2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
59 #include <net/cfg80211.h>
60 #include <net/ieee80211_radiotap.h>
62 #include <asm/unaligned.h>
64 #include <net/mac80211.h>
72 #define CREATE_TRACE_POINTS
75 bool ath5k_modparam_nohwcrypt
;
76 module_param_named(nohwcrypt
, ath5k_modparam_nohwcrypt
, bool, S_IRUGO
);
77 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
79 static bool modparam_fastchanswitch
;
80 module_param_named(fastchanswitch
, modparam_fastchanswitch
, bool, S_IRUGO
);
81 MODULE_PARM_DESC(fastchanswitch
, "Enable fast channel switching for AR2413/AR5413 radios.");
83 static bool ath5k_modparam_no_hw_rfkill_switch
;
84 module_param_named(no_hw_rfkill_switch
, ath5k_modparam_no_hw_rfkill_switch
,
86 MODULE_PARM_DESC(no_hw_rfkill_switch
, "Ignore the GPIO RFKill switch state");
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94 MODULE_LICENSE("Dual BSD/GPL");
96 static int ath5k_init(struct ieee80211_hw
*hw
);
97 static int ath5k_reset(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
,
101 static const struct ath5k_srev_name srev_names
[] = {
102 #ifdef CONFIG_ATH5K_AHB
103 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R2
},
104 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R7
},
105 { "2313", AR5K_VERSION_MAC
, AR5K_SREV_AR2313_R8
},
106 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R6
},
107 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R7
},
108 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R1
},
109 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R2
},
111 { "5210", AR5K_VERSION_MAC
, AR5K_SREV_AR5210
},
112 { "5311", AR5K_VERSION_MAC
, AR5K_SREV_AR5311
},
113 { "5311A", AR5K_VERSION_MAC
, AR5K_SREV_AR5311A
},
114 { "5311B", AR5K_VERSION_MAC
, AR5K_SREV_AR5311B
},
115 { "5211", AR5K_VERSION_MAC
, AR5K_SREV_AR5211
},
116 { "5212", AR5K_VERSION_MAC
, AR5K_SREV_AR5212
},
117 { "5213", AR5K_VERSION_MAC
, AR5K_SREV_AR5213
},
118 { "5213A", AR5K_VERSION_MAC
, AR5K_SREV_AR5213A
},
119 { "2413", AR5K_VERSION_MAC
, AR5K_SREV_AR2413
},
120 { "2414", AR5K_VERSION_MAC
, AR5K_SREV_AR2414
},
121 { "5424", AR5K_VERSION_MAC
, AR5K_SREV_AR5424
},
122 { "5413", AR5K_VERSION_MAC
, AR5K_SREV_AR5413
},
123 { "5414", AR5K_VERSION_MAC
, AR5K_SREV_AR5414
},
124 { "2415", AR5K_VERSION_MAC
, AR5K_SREV_AR2415
},
125 { "5416", AR5K_VERSION_MAC
, AR5K_SREV_AR5416
},
126 { "5418", AR5K_VERSION_MAC
, AR5K_SREV_AR5418
},
127 { "2425", AR5K_VERSION_MAC
, AR5K_SREV_AR2425
},
128 { "2417", AR5K_VERSION_MAC
, AR5K_SREV_AR2417
},
130 { "xxxxx", AR5K_VERSION_MAC
, AR5K_SREV_UNKNOWN
},
131 { "5110", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5110
},
132 { "5111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111
},
133 { "5111A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111A
},
134 { "2111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2111
},
135 { "5112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112
},
136 { "5112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112A
},
137 { "5112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112B
},
138 { "2112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112
},
139 { "2112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112A
},
140 { "2112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112B
},
141 { "2413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2413
},
142 { "5413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5413
},
143 { "5424", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5424
},
144 { "5133", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5133
},
145 #ifdef CONFIG_ATH5K_AHB
146 { "2316", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2316
},
147 { "2317", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2317
},
149 { "xxxxx", AR5K_VERSION_RAD
, AR5K_SREV_UNKNOWN
},
152 static const struct ieee80211_rate ath5k_rates
[] = {
154 .hw_value
= ATH5K_RATE_CODE_1M
, },
156 .hw_value
= ATH5K_RATE_CODE_2M
,
157 .hw_value_short
= ATH5K_RATE_CODE_2M
| AR5K_SET_SHORT_PREAMBLE
,
158 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
160 .hw_value
= ATH5K_RATE_CODE_5_5M
,
161 .hw_value_short
= ATH5K_RATE_CODE_5_5M
| AR5K_SET_SHORT_PREAMBLE
,
162 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
164 .hw_value
= ATH5K_RATE_CODE_11M
,
165 .hw_value_short
= ATH5K_RATE_CODE_11M
| AR5K_SET_SHORT_PREAMBLE
,
166 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
168 .hw_value
= ATH5K_RATE_CODE_6M
,
169 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
170 IEEE80211_RATE_SUPPORTS_10MHZ
},
172 .hw_value
= ATH5K_RATE_CODE_9M
,
173 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
174 IEEE80211_RATE_SUPPORTS_10MHZ
},
176 .hw_value
= ATH5K_RATE_CODE_12M
,
177 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
178 IEEE80211_RATE_SUPPORTS_10MHZ
},
180 .hw_value
= ATH5K_RATE_CODE_18M
,
181 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
182 IEEE80211_RATE_SUPPORTS_10MHZ
},
184 .hw_value
= ATH5K_RATE_CODE_24M
,
185 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
186 IEEE80211_RATE_SUPPORTS_10MHZ
},
188 .hw_value
= ATH5K_RATE_CODE_36M
,
189 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
190 IEEE80211_RATE_SUPPORTS_10MHZ
},
192 .hw_value
= ATH5K_RATE_CODE_48M
,
193 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
194 IEEE80211_RATE_SUPPORTS_10MHZ
},
196 .hw_value
= ATH5K_RATE_CODE_54M
,
197 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
198 IEEE80211_RATE_SUPPORTS_10MHZ
},
201 static inline u64
ath5k_extend_tsf(struct ath5k_hw
*ah
, u32 rstamp
)
203 u64 tsf
= ath5k_hw_get_tsf64(ah
);
205 if ((tsf
& 0x7fff) < rstamp
)
208 return (tsf
& ~0x7fff) | rstamp
;
212 ath5k_chip_name(enum ath5k_srev_type type
, u_int16_t val
)
214 const char *name
= "xxxxx";
217 for (i
= 0; i
< ARRAY_SIZE(srev_names
); i
++) {
218 if (srev_names
[i
].sr_type
!= type
)
221 if ((val
& 0xf0) == srev_names
[i
].sr_val
)
222 name
= srev_names
[i
].sr_name
;
224 if ((val
& 0xff) == srev_names
[i
].sr_val
) {
225 name
= srev_names
[i
].sr_name
;
232 static unsigned int ath5k_ioread32(void *hw_priv
, u32 reg_offset
)
234 struct ath5k_hw
*ah
= (struct ath5k_hw
*) hw_priv
;
235 return ath5k_hw_reg_read(ah
, reg_offset
);
238 static void ath5k_iowrite32(void *hw_priv
, u32 val
, u32 reg_offset
)
240 struct ath5k_hw
*ah
= (struct ath5k_hw
*) hw_priv
;
241 ath5k_hw_reg_write(ah
, val
, reg_offset
);
244 static const struct ath_ops ath5k_common_ops
= {
245 .read
= ath5k_ioread32
,
246 .write
= ath5k_iowrite32
,
249 /***********************\
250 * Driver Initialization *
251 \***********************/
253 static void ath5k_reg_notifier(struct wiphy
*wiphy
,
254 struct regulatory_request
*request
)
256 struct ieee80211_hw
*hw
= wiphy_to_ieee80211_hw(wiphy
);
257 struct ath5k_hw
*ah
= hw
->priv
;
258 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
260 ath_reg_notifier_apply(wiphy
, request
, regulatory
);
263 /********************\
264 * Channel/mode setup *
265 \********************/
268 * Returns true for the channel numbers used.
270 #ifdef CONFIG_ATH5K_TEST_CHANNELS
271 static bool ath5k_is_standard_channel(short chan
, enum nl80211_band band
)
277 static bool ath5k_is_standard_channel(short chan
, enum nl80211_band band
)
279 if (band
== NL80211_BAND_2GHZ
&& chan
<= 14)
282 return /* UNII 1,2 */
283 (((chan
& 3) == 0 && chan
>= 36 && chan
<= 64) ||
285 ((chan
& 3) == 0 && chan
>= 100 && chan
<= 140) ||
287 ((chan
& 3) == 1 && chan
>= 149 && chan
<= 165) ||
288 /* 802.11j 5.030-5.080 GHz (20MHz) */
289 (chan
== 8 || chan
== 12 || chan
== 16) ||
290 /* 802.11j 4.9GHz (20MHz) */
291 (chan
== 184 || chan
== 188 || chan
== 192 || chan
== 196));
296 ath5k_setup_channels(struct ath5k_hw
*ah
, struct ieee80211_channel
*channels
,
297 unsigned int mode
, unsigned int max
)
299 unsigned int count
, size
, freq
, ch
;
300 enum nl80211_band band
;
304 /* 1..220, but 2GHz frequencies are filtered by check_channel */
306 band
= NL80211_BAND_5GHZ
;
311 band
= NL80211_BAND_2GHZ
;
314 ATH5K_WARN(ah
, "bad mode, not copying channels\n");
319 for (ch
= 1; ch
<= size
&& count
< max
; ch
++) {
320 freq
= ieee80211_channel_to_frequency(ch
, band
);
322 if (freq
== 0) /* mapping failed - not a standard channel */
325 /* Write channel info, needed for ath5k_channel_ok() */
326 channels
[count
].center_freq
= freq
;
327 channels
[count
].band
= band
;
328 channels
[count
].hw_value
= mode
;
330 /* Check if channel is supported by the chipset */
331 if (!ath5k_channel_ok(ah
, &channels
[count
]))
334 if (!ath5k_is_standard_channel(ch
, band
))
344 ath5k_setup_rate_idx(struct ath5k_hw
*ah
, struct ieee80211_supported_band
*b
)
348 for (i
= 0; i
< AR5K_MAX_RATES
; i
++)
349 ah
->rate_idx
[b
->band
][i
] = -1;
351 for (i
= 0; i
< b
->n_bitrates
; i
++) {
352 ah
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value
] = i
;
353 if (b
->bitrates
[i
].hw_value_short
)
354 ah
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value_short
] = i
;
359 ath5k_setup_bands(struct ieee80211_hw
*hw
)
361 struct ath5k_hw
*ah
= hw
->priv
;
362 struct ieee80211_supported_band
*sband
;
363 int max_c
, count_c
= 0;
366 BUILD_BUG_ON(ARRAY_SIZE(ah
->sbands
) < NUM_NL80211_BANDS
);
367 max_c
= ARRAY_SIZE(ah
->channels
);
370 sband
= &ah
->sbands
[NL80211_BAND_2GHZ
];
371 sband
->band
= NL80211_BAND_2GHZ
;
372 sband
->bitrates
= &ah
->rates
[NL80211_BAND_2GHZ
][0];
374 if (test_bit(AR5K_MODE_11G
, ah
->ah_capabilities
.cap_mode
)) {
376 memcpy(sband
->bitrates
, &ath5k_rates
[0],
377 sizeof(struct ieee80211_rate
) * 12);
378 sband
->n_bitrates
= 12;
380 sband
->channels
= ah
->channels
;
381 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
382 AR5K_MODE_11G
, max_c
);
384 hw
->wiphy
->bands
[NL80211_BAND_2GHZ
] = sband
;
385 count_c
= sband
->n_channels
;
387 } else if (test_bit(AR5K_MODE_11B
, ah
->ah_capabilities
.cap_mode
)) {
389 memcpy(sband
->bitrates
, &ath5k_rates
[0],
390 sizeof(struct ieee80211_rate
) * 4);
391 sband
->n_bitrates
= 4;
393 /* 5211 only supports B rates and uses 4bit rate codes
394 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
397 if (ah
->ah_version
== AR5K_AR5211
) {
398 for (i
= 0; i
< 4; i
++) {
399 sband
->bitrates
[i
].hw_value
=
400 sband
->bitrates
[i
].hw_value
& 0xF;
401 sband
->bitrates
[i
].hw_value_short
=
402 sband
->bitrates
[i
].hw_value_short
& 0xF;
406 sband
->channels
= ah
->channels
;
407 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
408 AR5K_MODE_11B
, max_c
);
410 hw
->wiphy
->bands
[NL80211_BAND_2GHZ
] = sband
;
411 count_c
= sband
->n_channels
;
414 ath5k_setup_rate_idx(ah
, sband
);
416 /* 5GHz band, A mode */
417 if (test_bit(AR5K_MODE_11A
, ah
->ah_capabilities
.cap_mode
)) {
418 sband
= &ah
->sbands
[NL80211_BAND_5GHZ
];
419 sband
->band
= NL80211_BAND_5GHZ
;
420 sband
->bitrates
= &ah
->rates
[NL80211_BAND_5GHZ
][0];
422 memcpy(sband
->bitrates
, &ath5k_rates
[4],
423 sizeof(struct ieee80211_rate
) * 8);
424 sband
->n_bitrates
= 8;
426 sband
->channels
= &ah
->channels
[count_c
];
427 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
428 AR5K_MODE_11A
, max_c
);
430 hw
->wiphy
->bands
[NL80211_BAND_5GHZ
] = sband
;
432 ath5k_setup_rate_idx(ah
, sband
);
434 ath5k_debug_dump_bands(ah
);
440 * Set/change channels. We always reset the chip.
441 * To accomplish this we must first cleanup any pending DMA,
442 * then restart stuff after a la ath5k_init.
444 * Called with ah->lock.
447 ath5k_chan_set(struct ath5k_hw
*ah
, struct cfg80211_chan_def
*chandef
)
449 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
450 "channel set, resetting (%u -> %u MHz)\n",
451 ah
->curchan
->center_freq
, chandef
->chan
->center_freq
);
453 switch (chandef
->width
) {
454 case NL80211_CHAN_WIDTH_20
:
455 case NL80211_CHAN_WIDTH_20_NOHT
:
456 ah
->ah_bwmode
= AR5K_BWMODE_DEFAULT
;
458 case NL80211_CHAN_WIDTH_5
:
459 ah
->ah_bwmode
= AR5K_BWMODE_5MHZ
;
461 case NL80211_CHAN_WIDTH_10
:
462 ah
->ah_bwmode
= AR5K_BWMODE_10MHZ
;
470 * To switch channels clear any pending DMA operations;
471 * wait long enough for the RX fifo to drain, reset the
472 * hardware at the new frequency, and then re-enable
473 * the relevant bits of the h/w.
475 return ath5k_reset(ah
, chandef
->chan
, true);
478 void ath5k_vif_iter(void *data
, u8
*mac
, struct ieee80211_vif
*vif
)
480 struct ath5k_vif_iter_data
*iter_data
= data
;
482 struct ath5k_vif
*avf
= (void *)vif
->drv_priv
;
484 if (iter_data
->hw_macaddr
)
485 for (i
= 0; i
< ETH_ALEN
; i
++)
486 iter_data
->mask
[i
] &=
487 ~(iter_data
->hw_macaddr
[i
] ^ mac
[i
]);
489 if (!iter_data
->found_active
) {
490 iter_data
->found_active
= true;
491 memcpy(iter_data
->active_mac
, mac
, ETH_ALEN
);
494 if (iter_data
->need_set_hw_addr
&& iter_data
->hw_macaddr
)
495 if (ether_addr_equal(iter_data
->hw_macaddr
, mac
))
496 iter_data
->need_set_hw_addr
= false;
498 if (!iter_data
->any_assoc
) {
500 iter_data
->any_assoc
= true;
503 /* Calculate combined mode - when APs are active, operate in AP mode.
504 * Otherwise use the mode of the new interface. This can currently
505 * only deal with combinations of APs and STAs. Only one ad-hoc
506 * interfaces is allowed.
508 if (avf
->opmode
== NL80211_IFTYPE_AP
)
509 iter_data
->opmode
= NL80211_IFTYPE_AP
;
511 if (avf
->opmode
== NL80211_IFTYPE_STATION
)
513 if (iter_data
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
514 iter_data
->opmode
= avf
->opmode
;
519 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw
*ah
,
520 struct ieee80211_vif
*vif
)
522 struct ath_common
*common
= ath5k_hw_common(ah
);
523 struct ath5k_vif_iter_data iter_data
;
527 * Use the hardware MAC address as reference, the hardware uses it
528 * together with the BSSID mask when matching addresses.
530 iter_data
.hw_macaddr
= common
->macaddr
;
531 eth_broadcast_addr(iter_data
.mask
);
532 iter_data
.found_active
= false;
533 iter_data
.need_set_hw_addr
= true;
534 iter_data
.opmode
= NL80211_IFTYPE_UNSPECIFIED
;
535 iter_data
.n_stas
= 0;
538 ath5k_vif_iter(&iter_data
, vif
->addr
, vif
);
540 /* Get list of all active MAC addresses */
541 ieee80211_iterate_active_interfaces_atomic(
542 ah
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
543 ath5k_vif_iter
, &iter_data
);
544 memcpy(ah
->bssidmask
, iter_data
.mask
, ETH_ALEN
);
546 ah
->opmode
= iter_data
.opmode
;
547 if (ah
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
548 /* Nothing active, default to station mode */
549 ah
->opmode
= NL80211_IFTYPE_STATION
;
551 ath5k_hw_set_opmode(ah
, ah
->opmode
);
552 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "mode setup opmode %d (%s)\n",
553 ah
->opmode
, ath_opmode_to_string(ah
->opmode
));
555 if (iter_data
.need_set_hw_addr
&& iter_data
.found_active
)
556 ath5k_hw_set_lladdr(ah
, iter_data
.active_mac
);
558 if (ath5k_hw_hasbssidmask(ah
))
559 ath5k_hw_set_bssid_mask(ah
, ah
->bssidmask
);
561 /* Set up RX Filter */
562 if (iter_data
.n_stas
> 1) {
563 /* If you have multiple STA interfaces connected to
564 * different APs, ARPs are not received (most of the time?)
565 * Enabling PROMISC appears to fix that problem.
567 ah
->filter_flags
|= AR5K_RX_FILTER_PROM
;
570 rfilt
= ah
->filter_flags
;
571 ath5k_hw_set_rx_filter(ah
, rfilt
);
572 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "RX filter 0x%x\n", rfilt
);
576 ath5k_hw_to_driver_rix(struct ath5k_hw
*ah
, int hw_rix
)
580 /* return base rate on errors */
581 if (WARN(hw_rix
< 0 || hw_rix
>= AR5K_MAX_RATES
,
582 "hw_rix out of bounds: %x\n", hw_rix
))
585 rix
= ah
->rate_idx
[ah
->curchan
->band
][hw_rix
];
586 if (WARN(rix
< 0, "invalid hw_rix: %x\n", hw_rix
))
597 struct sk_buff
*ath5k_rx_skb_alloc(struct ath5k_hw
*ah
, dma_addr_t
*skb_addr
)
599 struct ath_common
*common
= ath5k_hw_common(ah
);
603 * Allocate buffer with headroom_needed space for the
604 * fake physical layer header at the start.
606 skb
= ath_rxbuf_alloc(common
,
611 ATH5K_ERR(ah
, "can't alloc skbuff of size %u\n",
616 *skb_addr
= dma_map_single(ah
->dev
,
617 skb
->data
, common
->rx_bufsize
,
620 if (unlikely(dma_mapping_error(ah
->dev
, *skb_addr
))) {
621 ATH5K_ERR(ah
, "%s: DMA mapping failed\n", __func__
);
629 ath5k_rxbuf_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
631 struct sk_buff
*skb
= bf
->skb
;
632 struct ath5k_desc
*ds
;
636 skb
= ath5k_rx_skb_alloc(ah
, &bf
->skbaddr
);
643 * Setup descriptors. For receive we always terminate
644 * the descriptor list with a self-linked entry so we'll
645 * not get overrun under high load (as can happen with a
646 * 5212 when ANI processing enables PHY error frames).
648 * To ensure the last descriptor is self-linked we create
649 * each descriptor as self-linked and add it to the end. As
650 * each additional descriptor is added the previous self-linked
651 * entry is "fixed" naturally. This should be safe even
652 * if DMA is happening. When processing RX interrupts we
653 * never remove/process the last, self-linked, entry on the
654 * descriptor list. This ensures the hardware always has
655 * someplace to write a new frame.
658 ds
->ds_link
= bf
->daddr
; /* link to self */
659 ds
->ds_data
= bf
->skbaddr
;
660 ret
= ath5k_hw_setup_rx_desc(ah
, ds
, ah
->common
.rx_bufsize
, 0);
662 ATH5K_ERR(ah
, "%s: could not setup RX desc\n", __func__
);
666 if (ah
->rxlink
!= NULL
)
667 *ah
->rxlink
= bf
->daddr
;
668 ah
->rxlink
= &ds
->ds_link
;
672 static enum ath5k_pkt_type
get_hw_packet_type(struct sk_buff
*skb
)
674 struct ieee80211_hdr
*hdr
;
675 enum ath5k_pkt_type htype
;
678 hdr
= (struct ieee80211_hdr
*)skb
->data
;
679 fc
= hdr
->frame_control
;
681 if (ieee80211_is_beacon(fc
))
682 htype
= AR5K_PKT_TYPE_BEACON
;
683 else if (ieee80211_is_probe_resp(fc
))
684 htype
= AR5K_PKT_TYPE_PROBE_RESP
;
685 else if (ieee80211_is_atim(fc
))
686 htype
= AR5K_PKT_TYPE_ATIM
;
687 else if (ieee80211_is_pspoll(fc
))
688 htype
= AR5K_PKT_TYPE_PSPOLL
;
690 htype
= AR5K_PKT_TYPE_NORMAL
;
695 static struct ieee80211_rate
*
696 ath5k_get_rate(const struct ieee80211_hw
*hw
,
697 const struct ieee80211_tx_info
*info
,
698 struct ath5k_buf
*bf
, int idx
)
701 * convert a ieee80211_tx_rate RC-table entry to
702 * the respective ieee80211_rate struct
704 if (bf
->rates
[idx
].idx
< 0) {
708 return &hw
->wiphy
->bands
[info
->band
]->bitrates
[ bf
->rates
[idx
].idx
];
712 ath5k_get_rate_hw_value(const struct ieee80211_hw
*hw
,
713 const struct ieee80211_tx_info
*info
,
714 struct ath5k_buf
*bf
, int idx
)
716 struct ieee80211_rate
*rate
;
720 rate
= ath5k_get_rate(hw
, info
, bf
, idx
);
724 rc_flags
= bf
->rates
[idx
].flags
;
725 hw_rate
= (rc_flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
) ?
726 rate
->hw_value_short
: rate
->hw_value
;
732 ath5k_txbuf_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
,
733 struct ath5k_txq
*txq
, int padsize
,
734 struct ieee80211_tx_control
*control
)
736 struct ath5k_desc
*ds
= bf
->desc
;
737 struct sk_buff
*skb
= bf
->skb
;
738 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
739 unsigned int pktlen
, flags
, keyidx
= AR5K_TXKEYIX_INVALID
;
740 struct ieee80211_rate
*rate
;
741 unsigned int mrr_rate
[3], mrr_tries
[3];
748 flags
= AR5K_TXDESC_INTREQ
| AR5K_TXDESC_CLRDMASK
;
751 bf
->skbaddr
= dma_map_single(ah
->dev
, skb
->data
, skb
->len
,
754 if (dma_mapping_error(ah
->dev
, bf
->skbaddr
))
757 ieee80211_get_tx_rates(info
->control
.vif
, (control
) ? control
->sta
: NULL
, skb
, bf
->rates
,
758 ARRAY_SIZE(bf
->rates
));
760 rate
= ath5k_get_rate(ah
->hw
, info
, bf
, 0);
767 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
768 flags
|= AR5K_TXDESC_NOACK
;
770 rc_flags
= bf
->rates
[0].flags
;
772 hw_rate
= ath5k_get_rate_hw_value(ah
->hw
, info
, bf
, 0);
776 /* FIXME: If we are in g mode and rate is a CCK rate
777 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
778 * from tx power (value is in dB units already) */
779 if (info
->control
.hw_key
) {
780 keyidx
= info
->control
.hw_key
->hw_key_idx
;
781 pktlen
+= info
->control
.hw_key
->icv_len
;
783 if (rc_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
784 flags
|= AR5K_TXDESC_RTSENA
;
785 cts_rate
= ieee80211_get_rts_cts_rate(ah
->hw
, info
)->hw_value
;
786 duration
= le16_to_cpu(ieee80211_rts_duration(ah
->hw
,
787 info
->control
.vif
, pktlen
, info
));
789 if (rc_flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
790 flags
|= AR5K_TXDESC_CTSENA
;
791 cts_rate
= ieee80211_get_rts_cts_rate(ah
->hw
, info
)->hw_value
;
792 duration
= le16_to_cpu(ieee80211_ctstoself_duration(ah
->hw
,
793 info
->control
.vif
, pktlen
, info
));
796 ret
= ah
->ah_setup_tx_desc(ah
, ds
, pktlen
,
797 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
798 get_hw_packet_type(skb
),
799 (ah
->ah_txpower
.txp_requested
* 2),
801 bf
->rates
[0].count
, keyidx
, ah
->ah_tx_ant
, flags
,
806 /* Set up MRR descriptor */
807 if (ah
->ah_capabilities
.cap_has_mrr_support
) {
808 memset(mrr_rate
, 0, sizeof(mrr_rate
));
809 memset(mrr_tries
, 0, sizeof(mrr_tries
));
811 for (i
= 0; i
< 3; i
++) {
813 rate
= ath5k_get_rate(ah
->hw
, info
, bf
, i
);
817 mrr_rate
[i
] = ath5k_get_rate_hw_value(ah
->hw
, info
, bf
, i
);
818 mrr_tries
[i
] = bf
->rates
[i
].count
;
821 ath5k_hw_setup_mrr_tx_desc(ah
, ds
,
822 mrr_rate
[0], mrr_tries
[0],
823 mrr_rate
[1], mrr_tries
[1],
824 mrr_rate
[2], mrr_tries
[2]);
828 ds
->ds_data
= bf
->skbaddr
;
830 spin_lock_bh(&txq
->lock
);
831 list_add_tail(&bf
->list
, &txq
->q
);
833 if (txq
->link
== NULL
) /* is this first packet? */
834 ath5k_hw_set_txdp(ah
, txq
->qnum
, bf
->daddr
);
835 else /* no, so only link it */
836 *txq
->link
= bf
->daddr
;
838 txq
->link
= &ds
->ds_link
;
839 ath5k_hw_start_tx_dma(ah
, txq
->qnum
);
841 spin_unlock_bh(&txq
->lock
);
845 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
849 /*******************\
850 * Descriptors setup *
851 \*******************/
854 ath5k_desc_alloc(struct ath5k_hw
*ah
)
856 struct ath5k_desc
*ds
;
857 struct ath5k_buf
*bf
;
862 /* allocate descriptors */
863 ah
->desc_len
= sizeof(struct ath5k_desc
) *
864 (ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
+ 1);
866 ah
->desc
= dma_alloc_coherent(ah
->dev
, ah
->desc_len
,
867 &ah
->desc_daddr
, GFP_KERNEL
);
868 if (ah
->desc
== NULL
) {
869 ATH5K_ERR(ah
, "can't allocate descriptors\n");
875 ATH5K_DBG(ah
, ATH5K_DEBUG_ANY
, "DMA map: %p (%zu) -> %llx\n",
876 ds
, ah
->desc_len
, (unsigned long long)ah
->desc_daddr
);
878 bf
= kcalloc(1 + ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
,
879 sizeof(struct ath5k_buf
), GFP_KERNEL
);
881 ATH5K_ERR(ah
, "can't allocate bufptr\n");
887 INIT_LIST_HEAD(&ah
->rxbuf
);
888 for (i
= 0; i
< ATH_RXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
891 list_add_tail(&bf
->list
, &ah
->rxbuf
);
894 INIT_LIST_HEAD(&ah
->txbuf
);
895 ah
->txbuf_len
= ATH_TXBUF
;
896 for (i
= 0; i
< ATH_TXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
899 list_add_tail(&bf
->list
, &ah
->txbuf
);
903 INIT_LIST_HEAD(&ah
->bcbuf
);
904 for (i
= 0; i
< ATH_BCBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
907 list_add_tail(&bf
->list
, &ah
->bcbuf
);
912 dma_free_coherent(ah
->dev
, ah
->desc_len
, ah
->desc
, ah
->desc_daddr
);
919 ath5k_txbuf_free_skb(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
924 dma_unmap_single(ah
->dev
, bf
->skbaddr
, bf
->skb
->len
,
926 ieee80211_free_txskb(ah
->hw
, bf
->skb
);
929 bf
->desc
->ds_data
= 0;
933 ath5k_rxbuf_free_skb(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
935 struct ath_common
*common
= ath5k_hw_common(ah
);
940 dma_unmap_single(ah
->dev
, bf
->skbaddr
, common
->rx_bufsize
,
942 dev_kfree_skb_any(bf
->skb
);
945 bf
->desc
->ds_data
= 0;
949 ath5k_desc_free(struct ath5k_hw
*ah
)
951 struct ath5k_buf
*bf
;
953 list_for_each_entry(bf
, &ah
->txbuf
, list
)
954 ath5k_txbuf_free_skb(ah
, bf
);
955 list_for_each_entry(bf
, &ah
->rxbuf
, list
)
956 ath5k_rxbuf_free_skb(ah
, bf
);
957 list_for_each_entry(bf
, &ah
->bcbuf
, list
)
958 ath5k_txbuf_free_skb(ah
, bf
);
960 /* Free memory associated with all descriptors */
961 dma_free_coherent(ah
->dev
, ah
->desc_len
, ah
->desc
, ah
->desc_daddr
);
974 static struct ath5k_txq
*
975 ath5k_txq_setup(struct ath5k_hw
*ah
,
976 int qtype
, int subtype
)
978 struct ath5k_txq
*txq
;
979 struct ath5k_txq_info qi
= {
980 .tqi_subtype
= subtype
,
981 /* XXX: default values not correct for B and XR channels,
983 .tqi_aifs
= AR5K_TUNE_AIFS
,
984 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
985 .tqi_cw_max
= AR5K_TUNE_CWMAX
990 * Enable interrupts only for EOL and DESC conditions.
991 * We mark tx descriptors to receive a DESC interrupt
992 * when a tx queue gets deep; otherwise we wait for the
993 * EOL to reap descriptors. Note that this is done to
994 * reduce interrupt load and this only defers reaping
995 * descriptors, never transmitting frames. Aside from
996 * reducing interrupts this also permits more concurrency.
997 * The only potential downside is if the tx queue backs
998 * up in which case the top half of the kernel may backup
999 * due to a lack of tx descriptors.
1001 qi
.tqi_flags
= AR5K_TXQ_FLAG_TXEOLINT_ENABLE
|
1002 AR5K_TXQ_FLAG_TXDESCINT_ENABLE
;
1003 qnum
= ath5k_hw_setup_tx_queue(ah
, qtype
, &qi
);
1006 * NB: don't print a message, this happens
1007 * normally on parts with too few tx queues
1009 return ERR_PTR(qnum
);
1011 txq
= &ah
->txqs
[qnum
];
1015 INIT_LIST_HEAD(&txq
->q
);
1016 spin_lock_init(&txq
->lock
);
1019 txq
->txq_max
= ATH5K_TXQ_LEN_MAX
;
1020 txq
->txq_poll_mark
= false;
1023 return &ah
->txqs
[qnum
];
1027 ath5k_beaconq_setup(struct ath5k_hw
*ah
)
1029 struct ath5k_txq_info qi
= {
1030 /* XXX: default values not correct for B and XR channels,
1032 .tqi_aifs
= AR5K_TUNE_AIFS
,
1033 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
1034 .tqi_cw_max
= AR5K_TUNE_CWMAX
,
1035 /* NB: for dynamic turbo, don't enable any other interrupts */
1036 .tqi_flags
= AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1039 return ath5k_hw_setup_tx_queue(ah
, AR5K_TX_QUEUE_BEACON
, &qi
);
1043 ath5k_beaconq_config(struct ath5k_hw
*ah
)
1045 struct ath5k_txq_info qi
;
1048 ret
= ath5k_hw_get_tx_queueprops(ah
, ah
->bhalq
, &qi
);
1052 if (ah
->opmode
== NL80211_IFTYPE_AP
||
1053 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1055 * Always burst out beacon and CAB traffic
1056 * (aifs = cwmin = cwmax = 0)
1061 } else if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
1063 * Adhoc mode; backoff between 0 and (2 * cw_min).
1067 qi
.tqi_cw_max
= 2 * AR5K_TUNE_CWMIN
;
1070 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1071 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1072 qi
.tqi_aifs
, qi
.tqi_cw_min
, qi
.tqi_cw_max
);
1074 ret
= ath5k_hw_set_tx_queueprops(ah
, ah
->bhalq
, &qi
);
1076 ATH5K_ERR(ah
, "%s: unable to update parameters for beacon "
1077 "hardware queue!\n", __func__
);
1080 ret
= ath5k_hw_reset_tx_queue(ah
, ah
->bhalq
); /* push to h/w */
1084 /* reconfigure cabq with ready time to 80% of beacon_interval */
1085 ret
= ath5k_hw_get_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1089 qi
.tqi_ready_time
= (ah
->bintval
* 80) / 100;
1090 ret
= ath5k_hw_set_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1094 ret
= ath5k_hw_reset_tx_queue(ah
, AR5K_TX_QUEUE_ID_CAB
);
1100 * ath5k_drain_tx_buffs - Empty tx buffers
1102 * @ah The &struct ath5k_hw
1104 * Empty tx buffers from all queues in preparation
1105 * of a reset or during shutdown.
1107 * NB: this assumes output has been stopped and
1108 * we do not need to block ath5k_tx_tasklet
1111 ath5k_drain_tx_buffs(struct ath5k_hw
*ah
)
1113 struct ath5k_txq
*txq
;
1114 struct ath5k_buf
*bf
, *bf0
;
1117 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++) {
1118 if (ah
->txqs
[i
].setup
) {
1120 spin_lock_bh(&txq
->lock
);
1121 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1122 ath5k_debug_printtxbuf(ah
, bf
);
1124 ath5k_txbuf_free_skb(ah
, bf
);
1126 spin_lock(&ah
->txbuflock
);
1127 list_move_tail(&bf
->list
, &ah
->txbuf
);
1130 spin_unlock(&ah
->txbuflock
);
1133 txq
->txq_poll_mark
= false;
1134 spin_unlock_bh(&txq
->lock
);
1140 ath5k_txq_release(struct ath5k_hw
*ah
)
1142 struct ath5k_txq
*txq
= ah
->txqs
;
1145 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++, txq
++)
1147 ath5k_hw_release_tx_queue(ah
, txq
->qnum
);
1158 * Enable the receive h/w following a reset.
1161 ath5k_rx_start(struct ath5k_hw
*ah
)
1163 struct ath_common
*common
= ath5k_hw_common(ah
);
1164 struct ath5k_buf
*bf
;
1167 common
->rx_bufsize
= roundup(IEEE80211_MAX_FRAME_LEN
, common
->cachelsz
);
1169 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "cachelsz %u rx_bufsize %u\n",
1170 common
->cachelsz
, common
->rx_bufsize
);
1172 spin_lock_bh(&ah
->rxbuflock
);
1174 list_for_each_entry(bf
, &ah
->rxbuf
, list
) {
1175 ret
= ath5k_rxbuf_setup(ah
, bf
);
1177 spin_unlock_bh(&ah
->rxbuflock
);
1181 bf
= list_first_entry(&ah
->rxbuf
, struct ath5k_buf
, list
);
1182 ath5k_hw_set_rxdp(ah
, bf
->daddr
);
1183 spin_unlock_bh(&ah
->rxbuflock
);
1185 ath5k_hw_start_rx_dma(ah
); /* enable recv descriptors */
1186 ath5k_update_bssid_mask_and_opmode(ah
, NULL
); /* set filters, etc. */
1187 ath5k_hw_start_rx_pcu(ah
); /* re-enable PCU/DMA engine */
1195 * Disable the receive logic on PCU (DRU)
1196 * In preparation for a shutdown.
1198 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1202 ath5k_rx_stop(struct ath5k_hw
*ah
)
1205 ath5k_hw_set_rx_filter(ah
, 0); /* clear recv filter */
1206 ath5k_hw_stop_rx_pcu(ah
); /* disable PCU */
1208 ath5k_debug_printrxbuffs(ah
);
1212 ath5k_rx_decrypted(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1213 struct ath5k_rx_status
*rs
)
1215 struct ath_common
*common
= ath5k_hw_common(ah
);
1216 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
1217 unsigned int keyix
, hlen
;
1219 if (!(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1220 rs
->rs_keyix
!= AR5K_RXKEYIX_INVALID
)
1221 return RX_FLAG_DECRYPTED
;
1223 /* Apparently when a default key is used to decrypt the packet
1224 the hw does not set the index used to decrypt. In such cases
1225 get the index from the packet. */
1226 hlen
= ieee80211_hdrlen(hdr
->frame_control
);
1227 if (ieee80211_has_protected(hdr
->frame_control
) &&
1228 !(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1229 skb
->len
>= hlen
+ 4) {
1230 keyix
= skb
->data
[hlen
+ 3] >> 6;
1232 if (test_bit(keyix
, common
->keymap
))
1233 return RX_FLAG_DECRYPTED
;
1241 ath5k_check_ibss_tsf(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1242 struct ieee80211_rx_status
*rxs
)
1246 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1248 if (le16_to_cpu(mgmt
->u
.beacon
.capab_info
) & WLAN_CAPABILITY_IBSS
) {
1250 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251 * have updated the local TSF. We have to work around various
1252 * hardware bugs, though...
1254 tsf
= ath5k_hw_get_tsf64(ah
);
1255 bc_tstamp
= le64_to_cpu(mgmt
->u
.beacon
.timestamp
);
1256 hw_tu
= TSF_TO_TU(tsf
);
1258 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1259 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260 (unsigned long long)bc_tstamp
,
1261 (unsigned long long)rxs
->mactime
,
1262 (unsigned long long)(rxs
->mactime
- bc_tstamp
),
1263 (unsigned long long)tsf
);
1266 * Sometimes the HW will give us a wrong tstamp in the rx
1267 * status, causing the timestamp extension to go wrong.
1268 * (This seems to happen especially with beacon frames bigger
1269 * than 78 byte (incl. FCS))
1270 * But we know that the receive timestamp must be later than the
1271 * timestamp of the beacon since HW must have synced to that.
1273 * NOTE: here we assume mactime to be after the frame was
1274 * received, not like mac80211 which defines it at the start.
1276 if (bc_tstamp
> rxs
->mactime
) {
1277 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1278 "fixing mactime from %llx to %llx\n",
1279 (unsigned long long)rxs
->mactime
,
1280 (unsigned long long)tsf
);
1285 * Local TSF might have moved higher than our beacon timers,
1286 * in that case we have to update them to continue sending
1287 * beacons. This also takes care of synchronizing beacon sending
1288 * times with other stations.
1290 if (hw_tu
>= ah
->nexttbtt
)
1291 ath5k_beacon_update_timers(ah
, bc_tstamp
);
1293 /* Check if the beacon timers are still correct, because a TSF
1294 * update might have created a window between them - for a
1295 * longer description see the comment of this function: */
1296 if (!ath5k_hw_check_beacon_timers(ah
, ah
->bintval
)) {
1297 ath5k_beacon_update_timers(ah
, bc_tstamp
);
1298 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1299 "fixed beacon timers after beacon receive\n");
1305 * Compute padding position. skb must contain an IEEE 802.11 frame
1307 static int ath5k_common_padpos(struct sk_buff
*skb
)
1309 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1310 __le16 frame_control
= hdr
->frame_control
;
1313 if (ieee80211_has_a4(frame_control
))
1316 if (ieee80211_is_data_qos(frame_control
))
1317 padpos
+= IEEE80211_QOS_CTL_LEN
;
1323 * This function expects an 802.11 frame and returns the number of
1324 * bytes added, or -1 if we don't have enough header room.
1326 static int ath5k_add_padding(struct sk_buff
*skb
)
1328 int padpos
= ath5k_common_padpos(skb
);
1329 int padsize
= padpos
& 3;
1331 if (padsize
&& skb
->len
> padpos
) {
1333 if (skb_headroom(skb
) < padsize
)
1336 skb_push(skb
, padsize
);
1337 memmove(skb
->data
, skb
->data
+ padsize
, padpos
);
1345 * The MAC header is padded to have 32-bit boundary if the
1346 * packet payload is non-zero. The general calculation for
1347 * padsize would take into account odd header lengths:
1348 * padsize = 4 - (hdrlen & 3); however, since only
1349 * even-length headers are used, padding can only be 0 or 2
1350 * bytes and we can optimize this a bit. We must not try to
1351 * remove padding from short control frames that do not have a
1354 * This function expects an 802.11 frame and returns the number of
1357 static int ath5k_remove_padding(struct sk_buff
*skb
)
1359 int padpos
= ath5k_common_padpos(skb
);
1360 int padsize
= padpos
& 3;
1362 if (padsize
&& skb
->len
>= padpos
+ padsize
) {
1363 memmove(skb
->data
+ padsize
, skb
->data
, padpos
);
1364 skb_pull(skb
, padsize
);
1372 ath5k_receive_frame(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1373 struct ath5k_rx_status
*rs
)
1375 struct ieee80211_rx_status
*rxs
;
1376 struct ath_common
*common
= ath5k_hw_common(ah
);
1378 ath5k_remove_padding(skb
);
1380 rxs
= IEEE80211_SKB_RXCB(skb
);
1383 if (unlikely(rs
->rs_status
& AR5K_RXERR_MIC
))
1384 rxs
->flag
|= RX_FLAG_MMIC_ERROR
;
1385 if (unlikely(rs
->rs_status
& AR5K_RXERR_CRC
))
1386 rxs
->flag
|= RX_FLAG_FAILED_FCS_CRC
;
1390 * always extend the mac timestamp, since this information is
1391 * also needed for proper IBSS merging.
1393 * XXX: it might be too late to do it here, since rs_tstamp is
1394 * 15bit only. that means TSF extension has to be done within
1395 * 32768usec (about 32ms). it might be necessary to move this to
1396 * the interrupt handler, like it is done in madwifi.
1398 rxs
->mactime
= ath5k_extend_tsf(ah
, rs
->rs_tstamp
);
1399 rxs
->flag
|= RX_FLAG_MACTIME_END
;
1401 rxs
->freq
= ah
->curchan
->center_freq
;
1402 rxs
->band
= ah
->curchan
->band
;
1404 rxs
->signal
= ah
->ah_noise_floor
+ rs
->rs_rssi
;
1406 rxs
->antenna
= rs
->rs_antenna
;
1408 if (rs
->rs_antenna
> 0 && rs
->rs_antenna
< 5)
1409 ah
->stats
.antenna_rx
[rs
->rs_antenna
]++;
1411 ah
->stats
.antenna_rx
[0]++; /* invalid */
1413 rxs
->rate_idx
= ath5k_hw_to_driver_rix(ah
, rs
->rs_rate
);
1414 rxs
->flag
|= ath5k_rx_decrypted(ah
, skb
, rs
);
1415 switch (ah
->ah_bwmode
) {
1416 case AR5K_BWMODE_5MHZ
:
1417 rxs
->bw
= RATE_INFO_BW_5
;
1419 case AR5K_BWMODE_10MHZ
:
1420 rxs
->bw
= RATE_INFO_BW_10
;
1427 ah
->sbands
[ah
->curchan
->band
].bitrates
[rxs
->rate_idx
].hw_value_short
)
1428 rxs
->enc_flags
|= RX_ENC_FLAG_SHORTPRE
;
1430 trace_ath5k_rx(ah
, skb
);
1432 if (ath_is_mybeacon(common
, (struct ieee80211_hdr
*)skb
->data
)) {
1433 ewma_beacon_rssi_add(&ah
->ah_beacon_rssi_avg
, rs
->rs_rssi
);
1435 /* check beacons in IBSS mode */
1436 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
)
1437 ath5k_check_ibss_tsf(ah
, skb
, rxs
);
1440 ieee80211_rx(ah
->hw
, skb
);
1443 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1445 * Check if we want to further process this frame or not. Also update
1446 * statistics. Return true if we want this frame, false if not.
1449 ath5k_receive_frame_ok(struct ath5k_hw
*ah
, struct ath5k_rx_status
*rs
)
1451 ah
->stats
.rx_all_count
++;
1452 ah
->stats
.rx_bytes_count
+= rs
->rs_datalen
;
1454 if (unlikely(rs
->rs_status
)) {
1455 unsigned int filters
;
1457 if (rs
->rs_status
& AR5K_RXERR_CRC
)
1458 ah
->stats
.rxerr_crc
++;
1459 if (rs
->rs_status
& AR5K_RXERR_FIFO
)
1460 ah
->stats
.rxerr_fifo
++;
1461 if (rs
->rs_status
& AR5K_RXERR_PHY
) {
1462 ah
->stats
.rxerr_phy
++;
1463 if (rs
->rs_phyerr
> 0 && rs
->rs_phyerr
< 32)
1464 ah
->stats
.rxerr_phy_code
[rs
->rs_phyerr
]++;
1467 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1468 * These restarts happen when the radio resynchronizes to a stronger frame
1469 * while receiving a weaker frame. Here we receive the prefix of the weak
1470 * frame. Since these are incomplete packets, mark their CRC as invalid.
1472 if (rs
->rs_phyerr
== AR5K_RX_PHY_ERROR_OFDM_RESTART
||
1473 rs
->rs_phyerr
== AR5K_RX_PHY_ERROR_CCK_RESTART
) {
1474 rs
->rs_status
|= AR5K_RXERR_CRC
;
1475 rs
->rs_status
&= ~AR5K_RXERR_PHY
;
1480 if (rs
->rs_status
& AR5K_RXERR_DECRYPT
) {
1482 * Decrypt error. If the error occurred
1483 * because there was no hardware key, then
1484 * let the frame through so the upper layers
1485 * can process it. This is necessary for 5210
1486 * parts which have no way to setup a ``clear''
1489 * XXX do key cache faulting
1491 ah
->stats
.rxerr_decrypt
++;
1492 if (rs
->rs_keyix
== AR5K_RXKEYIX_INVALID
&&
1493 !(rs
->rs_status
& AR5K_RXERR_CRC
))
1496 if (rs
->rs_status
& AR5K_RXERR_MIC
) {
1497 ah
->stats
.rxerr_mic
++;
1502 * Reject any frames with non-crypto errors, and take into account the
1503 * current FIF_* filters.
1505 filters
= AR5K_RXERR_DECRYPT
;
1506 if (ah
->fif_filter_flags
& FIF_FCSFAIL
)
1507 filters
|= AR5K_RXERR_CRC
;
1509 if (rs
->rs_status
& ~filters
)
1513 if (unlikely(rs
->rs_more
)) {
1514 ah
->stats
.rxerr_jumbo
++;
1521 ath5k_set_current_imask(struct ath5k_hw
*ah
)
1523 enum ath5k_int imask
;
1524 unsigned long flags
;
1526 if (test_bit(ATH_STAT_RESET
, ah
->status
))
1529 spin_lock_irqsave(&ah
->irqlock
, flags
);
1532 imask
&= ~AR5K_INT_RX_ALL
;
1534 imask
&= ~AR5K_INT_TX_ALL
;
1535 ath5k_hw_set_imr(ah
, imask
);
1536 spin_unlock_irqrestore(&ah
->irqlock
, flags
);
1540 ath5k_tasklet_rx(unsigned long data
)
1542 struct ath5k_rx_status rs
= {};
1543 struct sk_buff
*skb
, *next_skb
;
1544 dma_addr_t next_skb_addr
;
1545 struct ath5k_hw
*ah
= (void *)data
;
1546 struct ath_common
*common
= ath5k_hw_common(ah
);
1547 struct ath5k_buf
*bf
;
1548 struct ath5k_desc
*ds
;
1551 spin_lock(&ah
->rxbuflock
);
1552 if (list_empty(&ah
->rxbuf
)) {
1553 ATH5K_WARN(ah
, "empty rx buf pool\n");
1557 bf
= list_first_entry(&ah
->rxbuf
, struct ath5k_buf
, list
);
1558 BUG_ON(bf
->skb
== NULL
);
1562 /* bail if HW is still using self-linked descriptor */
1563 if (ath5k_hw_get_rxdp(ah
) == bf
->daddr
)
1566 ret
= ah
->ah_proc_rx_desc(ah
, ds
, &rs
);
1567 if (unlikely(ret
== -EINPROGRESS
))
1569 else if (unlikely(ret
)) {
1570 ATH5K_ERR(ah
, "error in processing rx descriptor\n");
1571 ah
->stats
.rxerr_proc
++;
1575 if (ath5k_receive_frame_ok(ah
, &rs
)) {
1576 next_skb
= ath5k_rx_skb_alloc(ah
, &next_skb_addr
);
1579 * If we can't replace bf->skb with a new skb under
1580 * memory pressure, just skip this packet
1585 dma_unmap_single(ah
->dev
, bf
->skbaddr
,
1589 skb_put(skb
, rs
.rs_datalen
);
1591 ath5k_receive_frame(ah
, skb
, &rs
);
1594 bf
->skbaddr
= next_skb_addr
;
1597 list_move_tail(&bf
->list
, &ah
->rxbuf
);
1598 } while (ath5k_rxbuf_setup(ah
, bf
) == 0);
1600 spin_unlock(&ah
->rxbuflock
);
1601 ah
->rx_pending
= false;
1602 ath5k_set_current_imask(ah
);
1611 ath5k_tx_queue(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
1612 struct ath5k_txq
*txq
, struct ieee80211_tx_control
*control
)
1614 struct ath5k_hw
*ah
= hw
->priv
;
1615 struct ath5k_buf
*bf
;
1616 unsigned long flags
;
1619 trace_ath5k_tx(ah
, skb
, txq
);
1622 * The hardware expects the header padded to 4 byte boundaries.
1623 * If this is not the case, we add the padding after the header.
1625 padsize
= ath5k_add_padding(skb
);
1627 ATH5K_ERR(ah
, "tx hdrlen not %%4: not enough"
1628 " headroom to pad");
1632 if (txq
->txq_len
>= txq
->txq_max
&&
1633 txq
->qnum
<= AR5K_TX_QUEUE_ID_DATA_MAX
)
1634 ieee80211_stop_queue(hw
, txq
->qnum
);
1636 spin_lock_irqsave(&ah
->txbuflock
, flags
);
1637 if (list_empty(&ah
->txbuf
)) {
1638 ATH5K_ERR(ah
, "no further txbuf available, dropping packet\n");
1639 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1640 ieee80211_stop_queues(hw
);
1643 bf
= list_first_entry(&ah
->txbuf
, struct ath5k_buf
, list
);
1644 list_del(&bf
->list
);
1646 if (list_empty(&ah
->txbuf
))
1647 ieee80211_stop_queues(hw
);
1648 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1652 if (ath5k_txbuf_setup(ah
, bf
, txq
, padsize
, control
)) {
1654 spin_lock_irqsave(&ah
->txbuflock
, flags
);
1655 list_add_tail(&bf
->list
, &ah
->txbuf
);
1657 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1663 ieee80211_free_txskb(hw
, skb
);
1667 ath5k_tx_frame_completed(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1668 struct ath5k_txq
*txq
, struct ath5k_tx_status
*ts
,
1669 struct ath5k_buf
*bf
)
1671 struct ieee80211_tx_info
*info
;
1676 ah
->stats
.tx_all_count
++;
1677 ah
->stats
.tx_bytes_count
+= skb
->len
;
1678 info
= IEEE80211_SKB_CB(skb
);
1680 size
= min_t(int, sizeof(info
->status
.rates
), sizeof(bf
->rates
));
1681 memcpy(info
->status
.rates
, bf
->rates
, size
);
1683 tries
[0] = info
->status
.rates
[0].count
;
1684 tries
[1] = info
->status
.rates
[1].count
;
1685 tries
[2] = info
->status
.rates
[2].count
;
1687 ieee80211_tx_info_clear_status(info
);
1689 for (i
= 0; i
< ts
->ts_final_idx
; i
++) {
1690 struct ieee80211_tx_rate
*r
=
1691 &info
->status
.rates
[i
];
1693 r
->count
= tries
[i
];
1696 info
->status
.rates
[ts
->ts_final_idx
].count
= ts
->ts_final_retry
;
1697 info
->status
.rates
[ts
->ts_final_idx
+ 1].idx
= -1;
1699 if (unlikely(ts
->ts_status
)) {
1700 ah
->stats
.ack_fail
++;
1701 if (ts
->ts_status
& AR5K_TXERR_FILT
) {
1702 info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
1703 ah
->stats
.txerr_filt
++;
1705 if (ts
->ts_status
& AR5K_TXERR_XRETRY
)
1706 ah
->stats
.txerr_retry
++;
1707 if (ts
->ts_status
& AR5K_TXERR_FIFO
)
1708 ah
->stats
.txerr_fifo
++;
1710 info
->flags
|= IEEE80211_TX_STAT_ACK
;
1711 info
->status
.ack_signal
= ts
->ts_rssi
;
1713 /* count the successful attempt as well */
1714 info
->status
.rates
[ts
->ts_final_idx
].count
++;
1718 * Remove MAC header padding before giving the frame
1721 ath5k_remove_padding(skb
);
1723 if (ts
->ts_antenna
> 0 && ts
->ts_antenna
< 5)
1724 ah
->stats
.antenna_tx
[ts
->ts_antenna
]++;
1726 ah
->stats
.antenna_tx
[0]++; /* invalid */
1728 trace_ath5k_tx_complete(ah
, skb
, txq
, ts
);
1729 ieee80211_tx_status(ah
->hw
, skb
);
1733 ath5k_tx_processq(struct ath5k_hw
*ah
, struct ath5k_txq
*txq
)
1735 struct ath5k_tx_status ts
= {};
1736 struct ath5k_buf
*bf
, *bf0
;
1737 struct ath5k_desc
*ds
;
1738 struct sk_buff
*skb
;
1741 spin_lock(&txq
->lock
);
1742 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1744 txq
->txq_poll_mark
= false;
1746 /* skb might already have been processed last time. */
1747 if (bf
->skb
!= NULL
) {
1750 ret
= ah
->ah_proc_tx_desc(ah
, ds
, &ts
);
1751 if (unlikely(ret
== -EINPROGRESS
))
1753 else if (unlikely(ret
)) {
1755 "error %d while processing "
1756 "queue %u\n", ret
, txq
->qnum
);
1763 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
,
1765 ath5k_tx_frame_completed(ah
, skb
, txq
, &ts
, bf
);
1769 * It's possible that the hardware can say the buffer is
1770 * completed when it hasn't yet loaded the ds_link from
1771 * host memory and moved on.
1772 * Always keep the last descriptor to avoid HW races...
1774 if (ath5k_hw_get_txdp(ah
, txq
->qnum
) != bf
->daddr
) {
1775 spin_lock(&ah
->txbuflock
);
1776 list_move_tail(&bf
->list
, &ah
->txbuf
);
1779 spin_unlock(&ah
->txbuflock
);
1782 spin_unlock(&txq
->lock
);
1783 if (txq
->txq_len
< ATH5K_TXQ_LEN_LOW
&& txq
->qnum
< 4)
1784 ieee80211_wake_queue(ah
->hw
, txq
->qnum
);
1788 ath5k_tasklet_tx(unsigned long data
)
1791 struct ath5k_hw
*ah
= (void *)data
;
1793 for (i
= 0; i
< AR5K_NUM_TX_QUEUES
; i
++)
1794 if (ah
->txqs
[i
].setup
&& (ah
->ah_txq_isr_txok_all
& BIT(i
)))
1795 ath5k_tx_processq(ah
, &ah
->txqs
[i
]);
1797 ah
->tx_pending
= false;
1798 ath5k_set_current_imask(ah
);
1807 * Setup the beacon frame for transmit.
1810 ath5k_beacon_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
1812 struct sk_buff
*skb
= bf
->skb
;
1813 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
1814 struct ath5k_desc
*ds
;
1818 const int padsize
= 0;
1820 bf
->skbaddr
= dma_map_single(ah
->dev
, skb
->data
, skb
->len
,
1822 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
, "skb %p [data %p len %u] "
1823 "skbaddr %llx\n", skb
, skb
->data
, skb
->len
,
1824 (unsigned long long)bf
->skbaddr
);
1826 if (dma_mapping_error(ah
->dev
, bf
->skbaddr
)) {
1827 ATH5K_ERR(ah
, "beacon DMA mapping failed\n");
1828 dev_kfree_skb_any(skb
);
1834 antenna
= ah
->ah_tx_ant
;
1836 flags
= AR5K_TXDESC_NOACK
;
1837 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
&& ath5k_hw_hasveol(ah
)) {
1838 ds
->ds_link
= bf
->daddr
; /* self-linked */
1839 flags
|= AR5K_TXDESC_VEOL
;
1844 * If we use multiple antennas on AP and use
1845 * the Sectored AP scenario, switch antenna every
1846 * 4 beacons to make sure everybody hears our AP.
1847 * When a client tries to associate, hw will keep
1848 * track of the tx antenna to be used for this client
1849 * automatically, based on ACKed packets.
1851 * Note: AP still listens and transmits RTS on the
1852 * default antenna which is supposed to be an omni.
1854 * Note2: On sectored scenarios it's possible to have
1855 * multiple antennas (1 omni -- the default -- and 14
1856 * sectors), so if we choose to actually support this
1857 * mode, we need to allow the user to set how many antennas
1858 * we have and tweak the code below to send beacons
1861 if (ah
->ah_ant_mode
== AR5K_ANTMODE_SECTOR_AP
)
1862 antenna
= ah
->bsent
& 4 ? 2 : 1;
1865 /* FIXME: If we are in g mode and rate is a CCK rate
1866 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1867 * from tx power (value is in dB units already) */
1868 ds
->ds_data
= bf
->skbaddr
;
1869 ret
= ah
->ah_setup_tx_desc(ah
, ds
, skb
->len
,
1870 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
1871 AR5K_PKT_TYPE_BEACON
,
1872 (ah
->ah_txpower
.txp_requested
* 2),
1873 ieee80211_get_tx_rate(ah
->hw
, info
)->hw_value
,
1874 1, AR5K_TXKEYIX_INVALID
,
1875 antenna
, flags
, 0, 0);
1881 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
1886 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1887 * this is called only once at config_bss time, for AP we do it every
1888 * SWBA interrupt so that the TIM will reflect buffered frames.
1890 * Called with the beacon lock.
1893 ath5k_beacon_update(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
1896 struct ath5k_hw
*ah
= hw
->priv
;
1897 struct ath5k_vif
*avf
;
1898 struct sk_buff
*skb
;
1900 if (WARN_ON(!vif
)) {
1905 skb
= ieee80211_beacon_get(hw
, vif
);
1912 avf
= (void *)vif
->drv_priv
;
1913 ath5k_txbuf_free_skb(ah
, avf
->bbuf
);
1914 avf
->bbuf
->skb
= skb
;
1915 ret
= ath5k_beacon_setup(ah
, avf
->bbuf
);
1921 * Transmit a beacon frame at SWBA. Dynamic updates to the
1922 * frame contents are done as needed and the slot time is
1923 * also adjusted based on current state.
1925 * This is called from software irq context (beacontq tasklets)
1926 * or user context from ath5k_beacon_config.
1929 ath5k_beacon_send(struct ath5k_hw
*ah
)
1931 struct ieee80211_vif
*vif
;
1932 struct ath5k_vif
*avf
;
1933 struct ath5k_buf
*bf
;
1934 struct sk_buff
*skb
;
1937 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
, "in beacon_send\n");
1940 * Check if the previous beacon has gone out. If
1941 * not, don't don't try to post another: skip this
1942 * period and wait for the next. Missed beacons
1943 * indicate a problem and should not occur. If we
1944 * miss too many consecutive beacons reset the device.
1946 if (unlikely(ath5k_hw_num_tx_pending(ah
, ah
->bhalq
) != 0)) {
1948 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1949 "missed %u consecutive beacons\n", ah
->bmisscount
);
1950 if (ah
->bmisscount
> 10) { /* NB: 10 is a guess */
1951 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1952 "stuck beacon time (%u missed)\n",
1954 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
1955 "stuck beacon, resetting\n");
1956 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
1960 if (unlikely(ah
->bmisscount
!= 0)) {
1961 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1962 "resume beacon xmit after %u misses\n",
1967 if ((ah
->opmode
== NL80211_IFTYPE_AP
&& ah
->num_ap_vifs
+
1968 ah
->num_mesh_vifs
> 1) ||
1969 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1970 u64 tsf
= ath5k_hw_get_tsf64(ah
);
1971 u32 tsftu
= TSF_TO_TU(tsf
);
1972 int slot
= ((tsftu
% ah
->bintval
) * ATH_BCBUF
) / ah
->bintval
;
1973 vif
= ah
->bslot
[(slot
+ 1) % ATH_BCBUF
];
1974 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1975 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1976 (unsigned long long)tsf
, tsftu
, ah
->bintval
, slot
, vif
);
1977 } else /* only one interface */
1983 avf
= (void *)vif
->drv_priv
;
1987 * Stop any current dma and put the new frame on the queue.
1988 * This should never fail since we check above that no frames
1989 * are still pending on the queue.
1991 if (unlikely(ath5k_hw_stop_beacon_queue(ah
, ah
->bhalq
))) {
1992 ATH5K_WARN(ah
, "beacon queue %u didn't start/stop ?\n", ah
->bhalq
);
1993 /* NB: hw still stops DMA, so proceed */
1996 /* refresh the beacon for AP or MESH mode */
1997 if (ah
->opmode
== NL80211_IFTYPE_AP
||
1998 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1999 err
= ath5k_beacon_update(ah
->hw
, vif
);
2004 if (unlikely(bf
->skb
== NULL
|| ah
->opmode
== NL80211_IFTYPE_STATION
||
2005 ah
->opmode
== NL80211_IFTYPE_MONITOR
)) {
2006 ATH5K_WARN(ah
, "bf=%p bf_skb=%p\n", bf
, bf
->skb
);
2010 trace_ath5k_tx(ah
, bf
->skb
, &ah
->txqs
[ah
->bhalq
]);
2012 ath5k_hw_set_txdp(ah
, ah
->bhalq
, bf
->daddr
);
2013 ath5k_hw_start_tx_dma(ah
, ah
->bhalq
);
2014 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
, "TXDP[%u] = %llx (%p)\n",
2015 ah
->bhalq
, (unsigned long long)bf
->daddr
, bf
->desc
);
2017 skb
= ieee80211_get_buffered_bc(ah
->hw
, vif
);
2019 ath5k_tx_queue(ah
->hw
, skb
, ah
->cabq
, NULL
);
2021 if (ah
->cabq
->txq_len
>= ah
->cabq
->txq_max
)
2024 skb
= ieee80211_get_buffered_bc(ah
->hw
, vif
);
2031 * ath5k_beacon_update_timers - update beacon timers
2033 * @ah: struct ath5k_hw pointer we are operating on
2034 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2035 * beacon timer update based on the current HW TSF.
2037 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2038 * of a received beacon or the current local hardware TSF and write it to the
2039 * beacon timer registers.
2041 * This is called in a variety of situations, e.g. when a beacon is received,
2042 * when a TSF update has been detected, but also when an new IBSS is created or
2043 * when we otherwise know we have to update the timers, but we keep it in this
2044 * function to have it all together in one place.
2047 ath5k_beacon_update_timers(struct ath5k_hw
*ah
, u64 bc_tsf
)
2049 u32 nexttbtt
, intval
, hw_tu
, bc_tu
;
2052 intval
= ah
->bintval
& AR5K_BEACON_PERIOD
;
2053 if (ah
->opmode
== NL80211_IFTYPE_AP
&& ah
->num_ap_vifs
2054 + ah
->num_mesh_vifs
> 1) {
2055 intval
/= ATH_BCBUF
; /* staggered multi-bss beacons */
2057 ATH5K_WARN(ah
, "intval %u is too low, min 15\n",
2060 if (WARN_ON(!intval
))
2063 /* beacon TSF converted to TU */
2064 bc_tu
= TSF_TO_TU(bc_tsf
);
2066 /* current TSF converted to TU */
2067 hw_tsf
= ath5k_hw_get_tsf64(ah
);
2068 hw_tu
= TSF_TO_TU(hw_tsf
);
2070 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2071 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2072 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2073 * configuration we need to make sure it is bigger than that. */
2077 * no beacons received, called internally.
2078 * just need to refresh timers based on HW TSF.
2080 nexttbtt
= roundup(hw_tu
+ FUDGE
, intval
);
2081 } else if (bc_tsf
== 0) {
2083 * no beacon received, probably called by ath5k_reset_tsf().
2084 * reset TSF to start with 0.
2087 intval
|= AR5K_BEACON_RESET_TSF
;
2088 } else if (bc_tsf
> hw_tsf
) {
2090 * beacon received, SW merge happened but HW TSF not yet updated.
2091 * not possible to reconfigure timers yet, but next time we
2092 * receive a beacon with the same BSSID, the hardware will
2093 * automatically update the TSF and then we need to reconfigure
2096 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2097 "need to wait for HW TSF sync\n");
2101 * most important case for beacon synchronization between STA.
2103 * beacon received and HW TSF has been already updated by HW.
2104 * update next TBTT based on the TSF of the beacon, but make
2105 * sure it is ahead of our local TSF timer.
2107 nexttbtt
= bc_tu
+ roundup(hw_tu
+ FUDGE
- bc_tu
, intval
);
2111 ah
->nexttbtt
= nexttbtt
;
2113 intval
|= AR5K_BEACON_ENA
;
2114 ath5k_hw_init_beacon_timers(ah
, nexttbtt
, intval
);
2117 * debugging output last in order to preserve the time critical aspect
2121 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2122 "reconfigured timers based on HW TSF\n");
2123 else if (bc_tsf
== 0)
2124 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2125 "reset HW TSF and timers\n");
2127 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2128 "updated timers based on beacon TSF\n");
2130 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2131 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2132 (unsigned long long) bc_tsf
,
2133 (unsigned long long) hw_tsf
, bc_tu
, hw_tu
, nexttbtt
);
2134 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
, "intval %u %s %s\n",
2135 intval
& AR5K_BEACON_PERIOD
,
2136 intval
& AR5K_BEACON_ENA
? "AR5K_BEACON_ENA" : "",
2137 intval
& AR5K_BEACON_RESET_TSF
? "AR5K_BEACON_RESET_TSF" : "");
2141 * ath5k_beacon_config - Configure the beacon queues and interrupts
2143 * @ah: struct ath5k_hw pointer we are operating on
2145 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2146 * interrupts to detect TSF updates only.
2149 ath5k_beacon_config(struct ath5k_hw
*ah
)
2151 spin_lock_bh(&ah
->block
);
2153 ah
->imask
&= ~(AR5K_INT_BMISS
| AR5K_INT_SWBA
);
2155 if (ah
->enable_beacon
) {
2157 * In IBSS mode we use a self-linked tx descriptor and let the
2158 * hardware send the beacons automatically. We have to load it
2160 * We use the SWBA interrupt only to keep track of the beacon
2161 * timers in order to detect automatic TSF updates.
2163 ath5k_beaconq_config(ah
);
2165 ah
->imask
|= AR5K_INT_SWBA
;
2167 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
2168 if (ath5k_hw_hasveol(ah
))
2169 ath5k_beacon_send(ah
);
2171 ath5k_beacon_update_timers(ah
, -1);
2173 ath5k_hw_stop_beacon_queue(ah
, ah
->bhalq
);
2176 ath5k_hw_set_imr(ah
, ah
->imask
);
2178 spin_unlock_bh(&ah
->block
);
2181 static void ath5k_tasklet_beacon(unsigned long data
)
2183 struct ath5k_hw
*ah
= (struct ath5k_hw
*) data
;
2186 * Software beacon alert--time to send a beacon.
2188 * In IBSS mode we use this interrupt just to
2189 * keep track of the next TBTT (target beacon
2190 * transmission time) in order to detect whether
2191 * automatic TSF updates happened.
2193 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
2194 /* XXX: only if VEOL supported */
2195 u64 tsf
= ath5k_hw_get_tsf64(ah
);
2196 ah
->nexttbtt
+= ah
->bintval
;
2197 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
2198 "SWBA nexttbtt: %x hw_tu: %x "
2202 (unsigned long long) tsf
);
2204 spin_lock(&ah
->block
);
2205 ath5k_beacon_send(ah
);
2206 spin_unlock(&ah
->block
);
2211 /********************\
2212 * Interrupt handling *
2213 \********************/
2216 ath5k_intr_calibration_poll(struct ath5k_hw
*ah
)
2218 if (time_is_before_eq_jiffies(ah
->ah_cal_next_ani
) &&
2219 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
2220 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)) {
2222 /* Run ANI only when calibration is not active */
2224 ah
->ah_cal_next_ani
= jiffies
+
2225 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2226 tasklet_schedule(&ah
->ani_tasklet
);
2228 } else if (time_is_before_eq_jiffies(ah
->ah_cal_next_short
) &&
2229 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
2230 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)) {
2232 /* Run calibration only when another calibration
2235 * Note: This is for both full/short calibration,
2236 * if it's time for a full one, ath5k_calibrate_work will deal
2239 ah
->ah_cal_next_short
= jiffies
+
2240 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT
);
2241 ieee80211_queue_work(ah
->hw
, &ah
->calib_work
);
2243 /* we could use SWI to generate enough interrupts to meet our
2244 * calibration interval requirements, if necessary:
2245 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2249 ath5k_schedule_rx(struct ath5k_hw
*ah
)
2251 ah
->rx_pending
= true;
2252 tasklet_schedule(&ah
->rxtq
);
2256 ath5k_schedule_tx(struct ath5k_hw
*ah
)
2258 ah
->tx_pending
= true;
2259 tasklet_schedule(&ah
->txtq
);
2263 ath5k_intr(int irq
, void *dev_id
)
2265 struct ath5k_hw
*ah
= dev_id
;
2266 enum ath5k_int status
;
2267 unsigned int counter
= 1000;
2271 * If hw is not ready (or detached) and we get an
2272 * interrupt, or if we have no interrupts pending
2273 * (that means it's not for us) skip it.
2275 * NOTE: Group 0/1 PCI interface registers are not
2276 * supported on WiSOCs, so we can't check for pending
2277 * interrupts (ISR belongs to another register group
2280 if (unlikely(test_bit(ATH_STAT_INVALID
, ah
->status
) ||
2281 ((ath5k_get_bus_type(ah
) != ATH_AHB
) &&
2282 !ath5k_hw_is_intr_pending(ah
))))
2287 ath5k_hw_get_isr(ah
, &status
); /* NB: clears IRQ too */
2289 ATH5K_DBG(ah
, ATH5K_DEBUG_INTR
, "status 0x%x/0x%x\n",
2293 * Fatal hw error -> Log and reset
2295 * Fatal errors are unrecoverable so we have to
2296 * reset the card. These errors include bus and
2299 if (unlikely(status
& AR5K_INT_FATAL
)) {
2301 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2302 "fatal int, resetting\n");
2303 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2306 * RX Overrun -> Count and reset if needed
2308 * Receive buffers are full. Either the bus is busy or
2309 * the CPU is not fast enough to process all received
2312 } else if (unlikely(status
& AR5K_INT_RXORN
)) {
2315 * Older chipsets need a reset to come out of this
2316 * condition, but we treat it as RX for newer chips.
2317 * We don't know exactly which versions need a reset
2318 * this guess is copied from the HAL.
2320 ah
->stats
.rxorn_intr
++;
2322 if (ah
->ah_mac_srev
< AR5K_SREV_AR5212
) {
2323 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2324 "rx overrun, resetting\n");
2325 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2327 ath5k_schedule_rx(ah
);
2331 /* Software Beacon Alert -> Schedule beacon tasklet */
2332 if (status
& AR5K_INT_SWBA
)
2333 tasklet_hi_schedule(&ah
->beacontq
);
2336 * No more RX descriptors -> Just count
2338 * NB: the hardware should re-read the link when
2339 * RXE bit is written, but it doesn't work at
2340 * least on older hardware revs.
2342 if (status
& AR5K_INT_RXEOL
)
2343 ah
->stats
.rxeol_intr
++;
2346 /* TX Underrun -> Bump tx trigger level */
2347 if (status
& AR5K_INT_TXURN
)
2348 ath5k_hw_update_tx_triglevel(ah
, true);
2350 /* RX -> Schedule rx tasklet */
2351 if (status
& (AR5K_INT_RXOK
| AR5K_INT_RXERR
))
2352 ath5k_schedule_rx(ah
);
2354 /* TX -> Schedule tx tasklet */
2355 if (status
& (AR5K_INT_TXOK
2359 ath5k_schedule_tx(ah
);
2361 /* Missed beacon -> TODO
2362 if (status & AR5K_INT_BMISS)
2365 /* MIB event -> Update counters and notify ANI */
2366 if (status
& AR5K_INT_MIB
) {
2367 ah
->stats
.mib_intr
++;
2368 ath5k_hw_update_mib_counters(ah
);
2369 ath5k_ani_mib_intr(ah
);
2372 /* GPIO -> Notify RFKill layer */
2373 if (status
& AR5K_INT_GPIO
)
2374 tasklet_schedule(&ah
->rf_kill
.toggleq
);
2378 if (ath5k_get_bus_type(ah
) == ATH_AHB
)
2381 } while (ath5k_hw_is_intr_pending(ah
) && --counter
> 0);
2384 * Until we handle rx/tx interrupts mask them on IMR
2386 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2387 * and unset after we 've handled the interrupts.
2389 if (ah
->rx_pending
|| ah
->tx_pending
)
2390 ath5k_set_current_imask(ah
);
2392 if (unlikely(!counter
))
2393 ATH5K_WARN(ah
, "too many interrupts, giving up for now\n");
2395 /* Fire up calibration poll */
2396 ath5k_intr_calibration_poll(ah
);
2402 * Periodically recalibrate the PHY to account
2403 * for temperature/environment changes.
2406 ath5k_calibrate_work(struct work_struct
*work
)
2408 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2411 /* Should we run a full calibration ? */
2412 if (time_is_before_eq_jiffies(ah
->ah_cal_next_full
)) {
2414 ah
->ah_cal_next_full
= jiffies
+
2415 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2416 ah
->ah_cal_mask
|= AR5K_CALIBRATION_FULL
;
2418 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
2419 "running full calibration\n");
2421 if (ath5k_hw_gainf_calibrate(ah
) == AR5K_RFGAIN_NEED_CHANGE
) {
2423 * Rfgain is out of bounds, reset the chip
2424 * to load new gain values.
2426 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2427 "got new rfgain, resetting\n");
2428 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2431 ah
->ah_cal_mask
|= AR5K_CALIBRATION_SHORT
;
2434 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
, "channel %u/%x\n",
2435 ieee80211_frequency_to_channel(ah
->curchan
->center_freq
),
2436 ah
->curchan
->hw_value
);
2438 if (ath5k_hw_phy_calibrate(ah
, ah
->curchan
))
2439 ATH5K_ERR(ah
, "calibration of channel %u failed\n",
2440 ieee80211_frequency_to_channel(
2441 ah
->curchan
->center_freq
));
2443 /* Clear calibration flags */
2444 if (ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
)
2445 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_FULL
;
2446 else if (ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)
2447 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_SHORT
;
2452 ath5k_tasklet_ani(unsigned long data
)
2454 struct ath5k_hw
*ah
= (void *)data
;
2456 ah
->ah_cal_mask
|= AR5K_CALIBRATION_ANI
;
2457 ath5k_ani_calibration(ah
);
2458 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_ANI
;
2463 ath5k_tx_complete_poll_work(struct work_struct
*work
)
2465 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2466 tx_complete_work
.work
);
2467 struct ath5k_txq
*txq
;
2469 bool needreset
= false;
2471 if (!test_bit(ATH_STAT_STARTED
, ah
->status
))
2474 mutex_lock(&ah
->lock
);
2476 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++) {
2477 if (ah
->txqs
[i
].setup
) {
2479 spin_lock_bh(&txq
->lock
);
2480 if (txq
->txq_len
> 1) {
2481 if (txq
->txq_poll_mark
) {
2482 ATH5K_DBG(ah
, ATH5K_DEBUG_XMIT
,
2483 "TX queue stuck %d\n",
2487 spin_unlock_bh(&txq
->lock
);
2490 txq
->txq_poll_mark
= true;
2493 spin_unlock_bh(&txq
->lock
);
2498 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2499 "TX queues stuck, resetting\n");
2500 ath5k_reset(ah
, NULL
, true);
2503 mutex_unlock(&ah
->lock
);
2505 ieee80211_queue_delayed_work(ah
->hw
, &ah
->tx_complete_work
,
2506 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2510 /*************************\
2511 * Initialization routines *
2512 \*************************/
2514 static const struct ieee80211_iface_limit if_limits
[] = {
2515 { .max
= 2048, .types
= BIT(NL80211_IFTYPE_STATION
) },
2516 { .max
= 4, .types
=
2517 #ifdef CONFIG_MAC80211_MESH
2518 BIT(NL80211_IFTYPE_MESH_POINT
) |
2520 BIT(NL80211_IFTYPE_AP
) },
2523 static const struct ieee80211_iface_combination if_comb
= {
2524 .limits
= if_limits
,
2525 .n_limits
= ARRAY_SIZE(if_limits
),
2526 .max_interfaces
= 2048,
2527 .num_different_channels
= 1,
2531 ath5k_init_ah(struct ath5k_hw
*ah
, const struct ath_bus_ops
*bus_ops
)
2533 struct ieee80211_hw
*hw
= ah
->hw
;
2534 struct ath_common
*common
;
2538 /* Initialize driver private data */
2539 SET_IEEE80211_DEV(hw
, ah
->dev
);
2540 ieee80211_hw_set(hw
, SUPPORTS_RC_TABLE
);
2541 ieee80211_hw_set(hw
, REPORTS_TX_ACK_STATUS
);
2542 ieee80211_hw_set(hw
, MFP_CAPABLE
);
2543 ieee80211_hw_set(hw
, SIGNAL_DBM
);
2544 ieee80211_hw_set(hw
, RX_INCLUDES_FCS
);
2545 ieee80211_hw_set(hw
, HOST_BROADCAST_PS_BUFFERING
);
2547 hw
->wiphy
->interface_modes
=
2548 BIT(NL80211_IFTYPE_AP
) |
2549 BIT(NL80211_IFTYPE_STATION
) |
2550 BIT(NL80211_IFTYPE_ADHOC
) |
2551 BIT(NL80211_IFTYPE_MESH_POINT
);
2553 hw
->wiphy
->iface_combinations
= &if_comb
;
2554 hw
->wiphy
->n_iface_combinations
= 1;
2556 /* SW support for IBSS_RSN is provided by mac80211 */
2557 hw
->wiphy
->flags
|= WIPHY_FLAG_IBSS_RSN
;
2559 hw
->wiphy
->flags
|= WIPHY_FLAG_SUPPORTS_5_10_MHZ
;
2561 /* both antennas can be configured as RX or TX */
2562 hw
->wiphy
->available_antennas_tx
= 0x3;
2563 hw
->wiphy
->available_antennas_rx
= 0x3;
2565 hw
->extra_tx_headroom
= 2;
2567 wiphy_ext_feature_set(hw
->wiphy
, NL80211_EXT_FEATURE_CQM_RSSI_LIST
);
2570 * Mark the device as detached to avoid processing
2571 * interrupts until setup is complete.
2573 __set_bit(ATH_STAT_INVALID
, ah
->status
);
2575 ah
->opmode
= NL80211_IFTYPE_STATION
;
2577 mutex_init(&ah
->lock
);
2578 spin_lock_init(&ah
->rxbuflock
);
2579 spin_lock_init(&ah
->txbuflock
);
2580 spin_lock_init(&ah
->block
);
2581 spin_lock_init(&ah
->irqlock
);
2583 /* Setup interrupt handler */
2584 ret
= request_irq(ah
->irq
, ath5k_intr
, IRQF_SHARED
, "ath", ah
);
2586 ATH5K_ERR(ah
, "request_irq failed\n");
2590 common
= ath5k_hw_common(ah
);
2591 common
->ops
= &ath5k_common_ops
;
2592 common
->bus_ops
= bus_ops
;
2596 common
->clockrate
= 40;
2599 * Cache line size is used to size and align various
2600 * structures used to communicate with the hardware.
2602 ath5k_read_cachesize(common
, &csz
);
2603 common
->cachelsz
= csz
<< 2; /* convert to bytes */
2605 spin_lock_init(&common
->cc_lock
);
2607 /* Initialize device */
2608 ret
= ath5k_hw_init(ah
);
2612 /* Set up multi-rate retry capabilities */
2613 if (ah
->ah_capabilities
.cap_has_mrr_support
) {
2615 hw
->max_rate_tries
= max(AR5K_INIT_RETRY_SHORT
,
2616 AR5K_INIT_RETRY_LONG
);
2619 hw
->vif_data_size
= sizeof(struct ath5k_vif
);
2621 /* Finish private driver data initialization */
2622 ret
= ath5k_init(hw
);
2626 ATH5K_INFO(ah
, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2627 ath5k_chip_name(AR5K_VERSION_MAC
, ah
->ah_mac_srev
),
2629 ah
->ah_phy_revision
);
2631 if (!ah
->ah_single_chip
) {
2632 /* Single chip radio (!RF5111) */
2633 if (ah
->ah_radio_5ghz_revision
&&
2634 !ah
->ah_radio_2ghz_revision
) {
2635 /* No 5GHz support -> report 2GHz radio */
2636 if (!test_bit(AR5K_MODE_11A
,
2637 ah
->ah_capabilities
.cap_mode
)) {
2638 ATH5K_INFO(ah
, "RF%s 2GHz radio found (0x%x)\n",
2639 ath5k_chip_name(AR5K_VERSION_RAD
,
2640 ah
->ah_radio_5ghz_revision
),
2641 ah
->ah_radio_5ghz_revision
);
2642 /* No 2GHz support (5110 and some
2643 * 5GHz only cards) -> report 5GHz radio */
2644 } else if (!test_bit(AR5K_MODE_11B
,
2645 ah
->ah_capabilities
.cap_mode
)) {
2646 ATH5K_INFO(ah
, "RF%s 5GHz radio found (0x%x)\n",
2647 ath5k_chip_name(AR5K_VERSION_RAD
,
2648 ah
->ah_radio_5ghz_revision
),
2649 ah
->ah_radio_5ghz_revision
);
2650 /* Multiband radio */
2652 ATH5K_INFO(ah
, "RF%s multiband radio found"
2654 ath5k_chip_name(AR5K_VERSION_RAD
,
2655 ah
->ah_radio_5ghz_revision
),
2656 ah
->ah_radio_5ghz_revision
);
2659 /* Multi chip radio (RF5111 - RF2111) ->
2660 * report both 2GHz/5GHz radios */
2661 else if (ah
->ah_radio_5ghz_revision
&&
2662 ah
->ah_radio_2ghz_revision
) {
2663 ATH5K_INFO(ah
, "RF%s 5GHz radio found (0x%x)\n",
2664 ath5k_chip_name(AR5K_VERSION_RAD
,
2665 ah
->ah_radio_5ghz_revision
),
2666 ah
->ah_radio_5ghz_revision
);
2667 ATH5K_INFO(ah
, "RF%s 2GHz radio found (0x%x)\n",
2668 ath5k_chip_name(AR5K_VERSION_RAD
,
2669 ah
->ah_radio_2ghz_revision
),
2670 ah
->ah_radio_2ghz_revision
);
2674 ath5k_debug_init_device(ah
);
2676 /* ready to process interrupts */
2677 __clear_bit(ATH_STAT_INVALID
, ah
->status
);
2681 ath5k_hw_deinit(ah
);
2683 free_irq(ah
->irq
, ah
);
2689 ath5k_stop_locked(struct ath5k_hw
*ah
)
2692 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "invalid %u\n",
2693 test_bit(ATH_STAT_INVALID
, ah
->status
));
2696 * Shutdown the hardware and driver:
2697 * stop output from above
2698 * disable interrupts
2700 * turn off the radio
2701 * clear transmit machinery
2702 * clear receive machinery
2703 * drain and release tx queues
2704 * reclaim beacon resources
2705 * power down hardware
2707 * Note that some of this work is not possible if the
2708 * hardware is gone (invalid).
2710 ieee80211_stop_queues(ah
->hw
);
2712 if (!test_bit(ATH_STAT_INVALID
, ah
->status
)) {
2714 ath5k_hw_set_imr(ah
, 0);
2715 synchronize_irq(ah
->irq
);
2717 ath5k_hw_dma_stop(ah
);
2718 ath5k_drain_tx_buffs(ah
);
2719 ath5k_hw_phy_disable(ah
);
2725 int ath5k_start(struct ieee80211_hw
*hw
)
2727 struct ath5k_hw
*ah
= hw
->priv
;
2728 struct ath_common
*common
= ath5k_hw_common(ah
);
2731 mutex_lock(&ah
->lock
);
2733 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "mode %d\n", ah
->opmode
);
2736 * Stop anything previously setup. This is safe
2737 * no matter this is the first time through or not.
2739 ath5k_stop_locked(ah
);
2742 * The basic interface to setting the hardware in a good
2743 * state is ``reset''. On return the hardware is known to
2744 * be powered up and with interrupts disabled. This must
2745 * be followed by initialization of the appropriate bits
2746 * and then setup of the interrupt mask.
2748 ah
->curchan
= ah
->hw
->conf
.chandef
.chan
;
2749 ah
->imask
= AR5K_INT_RXOK
2759 ret
= ath5k_reset(ah
, NULL
, false);
2763 if (!ath5k_modparam_no_hw_rfkill_switch
)
2764 ath5k_rfkill_hw_start(ah
);
2767 * Reset the key cache since some parts do not reset the
2768 * contents on initial power up or resume from suspend.
2770 for (i
= 0; i
< common
->keymax
; i
++)
2771 ath_hw_keyreset(common
, (u16
) i
);
2773 /* Use higher rates for acks instead of base
2775 ah
->ah_ack_bitrate_high
= true;
2777 for (i
= 0; i
< ARRAY_SIZE(ah
->bslot
); i
++)
2778 ah
->bslot
[i
] = NULL
;
2783 mutex_unlock(&ah
->lock
);
2785 set_bit(ATH_STAT_STARTED
, ah
->status
);
2786 ieee80211_queue_delayed_work(ah
->hw
, &ah
->tx_complete_work
,
2787 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2792 static void ath5k_stop_tasklets(struct ath5k_hw
*ah
)
2794 ah
->rx_pending
= false;
2795 ah
->tx_pending
= false;
2796 tasklet_kill(&ah
->rxtq
);
2797 tasklet_kill(&ah
->txtq
);
2798 tasklet_kill(&ah
->beacontq
);
2799 tasklet_kill(&ah
->ani_tasklet
);
2803 * Stop the device, grabbing the top-level lock to protect
2804 * against concurrent entry through ath5k_init (which can happen
2805 * if another thread does a system call and the thread doing the
2806 * stop is preempted).
2808 void ath5k_stop(struct ieee80211_hw
*hw
)
2810 struct ath5k_hw
*ah
= hw
->priv
;
2813 mutex_lock(&ah
->lock
);
2814 ret
= ath5k_stop_locked(ah
);
2815 if (ret
== 0 && !test_bit(ATH_STAT_INVALID
, ah
->status
)) {
2817 * Don't set the card in full sleep mode!
2819 * a) When the device is in this state it must be carefully
2820 * woken up or references to registers in the PCI clock
2821 * domain may freeze the bus (and system). This varies
2822 * by chip and is mostly an issue with newer parts
2823 * (madwifi sources mentioned srev >= 0x78) that go to
2824 * sleep more quickly.
2826 * b) On older chips full sleep results a weird behaviour
2827 * during wakeup. I tested various cards with srev < 0x78
2828 * and they don't wake up after module reload, a second
2829 * module reload is needed to bring the card up again.
2831 * Until we figure out what's going on don't enable
2832 * full chip reset on any chip (this is what Legacy HAL
2833 * and Sam's HAL do anyway). Instead Perform a full reset
2834 * on the device (same as initial state after attach) and
2835 * leave it idle (keep MAC/BB on warm reset) */
2836 ret
= ath5k_hw_on_hold(ah
);
2838 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2839 "putting device to sleep\n");
2843 mutex_unlock(&ah
->lock
);
2845 ath5k_stop_tasklets(ah
);
2847 clear_bit(ATH_STAT_STARTED
, ah
->status
);
2848 cancel_delayed_work_sync(&ah
->tx_complete_work
);
2850 if (!ath5k_modparam_no_hw_rfkill_switch
)
2851 ath5k_rfkill_hw_stop(ah
);
2855 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2856 * and change to the given channel.
2858 * This should be called with ah->lock.
2861 ath5k_reset(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
,
2864 struct ath_common
*common
= ath5k_hw_common(ah
);
2866 bool fast
= chan
&& modparam_fastchanswitch
? 1 : 0;
2868 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "resetting\n");
2870 __set_bit(ATH_STAT_RESET
, ah
->status
);
2872 ath5k_hw_set_imr(ah
, 0);
2873 synchronize_irq(ah
->irq
);
2874 ath5k_stop_tasklets(ah
);
2876 /* Save ani mode and disable ANI during
2877 * reset. If we don't we might get false
2878 * PHY error interrupts. */
2879 ani_mode
= ah
->ani_state
.ani_mode
;
2880 ath5k_ani_init(ah
, ATH5K_ANI_MODE_OFF
);
2882 /* We are going to empty hw queues
2883 * so we should also free any remaining
2885 ath5k_drain_tx_buffs(ah
);
2888 ath5k_hw_stop_rx_pcu(ah
);
2892 * Note: If DMA didn't stop continue
2893 * since only a reset will fix it.
2895 ret
= ath5k_hw_dma_stop(ah
);
2897 /* RF Bus grant won't work if we have pending
2901 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2902 "DMA didn't stop, falling back to normal reset\n");
2909 ret
= ath5k_hw_reset(ah
, ah
->opmode
, ah
->curchan
, fast
, skip_pcu
);
2911 ATH5K_ERR(ah
, "can't reset hardware (%d)\n", ret
);
2915 ret
= ath5k_rx_start(ah
);
2917 ATH5K_ERR(ah
, "can't start recv logic\n");
2921 ath5k_ani_init(ah
, ani_mode
);
2924 * Set calibration intervals
2926 * Note: We don't need to run calibration imediately
2927 * since some initial calibration is done on reset
2928 * even for fast channel switching. Also on scanning
2929 * this will get set again and again and it won't get
2930 * executed unless we connect somewhere and spend some
2931 * time on the channel (that's what calibration needs
2932 * anyway to be accurate).
2934 ah
->ah_cal_next_full
= jiffies
+
2935 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2936 ah
->ah_cal_next_ani
= jiffies
+
2937 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2938 ah
->ah_cal_next_short
= jiffies
+
2939 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT
);
2941 ewma_beacon_rssi_init(&ah
->ah_beacon_rssi_avg
);
2943 /* clear survey data and cycle counters */
2944 memset(&ah
->survey
, 0, sizeof(ah
->survey
));
2945 spin_lock_bh(&common
->cc_lock
);
2946 ath_hw_cycle_counters_update(common
);
2947 memset(&common
->cc_survey
, 0, sizeof(common
->cc_survey
));
2948 memset(&common
->cc_ani
, 0, sizeof(common
->cc_ani
));
2949 spin_unlock_bh(&common
->cc_lock
);
2952 * Change channels and update the h/w rate map if we're switching;
2953 * e.g. 11a to 11b/g.
2955 * We may be doing a reset in response to an ioctl that changes the
2956 * channel so update any state that might change as a result.
2960 /* ath5k_chan_change(ah, c); */
2962 __clear_bit(ATH_STAT_RESET
, ah
->status
);
2964 ath5k_beacon_config(ah
);
2965 /* intrs are enabled by ath5k_beacon_config */
2967 ieee80211_wake_queues(ah
->hw
);
2974 static void ath5k_reset_work(struct work_struct
*work
)
2976 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2979 mutex_lock(&ah
->lock
);
2980 ath5k_reset(ah
, NULL
, true);
2981 mutex_unlock(&ah
->lock
);
2985 ath5k_init(struct ieee80211_hw
*hw
)
2988 struct ath5k_hw
*ah
= hw
->priv
;
2989 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
2990 struct ath5k_txq
*txq
;
2991 u8 mac
[ETH_ALEN
] = {};
2996 * Collect the channel list. The 802.11 layer
2997 * is responsible for filtering this list based
2998 * on settings like the phy mode and regulatory
2999 * domain restrictions.
3001 ret
= ath5k_setup_bands(hw
);
3003 ATH5K_ERR(ah
, "can't get channels\n");
3008 * Allocate tx+rx descriptors and populate the lists.
3010 ret
= ath5k_desc_alloc(ah
);
3012 ATH5K_ERR(ah
, "can't allocate descriptors\n");
3017 * Allocate hardware transmit queues: one queue for
3018 * beacon frames and one data queue for each QoS
3019 * priority. Note that hw functions handle resetting
3020 * these queues at the needed time.
3022 ret
= ath5k_beaconq_setup(ah
);
3024 ATH5K_ERR(ah
, "can't setup a beacon xmit queue\n");
3028 ah
->cabq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_CAB
, 0);
3029 if (IS_ERR(ah
->cabq
)) {
3030 ATH5K_ERR(ah
, "can't setup cab queue\n");
3031 ret
= PTR_ERR(ah
->cabq
);
3035 /* 5211 and 5212 usually support 10 queues but we better rely on the
3036 * capability information */
3037 if (ah
->ah_capabilities
.cap_queues
.q_tx_num
>= 6) {
3038 /* This order matches mac80211's queue priority, so we can
3039 * directly use the mac80211 queue number without any mapping */
3040 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VO
);
3042 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3046 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VI
);
3048 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3052 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
3054 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3058 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BK
);
3060 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3066 /* older hardware (5210) can only support one data queue */
3067 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
3069 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3076 tasklet_init(&ah
->rxtq
, ath5k_tasklet_rx
, (unsigned long)ah
);
3077 tasklet_init(&ah
->txtq
, ath5k_tasklet_tx
, (unsigned long)ah
);
3078 tasklet_init(&ah
->beacontq
, ath5k_tasklet_beacon
, (unsigned long)ah
);
3079 tasklet_init(&ah
->ani_tasklet
, ath5k_tasklet_ani
, (unsigned long)ah
);
3081 INIT_WORK(&ah
->reset_work
, ath5k_reset_work
);
3082 INIT_WORK(&ah
->calib_work
, ath5k_calibrate_work
);
3083 INIT_DELAYED_WORK(&ah
->tx_complete_work
, ath5k_tx_complete_poll_work
);
3085 ret
= ath5k_hw_common(ah
)->bus_ops
->eeprom_read_mac(ah
, mac
);
3087 ATH5K_ERR(ah
, "unable to read address from EEPROM\n");
3091 SET_IEEE80211_PERM_ADDR(hw
, mac
);
3092 /* All MAC address bits matter for ACKs */
3093 ath5k_update_bssid_mask_and_opmode(ah
, NULL
);
3095 regulatory
->current_rd
= ah
->ah_capabilities
.cap_eeprom
.ee_regdomain
;
3096 ret
= ath_regd_init(regulatory
, hw
->wiphy
, ath5k_reg_notifier
);
3098 ATH5K_ERR(ah
, "can't initialize regulatory system\n");
3102 ret
= ieee80211_register_hw(hw
);
3104 ATH5K_ERR(ah
, "can't register ieee80211 hw\n");
3108 if (!ath_is_world_regd(regulatory
))
3109 regulatory_hint(hw
->wiphy
, regulatory
->alpha2
);
3111 ath5k_init_leds(ah
);
3113 ath5k_sysfs_register(ah
);
3117 ath5k_txq_release(ah
);
3119 ath5k_hw_release_tx_queue(ah
, ah
->bhalq
);
3121 ath5k_desc_free(ah
);
3127 ath5k_deinit_ah(struct ath5k_hw
*ah
)
3129 struct ieee80211_hw
*hw
= ah
->hw
;
3132 * NB: the order of these is important:
3133 * o call the 802.11 layer before detaching ath5k_hw to
3134 * ensure callbacks into the driver to delete global
3135 * key cache entries can be handled
3136 * o reclaim the tx queue data structures after calling
3137 * the 802.11 layer as we'll get called back to reclaim
3138 * node state and potentially want to use them
3139 * o to cleanup the tx queues the hal is called, so detach
3141 * XXX: ??? detach ath5k_hw ???
3142 * Other than that, it's straightforward...
3144 ieee80211_unregister_hw(hw
);
3145 ath5k_desc_free(ah
);
3146 ath5k_txq_release(ah
);
3147 ath5k_hw_release_tx_queue(ah
, ah
->bhalq
);
3148 ath5k_unregister_leds(ah
);
3150 ath5k_sysfs_unregister(ah
);
3152 * NB: can't reclaim these until after ieee80211_ifdetach
3153 * returns because we'll get called back to reclaim node
3154 * state and potentially want to use them.
3156 ath5k_hw_deinit(ah
);
3157 free_irq(ah
->irq
, ah
);
3161 ath5k_any_vif_assoc(struct ath5k_hw
*ah
)
3163 struct ath5k_vif_iter_data iter_data
;
3164 iter_data
.hw_macaddr
= NULL
;
3165 iter_data
.any_assoc
= false;
3166 iter_data
.need_set_hw_addr
= false;
3167 iter_data
.found_active
= true;
3169 ieee80211_iterate_active_interfaces_atomic(
3170 ah
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
3171 ath5k_vif_iter
, &iter_data
);
3172 return iter_data
.any_assoc
;
3176 ath5k_set_beacon_filter(struct ieee80211_hw
*hw
, bool enable
)
3178 struct ath5k_hw
*ah
= hw
->priv
;
3180 rfilt
= ath5k_hw_get_rx_filter(ah
);
3182 rfilt
|= AR5K_RX_FILTER_BEACON
;
3184 rfilt
&= ~AR5K_RX_FILTER_BEACON
;
3185 ath5k_hw_set_rx_filter(ah
, rfilt
);
3186 ah
->filter_flags
= rfilt
;
3189 void _ath5k_printk(const struct ath5k_hw
*ah
, const char *level
,
3190 const char *fmt
, ...)
3192 struct va_format vaf
;
3195 va_start(args
, fmt
);
3201 printk("%s" pr_fmt("%s: %pV"),
3202 level
, wiphy_name(ah
->hw
->wiphy
), &vaf
);
3204 printk("%s" pr_fmt("%pV"), level
, &vaf
);