Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
blob6d96f9560950222e621558219a7169340e2cb75b
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
26 #include <linux/log2.h>
28 /* when under memory pressure rx ring refill may fail and needs a retry */
29 #define HTT_RX_RING_REFILL_RETRY_MS 50
31 #define HTT_RX_RING_REFILL_RESCHED_MS 5
33 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
35 static struct sk_buff *
36 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
38 struct ath10k_skb_rxcb *rxcb;
40 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
41 if (rxcb->paddr == paddr)
42 return ATH10K_RXCB_SKB(rxcb);
44 WARN_ON_ONCE(1);
45 return NULL;
48 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
50 struct sk_buff *skb;
51 struct ath10k_skb_rxcb *rxcb;
52 struct hlist_node *n;
53 int i;
55 if (htt->rx_ring.in_ord_rx) {
56 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
57 skb = ATH10K_RXCB_SKB(rxcb);
58 dma_unmap_single(htt->ar->dev, rxcb->paddr,
59 skb->len + skb_tailroom(skb),
60 DMA_FROM_DEVICE);
61 hash_del(&rxcb->hlist);
62 dev_kfree_skb_any(skb);
64 } else {
65 for (i = 0; i < htt->rx_ring.size; i++) {
66 skb = htt->rx_ring.netbufs_ring[i];
67 if (!skb)
68 continue;
70 rxcb = ATH10K_SKB_RXCB(skb);
71 dma_unmap_single(htt->ar->dev, rxcb->paddr,
72 skb->len + skb_tailroom(skb),
73 DMA_FROM_DEVICE);
74 dev_kfree_skb_any(skb);
78 htt->rx_ring.fill_cnt = 0;
79 hash_init(htt->rx_ring.skb_table);
80 memset(htt->rx_ring.netbufs_ring, 0,
81 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
84 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
86 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
89 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
91 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
94 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
95 void *vaddr)
97 htt->rx_ring.paddrs_ring_32 = vaddr;
100 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
101 void *vaddr)
103 htt->rx_ring.paddrs_ring_64 = vaddr;
106 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
107 dma_addr_t paddr, int idx)
109 htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
112 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
113 dma_addr_t paddr, int idx)
115 htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
118 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
120 htt->rx_ring.paddrs_ring_32[idx] = 0;
123 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
125 htt->rx_ring.paddrs_ring_64[idx] = 0;
128 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
130 return (void *)htt->rx_ring.paddrs_ring_32;
133 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
135 return (void *)htt->rx_ring.paddrs_ring_64;
138 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
140 struct htt_rx_desc *rx_desc;
141 struct ath10k_skb_rxcb *rxcb;
142 struct sk_buff *skb;
143 dma_addr_t paddr;
144 int ret = 0, idx;
146 /* The Full Rx Reorder firmware has no way of telling the host
147 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
148 * To keep things simple make sure ring is always half empty. This
149 * guarantees there'll be no replenishment overruns possible.
151 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
153 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
154 while (num > 0) {
155 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
156 if (!skb) {
157 ret = -ENOMEM;
158 goto fail;
161 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
162 skb_pull(skb,
163 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
164 skb->data);
166 /* Clear rx_desc attention word before posting to Rx ring */
167 rx_desc = (struct htt_rx_desc *)skb->data;
168 rx_desc->attention.flags = __cpu_to_le32(0);
170 paddr = dma_map_single(htt->ar->dev, skb->data,
171 skb->len + skb_tailroom(skb),
172 DMA_FROM_DEVICE);
174 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
175 dev_kfree_skb_any(skb);
176 ret = -ENOMEM;
177 goto fail;
180 rxcb = ATH10K_SKB_RXCB(skb);
181 rxcb->paddr = paddr;
182 htt->rx_ring.netbufs_ring[idx] = skb;
183 htt->rx_ops->htt_set_paddrs_ring(htt, paddr, idx);
184 htt->rx_ring.fill_cnt++;
186 if (htt->rx_ring.in_ord_rx) {
187 hash_add(htt->rx_ring.skb_table,
188 &ATH10K_SKB_RXCB(skb)->hlist,
189 paddr);
192 num--;
193 idx++;
194 idx &= htt->rx_ring.size_mask;
197 fail:
199 * Make sure the rx buffer is updated before available buffer
200 * index to avoid any potential rx ring corruption.
202 mb();
203 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
204 return ret;
207 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
209 lockdep_assert_held(&htt->rx_ring.lock);
210 return __ath10k_htt_rx_ring_fill_n(htt, num);
213 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
215 int ret, num_deficit, num_to_fill;
217 /* Refilling the whole RX ring buffer proves to be a bad idea. The
218 * reason is RX may take up significant amount of CPU cycles and starve
219 * other tasks, e.g. TX on an ethernet device while acting as a bridge
220 * with ath10k wlan interface. This ended up with very poor performance
221 * once CPU the host system was overwhelmed with RX on ath10k.
223 * By limiting the number of refills the replenishing occurs
224 * progressively. This in turns makes use of the fact tasklets are
225 * processed in FIFO order. This means actual RX processing can starve
226 * out refilling. If there's not enough buffers on RX ring FW will not
227 * report RX until it is refilled with enough buffers. This
228 * automatically balances load wrt to CPU power.
230 * This probably comes at a cost of lower maximum throughput but
231 * improves the average and stability.
233 spin_lock_bh(&htt->rx_ring.lock);
234 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
235 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
236 num_deficit -= num_to_fill;
237 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
238 if (ret == -ENOMEM) {
240 * Failed to fill it to the desired level -
241 * we'll start a timer and try again next time.
242 * As long as enough buffers are left in the ring for
243 * another A-MPDU rx, no special recovery is needed.
245 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
246 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
247 } else if (num_deficit > 0) {
248 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
249 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
251 spin_unlock_bh(&htt->rx_ring.lock);
254 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
256 struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
258 ath10k_htt_rx_msdu_buff_replenish(htt);
261 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
263 struct ath10k_htt *htt = &ar->htt;
264 int ret;
266 spin_lock_bh(&htt->rx_ring.lock);
267 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
268 htt->rx_ring.fill_cnt));
269 spin_unlock_bh(&htt->rx_ring.lock);
271 if (ret)
272 ath10k_htt_rx_ring_free(htt);
274 return ret;
277 void ath10k_htt_rx_free(struct ath10k_htt *htt)
279 del_timer_sync(&htt->rx_ring.refill_retry_timer);
281 skb_queue_purge(&htt->rx_msdus_q);
282 skb_queue_purge(&htt->rx_in_ord_compl_q);
283 skb_queue_purge(&htt->tx_fetch_ind_q);
285 ath10k_htt_rx_ring_free(htt);
287 dma_free_coherent(htt->ar->dev,
288 htt->rx_ops->htt_get_rx_ring_size(htt),
289 htt->rx_ops->htt_get_vaddr_ring(htt),
290 htt->rx_ring.base_paddr);
292 dma_free_coherent(htt->ar->dev,
293 sizeof(*htt->rx_ring.alloc_idx.vaddr),
294 htt->rx_ring.alloc_idx.vaddr,
295 htt->rx_ring.alloc_idx.paddr);
297 kfree(htt->rx_ring.netbufs_ring);
300 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
302 struct ath10k *ar = htt->ar;
303 int idx;
304 struct sk_buff *msdu;
306 lockdep_assert_held(&htt->rx_ring.lock);
308 if (htt->rx_ring.fill_cnt == 0) {
309 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
310 return NULL;
313 idx = htt->rx_ring.sw_rd_idx.msdu_payld;
314 msdu = htt->rx_ring.netbufs_ring[idx];
315 htt->rx_ring.netbufs_ring[idx] = NULL;
316 htt->rx_ops->htt_reset_paddrs_ring(htt, idx);
318 idx++;
319 idx &= htt->rx_ring.size_mask;
320 htt->rx_ring.sw_rd_idx.msdu_payld = idx;
321 htt->rx_ring.fill_cnt--;
323 dma_unmap_single(htt->ar->dev,
324 ATH10K_SKB_RXCB(msdu)->paddr,
325 msdu->len + skb_tailroom(msdu),
326 DMA_FROM_DEVICE);
327 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
328 msdu->data, msdu->len + skb_tailroom(msdu));
330 return msdu;
333 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
334 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
335 struct sk_buff_head *amsdu)
337 struct ath10k *ar = htt->ar;
338 int msdu_len, msdu_chaining = 0;
339 struct sk_buff *msdu;
340 struct htt_rx_desc *rx_desc;
342 lockdep_assert_held(&htt->rx_ring.lock);
344 for (;;) {
345 int last_msdu, msdu_len_invalid, msdu_chained;
347 msdu = ath10k_htt_rx_netbuf_pop(htt);
348 if (!msdu) {
349 __skb_queue_purge(amsdu);
350 return -ENOENT;
353 __skb_queue_tail(amsdu, msdu);
355 rx_desc = (struct htt_rx_desc *)msdu->data;
357 /* FIXME: we must report msdu payload since this is what caller
358 * expects now
360 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
361 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
364 * Sanity check - confirm the HW is finished filling in the
365 * rx data.
366 * If the HW and SW are working correctly, then it's guaranteed
367 * that the HW's MAC DMA is done before this point in the SW.
368 * To prevent the case that we handle a stale Rx descriptor,
369 * just assert for now until we have a way to recover.
371 if (!(__le32_to_cpu(rx_desc->attention.flags)
372 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
373 __skb_queue_purge(amsdu);
374 return -EIO;
377 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
378 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
379 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
380 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
381 RX_MSDU_START_INFO0_MSDU_LENGTH);
382 msdu_chained = rx_desc->frag_info.ring2_more_count;
384 if (msdu_len_invalid)
385 msdu_len = 0;
387 skb_trim(msdu, 0);
388 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
389 msdu_len -= msdu->len;
391 /* Note: Chained buffers do not contain rx descriptor */
392 while (msdu_chained--) {
393 msdu = ath10k_htt_rx_netbuf_pop(htt);
394 if (!msdu) {
395 __skb_queue_purge(amsdu);
396 return -ENOENT;
399 __skb_queue_tail(amsdu, msdu);
400 skb_trim(msdu, 0);
401 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
402 msdu_len -= msdu->len;
403 msdu_chaining = 1;
406 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
407 RX_MSDU_END_INFO0_LAST_MSDU;
409 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
410 sizeof(*rx_desc) - sizeof(u32));
412 if (last_msdu)
413 break;
416 if (skb_queue_empty(amsdu))
417 msdu_chaining = -1;
420 * Don't refill the ring yet.
422 * First, the elements popped here are still in use - it is not
423 * safe to overwrite them until the matching call to
424 * mpdu_desc_list_next. Second, for efficiency it is preferable to
425 * refill the rx ring with 1 PPDU's worth of rx buffers (something
426 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
427 * (something like 3 buffers). Consequently, we'll rely on the txrx
428 * SW to tell us when it is done pulling all the PPDU's rx buffers
429 * out of the rx ring, and then refill it just once.
432 return msdu_chaining;
435 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
436 u64 paddr)
438 struct ath10k *ar = htt->ar;
439 struct ath10k_skb_rxcb *rxcb;
440 struct sk_buff *msdu;
442 lockdep_assert_held(&htt->rx_ring.lock);
444 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
445 if (!msdu)
446 return NULL;
448 rxcb = ATH10K_SKB_RXCB(msdu);
449 hash_del(&rxcb->hlist);
450 htt->rx_ring.fill_cnt--;
452 dma_unmap_single(htt->ar->dev, rxcb->paddr,
453 msdu->len + skb_tailroom(msdu),
454 DMA_FROM_DEVICE);
455 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
456 msdu->data, msdu->len + skb_tailroom(msdu));
458 return msdu;
461 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
462 struct htt_rx_in_ord_ind *ev,
463 struct sk_buff_head *list)
465 struct ath10k *ar = htt->ar;
466 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
467 struct htt_rx_desc *rxd;
468 struct sk_buff *msdu;
469 int msdu_count;
470 bool is_offload;
471 u32 paddr;
473 lockdep_assert_held(&htt->rx_ring.lock);
475 msdu_count = __le16_to_cpu(ev->msdu_count);
476 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
478 while (msdu_count--) {
479 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
481 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
482 if (!msdu) {
483 __skb_queue_purge(list);
484 return -ENOENT;
487 __skb_queue_tail(list, msdu);
489 if (!is_offload) {
490 rxd = (void *)msdu->data;
492 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
494 skb_put(msdu, sizeof(*rxd));
495 skb_pull(msdu, sizeof(*rxd));
496 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
498 if (!(__le32_to_cpu(rxd->attention.flags) &
499 RX_ATTENTION_FLAGS_MSDU_DONE)) {
500 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
501 return -EIO;
505 msdu_desc++;
508 return 0;
511 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
512 struct htt_rx_in_ord_ind *ev,
513 struct sk_buff_head *list)
515 struct ath10k *ar = htt->ar;
516 struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
517 struct htt_rx_desc *rxd;
518 struct sk_buff *msdu;
519 int msdu_count;
520 bool is_offload;
521 u64 paddr;
523 lockdep_assert_held(&htt->rx_ring.lock);
525 msdu_count = __le16_to_cpu(ev->msdu_count);
526 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
528 while (msdu_count--) {
529 paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
530 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
531 if (!msdu) {
532 __skb_queue_purge(list);
533 return -ENOENT;
536 __skb_queue_tail(list, msdu);
538 if (!is_offload) {
539 rxd = (void *)msdu->data;
541 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
543 skb_put(msdu, sizeof(*rxd));
544 skb_pull(msdu, sizeof(*rxd));
545 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
547 if (!(__le32_to_cpu(rxd->attention.flags) &
548 RX_ATTENTION_FLAGS_MSDU_DONE)) {
549 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
550 return -EIO;
554 msdu_desc++;
557 return 0;
560 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
562 struct ath10k *ar = htt->ar;
563 dma_addr_t paddr;
564 void *vaddr, *vaddr_ring;
565 size_t size;
566 struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
568 htt->rx_confused = false;
570 /* XXX: The fill level could be changed during runtime in response to
571 * the host processing latency. Is this really worth it?
573 htt->rx_ring.size = HTT_RX_RING_SIZE;
574 htt->rx_ring.size_mask = htt->rx_ring.size - 1;
575 htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
577 if (!is_power_of_2(htt->rx_ring.size)) {
578 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
579 return -EINVAL;
582 htt->rx_ring.netbufs_ring =
583 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
584 GFP_KERNEL);
585 if (!htt->rx_ring.netbufs_ring)
586 goto err_netbuf;
588 size = htt->rx_ops->htt_get_rx_ring_size(htt);
590 vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
591 if (!vaddr_ring)
592 goto err_dma_ring;
594 htt->rx_ops->htt_config_paddrs_ring(htt, vaddr_ring);
595 htt->rx_ring.base_paddr = paddr;
597 vaddr = dma_alloc_coherent(htt->ar->dev,
598 sizeof(*htt->rx_ring.alloc_idx.vaddr),
599 &paddr, GFP_KERNEL);
600 if (!vaddr)
601 goto err_dma_idx;
603 htt->rx_ring.alloc_idx.vaddr = vaddr;
604 htt->rx_ring.alloc_idx.paddr = paddr;
605 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
606 *htt->rx_ring.alloc_idx.vaddr = 0;
608 /* Initialize the Rx refill retry timer */
609 timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
611 spin_lock_init(&htt->rx_ring.lock);
613 htt->rx_ring.fill_cnt = 0;
614 htt->rx_ring.sw_rd_idx.msdu_payld = 0;
615 hash_init(htt->rx_ring.skb_table);
617 skb_queue_head_init(&htt->rx_msdus_q);
618 skb_queue_head_init(&htt->rx_in_ord_compl_q);
619 skb_queue_head_init(&htt->tx_fetch_ind_q);
620 atomic_set(&htt->num_mpdus_ready, 0);
622 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
623 htt->rx_ring.size, htt->rx_ring.fill_level);
624 return 0;
626 err_dma_idx:
627 dma_free_coherent(htt->ar->dev,
628 htt->rx_ops->htt_get_rx_ring_size(htt),
629 vaddr_ring,
630 htt->rx_ring.base_paddr);
631 err_dma_ring:
632 kfree(htt->rx_ring.netbufs_ring);
633 err_netbuf:
634 return -ENOMEM;
637 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
638 enum htt_rx_mpdu_encrypt_type type)
640 switch (type) {
641 case HTT_RX_MPDU_ENCRYPT_NONE:
642 return 0;
643 case HTT_RX_MPDU_ENCRYPT_WEP40:
644 case HTT_RX_MPDU_ENCRYPT_WEP104:
645 return IEEE80211_WEP_IV_LEN;
646 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
647 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
648 return IEEE80211_TKIP_IV_LEN;
649 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
650 return IEEE80211_CCMP_HDR_LEN;
651 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
652 return IEEE80211_CCMP_256_HDR_LEN;
653 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
654 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
655 return IEEE80211_GCMP_HDR_LEN;
656 case HTT_RX_MPDU_ENCRYPT_WEP128:
657 case HTT_RX_MPDU_ENCRYPT_WAPI:
658 break;
661 ath10k_warn(ar, "unsupported encryption type %d\n", type);
662 return 0;
665 #define MICHAEL_MIC_LEN 8
667 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
668 enum htt_rx_mpdu_encrypt_type type)
670 switch (type) {
671 case HTT_RX_MPDU_ENCRYPT_NONE:
672 case HTT_RX_MPDU_ENCRYPT_WEP40:
673 case HTT_RX_MPDU_ENCRYPT_WEP104:
674 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
675 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
676 return 0;
677 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
678 return IEEE80211_CCMP_MIC_LEN;
679 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
680 return IEEE80211_CCMP_256_MIC_LEN;
681 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
682 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
683 return IEEE80211_GCMP_MIC_LEN;
684 case HTT_RX_MPDU_ENCRYPT_WEP128:
685 case HTT_RX_MPDU_ENCRYPT_WAPI:
686 break;
689 ath10k_warn(ar, "unsupported encryption type %d\n", type);
690 return 0;
693 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
694 enum htt_rx_mpdu_encrypt_type type)
696 switch (type) {
697 case HTT_RX_MPDU_ENCRYPT_NONE:
698 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
699 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
700 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
701 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
702 return 0;
703 case HTT_RX_MPDU_ENCRYPT_WEP40:
704 case HTT_RX_MPDU_ENCRYPT_WEP104:
705 return IEEE80211_WEP_ICV_LEN;
706 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
707 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
708 return IEEE80211_TKIP_ICV_LEN;
709 case HTT_RX_MPDU_ENCRYPT_WEP128:
710 case HTT_RX_MPDU_ENCRYPT_WAPI:
711 break;
714 ath10k_warn(ar, "unsupported encryption type %d\n", type);
715 return 0;
718 struct amsdu_subframe_hdr {
719 u8 dst[ETH_ALEN];
720 u8 src[ETH_ALEN];
721 __be16 len;
722 } __packed;
724 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
726 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
727 struct ieee80211_rx_status *status,
728 struct htt_rx_desc *rxd)
730 struct ieee80211_supported_band *sband;
731 u8 cck, rate, bw, sgi, mcs, nss;
732 u8 preamble = 0;
733 u8 group_id;
734 u32 info1, info2, info3;
736 info1 = __le32_to_cpu(rxd->ppdu_start.info1);
737 info2 = __le32_to_cpu(rxd->ppdu_start.info2);
738 info3 = __le32_to_cpu(rxd->ppdu_start.info3);
740 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
742 switch (preamble) {
743 case HTT_RX_LEGACY:
744 /* To get legacy rate index band is required. Since band can't
745 * be undefined check if freq is non-zero.
747 if (!status->freq)
748 return;
750 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
751 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
752 rate &= ~RX_PPDU_START_RATE_FLAG;
754 sband = &ar->mac.sbands[status->band];
755 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
756 break;
757 case HTT_RX_HT:
758 case HTT_RX_HT_WITH_TXBF:
759 /* HT-SIG - Table 20-11 in info2 and info3 */
760 mcs = info2 & 0x1F;
761 nss = mcs >> 3;
762 bw = (info2 >> 7) & 1;
763 sgi = (info3 >> 7) & 1;
765 status->rate_idx = mcs;
766 status->encoding = RX_ENC_HT;
767 if (sgi)
768 status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
769 if (bw)
770 status->bw = RATE_INFO_BW_40;
771 break;
772 case HTT_RX_VHT:
773 case HTT_RX_VHT_WITH_TXBF:
774 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
775 * TODO check this
777 bw = info2 & 3;
778 sgi = info3 & 1;
779 group_id = (info2 >> 4) & 0x3F;
781 if (GROUP_ID_IS_SU_MIMO(group_id)) {
782 mcs = (info3 >> 4) & 0x0F;
783 nss = ((info2 >> 10) & 0x07) + 1;
784 } else {
785 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
786 * so it's impossible to decode MCS. Also since
787 * firmware consumes Group Id Management frames host
788 * has no knowledge regarding group/user position
789 * mapping so it's impossible to pick the correct Nsts
790 * from VHT-SIG-A1.
792 * Bandwidth and SGI are valid so report the rateinfo
793 * on best-effort basis.
795 mcs = 0;
796 nss = 1;
799 if (mcs > 0x09) {
800 ath10k_warn(ar, "invalid MCS received %u\n", mcs);
801 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
802 __le32_to_cpu(rxd->attention.flags),
803 __le32_to_cpu(rxd->mpdu_start.info0),
804 __le32_to_cpu(rxd->mpdu_start.info1),
805 __le32_to_cpu(rxd->msdu_start.common.info0),
806 __le32_to_cpu(rxd->msdu_start.common.info1),
807 rxd->ppdu_start.info0,
808 __le32_to_cpu(rxd->ppdu_start.info1),
809 __le32_to_cpu(rxd->ppdu_start.info2),
810 __le32_to_cpu(rxd->ppdu_start.info3),
811 __le32_to_cpu(rxd->ppdu_start.info4));
813 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
814 __le32_to_cpu(rxd->msdu_end.common.info0),
815 __le32_to_cpu(rxd->mpdu_end.info0));
817 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
818 "rx desc msdu payload: ",
819 rxd->msdu_payload, 50);
822 status->rate_idx = mcs;
823 status->nss = nss;
825 if (sgi)
826 status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
828 switch (bw) {
829 /* 20MHZ */
830 case 0:
831 break;
832 /* 40MHZ */
833 case 1:
834 status->bw = RATE_INFO_BW_40;
835 break;
836 /* 80MHZ */
837 case 2:
838 status->bw = RATE_INFO_BW_80;
839 break;
840 case 3:
841 status->bw = RATE_INFO_BW_160;
842 break;
845 status->encoding = RX_ENC_VHT;
846 break;
847 default:
848 break;
852 static struct ieee80211_channel *
853 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
855 struct ath10k_peer *peer;
856 struct ath10k_vif *arvif;
857 struct cfg80211_chan_def def;
858 u16 peer_id;
860 lockdep_assert_held(&ar->data_lock);
862 if (!rxd)
863 return NULL;
865 if (rxd->attention.flags &
866 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
867 return NULL;
869 if (!(rxd->msdu_end.common.info0 &
870 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
871 return NULL;
873 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
874 RX_MPDU_START_INFO0_PEER_IDX);
876 peer = ath10k_peer_find_by_id(ar, peer_id);
877 if (!peer)
878 return NULL;
880 arvif = ath10k_get_arvif(ar, peer->vdev_id);
881 if (WARN_ON_ONCE(!arvif))
882 return NULL;
884 if (ath10k_mac_vif_chan(arvif->vif, &def))
885 return NULL;
887 return def.chan;
890 static struct ieee80211_channel *
891 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
893 struct ath10k_vif *arvif;
894 struct cfg80211_chan_def def;
896 lockdep_assert_held(&ar->data_lock);
898 list_for_each_entry(arvif, &ar->arvifs, list) {
899 if (arvif->vdev_id == vdev_id &&
900 ath10k_mac_vif_chan(arvif->vif, &def) == 0)
901 return def.chan;
904 return NULL;
907 static void
908 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
909 struct ieee80211_chanctx_conf *conf,
910 void *data)
912 struct cfg80211_chan_def *def = data;
914 *def = conf->def;
917 static struct ieee80211_channel *
918 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
920 struct cfg80211_chan_def def = {};
922 ieee80211_iter_chan_contexts_atomic(ar->hw,
923 ath10k_htt_rx_h_any_chan_iter,
924 &def);
926 return def.chan;
929 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
930 struct ieee80211_rx_status *status,
931 struct htt_rx_desc *rxd,
932 u32 vdev_id)
934 struct ieee80211_channel *ch;
936 spin_lock_bh(&ar->data_lock);
937 ch = ar->scan_channel;
938 if (!ch)
939 ch = ar->rx_channel;
940 if (!ch)
941 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
942 if (!ch)
943 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
944 if (!ch)
945 ch = ath10k_htt_rx_h_any_channel(ar);
946 if (!ch)
947 ch = ar->tgt_oper_chan;
948 spin_unlock_bh(&ar->data_lock);
950 if (!ch)
951 return false;
953 status->band = ch->band;
954 status->freq = ch->center_freq;
956 return true;
959 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
960 struct ieee80211_rx_status *status,
961 struct htt_rx_desc *rxd)
963 int i;
965 for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
966 status->chains &= ~BIT(i);
968 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
969 status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
970 rxd->ppdu_start.rssi_chains[i].pri20_mhz;
972 status->chains |= BIT(i);
976 /* FIXME: Get real NF */
977 status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
978 rxd->ppdu_start.rssi_comb;
979 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
982 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
983 struct ieee80211_rx_status *status,
984 struct htt_rx_desc *rxd)
986 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
987 * means all prior MSDUs in a PPDU are reported to mac80211 without the
988 * TSF. Is it worth holding frames until end of PPDU is known?
990 * FIXME: Can we get/compute 64bit TSF?
992 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
993 status->flag |= RX_FLAG_MACTIME_END;
996 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
997 struct sk_buff_head *amsdu,
998 struct ieee80211_rx_status *status,
999 u32 vdev_id)
1001 struct sk_buff *first;
1002 struct htt_rx_desc *rxd;
1003 bool is_first_ppdu;
1004 bool is_last_ppdu;
1006 if (skb_queue_empty(amsdu))
1007 return;
1009 first = skb_peek(amsdu);
1010 rxd = (void *)first->data - sizeof(*rxd);
1012 is_first_ppdu = !!(rxd->attention.flags &
1013 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1014 is_last_ppdu = !!(rxd->attention.flags &
1015 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1017 if (is_first_ppdu) {
1018 /* New PPDU starts so clear out the old per-PPDU status. */
1019 status->freq = 0;
1020 status->rate_idx = 0;
1021 status->nss = 0;
1022 status->encoding = RX_ENC_LEGACY;
1023 status->bw = RATE_INFO_BW_20;
1025 status->flag &= ~RX_FLAG_MACTIME_END;
1026 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1028 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1029 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1030 status->ampdu_reference = ar->ampdu_reference;
1032 ath10k_htt_rx_h_signal(ar, status, rxd);
1033 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1034 ath10k_htt_rx_h_rates(ar, status, rxd);
1037 if (is_last_ppdu) {
1038 ath10k_htt_rx_h_mactime(ar, status, rxd);
1040 /* set ampdu last segment flag */
1041 status->flag |= RX_FLAG_AMPDU_IS_LAST;
1042 ar->ampdu_reference++;
1046 static const char * const tid_to_ac[] = {
1047 "BE",
1048 "BK",
1049 "BK",
1050 "BE",
1051 "VI",
1052 "VI",
1053 "VO",
1054 "VO",
1057 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1059 u8 *qc;
1060 int tid;
1062 if (!ieee80211_is_data_qos(hdr->frame_control))
1063 return "";
1065 qc = ieee80211_get_qos_ctl(hdr);
1066 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1067 if (tid < 8)
1068 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1069 else
1070 snprintf(out, size, "tid %d", tid);
1072 return out;
1075 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1076 struct ieee80211_rx_status *rx_status,
1077 struct sk_buff *skb)
1079 struct ieee80211_rx_status *status;
1081 status = IEEE80211_SKB_RXCB(skb);
1082 *status = *rx_status;
1084 __skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1087 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1089 struct ieee80211_rx_status *status;
1090 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1091 char tid[32];
1093 status = IEEE80211_SKB_RXCB(skb);
1095 ath10k_dbg(ar, ATH10K_DBG_DATA,
1096 "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1097 skb,
1098 skb->len,
1099 ieee80211_get_SA(hdr),
1100 ath10k_get_tid(hdr, tid, sizeof(tid)),
1101 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1102 "mcast" : "ucast",
1103 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1104 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1105 (status->encoding == RX_ENC_HT) ? "ht" : "",
1106 (status->encoding == RX_ENC_VHT) ? "vht" : "",
1107 (status->bw == RATE_INFO_BW_40) ? "40" : "",
1108 (status->bw == RATE_INFO_BW_80) ? "80" : "",
1109 (status->bw == RATE_INFO_BW_160) ? "160" : "",
1110 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1111 status->rate_idx,
1112 status->nss,
1113 status->freq,
1114 status->band, status->flag,
1115 !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1116 !!(status->flag & RX_FLAG_MMIC_ERROR),
1117 !!(status->flag & RX_FLAG_AMSDU_MORE));
1118 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1119 skb->data, skb->len);
1120 trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1121 trace_ath10k_rx_payload(ar, skb->data, skb->len);
1123 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1126 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1127 struct ieee80211_hdr *hdr)
1129 int len = ieee80211_hdrlen(hdr->frame_control);
1131 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1132 ar->running_fw->fw_file.fw_features))
1133 len = round_up(len, 4);
1135 return len;
1138 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1139 struct sk_buff *msdu,
1140 struct ieee80211_rx_status *status,
1141 enum htt_rx_mpdu_encrypt_type enctype,
1142 bool is_decrypted)
1144 struct ieee80211_hdr *hdr;
1145 struct htt_rx_desc *rxd;
1146 size_t hdr_len;
1147 size_t crypto_len;
1148 bool is_first;
1149 bool is_last;
1151 rxd = (void *)msdu->data - sizeof(*rxd);
1152 is_first = !!(rxd->msdu_end.common.info0 &
1153 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1154 is_last = !!(rxd->msdu_end.common.info0 &
1155 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1157 /* Delivered decapped frame:
1158 * [802.11 header]
1159 * [crypto param] <-- can be trimmed if !fcs_err &&
1160 * !decrypt_err && !peer_idx_invalid
1161 * [amsdu header] <-- only if A-MSDU
1162 * [rfc1042/llc]
1163 * [payload]
1164 * [FCS] <-- at end, needs to be trimmed
1167 /* This probably shouldn't happen but warn just in case */
1168 if (unlikely(WARN_ON_ONCE(!is_first)))
1169 return;
1171 /* This probably shouldn't happen but warn just in case */
1172 if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1173 return;
1175 skb_trim(msdu, msdu->len - FCS_LEN);
1177 /* In most cases this will be true for sniffed frames. It makes sense
1178 * to deliver them as-is without stripping the crypto param. This is
1179 * necessary for software based decryption.
1181 * If there's no error then the frame is decrypted. At least that is
1182 * the case for frames that come in via fragmented rx indication.
1184 if (!is_decrypted)
1185 return;
1187 /* The payload is decrypted so strip crypto params. Start from tail
1188 * since hdr is used to compute some stuff.
1191 hdr = (void *)msdu->data;
1193 /* Tail */
1194 if (status->flag & RX_FLAG_IV_STRIPPED) {
1195 skb_trim(msdu, msdu->len -
1196 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1198 skb_trim(msdu, msdu->len -
1199 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1200 } else {
1201 /* MIC */
1202 if (status->flag & RX_FLAG_MIC_STRIPPED)
1203 skb_trim(msdu, msdu->len -
1204 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1206 /* ICV */
1207 if (status->flag & RX_FLAG_ICV_STRIPPED)
1208 skb_trim(msdu, msdu->len -
1209 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1212 /* MMIC */
1213 if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1214 !ieee80211_has_morefrags(hdr->frame_control) &&
1215 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1216 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1218 /* Head */
1219 if (status->flag & RX_FLAG_IV_STRIPPED) {
1220 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1221 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1223 memmove((void *)msdu->data + crypto_len,
1224 (void *)msdu->data, hdr_len);
1225 skb_pull(msdu, crypto_len);
1229 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1230 struct sk_buff *msdu,
1231 struct ieee80211_rx_status *status,
1232 const u8 first_hdr[64],
1233 enum htt_rx_mpdu_encrypt_type enctype)
1235 struct ieee80211_hdr *hdr;
1236 struct htt_rx_desc *rxd;
1237 size_t hdr_len;
1238 u8 da[ETH_ALEN];
1239 u8 sa[ETH_ALEN];
1240 int l3_pad_bytes;
1241 int bytes_aligned = ar->hw_params.decap_align_bytes;
1243 /* Delivered decapped frame:
1244 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1245 * [rfc1042/llc]
1247 * Note: The nwifi header doesn't have QoS Control and is
1248 * (always?) a 3addr frame.
1250 * Note2: There's no A-MSDU subframe header. Even if it's part
1251 * of an A-MSDU.
1254 /* pull decapped header and copy SA & DA */
1255 rxd = (void *)msdu->data - sizeof(*rxd);
1257 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1258 skb_put(msdu, l3_pad_bytes);
1260 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1262 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1263 ether_addr_copy(da, ieee80211_get_DA(hdr));
1264 ether_addr_copy(sa, ieee80211_get_SA(hdr));
1265 skb_pull(msdu, hdr_len);
1267 /* push original 802.11 header */
1268 hdr = (struct ieee80211_hdr *)first_hdr;
1269 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1271 if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1272 memcpy(skb_push(msdu,
1273 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1274 (void *)hdr + round_up(hdr_len, bytes_aligned),
1275 ath10k_htt_rx_crypto_param_len(ar, enctype));
1278 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1280 /* original 802.11 header has a different DA and in
1281 * case of 4addr it may also have different SA
1283 hdr = (struct ieee80211_hdr *)msdu->data;
1284 ether_addr_copy(ieee80211_get_DA(hdr), da);
1285 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1288 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1289 struct sk_buff *msdu,
1290 enum htt_rx_mpdu_encrypt_type enctype)
1292 struct ieee80211_hdr *hdr;
1293 struct htt_rx_desc *rxd;
1294 size_t hdr_len, crypto_len;
1295 void *rfc1042;
1296 bool is_first, is_last, is_amsdu;
1297 int bytes_aligned = ar->hw_params.decap_align_bytes;
1299 rxd = (void *)msdu->data - sizeof(*rxd);
1300 hdr = (void *)rxd->rx_hdr_status;
1302 is_first = !!(rxd->msdu_end.common.info0 &
1303 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1304 is_last = !!(rxd->msdu_end.common.info0 &
1305 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1306 is_amsdu = !(is_first && is_last);
1308 rfc1042 = hdr;
1310 if (is_first) {
1311 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1312 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1314 rfc1042 += round_up(hdr_len, bytes_aligned) +
1315 round_up(crypto_len, bytes_aligned);
1318 if (is_amsdu)
1319 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1321 return rfc1042;
1324 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1325 struct sk_buff *msdu,
1326 struct ieee80211_rx_status *status,
1327 const u8 first_hdr[64],
1328 enum htt_rx_mpdu_encrypt_type enctype)
1330 struct ieee80211_hdr *hdr;
1331 struct ethhdr *eth;
1332 size_t hdr_len;
1333 void *rfc1042;
1334 u8 da[ETH_ALEN];
1335 u8 sa[ETH_ALEN];
1336 int l3_pad_bytes;
1337 struct htt_rx_desc *rxd;
1338 int bytes_aligned = ar->hw_params.decap_align_bytes;
1340 /* Delivered decapped frame:
1341 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1342 * [payload]
1345 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1346 if (WARN_ON_ONCE(!rfc1042))
1347 return;
1349 rxd = (void *)msdu->data - sizeof(*rxd);
1350 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1351 skb_put(msdu, l3_pad_bytes);
1352 skb_pull(msdu, l3_pad_bytes);
1354 /* pull decapped header and copy SA & DA */
1355 eth = (struct ethhdr *)msdu->data;
1356 ether_addr_copy(da, eth->h_dest);
1357 ether_addr_copy(sa, eth->h_source);
1358 skb_pull(msdu, sizeof(struct ethhdr));
1360 /* push rfc1042/llc/snap */
1361 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1362 sizeof(struct rfc1042_hdr));
1364 /* push original 802.11 header */
1365 hdr = (struct ieee80211_hdr *)first_hdr;
1366 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1368 if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1369 memcpy(skb_push(msdu,
1370 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1371 (void *)hdr + round_up(hdr_len, bytes_aligned),
1372 ath10k_htt_rx_crypto_param_len(ar, enctype));
1375 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1377 /* original 802.11 header has a different DA and in
1378 * case of 4addr it may also have different SA
1380 hdr = (struct ieee80211_hdr *)msdu->data;
1381 ether_addr_copy(ieee80211_get_DA(hdr), da);
1382 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1385 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1386 struct sk_buff *msdu,
1387 struct ieee80211_rx_status *status,
1388 const u8 first_hdr[64],
1389 enum htt_rx_mpdu_encrypt_type enctype)
1391 struct ieee80211_hdr *hdr;
1392 size_t hdr_len;
1393 int l3_pad_bytes;
1394 struct htt_rx_desc *rxd;
1395 int bytes_aligned = ar->hw_params.decap_align_bytes;
1397 /* Delivered decapped frame:
1398 * [amsdu header] <-- replaced with 802.11 hdr
1399 * [rfc1042/llc]
1400 * [payload]
1403 rxd = (void *)msdu->data - sizeof(*rxd);
1404 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1406 skb_put(msdu, l3_pad_bytes);
1407 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1409 hdr = (struct ieee80211_hdr *)first_hdr;
1410 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1412 if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1413 memcpy(skb_push(msdu,
1414 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1415 (void *)hdr + round_up(hdr_len, bytes_aligned),
1416 ath10k_htt_rx_crypto_param_len(ar, enctype));
1419 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1422 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1423 struct sk_buff *msdu,
1424 struct ieee80211_rx_status *status,
1425 u8 first_hdr[64],
1426 enum htt_rx_mpdu_encrypt_type enctype,
1427 bool is_decrypted)
1429 struct htt_rx_desc *rxd;
1430 enum rx_msdu_decap_format decap;
1432 /* First msdu's decapped header:
1433 * [802.11 header] <-- padded to 4 bytes long
1434 * [crypto param] <-- padded to 4 bytes long
1435 * [amsdu header] <-- only if A-MSDU
1436 * [rfc1042/llc]
1438 * Other (2nd, 3rd, ..) msdu's decapped header:
1439 * [amsdu header] <-- only if A-MSDU
1440 * [rfc1042/llc]
1443 rxd = (void *)msdu->data - sizeof(*rxd);
1444 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1445 RX_MSDU_START_INFO1_DECAP_FORMAT);
1447 switch (decap) {
1448 case RX_MSDU_DECAP_RAW:
1449 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1450 is_decrypted);
1451 break;
1452 case RX_MSDU_DECAP_NATIVE_WIFI:
1453 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1454 enctype);
1455 break;
1456 case RX_MSDU_DECAP_ETHERNET2_DIX:
1457 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1458 break;
1459 case RX_MSDU_DECAP_8023_SNAP_LLC:
1460 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1461 enctype);
1462 break;
1466 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1468 struct htt_rx_desc *rxd;
1469 u32 flags, info;
1470 bool is_ip4, is_ip6;
1471 bool is_tcp, is_udp;
1472 bool ip_csum_ok, tcpudp_csum_ok;
1474 rxd = (void *)skb->data - sizeof(*rxd);
1475 flags = __le32_to_cpu(rxd->attention.flags);
1476 info = __le32_to_cpu(rxd->msdu_start.common.info1);
1478 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1479 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1480 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1481 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1482 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1483 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1485 if (!is_ip4 && !is_ip6)
1486 return CHECKSUM_NONE;
1487 if (!is_tcp && !is_udp)
1488 return CHECKSUM_NONE;
1489 if (!ip_csum_ok)
1490 return CHECKSUM_NONE;
1491 if (!tcpudp_csum_ok)
1492 return CHECKSUM_NONE;
1494 return CHECKSUM_UNNECESSARY;
1497 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1499 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1502 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1503 struct sk_buff_head *amsdu,
1504 struct ieee80211_rx_status *status,
1505 bool fill_crypt_header)
1507 struct sk_buff *first;
1508 struct sk_buff *last;
1509 struct sk_buff *msdu;
1510 struct htt_rx_desc *rxd;
1511 struct ieee80211_hdr *hdr;
1512 enum htt_rx_mpdu_encrypt_type enctype;
1513 u8 first_hdr[64];
1514 u8 *qos;
1515 bool has_fcs_err;
1516 bool has_crypto_err;
1517 bool has_tkip_err;
1518 bool has_peer_idx_invalid;
1519 bool is_decrypted;
1520 bool is_mgmt;
1521 u32 attention;
1523 if (skb_queue_empty(amsdu))
1524 return;
1526 first = skb_peek(amsdu);
1527 rxd = (void *)first->data - sizeof(*rxd);
1529 is_mgmt = !!(rxd->attention.flags &
1530 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1532 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1533 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1535 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1536 * decapped header. It'll be used for undecapping of each MSDU.
1538 hdr = (void *)rxd->rx_hdr_status;
1539 memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1541 /* Each A-MSDU subframe will use the original header as the base and be
1542 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1544 hdr = (void *)first_hdr;
1546 if (ieee80211_is_data_qos(hdr->frame_control)) {
1547 qos = ieee80211_get_qos_ctl(hdr);
1548 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1551 /* Some attention flags are valid only in the last MSDU. */
1552 last = skb_peek_tail(amsdu);
1553 rxd = (void *)last->data - sizeof(*rxd);
1554 attention = __le32_to_cpu(rxd->attention.flags);
1556 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1557 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1558 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1559 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1561 /* Note: If hardware captures an encrypted frame that it can't decrypt,
1562 * e.g. due to fcs error, missing peer or invalid key data it will
1563 * report the frame as raw.
1565 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1566 !has_fcs_err &&
1567 !has_crypto_err &&
1568 !has_peer_idx_invalid);
1570 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1571 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1572 RX_FLAG_MMIC_ERROR |
1573 RX_FLAG_DECRYPTED |
1574 RX_FLAG_IV_STRIPPED |
1575 RX_FLAG_ONLY_MONITOR |
1576 RX_FLAG_MMIC_STRIPPED);
1578 if (has_fcs_err)
1579 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1581 if (has_tkip_err)
1582 status->flag |= RX_FLAG_MMIC_ERROR;
1584 /* Firmware reports all necessary management frames via WMI already.
1585 * They are not reported to monitor interfaces at all so pass the ones
1586 * coming via HTT to monitor interfaces instead. This simplifies
1587 * matters a lot.
1589 if (is_mgmt)
1590 status->flag |= RX_FLAG_ONLY_MONITOR;
1592 if (is_decrypted) {
1593 status->flag |= RX_FLAG_DECRYPTED;
1595 if (likely(!is_mgmt))
1596 status->flag |= RX_FLAG_MMIC_STRIPPED;
1598 if (fill_crypt_header)
1599 status->flag |= RX_FLAG_MIC_STRIPPED |
1600 RX_FLAG_ICV_STRIPPED;
1601 else
1602 status->flag |= RX_FLAG_IV_STRIPPED;
1605 skb_queue_walk(amsdu, msdu) {
1606 ath10k_htt_rx_h_csum_offload(msdu);
1607 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1608 is_decrypted);
1610 /* Undecapping involves copying the original 802.11 header back
1611 * to sk_buff. If frame is protected and hardware has decrypted
1612 * it then remove the protected bit.
1614 if (!is_decrypted)
1615 continue;
1616 if (is_mgmt)
1617 continue;
1619 if (fill_crypt_header)
1620 continue;
1622 hdr = (void *)msdu->data;
1623 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1627 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1628 struct sk_buff_head *amsdu,
1629 struct ieee80211_rx_status *status)
1631 struct sk_buff *msdu;
1632 struct sk_buff *first_subframe;
1634 first_subframe = skb_peek(amsdu);
1636 while ((msdu = __skb_dequeue(amsdu))) {
1637 /* Setup per-MSDU flags */
1638 if (skb_queue_empty(amsdu))
1639 status->flag &= ~RX_FLAG_AMSDU_MORE;
1640 else
1641 status->flag |= RX_FLAG_AMSDU_MORE;
1643 if (msdu == first_subframe) {
1644 first_subframe = NULL;
1645 status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1646 } else {
1647 status->flag |= RX_FLAG_ALLOW_SAME_PN;
1650 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1654 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1656 struct sk_buff *skb, *first;
1657 int space;
1658 int total_len = 0;
1660 /* TODO: Might could optimize this by using
1661 * skb_try_coalesce or similar method to
1662 * decrease copying, or maybe get mac80211 to
1663 * provide a way to just receive a list of
1664 * skb?
1667 first = __skb_dequeue(amsdu);
1669 /* Allocate total length all at once. */
1670 skb_queue_walk(amsdu, skb)
1671 total_len += skb->len;
1673 space = total_len - skb_tailroom(first);
1674 if ((space > 0) &&
1675 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1676 /* TODO: bump some rx-oom error stat */
1677 /* put it back together so we can free the
1678 * whole list at once.
1680 __skb_queue_head(amsdu, first);
1681 return -1;
1684 /* Walk list again, copying contents into
1685 * msdu_head
1687 while ((skb = __skb_dequeue(amsdu))) {
1688 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1689 skb->len);
1690 dev_kfree_skb_any(skb);
1693 __skb_queue_head(amsdu, first);
1694 return 0;
1697 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1698 struct sk_buff_head *amsdu)
1700 struct sk_buff *first;
1701 struct htt_rx_desc *rxd;
1702 enum rx_msdu_decap_format decap;
1704 first = skb_peek(amsdu);
1705 rxd = (void *)first->data - sizeof(*rxd);
1706 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1707 RX_MSDU_START_INFO1_DECAP_FORMAT);
1709 /* FIXME: Current unchaining logic can only handle simple case of raw
1710 * msdu chaining. If decapping is other than raw the chaining may be
1711 * more complex and this isn't handled by the current code. Don't even
1712 * try re-constructing such frames - it'll be pretty much garbage.
1714 if (decap != RX_MSDU_DECAP_RAW ||
1715 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1716 __skb_queue_purge(amsdu);
1717 return;
1720 ath10k_unchain_msdu(amsdu);
1723 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1724 struct sk_buff_head *amsdu,
1725 struct ieee80211_rx_status *rx_status)
1727 /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1728 * invalid/dangerous frames.
1731 if (!rx_status->freq) {
1732 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1733 return false;
1736 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1737 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1738 return false;
1741 return true;
1744 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1745 struct sk_buff_head *amsdu,
1746 struct ieee80211_rx_status *rx_status)
1748 if (skb_queue_empty(amsdu))
1749 return;
1751 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1752 return;
1754 __skb_queue_purge(amsdu);
1757 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1759 struct ath10k *ar = htt->ar;
1760 struct ieee80211_rx_status *rx_status = &htt->rx_status;
1761 struct sk_buff_head amsdu;
1762 int ret;
1764 __skb_queue_head_init(&amsdu);
1766 spin_lock_bh(&htt->rx_ring.lock);
1767 if (htt->rx_confused) {
1768 spin_unlock_bh(&htt->rx_ring.lock);
1769 return -EIO;
1771 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1772 spin_unlock_bh(&htt->rx_ring.lock);
1774 if (ret < 0) {
1775 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1776 __skb_queue_purge(&amsdu);
1777 /* FIXME: It's probably a good idea to reboot the
1778 * device instead of leaving it inoperable.
1780 htt->rx_confused = true;
1781 return ret;
1784 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1786 /* only for ret = 1 indicates chained msdus */
1787 if (ret > 0)
1788 ath10k_htt_rx_h_unchain(ar, &amsdu);
1790 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1791 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true);
1792 ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
1794 return 0;
1797 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1798 struct htt_rx_indication *rx)
1800 struct ath10k *ar = htt->ar;
1801 struct htt_rx_indication_mpdu_range *mpdu_ranges;
1802 int num_mpdu_ranges;
1803 int i, mpdu_count = 0;
1805 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1806 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1807 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1809 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1810 rx, sizeof(*rx) +
1811 (sizeof(struct htt_rx_indication_mpdu_range) *
1812 num_mpdu_ranges));
1814 for (i = 0; i < num_mpdu_ranges; i++)
1815 mpdu_count += mpdu_ranges[i].mpdu_count;
1817 atomic_add(mpdu_count, &htt->num_mpdus_ready);
1820 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1821 struct sk_buff *skb)
1823 struct ath10k_htt *htt = &ar->htt;
1824 struct htt_resp *resp = (struct htt_resp *)skb->data;
1825 struct htt_tx_done tx_done = {};
1826 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1827 __le16 msdu_id;
1828 int i;
1830 switch (status) {
1831 case HTT_DATA_TX_STATUS_NO_ACK:
1832 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1833 break;
1834 case HTT_DATA_TX_STATUS_OK:
1835 tx_done.status = HTT_TX_COMPL_STATE_ACK;
1836 break;
1837 case HTT_DATA_TX_STATUS_DISCARD:
1838 case HTT_DATA_TX_STATUS_POSTPONE:
1839 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1840 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1841 break;
1842 default:
1843 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1844 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1845 break;
1848 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1849 resp->data_tx_completion.num_msdus);
1851 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1852 msdu_id = resp->data_tx_completion.msdus[i];
1853 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1855 /* kfifo_put: In practice firmware shouldn't fire off per-CE
1856 * interrupt and main interrupt (MSI/-X range case) for the same
1857 * HTC service so it should be safe to use kfifo_put w/o lock.
1859 * From kfifo_put() documentation:
1860 * Note that with only one concurrent reader and one concurrent
1861 * writer, you don't need extra locking to use these macro.
1863 if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1864 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1865 tx_done.msdu_id, tx_done.status);
1866 ath10k_txrx_tx_unref(htt, &tx_done);
1871 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1873 struct htt_rx_addba *ev = &resp->rx_addba;
1874 struct ath10k_peer *peer;
1875 struct ath10k_vif *arvif;
1876 u16 info0, tid, peer_id;
1878 info0 = __le16_to_cpu(ev->info0);
1879 tid = MS(info0, HTT_RX_BA_INFO0_TID);
1880 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1882 ath10k_dbg(ar, ATH10K_DBG_HTT,
1883 "htt rx addba tid %hu peer_id %hu size %hhu\n",
1884 tid, peer_id, ev->window_size);
1886 spin_lock_bh(&ar->data_lock);
1887 peer = ath10k_peer_find_by_id(ar, peer_id);
1888 if (!peer) {
1889 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1890 peer_id);
1891 spin_unlock_bh(&ar->data_lock);
1892 return;
1895 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1896 if (!arvif) {
1897 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1898 peer->vdev_id);
1899 spin_unlock_bh(&ar->data_lock);
1900 return;
1903 ath10k_dbg(ar, ATH10K_DBG_HTT,
1904 "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1905 peer->addr, tid, ev->window_size);
1907 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1908 spin_unlock_bh(&ar->data_lock);
1911 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1913 struct htt_rx_delba *ev = &resp->rx_delba;
1914 struct ath10k_peer *peer;
1915 struct ath10k_vif *arvif;
1916 u16 info0, tid, peer_id;
1918 info0 = __le16_to_cpu(ev->info0);
1919 tid = MS(info0, HTT_RX_BA_INFO0_TID);
1920 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1922 ath10k_dbg(ar, ATH10K_DBG_HTT,
1923 "htt rx delba tid %hu peer_id %hu\n",
1924 tid, peer_id);
1926 spin_lock_bh(&ar->data_lock);
1927 peer = ath10k_peer_find_by_id(ar, peer_id);
1928 if (!peer) {
1929 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1930 peer_id);
1931 spin_unlock_bh(&ar->data_lock);
1932 return;
1935 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1936 if (!arvif) {
1937 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1938 peer->vdev_id);
1939 spin_unlock_bh(&ar->data_lock);
1940 return;
1943 ath10k_dbg(ar, ATH10K_DBG_HTT,
1944 "htt rx stop rx ba session sta %pM tid %hu\n",
1945 peer->addr, tid);
1947 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1948 spin_unlock_bh(&ar->data_lock);
1951 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1952 struct sk_buff_head *amsdu)
1954 struct sk_buff *msdu;
1955 struct htt_rx_desc *rxd;
1957 if (skb_queue_empty(list))
1958 return -ENOBUFS;
1960 if (WARN_ON(!skb_queue_empty(amsdu)))
1961 return -EINVAL;
1963 while ((msdu = __skb_dequeue(list))) {
1964 __skb_queue_tail(amsdu, msdu);
1966 rxd = (void *)msdu->data - sizeof(*rxd);
1967 if (rxd->msdu_end.common.info0 &
1968 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1969 break;
1972 msdu = skb_peek_tail(amsdu);
1973 rxd = (void *)msdu->data - sizeof(*rxd);
1974 if (!(rxd->msdu_end.common.info0 &
1975 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1976 skb_queue_splice_init(amsdu, list);
1977 return -EAGAIN;
1980 return 0;
1983 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1984 struct sk_buff *skb)
1986 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1988 if (!ieee80211_has_protected(hdr->frame_control))
1989 return;
1991 /* Offloaded frames are already decrypted but firmware insists they are
1992 * protected in the 802.11 header. Strip the flag. Otherwise mac80211
1993 * will drop the frame.
1996 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1997 status->flag |= RX_FLAG_DECRYPTED |
1998 RX_FLAG_IV_STRIPPED |
1999 RX_FLAG_MMIC_STRIPPED;
2002 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2003 struct sk_buff_head *list)
2005 struct ath10k_htt *htt = &ar->htt;
2006 struct ieee80211_rx_status *status = &htt->rx_status;
2007 struct htt_rx_offload_msdu *rx;
2008 struct sk_buff *msdu;
2009 size_t offset;
2011 while ((msdu = __skb_dequeue(list))) {
2012 /* Offloaded frames don't have Rx descriptor. Instead they have
2013 * a short meta information header.
2016 rx = (void *)msdu->data;
2018 skb_put(msdu, sizeof(*rx));
2019 skb_pull(msdu, sizeof(*rx));
2021 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2022 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2023 dev_kfree_skb_any(msdu);
2024 continue;
2027 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2029 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
2030 * actual payload is unaligned. Align the frame. Otherwise
2031 * mac80211 complains. This shouldn't reduce performance much
2032 * because these offloaded frames are rare.
2034 offset = 4 - ((unsigned long)msdu->data & 3);
2035 skb_put(msdu, offset);
2036 memmove(msdu->data + offset, msdu->data, msdu->len);
2037 skb_pull(msdu, offset);
2039 /* FIXME: The frame is NWifi. Re-construct QoS Control
2040 * if possible later.
2043 memset(status, 0, sizeof(*status));
2044 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2046 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2047 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2048 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2052 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2054 struct ath10k_htt *htt = &ar->htt;
2055 struct htt_resp *resp = (void *)skb->data;
2056 struct ieee80211_rx_status *status = &htt->rx_status;
2057 struct sk_buff_head list;
2058 struct sk_buff_head amsdu;
2059 u16 peer_id;
2060 u16 msdu_count;
2061 u8 vdev_id;
2062 u8 tid;
2063 bool offload;
2064 bool frag;
2065 int ret;
2067 lockdep_assert_held(&htt->rx_ring.lock);
2069 if (htt->rx_confused)
2070 return -EIO;
2072 skb_pull(skb, sizeof(resp->hdr));
2073 skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2075 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2076 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2077 vdev_id = resp->rx_in_ord_ind.vdev_id;
2078 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2079 offload = !!(resp->rx_in_ord_ind.info &
2080 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2081 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2083 ath10k_dbg(ar, ATH10K_DBG_HTT,
2084 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2085 vdev_id, peer_id, tid, offload, frag, msdu_count);
2087 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2088 ath10k_warn(ar, "dropping invalid in order rx indication\n");
2089 return -EINVAL;
2092 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2093 * extracted and processed.
2095 __skb_queue_head_init(&list);
2096 if (ar->hw_params.target_64bit)
2097 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2098 &list);
2099 else
2100 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2101 &list);
2103 if (ret < 0) {
2104 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2105 htt->rx_confused = true;
2106 return -EIO;
2109 /* Offloaded frames are very different and need to be handled
2110 * separately.
2112 if (offload)
2113 ath10k_htt_rx_h_rx_offload(ar, &list);
2115 while (!skb_queue_empty(&list)) {
2116 __skb_queue_head_init(&amsdu);
2117 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2118 switch (ret) {
2119 case 0:
2120 /* Note: The in-order indication may report interleaved
2121 * frames from different PPDUs meaning reported rx rate
2122 * to mac80211 isn't accurate/reliable. It's still
2123 * better to report something than nothing though. This
2124 * should still give an idea about rx rate to the user.
2126 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
2127 ath10k_htt_rx_h_filter(ar, &amsdu, status);
2128 ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false);
2129 ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
2130 break;
2131 case -EAGAIN:
2132 /* fall through */
2133 default:
2134 /* Should not happen. */
2135 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
2136 htt->rx_confused = true;
2137 __skb_queue_purge(&list);
2138 return -EIO;
2141 return ret;
2144 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
2145 const __le32 *resp_ids,
2146 int num_resp_ids)
2148 int i;
2149 u32 resp_id;
2151 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2152 num_resp_ids);
2154 for (i = 0; i < num_resp_ids; i++) {
2155 resp_id = le32_to_cpu(resp_ids[i]);
2157 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2158 resp_id);
2160 /* TODO: free resp_id */
2164 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2166 struct ieee80211_hw *hw = ar->hw;
2167 struct ieee80211_txq *txq;
2168 struct htt_resp *resp = (struct htt_resp *)skb->data;
2169 struct htt_tx_fetch_record *record;
2170 size_t len;
2171 size_t max_num_bytes;
2172 size_t max_num_msdus;
2173 size_t num_bytes;
2174 size_t num_msdus;
2175 const __le32 *resp_ids;
2176 u16 num_records;
2177 u16 num_resp_ids;
2178 u16 peer_id;
2179 u8 tid;
2180 int ret;
2181 int i;
2183 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2185 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2186 if (unlikely(skb->len < len)) {
2187 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2188 return;
2191 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2192 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2194 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2195 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2197 if (unlikely(skb->len < len)) {
2198 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2199 return;
2202 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2203 num_records, num_resp_ids,
2204 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2206 if (!ar->htt.tx_q_state.enabled) {
2207 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2208 return;
2211 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2212 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2213 return;
2216 rcu_read_lock();
2218 for (i = 0; i < num_records; i++) {
2219 record = &resp->tx_fetch_ind.records[i];
2220 peer_id = MS(le16_to_cpu(record->info),
2221 HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2222 tid = MS(le16_to_cpu(record->info),
2223 HTT_TX_FETCH_RECORD_INFO_TID);
2224 max_num_msdus = le16_to_cpu(record->num_msdus);
2225 max_num_bytes = le32_to_cpu(record->num_bytes);
2227 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2228 i, peer_id, tid, max_num_msdus, max_num_bytes);
2230 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2231 unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2232 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2233 peer_id, tid);
2234 continue;
2237 spin_lock_bh(&ar->data_lock);
2238 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2239 spin_unlock_bh(&ar->data_lock);
2241 /* It is okay to release the lock and use txq because RCU read
2242 * lock is held.
2245 if (unlikely(!txq)) {
2246 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2247 peer_id, tid);
2248 continue;
2251 num_msdus = 0;
2252 num_bytes = 0;
2254 while (num_msdus < max_num_msdus &&
2255 num_bytes < max_num_bytes) {
2256 ret = ath10k_mac_tx_push_txq(hw, txq);
2257 if (ret < 0)
2258 break;
2260 num_msdus++;
2261 num_bytes += ret;
2264 record->num_msdus = cpu_to_le16(num_msdus);
2265 record->num_bytes = cpu_to_le32(num_bytes);
2267 ath10k_htt_tx_txq_recalc(hw, txq);
2270 rcu_read_unlock();
2272 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2273 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2275 ret = ath10k_htt_tx_fetch_resp(ar,
2276 resp->tx_fetch_ind.token,
2277 resp->tx_fetch_ind.fetch_seq_num,
2278 resp->tx_fetch_ind.records,
2279 num_records);
2280 if (unlikely(ret)) {
2281 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2282 le32_to_cpu(resp->tx_fetch_ind.token), ret);
2283 /* FIXME: request fw restart */
2286 ath10k_htt_tx_txq_sync(ar);
2289 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2290 struct sk_buff *skb)
2292 const struct htt_resp *resp = (void *)skb->data;
2293 size_t len;
2294 int num_resp_ids;
2296 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2298 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2299 if (unlikely(skb->len < len)) {
2300 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2301 return;
2304 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2305 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2307 if (unlikely(skb->len < len)) {
2308 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2309 return;
2312 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2313 resp->tx_fetch_confirm.resp_ids,
2314 num_resp_ids);
2317 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2318 struct sk_buff *skb)
2320 const struct htt_resp *resp = (void *)skb->data;
2321 const struct htt_tx_mode_switch_record *record;
2322 struct ieee80211_txq *txq;
2323 struct ath10k_txq *artxq;
2324 size_t len;
2325 size_t num_records;
2326 enum htt_tx_mode_switch_mode mode;
2327 bool enable;
2328 u16 info0;
2329 u16 info1;
2330 u16 threshold;
2331 u16 peer_id;
2332 u8 tid;
2333 int i;
2335 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2337 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2338 if (unlikely(skb->len < len)) {
2339 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2340 return;
2343 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2344 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2346 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2347 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2348 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2349 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2351 ath10k_dbg(ar, ATH10K_DBG_HTT,
2352 "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2353 info0, info1, enable, num_records, mode, threshold);
2355 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2357 if (unlikely(skb->len < len)) {
2358 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2359 return;
2362 switch (mode) {
2363 case HTT_TX_MODE_SWITCH_PUSH:
2364 case HTT_TX_MODE_SWITCH_PUSH_PULL:
2365 break;
2366 default:
2367 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2368 mode);
2369 return;
2372 if (!enable)
2373 return;
2375 ar->htt.tx_q_state.enabled = enable;
2376 ar->htt.tx_q_state.mode = mode;
2377 ar->htt.tx_q_state.num_push_allowed = threshold;
2379 rcu_read_lock();
2381 for (i = 0; i < num_records; i++) {
2382 record = &resp->tx_mode_switch_ind.records[i];
2383 info0 = le16_to_cpu(record->info0);
2384 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2385 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2387 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2388 unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2389 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2390 peer_id, tid);
2391 continue;
2394 spin_lock_bh(&ar->data_lock);
2395 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2396 spin_unlock_bh(&ar->data_lock);
2398 /* It is okay to release the lock and use txq because RCU read
2399 * lock is held.
2402 if (unlikely(!txq)) {
2403 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2404 peer_id, tid);
2405 continue;
2408 spin_lock_bh(&ar->htt.tx_lock);
2409 artxq = (void *)txq->drv_priv;
2410 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2411 spin_unlock_bh(&ar->htt.tx_lock);
2414 rcu_read_unlock();
2416 ath10k_mac_tx_push_pending(ar);
2419 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2421 bool release;
2423 release = ath10k_htt_t2h_msg_handler(ar, skb);
2425 /* Free the indication buffer */
2426 if (release)
2427 dev_kfree_skb_any(skb);
2430 static inline bool is_valid_legacy_rate(u8 rate)
2432 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2433 18, 24, 36, 48, 54};
2434 int i;
2436 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2437 if (rate == legacy_rates[i])
2438 return true;
2441 return false;
2444 static void
2445 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2446 struct ieee80211_sta *sta,
2447 struct ath10k_per_peer_tx_stats *peer_stats)
2449 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2450 u8 rate = 0, sgi;
2451 struct rate_info txrate;
2453 lockdep_assert_held(&ar->data_lock);
2455 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2456 txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2457 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2458 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2459 sgi = ATH10K_HW_GI(peer_stats->flags);
2461 if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
2462 ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats", txrate.mcs);
2463 return;
2466 if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
2467 (txrate.mcs > 7 || txrate.nss < 1)) {
2468 ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
2469 txrate.mcs, txrate.nss);
2470 return;
2473 memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2475 if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2476 txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2477 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2479 if (!is_valid_legacy_rate(rate)) {
2480 ath10k_warn(ar, "Invalid legacy rate %hhd peer stats",
2481 rate);
2482 return;
2485 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2486 rate *= 10;
2487 if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2488 rate = rate - 5;
2489 arsta->txrate.legacy = rate;
2490 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2491 arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2492 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
2493 } else {
2494 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2495 arsta->txrate.mcs = txrate.mcs;
2498 if (sgi)
2499 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2501 arsta->txrate.nss = txrate.nss;
2502 arsta->txrate.bw = txrate.bw + RATE_INFO_BW_20;
2505 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2506 struct sk_buff *skb)
2508 struct htt_resp *resp = (struct htt_resp *)skb->data;
2509 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2510 struct htt_per_peer_tx_stats_ind *tx_stats;
2511 struct ieee80211_sta *sta;
2512 struct ath10k_peer *peer;
2513 int peer_id, i;
2514 u8 ppdu_len, num_ppdu;
2516 num_ppdu = resp->peer_tx_stats.num_ppdu;
2517 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2519 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2520 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2521 return;
2524 tx_stats = (struct htt_per_peer_tx_stats_ind *)
2525 (resp->peer_tx_stats.payload);
2526 peer_id = __le16_to_cpu(tx_stats->peer_id);
2528 rcu_read_lock();
2529 spin_lock_bh(&ar->data_lock);
2530 peer = ath10k_peer_find_by_id(ar, peer_id);
2531 if (!peer) {
2532 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2533 peer_id);
2534 goto out;
2537 sta = peer->sta;
2538 for (i = 0; i < num_ppdu; i++) {
2539 tx_stats = (struct htt_per_peer_tx_stats_ind *)
2540 (resp->peer_tx_stats.payload + i * ppdu_len);
2542 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2543 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2544 p_tx_stats->failed_bytes =
2545 __le32_to_cpu(tx_stats->failed_bytes);
2546 p_tx_stats->ratecode = tx_stats->ratecode;
2547 p_tx_stats->flags = tx_stats->flags;
2548 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2549 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2550 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2552 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2555 out:
2556 spin_unlock_bh(&ar->data_lock);
2557 rcu_read_unlock();
2560 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
2562 struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
2563 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2564 struct ath10k_10_2_peer_tx_stats *tx_stats;
2565 struct ieee80211_sta *sta;
2566 struct ath10k_peer *peer;
2567 u16 log_type = __le16_to_cpu(hdr->log_type);
2568 u32 peer_id = 0, i;
2570 if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
2571 return;
2573 tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
2574 ATH10K_10_2_TX_STATS_OFFSET);
2576 if (!tx_stats->tx_ppdu_cnt)
2577 return;
2579 peer_id = tx_stats->peer_id;
2581 rcu_read_lock();
2582 spin_lock_bh(&ar->data_lock);
2583 peer = ath10k_peer_find_by_id(ar, peer_id);
2584 if (!peer) {
2585 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
2586 peer_id);
2587 goto out;
2590 sta = peer->sta;
2591 for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
2592 p_tx_stats->succ_bytes =
2593 __le16_to_cpu(tx_stats->success_bytes[i]);
2594 p_tx_stats->retry_bytes =
2595 __le16_to_cpu(tx_stats->retry_bytes[i]);
2596 p_tx_stats->failed_bytes =
2597 __le16_to_cpu(tx_stats->failed_bytes[i]);
2598 p_tx_stats->ratecode = tx_stats->ratecode[i];
2599 p_tx_stats->flags = tx_stats->flags[i];
2600 p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
2601 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
2602 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
2604 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2606 spin_unlock_bh(&ar->data_lock);
2607 rcu_read_unlock();
2609 return;
2611 out:
2612 spin_unlock_bh(&ar->data_lock);
2613 rcu_read_unlock();
2616 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2618 struct ath10k_htt *htt = &ar->htt;
2619 struct htt_resp *resp = (struct htt_resp *)skb->data;
2620 enum htt_t2h_msg_type type;
2622 /* confirm alignment */
2623 if (!IS_ALIGNED((unsigned long)skb->data, 4))
2624 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2626 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2627 resp->hdr.msg_type);
2629 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2630 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2631 resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2632 return true;
2634 type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2636 switch (type) {
2637 case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2638 htt->target_version_major = resp->ver_resp.major;
2639 htt->target_version_minor = resp->ver_resp.minor;
2640 complete(&htt->target_version_received);
2641 break;
2643 case HTT_T2H_MSG_TYPE_RX_IND:
2644 ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2645 break;
2646 case HTT_T2H_MSG_TYPE_PEER_MAP: {
2647 struct htt_peer_map_event ev = {
2648 .vdev_id = resp->peer_map.vdev_id,
2649 .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2651 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2652 ath10k_peer_map_event(htt, &ev);
2653 break;
2655 case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2656 struct htt_peer_unmap_event ev = {
2657 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2659 ath10k_peer_unmap_event(htt, &ev);
2660 break;
2662 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2663 struct htt_tx_done tx_done = {};
2664 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2666 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2668 switch (status) {
2669 case HTT_MGMT_TX_STATUS_OK:
2670 tx_done.status = HTT_TX_COMPL_STATE_ACK;
2671 break;
2672 case HTT_MGMT_TX_STATUS_RETRY:
2673 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2674 break;
2675 case HTT_MGMT_TX_STATUS_DROP:
2676 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2677 break;
2680 status = ath10k_txrx_tx_unref(htt, &tx_done);
2681 if (!status) {
2682 spin_lock_bh(&htt->tx_lock);
2683 ath10k_htt_tx_mgmt_dec_pending(htt);
2684 spin_unlock_bh(&htt->tx_lock);
2686 break;
2688 case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2689 ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2690 break;
2691 case HTT_T2H_MSG_TYPE_SEC_IND: {
2692 struct ath10k *ar = htt->ar;
2693 struct htt_security_indication *ev = &resp->security_indication;
2695 ath10k_dbg(ar, ATH10K_DBG_HTT,
2696 "sec ind peer_id %d unicast %d type %d\n",
2697 __le16_to_cpu(ev->peer_id),
2698 !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2699 MS(ev->flags, HTT_SECURITY_TYPE));
2700 complete(&ar->install_key_done);
2701 break;
2703 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2704 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2705 skb->data, skb->len);
2706 atomic_inc(&htt->num_mpdus_ready);
2707 break;
2709 case HTT_T2H_MSG_TYPE_TEST:
2710 break;
2711 case HTT_T2H_MSG_TYPE_STATS_CONF:
2712 trace_ath10k_htt_stats(ar, skb->data, skb->len);
2713 break;
2714 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2715 /* Firmware can return tx frames if it's unable to fully
2716 * process them and suspects host may be able to fix it. ath10k
2717 * sends all tx frames as already inspected so this shouldn't
2718 * happen unless fw has a bug.
2720 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2721 break;
2722 case HTT_T2H_MSG_TYPE_RX_ADDBA:
2723 ath10k_htt_rx_addba(ar, resp);
2724 break;
2725 case HTT_T2H_MSG_TYPE_RX_DELBA:
2726 ath10k_htt_rx_delba(ar, resp);
2727 break;
2728 case HTT_T2H_MSG_TYPE_PKTLOG: {
2729 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2730 skb->len -
2731 offsetof(struct htt_resp,
2732 pktlog_msg.payload));
2734 if (ath10k_peer_stats_enabled(ar))
2735 ath10k_fetch_10_2_tx_stats(ar,
2736 resp->pktlog_msg.payload);
2737 break;
2739 case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2740 /* Ignore this event because mac80211 takes care of Rx
2741 * aggregation reordering.
2743 break;
2745 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2746 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2747 return false;
2749 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2750 break;
2751 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2752 u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2753 u32 freq = __le32_to_cpu(resp->chan_change.freq);
2755 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
2756 ath10k_dbg(ar, ATH10K_DBG_HTT,
2757 "htt chan change freq %u phymode %s\n",
2758 freq, ath10k_wmi_phymode_str(phymode));
2759 break;
2761 case HTT_T2H_MSG_TYPE_AGGR_CONF:
2762 break;
2763 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2764 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2766 if (!tx_fetch_ind) {
2767 ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2768 break;
2770 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2771 break;
2773 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2774 ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2775 break;
2776 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2777 ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2778 break;
2779 case HTT_T2H_MSG_TYPE_PEER_STATS:
2780 ath10k_htt_fetch_peer_stats(ar, skb);
2781 break;
2782 case HTT_T2H_MSG_TYPE_EN_STATS:
2783 default:
2784 ath10k_warn(ar, "htt event (%d) not handled\n",
2785 resp->hdr.msg_type);
2786 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2787 skb->data, skb->len);
2788 break;
2790 return true;
2792 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2794 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2795 struct sk_buff *skb)
2797 trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2798 dev_kfree_skb_any(skb);
2800 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2802 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
2804 struct sk_buff *skb;
2806 while (quota < budget) {
2807 if (skb_queue_empty(&ar->htt.rx_msdus_q))
2808 break;
2810 skb = __skb_dequeue(&ar->htt.rx_msdus_q);
2811 if (!skb)
2812 break;
2813 ath10k_process_rx(ar, skb);
2814 quota++;
2817 return quota;
2820 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
2822 struct ath10k_htt *htt = &ar->htt;
2823 struct htt_tx_done tx_done = {};
2824 struct sk_buff_head tx_ind_q;
2825 struct sk_buff *skb;
2826 unsigned long flags;
2827 int quota = 0, done, ret;
2828 bool resched_napi = false;
2830 __skb_queue_head_init(&tx_ind_q);
2832 /* Process pending frames before dequeuing more data
2833 * from hardware.
2835 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
2836 if (quota == budget) {
2837 resched_napi = true;
2838 goto exit;
2841 while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) {
2842 spin_lock_bh(&htt->rx_ring.lock);
2843 ret = ath10k_htt_rx_in_ord_ind(ar, skb);
2844 spin_unlock_bh(&htt->rx_ring.lock);
2846 dev_kfree_skb_any(skb);
2847 if (ret == -EIO) {
2848 resched_napi = true;
2849 goto exit;
2853 while (atomic_read(&htt->num_mpdus_ready)) {
2854 ret = ath10k_htt_rx_handle_amsdu(htt);
2855 if (ret == -EIO) {
2856 resched_napi = true;
2857 goto exit;
2859 atomic_dec(&htt->num_mpdus_ready);
2862 /* Deliver received data after processing data from hardware */
2863 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
2865 /* From NAPI documentation:
2866 * The napi poll() function may also process TX completions, in which
2867 * case if it processes the entire TX ring then it should count that
2868 * work as the rest of the budget.
2870 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
2871 quota = budget;
2873 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2874 * From kfifo_get() documentation:
2875 * Note that with only one concurrent reader and one concurrent writer,
2876 * you don't need extra locking to use these macro.
2878 while (kfifo_get(&htt->txdone_fifo, &tx_done))
2879 ath10k_txrx_tx_unref(htt, &tx_done);
2881 ath10k_mac_tx_push_pending(ar);
2883 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2884 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2885 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2887 while ((skb = __skb_dequeue(&tx_ind_q))) {
2888 ath10k_htt_rx_tx_fetch_ind(ar, skb);
2889 dev_kfree_skb_any(skb);
2892 exit:
2893 ath10k_htt_rx_msdu_buff_replenish(htt);
2894 /* In case of rx failure or more data to read, report budget
2895 * to reschedule NAPI poll
2897 done = resched_napi ? budget : quota;
2899 return done;
2901 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
2903 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
2904 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
2905 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
2906 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
2907 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
2908 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
2911 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
2912 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
2913 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
2914 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
2915 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
2916 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
2919 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
2921 struct ath10k *ar = htt->ar;
2923 if (ar->hw_params.target_64bit)
2924 htt->rx_ops = &htt_rx_ops_64;
2925 else
2926 htt->rx_ops = &htt_rx_ops_32;