Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / wireless / ath / ath5k / base.c
blob527afcf39246079eac0f0fbcdbb4e145fda11809
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * All rights reserved.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
59 #include <net/cfg80211.h>
60 #include <net/ieee80211_radiotap.h>
62 #include <asm/unaligned.h>
64 #include <net/mac80211.h>
65 #include "base.h"
66 #include "reg.h"
67 #include "debug.h"
68 #include "ani.h"
69 #include "ath5k.h"
70 #include "../regd.h"
72 #define CREATE_TRACE_POINTS
73 #include "trace.h"
75 bool ath5k_modparam_nohwcrypt;
76 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
77 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
79 static bool modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
83 static bool ath5k_modparam_no_hw_rfkill_switch;
84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 bool, S_IRUGO);
86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
89 /* Module info */
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94 MODULE_LICENSE("Dual BSD/GPL");
96 static int ath5k_init(struct ieee80211_hw *hw);
97 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98 bool skip_pcu);
100 /* Known SREVs */
101 static const struct ath5k_srev_name srev_names[] = {
102 #ifdef CONFIG_ATH5K_AHB
103 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
104 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
105 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
106 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
107 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
108 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
109 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
110 #else
111 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
112 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
113 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
114 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
115 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
116 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
117 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
118 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
119 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
120 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
121 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
122 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
123 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
124 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
125 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
126 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
127 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
128 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
129 #endif
130 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
131 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
132 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
133 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
134 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
135 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
136 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
137 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
138 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
139 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
140 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
141 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
142 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
143 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
144 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
145 #ifdef CONFIG_ATH5K_AHB
146 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
147 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
148 #endif
149 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
152 static const struct ieee80211_rate ath5k_rates[] = {
153 { .bitrate = 10,
154 .hw_value = ATH5K_RATE_CODE_1M, },
155 { .bitrate = 20,
156 .hw_value = ATH5K_RATE_CODE_2M,
157 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 { .bitrate = 55,
160 .hw_value = ATH5K_RATE_CODE_5_5M,
161 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 { .bitrate = 110,
164 .hw_value = ATH5K_RATE_CODE_11M,
165 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 { .bitrate = 60,
168 .hw_value = ATH5K_RATE_CODE_6M,
169 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
170 IEEE80211_RATE_SUPPORTS_10MHZ },
171 { .bitrate = 90,
172 .hw_value = ATH5K_RATE_CODE_9M,
173 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
174 IEEE80211_RATE_SUPPORTS_10MHZ },
175 { .bitrate = 120,
176 .hw_value = ATH5K_RATE_CODE_12M,
177 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
178 IEEE80211_RATE_SUPPORTS_10MHZ },
179 { .bitrate = 180,
180 .hw_value = ATH5K_RATE_CODE_18M,
181 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
182 IEEE80211_RATE_SUPPORTS_10MHZ },
183 { .bitrate = 240,
184 .hw_value = ATH5K_RATE_CODE_24M,
185 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
186 IEEE80211_RATE_SUPPORTS_10MHZ },
187 { .bitrate = 360,
188 .hw_value = ATH5K_RATE_CODE_36M,
189 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
190 IEEE80211_RATE_SUPPORTS_10MHZ },
191 { .bitrate = 480,
192 .hw_value = ATH5K_RATE_CODE_48M,
193 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
194 IEEE80211_RATE_SUPPORTS_10MHZ },
195 { .bitrate = 540,
196 .hw_value = ATH5K_RATE_CODE_54M,
197 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
198 IEEE80211_RATE_SUPPORTS_10MHZ },
201 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
203 u64 tsf = ath5k_hw_get_tsf64(ah);
205 if ((tsf & 0x7fff) < rstamp)
206 tsf -= 0x8000;
208 return (tsf & ~0x7fff) | rstamp;
211 const char *
212 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
214 const char *name = "xxxxx";
215 unsigned int i;
217 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
218 if (srev_names[i].sr_type != type)
219 continue;
221 if ((val & 0xf0) == srev_names[i].sr_val)
222 name = srev_names[i].sr_name;
224 if ((val & 0xff) == srev_names[i].sr_val) {
225 name = srev_names[i].sr_name;
226 break;
230 return name;
232 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
234 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235 return ath5k_hw_reg_read(ah, reg_offset);
238 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
240 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
241 ath5k_hw_reg_write(ah, val, reg_offset);
244 static const struct ath_ops ath5k_common_ops = {
245 .read = ath5k_ioread32,
246 .write = ath5k_iowrite32,
249 /***********************\
250 * Driver Initialization *
251 \***********************/
253 static void ath5k_reg_notifier(struct wiphy *wiphy,
254 struct regulatory_request *request)
256 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
257 struct ath5k_hw *ah = hw->priv;
258 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
260 ath_reg_notifier_apply(wiphy, request, regulatory);
263 /********************\
264 * Channel/mode setup *
265 \********************/
268 * Returns true for the channel numbers used.
270 #ifdef CONFIG_ATH5K_TEST_CHANNELS
271 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
273 return true;
276 #else
277 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
279 if (band == NL80211_BAND_2GHZ && chan <= 14)
280 return true;
282 return /* UNII 1,2 */
283 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
284 /* midband */
285 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
286 /* UNII-3 */
287 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
288 /* 802.11j 5.030-5.080 GHz (20MHz) */
289 (chan == 8 || chan == 12 || chan == 16) ||
290 /* 802.11j 4.9GHz (20MHz) */
291 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
293 #endif
295 static unsigned int
296 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
297 unsigned int mode, unsigned int max)
299 unsigned int count, size, freq, ch;
300 enum nl80211_band band;
302 switch (mode) {
303 case AR5K_MODE_11A:
304 /* 1..220, but 2GHz frequencies are filtered by check_channel */
305 size = 220;
306 band = NL80211_BAND_5GHZ;
307 break;
308 case AR5K_MODE_11B:
309 case AR5K_MODE_11G:
310 size = 26;
311 band = NL80211_BAND_2GHZ;
312 break;
313 default:
314 ATH5K_WARN(ah, "bad mode, not copying channels\n");
315 return 0;
318 count = 0;
319 for (ch = 1; ch <= size && count < max; ch++) {
320 freq = ieee80211_channel_to_frequency(ch, band);
322 if (freq == 0) /* mapping failed - not a standard channel */
323 continue;
325 /* Write channel info, needed for ath5k_channel_ok() */
326 channels[count].center_freq = freq;
327 channels[count].band = band;
328 channels[count].hw_value = mode;
330 /* Check if channel is supported by the chipset */
331 if (!ath5k_channel_ok(ah, &channels[count]))
332 continue;
334 if (!ath5k_is_standard_channel(ch, band))
335 continue;
337 count++;
340 return count;
343 static void
344 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
346 u8 i;
348 for (i = 0; i < AR5K_MAX_RATES; i++)
349 ah->rate_idx[b->band][i] = -1;
351 for (i = 0; i < b->n_bitrates; i++) {
352 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
353 if (b->bitrates[i].hw_value_short)
354 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
358 static int
359 ath5k_setup_bands(struct ieee80211_hw *hw)
361 struct ath5k_hw *ah = hw->priv;
362 struct ieee80211_supported_band *sband;
363 int max_c, count_c = 0;
364 int i;
366 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
367 max_c = ARRAY_SIZE(ah->channels);
369 /* 2GHz band */
370 sband = &ah->sbands[NL80211_BAND_2GHZ];
371 sband->band = NL80211_BAND_2GHZ;
372 sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
374 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
375 /* G mode */
376 memcpy(sband->bitrates, &ath5k_rates[0],
377 sizeof(struct ieee80211_rate) * 12);
378 sband->n_bitrates = 12;
380 sband->channels = ah->channels;
381 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
382 AR5K_MODE_11G, max_c);
384 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
385 count_c = sband->n_channels;
386 max_c -= count_c;
387 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
388 /* B mode */
389 memcpy(sband->bitrates, &ath5k_rates[0],
390 sizeof(struct ieee80211_rate) * 4);
391 sband->n_bitrates = 4;
393 /* 5211 only supports B rates and uses 4bit rate codes
394 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
395 * fix them up here:
397 if (ah->ah_version == AR5K_AR5211) {
398 for (i = 0; i < 4; i++) {
399 sband->bitrates[i].hw_value =
400 sband->bitrates[i].hw_value & 0xF;
401 sband->bitrates[i].hw_value_short =
402 sband->bitrates[i].hw_value_short & 0xF;
406 sband->channels = ah->channels;
407 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
408 AR5K_MODE_11B, max_c);
410 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
411 count_c = sband->n_channels;
412 max_c -= count_c;
414 ath5k_setup_rate_idx(ah, sband);
416 /* 5GHz band, A mode */
417 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
418 sband = &ah->sbands[NL80211_BAND_5GHZ];
419 sband->band = NL80211_BAND_5GHZ;
420 sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
422 memcpy(sband->bitrates, &ath5k_rates[4],
423 sizeof(struct ieee80211_rate) * 8);
424 sband->n_bitrates = 8;
426 sband->channels = &ah->channels[count_c];
427 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
428 AR5K_MODE_11A, max_c);
430 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
432 ath5k_setup_rate_idx(ah, sband);
434 ath5k_debug_dump_bands(ah);
436 return 0;
440 * Set/change channels. We always reset the chip.
441 * To accomplish this we must first cleanup any pending DMA,
442 * then restart stuff after a la ath5k_init.
444 * Called with ah->lock.
447 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
449 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
450 "channel set, resetting (%u -> %u MHz)\n",
451 ah->curchan->center_freq, chandef->chan->center_freq);
453 switch (chandef->width) {
454 case NL80211_CHAN_WIDTH_20:
455 case NL80211_CHAN_WIDTH_20_NOHT:
456 ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
457 break;
458 case NL80211_CHAN_WIDTH_5:
459 ah->ah_bwmode = AR5K_BWMODE_5MHZ;
460 break;
461 case NL80211_CHAN_WIDTH_10:
462 ah->ah_bwmode = AR5K_BWMODE_10MHZ;
463 break;
464 default:
465 WARN_ON(1);
466 return -EINVAL;
470 * To switch channels clear any pending DMA operations;
471 * wait long enough for the RX fifo to drain, reset the
472 * hardware at the new frequency, and then re-enable
473 * the relevant bits of the h/w.
475 return ath5k_reset(ah, chandef->chan, true);
478 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
480 struct ath5k_vif_iter_data *iter_data = data;
481 int i;
482 struct ath5k_vif *avf = (void *)vif->drv_priv;
484 if (iter_data->hw_macaddr)
485 for (i = 0; i < ETH_ALEN; i++)
486 iter_data->mask[i] &=
487 ~(iter_data->hw_macaddr[i] ^ mac[i]);
489 if (!iter_data->found_active) {
490 iter_data->found_active = true;
491 memcpy(iter_data->active_mac, mac, ETH_ALEN);
494 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
495 if (ether_addr_equal(iter_data->hw_macaddr, mac))
496 iter_data->need_set_hw_addr = false;
498 if (!iter_data->any_assoc) {
499 if (avf->assoc)
500 iter_data->any_assoc = true;
503 /* Calculate combined mode - when APs are active, operate in AP mode.
504 * Otherwise use the mode of the new interface. This can currently
505 * only deal with combinations of APs and STAs. Only one ad-hoc
506 * interfaces is allowed.
508 if (avf->opmode == NL80211_IFTYPE_AP)
509 iter_data->opmode = NL80211_IFTYPE_AP;
510 else {
511 if (avf->opmode == NL80211_IFTYPE_STATION)
512 iter_data->n_stas++;
513 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
514 iter_data->opmode = avf->opmode;
518 void
519 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
520 struct ieee80211_vif *vif)
522 struct ath_common *common = ath5k_hw_common(ah);
523 struct ath5k_vif_iter_data iter_data;
524 u32 rfilt;
527 * Use the hardware MAC address as reference, the hardware uses it
528 * together with the BSSID mask when matching addresses.
530 iter_data.hw_macaddr = common->macaddr;
531 eth_broadcast_addr(iter_data.mask);
532 iter_data.found_active = false;
533 iter_data.need_set_hw_addr = true;
534 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
535 iter_data.n_stas = 0;
537 if (vif)
538 ath5k_vif_iter(&iter_data, vif->addr, vif);
540 /* Get list of all active MAC addresses */
541 ieee80211_iterate_active_interfaces_atomic(
542 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
543 ath5k_vif_iter, &iter_data);
544 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
546 ah->opmode = iter_data.opmode;
547 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
548 /* Nothing active, default to station mode */
549 ah->opmode = NL80211_IFTYPE_STATION;
551 ath5k_hw_set_opmode(ah, ah->opmode);
552 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
553 ah->opmode, ath_opmode_to_string(ah->opmode));
555 if (iter_data.need_set_hw_addr && iter_data.found_active)
556 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
558 if (ath5k_hw_hasbssidmask(ah))
559 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
561 /* Set up RX Filter */
562 if (iter_data.n_stas > 1) {
563 /* If you have multiple STA interfaces connected to
564 * different APs, ARPs are not received (most of the time?)
565 * Enabling PROMISC appears to fix that problem.
567 ah->filter_flags |= AR5K_RX_FILTER_PROM;
570 rfilt = ah->filter_flags;
571 ath5k_hw_set_rx_filter(ah, rfilt);
572 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
575 static inline int
576 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
578 int rix;
580 /* return base rate on errors */
581 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
582 "hw_rix out of bounds: %x\n", hw_rix))
583 return 0;
585 rix = ah->rate_idx[ah->curchan->band][hw_rix];
586 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
587 rix = 0;
589 return rix;
592 /***************\
593 * Buffers setup *
594 \***************/
596 static
597 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
599 struct ath_common *common = ath5k_hw_common(ah);
600 struct sk_buff *skb;
603 * Allocate buffer with headroom_needed space for the
604 * fake physical layer header at the start.
606 skb = ath_rxbuf_alloc(common,
607 common->rx_bufsize,
608 GFP_ATOMIC);
610 if (!skb) {
611 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
612 common->rx_bufsize);
613 return NULL;
616 *skb_addr = dma_map_single(ah->dev,
617 skb->data, common->rx_bufsize,
618 DMA_FROM_DEVICE);
620 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
621 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
622 dev_kfree_skb(skb);
623 return NULL;
625 return skb;
628 static int
629 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
631 struct sk_buff *skb = bf->skb;
632 struct ath5k_desc *ds;
633 int ret;
635 if (!skb) {
636 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
637 if (!skb)
638 return -ENOMEM;
639 bf->skb = skb;
643 * Setup descriptors. For receive we always terminate
644 * the descriptor list with a self-linked entry so we'll
645 * not get overrun under high load (as can happen with a
646 * 5212 when ANI processing enables PHY error frames).
648 * To ensure the last descriptor is self-linked we create
649 * each descriptor as self-linked and add it to the end. As
650 * each additional descriptor is added the previous self-linked
651 * entry is "fixed" naturally. This should be safe even
652 * if DMA is happening. When processing RX interrupts we
653 * never remove/process the last, self-linked, entry on the
654 * descriptor list. This ensures the hardware always has
655 * someplace to write a new frame.
657 ds = bf->desc;
658 ds->ds_link = bf->daddr; /* link to self */
659 ds->ds_data = bf->skbaddr;
660 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
661 if (ret) {
662 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
663 return ret;
666 if (ah->rxlink != NULL)
667 *ah->rxlink = bf->daddr;
668 ah->rxlink = &ds->ds_link;
669 return 0;
672 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
674 struct ieee80211_hdr *hdr;
675 enum ath5k_pkt_type htype;
676 __le16 fc;
678 hdr = (struct ieee80211_hdr *)skb->data;
679 fc = hdr->frame_control;
681 if (ieee80211_is_beacon(fc))
682 htype = AR5K_PKT_TYPE_BEACON;
683 else if (ieee80211_is_probe_resp(fc))
684 htype = AR5K_PKT_TYPE_PROBE_RESP;
685 else if (ieee80211_is_atim(fc))
686 htype = AR5K_PKT_TYPE_ATIM;
687 else if (ieee80211_is_pspoll(fc))
688 htype = AR5K_PKT_TYPE_PSPOLL;
689 else
690 htype = AR5K_PKT_TYPE_NORMAL;
692 return htype;
695 static struct ieee80211_rate *
696 ath5k_get_rate(const struct ieee80211_hw *hw,
697 const struct ieee80211_tx_info *info,
698 struct ath5k_buf *bf, int idx)
701 * convert a ieee80211_tx_rate RC-table entry to
702 * the respective ieee80211_rate struct
704 if (bf->rates[idx].idx < 0) {
705 return NULL;
708 return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
711 static u16
712 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
713 const struct ieee80211_tx_info *info,
714 struct ath5k_buf *bf, int idx)
716 struct ieee80211_rate *rate;
717 u16 hw_rate;
718 u8 rc_flags;
720 rate = ath5k_get_rate(hw, info, bf, idx);
721 if (!rate)
722 return 0;
724 rc_flags = bf->rates[idx].flags;
725 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
726 rate->hw_value_short : rate->hw_value;
728 return hw_rate;
731 static int
732 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
733 struct ath5k_txq *txq, int padsize,
734 struct ieee80211_tx_control *control)
736 struct ath5k_desc *ds = bf->desc;
737 struct sk_buff *skb = bf->skb;
738 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
739 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
740 struct ieee80211_rate *rate;
741 unsigned int mrr_rate[3], mrr_tries[3];
742 int i, ret;
743 u16 hw_rate;
744 u16 cts_rate = 0;
745 u16 duration = 0;
746 u8 rc_flags;
748 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
750 /* XXX endianness */
751 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
752 DMA_TO_DEVICE);
754 if (dma_mapping_error(ah->dev, bf->skbaddr))
755 return -ENOSPC;
757 ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
758 ARRAY_SIZE(bf->rates));
760 rate = ath5k_get_rate(ah->hw, info, bf, 0);
762 if (!rate) {
763 ret = -EINVAL;
764 goto err_unmap;
767 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
768 flags |= AR5K_TXDESC_NOACK;
770 rc_flags = bf->rates[0].flags;
772 hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
774 pktlen = skb->len;
776 /* FIXME: If we are in g mode and rate is a CCK rate
777 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
778 * from tx power (value is in dB units already) */
779 if (info->control.hw_key) {
780 keyidx = info->control.hw_key->hw_key_idx;
781 pktlen += info->control.hw_key->icv_len;
783 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
784 flags |= AR5K_TXDESC_RTSENA;
785 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
786 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
787 info->control.vif, pktlen, info));
789 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
790 flags |= AR5K_TXDESC_CTSENA;
791 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
792 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
793 info->control.vif, pktlen, info));
796 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
797 ieee80211_get_hdrlen_from_skb(skb), padsize,
798 get_hw_packet_type(skb),
799 (ah->ah_txpower.txp_requested * 2),
800 hw_rate,
801 bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
802 cts_rate, duration);
803 if (ret)
804 goto err_unmap;
806 /* Set up MRR descriptor */
807 if (ah->ah_capabilities.cap_has_mrr_support) {
808 memset(mrr_rate, 0, sizeof(mrr_rate));
809 memset(mrr_tries, 0, sizeof(mrr_tries));
811 for (i = 0; i < 3; i++) {
813 rate = ath5k_get_rate(ah->hw, info, bf, i);
814 if (!rate)
815 break;
817 mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
818 mrr_tries[i] = bf->rates[i].count;
821 ath5k_hw_setup_mrr_tx_desc(ah, ds,
822 mrr_rate[0], mrr_tries[0],
823 mrr_rate[1], mrr_tries[1],
824 mrr_rate[2], mrr_tries[2]);
827 ds->ds_link = 0;
828 ds->ds_data = bf->skbaddr;
830 spin_lock_bh(&txq->lock);
831 list_add_tail(&bf->list, &txq->q);
832 txq->txq_len++;
833 if (txq->link == NULL) /* is this first packet? */
834 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
835 else /* no, so only link it */
836 *txq->link = bf->daddr;
838 txq->link = &ds->ds_link;
839 ath5k_hw_start_tx_dma(ah, txq->qnum);
840 mmiowb();
841 spin_unlock_bh(&txq->lock);
843 return 0;
844 err_unmap:
845 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
846 return ret;
849 /*******************\
850 * Descriptors setup *
851 \*******************/
853 static int
854 ath5k_desc_alloc(struct ath5k_hw *ah)
856 struct ath5k_desc *ds;
857 struct ath5k_buf *bf;
858 dma_addr_t da;
859 unsigned int i;
860 int ret;
862 /* allocate descriptors */
863 ah->desc_len = sizeof(struct ath5k_desc) *
864 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
866 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
867 &ah->desc_daddr, GFP_KERNEL);
868 if (ah->desc == NULL) {
869 ATH5K_ERR(ah, "can't allocate descriptors\n");
870 ret = -ENOMEM;
871 goto err;
873 ds = ah->desc;
874 da = ah->desc_daddr;
875 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
876 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
878 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
879 sizeof(struct ath5k_buf), GFP_KERNEL);
880 if (bf == NULL) {
881 ATH5K_ERR(ah, "can't allocate bufptr\n");
882 ret = -ENOMEM;
883 goto err_free;
885 ah->bufptr = bf;
887 INIT_LIST_HEAD(&ah->rxbuf);
888 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
889 bf->desc = ds;
890 bf->daddr = da;
891 list_add_tail(&bf->list, &ah->rxbuf);
894 INIT_LIST_HEAD(&ah->txbuf);
895 ah->txbuf_len = ATH_TXBUF;
896 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
897 bf->desc = ds;
898 bf->daddr = da;
899 list_add_tail(&bf->list, &ah->txbuf);
902 /* beacon buffers */
903 INIT_LIST_HEAD(&ah->bcbuf);
904 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
905 bf->desc = ds;
906 bf->daddr = da;
907 list_add_tail(&bf->list, &ah->bcbuf);
910 return 0;
911 err_free:
912 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
913 err:
914 ah->desc = NULL;
915 return ret;
918 void
919 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
921 BUG_ON(!bf);
922 if (!bf->skb)
923 return;
924 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
925 DMA_TO_DEVICE);
926 ieee80211_free_txskb(ah->hw, bf->skb);
927 bf->skb = NULL;
928 bf->skbaddr = 0;
929 bf->desc->ds_data = 0;
932 void
933 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
935 struct ath_common *common = ath5k_hw_common(ah);
937 BUG_ON(!bf);
938 if (!bf->skb)
939 return;
940 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
941 DMA_FROM_DEVICE);
942 dev_kfree_skb_any(bf->skb);
943 bf->skb = NULL;
944 bf->skbaddr = 0;
945 bf->desc->ds_data = 0;
948 static void
949 ath5k_desc_free(struct ath5k_hw *ah)
951 struct ath5k_buf *bf;
953 list_for_each_entry(bf, &ah->txbuf, list)
954 ath5k_txbuf_free_skb(ah, bf);
955 list_for_each_entry(bf, &ah->rxbuf, list)
956 ath5k_rxbuf_free_skb(ah, bf);
957 list_for_each_entry(bf, &ah->bcbuf, list)
958 ath5k_txbuf_free_skb(ah, bf);
960 /* Free memory associated with all descriptors */
961 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
962 ah->desc = NULL;
963 ah->desc_daddr = 0;
965 kfree(ah->bufptr);
966 ah->bufptr = NULL;
970 /**************\
971 * Queues setup *
972 \**************/
974 static struct ath5k_txq *
975 ath5k_txq_setup(struct ath5k_hw *ah,
976 int qtype, int subtype)
978 struct ath5k_txq *txq;
979 struct ath5k_txq_info qi = {
980 .tqi_subtype = subtype,
981 /* XXX: default values not correct for B and XR channels,
982 * but who cares? */
983 .tqi_aifs = AR5K_TUNE_AIFS,
984 .tqi_cw_min = AR5K_TUNE_CWMIN,
985 .tqi_cw_max = AR5K_TUNE_CWMAX
987 int qnum;
990 * Enable interrupts only for EOL and DESC conditions.
991 * We mark tx descriptors to receive a DESC interrupt
992 * when a tx queue gets deep; otherwise we wait for the
993 * EOL to reap descriptors. Note that this is done to
994 * reduce interrupt load and this only defers reaping
995 * descriptors, never transmitting frames. Aside from
996 * reducing interrupts this also permits more concurrency.
997 * The only potential downside is if the tx queue backs
998 * up in which case the top half of the kernel may backup
999 * due to a lack of tx descriptors.
1001 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1002 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1003 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1004 if (qnum < 0) {
1006 * NB: don't print a message, this happens
1007 * normally on parts with too few tx queues
1009 return ERR_PTR(qnum);
1011 txq = &ah->txqs[qnum];
1012 if (!txq->setup) {
1013 txq->qnum = qnum;
1014 txq->link = NULL;
1015 INIT_LIST_HEAD(&txq->q);
1016 spin_lock_init(&txq->lock);
1017 txq->setup = true;
1018 txq->txq_len = 0;
1019 txq->txq_max = ATH5K_TXQ_LEN_MAX;
1020 txq->txq_poll_mark = false;
1021 txq->txq_stuck = 0;
1023 return &ah->txqs[qnum];
1026 static int
1027 ath5k_beaconq_setup(struct ath5k_hw *ah)
1029 struct ath5k_txq_info qi = {
1030 /* XXX: default values not correct for B and XR channels,
1031 * but who cares? */
1032 .tqi_aifs = AR5K_TUNE_AIFS,
1033 .tqi_cw_min = AR5K_TUNE_CWMIN,
1034 .tqi_cw_max = AR5K_TUNE_CWMAX,
1035 /* NB: for dynamic turbo, don't enable any other interrupts */
1036 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1039 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1042 static int
1043 ath5k_beaconq_config(struct ath5k_hw *ah)
1045 struct ath5k_txq_info qi;
1046 int ret;
1048 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1049 if (ret)
1050 goto err;
1052 if (ah->opmode == NL80211_IFTYPE_AP ||
1053 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1055 * Always burst out beacon and CAB traffic
1056 * (aifs = cwmin = cwmax = 0)
1058 qi.tqi_aifs = 0;
1059 qi.tqi_cw_min = 0;
1060 qi.tqi_cw_max = 0;
1061 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1063 * Adhoc mode; backoff between 0 and (2 * cw_min).
1065 qi.tqi_aifs = 0;
1066 qi.tqi_cw_min = 0;
1067 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1070 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1071 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1072 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1074 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1075 if (ret) {
1076 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1077 "hardware queue!\n", __func__);
1078 goto err;
1080 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1081 if (ret)
1082 goto err;
1084 /* reconfigure cabq with ready time to 80% of beacon_interval */
1085 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1086 if (ret)
1087 goto err;
1089 qi.tqi_ready_time = (ah->bintval * 80) / 100;
1090 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1091 if (ret)
1092 goto err;
1094 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1095 err:
1096 return ret;
1100 * ath5k_drain_tx_buffs - Empty tx buffers
1102 * @ah The &struct ath5k_hw
1104 * Empty tx buffers from all queues in preparation
1105 * of a reset or during shutdown.
1107 * NB: this assumes output has been stopped and
1108 * we do not need to block ath5k_tx_tasklet
1110 static void
1111 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1113 struct ath5k_txq *txq;
1114 struct ath5k_buf *bf, *bf0;
1115 int i;
1117 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1118 if (ah->txqs[i].setup) {
1119 txq = &ah->txqs[i];
1120 spin_lock_bh(&txq->lock);
1121 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1122 ath5k_debug_printtxbuf(ah, bf);
1124 ath5k_txbuf_free_skb(ah, bf);
1126 spin_lock(&ah->txbuflock);
1127 list_move_tail(&bf->list, &ah->txbuf);
1128 ah->txbuf_len++;
1129 txq->txq_len--;
1130 spin_unlock(&ah->txbuflock);
1132 txq->link = NULL;
1133 txq->txq_poll_mark = false;
1134 spin_unlock_bh(&txq->lock);
1139 static void
1140 ath5k_txq_release(struct ath5k_hw *ah)
1142 struct ath5k_txq *txq = ah->txqs;
1143 unsigned int i;
1145 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1146 if (txq->setup) {
1147 ath5k_hw_release_tx_queue(ah, txq->qnum);
1148 txq->setup = false;
1153 /*************\
1154 * RX Handling *
1155 \*************/
1158 * Enable the receive h/w following a reset.
1160 static int
1161 ath5k_rx_start(struct ath5k_hw *ah)
1163 struct ath_common *common = ath5k_hw_common(ah);
1164 struct ath5k_buf *bf;
1165 int ret;
1167 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1169 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1170 common->cachelsz, common->rx_bufsize);
1172 spin_lock_bh(&ah->rxbuflock);
1173 ah->rxlink = NULL;
1174 list_for_each_entry(bf, &ah->rxbuf, list) {
1175 ret = ath5k_rxbuf_setup(ah, bf);
1176 if (ret != 0) {
1177 spin_unlock_bh(&ah->rxbuflock);
1178 goto err;
1181 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1182 ath5k_hw_set_rxdp(ah, bf->daddr);
1183 spin_unlock_bh(&ah->rxbuflock);
1185 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1186 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1187 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1189 return 0;
1190 err:
1191 return ret;
1195 * Disable the receive logic on PCU (DRU)
1196 * In preparation for a shutdown.
1198 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1199 * does.
1201 static void
1202 ath5k_rx_stop(struct ath5k_hw *ah)
1205 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1206 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1208 ath5k_debug_printrxbuffs(ah);
1211 static unsigned int
1212 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1213 struct ath5k_rx_status *rs)
1215 struct ath_common *common = ath5k_hw_common(ah);
1216 struct ieee80211_hdr *hdr = (void *)skb->data;
1217 unsigned int keyix, hlen;
1219 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1220 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1221 return RX_FLAG_DECRYPTED;
1223 /* Apparently when a default key is used to decrypt the packet
1224 the hw does not set the index used to decrypt. In such cases
1225 get the index from the packet. */
1226 hlen = ieee80211_hdrlen(hdr->frame_control);
1227 if (ieee80211_has_protected(hdr->frame_control) &&
1228 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1229 skb->len >= hlen + 4) {
1230 keyix = skb->data[hlen + 3] >> 6;
1232 if (test_bit(keyix, common->keymap))
1233 return RX_FLAG_DECRYPTED;
1236 return 0;
1240 static void
1241 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1242 struct ieee80211_rx_status *rxs)
1244 u64 tsf, bc_tstamp;
1245 u32 hw_tu;
1246 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1248 if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1250 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251 * have updated the local TSF. We have to work around various
1252 * hardware bugs, though...
1254 tsf = ath5k_hw_get_tsf64(ah);
1255 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1256 hw_tu = TSF_TO_TU(tsf);
1258 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1259 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260 (unsigned long long)bc_tstamp,
1261 (unsigned long long)rxs->mactime,
1262 (unsigned long long)(rxs->mactime - bc_tstamp),
1263 (unsigned long long)tsf);
1266 * Sometimes the HW will give us a wrong tstamp in the rx
1267 * status, causing the timestamp extension to go wrong.
1268 * (This seems to happen especially with beacon frames bigger
1269 * than 78 byte (incl. FCS))
1270 * But we know that the receive timestamp must be later than the
1271 * timestamp of the beacon since HW must have synced to that.
1273 * NOTE: here we assume mactime to be after the frame was
1274 * received, not like mac80211 which defines it at the start.
1276 if (bc_tstamp > rxs->mactime) {
1277 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1278 "fixing mactime from %llx to %llx\n",
1279 (unsigned long long)rxs->mactime,
1280 (unsigned long long)tsf);
1281 rxs->mactime = tsf;
1285 * Local TSF might have moved higher than our beacon timers,
1286 * in that case we have to update them to continue sending
1287 * beacons. This also takes care of synchronizing beacon sending
1288 * times with other stations.
1290 if (hw_tu >= ah->nexttbtt)
1291 ath5k_beacon_update_timers(ah, bc_tstamp);
1293 /* Check if the beacon timers are still correct, because a TSF
1294 * update might have created a window between them - for a
1295 * longer description see the comment of this function: */
1296 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1297 ath5k_beacon_update_timers(ah, bc_tstamp);
1298 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1299 "fixed beacon timers after beacon receive\n");
1305 * Compute padding position. skb must contain an IEEE 802.11 frame
1307 static int ath5k_common_padpos(struct sk_buff *skb)
1309 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1310 __le16 frame_control = hdr->frame_control;
1311 int padpos = 24;
1313 if (ieee80211_has_a4(frame_control))
1314 padpos += ETH_ALEN;
1316 if (ieee80211_is_data_qos(frame_control))
1317 padpos += IEEE80211_QOS_CTL_LEN;
1319 return padpos;
1323 * This function expects an 802.11 frame and returns the number of
1324 * bytes added, or -1 if we don't have enough header room.
1326 static int ath5k_add_padding(struct sk_buff *skb)
1328 int padpos = ath5k_common_padpos(skb);
1329 int padsize = padpos & 3;
1331 if (padsize && skb->len > padpos) {
1333 if (skb_headroom(skb) < padsize)
1334 return -1;
1336 skb_push(skb, padsize);
1337 memmove(skb->data, skb->data + padsize, padpos);
1338 return padsize;
1341 return 0;
1345 * The MAC header is padded to have 32-bit boundary if the
1346 * packet payload is non-zero. The general calculation for
1347 * padsize would take into account odd header lengths:
1348 * padsize = 4 - (hdrlen & 3); however, since only
1349 * even-length headers are used, padding can only be 0 or 2
1350 * bytes and we can optimize this a bit. We must not try to
1351 * remove padding from short control frames that do not have a
1352 * payload.
1354 * This function expects an 802.11 frame and returns the number of
1355 * bytes removed.
1357 static int ath5k_remove_padding(struct sk_buff *skb)
1359 int padpos = ath5k_common_padpos(skb);
1360 int padsize = padpos & 3;
1362 if (padsize && skb->len >= padpos + padsize) {
1363 memmove(skb->data + padsize, skb->data, padpos);
1364 skb_pull(skb, padsize);
1365 return padsize;
1368 return 0;
1371 static void
1372 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1373 struct ath5k_rx_status *rs)
1375 struct ieee80211_rx_status *rxs;
1376 struct ath_common *common = ath5k_hw_common(ah);
1378 ath5k_remove_padding(skb);
1380 rxs = IEEE80211_SKB_RXCB(skb);
1382 rxs->flag = 0;
1383 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1384 rxs->flag |= RX_FLAG_MMIC_ERROR;
1385 if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1386 rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1390 * always extend the mac timestamp, since this information is
1391 * also needed for proper IBSS merging.
1393 * XXX: it might be too late to do it here, since rs_tstamp is
1394 * 15bit only. that means TSF extension has to be done within
1395 * 32768usec (about 32ms). it might be necessary to move this to
1396 * the interrupt handler, like it is done in madwifi.
1398 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1399 rxs->flag |= RX_FLAG_MACTIME_END;
1401 rxs->freq = ah->curchan->center_freq;
1402 rxs->band = ah->curchan->band;
1404 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1406 rxs->antenna = rs->rs_antenna;
1408 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1409 ah->stats.antenna_rx[rs->rs_antenna]++;
1410 else
1411 ah->stats.antenna_rx[0]++; /* invalid */
1413 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1414 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1415 switch (ah->ah_bwmode) {
1416 case AR5K_BWMODE_5MHZ:
1417 rxs->bw = RATE_INFO_BW_5;
1418 break;
1419 case AR5K_BWMODE_10MHZ:
1420 rxs->bw = RATE_INFO_BW_10;
1421 break;
1422 default:
1423 break;
1426 if (rs->rs_rate ==
1427 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1428 rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1430 trace_ath5k_rx(ah, skb);
1432 if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1433 ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1435 /* check beacons in IBSS mode */
1436 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1437 ath5k_check_ibss_tsf(ah, skb, rxs);
1440 ieee80211_rx(ah->hw, skb);
1443 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1445 * Check if we want to further process this frame or not. Also update
1446 * statistics. Return true if we want this frame, false if not.
1448 static bool
1449 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1451 ah->stats.rx_all_count++;
1452 ah->stats.rx_bytes_count += rs->rs_datalen;
1454 if (unlikely(rs->rs_status)) {
1455 unsigned int filters;
1457 if (rs->rs_status & AR5K_RXERR_CRC)
1458 ah->stats.rxerr_crc++;
1459 if (rs->rs_status & AR5K_RXERR_FIFO)
1460 ah->stats.rxerr_fifo++;
1461 if (rs->rs_status & AR5K_RXERR_PHY) {
1462 ah->stats.rxerr_phy++;
1463 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1464 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1467 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1468 * These restarts happen when the radio resynchronizes to a stronger frame
1469 * while receiving a weaker frame. Here we receive the prefix of the weak
1470 * frame. Since these are incomplete packets, mark their CRC as invalid.
1472 if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1473 rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1474 rs->rs_status |= AR5K_RXERR_CRC;
1475 rs->rs_status &= ~AR5K_RXERR_PHY;
1476 } else {
1477 return false;
1480 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1482 * Decrypt error. If the error occurred
1483 * because there was no hardware key, then
1484 * let the frame through so the upper layers
1485 * can process it. This is necessary for 5210
1486 * parts which have no way to setup a ``clear''
1487 * key cache entry.
1489 * XXX do key cache faulting
1491 ah->stats.rxerr_decrypt++;
1492 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1493 !(rs->rs_status & AR5K_RXERR_CRC))
1494 return true;
1496 if (rs->rs_status & AR5K_RXERR_MIC) {
1497 ah->stats.rxerr_mic++;
1498 return true;
1502 * Reject any frames with non-crypto errors, and take into account the
1503 * current FIF_* filters.
1505 filters = AR5K_RXERR_DECRYPT;
1506 if (ah->fif_filter_flags & FIF_FCSFAIL)
1507 filters |= AR5K_RXERR_CRC;
1509 if (rs->rs_status & ~filters)
1510 return false;
1513 if (unlikely(rs->rs_more)) {
1514 ah->stats.rxerr_jumbo++;
1515 return false;
1517 return true;
1520 static void
1521 ath5k_set_current_imask(struct ath5k_hw *ah)
1523 enum ath5k_int imask;
1524 unsigned long flags;
1526 if (test_bit(ATH_STAT_RESET, ah->status))
1527 return;
1529 spin_lock_irqsave(&ah->irqlock, flags);
1530 imask = ah->imask;
1531 if (ah->rx_pending)
1532 imask &= ~AR5K_INT_RX_ALL;
1533 if (ah->tx_pending)
1534 imask &= ~AR5K_INT_TX_ALL;
1535 ath5k_hw_set_imr(ah, imask);
1536 spin_unlock_irqrestore(&ah->irqlock, flags);
1539 static void
1540 ath5k_tasklet_rx(unsigned long data)
1542 struct ath5k_rx_status rs = {};
1543 struct sk_buff *skb, *next_skb;
1544 dma_addr_t next_skb_addr;
1545 struct ath5k_hw *ah = (void *)data;
1546 struct ath_common *common = ath5k_hw_common(ah);
1547 struct ath5k_buf *bf;
1548 struct ath5k_desc *ds;
1549 int ret;
1551 spin_lock(&ah->rxbuflock);
1552 if (list_empty(&ah->rxbuf)) {
1553 ATH5K_WARN(ah, "empty rx buf pool\n");
1554 goto unlock;
1556 do {
1557 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1558 BUG_ON(bf->skb == NULL);
1559 skb = bf->skb;
1560 ds = bf->desc;
1562 /* bail if HW is still using self-linked descriptor */
1563 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1564 break;
1566 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1567 if (unlikely(ret == -EINPROGRESS))
1568 break;
1569 else if (unlikely(ret)) {
1570 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1571 ah->stats.rxerr_proc++;
1572 break;
1575 if (ath5k_receive_frame_ok(ah, &rs)) {
1576 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1579 * If we can't replace bf->skb with a new skb under
1580 * memory pressure, just skip this packet
1582 if (!next_skb)
1583 goto next;
1585 dma_unmap_single(ah->dev, bf->skbaddr,
1586 common->rx_bufsize,
1587 DMA_FROM_DEVICE);
1589 skb_put(skb, rs.rs_datalen);
1591 ath5k_receive_frame(ah, skb, &rs);
1593 bf->skb = next_skb;
1594 bf->skbaddr = next_skb_addr;
1596 next:
1597 list_move_tail(&bf->list, &ah->rxbuf);
1598 } while (ath5k_rxbuf_setup(ah, bf) == 0);
1599 unlock:
1600 spin_unlock(&ah->rxbuflock);
1601 ah->rx_pending = false;
1602 ath5k_set_current_imask(ah);
1606 /*************\
1607 * TX Handling *
1608 \*************/
1610 void
1611 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1612 struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1614 struct ath5k_hw *ah = hw->priv;
1615 struct ath5k_buf *bf;
1616 unsigned long flags;
1617 int padsize;
1619 trace_ath5k_tx(ah, skb, txq);
1622 * The hardware expects the header padded to 4 byte boundaries.
1623 * If this is not the case, we add the padding after the header.
1625 padsize = ath5k_add_padding(skb);
1626 if (padsize < 0) {
1627 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1628 " headroom to pad");
1629 goto drop_packet;
1632 if (txq->txq_len >= txq->txq_max &&
1633 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1634 ieee80211_stop_queue(hw, txq->qnum);
1636 spin_lock_irqsave(&ah->txbuflock, flags);
1637 if (list_empty(&ah->txbuf)) {
1638 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1639 spin_unlock_irqrestore(&ah->txbuflock, flags);
1640 ieee80211_stop_queues(hw);
1641 goto drop_packet;
1643 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1644 list_del(&bf->list);
1645 ah->txbuf_len--;
1646 if (list_empty(&ah->txbuf))
1647 ieee80211_stop_queues(hw);
1648 spin_unlock_irqrestore(&ah->txbuflock, flags);
1650 bf->skb = skb;
1652 if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1653 bf->skb = NULL;
1654 spin_lock_irqsave(&ah->txbuflock, flags);
1655 list_add_tail(&bf->list, &ah->txbuf);
1656 ah->txbuf_len++;
1657 spin_unlock_irqrestore(&ah->txbuflock, flags);
1658 goto drop_packet;
1660 return;
1662 drop_packet:
1663 ieee80211_free_txskb(hw, skb);
1666 static void
1667 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1668 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1669 struct ath5k_buf *bf)
1671 struct ieee80211_tx_info *info;
1672 u8 tries[3];
1673 int i;
1674 int size = 0;
1676 ah->stats.tx_all_count++;
1677 ah->stats.tx_bytes_count += skb->len;
1678 info = IEEE80211_SKB_CB(skb);
1680 size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1681 memcpy(info->status.rates, bf->rates, size);
1683 tries[0] = info->status.rates[0].count;
1684 tries[1] = info->status.rates[1].count;
1685 tries[2] = info->status.rates[2].count;
1687 ieee80211_tx_info_clear_status(info);
1689 for (i = 0; i < ts->ts_final_idx; i++) {
1690 struct ieee80211_tx_rate *r =
1691 &info->status.rates[i];
1693 r->count = tries[i];
1696 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1697 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1699 if (unlikely(ts->ts_status)) {
1700 ah->stats.ack_fail++;
1701 if (ts->ts_status & AR5K_TXERR_FILT) {
1702 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1703 ah->stats.txerr_filt++;
1705 if (ts->ts_status & AR5K_TXERR_XRETRY)
1706 ah->stats.txerr_retry++;
1707 if (ts->ts_status & AR5K_TXERR_FIFO)
1708 ah->stats.txerr_fifo++;
1709 } else {
1710 info->flags |= IEEE80211_TX_STAT_ACK;
1711 info->status.ack_signal = ts->ts_rssi;
1713 /* count the successful attempt as well */
1714 info->status.rates[ts->ts_final_idx].count++;
1718 * Remove MAC header padding before giving the frame
1719 * back to mac80211.
1721 ath5k_remove_padding(skb);
1723 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1724 ah->stats.antenna_tx[ts->ts_antenna]++;
1725 else
1726 ah->stats.antenna_tx[0]++; /* invalid */
1728 trace_ath5k_tx_complete(ah, skb, txq, ts);
1729 ieee80211_tx_status(ah->hw, skb);
1732 static void
1733 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1735 struct ath5k_tx_status ts = {};
1736 struct ath5k_buf *bf, *bf0;
1737 struct ath5k_desc *ds;
1738 struct sk_buff *skb;
1739 int ret;
1741 spin_lock(&txq->lock);
1742 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1744 txq->txq_poll_mark = false;
1746 /* skb might already have been processed last time. */
1747 if (bf->skb != NULL) {
1748 ds = bf->desc;
1750 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1751 if (unlikely(ret == -EINPROGRESS))
1752 break;
1753 else if (unlikely(ret)) {
1754 ATH5K_ERR(ah,
1755 "error %d while processing "
1756 "queue %u\n", ret, txq->qnum);
1757 break;
1760 skb = bf->skb;
1761 bf->skb = NULL;
1763 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1764 DMA_TO_DEVICE);
1765 ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1769 * It's possible that the hardware can say the buffer is
1770 * completed when it hasn't yet loaded the ds_link from
1771 * host memory and moved on.
1772 * Always keep the last descriptor to avoid HW races...
1774 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1775 spin_lock(&ah->txbuflock);
1776 list_move_tail(&bf->list, &ah->txbuf);
1777 ah->txbuf_len++;
1778 txq->txq_len--;
1779 spin_unlock(&ah->txbuflock);
1782 spin_unlock(&txq->lock);
1783 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1784 ieee80211_wake_queue(ah->hw, txq->qnum);
1787 static void
1788 ath5k_tasklet_tx(unsigned long data)
1790 int i;
1791 struct ath5k_hw *ah = (void *)data;
1793 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1794 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1795 ath5k_tx_processq(ah, &ah->txqs[i]);
1797 ah->tx_pending = false;
1798 ath5k_set_current_imask(ah);
1802 /*****************\
1803 * Beacon handling *
1804 \*****************/
1807 * Setup the beacon frame for transmit.
1809 static int
1810 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1812 struct sk_buff *skb = bf->skb;
1813 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1814 struct ath5k_desc *ds;
1815 int ret = 0;
1816 u8 antenna;
1817 u32 flags;
1818 const int padsize = 0;
1820 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1821 DMA_TO_DEVICE);
1822 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1823 "skbaddr %llx\n", skb, skb->data, skb->len,
1824 (unsigned long long)bf->skbaddr);
1826 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1827 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1828 dev_kfree_skb_any(skb);
1829 bf->skb = NULL;
1830 return -EIO;
1833 ds = bf->desc;
1834 antenna = ah->ah_tx_ant;
1836 flags = AR5K_TXDESC_NOACK;
1837 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1838 ds->ds_link = bf->daddr; /* self-linked */
1839 flags |= AR5K_TXDESC_VEOL;
1840 } else
1841 ds->ds_link = 0;
1844 * If we use multiple antennas on AP and use
1845 * the Sectored AP scenario, switch antenna every
1846 * 4 beacons to make sure everybody hears our AP.
1847 * When a client tries to associate, hw will keep
1848 * track of the tx antenna to be used for this client
1849 * automatically, based on ACKed packets.
1851 * Note: AP still listens and transmits RTS on the
1852 * default antenna which is supposed to be an omni.
1854 * Note2: On sectored scenarios it's possible to have
1855 * multiple antennas (1 omni -- the default -- and 14
1856 * sectors), so if we choose to actually support this
1857 * mode, we need to allow the user to set how many antennas
1858 * we have and tweak the code below to send beacons
1859 * on all of them.
1861 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1862 antenna = ah->bsent & 4 ? 2 : 1;
1865 /* FIXME: If we are in g mode and rate is a CCK rate
1866 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1867 * from tx power (value is in dB units already) */
1868 ds->ds_data = bf->skbaddr;
1869 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1870 ieee80211_get_hdrlen_from_skb(skb), padsize,
1871 AR5K_PKT_TYPE_BEACON,
1872 (ah->ah_txpower.txp_requested * 2),
1873 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1874 1, AR5K_TXKEYIX_INVALID,
1875 antenna, flags, 0, 0);
1876 if (ret)
1877 goto err_unmap;
1879 return 0;
1880 err_unmap:
1881 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1882 return ret;
1886 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1887 * this is called only once at config_bss time, for AP we do it every
1888 * SWBA interrupt so that the TIM will reflect buffered frames.
1890 * Called with the beacon lock.
1893 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1895 int ret;
1896 struct ath5k_hw *ah = hw->priv;
1897 struct ath5k_vif *avf;
1898 struct sk_buff *skb;
1900 if (WARN_ON(!vif)) {
1901 ret = -EINVAL;
1902 goto out;
1905 skb = ieee80211_beacon_get(hw, vif);
1907 if (!skb) {
1908 ret = -ENOMEM;
1909 goto out;
1912 avf = (void *)vif->drv_priv;
1913 ath5k_txbuf_free_skb(ah, avf->bbuf);
1914 avf->bbuf->skb = skb;
1915 ret = ath5k_beacon_setup(ah, avf->bbuf);
1916 out:
1917 return ret;
1921 * Transmit a beacon frame at SWBA. Dynamic updates to the
1922 * frame contents are done as needed and the slot time is
1923 * also adjusted based on current state.
1925 * This is called from software irq context (beacontq tasklets)
1926 * or user context from ath5k_beacon_config.
1928 static void
1929 ath5k_beacon_send(struct ath5k_hw *ah)
1931 struct ieee80211_vif *vif;
1932 struct ath5k_vif *avf;
1933 struct ath5k_buf *bf;
1934 struct sk_buff *skb;
1935 int err;
1937 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1940 * Check if the previous beacon has gone out. If
1941 * not, don't don't try to post another: skip this
1942 * period and wait for the next. Missed beacons
1943 * indicate a problem and should not occur. If we
1944 * miss too many consecutive beacons reset the device.
1946 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1947 ah->bmisscount++;
1948 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1949 "missed %u consecutive beacons\n", ah->bmisscount);
1950 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1951 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1952 "stuck beacon time (%u missed)\n",
1953 ah->bmisscount);
1954 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1955 "stuck beacon, resetting\n");
1956 ieee80211_queue_work(ah->hw, &ah->reset_work);
1958 return;
1960 if (unlikely(ah->bmisscount != 0)) {
1961 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1962 "resume beacon xmit after %u misses\n",
1963 ah->bmisscount);
1964 ah->bmisscount = 0;
1967 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1968 ah->num_mesh_vifs > 1) ||
1969 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1970 u64 tsf = ath5k_hw_get_tsf64(ah);
1971 u32 tsftu = TSF_TO_TU(tsf);
1972 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1973 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1974 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1975 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1976 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1977 } else /* only one interface */
1978 vif = ah->bslot[0];
1980 if (!vif)
1981 return;
1983 avf = (void *)vif->drv_priv;
1984 bf = avf->bbuf;
1987 * Stop any current dma and put the new frame on the queue.
1988 * This should never fail since we check above that no frames
1989 * are still pending on the queue.
1991 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1992 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1993 /* NB: hw still stops DMA, so proceed */
1996 /* refresh the beacon for AP or MESH mode */
1997 if (ah->opmode == NL80211_IFTYPE_AP ||
1998 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1999 err = ath5k_beacon_update(ah->hw, vif);
2000 if (err)
2001 return;
2004 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2005 ah->opmode == NL80211_IFTYPE_MONITOR)) {
2006 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2007 return;
2010 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2012 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2013 ath5k_hw_start_tx_dma(ah, ah->bhalq);
2014 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2015 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2017 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2018 while (skb) {
2019 ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2021 if (ah->cabq->txq_len >= ah->cabq->txq_max)
2022 break;
2024 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2027 ah->bsent++;
2031 * ath5k_beacon_update_timers - update beacon timers
2033 * @ah: struct ath5k_hw pointer we are operating on
2034 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2035 * beacon timer update based on the current HW TSF.
2037 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2038 * of a received beacon or the current local hardware TSF and write it to the
2039 * beacon timer registers.
2041 * This is called in a variety of situations, e.g. when a beacon is received,
2042 * when a TSF update has been detected, but also when an new IBSS is created or
2043 * when we otherwise know we have to update the timers, but we keep it in this
2044 * function to have it all together in one place.
2046 void
2047 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2049 u32 nexttbtt, intval, hw_tu, bc_tu;
2050 u64 hw_tsf;
2052 intval = ah->bintval & AR5K_BEACON_PERIOD;
2053 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2054 + ah->num_mesh_vifs > 1) {
2055 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
2056 if (intval < 15)
2057 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2058 intval);
2060 if (WARN_ON(!intval))
2061 return;
2063 /* beacon TSF converted to TU */
2064 bc_tu = TSF_TO_TU(bc_tsf);
2066 /* current TSF converted to TU */
2067 hw_tsf = ath5k_hw_get_tsf64(ah);
2068 hw_tu = TSF_TO_TU(hw_tsf);
2070 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2071 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2072 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2073 * configuration we need to make sure it is bigger than that. */
2075 if (bc_tsf == -1) {
2077 * no beacons received, called internally.
2078 * just need to refresh timers based on HW TSF.
2080 nexttbtt = roundup(hw_tu + FUDGE, intval);
2081 } else if (bc_tsf == 0) {
2083 * no beacon received, probably called by ath5k_reset_tsf().
2084 * reset TSF to start with 0.
2086 nexttbtt = intval;
2087 intval |= AR5K_BEACON_RESET_TSF;
2088 } else if (bc_tsf > hw_tsf) {
2090 * beacon received, SW merge happened but HW TSF not yet updated.
2091 * not possible to reconfigure timers yet, but next time we
2092 * receive a beacon with the same BSSID, the hardware will
2093 * automatically update the TSF and then we need to reconfigure
2094 * the timers.
2096 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2097 "need to wait for HW TSF sync\n");
2098 return;
2099 } else {
2101 * most important case for beacon synchronization between STA.
2103 * beacon received and HW TSF has been already updated by HW.
2104 * update next TBTT based on the TSF of the beacon, but make
2105 * sure it is ahead of our local TSF timer.
2107 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2109 #undef FUDGE
2111 ah->nexttbtt = nexttbtt;
2113 intval |= AR5K_BEACON_ENA;
2114 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2117 * debugging output last in order to preserve the time critical aspect
2118 * of this function
2120 if (bc_tsf == -1)
2121 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2122 "reconfigured timers based on HW TSF\n");
2123 else if (bc_tsf == 0)
2124 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2125 "reset HW TSF and timers\n");
2126 else
2127 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2128 "updated timers based on beacon TSF\n");
2130 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2131 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2132 (unsigned long long) bc_tsf,
2133 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2134 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2135 intval & AR5K_BEACON_PERIOD,
2136 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2137 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2141 * ath5k_beacon_config - Configure the beacon queues and interrupts
2143 * @ah: struct ath5k_hw pointer we are operating on
2145 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2146 * interrupts to detect TSF updates only.
2148 void
2149 ath5k_beacon_config(struct ath5k_hw *ah)
2151 spin_lock_bh(&ah->block);
2152 ah->bmisscount = 0;
2153 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2155 if (ah->enable_beacon) {
2157 * In IBSS mode we use a self-linked tx descriptor and let the
2158 * hardware send the beacons automatically. We have to load it
2159 * only once here.
2160 * We use the SWBA interrupt only to keep track of the beacon
2161 * timers in order to detect automatic TSF updates.
2163 ath5k_beaconq_config(ah);
2165 ah->imask |= AR5K_INT_SWBA;
2167 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2168 if (ath5k_hw_hasveol(ah))
2169 ath5k_beacon_send(ah);
2170 } else
2171 ath5k_beacon_update_timers(ah, -1);
2172 } else {
2173 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2176 ath5k_hw_set_imr(ah, ah->imask);
2177 mmiowb();
2178 spin_unlock_bh(&ah->block);
2181 static void ath5k_tasklet_beacon(unsigned long data)
2183 struct ath5k_hw *ah = (struct ath5k_hw *) data;
2186 * Software beacon alert--time to send a beacon.
2188 * In IBSS mode we use this interrupt just to
2189 * keep track of the next TBTT (target beacon
2190 * transmission time) in order to detect whether
2191 * automatic TSF updates happened.
2193 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2194 /* XXX: only if VEOL supported */
2195 u64 tsf = ath5k_hw_get_tsf64(ah);
2196 ah->nexttbtt += ah->bintval;
2197 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2198 "SWBA nexttbtt: %x hw_tu: %x "
2199 "TSF: %llx\n",
2200 ah->nexttbtt,
2201 TSF_TO_TU(tsf),
2202 (unsigned long long) tsf);
2203 } else {
2204 spin_lock(&ah->block);
2205 ath5k_beacon_send(ah);
2206 spin_unlock(&ah->block);
2211 /********************\
2212 * Interrupt handling *
2213 \********************/
2215 static void
2216 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2218 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2219 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2220 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2222 /* Run ANI only when calibration is not active */
2224 ah->ah_cal_next_ani = jiffies +
2225 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2226 tasklet_schedule(&ah->ani_tasklet);
2228 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2229 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2230 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2232 /* Run calibration only when another calibration
2233 * is not running.
2235 * Note: This is for both full/short calibration,
2236 * if it's time for a full one, ath5k_calibrate_work will deal
2237 * with it. */
2239 ah->ah_cal_next_short = jiffies +
2240 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2241 ieee80211_queue_work(ah->hw, &ah->calib_work);
2243 /* we could use SWI to generate enough interrupts to meet our
2244 * calibration interval requirements, if necessary:
2245 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2248 static void
2249 ath5k_schedule_rx(struct ath5k_hw *ah)
2251 ah->rx_pending = true;
2252 tasklet_schedule(&ah->rxtq);
2255 static void
2256 ath5k_schedule_tx(struct ath5k_hw *ah)
2258 ah->tx_pending = true;
2259 tasklet_schedule(&ah->txtq);
2262 static irqreturn_t
2263 ath5k_intr(int irq, void *dev_id)
2265 struct ath5k_hw *ah = dev_id;
2266 enum ath5k_int status;
2267 unsigned int counter = 1000;
2271 * If hw is not ready (or detached) and we get an
2272 * interrupt, or if we have no interrupts pending
2273 * (that means it's not for us) skip it.
2275 * NOTE: Group 0/1 PCI interface registers are not
2276 * supported on WiSOCs, so we can't check for pending
2277 * interrupts (ISR belongs to another register group
2278 * so we are ok).
2280 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2281 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2282 !ath5k_hw_is_intr_pending(ah))))
2283 return IRQ_NONE;
2285 /** Main loop **/
2286 do {
2287 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2289 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2290 status, ah->imask);
2293 * Fatal hw error -> Log and reset
2295 * Fatal errors are unrecoverable so we have to
2296 * reset the card. These errors include bus and
2297 * dma errors.
2299 if (unlikely(status & AR5K_INT_FATAL)) {
2301 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2302 "fatal int, resetting\n");
2303 ieee80211_queue_work(ah->hw, &ah->reset_work);
2306 * RX Overrun -> Count and reset if needed
2308 * Receive buffers are full. Either the bus is busy or
2309 * the CPU is not fast enough to process all received
2310 * frames.
2312 } else if (unlikely(status & AR5K_INT_RXORN)) {
2315 * Older chipsets need a reset to come out of this
2316 * condition, but we treat it as RX for newer chips.
2317 * We don't know exactly which versions need a reset
2318 * this guess is copied from the HAL.
2320 ah->stats.rxorn_intr++;
2322 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2323 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2324 "rx overrun, resetting\n");
2325 ieee80211_queue_work(ah->hw, &ah->reset_work);
2326 } else
2327 ath5k_schedule_rx(ah);
2329 } else {
2331 /* Software Beacon Alert -> Schedule beacon tasklet */
2332 if (status & AR5K_INT_SWBA)
2333 tasklet_hi_schedule(&ah->beacontq);
2336 * No more RX descriptors -> Just count
2338 * NB: the hardware should re-read the link when
2339 * RXE bit is written, but it doesn't work at
2340 * least on older hardware revs.
2342 if (status & AR5K_INT_RXEOL)
2343 ah->stats.rxeol_intr++;
2346 /* TX Underrun -> Bump tx trigger level */
2347 if (status & AR5K_INT_TXURN)
2348 ath5k_hw_update_tx_triglevel(ah, true);
2350 /* RX -> Schedule rx tasklet */
2351 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2352 ath5k_schedule_rx(ah);
2354 /* TX -> Schedule tx tasklet */
2355 if (status & (AR5K_INT_TXOK
2356 | AR5K_INT_TXDESC
2357 | AR5K_INT_TXERR
2358 | AR5K_INT_TXEOL))
2359 ath5k_schedule_tx(ah);
2361 /* Missed beacon -> TODO
2362 if (status & AR5K_INT_BMISS)
2365 /* MIB event -> Update counters and notify ANI */
2366 if (status & AR5K_INT_MIB) {
2367 ah->stats.mib_intr++;
2368 ath5k_hw_update_mib_counters(ah);
2369 ath5k_ani_mib_intr(ah);
2372 /* GPIO -> Notify RFKill layer */
2373 if (status & AR5K_INT_GPIO)
2374 tasklet_schedule(&ah->rf_kill.toggleq);
2378 if (ath5k_get_bus_type(ah) == ATH_AHB)
2379 break;
2381 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2384 * Until we handle rx/tx interrupts mask them on IMR
2386 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2387 * and unset after we 've handled the interrupts.
2389 if (ah->rx_pending || ah->tx_pending)
2390 ath5k_set_current_imask(ah);
2392 if (unlikely(!counter))
2393 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2395 /* Fire up calibration poll */
2396 ath5k_intr_calibration_poll(ah);
2398 return IRQ_HANDLED;
2402 * Periodically recalibrate the PHY to account
2403 * for temperature/environment changes.
2405 static void
2406 ath5k_calibrate_work(struct work_struct *work)
2408 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2409 calib_work);
2411 /* Should we run a full calibration ? */
2412 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2414 ah->ah_cal_next_full = jiffies +
2415 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2416 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2418 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2419 "running full calibration\n");
2421 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2423 * Rfgain is out of bounds, reset the chip
2424 * to load new gain values.
2426 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2427 "got new rfgain, resetting\n");
2428 ieee80211_queue_work(ah->hw, &ah->reset_work);
2430 } else
2431 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2434 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2435 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2436 ah->curchan->hw_value);
2438 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2439 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2440 ieee80211_frequency_to_channel(
2441 ah->curchan->center_freq));
2443 /* Clear calibration flags */
2444 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2445 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2446 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2447 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2451 static void
2452 ath5k_tasklet_ani(unsigned long data)
2454 struct ath5k_hw *ah = (void *)data;
2456 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2457 ath5k_ani_calibration(ah);
2458 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2462 static void
2463 ath5k_tx_complete_poll_work(struct work_struct *work)
2465 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2466 tx_complete_work.work);
2467 struct ath5k_txq *txq;
2468 int i;
2469 bool needreset = false;
2471 if (!test_bit(ATH_STAT_STARTED, ah->status))
2472 return;
2474 mutex_lock(&ah->lock);
2476 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2477 if (ah->txqs[i].setup) {
2478 txq = &ah->txqs[i];
2479 spin_lock_bh(&txq->lock);
2480 if (txq->txq_len > 1) {
2481 if (txq->txq_poll_mark) {
2482 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2483 "TX queue stuck %d\n",
2484 txq->qnum);
2485 needreset = true;
2486 txq->txq_stuck++;
2487 spin_unlock_bh(&txq->lock);
2488 break;
2489 } else {
2490 txq->txq_poll_mark = true;
2493 spin_unlock_bh(&txq->lock);
2497 if (needreset) {
2498 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2499 "TX queues stuck, resetting\n");
2500 ath5k_reset(ah, NULL, true);
2503 mutex_unlock(&ah->lock);
2505 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2506 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2510 /*************************\
2511 * Initialization routines *
2512 \*************************/
2514 static const struct ieee80211_iface_limit if_limits[] = {
2515 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
2516 { .max = 4, .types =
2517 #ifdef CONFIG_MAC80211_MESH
2518 BIT(NL80211_IFTYPE_MESH_POINT) |
2519 #endif
2520 BIT(NL80211_IFTYPE_AP) },
2523 static const struct ieee80211_iface_combination if_comb = {
2524 .limits = if_limits,
2525 .n_limits = ARRAY_SIZE(if_limits),
2526 .max_interfaces = 2048,
2527 .num_different_channels = 1,
2531 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2533 struct ieee80211_hw *hw = ah->hw;
2534 struct ath_common *common;
2535 int ret;
2536 int csz;
2538 /* Initialize driver private data */
2539 SET_IEEE80211_DEV(hw, ah->dev);
2540 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2541 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2542 ieee80211_hw_set(hw, MFP_CAPABLE);
2543 ieee80211_hw_set(hw, SIGNAL_DBM);
2544 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2545 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2547 hw->wiphy->interface_modes =
2548 BIT(NL80211_IFTYPE_AP) |
2549 BIT(NL80211_IFTYPE_STATION) |
2550 BIT(NL80211_IFTYPE_ADHOC) |
2551 BIT(NL80211_IFTYPE_MESH_POINT);
2553 hw->wiphy->iface_combinations = &if_comb;
2554 hw->wiphy->n_iface_combinations = 1;
2556 /* SW support for IBSS_RSN is provided by mac80211 */
2557 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2559 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2561 /* both antennas can be configured as RX or TX */
2562 hw->wiphy->available_antennas_tx = 0x3;
2563 hw->wiphy->available_antennas_rx = 0x3;
2565 hw->extra_tx_headroom = 2;
2567 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2570 * Mark the device as detached to avoid processing
2571 * interrupts until setup is complete.
2573 __set_bit(ATH_STAT_INVALID, ah->status);
2575 ah->opmode = NL80211_IFTYPE_STATION;
2576 ah->bintval = 1000;
2577 mutex_init(&ah->lock);
2578 spin_lock_init(&ah->rxbuflock);
2579 spin_lock_init(&ah->txbuflock);
2580 spin_lock_init(&ah->block);
2581 spin_lock_init(&ah->irqlock);
2583 /* Setup interrupt handler */
2584 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2585 if (ret) {
2586 ATH5K_ERR(ah, "request_irq failed\n");
2587 goto err;
2590 common = ath5k_hw_common(ah);
2591 common->ops = &ath5k_common_ops;
2592 common->bus_ops = bus_ops;
2593 common->ah = ah;
2594 common->hw = hw;
2595 common->priv = ah;
2596 common->clockrate = 40;
2599 * Cache line size is used to size and align various
2600 * structures used to communicate with the hardware.
2602 ath5k_read_cachesize(common, &csz);
2603 common->cachelsz = csz << 2; /* convert to bytes */
2605 spin_lock_init(&common->cc_lock);
2607 /* Initialize device */
2608 ret = ath5k_hw_init(ah);
2609 if (ret)
2610 goto err_irq;
2612 /* Set up multi-rate retry capabilities */
2613 if (ah->ah_capabilities.cap_has_mrr_support) {
2614 hw->max_rates = 4;
2615 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2616 AR5K_INIT_RETRY_LONG);
2619 hw->vif_data_size = sizeof(struct ath5k_vif);
2621 /* Finish private driver data initialization */
2622 ret = ath5k_init(hw);
2623 if (ret)
2624 goto err_ah;
2626 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2627 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2628 ah->ah_mac_srev,
2629 ah->ah_phy_revision);
2631 if (!ah->ah_single_chip) {
2632 /* Single chip radio (!RF5111) */
2633 if (ah->ah_radio_5ghz_revision &&
2634 !ah->ah_radio_2ghz_revision) {
2635 /* No 5GHz support -> report 2GHz radio */
2636 if (!test_bit(AR5K_MODE_11A,
2637 ah->ah_capabilities.cap_mode)) {
2638 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2639 ath5k_chip_name(AR5K_VERSION_RAD,
2640 ah->ah_radio_5ghz_revision),
2641 ah->ah_radio_5ghz_revision);
2642 /* No 2GHz support (5110 and some
2643 * 5GHz only cards) -> report 5GHz radio */
2644 } else if (!test_bit(AR5K_MODE_11B,
2645 ah->ah_capabilities.cap_mode)) {
2646 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2647 ath5k_chip_name(AR5K_VERSION_RAD,
2648 ah->ah_radio_5ghz_revision),
2649 ah->ah_radio_5ghz_revision);
2650 /* Multiband radio */
2651 } else {
2652 ATH5K_INFO(ah, "RF%s multiband radio found"
2653 " (0x%x)\n",
2654 ath5k_chip_name(AR5K_VERSION_RAD,
2655 ah->ah_radio_5ghz_revision),
2656 ah->ah_radio_5ghz_revision);
2659 /* Multi chip radio (RF5111 - RF2111) ->
2660 * report both 2GHz/5GHz radios */
2661 else if (ah->ah_radio_5ghz_revision &&
2662 ah->ah_radio_2ghz_revision) {
2663 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2664 ath5k_chip_name(AR5K_VERSION_RAD,
2665 ah->ah_radio_5ghz_revision),
2666 ah->ah_radio_5ghz_revision);
2667 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2668 ath5k_chip_name(AR5K_VERSION_RAD,
2669 ah->ah_radio_2ghz_revision),
2670 ah->ah_radio_2ghz_revision);
2674 ath5k_debug_init_device(ah);
2676 /* ready to process interrupts */
2677 __clear_bit(ATH_STAT_INVALID, ah->status);
2679 return 0;
2680 err_ah:
2681 ath5k_hw_deinit(ah);
2682 err_irq:
2683 free_irq(ah->irq, ah);
2684 err:
2685 return ret;
2688 static int
2689 ath5k_stop_locked(struct ath5k_hw *ah)
2692 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2693 test_bit(ATH_STAT_INVALID, ah->status));
2696 * Shutdown the hardware and driver:
2697 * stop output from above
2698 * disable interrupts
2699 * turn off timers
2700 * turn off the radio
2701 * clear transmit machinery
2702 * clear receive machinery
2703 * drain and release tx queues
2704 * reclaim beacon resources
2705 * power down hardware
2707 * Note that some of this work is not possible if the
2708 * hardware is gone (invalid).
2710 ieee80211_stop_queues(ah->hw);
2712 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2713 ath5k_led_off(ah);
2714 ath5k_hw_set_imr(ah, 0);
2715 synchronize_irq(ah->irq);
2716 ath5k_rx_stop(ah);
2717 ath5k_hw_dma_stop(ah);
2718 ath5k_drain_tx_buffs(ah);
2719 ath5k_hw_phy_disable(ah);
2722 return 0;
2725 int ath5k_start(struct ieee80211_hw *hw)
2727 struct ath5k_hw *ah = hw->priv;
2728 struct ath_common *common = ath5k_hw_common(ah);
2729 int ret, i;
2731 mutex_lock(&ah->lock);
2733 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2736 * Stop anything previously setup. This is safe
2737 * no matter this is the first time through or not.
2739 ath5k_stop_locked(ah);
2742 * The basic interface to setting the hardware in a good
2743 * state is ``reset''. On return the hardware is known to
2744 * be powered up and with interrupts disabled. This must
2745 * be followed by initialization of the appropriate bits
2746 * and then setup of the interrupt mask.
2748 ah->curchan = ah->hw->conf.chandef.chan;
2749 ah->imask = AR5K_INT_RXOK
2750 | AR5K_INT_RXERR
2751 | AR5K_INT_RXEOL
2752 | AR5K_INT_RXORN
2753 | AR5K_INT_TXDESC
2754 | AR5K_INT_TXEOL
2755 | AR5K_INT_FATAL
2756 | AR5K_INT_GLOBAL
2757 | AR5K_INT_MIB;
2759 ret = ath5k_reset(ah, NULL, false);
2760 if (ret)
2761 goto done;
2763 if (!ath5k_modparam_no_hw_rfkill_switch)
2764 ath5k_rfkill_hw_start(ah);
2767 * Reset the key cache since some parts do not reset the
2768 * contents on initial power up or resume from suspend.
2770 for (i = 0; i < common->keymax; i++)
2771 ath_hw_keyreset(common, (u16) i);
2773 /* Use higher rates for acks instead of base
2774 * rate */
2775 ah->ah_ack_bitrate_high = true;
2777 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2778 ah->bslot[i] = NULL;
2780 ret = 0;
2781 done:
2782 mmiowb();
2783 mutex_unlock(&ah->lock);
2785 set_bit(ATH_STAT_STARTED, ah->status);
2786 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2787 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2789 return ret;
2792 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2794 ah->rx_pending = false;
2795 ah->tx_pending = false;
2796 tasklet_kill(&ah->rxtq);
2797 tasklet_kill(&ah->txtq);
2798 tasklet_kill(&ah->beacontq);
2799 tasklet_kill(&ah->ani_tasklet);
2803 * Stop the device, grabbing the top-level lock to protect
2804 * against concurrent entry through ath5k_init (which can happen
2805 * if another thread does a system call and the thread doing the
2806 * stop is preempted).
2808 void ath5k_stop(struct ieee80211_hw *hw)
2810 struct ath5k_hw *ah = hw->priv;
2811 int ret;
2813 mutex_lock(&ah->lock);
2814 ret = ath5k_stop_locked(ah);
2815 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2817 * Don't set the card in full sleep mode!
2819 * a) When the device is in this state it must be carefully
2820 * woken up or references to registers in the PCI clock
2821 * domain may freeze the bus (and system). This varies
2822 * by chip and is mostly an issue with newer parts
2823 * (madwifi sources mentioned srev >= 0x78) that go to
2824 * sleep more quickly.
2826 * b) On older chips full sleep results a weird behaviour
2827 * during wakeup. I tested various cards with srev < 0x78
2828 * and they don't wake up after module reload, a second
2829 * module reload is needed to bring the card up again.
2831 * Until we figure out what's going on don't enable
2832 * full chip reset on any chip (this is what Legacy HAL
2833 * and Sam's HAL do anyway). Instead Perform a full reset
2834 * on the device (same as initial state after attach) and
2835 * leave it idle (keep MAC/BB on warm reset) */
2836 ret = ath5k_hw_on_hold(ah);
2838 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2839 "putting device to sleep\n");
2842 mmiowb();
2843 mutex_unlock(&ah->lock);
2845 ath5k_stop_tasklets(ah);
2847 clear_bit(ATH_STAT_STARTED, ah->status);
2848 cancel_delayed_work_sync(&ah->tx_complete_work);
2850 if (!ath5k_modparam_no_hw_rfkill_switch)
2851 ath5k_rfkill_hw_stop(ah);
2855 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2856 * and change to the given channel.
2858 * This should be called with ah->lock.
2860 static int
2861 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2862 bool skip_pcu)
2864 struct ath_common *common = ath5k_hw_common(ah);
2865 int ret, ani_mode;
2866 bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2868 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2870 __set_bit(ATH_STAT_RESET, ah->status);
2872 ath5k_hw_set_imr(ah, 0);
2873 synchronize_irq(ah->irq);
2874 ath5k_stop_tasklets(ah);
2876 /* Save ani mode and disable ANI during
2877 * reset. If we don't we might get false
2878 * PHY error interrupts. */
2879 ani_mode = ah->ani_state.ani_mode;
2880 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2882 /* We are going to empty hw queues
2883 * so we should also free any remaining
2884 * tx buffers */
2885 ath5k_drain_tx_buffs(ah);
2887 /* Stop PCU */
2888 ath5k_hw_stop_rx_pcu(ah);
2890 /* Stop DMA
2892 * Note: If DMA didn't stop continue
2893 * since only a reset will fix it.
2895 ret = ath5k_hw_dma_stop(ah);
2897 /* RF Bus grant won't work if we have pending
2898 * frames
2900 if (ret && fast) {
2901 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2902 "DMA didn't stop, falling back to normal reset\n");
2903 fast = false;
2906 if (chan)
2907 ah->curchan = chan;
2909 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2910 if (ret) {
2911 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2912 goto err;
2915 ret = ath5k_rx_start(ah);
2916 if (ret) {
2917 ATH5K_ERR(ah, "can't start recv logic\n");
2918 goto err;
2921 ath5k_ani_init(ah, ani_mode);
2924 * Set calibration intervals
2926 * Note: We don't need to run calibration imediately
2927 * since some initial calibration is done on reset
2928 * even for fast channel switching. Also on scanning
2929 * this will get set again and again and it won't get
2930 * executed unless we connect somewhere and spend some
2931 * time on the channel (that's what calibration needs
2932 * anyway to be accurate).
2934 ah->ah_cal_next_full = jiffies +
2935 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2936 ah->ah_cal_next_ani = jiffies +
2937 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2938 ah->ah_cal_next_short = jiffies +
2939 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2941 ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2943 /* clear survey data and cycle counters */
2944 memset(&ah->survey, 0, sizeof(ah->survey));
2945 spin_lock_bh(&common->cc_lock);
2946 ath_hw_cycle_counters_update(common);
2947 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2948 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2949 spin_unlock_bh(&common->cc_lock);
2952 * Change channels and update the h/w rate map if we're switching;
2953 * e.g. 11a to 11b/g.
2955 * We may be doing a reset in response to an ioctl that changes the
2956 * channel so update any state that might change as a result.
2958 * XXX needed?
2960 /* ath5k_chan_change(ah, c); */
2962 __clear_bit(ATH_STAT_RESET, ah->status);
2964 ath5k_beacon_config(ah);
2965 /* intrs are enabled by ath5k_beacon_config */
2967 ieee80211_wake_queues(ah->hw);
2969 return 0;
2970 err:
2971 return ret;
2974 static void ath5k_reset_work(struct work_struct *work)
2976 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2977 reset_work);
2979 mutex_lock(&ah->lock);
2980 ath5k_reset(ah, NULL, true);
2981 mutex_unlock(&ah->lock);
2984 static int
2985 ath5k_init(struct ieee80211_hw *hw)
2988 struct ath5k_hw *ah = hw->priv;
2989 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2990 struct ath5k_txq *txq;
2991 u8 mac[ETH_ALEN] = {};
2992 int ret;
2996 * Collect the channel list. The 802.11 layer
2997 * is responsible for filtering this list based
2998 * on settings like the phy mode and regulatory
2999 * domain restrictions.
3001 ret = ath5k_setup_bands(hw);
3002 if (ret) {
3003 ATH5K_ERR(ah, "can't get channels\n");
3004 goto err;
3008 * Allocate tx+rx descriptors and populate the lists.
3010 ret = ath5k_desc_alloc(ah);
3011 if (ret) {
3012 ATH5K_ERR(ah, "can't allocate descriptors\n");
3013 goto err;
3017 * Allocate hardware transmit queues: one queue for
3018 * beacon frames and one data queue for each QoS
3019 * priority. Note that hw functions handle resetting
3020 * these queues at the needed time.
3022 ret = ath5k_beaconq_setup(ah);
3023 if (ret < 0) {
3024 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3025 goto err_desc;
3027 ah->bhalq = ret;
3028 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3029 if (IS_ERR(ah->cabq)) {
3030 ATH5K_ERR(ah, "can't setup cab queue\n");
3031 ret = PTR_ERR(ah->cabq);
3032 goto err_bhal;
3035 /* 5211 and 5212 usually support 10 queues but we better rely on the
3036 * capability information */
3037 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3038 /* This order matches mac80211's queue priority, so we can
3039 * directly use the mac80211 queue number without any mapping */
3040 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3041 if (IS_ERR(txq)) {
3042 ATH5K_ERR(ah, "can't setup xmit queue\n");
3043 ret = PTR_ERR(txq);
3044 goto err_queues;
3046 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3047 if (IS_ERR(txq)) {
3048 ATH5K_ERR(ah, "can't setup xmit queue\n");
3049 ret = PTR_ERR(txq);
3050 goto err_queues;
3052 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3053 if (IS_ERR(txq)) {
3054 ATH5K_ERR(ah, "can't setup xmit queue\n");
3055 ret = PTR_ERR(txq);
3056 goto err_queues;
3058 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3059 if (IS_ERR(txq)) {
3060 ATH5K_ERR(ah, "can't setup xmit queue\n");
3061 ret = PTR_ERR(txq);
3062 goto err_queues;
3064 hw->queues = 4;
3065 } else {
3066 /* older hardware (5210) can only support one data queue */
3067 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3068 if (IS_ERR(txq)) {
3069 ATH5K_ERR(ah, "can't setup xmit queue\n");
3070 ret = PTR_ERR(txq);
3071 goto err_queues;
3073 hw->queues = 1;
3076 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3077 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3078 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3079 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3081 INIT_WORK(&ah->reset_work, ath5k_reset_work);
3082 INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3083 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3085 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3086 if (ret) {
3087 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3088 goto err_queues;
3091 SET_IEEE80211_PERM_ADDR(hw, mac);
3092 /* All MAC address bits matter for ACKs */
3093 ath5k_update_bssid_mask_and_opmode(ah, NULL);
3095 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3096 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3097 if (ret) {
3098 ATH5K_ERR(ah, "can't initialize regulatory system\n");
3099 goto err_queues;
3102 ret = ieee80211_register_hw(hw);
3103 if (ret) {
3104 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3105 goto err_queues;
3108 if (!ath_is_world_regd(regulatory))
3109 regulatory_hint(hw->wiphy, regulatory->alpha2);
3111 ath5k_init_leds(ah);
3113 ath5k_sysfs_register(ah);
3115 return 0;
3116 err_queues:
3117 ath5k_txq_release(ah);
3118 err_bhal:
3119 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3120 err_desc:
3121 ath5k_desc_free(ah);
3122 err:
3123 return ret;
3126 void
3127 ath5k_deinit_ah(struct ath5k_hw *ah)
3129 struct ieee80211_hw *hw = ah->hw;
3132 * NB: the order of these is important:
3133 * o call the 802.11 layer before detaching ath5k_hw to
3134 * ensure callbacks into the driver to delete global
3135 * key cache entries can be handled
3136 * o reclaim the tx queue data structures after calling
3137 * the 802.11 layer as we'll get called back to reclaim
3138 * node state and potentially want to use them
3139 * o to cleanup the tx queues the hal is called, so detach
3140 * it last
3141 * XXX: ??? detach ath5k_hw ???
3142 * Other than that, it's straightforward...
3144 ieee80211_unregister_hw(hw);
3145 ath5k_desc_free(ah);
3146 ath5k_txq_release(ah);
3147 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3148 ath5k_unregister_leds(ah);
3150 ath5k_sysfs_unregister(ah);
3152 * NB: can't reclaim these until after ieee80211_ifdetach
3153 * returns because we'll get called back to reclaim node
3154 * state and potentially want to use them.
3156 ath5k_hw_deinit(ah);
3157 free_irq(ah->irq, ah);
3160 bool
3161 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3163 struct ath5k_vif_iter_data iter_data;
3164 iter_data.hw_macaddr = NULL;
3165 iter_data.any_assoc = false;
3166 iter_data.need_set_hw_addr = false;
3167 iter_data.found_active = true;
3169 ieee80211_iterate_active_interfaces_atomic(
3170 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3171 ath5k_vif_iter, &iter_data);
3172 return iter_data.any_assoc;
3175 void
3176 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3178 struct ath5k_hw *ah = hw->priv;
3179 u32 rfilt;
3180 rfilt = ath5k_hw_get_rx_filter(ah);
3181 if (enable)
3182 rfilt |= AR5K_RX_FILTER_BEACON;
3183 else
3184 rfilt &= ~AR5K_RX_FILTER_BEACON;
3185 ath5k_hw_set_rx_filter(ah, rfilt);
3186 ah->filter_flags = rfilt;
3189 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3190 const char *fmt, ...)
3192 struct va_format vaf;
3193 va_list args;
3195 va_start(args, fmt);
3197 vaf.fmt = fmt;
3198 vaf.va = &args;
3200 if (ah && ah->hw)
3201 printk("%s" pr_fmt("%s: %pV"),
3202 level, wiphy_name(ah->hw->wiphy), &vaf);
3203 else
3204 printk("%s" pr_fmt("%pV"), level, &vaf);
3206 va_end(args);