, 0, sizeof(line
));
639 line
.clock_type
= priv
->clocking
;
641 if (copy_to_user(ifr
->ifr_settings
.ifs_ifsu
.sync
, &line
, size
))
646 return hdlc_ioctl(dev
, ifr
, cmd
);
650 static int uhdlc_open(struct net_device
*dev
)
653 hdlc_device
*hdlc
= dev_to_hdlc(dev
);
654 struct ucc_hdlc_private
*priv
= hdlc
->priv
;
655 struct ucc_tdm
*utdm
= priv
->utdm
;
657 if (priv
->hdlc_busy
!= 1) {
658 if (request_irq(priv
->ut_info
->uf_info
.irq
,
659 ucc_hdlc_irq_handler
, 0, "hdlc", priv
))
662 cecr_subblock
= ucc_fast_get_qe_cr_subblock(
663 priv
->ut_info
->uf_info
.ucc_num
);
665 qe_issue_cmd(QE_INIT_TX_RX
, cecr_subblock
,
666 QE_CR_PROTOCOL_UNSPECIFIED
, 0);
668 ucc_fast_enable(priv
->uccf
, COMM_DIR_RX
| COMM_DIR_TX
);
670 /* Enable the TDM port */
672 utdm
->si_regs
->siglmr1_h
|= (0x1 << utdm
->tdm_port
);
675 netif_device_attach(priv
->ndev
);
676 napi_enable(&priv
->napi
);
677 netif_start_queue(dev
);
684 static void uhdlc_memclean(struct ucc_hdlc_private
*priv
)
686 qe_muram_free(priv
->ucc_pram
->riptr
);
687 qe_muram_free(priv
->ucc_pram
->tiptr
);
689 if (priv
->rx_bd_base
) {
690 dma_free_coherent(priv
->dev
,
691 RX_BD_RING_LEN
* sizeof(struct qe_bd
),
692 priv
->rx_bd_base
, priv
->dma_rx_bd
);
694 priv
->rx_bd_base
= NULL
;
698 if (priv
->tx_bd_base
) {
699 dma_free_coherent(priv
->dev
,
700 TX_BD_RING_LEN
* sizeof(struct qe_bd
),
701 priv
->tx_bd_base
, priv
->dma_tx_bd
);
703 priv
->tx_bd_base
= NULL
;
707 if (priv
->ucc_pram
) {
708 qe_muram_free(priv
->ucc_pram_offset
);
709 priv
->ucc_pram
= NULL
;
710 priv
->ucc_pram_offset
= 0;
713 kfree(priv
->rx_skbuff
);
714 priv
->rx_skbuff
= NULL
;
716 kfree(priv
->tx_skbuff
);
717 priv
->tx_skbuff
= NULL
;
720 iounmap(priv
->uf_regs
);
721 priv
->uf_regs
= NULL
;
725 ucc_fast_free(priv
->uccf
);
729 if (priv
->rx_buffer
) {
730 dma_free_coherent(priv
->dev
,
731 RX_BD_RING_LEN
* MAX_RX_BUF_LENGTH
,
732 priv
->rx_buffer
, priv
->dma_rx_addr
);
733 priv
->rx_buffer
= NULL
;
734 priv
->dma_rx_addr
= 0;
737 if (priv
->tx_buffer
) {
738 dma_free_coherent(priv
->dev
,
739 TX_BD_RING_LEN
* MAX_RX_BUF_LENGTH
,
740 priv
->tx_buffer
, priv
->dma_tx_addr
);
741 priv
->tx_buffer
= NULL
;
742 priv
->dma_tx_addr
= 0;
746 static int uhdlc_close(struct net_device
*dev
)
748 struct ucc_hdlc_private
*priv
= dev_to_hdlc(dev
)->priv
;
749 struct ucc_tdm
*utdm
= priv
->utdm
;
752 napi_disable(&priv
->napi
);
753 cecr_subblock
= ucc_fast_get_qe_cr_subblock(
754 priv
->ut_info
->uf_info
.ucc_num
);
756 qe_issue_cmd(QE_GRACEFUL_STOP_TX
, cecr_subblock
,
757 (u8
)QE_CR_PROTOCOL_UNSPECIFIED
, 0);
758 qe_issue_cmd(QE_CLOSE_RX_BD
, cecr_subblock
,
759 (u8
)QE_CR_PROTOCOL_UNSPECIFIED
, 0);
762 utdm
->si_regs
->siglmr1_h
&= ~(0x1 << utdm
->tdm_port
);
764 ucc_fast_disable(priv
->uccf
, COMM_DIR_RX
| COMM_DIR_TX
);
766 free_irq(priv
->ut_info
->uf_info
.irq
, priv
);
767 netif_stop_queue(dev
);
773 static int ucc_hdlc_attach(struct net_device
*dev
, unsigned short encoding
,
774 unsigned short parity
)
776 struct ucc_hdlc_private
*priv
= dev_to_hdlc(dev
)->priv
;
778 if (encoding
!= ENCODING_NRZ
&&
779 encoding
!= ENCODING_NRZI
)
782 if (parity
!= PARITY_NONE
&&
783 parity
!= PARITY_CRC32_PR1_CCITT
&&
784 parity
!= PARITY_CRC16_PR1_CCITT
)
787 priv
->encoding
= encoding
;
788 priv
->parity
= parity
;
794 static void store_clk_config(struct ucc_hdlc_private
*priv
)
796 struct qe_mux
*qe_mux_reg
= &qe_immr
->qmx
;
799 priv
->cmxsi1cr_h
= ioread32be(&qe_mux_reg
->cmxsi1cr_h
);
800 priv
->cmxsi1cr_l
= ioread32be(&qe_mux_reg
->cmxsi1cr_l
);
803 priv
->cmxsi1syr
= ioread32be(&qe_mux_reg
->cmxsi1syr
);
806 memcpy_fromio(priv
->cmxucr
, qe_mux_reg
->cmxucr
, 4 * sizeof(u32
));
809 static void resume_clk_config(struct ucc_hdlc_private
*priv
)
811 struct qe_mux
*qe_mux_reg
= &qe_immr
->qmx
;
813 memcpy_toio(qe_mux_reg
->cmxucr
, priv
->cmxucr
, 4 * sizeof(u32
));
815 iowrite32be(priv
->cmxsi1cr_h
, &qe_mux_reg
->cmxsi1cr_h
);
816 iowrite32be(priv
->cmxsi1cr_l
, &qe_mux_reg
->cmxsi1cr_l
);
818 iowrite32be(priv
->cmxsi1syr
, &qe_mux_reg
->cmxsi1syr
);
821 static int uhdlc_suspend(struct device
*dev
)
823 struct ucc_hdlc_private
*priv
= dev_get_drvdata(dev
);
824 struct ucc_tdm_info
*ut_info
;
825 struct ucc_fast __iomem
*uf_regs
;
830 if (!netif_running(priv
->ndev
))
833 netif_device_detach(priv
->ndev
);
834 napi_disable(&priv
->napi
);
836 ut_info
= priv
->ut_info
;
837 uf_regs
= priv
->uf_regs
;
839 /* backup gumr guemr*/
840 priv
->gumr
= ioread32be(&uf_regs
->gumr
);
841 priv
->guemr
= ioread8(&uf_regs
->guemr
);
843 priv
->ucc_pram_bak
= kmalloc(sizeof(*priv
->ucc_pram_bak
),
845 if (!priv
->ucc_pram_bak
)
848 /* backup HDLC parameter */
849 memcpy_fromio(priv
->ucc_pram_bak
, priv
->ucc_pram
,
850 sizeof(struct ucc_hdlc_param
));
852 /* store the clk configuration */
853 store_clk_config(priv
);
856 ucc_fast_disable(priv
->uccf
, COMM_DIR_RX
| COMM_DIR_TX
);
861 static int uhdlc_resume(struct device
*dev
)
863 struct ucc_hdlc_private
*priv
= dev_get_drvdata(dev
);
864 struct ucc_tdm
*utdm
;
865 struct ucc_tdm_info
*ut_info
;
866 struct ucc_fast __iomem
*uf_regs
;
867 struct ucc_fast_private
*uccf
;
868 struct ucc_fast_info
*uf_info
;
876 if (!netif_running(priv
->ndev
))
880 ut_info
= priv
->ut_info
;
881 uf_info
= &ut_info
->uf_info
;
882 uf_regs
= priv
->uf_regs
;
885 /* restore gumr guemr */
886 iowrite8(priv
->guemr
, &uf_regs
->guemr
);
887 iowrite32be(priv
->gumr
, &uf_regs
->gumr
);
889 /* Set Virtual Fifo registers */
890 iowrite16be(uf_info
->urfs
, &uf_regs
->urfs
);
891 iowrite16be(uf_info
->urfet
, &uf_regs
->urfet
);
892 iowrite16be(uf_info
->urfset
, &uf_regs
->urfset
);
893 iowrite16be(uf_info
->utfs
, &uf_regs
->utfs
);
894 iowrite16be(uf_info
->utfet
, &uf_regs
->utfet
);
895 iowrite16be(uf_info
->utftt
, &uf_regs
->utftt
);
896 /* utfb, urfb are offsets from MURAM base */
897 iowrite32be(uccf
->ucc_fast_tx_virtual_fifo_base_offset
, &uf_regs
->utfb
);
898 iowrite32be(uccf
->ucc_fast_rx_virtual_fifo_base_offset
, &uf_regs
->urfb
);
900 /* Rx Tx and sync clock routing */
901 resume_clk_config(priv
);
903 iowrite32be(uf_info
->uccm_mask
, &uf_regs
->uccm
);
904 iowrite32be(0xffffffff, &uf_regs
->ucce
);
906 ucc_fast_disable(priv
->uccf
, COMM_DIR_RX
| COMM_DIR_TX
);
910 ucc_tdm_init(priv
->utdm
, priv
->ut_info
);
912 /* Write to QE CECR, UCCx channel to Stop Transmission */
913 cecr_subblock
= ucc_fast_get_qe_cr_subblock(uf_info
->ucc_num
);
914 ret
= qe_issue_cmd(QE_STOP_TX
, cecr_subblock
,
915 (u8
)QE_CR_PROTOCOL_UNSPECIFIED
, 0);
917 /* Set UPSMR normal mode */
918 iowrite32be(0, &uf_regs
->upsmr
);
920 /* init parameter base */
921 cecr_subblock
= ucc_fast_get_qe_cr_subblock(uf_info
->ucc_num
);
922 ret
= qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE
, cecr_subblock
,
923 QE_CR_PROTOCOL_UNSPECIFIED
, priv
->ucc_pram_offset
);
925 priv
->ucc_pram
= (struct ucc_hdlc_param __iomem
*)
926 qe_muram_addr(priv
->ucc_pram_offset
);
928 /* restore ucc parameter */
929 memcpy_toio(priv
->ucc_pram
, priv
->ucc_pram_bak
,
930 sizeof(struct ucc_hdlc_param
));
931 kfree(priv
->ucc_pram_bak
);
933 /* rebuild BD entry */
934 for (i
= 0; i
< RX_BD_RING_LEN
; i
++) {
935 if (i
< (RX_BD_RING_LEN
- 1))
936 bd_status
= R_E_S
| R_I_S
;
938 bd_status
= R_E_S
| R_I_S
| R_W_S
;
940 iowrite16be(bd_status
, &priv
->rx_bd_base
[i
].status
);
941 iowrite32be(priv
->dma_rx_addr
+ i
* MAX_RX_BUF_LENGTH
,
942 &priv
->rx_bd_base
[i
].buf
);
945 for (i
= 0; i
< TX_BD_RING_LEN
; i
++) {
946 if (i
< (TX_BD_RING_LEN
- 1))
947 bd_status
= T_I_S
| T_TC_S
;
949 bd_status
= T_I_S
| T_TC_S
| T_W_S
;
951 iowrite16be(bd_status
, &priv
->tx_bd_base
[i
].status
);
952 iowrite32be(priv
->dma_tx_addr
+ i
* MAX_RX_BUF_LENGTH
,
953 &priv
->tx_bd_base
[i
].buf
);
956 /* if hdlc is busy enable TX and RX */
957 if (priv
->hdlc_busy
== 1) {
958 cecr_subblock
= ucc_fast_get_qe_cr_subblock(
959 priv
->ut_info
->uf_info
.ucc_num
);
961 qe_issue_cmd(QE_INIT_TX_RX
, cecr_subblock
,
962 (u8
)QE_CR_PROTOCOL_UNSPECIFIED
, 0);
964 ucc_fast_enable(priv
->uccf
, COMM_DIR_RX
| COMM_DIR_TX
);
966 /* Enable the TDM port */
968 utdm
->si_regs
->siglmr1_h
|= (0x1 << utdm
->tdm_port
);
971 napi_enable(&priv
->napi
);
972 netif_device_attach(priv
->ndev
);
977 static const struct dev_pm_ops uhdlc_pm_ops
= {
978 .suspend
= uhdlc_suspend
,
979 .resume
= uhdlc_resume
,
980 .freeze
= uhdlc_suspend
,
981 .thaw
= uhdlc_resume
,
984 #define HDLC_PM_OPS (&uhdlc_pm_ops)
988 #define HDLC_PM_OPS NULL
991 static const struct net_device_ops uhdlc_ops
= {
992 .ndo_open
= uhdlc_open
,
993 .ndo_stop
= uhdlc_close
,
994 .ndo_start_xmit
= hdlc_start_xmit
,
995 .ndo_do_ioctl
= uhdlc_ioctl
,
998 static int ucc_hdlc_probe(struct platform_device
*pdev
)
1000 struct device_node
*np
= pdev
->dev
.of_node
;
1001 struct ucc_hdlc_private
*uhdlc_priv
= NULL
;
1002 struct ucc_tdm_info
*ut_info
;
1003 struct ucc_tdm
*utdm
= NULL
;
1004 struct resource res
;
1005 struct net_device
*dev
;
1012 ret
= of_property_read_u32_index(np
, "cell-index", 0, &val
);
1014 dev_err(&pdev
->dev
, "Invalid ucc property\n");
1019 if ((ucc_num
> 3) || (ucc_num
< 0)) {
1020 dev_err(&pdev
->dev
, ": Invalid UCC num\n");
1024 memcpy(&utdm_info
[ucc_num
], &utdm_primary_info
,
1025 sizeof(utdm_primary_info
));
1027 ut_info
= &utdm_info
[ucc_num
];
1028 ut_info
->uf_info
.ucc_num
= ucc_num
;
1030 sprop
= of_get_property(np
, "rx-clock-name", NULL
);
1032 ut_info
->uf_info
.rx_clock
= qe_clock_source(sprop
);
1033 if ((ut_info
->uf_info
.rx_clock
< QE_CLK_NONE
) ||
1034 (ut_info
->uf_info
.rx_clock
> QE_CLK24
)) {
1035 dev_err(&pdev
->dev
, "Invalid rx-clock-name property\n");
1039 dev_err(&pdev
->dev
, "Invalid rx-clock-name property\n");
1043 sprop
= of_get_property(np
, "tx-clock-name", NULL
);
1045 ut_info
->uf_info
.tx_clock
= qe_clock_source(sprop
);
1046 if ((ut_info
->uf_info
.tx_clock
< QE_CLK_NONE
) ||
1047 (ut_info
->uf_info
.tx_clock
> QE_CLK24
)) {
1048 dev_err(&pdev
->dev
, "Invalid tx-clock-name property\n");
1052 dev_err(&pdev
->dev
, "Invalid tx-clock-name property\n");
1056 ret
= of_address_to_resource(np
, 0, &res
);
1060 ut_info
->uf_info
.regs
= res
.start
;
1061 ut_info
->uf_info
.irq
= irq_of_parse_and_map(np
, 0);
1063 uhdlc_priv
= kzalloc(sizeof(*uhdlc_priv
), GFP_KERNEL
);
1068 dev_set_drvdata(&pdev
->dev
, uhdlc_priv
);
1069 uhdlc_priv
->dev
= &pdev
->dev
;
1070 uhdlc_priv
->ut_info
= ut_info
;
1072 if (of_get_property(np
, "fsl,tdm-interface", NULL
))
1073 uhdlc_priv
->tsa
= 1;
1075 if (of_get_property(np
, "fsl,ucc-internal-loopback", NULL
))
1076 uhdlc_priv
->loopback
= 1;
1078 if (of_get_property(np
, "fsl,hdlc-bus", NULL
))
1079 uhdlc_priv
->hdlc_bus
= 1;
1081 if (uhdlc_priv
->tsa
== 1) {
1082 utdm
= kzalloc(sizeof(*utdm
), GFP_KERNEL
);
1085 dev_err(&pdev
->dev
, "No mem to alloc ucc tdm data\n");
1086 goto free_uhdlc_priv
;
1088 uhdlc_priv
->utdm
= utdm
;
1089 ret
= ucc_of_parse_tdm(np
, utdm
, ut_info
);
1094 ret
= uhdlc_init(uhdlc_priv
);
1096 dev_err(&pdev
->dev
, "Failed to init uhdlc\n");
1100 dev
= alloc_hdlcdev(uhdlc_priv
);
1103 pr_err("ucc_hdlc: unable to allocate memory\n");
1104 goto undo_uhdlc_init
;
1107 uhdlc_priv
->ndev
= dev
;
1108 hdlc
= dev_to_hdlc(dev
);
1109 dev
->tx_queue_len
= 16;
1110 dev
->netdev_ops
= &uhdlc_ops
;
1111 hdlc
->attach
= ucc_hdlc_attach
;
1112 hdlc
->xmit
= ucc_hdlc_tx
;
1113 netif_napi_add(dev
, &uhdlc_priv
->napi
, ucc_hdlc_poll
, 32);
1114 if (register_hdlc_device(dev
)) {
1116 pr_err("ucc_hdlc: unable to register hdlc device\n");
1127 if (uhdlc_priv
->tsa
)
1134 static int ucc_hdlc_remove(struct platform_device
*pdev
)
1136 struct ucc_hdlc_private
*priv
= dev_get_drvdata(&pdev
->dev
);
1138 uhdlc_memclean(priv
);
1140 if (priv
->utdm
->si_regs
) {
1141 iounmap(priv
->utdm
->si_regs
);
1142 priv
->utdm
->si_regs
= NULL
;
1145 if (priv
->utdm
->siram
) {
1146 iounmap(priv
->utdm
->siram
);
1147 priv
->utdm
->siram
= NULL
;
1151 dev_info(&pdev
->dev
, "UCC based hdlc module removed\n");
1156 static const struct of_device_id fsl_ucc_hdlc_of_match
[] = {
1158 .compatible
= "fsl,ucc-hdlc",
1163 MODULE_DEVICE_TABLE(of
, fsl_ucc_hdlc_of_match
);
1165 static struct platform_driver ucc_hdlc_driver
= {
1166 .probe
= ucc_hdlc_probe
,
1167 .remove
= ucc_hdlc_remove
,
1171 .of_match_table
= fsl_ucc_hdlc_of_match
,
1175 module_platform_driver(ucc_hdlc_driver
);
1176 MODULE_LICENSE("GPL");