2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /***********************\
22 * PHY related functions *
23 \***********************/
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <asm/unaligned.h>
39 * DOC: PHY related functions
41 * Here we handle the low-level functions related to baseband
42 * and analog frontend (RF) parts. This is by far the most complex
43 * part of the hw code so make sure you know what you are doing.
45 * Here is a list of what this is all about:
47 * - Channel setting/switching
49 * - Automatic Gain Control (AGC) calibration
51 * - Noise Floor calibration
53 * - I/Q imbalance calibration (QAM correction)
55 * - Calibration due to thermal changes (gain_F)
57 * - Spur noise mitigation
59 * - RF/PHY initialization for the various operating modes and bwmodes
63 * - TX power control per channel/rate/packet type
65 * Also have in mind we never got documentation for most of these
66 * functions, what we have comes mostly from Atheros's code, reverse
67 * engineering and patent docs/presentations etc.
76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
77 * @ah: The &struct ath5k_hw
78 * @band: One of enum nl80211_band
80 * Returns the revision number of a 2GHz, 5GHz or single chip
84 ath5k_hw_radio_revision(struct ath5k_hw
*ah
, enum nl80211_band band
)
91 * Set the radio chip access register
94 case NL80211_BAND_2GHZ
:
95 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_2GHZ
, AR5K_PHY(0));
97 case NL80211_BAND_5GHZ
:
98 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
104 usleep_range(2000, 2500);
106 /* ...wait until PHY is ready and read the selected radio revision */
107 ath5k_hw_reg_write(ah
, 0x00001c16, AR5K_PHY(0x34));
109 for (i
= 0; i
< 8; i
++)
110 ath5k_hw_reg_write(ah
, 0x00010000, AR5K_PHY(0x20));
112 if (ah
->ah_version
== AR5K_AR5210
) {
113 srev
= (ath5k_hw_reg_read(ah
, AR5K_PHY(256)) >> 28) & 0xf;
114 ret
= (u16
)ath5k_hw_bitswap(srev
, 4) + 1;
116 srev
= (ath5k_hw_reg_read(ah
, AR5K_PHY(0x100)) >> 24) & 0xff;
117 ret
= (u16
)ath5k_hw_bitswap(((srev
& 0xf0) >> 4) |
118 ((srev
& 0x0f) << 4), 8);
121 /* Reset to the 5GHz mode */
122 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
128 * ath5k_channel_ok() - Check if a channel is supported by the hw
129 * @ah: The &struct ath5k_hw
130 * @channel: The &struct ieee80211_channel
132 * Note: We don't do any regulatory domain checks here, it's just
136 ath5k_channel_ok(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
)
138 u16 freq
= channel
->center_freq
;
140 /* Check if the channel is in our supported range */
141 if (channel
->band
== NL80211_BAND_2GHZ
) {
142 if ((freq
>= ah
->ah_capabilities
.cap_range
.range_2ghz_min
) &&
143 (freq
<= ah
->ah_capabilities
.cap_range
.range_2ghz_max
))
145 } else if (channel
->band
== NL80211_BAND_5GHZ
)
146 if ((freq
>= ah
->ah_capabilities
.cap_range
.range_5ghz_min
) &&
147 (freq
<= ah
->ah_capabilities
.cap_range
.range_5ghz_max
))
154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
155 * @ah: The &struct ath5k_hw
156 * @channel: The &struct ieee80211_channel
159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw
*ah
,
160 struct ieee80211_channel
*channel
)
164 if ((ah
->ah_radio
== AR5K_RF5112
) ||
165 (ah
->ah_radio
== AR5K_RF5413
) ||
166 (ah
->ah_radio
== AR5K_RF2413
) ||
167 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4)))
172 if ((channel
->center_freq
% refclk_freq
!= 0) &&
173 ((channel
->center_freq
% refclk_freq
< 10) ||
174 (channel
->center_freq
% refclk_freq
> 22)))
181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
182 * @ah: The &struct ath5k_hw
183 * @rf_regs: The struct ath5k_rf_reg
185 * @reg_id: RF register ID
186 * @set: Indicate we need to swap data
188 * This is an internal function used to modify RF Banks before
189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
193 ath5k_hw_rfb_op(struct ath5k_hw
*ah
, const struct ath5k_rf_reg
*rf_regs
,
194 u32 val
, u8 reg_id
, bool set
)
196 const struct ath5k_rf_reg
*rfreg
= NULL
;
197 u8 offset
, bank
, num_bits
, col
, position
;
199 u32 mask
, data
, last_bit
, bits_shifted
, first_bit
;
205 rfb
= ah
->ah_rf_banks
;
207 for (i
= 0; i
< ah
->ah_rf_regs_count
; i
++) {
208 if (rf_regs
[i
].index
== reg_id
) {
214 if (rfb
== NULL
|| rfreg
== NULL
) {
215 ATH5K_PRINTF("Rf register not found!\n");
216 /* should not happen */
221 num_bits
= rfreg
->field
.len
;
222 first_bit
= rfreg
->field
.pos
;
223 col
= rfreg
->field
.col
;
225 /* first_bit is an offset from bank's
226 * start. Since we have all banks on
227 * the same array, we use this offset
228 * to mark each bank's start */
229 offset
= ah
->ah_offset
[bank
];
232 if (!(col
<= 3 && num_bits
<= 32 && first_bit
+ num_bits
<= 319)) {
233 ATH5K_PRINTF("invalid values at offset %u\n", offset
);
237 entry
= ((first_bit
- 1) / 8) + offset
;
238 position
= (first_bit
- 1) % 8;
241 data
= ath5k_hw_bitswap(val
, num_bits
);
243 for (bits_shifted
= 0, bits_left
= num_bits
; bits_left
> 0;
244 position
= 0, entry
++) {
246 last_bit
= (position
+ bits_left
> 8) ? 8 :
247 position
+ bits_left
;
249 mask
= (((1 << last_bit
) - 1) ^ ((1 << position
) - 1)) <<
254 rfb
[entry
] |= ((data
<< position
) << (col
* 8)) & mask
;
255 data
>>= (8 - position
);
257 data
|= (((rfb
[entry
] & mask
) >> (col
* 8)) >> position
)
259 bits_shifted
+= last_bit
- position
;
262 bits_left
-= 8 - position
;
265 data
= set
? 1 : ath5k_hw_bitswap(data
, num_bits
);
271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
272 * @ah: the &struct ath5k_hw
273 * @channel: the currently set channel upon reset
275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
278 * Since delta slope is floating point we split it on its exponent and
279 * mantissa and provide these values on hw.
281 * For more infos i think this patent is related
282 * "http://www.freepatentsonline.com/7184495.html"
285 ath5k_hw_write_ofdm_timings(struct ath5k_hw
*ah
,
286 struct ieee80211_channel
*channel
)
288 /* Get exponent and mantissa and set it */
289 u32 coef_scaled
, coef_exp
, coef_man
,
290 ds_coef_exp
, ds_coef_man
, clock
;
292 BUG_ON(!(ah
->ah_version
== AR5K_AR5212
) ||
293 (channel
->hw_value
== AR5K_MODE_11B
));
296 * ALGO: coef = (5 * clock / carrier_freq) / 2
297 * we scale coef by shifting clock value by 24 for
298 * better precision since we use integers */
299 switch (ah
->ah_bwmode
) {
300 case AR5K_BWMODE_40MHZ
:
303 case AR5K_BWMODE_10MHZ
:
306 case AR5K_BWMODE_5MHZ
:
313 coef_scaled
= ((5 * (clock
<< 24)) / 2) / channel
->center_freq
;
316 * ALGO: coef_exp = 14 - highest set bit position */
317 coef_exp
= ilog2(coef_scaled
);
319 /* Doesn't make sense if it's zero*/
320 if (!coef_scaled
|| !coef_exp
)
323 /* Note: we've shifted coef_scaled by 24 */
324 coef_exp
= 14 - (coef_exp
- 24);
327 /* Get mantissa (significant digits)
328 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
329 coef_man
= coef_scaled
+
330 (1 << (24 - coef_exp
- 1));
332 /* Calculate delta slope coefficient exponent
333 * and mantissa (remove scaling) and set them on hw */
334 ds_coef_man
= coef_man
>> (24 - coef_exp
);
335 ds_coef_exp
= coef_exp
- 16;
337 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_3
,
338 AR5K_PHY_TIMING_3_DSC_MAN
, ds_coef_man
);
339 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_3
,
340 AR5K_PHY_TIMING_3_DSC_EXP
, ds_coef_exp
);
346 * ath5k_hw_phy_disable() - Disable PHY
347 * @ah: The &struct ath5k_hw
349 int ath5k_hw_phy_disable(struct ath5k_hw
*ah
)
352 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_DISABLE
, AR5K_PHY_ACT
);
358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
359 * @ah: The &struct ath5k_hw
360 * @channel: The &struct ieee80211_channel
363 ath5k_hw_wait_for_synth(struct ath5k_hw
*ah
,
364 struct ieee80211_channel
*channel
)
367 * On 5211+ read activation -> rx delay
368 * and use it (100ns steps).
370 if (ah
->ah_version
!= AR5K_AR5210
) {
372 delay
= ath5k_hw_reg_read(ah
, AR5K_PHY_RX_DELAY
) &
374 delay
= (channel
->hw_value
== AR5K_MODE_11B
) ?
375 ((delay
<< 2) / 22) : (delay
/ 10);
376 if (ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
)
378 if (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
)
380 /* XXX: /2 on turbo ? Let's be safe
382 usleep_range(100 + delay
, 100 + (2 * delay
));
384 usleep_range(1000, 1500);
389 /**********************\
390 * RF Gain optimization *
391 \**********************/
394 * DOC: RF Gain optimization
396 * This code is used to optimize RF gain on different environments
397 * (temperature mostly) based on feedback from a power detector.
399 * It's only used on RF5111 and RF5112, later RF chips seem to have
400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
401 * no gain optimization ladder-.
403 * For more infos check out this patent doc
404 * "http://www.freepatentsonline.com/7400691.html"
406 * This paper describes power drops as seen on the receiver due to
408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
409 * %20of%20Power%20Control.pdf"
411 * And this is the MadWiFi bug entry related to the above
412 * "http://madwifi-project.org/ticket/1659"
413 * with various measurements and diagrams
417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
418 * @ah: The &struct ath5k_hw
420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw
*ah
)
422 /* Initialize the gain optimization values */
423 switch (ah
->ah_radio
) {
425 ah
->ah_gain
.g_step_idx
= rfgain_opt_5111
.go_default
;
426 ah
->ah_gain
.g_low
= 20;
427 ah
->ah_gain
.g_high
= 35;
428 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
431 ah
->ah_gain
.g_step_idx
= rfgain_opt_5112
.go_default
;
432 ah
->ah_gain
.g_low
= 20;
433 ah
->ah_gain
.g_high
= 85;
434 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
445 * @ah: The &struct ath5k_hw
447 * Schedules a gain probe check on the next transmitted packet.
448 * That means our next packet is going to be sent with lower
449 * tx power and a Peak to Average Power Detector (PAPD) will try
450 * to measure the gain.
452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
453 * just after we enable the probe so that we don't mess with
457 ath5k_hw_request_rfgain_probe(struct ath5k_hw
*ah
)
460 /* Skip if gain calibration is inactive or
461 * we already handle a probe request */
462 if (ah
->ah_gain
.g_state
!= AR5K_RFGAIN_ACTIVE
)
465 /* Send the packet with 2dB below max power as
466 * patent doc suggest */
467 ath5k_hw_reg_write(ah
, AR5K_REG_SM(ah
->ah_txpower
.txp_ofdm
- 4,
468 AR5K_PHY_PAPD_PROBE_TXPOWER
) |
469 AR5K_PHY_PAPD_PROBE_TX_NEXT
, AR5K_PHY_PAPD_PROBE
);
471 ah
->ah_gain
.g_state
= AR5K_RFGAIN_READ_REQUESTED
;
476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
477 * @ah: The &struct ath5k_hw
479 * Calculate Gain_F measurement correction
480 * based on the current step for RF5112 rev. 2
483 ath5k_hw_rf_gainf_corr(struct ath5k_hw
*ah
)
487 const struct ath5k_gain_opt
*go
;
488 const struct ath5k_gain_opt_step
*g_step
;
489 const struct ath5k_rf_reg
*rf_regs
;
491 /* Only RF5112 Rev. 2 supports it */
492 if ((ah
->ah_radio
!= AR5K_RF5112
) ||
493 (ah
->ah_radio_5ghz_revision
<= AR5K_SREV_RAD_5112A
))
496 go
= &rfgain_opt_5112
;
497 rf_regs
= rf_regs_5112a
;
498 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112a
);
500 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
502 if (ah
->ah_rf_banks
== NULL
)
505 rf
= ah
->ah_rf_banks
;
506 ah
->ah_gain
.g_f_corr
= 0;
508 /* No VGA (Variable Gain Amplifier) override, skip */
509 if (ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXVGA_OVR
, false) != 1)
512 /* Mix gain stepping */
513 step
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXGAIN_STEP
, false);
515 /* Mix gain override */
516 mix
= g_step
->gos_param
[0];
520 ah
->ah_gain
.g_f_corr
= step
* 2;
523 ah
->ah_gain
.g_f_corr
= (step
- 5) * 2;
526 ah
->ah_gain
.g_f_corr
= step
;
529 ah
->ah_gain
.g_f_corr
= 0;
533 return ah
->ah_gain
.g_f_corr
;
537 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
538 * @ah: The &struct ath5k_hw
540 * Check if current gain_F measurement is in the range of our
541 * power detector windows. If we get a measurement outside range
542 * we know it's not accurate (detectors can't measure anything outside
543 * their detection window) so we must ignore it.
545 * Returns true if readback was O.K. or false on failure
548 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw
*ah
)
550 const struct ath5k_rf_reg
*rf_regs
;
551 u32 step
, mix_ovr
, level
[4];
554 if (ah
->ah_rf_banks
== NULL
)
557 rf
= ah
->ah_rf_banks
;
559 if (ah
->ah_radio
== AR5K_RF5111
) {
561 rf_regs
= rf_regs_5111
;
562 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5111
);
564 step
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_RFGAIN_STEP
,
568 level
[1] = (step
== 63) ? 50 : step
+ 4;
569 level
[2] = (step
!= 63) ? 64 : level
[0];
570 level
[3] = level
[2] + 50;
572 ah
->ah_gain
.g_high
= level
[3] -
573 (step
== 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN
: -5);
574 ah
->ah_gain
.g_low
= level
[0] +
575 (step
== 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN
: 0);
578 rf_regs
= rf_regs_5112
;
579 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112
);
581 mix_ovr
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXVGA_OVR
,
584 level
[0] = level
[2] = 0;
587 level
[1] = level
[3] = 83;
589 level
[1] = level
[3] = 107;
590 ah
->ah_gain
.g_high
= 55;
594 return (ah
->ah_gain
.g_current
>= level
[0] &&
595 ah
->ah_gain
.g_current
<= level
[1]) ||
596 (ah
->ah_gain
.g_current
>= level
[2] &&
597 ah
->ah_gain
.g_current
<= level
[3]);
601 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
602 * @ah: The &struct ath5k_hw
604 * Choose the right target gain based on current gain
605 * and RF gain optimization ladder
608 ath5k_hw_rf_gainf_adjust(struct ath5k_hw
*ah
)
610 const struct ath5k_gain_opt
*go
;
611 const struct ath5k_gain_opt_step
*g_step
;
614 switch (ah
->ah_radio
) {
616 go
= &rfgain_opt_5111
;
619 go
= &rfgain_opt_5112
;
625 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
627 if (ah
->ah_gain
.g_current
>= ah
->ah_gain
.g_high
) {
629 /* Reached maximum */
630 if (ah
->ah_gain
.g_step_idx
== 0)
633 for (ah
->ah_gain
.g_target
= ah
->ah_gain
.g_current
;
634 ah
->ah_gain
.g_target
>= ah
->ah_gain
.g_high
&&
635 ah
->ah_gain
.g_step_idx
> 0;
636 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
])
637 ah
->ah_gain
.g_target
-= 2 *
638 (go
->go_step
[--(ah
->ah_gain
.g_step_idx
)].gos_gain
-
645 if (ah
->ah_gain
.g_current
<= ah
->ah_gain
.g_low
) {
647 /* Reached minimum */
648 if (ah
->ah_gain
.g_step_idx
== (go
->go_steps_count
- 1))
651 for (ah
->ah_gain
.g_target
= ah
->ah_gain
.g_current
;
652 ah
->ah_gain
.g_target
<= ah
->ah_gain
.g_low
&&
653 ah
->ah_gain
.g_step_idx
< go
->go_steps_count
- 1;
654 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
])
655 ah
->ah_gain
.g_target
-= 2 *
656 (go
->go_step
[++ah
->ah_gain
.g_step_idx
].gos_gain
-
664 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
665 "ret %d, gain step %u, current gain %u, target gain %u\n",
666 ret
, ah
->ah_gain
.g_step_idx
, ah
->ah_gain
.g_current
,
667 ah
->ah_gain
.g_target
);
673 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
674 * @ah: The &struct ath5k_hw
676 * Main callback for thermal RF gain calibration engine
677 * Check for a new gain reading and schedule an adjustment
680 * Returns one of enum ath5k_rfgain codes
683 ath5k_hw_gainf_calibrate(struct ath5k_hw
*ah
)
686 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
688 if (ah
->ah_rf_banks
== NULL
||
689 ah
->ah_gain
.g_state
== AR5K_RFGAIN_INACTIVE
)
690 return AR5K_RFGAIN_INACTIVE
;
692 /* No check requested, either engine is inactive
693 * or an adjustment is already requested */
694 if (ah
->ah_gain
.g_state
!= AR5K_RFGAIN_READ_REQUESTED
)
697 /* Read the PAPD (Peak to Average Power Detector)
699 data
= ath5k_hw_reg_read(ah
, AR5K_PHY_PAPD_PROBE
);
701 /* No probe is scheduled, read gain_F measurement */
702 if (!(data
& AR5K_PHY_PAPD_PROBE_TX_NEXT
)) {
703 ah
->ah_gain
.g_current
= data
>> AR5K_PHY_PAPD_PROBE_GAINF_S
;
704 type
= AR5K_REG_MS(data
, AR5K_PHY_PAPD_PROBE_TYPE
);
706 /* If tx packet is CCK correct the gain_F measurement
707 * by cck ofdm gain delta */
708 if (type
== AR5K_PHY_PAPD_PROBE_TYPE_CCK
) {
709 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
)
710 ah
->ah_gain
.g_current
+=
711 ee
->ee_cck_ofdm_gain_delta
;
713 ah
->ah_gain
.g_current
+=
714 AR5K_GAIN_CCK_PROBE_CORR
;
717 /* Further correct gain_F measurement for
719 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
) {
720 ath5k_hw_rf_gainf_corr(ah
);
721 ah
->ah_gain
.g_current
=
722 ah
->ah_gain
.g_current
>= ah
->ah_gain
.g_f_corr
?
723 (ah
->ah_gain
.g_current
- ah
->ah_gain
.g_f_corr
) :
727 /* Check if measurement is ok and if we need
728 * to adjust gain, schedule a gain adjustment,
729 * else switch back to the active state */
730 if (ath5k_hw_rf_check_gainf_readback(ah
) &&
731 AR5K_GAIN_CHECK_ADJUST(&ah
->ah_gain
) &&
732 ath5k_hw_rf_gainf_adjust(ah
)) {
733 ah
->ah_gain
.g_state
= AR5K_RFGAIN_NEED_CHANGE
;
735 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
740 return ah
->ah_gain
.g_state
;
744 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
745 * @ah: The &struct ath5k_hw
746 * @band: One of enum nl80211_band
748 * Write initial RF gain table to set the RF sensitivity.
750 * NOTE: This one works on all RF chips and has nothing to do
751 * with Gain_F calibration
754 ath5k_hw_rfgain_init(struct ath5k_hw
*ah
, enum nl80211_band band
)
756 const struct ath5k_ini_rfgain
*ath5k_rfg
;
757 unsigned int i
, size
, index
;
759 switch (ah
->ah_radio
) {
761 ath5k_rfg
= rfgain_5111
;
762 size
= ARRAY_SIZE(rfgain_5111
);
765 ath5k_rfg
= rfgain_5112
;
766 size
= ARRAY_SIZE(rfgain_5112
);
769 ath5k_rfg
= rfgain_2413
;
770 size
= ARRAY_SIZE(rfgain_2413
);
773 ath5k_rfg
= rfgain_2316
;
774 size
= ARRAY_SIZE(rfgain_2316
);
777 ath5k_rfg
= rfgain_5413
;
778 size
= ARRAY_SIZE(rfgain_5413
);
782 ath5k_rfg
= rfgain_2425
;
783 size
= ARRAY_SIZE(rfgain_2425
);
789 index
= (band
== NL80211_BAND_2GHZ
) ? 1 : 0;
791 for (i
= 0; i
< size
; i
++) {
793 ath5k_hw_reg_write(ah
, ath5k_rfg
[i
].rfg_value
[index
],
794 (u32
)ath5k_rfg
[i
].rfg_register
);
801 /********************\
802 * RF Registers setup *
803 \********************/
806 * ath5k_hw_rfregs_init() - Initialize RF register settings
807 * @ah: The &struct ath5k_hw
808 * @channel: The &struct ieee80211_channel
809 * @mode: One of enum ath5k_driver_mode
811 * Setup RF registers by writing RF buffer on hw. For
812 * more infos on this, check out rfbuffer.h
815 ath5k_hw_rfregs_init(struct ath5k_hw
*ah
,
816 struct ieee80211_channel
*channel
,
819 const struct ath5k_rf_reg
*rf_regs
;
820 const struct ath5k_ini_rfbuffer
*ini_rfb
;
821 const struct ath5k_gain_opt
*go
= NULL
;
822 const struct ath5k_gain_opt_step
*g_step
;
823 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
826 int i
, obdb
= -1, bank
= -1;
828 switch (ah
->ah_radio
) {
830 rf_regs
= rf_regs_5111
;
831 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5111
);
833 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5111
);
834 go
= &rfgain_opt_5111
;
837 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
) {
838 rf_regs
= rf_regs_5112a
;
839 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112a
);
841 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5112a
);
843 rf_regs
= rf_regs_5112
;
844 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112
);
846 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5112
);
848 go
= &rfgain_opt_5112
;
851 rf_regs
= rf_regs_2413
;
852 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2413
);
854 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2413
);
857 rf_regs
= rf_regs_2316
;
858 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2316
);
860 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2316
);
863 rf_regs
= rf_regs_5413
;
864 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5413
);
866 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5413
);
869 rf_regs
= rf_regs_2425
;
870 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2425
);
872 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2317
);
875 rf_regs
= rf_regs_2425
;
876 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2425
);
877 if (ah
->ah_mac_srev
< AR5K_SREV_AR2417
) {
879 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2425
);
882 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2417
);
889 /* If it's the first time we set RF buffer, allocate
890 * ah->ah_rf_banks based on ah->ah_rf_banks_size
892 if (ah
->ah_rf_banks
== NULL
) {
893 ah
->ah_rf_banks
= kmalloc(sizeof(u32
) * ah
->ah_rf_banks_size
,
895 if (ah
->ah_rf_banks
== NULL
) {
896 ATH5K_ERR(ah
, "out of memory\n");
901 /* Copy values to modify them */
902 rfb
= ah
->ah_rf_banks
;
904 for (i
= 0; i
< ah
->ah_rf_banks_size
; i
++) {
905 if (ini_rfb
[i
].rfb_bank
>= AR5K_MAX_RF_BANKS
) {
906 ATH5K_ERR(ah
, "invalid bank\n");
910 /* Bank changed, write down the offset */
911 if (bank
!= ini_rfb
[i
].rfb_bank
) {
912 bank
= ini_rfb
[i
].rfb_bank
;
913 ah
->ah_offset
[bank
] = i
;
916 rfb
[i
] = ini_rfb
[i
].rfb_mode_data
[mode
];
919 /* Set Output and Driver bias current (OB/DB) */
920 if (channel
->band
== NL80211_BAND_2GHZ
) {
922 if (channel
->hw_value
== AR5K_MODE_11B
)
923 ee_mode
= AR5K_EEPROM_MODE_11B
;
925 ee_mode
= AR5K_EEPROM_MODE_11G
;
927 /* For RF511X/RF211X combination we
928 * use b_OB and b_DB parameters stored
929 * in eeprom on ee->ee_ob[ee_mode][0]
931 * For all other chips we use OB/DB for 2GHz
932 * stored in the b/g modal section just like
933 * 802.11a on ee->ee_ob[ee_mode][1] */
934 if ((ah
->ah_radio
== AR5K_RF5111
) ||
935 (ah
->ah_radio
== AR5K_RF5112
))
940 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_ob
[ee_mode
][obdb
],
941 AR5K_RF_OB_2GHZ
, true);
943 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_db
[ee_mode
][obdb
],
944 AR5K_RF_DB_2GHZ
, true);
946 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
947 } else if ((channel
->band
== NL80211_BAND_5GHZ
) ||
948 (ah
->ah_radio
== AR5K_RF5111
)) {
950 /* For 11a, Turbo and XR we need to choose
951 * OB/DB based on frequency range */
952 ee_mode
= AR5K_EEPROM_MODE_11A
;
953 obdb
= channel
->center_freq
>= 5725 ? 3 :
954 (channel
->center_freq
>= 5500 ? 2 :
955 (channel
->center_freq
>= 5260 ? 1 :
956 (channel
->center_freq
> 4000 ? 0 : -1)));
961 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_ob
[ee_mode
][obdb
],
962 AR5K_RF_OB_5GHZ
, true);
964 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_db
[ee_mode
][obdb
],
965 AR5K_RF_DB_5GHZ
, true);
968 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
970 /* Set turbo mode (N/A on RF5413) */
971 if ((ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
) &&
972 (ah
->ah_radio
!= AR5K_RF5413
))
973 ath5k_hw_rfb_op(ah
, rf_regs
, 1, AR5K_RF_TURBO
, false);
975 /* Bank Modifications (chip-specific) */
976 if (ah
->ah_radio
== AR5K_RF5111
) {
978 /* Set gain_F settings according to current step */
979 if (channel
->hw_value
!= AR5K_MODE_11B
) {
981 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_FRAME_CTL
,
982 AR5K_PHY_FRAME_CTL_TX_CLIP
,
983 g_step
->gos_param
[0]);
985 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[1],
986 AR5K_RF_PWD_90
, true);
988 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[2],
989 AR5K_RF_PWD_84
, true);
991 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[3],
992 AR5K_RF_RFGAIN_SEL
, true);
994 /* We programmed gain_F parameters, switch back
996 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
1000 /* Bank 6/7 setup */
1002 ath5k_hw_rfb_op(ah
, rf_regs
, !ee
->ee_xpd
[ee_mode
],
1003 AR5K_RF_PWD_XPD
, true);
1005 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_x_gain
[ee_mode
],
1006 AR5K_RF_XPD_GAIN
, true);
1008 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_i_gain
[ee_mode
],
1009 AR5K_RF_GAIN_I
, true);
1011 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_xpd
[ee_mode
],
1012 AR5K_RF_PLO_SEL
, true);
1014 /* Tweak power detectors for half/quarter rate support */
1015 if (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
||
1016 ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
) {
1019 ath5k_hw_rfb_op(ah
, rf_regs
, 0x1f,
1020 AR5K_RF_WAIT_S
, true);
1022 wait_i
= (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
) ?
1025 ath5k_hw_rfb_op(ah
, rf_regs
, wait_i
,
1026 AR5K_RF_WAIT_I
, true);
1027 ath5k_hw_rfb_op(ah
, rf_regs
, 3,
1028 AR5K_RF_MAX_TIME
, true);
1033 if (ah
->ah_radio
== AR5K_RF5112
) {
1035 /* Set gain_F settings according to current step */
1036 if (channel
->hw_value
!= AR5K_MODE_11B
) {
1038 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[0],
1039 AR5K_RF_MIXGAIN_OVR
, true);
1041 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[1],
1042 AR5K_RF_PWD_138
, true);
1044 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[2],
1045 AR5K_RF_PWD_137
, true);
1047 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[3],
1048 AR5K_RF_PWD_136
, true);
1050 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[4],
1051 AR5K_RF_PWD_132
, true);
1053 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[5],
1054 AR5K_RF_PWD_131
, true);
1056 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[6],
1057 AR5K_RF_PWD_130
, true);
1059 /* We programmed gain_F parameters, switch back
1060 * to active state */
1061 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
1064 /* Bank 6/7 setup */
1066 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_xpd
[ee_mode
],
1067 AR5K_RF_XPD_SEL
, true);
1069 if (ah
->ah_radio_5ghz_revision
< AR5K_SREV_RAD_5112A
) {
1070 /* Rev. 1 supports only one xpd */
1071 ath5k_hw_rfb_op(ah
, rf_regs
,
1072 ee
->ee_x_gain
[ee_mode
],
1073 AR5K_RF_XPD_GAIN
, true);
1076 u8
*pdg_curve_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
1077 if (ee
->ee_pd_gains
[ee_mode
] > 1) {
1078 ath5k_hw_rfb_op(ah
, rf_regs
,
1079 pdg_curve_to_idx
[0],
1080 AR5K_RF_PD_GAIN_LO
, true);
1081 ath5k_hw_rfb_op(ah
, rf_regs
,
1082 pdg_curve_to_idx
[1],
1083 AR5K_RF_PD_GAIN_HI
, true);
1085 ath5k_hw_rfb_op(ah
, rf_regs
,
1086 pdg_curve_to_idx
[0],
1087 AR5K_RF_PD_GAIN_LO
, true);
1088 ath5k_hw_rfb_op(ah
, rf_regs
,
1089 pdg_curve_to_idx
[0],
1090 AR5K_RF_PD_GAIN_HI
, true);
1093 /* Lower synth voltage on Rev 2 */
1094 if (ah
->ah_radio
== AR5K_RF5112
&&
1095 (ah
->ah_radio_5ghz_revision
& AR5K_SREV_REV
) > 0) {
1096 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1097 AR5K_RF_HIGH_VC_CP
, true);
1099 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1100 AR5K_RF_MID_VC_CP
, true);
1102 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1103 AR5K_RF_LOW_VC_CP
, true);
1105 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1106 AR5K_RF_PUSH_UP
, true);
1109 /* Decrease power consumption on 5213+ BaseBand */
1110 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
1111 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1112 AR5K_RF_PAD2GND
, true);
1114 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1115 AR5K_RF_XB2_LVL
, true);
1117 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1118 AR5K_RF_XB5_LVL
, true);
1120 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1121 AR5K_RF_PWD_167
, true);
1123 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1124 AR5K_RF_PWD_166
, true);
1128 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_i_gain
[ee_mode
],
1129 AR5K_RF_GAIN_I
, true);
1131 /* Tweak power detector for half/quarter rates */
1132 if (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
||
1133 ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
) {
1136 pd_delay
= (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
) ?
1139 ath5k_hw_rfb_op(ah
, rf_regs
, pd_delay
,
1140 AR5K_RF_PD_PERIOD_A
, true);
1141 ath5k_hw_rfb_op(ah
, rf_regs
, 0xf,
1142 AR5K_RF_PD_DELAY_A
, true);
1147 if (ah
->ah_radio
== AR5K_RF5413
&&
1148 channel
->band
== NL80211_BAND_2GHZ
) {
1150 ath5k_hw_rfb_op(ah
, rf_regs
, 1, AR5K_RF_DERBY_CHAN_SEL_MODE
,
1153 /* Set optimum value for early revisions (on pci-e chips) */
1154 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
&&
1155 ah
->ah_mac_srev
< AR5K_SREV_AR5413
)
1156 ath5k_hw_rfb_op(ah
, rf_regs
, ath5k_hw_bitswap(6, 3),
1157 AR5K_RF_PWD_ICLOBUF_2G
, true);
1161 /* Write RF banks on hw */
1162 for (i
= 0; i
< ah
->ah_rf_banks_size
; i
++) {
1164 ath5k_hw_reg_write(ah
, rfb
[i
], ini_rfb
[i
].rfb_ctrl_register
);
1171 /**************************\
1172 PHY/RF channel functions
1173 \**************************/
1176 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1177 * @channel: The &struct ieee80211_channel
1179 * Map channel frequency to IEEE channel number and convert it
1180 * to an internal channel value used by the RF5110 chipset.
1183 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel
*channel
)
1187 athchan
= (ath5k_hw_bitswap(
1188 (ieee80211_frequency_to_channel(
1189 channel
->center_freq
) - 24) / 2, 5)
1190 << 1) | (1 << 6) | 0x1;
1195 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1196 * @ah: The &struct ath5k_hw
1197 * @channel: The &struct ieee80211_channel
1200 ath5k_hw_rf5110_channel(struct ath5k_hw
*ah
,
1201 struct ieee80211_channel
*channel
)
1206 * Set the channel and wait
1208 data
= ath5k_hw_rf5110_chan2athchan(channel
);
1209 ath5k_hw_reg_write(ah
, data
, AR5K_RF_BUFFER
);
1210 ath5k_hw_reg_write(ah
, 0, AR5K_RF_BUFFER_CONTROL_0
);
1211 usleep_range(1000, 1500);
1217 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1218 * @ieee: IEEE channel number
1219 * @athchan: The &struct ath5k_athchan_2ghz
1221 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1222 * we need to add some offsets and extra flags to the data values we pass
1223 * on to the PHY. So for every 2GHz channel this function gets called
1224 * to do the conversion.
1227 ath5k_hw_rf5111_chan2athchan(unsigned int ieee
,
1228 struct ath5k_athchan_2ghz
*athchan
)
1232 /* Cast this value to catch negative channel numbers (>= -19) */
1233 channel
= (int)ieee
;
1236 * Map 2GHz IEEE channel to 5GHz Atheros channel
1238 if (channel
<= 13) {
1239 athchan
->a2_athchan
= 115 + channel
;
1240 athchan
->a2_flags
= 0x46;
1241 } else if (channel
== 14) {
1242 athchan
->a2_athchan
= 124;
1243 athchan
->a2_flags
= 0x44;
1244 } else if (channel
>= 15 && channel
<= 26) {
1245 athchan
->a2_athchan
= ((channel
- 14) * 4) + 132;
1246 athchan
->a2_flags
= 0x46;
1254 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1255 * @ah: The &struct ath5k_hw
1256 * @channel: The &struct ieee80211_channel
1259 ath5k_hw_rf5111_channel(struct ath5k_hw
*ah
,
1260 struct ieee80211_channel
*channel
)
1262 struct ath5k_athchan_2ghz ath5k_channel_2ghz
;
1263 unsigned int ath5k_channel
=
1264 ieee80211_frequency_to_channel(channel
->center_freq
);
1265 u32 data0
, data1
, clock
;
1269 * Set the channel on the RF5111 radio
1273 if (channel
->band
== NL80211_BAND_2GHZ
) {
1274 /* Map 2GHz channel to 5GHz Atheros channel ID */
1275 ret
= ath5k_hw_rf5111_chan2athchan(
1276 ieee80211_frequency_to_channel(channel
->center_freq
),
1277 &ath5k_channel_2ghz
);
1281 ath5k_channel
= ath5k_channel_2ghz
.a2_athchan
;
1282 data0
= ((ath5k_hw_bitswap(ath5k_channel_2ghz
.a2_flags
, 8) & 0xff)
1286 if (ath5k_channel
< 145 || !(ath5k_channel
& 1)) {
1288 data1
= ((ath5k_hw_bitswap(ath5k_channel
- 24, 8) & 0xff) << 2) |
1289 (clock
<< 1) | (1 << 10) | 1;
1292 data1
= ((ath5k_hw_bitswap((ath5k_channel
- 24) / 2, 8) & 0xff)
1293 << 2) | (clock
<< 1) | (1 << 10) | 1;
1296 ath5k_hw_reg_write(ah
, (data1
& 0xff) | ((data0
& 0xff) << 8),
1298 ath5k_hw_reg_write(ah
, ((data1
>> 8) & 0xff) | (data0
& 0xff00),
1299 AR5K_RF_BUFFER_CONTROL_3
);
1305 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1306 * @ah: The &struct ath5k_hw
1307 * @channel: The &struct ieee80211_channel
1309 * On RF5112/2112 and newer we don't need to do any conversion.
1310 * We pass the frequency value after a few modifications to the
1313 * NOTE: Make sure channel frequency given is within our range or else
1314 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1317 ath5k_hw_rf5112_channel(struct ath5k_hw
*ah
,
1318 struct ieee80211_channel
*channel
)
1320 u32 data
, data0
, data1
, data2
;
1323 data
= data0
= data1
= data2
= 0;
1324 c
= channel
->center_freq
;
1326 /* My guess based on code:
1327 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1328 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1329 * (3040/2). data0 is used to set the PLL divider and data1
1330 * selects synth mode. */
1332 /* Channel 14 and all frequencies with 2Hz spacing
1333 * below/above (non-standard channels) */
1334 if (!((c
- 2224) % 5)) {
1335 /* Same as (c - 2224) / 5 */
1336 data0
= ((2 * (c
- 704)) - 3040) / 10;
1338 /* Channel 1 and all frequencies with 5Hz spacing
1339 * below/above (standard channels without channel 14) */
1340 } else if (!((c
- 2192) % 5)) {
1341 /* Same as (c - 2192) / 5 */
1342 data0
= ((2 * (c
- 672)) - 3040) / 10;
1347 data0
= ath5k_hw_bitswap((data0
<< 2) & 0xff, 8);
1348 /* This is more complex, we have a single synthesizer with
1349 * 4 reference clock settings (?) based on frequency spacing
1350 * and set using data2. LO is at 4800Hz and data0 is again used
1351 * to set some divider.
1353 * NOTE: There is an old atheros presentation at Stanford
1354 * that mentions a method called dual direct conversion
1355 * with 1GHz sliding IF for RF5110. Maybe that's what we
1356 * have here, or an updated version. */
1357 } else if ((c
% 5) != 2 || c
> 5435) {
1358 if (!(c
% 20) && c
>= 5120) {
1359 data0
= ath5k_hw_bitswap(((c
- 4800) / 20 << 2), 8);
1360 data2
= ath5k_hw_bitswap(3, 2);
1361 } else if (!(c
% 10)) {
1362 data0
= ath5k_hw_bitswap(((c
- 4800) / 10 << 1), 8);
1363 data2
= ath5k_hw_bitswap(2, 2);
1364 } else if (!(c
% 5)) {
1365 data0
= ath5k_hw_bitswap((c
- 4800) / 5, 8);
1366 data2
= ath5k_hw_bitswap(1, 2);
1370 data0
= ath5k_hw_bitswap((10 * (c
- 2 - 4800)) / 25 + 1, 8);
1371 data2
= ath5k_hw_bitswap(0, 2);
1374 data
= (data0
<< 4) | (data1
<< 1) | (data2
<< 2) | 0x1001;
1376 ath5k_hw_reg_write(ah
, data
& 0xff, AR5K_RF_BUFFER
);
1377 ath5k_hw_reg_write(ah
, (data
>> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5
);
1383 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1384 * @ah: The &struct ath5k_hw
1385 * @channel: The &struct ieee80211_channel
1387 * AR2425/2417 have a different 2GHz RF so code changes
1388 * a little bit from RF5112.
1391 ath5k_hw_rf2425_channel(struct ath5k_hw
*ah
,
1392 struct ieee80211_channel
*channel
)
1394 u32 data
, data0
, data2
;
1397 data
= data0
= data2
= 0;
1398 c
= channel
->center_freq
;
1401 data0
= ath5k_hw_bitswap((c
- 2272), 8);
1404 } else if ((c
% 5) != 2 || c
> 5435) {
1405 if (!(c
% 20) && c
< 5120)
1406 data0
= ath5k_hw_bitswap(((c
- 4800) / 20 << 2), 8);
1408 data0
= ath5k_hw_bitswap(((c
- 4800) / 10 << 1), 8);
1410 data0
= ath5k_hw_bitswap((c
- 4800) / 5, 8);
1413 data2
= ath5k_hw_bitswap(1, 2);
1415 data0
= ath5k_hw_bitswap((10 * (c
- 2 - 4800)) / 25 + 1, 8);
1416 data2
= ath5k_hw_bitswap(0, 2);
1419 data
= (data0
<< 4) | data2
<< 2 | 0x1001;
1421 ath5k_hw_reg_write(ah
, data
& 0xff, AR5K_RF_BUFFER
);
1422 ath5k_hw_reg_write(ah
, (data
>> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5
);
1428 * ath5k_hw_channel() - Set a channel on the radio chip
1429 * @ah: The &struct ath5k_hw
1430 * @channel: The &struct ieee80211_channel
1432 * This is the main function called to set a channel on the
1433 * radio chip based on the radio chip version.
1436 ath5k_hw_channel(struct ath5k_hw
*ah
,
1437 struct ieee80211_channel
*channel
)
1441 * Check bounds supported by the PHY (we don't care about regulatory
1442 * restrictions at this point).
1444 if (!ath5k_channel_ok(ah
, channel
)) {
1446 "channel frequency (%u MHz) out of supported "
1448 channel
->center_freq
);
1453 * Set the channel and wait
1455 switch (ah
->ah_radio
) {
1457 ret
= ath5k_hw_rf5110_channel(ah
, channel
);
1460 ret
= ath5k_hw_rf5111_channel(ah
, channel
);
1464 ret
= ath5k_hw_rf2425_channel(ah
, channel
);
1467 ret
= ath5k_hw_rf5112_channel(ah
, channel
);
1474 /* Set JAPAN setting for channel 14 */
1475 if (channel
->center_freq
== 2484) {
1476 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_CCKTXCTL
,
1477 AR5K_PHY_CCKTXCTL_JAPAN
);
1479 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_CCKTXCTL
,
1480 AR5K_PHY_CCKTXCTL_WORLD
);
1483 ah
->ah_current_channel
= channel
;
1494 * DOC: PHY Calibration routines
1496 * Noise floor calibration: When we tell the hardware to
1497 * perform a noise floor calibration by setting the
1498 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1499 * sample-and-hold the minimum noise level seen at the antennas.
1500 * This value is then stored in a ring buffer of recently measured
1501 * noise floor values so we have a moving window of the last few
1502 * samples. The median of the values in the history is then loaded
1503 * into the hardware for its own use for RSSI and CCA measurements.
1504 * This type of calibration doesn't interfere with traffic.
1506 * AGC calibration: When we tell the hardware to perform
1507 * an AGC (Automatic Gain Control) calibration by setting the
1508 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1509 * a calibration on the DC offsets of ADCs. During this period
1510 * rx/tx gets disabled so we have to deal with it on the driver
1513 * I/Q calibration: When we tell the hardware to perform
1514 * an I/Q calibration, it tries to correct I/Q imbalance and
1515 * fix QAM constellation by sampling data from rxed frames.
1516 * It doesn't interfere with traffic.
1518 * For more infos on AGC and I/Q calibration check out patent doc
1523 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1524 * @ah: The &struct ath5k_hw
1527 ath5k_hw_read_measured_noise_floor(struct ath5k_hw
*ah
)
1531 val
= ath5k_hw_reg_read(ah
, AR5K_PHY_NF
);
1532 return sign_extend32(AR5K_REG_MS(val
, AR5K_PHY_NF_MINCCA_PWR
), 8);
1536 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1537 * @ah: The &struct ath5k_hw
1540 ath5k_hw_init_nfcal_hist(struct ath5k_hw
*ah
)
1544 ah
->ah_nfcal_hist
.index
= 0;
1545 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
; i
++)
1546 ah
->ah_nfcal_hist
.nfval
[i
] = AR5K_TUNE_CCA_MAX_GOOD_VALUE
;
1550 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1551 * @ah: The &struct ath5k_hw
1552 * @noise_floor: The NF we got from hw
1554 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw
*ah
, s16 noise_floor
)
1556 struct ath5k_nfcal_hist
*hist
= &ah
->ah_nfcal_hist
;
1557 hist
->index
= (hist
->index
+ 1) & (ATH5K_NF_CAL_HIST_MAX
- 1);
1558 hist
->nfval
[hist
->index
] = noise_floor
;
1562 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1563 * @ah: The &struct ath5k_hw
1566 ath5k_hw_get_median_noise_floor(struct ath5k_hw
*ah
)
1568 s16 sort
[ATH5K_NF_CAL_HIST_MAX
];
1572 memcpy(sort
, ah
->ah_nfcal_hist
.nfval
, sizeof(sort
));
1573 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
- 1; i
++) {
1574 for (j
= 1; j
< ATH5K_NF_CAL_HIST_MAX
- i
; j
++) {
1575 if (sort
[j
] > sort
[j
- 1]) {
1577 sort
[j
] = sort
[j
- 1];
1582 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
; i
++) {
1583 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1584 "cal %d:%d\n", i
, sort
[i
]);
1586 return sort
[(ATH5K_NF_CAL_HIST_MAX
- 1) / 2];
1590 * ath5k_hw_update_noise_floor() - Update NF on hardware
1591 * @ah: The &struct ath5k_hw
1593 * This is the main function we call to perform a NF calibration,
1594 * it reads NF from hardware, calculates the median and updates
1598 ath5k_hw_update_noise_floor(struct ath5k_hw
*ah
)
1600 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1605 /* keep last value if calibration hasn't completed */
1606 if (ath5k_hw_reg_read(ah
, AR5K_PHY_AGCCTL
) & AR5K_PHY_AGCCTL_NF
) {
1607 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1608 "NF did not complete in calibration window\n");
1613 ah
->ah_cal_mask
|= AR5K_CALIBRATION_NF
;
1615 ee_mode
= ath5k_eeprom_mode_from_channel(ah
, ah
->ah_current_channel
);
1617 /* completed NF calibration, test threshold */
1618 nf
= ath5k_hw_read_measured_noise_floor(ah
);
1619 threshold
= ee
->ee_noise_floor_thr
[ee_mode
];
1621 if (nf
> threshold
) {
1622 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1623 "noise floor failure detected; "
1624 "read %d, threshold %d\n",
1627 nf
= AR5K_TUNE_CCA_MAX_GOOD_VALUE
;
1630 ath5k_hw_update_nfcal_hist(ah
, nf
);
1631 nf
= ath5k_hw_get_median_noise_floor(ah
);
1633 /* load noise floor (in .5 dBm) so the hardware will use it */
1634 val
= ath5k_hw_reg_read(ah
, AR5K_PHY_NF
) & ~AR5K_PHY_NF_M
;
1635 val
|= (nf
* 2) & AR5K_PHY_NF_M
;
1636 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_NF
);
1638 AR5K_REG_MASKED_BITS(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_NF
,
1639 ~(AR5K_PHY_AGCCTL_NF_EN
| AR5K_PHY_AGCCTL_NF_NOUPDATE
));
1641 ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_NF
,
1645 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1646 * so that we're not capped by the median we just loaded.
1647 * This will be used as the initial value for the next noise
1648 * floor calibration.
1650 val
= (val
& ~AR5K_PHY_NF_M
) | ((-50 * 2) & AR5K_PHY_NF_M
);
1651 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_NF
);
1652 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
1653 AR5K_PHY_AGCCTL_NF_EN
|
1654 AR5K_PHY_AGCCTL_NF_NOUPDATE
|
1655 AR5K_PHY_AGCCTL_NF
);
1657 ah
->ah_noise_floor
= nf
;
1659 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_NF
;
1661 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1662 "noise floor calibrated: %d\n", nf
);
1666 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1667 * @ah: The &struct ath5k_hw
1668 * @channel: The &struct ieee80211_channel
1670 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1673 ath5k_hw_rf5110_calibrate(struct ath5k_hw
*ah
,
1674 struct ieee80211_channel
*channel
)
1676 u32 phy_sig
, phy_agc
, phy_sat
, beacon
;
1679 if (!(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
))
1683 * Disable beacons and RX/TX queues, wait
1685 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW_5210
,
1686 AR5K_DIAG_SW_DIS_TX_5210
| AR5K_DIAG_SW_DIS_RX_5210
);
1687 beacon
= ath5k_hw_reg_read(ah
, AR5K_BEACON_5210
);
1688 ath5k_hw_reg_write(ah
, beacon
& ~AR5K_BEACON_ENABLE
, AR5K_BEACON_5210
);
1690 usleep_range(2000, 2500);
1693 * Set the channel (with AGC turned off)
1695 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1697 ret
= ath5k_hw_channel(ah
, channel
);
1700 * Activate PHY and wait
1702 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_ENABLE
, AR5K_PHY_ACT
);
1703 usleep_range(1000, 1500);
1705 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1711 * Calibrate the radio chip
1714 /* Remember normal state */
1715 phy_sig
= ath5k_hw_reg_read(ah
, AR5K_PHY_SIG
);
1716 phy_agc
= ath5k_hw_reg_read(ah
, AR5K_PHY_AGCCOARSE
);
1717 phy_sat
= ath5k_hw_reg_read(ah
, AR5K_PHY_ADCSAT
);
1719 /* Update radio registers */
1720 ath5k_hw_reg_write(ah
, (phy_sig
& ~(AR5K_PHY_SIG_FIRPWR
)) |
1721 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR
), AR5K_PHY_SIG
);
1723 ath5k_hw_reg_write(ah
, (phy_agc
& ~(AR5K_PHY_AGCCOARSE_HI
|
1724 AR5K_PHY_AGCCOARSE_LO
)) |
1725 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI
) |
1726 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO
), AR5K_PHY_AGCCOARSE
);
1728 ath5k_hw_reg_write(ah
, (phy_sat
& ~(AR5K_PHY_ADCSAT_ICNT
|
1729 AR5K_PHY_ADCSAT_THR
)) |
1730 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT
) |
1731 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR
), AR5K_PHY_ADCSAT
);
1735 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1737 ath5k_hw_reg_write(ah
, AR5K_PHY_RFSTG_DISABLE
, AR5K_PHY_RFSTG
);
1738 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1740 usleep_range(1000, 1500);
1743 * Enable calibration and wait until completion
1745 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_CAL
);
1747 ret
= ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
1748 AR5K_PHY_AGCCTL_CAL
, 0, false);
1750 /* Reset to normal state */
1751 ath5k_hw_reg_write(ah
, phy_sig
, AR5K_PHY_SIG
);
1752 ath5k_hw_reg_write(ah
, phy_agc
, AR5K_PHY_AGCCOARSE
);
1753 ath5k_hw_reg_write(ah
, phy_sat
, AR5K_PHY_ADCSAT
);
1756 ATH5K_ERR(ah
, "calibration timeout (%uMHz)\n",
1757 channel
->center_freq
);
1762 * Re-enable RX/TX and beacons
1764 AR5K_REG_DISABLE_BITS(ah
, AR5K_DIAG_SW_5210
,
1765 AR5K_DIAG_SW_DIS_TX_5210
| AR5K_DIAG_SW_DIS_RX_5210
);
1766 ath5k_hw_reg_write(ah
, beacon
, AR5K_BEACON_5210
);
1772 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1773 * @ah: The &struct ath5k_hw
1776 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw
*ah
)
1779 s32 iq_corr
, i_coff
, i_coffd
, q_coff
, q_coffd
;
1782 /* Skip if I/Q calibration is not needed or if it's still running */
1783 if (!ah
->ah_iq_cal_needed
)
1785 else if (ath5k_hw_reg_read(ah
, AR5K_PHY_IQ
) & AR5K_PHY_IQ_RUN
) {
1786 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1787 "I/Q calibration still running");
1791 /* Calibration has finished, get the results and re-run */
1793 /* Work around for empty results which can apparently happen on 5212:
1794 * Read registers up to 10 times until we get both i_pr and q_pwr */
1795 for (i
= 0; i
<= 10; i
++) {
1796 iq_corr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_CORR
);
1797 i_pwr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_PWR_I
);
1798 q_pwr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_PWR_Q
);
1799 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1800 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr
, i_pwr
, q_pwr
);
1805 i_coffd
= ((i_pwr
>> 1) + (q_pwr
>> 1)) >> 7;
1807 if (ah
->ah_version
== AR5K_AR5211
)
1808 q_coffd
= q_pwr
>> 6;
1810 q_coffd
= q_pwr
>> 7;
1812 /* In case i_coffd became zero, cancel calibration
1813 * not only it's too small, it'll also result a divide
1814 * by zero later on. */
1815 if (i_coffd
== 0 || q_coffd
< 2)
1818 /* Protect against loss of sign bits */
1820 i_coff
= (-iq_corr
) / i_coffd
;
1821 i_coff
= clamp(i_coff
, -32, 31); /* signed 6 bit */
1823 if (ah
->ah_version
== AR5K_AR5211
)
1824 q_coff
= (i_pwr
/ q_coffd
) - 64;
1826 q_coff
= (i_pwr
/ q_coffd
) - 128;
1827 q_coff
= clamp(q_coff
, -16, 15); /* signed 5 bit */
1829 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1830 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1831 i_coff
, q_coff
, i_coffd
, q_coffd
);
1833 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1834 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_Q_I_COFF
, i_coff
);
1835 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_Q_Q_COFF
, q_coff
);
1836 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_ENABLE
);
1838 /* Re-enable calibration -if we don't we'll commit
1839 * the same values again and again */
1840 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
,
1841 AR5K_PHY_IQ_CAL_NUM_LOG_MAX
, 15);
1842 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_RUN
);
1848 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1849 * @ah: The &struct ath5k_hw
1850 * @channel: The &struct ieee80211_channel
1852 * The main function we call from above to perform
1853 * a short or full PHY calibration based on RF chip
1854 * and current channel
1857 ath5k_hw_phy_calibrate(struct ath5k_hw
*ah
,
1858 struct ieee80211_channel
*channel
)
1862 if (ah
->ah_radio
== AR5K_RF5110
)
1863 return ath5k_hw_rf5110_calibrate(ah
, channel
);
1865 ret
= ath5k_hw_rf511x_iq_calibrate(ah
);
1867 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1868 "No I/Q correction performed (%uMHz)\n",
1869 channel
->center_freq
);
1871 /* Happens all the time if there is not much
1872 * traffic, consider it normal behaviour. */
1876 /* On full calibration request a PAPD probe for
1877 * gainf calibration if needed */
1878 if ((ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
1879 (ah
->ah_radio
== AR5K_RF5111
||
1880 ah
->ah_radio
== AR5K_RF5112
) &&
1881 channel
->hw_value
!= AR5K_MODE_11B
)
1882 ath5k_hw_request_rfgain_probe(ah
);
1884 /* Update noise floor */
1885 if (!(ah
->ah_cal_mask
& AR5K_CALIBRATION_NF
))
1886 ath5k_hw_update_noise_floor(ah
);
1892 /***************************\
1893 * Spur mitigation functions *
1894 \***************************/
1897 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1898 * @ah: The &struct ath5k_hw
1899 * @channel: The &struct ieee80211_channel
1901 * This function gets called during PHY initialization to
1902 * configure the spur filter for the given channel. Spur is noise
1903 * generated due to "reflection" effects, for more information on this
1904 * method check out patent US7643810
1907 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw
*ah
,
1908 struct ieee80211_channel
*channel
)
1910 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1911 u32 mag_mask
[4] = {0, 0, 0, 0};
1912 u32 pilot_mask
[2] = {0, 0};
1913 /* Note: fbin values are scaled up by 2 */
1914 u16 spur_chan_fbin
, chan_fbin
, symbol_width
, spur_detection_window
;
1915 s32 spur_delta_phase
, spur_freq_sigma_delta
;
1916 s32 spur_offset
, num_symbols_x16
;
1917 u8 num_symbol_offsets
, i
, freq_band
;
1919 /* Convert current frequency to fbin value (the same way channels
1920 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1921 * up by 2 so we can compare it later */
1922 if (channel
->band
== NL80211_BAND_2GHZ
) {
1923 chan_fbin
= (channel
->center_freq
- 2300) * 10;
1924 freq_band
= AR5K_EEPROM_BAND_2GHZ
;
1926 chan_fbin
= (channel
->center_freq
- 4900) * 10;
1927 freq_band
= AR5K_EEPROM_BAND_5GHZ
;
1930 /* Check if any spur_chan_fbin from EEPROM is
1931 * within our current channel's spur detection range */
1932 spur_chan_fbin
= AR5K_EEPROM_NO_SPUR
;
1933 spur_detection_window
= AR5K_SPUR_CHAN_WIDTH
;
1934 /* XXX: Half/Quarter channels ?*/
1935 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
)
1936 spur_detection_window
*= 2;
1938 for (i
= 0; i
< AR5K_EEPROM_N_SPUR_CHANS
; i
++) {
1939 spur_chan_fbin
= ee
->ee_spur_chans
[i
][freq_band
];
1941 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1942 * so it's zero if we got nothing from EEPROM */
1943 if (spur_chan_fbin
== AR5K_EEPROM_NO_SPUR
) {
1944 spur_chan_fbin
&= AR5K_EEPROM_SPUR_CHAN_MASK
;
1948 if ((chan_fbin
- spur_detection_window
<=
1949 (spur_chan_fbin
& AR5K_EEPROM_SPUR_CHAN_MASK
)) &&
1950 (chan_fbin
+ spur_detection_window
>=
1951 (spur_chan_fbin
& AR5K_EEPROM_SPUR_CHAN_MASK
))) {
1952 spur_chan_fbin
&= AR5K_EEPROM_SPUR_CHAN_MASK
;
1957 /* We need to enable spur filter for this channel */
1958 if (spur_chan_fbin
) {
1959 spur_offset
= spur_chan_fbin
- chan_fbin
;
1962 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1963 * spur_delta_phase -> spur_offset / chip_freq << 11
1964 * Note: Both values have 100Hz resolution
1966 switch (ah
->ah_bwmode
) {
1967 case AR5K_BWMODE_40MHZ
:
1968 /* Both sample_freq and chip_freq are 80MHz */
1969 spur_delta_phase
= (spur_offset
<< 16) / 25;
1970 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1971 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
* 2;
1973 case AR5K_BWMODE_10MHZ
:
1974 /* Both sample_freq and chip_freq are 20MHz (?) */
1975 spur_delta_phase
= (spur_offset
<< 18) / 25;
1976 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1977 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
/ 2;
1979 case AR5K_BWMODE_5MHZ
:
1980 /* Both sample_freq and chip_freq are 10MHz (?) */
1981 spur_delta_phase
= (spur_offset
<< 19) / 25;
1982 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1983 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
/ 4;
1986 if (channel
->band
== NL80211_BAND_5GHZ
) {
1987 /* Both sample_freq and chip_freq are 40MHz */
1988 spur_delta_phase
= (spur_offset
<< 17) / 25;
1989 spur_freq_sigma_delta
=
1990 (spur_delta_phase
>> 10);
1992 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
;
1994 /* sample_freq -> 40MHz chip_freq -> 44MHz
1995 * (for b compatibility) */
1996 spur_delta_phase
= (spur_offset
<< 17) / 25;
1997 spur_freq_sigma_delta
=
1998 (spur_offset
<< 8) / 55;
2000 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
;
2005 /* Calculate pilot and magnitude masks */
2007 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2008 * and divide by symbol_width to find how many symbols we have
2009 * Note: number of symbols is scaled up by 16 */
2010 num_symbols_x16
= ((spur_offset
* 1000) << 4) / symbol_width
;
2012 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2013 if (!(num_symbols_x16
& 0xF))
2015 num_symbol_offsets
= 3;
2018 num_symbol_offsets
= 4;
2020 for (i
= 0; i
< num_symbol_offsets
; i
++) {
2022 /* Calculate pilot mask */
2024 (num_symbols_x16
/ 16) + i
+ 25;
2026 /* Pilot magnitude mask seems to be a way to
2027 * declare the boundaries for our detection
2028 * window or something, it's 2 for the middle
2029 * value(s) where the symbol is expected to be
2030 * and 1 on the boundary values */
2032 (i
== 0 || i
== (num_symbol_offsets
- 1))
2035 if (curr_sym_off
>= 0 && curr_sym_off
<= 32) {
2036 if (curr_sym_off
<= 25)
2037 pilot_mask
[0] |= 1 << curr_sym_off
;
2038 else if (curr_sym_off
>= 27)
2039 pilot_mask
[0] |= 1 << (curr_sym_off
- 1);
2040 } else if (curr_sym_off
>= 33 && curr_sym_off
<= 52)
2041 pilot_mask
[1] |= 1 << (curr_sym_off
- 33);
2043 /* Calculate magnitude mask (for viterbi decoder) */
2044 if (curr_sym_off
>= -1 && curr_sym_off
<= 14)
2046 plt_mag_map
<< (curr_sym_off
+ 1) * 2;
2047 else if (curr_sym_off
>= 15 && curr_sym_off
<= 30)
2049 plt_mag_map
<< (curr_sym_off
- 15) * 2;
2050 else if (curr_sym_off
>= 31 && curr_sym_off
<= 46)
2052 plt_mag_map
<< (curr_sym_off
- 31) * 2;
2053 else if (curr_sym_off
>= 47 && curr_sym_off
<= 53)
2055 plt_mag_map
<< (curr_sym_off
- 47) * 2;
2059 /* Write settings on hw to enable spur filter */
2060 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2061 AR5K_PHY_BIN_MASK_CTL_RATE
, 0xff);
2062 /* XXX: Self correlator also ? */
2063 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
2064 AR5K_PHY_IQ_PILOT_MASK_EN
|
2065 AR5K_PHY_IQ_CHAN_MASK_EN
|
2066 AR5K_PHY_IQ_SPUR_FILT_EN
);
2068 /* Set delta phase and freq sigma delta */
2069 ath5k_hw_reg_write(ah
,
2070 AR5K_REG_SM(spur_delta_phase
,
2071 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE
) |
2072 AR5K_REG_SM(spur_freq_sigma_delta
,
2073 AR5K_PHY_TIMING_11_SPUR_FREQ_SD
) |
2074 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC
,
2075 AR5K_PHY_TIMING_11
);
2077 /* Write pilot masks */
2078 ath5k_hw_reg_write(ah
, pilot_mask
[0], AR5K_PHY_TIMING_7
);
2079 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_8
,
2080 AR5K_PHY_TIMING_8_PILOT_MASK_2
,
2083 ath5k_hw_reg_write(ah
, pilot_mask
[0], AR5K_PHY_TIMING_9
);
2084 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_10
,
2085 AR5K_PHY_TIMING_10_PILOT_MASK_2
,
2088 /* Write magnitude masks */
2089 ath5k_hw_reg_write(ah
, mag_mask
[0], AR5K_PHY_BIN_MASK_1
);
2090 ath5k_hw_reg_write(ah
, mag_mask
[1], AR5K_PHY_BIN_MASK_2
);
2091 ath5k_hw_reg_write(ah
, mag_mask
[2], AR5K_PHY_BIN_MASK_3
);
2092 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2093 AR5K_PHY_BIN_MASK_CTL_MASK_4
,
2096 ath5k_hw_reg_write(ah
, mag_mask
[0], AR5K_PHY_BIN_MASK2_1
);
2097 ath5k_hw_reg_write(ah
, mag_mask
[1], AR5K_PHY_BIN_MASK2_2
);
2098 ath5k_hw_reg_write(ah
, mag_mask
[2], AR5K_PHY_BIN_MASK2_3
);
2099 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK2_4
,
2100 AR5K_PHY_BIN_MASK2_4_MASK_4
,
2103 } else if (ath5k_hw_reg_read(ah
, AR5K_PHY_IQ
) &
2104 AR5K_PHY_IQ_SPUR_FILT_EN
) {
2105 /* Clean up spur mitigation settings and disable filter */
2106 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2107 AR5K_PHY_BIN_MASK_CTL_RATE
, 0);
2108 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_IQ
,
2109 AR5K_PHY_IQ_PILOT_MASK_EN
|
2110 AR5K_PHY_IQ_CHAN_MASK_EN
|
2111 AR5K_PHY_IQ_SPUR_FILT_EN
);
2112 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_11
);
2114 /* Clear pilot masks */
2115 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_7
);
2116 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_8
,
2117 AR5K_PHY_TIMING_8_PILOT_MASK_2
,
2120 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_9
);
2121 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_10
,
2122 AR5K_PHY_TIMING_10_PILOT_MASK_2
,
2125 /* Clear magnitude masks */
2126 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_1
);
2127 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_2
);
2128 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_3
);
2129 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2130 AR5K_PHY_BIN_MASK_CTL_MASK_4
,
2133 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_1
);
2134 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_2
);
2135 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_3
);
2136 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK2_4
,
2137 AR5K_PHY_BIN_MASK2_4_MASK_4
,
2148 * DOC: Antenna control
2150 * Hw supports up to 14 antennas ! I haven't found any card that implements
2151 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2152 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2153 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2155 * We can have a single antenna for RX and multiple antennas for TX.
2156 * RX antenna is our "default" antenna (usually antenna 1) set on
2157 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2158 * (0 for automatic selection, 1 - 14 antenna number).
2160 * We can let hw do all the work doing fast antenna diversity for both
2161 * tx and rx or we can do things manually. Here are the options we have
2162 * (all are bits of STA_ID1 register):
2164 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2165 * control descriptor, use the default antenna to transmit or else use the last
2166 * antenna on which we received an ACK.
2168 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2169 * the antenna on which we got the ACK for that frame.
2171 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2172 * one on the TX descriptor.
2174 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2175 * (ACKs etc), or else use current antenna (the one we just used for TX).
2177 * Using the above we support the following scenarios:
2179 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2181 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2183 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2185 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2187 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2189 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2191 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2193 * Also note that when setting antenna to F on tx descriptor card inverts
2194 * current tx antenna.
2198 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2199 * @ah: The &struct ath5k_hw
2200 * @ant: Antenna number
2203 ath5k_hw_set_def_antenna(struct ath5k_hw
*ah
, u8 ant
)
2205 if (ah
->ah_version
!= AR5K_AR5210
)
2206 ath5k_hw_reg_write(ah
, ant
& 0x7, AR5K_DEFAULT_ANTENNA
);
2210 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
2211 * @ah: The &struct ath5k_hw
2212 * @ee_mode: One of enum ath5k_driver_mode
2213 * @enable: True to enable, false to disable
2216 ath5k_hw_set_fast_div(struct ath5k_hw
*ah
, u8 ee_mode
, bool enable
)
2219 case AR5K_EEPROM_MODE_11G
:
2220 /* XXX: This is set to
2221 * disabled on initvals !!! */
2222 case AR5K_EEPROM_MODE_11A
:
2224 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
2225 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
2227 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
2228 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
2230 case AR5K_EEPROM_MODE_11B
:
2231 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
2232 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
2239 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RESTART
,
2240 AR5K_PHY_RESTART_DIV_GC
, 4);
2242 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_FAST_ANT_DIV
,
2243 AR5K_PHY_FAST_ANT_DIV_EN
);
2245 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RESTART
,
2246 AR5K_PHY_RESTART_DIV_GC
, 0);
2248 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_FAST_ANT_DIV
,
2249 AR5K_PHY_FAST_ANT_DIV_EN
);
2254 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2255 * @ah: The &struct ath5k_hw
2256 * @ee_mode: One of enum ath5k_driver_mode
2258 * Switch table comes from EEPROM and includes information on controlling
2259 * the 2 antenna RX attenuators
2262 ath5k_hw_set_antenna_switch(struct ath5k_hw
*ah
, u8 ee_mode
)
2267 * In case a fixed antenna was set as default
2268 * use the same switch table twice.
2270 if (ah
->ah_ant_mode
== AR5K_ANTMODE_FIXED_A
)
2271 ant0
= ant1
= AR5K_ANT_SWTABLE_A
;
2272 else if (ah
->ah_ant_mode
== AR5K_ANTMODE_FIXED_B
)
2273 ant0
= ant1
= AR5K_ANT_SWTABLE_B
;
2275 ant0
= AR5K_ANT_SWTABLE_A
;
2276 ant1
= AR5K_ANT_SWTABLE_B
;
2279 /* Set antenna idle switch table */
2280 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_ANT_CTL
,
2281 AR5K_PHY_ANT_CTL_SWTABLE_IDLE
,
2282 (ah
->ah_ant_ctl
[ee_mode
][AR5K_ANT_CTL
] |
2283 AR5K_PHY_ANT_CTL_TXRX_EN
));
2285 /* Set antenna switch tables */
2286 ath5k_hw_reg_write(ah
, ah
->ah_ant_ctl
[ee_mode
][ant0
],
2287 AR5K_PHY_ANT_SWITCH_TABLE_0
);
2288 ath5k_hw_reg_write(ah
, ah
->ah_ant_ctl
[ee_mode
][ant1
],
2289 AR5K_PHY_ANT_SWITCH_TABLE_1
);
2293 * ath5k_hw_set_antenna_mode() - Set antenna operating mode
2294 * @ah: The &struct ath5k_hw
2295 * @ant_mode: One of enum ath5k_ant_mode
2298 ath5k_hw_set_antenna_mode(struct ath5k_hw
*ah
, u8 ant_mode
)
2300 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
2301 bool use_def_for_tx
, update_def_on_tx
, use_def_for_rts
, fast_div
;
2302 bool use_def_for_sg
;
2307 /* if channel is not initialized yet we can't set the antennas
2308 * so just store the mode. it will be set on the next reset */
2309 if (channel
== NULL
) {
2310 ah
->ah_ant_mode
= ant_mode
;
2314 def_ant
= ah
->ah_def_ant
;
2316 ee_mode
= ath5k_eeprom_mode_from_channel(ah
, channel
);
2319 case AR5K_ANTMODE_DEFAULT
:
2321 use_def_for_tx
= false;
2322 update_def_on_tx
= false;
2323 use_def_for_rts
= false;
2324 use_def_for_sg
= false;
2327 case AR5K_ANTMODE_FIXED_A
:
2330 use_def_for_tx
= true;
2331 update_def_on_tx
= false;
2332 use_def_for_rts
= true;
2333 use_def_for_sg
= true;
2336 case AR5K_ANTMODE_FIXED_B
:
2339 use_def_for_tx
= true;
2340 update_def_on_tx
= false;
2341 use_def_for_rts
= true;
2342 use_def_for_sg
= true;
2345 case AR5K_ANTMODE_SINGLE_AP
:
2346 def_ant
= 1; /* updated on tx */
2348 use_def_for_tx
= true;
2349 update_def_on_tx
= true;
2350 use_def_for_rts
= true;
2351 use_def_for_sg
= true;
2354 case AR5K_ANTMODE_SECTOR_AP
:
2355 tx_ant
= 1; /* variable */
2356 use_def_for_tx
= false;
2357 update_def_on_tx
= false;
2358 use_def_for_rts
= true;
2359 use_def_for_sg
= false;
2362 case AR5K_ANTMODE_SECTOR_STA
:
2363 tx_ant
= 1; /* variable */
2364 use_def_for_tx
= true;
2365 update_def_on_tx
= false;
2366 use_def_for_rts
= true;
2367 use_def_for_sg
= false;
2370 case AR5K_ANTMODE_DEBUG
:
2373 use_def_for_tx
= false;
2374 update_def_on_tx
= false;
2375 use_def_for_rts
= false;
2376 use_def_for_sg
= false;
2383 ah
->ah_tx_ant
= tx_ant
;
2384 ah
->ah_ant_mode
= ant_mode
;
2385 ah
->ah_def_ant
= def_ant
;
2387 sta_id1
|= use_def_for_tx
? AR5K_STA_ID1_DEFAULT_ANTENNA
: 0;
2388 sta_id1
|= update_def_on_tx
? AR5K_STA_ID1_DESC_ANTENNA
: 0;
2389 sta_id1
|= use_def_for_rts
? AR5K_STA_ID1_RTS_DEF_ANTENNA
: 0;
2390 sta_id1
|= use_def_for_sg
? AR5K_STA_ID1_SELFGEN_DEF_ANT
: 0;
2392 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, AR5K_STA_ID1_ANTENNA_SETTINGS
);
2395 AR5K_REG_ENABLE_BITS(ah
, AR5K_STA_ID1
, sta_id1
);
2397 ath5k_hw_set_antenna_switch(ah
, ee_mode
);
2398 /* Note: set diversity before default antenna
2399 * because it won't work correctly */
2400 ath5k_hw_set_fast_div(ah
, ee_mode
, fast_div
);
2401 ath5k_hw_set_def_antenna(ah
, def_ant
);
2414 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2415 * @target: X value of the middle point
2416 * @x_left: X value of the left point
2417 * @x_right: X value of the right point
2418 * @y_left: Y value of the left point
2419 * @y_right: Y value of the right point
2422 ath5k_get_interpolated_value(s16 target
, s16 x_left
, s16 x_right
,
2423 s16 y_left
, s16 y_right
)
2427 /* Avoid divide by zero and skip interpolation
2428 * if we have the same point */
2429 if ((x_left
== x_right
) || (y_left
== y_right
))
2433 * Since we use ints and not fps, we need to scale up in
2434 * order to get a sane ratio value (or else we 'll eg. get
2435 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2436 * to have some accuracy both for 0.5 and 0.25 steps.
2438 ratio
= ((100 * y_right
- 100 * y_left
) / (x_right
- x_left
));
2440 /* Now scale down to be in range */
2441 result
= y_left
+ (ratio
* (target
- x_left
) / 100);
2447 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2448 * linear PCDAC curve
2449 * @stepL: Left array with y values (pcdac steps)
2450 * @stepR: Right array with y values (pcdac steps)
2451 * @pwrL: Left array with x values (power steps)
2452 * @pwrR: Right array with x values (power steps)
2454 * Since we have the top of the curve and we draw the line below
2455 * until we reach 1 (1 pcdac step) we need to know which point
2456 * (x value) that is so that we don't go below x axis and have negative
2457 * pcdac values when creating the curve, or fill the table with zeros.
2460 ath5k_get_linear_pcdac_min(const u8
*stepL
, const u8
*stepR
,
2461 const s16
*pwrL
, const s16
*pwrR
)
2464 s16 min_pwrL
, min_pwrR
;
2467 /* Some vendors write the same pcdac value twice !!! */
2468 if (stepL
[0] == stepL
[1] || stepR
[0] == stepR
[1])
2469 return max(pwrL
[0], pwrR
[0]);
2471 if (pwrL
[0] == pwrL
[1])
2477 tmp
= (s8
) ath5k_get_interpolated_value(pwr_i
,
2479 stepL
[0], stepL
[1]);
2485 if (pwrR
[0] == pwrR
[1])
2491 tmp
= (s8
) ath5k_get_interpolated_value(pwr_i
,
2493 stepR
[0], stepR
[1]);
2499 /* Keep the right boundary so that it works for both curves */
2500 return max(min_pwrL
, min_pwrR
);
2504 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2505 * @pmin: Minimum power value (xmin)
2506 * @pmax: Maximum power value (xmax)
2507 * @pwr: Array of power steps (x values)
2508 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2509 * @num_points: Number of provided points
2510 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2511 * @type: One of enum ath5k_powertable_type (eeprom.h)
2513 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2514 * Power to PCDAC curve.
2516 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2517 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2518 * PCDAC/PDADC step for each curve is 64 but we can write more than
2519 * one curves on hw so we can go up to 128 (which is the max step we
2520 * can write on the final table).
2522 * We write y values (PCDAC/PDADC steps) on hw.
2525 ath5k_create_power_curve(s16 pmin
, s16 pmax
,
2526 const s16
*pwr
, const u8
*vpd
,
2528 u8
*vpd_table
, u8 type
)
2530 u8 idx
[2] = { 0, 1 };
2531 s16 pwr_i
= 2 * pmin
;
2537 /* We want the whole line, so adjust boundaries
2538 * to cover the entire power range. Note that
2539 * power values are already 0.25dB so no need
2540 * to multiply pwr_i by 2 */
2541 if (type
== AR5K_PWRTABLE_LINEAR_PCDAC
) {
2547 /* Find surrounding turning points (TPs)
2548 * and interpolate between them */
2549 for (i
= 0; (i
<= (u16
) (pmax
- pmin
)) &&
2550 (i
< AR5K_EEPROM_POWER_TABLE_SIZE
); i
++) {
2552 /* We passed the right TP, move to the next set of TPs
2553 * if we pass the last TP, extrapolate above using the last
2554 * two TPs for ratio */
2555 if ((pwr_i
> pwr
[idx
[1]]) && (idx
[1] < num_points
- 1)) {
2560 vpd_table
[i
] = (u8
) ath5k_get_interpolated_value(pwr_i
,
2561 pwr
[idx
[0]], pwr
[idx
[1]],
2562 vpd
[idx
[0]], vpd
[idx
[1]]);
2564 /* Increase by 0.5dB
2565 * (0.25 dB units) */
2571 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2572 * for a given channel.
2573 * @ah: The &struct ath5k_hw
2574 * @channel: The &struct ieee80211_channel
2575 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2576 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2578 * Get the surrounding per-channel power calibration piers
2579 * for a given frequency so that we can interpolate between
2580 * them and come up with an appropriate dataset for our current
2584 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw
*ah
,
2585 struct ieee80211_channel
*channel
,
2586 struct ath5k_chan_pcal_info
**pcinfo_l
,
2587 struct ath5k_chan_pcal_info
**pcinfo_r
)
2589 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2590 struct ath5k_chan_pcal_info
*pcinfo
;
2593 u32 target
= channel
->center_freq
;
2598 switch (channel
->hw_value
) {
2599 case AR5K_EEPROM_MODE_11A
:
2600 pcinfo
= ee
->ee_pwr_cal_a
;
2601 mode
= AR5K_EEPROM_MODE_11A
;
2603 case AR5K_EEPROM_MODE_11B
:
2604 pcinfo
= ee
->ee_pwr_cal_b
;
2605 mode
= AR5K_EEPROM_MODE_11B
;
2607 case AR5K_EEPROM_MODE_11G
:
2609 pcinfo
= ee
->ee_pwr_cal_g
;
2610 mode
= AR5K_EEPROM_MODE_11G
;
2613 max
= ee
->ee_n_piers
[mode
] - 1;
2615 /* Frequency is below our calibrated
2616 * range. Use the lowest power curve
2618 if (target
< pcinfo
[0].freq
) {
2623 /* Frequency is above our calibrated
2624 * range. Use the highest power curve
2626 if (target
> pcinfo
[max
].freq
) {
2627 idx_l
= idx_r
= max
;
2631 /* Frequency is inside our calibrated
2632 * channel range. Pick the surrounding
2633 * calibration piers so that we can
2635 for (i
= 0; i
<= max
; i
++) {
2637 /* Frequency matches one of our calibration
2638 * piers, no need to interpolate, just use
2639 * that calibration pier */
2640 if (pcinfo
[i
].freq
== target
) {
2645 /* We found a calibration pier that's above
2646 * frequency, use this pier and the previous
2647 * one to interpolate */
2648 if (target
< pcinfo
[i
].freq
) {
2656 *pcinfo_l
= &pcinfo
[idx_l
];
2657 *pcinfo_r
= &pcinfo
[idx_r
];
2661 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2663 * @ah: The &struct ath5k_hw *ah,
2664 * @channel: The &struct ieee80211_channel
2665 * @rates: The &struct ath5k_rate_pcal_info to fill
2667 * Get the surrounding per-rate power calibration data
2668 * for a given frequency and interpolate between power
2669 * values to set max target power supported by hw for
2670 * each rate on this frequency.
2673 ath5k_get_rate_pcal_data(struct ath5k_hw
*ah
,
2674 struct ieee80211_channel
*channel
,
2675 struct ath5k_rate_pcal_info
*rates
)
2677 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2678 struct ath5k_rate_pcal_info
*rpinfo
;
2681 u32 target
= channel
->center_freq
;
2686 switch (channel
->hw_value
) {
2688 rpinfo
= ee
->ee_rate_tpwr_a
;
2689 mode
= AR5K_EEPROM_MODE_11A
;
2692 rpinfo
= ee
->ee_rate_tpwr_b
;
2693 mode
= AR5K_EEPROM_MODE_11B
;
2697 rpinfo
= ee
->ee_rate_tpwr_g
;
2698 mode
= AR5K_EEPROM_MODE_11G
;
2701 max
= ee
->ee_rate_target_pwr_num
[mode
] - 1;
2703 /* Get the surrounding calibration
2704 * piers - same as above */
2705 if (target
< rpinfo
[0].freq
) {
2710 if (target
> rpinfo
[max
].freq
) {
2711 idx_l
= idx_r
= max
;
2715 for (i
= 0; i
<= max
; i
++) {
2717 if (rpinfo
[i
].freq
== target
) {
2722 if (target
< rpinfo
[i
].freq
) {
2730 /* Now interpolate power value, based on the frequency */
2731 rates
->freq
= target
;
2733 rates
->target_power_6to24
=
2734 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2736 rpinfo
[idx_l
].target_power_6to24
,
2737 rpinfo
[idx_r
].target_power_6to24
);
2739 rates
->target_power_36
=
2740 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2742 rpinfo
[idx_l
].target_power_36
,
2743 rpinfo
[idx_r
].target_power_36
);
2745 rates
->target_power_48
=
2746 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2748 rpinfo
[idx_l
].target_power_48
,
2749 rpinfo
[idx_r
].target_power_48
);
2751 rates
->target_power_54
=
2752 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2754 rpinfo
[idx_l
].target_power_54
,
2755 rpinfo
[idx_r
].target_power_54
);
2759 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2760 * @ah: the &struct ath5k_hw
2761 * @channel: The &struct ieee80211_channel
2763 * Get the max edge power for this channel if
2764 * we have such data from EEPROM's Conformance Test
2765 * Limits (CTL), and limit max power if needed.
2768 ath5k_get_max_ctl_power(struct ath5k_hw
*ah
,
2769 struct ieee80211_channel
*channel
)
2771 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
2772 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2773 struct ath5k_edge_power
*rep
= ee
->ee_ctl_pwr
;
2774 u8
*ctl_val
= ee
->ee_ctl
;
2775 s16 max_chan_pwr
= ah
->ah_txpower
.txp_max_pwr
/ 4;
2780 u32 target
= channel
->center_freq
;
2782 ctl_mode
= ath_regd_get_band_ctl(regulatory
, channel
->band
);
2784 switch (channel
->hw_value
) {
2786 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
)
2787 ctl_mode
|= AR5K_CTL_TURBO
;
2789 ctl_mode
|= AR5K_CTL_11A
;
2792 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
)
2793 ctl_mode
|= AR5K_CTL_TURBOG
;
2795 ctl_mode
|= AR5K_CTL_11G
;
2798 ctl_mode
|= AR5K_CTL_11B
;
2804 for (i
= 0; i
< ee
->ee_ctls
; i
++) {
2805 if (ctl_val
[i
] == ctl_mode
) {
2811 /* If we have a CTL dataset available grab it and find the
2812 * edge power for our frequency */
2813 if (ctl_idx
== 0xFF)
2816 /* Edge powers are sorted by frequency from lower
2817 * to higher. Each CTL corresponds to 8 edge power
2819 rep_idx
= ctl_idx
* AR5K_EEPROM_N_EDGES
;
2821 /* Don't do boundaries check because we
2822 * might have more that one bands defined
2825 /* Get the edge power that's closer to our
2827 for (i
= 0; i
< AR5K_EEPROM_N_EDGES
; i
++) {
2829 if (target
<= rep
[rep_idx
].freq
)
2830 edge_pwr
= (s16
) rep
[rep_idx
].edge
;
2834 ah
->ah_txpower
.txp_max_pwr
= 4 * min(edge_pwr
, max_chan_pwr
);
2839 * Power to PCDAC table functions
2843 * DOC: Power to PCDAC table functions
2845 * For RF5111 we have an XPD -eXternal Power Detector- curve
2846 * for each calibrated channel. Each curve has 0,5dB Power steps
2847 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2848 * exponential function. To recreate the curve we read 11 points
2849 * from eeprom (eeprom.c) and interpolate here.
2851 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2852 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2853 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2854 * power steps on x axis and PCDAC steps on y axis and looks like a
2855 * linear function. To recreate the curve and pass the power values
2856 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2857 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2858 * and interpolate here.
2860 * For a given channel we get the calibrated points (piers) for it or
2861 * -if we don't have calibration data for this specific channel- from the
2862 * available surrounding channels we have calibration data for, after we do a
2863 * linear interpolation between them. Then since we have our calibrated points
2864 * for this channel, we do again a linear interpolation between them to get the
2867 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2871 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2872 * @ah: The &struct ath5k_hw
2873 * @table_min: Minimum power (x min)
2874 * @table_max: Maximum power (x max)
2876 * No further processing is needed for RF5111, the only thing we have to
2877 * do is fill the values below and above calibration range since eeprom data
2878 * may not cover the entire PCDAC table.
2881 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw
*ah
, s16
* table_min
,
2884 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
2885 u8
*pcdac_tmp
= ah
->ah_txpower
.tmpL
[0];
2886 u8 pcdac_0
, pcdac_n
, pcdac_i
, pwr_idx
, i
;
2887 s16 min_pwr
, max_pwr
;
2889 /* Get table boundaries */
2890 min_pwr
= table_min
[0];
2891 pcdac_0
= pcdac_tmp
[0];
2893 max_pwr
= table_max
[0];
2894 pcdac_n
= pcdac_tmp
[table_max
[0] - table_min
[0]];
2896 /* Extrapolate below minimum using pcdac_0 */
2898 for (i
= 0; i
< min_pwr
; i
++)
2899 pcdac_out
[pcdac_i
++] = pcdac_0
;
2901 /* Copy values from pcdac_tmp */
2903 for (i
= 0; pwr_idx
<= max_pwr
&&
2904 pcdac_i
< AR5K_EEPROM_POWER_TABLE_SIZE
; i
++) {
2905 pcdac_out
[pcdac_i
++] = pcdac_tmp
[i
];
2909 /* Extrapolate above maximum */
2910 while (pcdac_i
< AR5K_EEPROM_POWER_TABLE_SIZE
)
2911 pcdac_out
[pcdac_i
++] = pcdac_n
;
2916 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2917 * @ah: The &struct ath5k_hw
2918 * @table_min: Minimum power (x min)
2919 * @table_max: Maximum power (x max)
2920 * @pdcurves: Number of pd curves
2922 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2923 * RFX112 can have up to 2 curves (one for low txpower range and one for
2924 * higher txpower range). We need to put them both on pcdac_out and place
2925 * them in the correct location. In case we only have one curve available
2926 * just fit it on pcdac_out (it's supposed to cover the entire range of
2927 * available pwr levels since it's always the higher power curve). Extrapolate
2928 * below and above final table if needed.
2931 ath5k_combine_linear_pcdac_curves(struct ath5k_hw
*ah
, s16
* table_min
,
2932 s16
*table_max
, u8 pdcurves
)
2934 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
2941 s16 mid_pwr_idx
= 0;
2942 /* Edge flag turns on the 7nth bit on the PCDAC
2943 * to declare the higher power curve (force values
2944 * to be greater than 64). If we only have one curve
2945 * we don't need to set this, if we have 2 curves and
2946 * fill the table backwards this can also be used to
2947 * switch from higher power curve to lower power curve */
2951 /* When we have only one curve available
2952 * that's the higher power curve. If we have
2953 * two curves the first is the high power curve
2954 * and the next is the low power curve. */
2956 pcdac_low_pwr
= ah
->ah_txpower
.tmpL
[1];
2957 pcdac_high_pwr
= ah
->ah_txpower
.tmpL
[0];
2958 mid_pwr_idx
= table_max
[1] - table_min
[1] - 1;
2959 max_pwr_idx
= (table_max
[0] - table_min
[0]) / 2;
2961 /* If table size goes beyond 31.5dB, keep the
2962 * upper 31.5dB range when setting tx power.
2963 * Note: 126 = 31.5 dB in quarter dB steps */
2964 if (table_max
[0] - table_min
[1] > 126)
2965 min_pwr_idx
= table_max
[0] - 126;
2967 min_pwr_idx
= table_min
[1];
2969 /* Since we fill table backwards
2970 * start from high power curve */
2971 pcdac_tmp
= pcdac_high_pwr
;
2975 pcdac_low_pwr
= ah
->ah_txpower
.tmpL
[1]; /* Zeroed */
2976 pcdac_high_pwr
= ah
->ah_txpower
.tmpL
[0];
2977 min_pwr_idx
= table_min
[0];
2978 max_pwr_idx
= (table_max
[0] - table_min
[0]) / 2;
2979 pcdac_tmp
= pcdac_high_pwr
;
2983 /* This is used when setting tx power*/
2984 ah
->ah_txpower
.txp_min_idx
= min_pwr_idx
/ 2;
2986 /* Fill Power to PCDAC table backwards */
2988 for (i
= 63; i
>= 0; i
--) {
2989 /* Entering lower power range, reset
2990 * edge flag and set pcdac_tmp to lower
2992 if (edge_flag
== 0x40 &&
2993 (2 * pwr
<= (table_max
[1] - table_min
[0]) || pwr
== 0)) {
2995 pcdac_tmp
= pcdac_low_pwr
;
2996 pwr
= mid_pwr_idx
/ 2;
2999 /* Don't go below 1, extrapolate below if we have
3000 * already switched to the lower power curve -or
3001 * we only have one curve and edge_flag is zero
3003 if (pcdac_tmp
[pwr
] < 1 && (edge_flag
== 0x00)) {
3005 pcdac_out
[i
] = pcdac_out
[i
+ 1];
3011 pcdac_out
[i
] = pcdac_tmp
[pwr
] | edge_flag
;
3013 /* Extrapolate above if pcdac is greater than
3014 * 126 -this can happen because we OR pcdac_out
3015 * value with edge_flag on high power curve */
3016 if (pcdac_out
[i
] > 126)
3019 /* Decrease by a 0.5dB step */
3025 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3026 * @ah: The &struct ath5k_hw
3029 ath5k_write_pcdac_table(struct ath5k_hw
*ah
)
3031 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
3035 * Write TX power values
3037 for (i
= 0; i
< (AR5K_EEPROM_POWER_TABLE_SIZE
/ 2); i
++) {
3038 ath5k_hw_reg_write(ah
,
3039 (((pcdac_out
[2 * i
+ 0] << 8 | 0xff) & 0xffff) << 0) |
3040 (((pcdac_out
[2 * i
+ 1] << 8 | 0xff) & 0xffff) << 16),
3041 AR5K_PHY_PCDAC_TXPOWER(i
));
3047 * Power to PDADC table functions
3051 * DOC: Power to PDADC table functions
3053 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3054 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3055 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3056 * PDADC steps on y axis and looks like an exponential function like the
3059 * To recreate the curves we read the points from eeprom (eeprom.c)
3060 * and interpolate here. Note that in most cases only 2 (higher and lower)
3061 * curves are used (like RF5112) but vendors have the opportunity to include
3062 * all 4 curves on eeprom. The final curve (higher power) has an extra
3063 * point for better accuracy like RF5112.
3065 * The process is similar to what we do above for RF5111/5112
3069 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3070 * @ah: The &struct ath5k_hw
3071 * @pwr_min: Minimum power (x min)
3072 * @pwr_max: Maximum power (x max)
3073 * @pdcurves: Number of available curves
3075 * Combine the various pd curves and create the final Power to PDADC table
3076 * We can have up to 4 pd curves, we need to do a similar process
3077 * as we do for RF5112. This time we don't have an edge_flag but we
3078 * set the gain boundaries on a separate register.
3081 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw
*ah
,
3082 s16
*pwr_min
, s16
*pwr_max
, u8 pdcurves
)
3084 u8 gain_boundaries
[AR5K_EEPROM_N_PD_GAINS
];
3085 u8
*pdadc_out
= ah
->ah_txpower
.txp_pd_table
;
3088 u8 pdadc_i
, pdadc_n
, pwr_step
, pdg
, max_idx
, table_size
;
3091 /* Note: Register value is initialized on initvals
3092 * there is no feedback from hw.
3093 * XXX: What about pd_gain_overlap from EEPROM ? */
3094 pd_gain_overlap
= (u8
) ath5k_hw_reg_read(ah
, AR5K_PHY_TPC_RG5
) &
3095 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
;
3097 /* Create final PDADC table */
3098 for (pdg
= 0, pdadc_i
= 0; pdg
< pdcurves
; pdg
++) {
3099 pdadc_tmp
= ah
->ah_txpower
.tmpL
[pdg
];
3101 if (pdg
== pdcurves
- 1)
3102 /* 2 dB boundary stretch for last
3103 * (higher power) curve */
3104 gain_boundaries
[pdg
] = pwr_max
[pdg
] + 4;
3106 /* Set gain boundary in the middle
3107 * between this curve and the next one */
3108 gain_boundaries
[pdg
] =
3109 (pwr_max
[pdg
] + pwr_min
[pdg
+ 1]) / 2;
3111 /* Sanity check in case our 2 db stretch got out of
3113 if (gain_boundaries
[pdg
] > AR5K_TUNE_MAX_TXPOWER
)
3114 gain_boundaries
[pdg
] = AR5K_TUNE_MAX_TXPOWER
;
3116 /* For the first curve (lower power)
3117 * start from 0 dB */
3121 /* For the other curves use the gain overlap */
3122 pdadc_0
= (gain_boundaries
[pdg
- 1] - pwr_min
[pdg
]) -
3125 /* Force each power step to be at least 0.5 dB */
3126 if ((pdadc_tmp
[1] - pdadc_tmp
[0]) > 1)
3127 pwr_step
= pdadc_tmp
[1] - pdadc_tmp
[0];
3131 /* If pdadc_0 is negative, we need to extrapolate
3132 * below this pdgain by a number of pwr_steps */
3133 while ((pdadc_0
< 0) && (pdadc_i
< 128)) {
3134 s16 tmp
= pdadc_tmp
[0] + pdadc_0
* pwr_step
;
3135 pdadc_out
[pdadc_i
++] = (tmp
< 0) ? 0 : (u8
) tmp
;
3139 /* Set last pwr level, using gain boundaries */
3140 pdadc_n
= gain_boundaries
[pdg
] + pd_gain_overlap
- pwr_min
[pdg
];
3141 /* Limit it to be inside pwr range */
3142 table_size
= pwr_max
[pdg
] - pwr_min
[pdg
];
3143 max_idx
= (pdadc_n
< table_size
) ? pdadc_n
: table_size
;
3145 /* Fill pdadc_out table */
3146 while (pdadc_0
< max_idx
&& pdadc_i
< 128)
3147 pdadc_out
[pdadc_i
++] = pdadc_tmp
[pdadc_0
++];
3149 /* Need to extrapolate above this pdgain? */
3150 if (pdadc_n
<= max_idx
)
3153 /* Force each power step to be at least 0.5 dB */
3154 if ((pdadc_tmp
[table_size
- 1] - pdadc_tmp
[table_size
- 2]) > 1)
3155 pwr_step
= pdadc_tmp
[table_size
- 1] -
3156 pdadc_tmp
[table_size
- 2];
3160 /* Extrapolate above */
3161 while ((pdadc_0
< (s16
) pdadc_n
) &&
3162 (pdadc_i
< AR5K_EEPROM_POWER_TABLE_SIZE
* 2)) {
3163 s16 tmp
= pdadc_tmp
[table_size
- 1] +
3164 (pdadc_0
- max_idx
) * pwr_step
;
3165 pdadc_out
[pdadc_i
++] = (tmp
> 127) ? 127 : (u8
) tmp
;
3170 while (pdg
< AR5K_EEPROM_N_PD_GAINS
) {
3171 gain_boundaries
[pdg
] = gain_boundaries
[pdg
- 1];
3175 while (pdadc_i
< AR5K_EEPROM_POWER_TABLE_SIZE
* 2) {
3176 pdadc_out
[pdadc_i
] = pdadc_out
[pdadc_i
- 1];
3180 /* Set gain boundaries */
3181 ath5k_hw_reg_write(ah
,
3182 AR5K_REG_SM(pd_gain_overlap
,
3183 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
) |
3184 AR5K_REG_SM(gain_boundaries
[0],
3185 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1
) |
3186 AR5K_REG_SM(gain_boundaries
[1],
3187 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2
) |
3188 AR5K_REG_SM(gain_boundaries
[2],
3189 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3
) |
3190 AR5K_REG_SM(gain_boundaries
[3],
3191 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4
),
3194 /* Used for setting rate power table */
3195 ah
->ah_txpower
.txp_min_idx
= pwr_min
[0];
3200 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3201 * @ah: The &struct ath5k_hw
3202 * @ee_mode: One of enum ath5k_driver_mode
3205 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw
*ah
, u8 ee_mode
)
3207 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
3208 u8
*pdadc_out
= ah
->ah_txpower
.txp_pd_table
;
3209 u8
*pdg_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
3210 u8 pdcurves
= ee
->ee_pd_gains
[ee_mode
];
3214 /* Select the right pdgain curves */
3216 /* Clear current settings */
3217 reg
= ath5k_hw_reg_read(ah
, AR5K_PHY_TPC_RG1
);
3218 reg
&= ~(AR5K_PHY_TPC_RG1_PDGAIN_1
|
3219 AR5K_PHY_TPC_RG1_PDGAIN_2
|
3220 AR5K_PHY_TPC_RG1_PDGAIN_3
|
3221 AR5K_PHY_TPC_RG1_NUM_PD_GAIN
);
3224 * Use pd_gains curve from eeprom
3226 * This overrides the default setting from initvals
3227 * in case some vendors (e.g. Zcomax) don't use the default
3228 * curves. If we don't honor their settings we 'll get a
3229 * 5dB (1 * gain overlap ?) drop.
3231 reg
|= AR5K_REG_SM(pdcurves
, AR5K_PHY_TPC_RG1_NUM_PD_GAIN
);
3235 reg
|= AR5K_REG_SM(pdg_to_idx
[2], AR5K_PHY_TPC_RG1_PDGAIN_3
);
3238 reg
|= AR5K_REG_SM(pdg_to_idx
[1], AR5K_PHY_TPC_RG1_PDGAIN_2
);
3241 reg
|= AR5K_REG_SM(pdg_to_idx
[0], AR5K_PHY_TPC_RG1_PDGAIN_1
);
3244 ath5k_hw_reg_write(ah
, reg
, AR5K_PHY_TPC_RG1
);
3247 * Write TX power values
3249 for (i
= 0; i
< (AR5K_EEPROM_POWER_TABLE_SIZE
/ 2); i
++) {
3250 u32 val
= get_unaligned_le32(&pdadc_out
[4 * i
]);
3251 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_PDADC_TXPOWER(i
));
3257 * Common code for PCDAC/PDADC tables
3261 * ath5k_setup_channel_powertable() - Set up power table for this channel
3262 * @ah: The &struct ath5k_hw
3263 * @channel: The &struct ieee80211_channel
3264 * @ee_mode: One of enum ath5k_driver_mode
3265 * @type: One of enum ath5k_powertable_type (eeprom.h)
3267 * This is the main function that uses all of the above
3268 * to set PCDAC/PDADC table on hw for the current channel.
3269 * This table is used for tx power calibration on the baseband,
3270 * without it we get weird tx power levels and in some cases
3271 * distorted spectral mask
3274 ath5k_setup_channel_powertable(struct ath5k_hw
*ah
,
3275 struct ieee80211_channel
*channel
,
3276 u8 ee_mode
, u8 type
)
3278 struct ath5k_pdgain_info
*pdg_L
, *pdg_R
;
3279 struct ath5k_chan_pcal_info
*pcinfo_L
;
3280 struct ath5k_chan_pcal_info
*pcinfo_R
;
3281 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
3282 u8
*pdg_curve_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
3283 s16 table_min
[AR5K_EEPROM_N_PD_GAINS
];
3284 s16 table_max
[AR5K_EEPROM_N_PD_GAINS
];
3287 u32 target
= channel
->center_freq
;
3290 /* Get surrounding freq piers for this channel */
3291 ath5k_get_chan_pcal_surrounding_piers(ah
, channel
,
3295 /* Loop over pd gain curves on
3296 * surrounding freq piers by index */
3297 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[ee_mode
]; pdg
++) {
3299 /* Fill curves in reverse order
3300 * from lower power (max gain)
3301 * to higher power. Use curve -> idx
3302 * backmapping we did on eeprom init */
3303 u8 idx
= pdg_curve_to_idx
[pdg
];
3305 /* Grab the needed curves by index */
3306 pdg_L
= &pcinfo_L
->pd_curves
[idx
];
3307 pdg_R
= &pcinfo_R
->pd_curves
[idx
];
3309 /* Initialize the temp tables */
3310 tmpL
= ah
->ah_txpower
.tmpL
[pdg
];
3311 tmpR
= ah
->ah_txpower
.tmpR
[pdg
];
3313 /* Set curve's x boundaries and create
3314 * curves so that they cover the same
3315 * range (if we don't do that one table
3316 * will have values on some range and the
3317 * other one won't have any so interpolation
3319 table_min
[pdg
] = min(pdg_L
->pd_pwr
[0],
3320 pdg_R
->pd_pwr
[0]) / 2;
3322 table_max
[pdg
] = max(pdg_L
->pd_pwr
[pdg_L
->pd_points
- 1],
3323 pdg_R
->pd_pwr
[pdg_R
->pd_points
- 1]) / 2;
3325 /* Now create the curves on surrounding channels
3326 * and interpolate if needed to get the final
3327 * curve for this gain on this channel */
3329 case AR5K_PWRTABLE_LINEAR_PCDAC
:
3330 /* Override min/max so that we don't loose
3331 * accuracy (don't divide by 2) */
3332 table_min
[pdg
] = min(pdg_L
->pd_pwr
[0],
3336 max(pdg_L
->pd_pwr
[pdg_L
->pd_points
- 1],
3337 pdg_R
->pd_pwr
[pdg_R
->pd_points
- 1]);
3339 /* Override minimum so that we don't get
3340 * out of bounds while extrapolating
3341 * below. Don't do this when we have 2
3342 * curves and we are on the high power curve
3343 * because table_min is ok in this case */
3344 if (!(ee
->ee_pd_gains
[ee_mode
] > 1 && pdg
== 0)) {
3347 ath5k_get_linear_pcdac_min(pdg_L
->pd_step
,
3352 /* Don't go too low because we will
3353 * miss the upper part of the curve.
3354 * Note: 126 = 31.5dB (max power supported)
3355 * in 0.25dB units */
3356 if (table_max
[pdg
] - table_min
[pdg
] > 126)
3357 table_min
[pdg
] = table_max
[pdg
] - 126;
3361 case AR5K_PWRTABLE_PWR_TO_PCDAC
:
3362 case AR5K_PWRTABLE_PWR_TO_PDADC
:
3364 ath5k_create_power_curve(table_min
[pdg
],
3368 pdg_L
->pd_points
, tmpL
, type
);
3370 /* We are in a calibration
3371 * pier, no need to interpolate
3372 * between freq piers */
3373 if (pcinfo_L
== pcinfo_R
)
3376 ath5k_create_power_curve(table_min
[pdg
],
3380 pdg_R
->pd_points
, tmpR
, type
);
3386 /* Interpolate between curves
3387 * of surrounding freq piers to
3388 * get the final curve for this
3389 * pd gain. Re-use tmpL for interpolation
3391 for (i
= 0; (i
< (u16
) (table_max
[pdg
] - table_min
[pdg
])) &&
3392 (i
< AR5K_EEPROM_POWER_TABLE_SIZE
); i
++) {
3393 tmpL
[i
] = (u8
) ath5k_get_interpolated_value(target
,
3394 (s16
) pcinfo_L
->freq
,
3395 (s16
) pcinfo_R
->freq
,
3401 /* Now we have a set of curves for this
3402 * channel on tmpL (x range is table_max - table_min
3403 * and y values are tmpL[pdg][]) sorted in the same
3404 * order as EEPROM (because we've used the backmapping).
3405 * So for RF5112 it's from higher power to lower power
3406 * and for RF2413 it's from lower power to higher power.
3407 * For RF5111 we only have one curve. */
3409 /* Fill min and max power levels for this
3410 * channel by interpolating the values on
3411 * surrounding channels to complete the dataset */
3412 ah
->ah_txpower
.txp_min_pwr
= ath5k_get_interpolated_value(target
,
3413 (s16
) pcinfo_L
->freq
,
3414 (s16
) pcinfo_R
->freq
,
3415 pcinfo_L
->min_pwr
, pcinfo_R
->min_pwr
);
3417 ah
->ah_txpower
.txp_max_pwr
= ath5k_get_interpolated_value(target
,
3418 (s16
) pcinfo_L
->freq
,
3419 (s16
) pcinfo_R
->freq
,
3420 pcinfo_L
->max_pwr
, pcinfo_R
->max_pwr
);
3422 /* Fill PCDAC/PDADC table */
3424 case AR5K_PWRTABLE_LINEAR_PCDAC
:
3425 /* For RF5112 we can have one or two curves
3426 * and each curve covers a certain power lvl
3427 * range so we need to do some more processing */
3428 ath5k_combine_linear_pcdac_curves(ah
, table_min
, table_max
,
3429 ee
->ee_pd_gains
[ee_mode
]);
3431 /* Set txp.offset so that we can
3432 * match max power value with max
3434 ah
->ah_txpower
.txp_offset
= 64 - (table_max
[0] / 2);
3436 case AR5K_PWRTABLE_PWR_TO_PCDAC
:
3437 /* We are done for RF5111 since it has only
3438 * one curve, just fit the curve on the table */
3439 ath5k_fill_pwr_to_pcdac_table(ah
, table_min
, table_max
);
3441 /* No rate powertable adjustment for RF5111 */
3442 ah
->ah_txpower
.txp_min_idx
= 0;
3443 ah
->ah_txpower
.txp_offset
= 0;
3445 case AR5K_PWRTABLE_PWR_TO_PDADC
:
3446 /* Set PDADC boundaries and fill
3447 * final PDADC table */
3448 ath5k_combine_pwr_to_pdadc_curves(ah
, table_min
, table_max
,
3449 ee
->ee_pd_gains
[ee_mode
]);
3451 /* Set txp.offset, note that table_min
3452 * can be negative */
3453 ah
->ah_txpower
.txp_offset
= table_min
[0];
3459 ah
->ah_txpower
.txp_setup
= true;
3465 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3466 * @ah: The &struct ath5k_hw
3467 * @ee_mode: One of enum ath5k_driver_mode
3468 * @type: One of enum ath5k_powertable_type (eeprom.h)
3471 ath5k_write_channel_powertable(struct ath5k_hw
*ah
, u8 ee_mode
, u8 type
)
3473 if (type
== AR5K_PWRTABLE_PWR_TO_PDADC
)
3474 ath5k_write_pwr_to_pdadc_table(ah
, ee_mode
);
3476 ath5k_write_pcdac_table(ah
);
3481 * DOC: Per-rate tx power setting
3483 * This is the code that sets the desired tx power limit (below
3484 * maximum) on hw for each rate (we also have TPC that sets
3485 * power per packet type). We do that by providing an index on the
3486 * PCDAC/PDADC table we set up above, for each rate.
3488 * For now we only limit txpower based on maximum tx power
3489 * supported by hw (what's inside rate_info) + conformance test
3490 * limits. We need to limit this even more, based on regulatory domain
3491 * etc to be safe. Normally this is done from above so we don't care
3492 * here, all we care is that the tx power we set will be O.K.
3493 * for the hw (e.g. won't create noise on PA etc).
3495 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3496 * x values) and is indexed as follows:
3497 * rates[0] - rates[7] -> OFDM rates
3498 * rates[8] - rates[14] -> CCK rates
3499 * rates[15] -> XR rates (they all have the same power)
3503 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3504 * @ah: The &struct ath5k_hw
3505 * @max_pwr: The maximum tx power requested in 0.5dB steps
3506 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3507 * @ee_mode: One of enum ath5k_driver_mode
3510 ath5k_setup_rate_powertable(struct ath5k_hw
*ah
, u16 max_pwr
,
3511 struct ath5k_rate_pcal_info
*rate_info
,
3516 s16 rate_idx_scaled
= 0;
3518 /* max_pwr is power level we got from driver/user in 0.5dB
3519 * units, switch to 0.25dB units so we can compare */
3521 max_pwr
= min(max_pwr
, (u16
) ah
->ah_txpower
.txp_max_pwr
) / 2;
3523 /* apply rate limits */
3524 rates
= ah
->ah_txpower
.txp_rates_power_table
;
3526 /* OFDM rates 6 to 24Mb/s */
3527 for (i
= 0; i
< 5; i
++)
3528 rates
[i
] = min(max_pwr
, rate_info
->target_power_6to24
);
3530 /* Rest OFDM rates */
3531 rates
[5] = min(rates
[0], rate_info
->target_power_36
);
3532 rates
[6] = min(rates
[0], rate_info
->target_power_48
);
3533 rates
[7] = min(rates
[0], rate_info
->target_power_54
);
3537 rates
[8] = min(rates
[0], rate_info
->target_power_6to24
);
3539 rates
[9] = min(rates
[0], rate_info
->target_power_36
);
3541 rates
[10] = min(rates
[0], rate_info
->target_power_36
);
3543 rates
[11] = min(rates
[0], rate_info
->target_power_48
);
3545 rates
[12] = min(rates
[0], rate_info
->target_power_48
);
3547 rates
[13] = min(rates
[0], rate_info
->target_power_54
);
3549 rates
[14] = min(rates
[0], rate_info
->target_power_54
);
3552 rates
[15] = min(rates
[0], rate_info
->target_power_6to24
);
3554 /* CCK rates have different peak to average ratio
3555 * so we have to tweak their power so that gainf
3556 * correction works ok. For this we use OFDM to
3557 * CCK delta from eeprom */
3558 if ((ee_mode
== AR5K_EEPROM_MODE_11G
) &&
3559 (ah
->ah_phy_revision
< AR5K_SREV_PHY_5212A
))
3560 for (i
= 8; i
<= 15; i
++)
3561 rates
[i
] -= ah
->ah_txpower
.txp_cck_ofdm_gainf_delta
;
3563 /* Save min/max and current tx power for this channel
3566 * Note: We use rates[0] for current tx power because
3567 * it covers most of the rates, in most cases. It's our
3568 * tx power limit and what the user expects to see. */
3569 ah
->ah_txpower
.txp_min_pwr
= 2 * rates
[7];
3570 ah
->ah_txpower
.txp_cur_pwr
= 2 * rates
[0];
3572 /* Set max txpower for correct OFDM operation on all rates
3573 * -that is the txpower for 54Mbit-, it's used for the PAPD
3574 * gain probe and it's in 0.5dB units */
3575 ah
->ah_txpower
.txp_ofdm
= rates
[7];
3577 /* Now that we have all rates setup use table offset to
3578 * match the power range set by user with the power indices
3579 * on PCDAC/PDADC table */
3580 for (i
= 0; i
< 16; i
++) {
3581 rate_idx_scaled
= rates
[i
] + ah
->ah_txpower
.txp_offset
;
3582 /* Don't get out of bounds */
3583 if (rate_idx_scaled
> 63)
3584 rate_idx_scaled
= 63;
3585 if (rate_idx_scaled
< 0)
3586 rate_idx_scaled
= 0;
3587 rates
[i
] = rate_idx_scaled
;
3593 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3594 * @ah: The &struct ath5k_hw
3595 * @channel: The &struct ieee80211_channel
3596 * @txpower: Requested tx power in 0.5dB steps
3598 * Combines all of the above to set the requested tx power limit
3602 ath5k_hw_txpower(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
,
3605 struct ath5k_rate_pcal_info rate_info
;
3606 struct ieee80211_channel
*curr_channel
= ah
->ah_current_channel
;
3611 if (txpower
> AR5K_TUNE_MAX_TXPOWER
) {
3612 ATH5K_ERR(ah
, "invalid tx power: %u\n", txpower
);
3616 ee_mode
= ath5k_eeprom_mode_from_channel(ah
, channel
);
3618 /* Initialize TX power table */
3619 switch (ah
->ah_radio
) {
3624 type
= AR5K_PWRTABLE_PWR_TO_PCDAC
;
3627 type
= AR5K_PWRTABLE_LINEAR_PCDAC
;
3634 type
= AR5K_PWRTABLE_PWR_TO_PDADC
;
3641 * If we don't change channel/mode skip tx powertable calculation
3642 * and use the cached one.
3644 if (!ah
->ah_txpower
.txp_setup
||
3645 (channel
->hw_value
!= curr_channel
->hw_value
) ||
3646 (channel
->center_freq
!= curr_channel
->center_freq
)) {
3647 /* Reset TX power values but preserve requested
3648 * tx power from above */
3649 int requested_txpower
= ah
->ah_txpower
.txp_requested
;
3651 memset(&ah
->ah_txpower
, 0, sizeof(ah
->ah_txpower
));
3653 /* Restore TPC setting and requested tx power */
3654 ah
->ah_txpower
.txp_tpc
= AR5K_TUNE_TPC_TXPOWER
;
3656 ah
->ah_txpower
.txp_requested
= requested_txpower
;
3658 /* Calculate the powertable */
3659 ret
= ath5k_setup_channel_powertable(ah
, channel
,
3665 /* Write table on hw */
3666 ath5k_write_channel_powertable(ah
, ee_mode
, type
);
3668 /* Limit max power if we have a CTL available */
3669 ath5k_get_max_ctl_power(ah
, channel
);
3671 /* FIXME: Antenna reduction stuff */
3673 /* FIXME: Limit power on turbo modes */
3675 /* FIXME: TPC scale reduction */
3677 /* Get surrounding channels for per-rate power table
3679 ath5k_get_rate_pcal_data(ah
, channel
, &rate_info
);
3681 /* Setup rate power table */
3682 ath5k_setup_rate_powertable(ah
, txpower
, &rate_info
, ee_mode
);
3684 /* Write rate power table on hw */
3685 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_OFDM(3, 24) |
3686 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3687 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1
);
3689 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_OFDM(7, 24) |
3690 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3691 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2
);
3693 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_CCK(10, 24) |
3694 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3695 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3
);
3697 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_CCK(14, 24) |
3698 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3699 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4
);
3701 /* FIXME: TPC support */
3702 if (ah
->ah_txpower
.txp_tpc
) {
3703 ath5k_hw_reg_write(ah
, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE
|
3704 AR5K_TUNE_MAX_TXPOWER
, AR5K_PHY_TXPOWER_RATE_MAX
);
3706 ath5k_hw_reg_write(ah
,
3707 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_ACK
) |
3708 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_CTS
) |
3709 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_CHIRP
),
3712 ath5k_hw_reg_write(ah
, AR5K_TUNE_MAX_TXPOWER
,
3713 AR5K_PHY_TXPOWER_RATE_MAX
);
3720 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3721 * @ah: The &struct ath5k_hw
3722 * @txpower: The requested tx power limit in 0.5dB steps
3724 * This function provides access to ath5k_hw_txpower to the driver in
3725 * case user or an application changes it while PHY is running.
3728 ath5k_hw_set_txpower_limit(struct ath5k_hw
*ah
, u8 txpower
)
3730 ATH5K_DBG(ah
, ATH5K_DEBUG_TXPOWER
,
3731 "changing txpower to %d\n", txpower
);
3733 return ath5k_hw_txpower(ah
, ah
->ah_current_channel
, txpower
);
3742 * ath5k_hw_phy_init() - Initialize PHY
3743 * @ah: The &struct ath5k_hw
3744 * @channel: The @struct ieee80211_channel
3745 * @mode: One of enum ath5k_driver_mode
3746 * @fast: Try a fast channel switch instead
3748 * This is the main function used during reset to initialize PHY
3749 * or do a fast channel change if possible.
3751 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3752 * warm reset state !
3755 ath5k_hw_phy_init(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
,
3758 struct ieee80211_channel
*curr_channel
;
3764 * Sanity check for fast flag
3765 * Don't try fast channel change when changing modulation
3766 * mode/band. We check for chip compatibility on
3769 curr_channel
= ah
->ah_current_channel
;
3770 if (fast
&& (channel
->hw_value
!= curr_channel
->hw_value
))
3774 * On fast channel change we only set the synth parameters
3775 * while PHY is running, enable calibration and skip the rest.
3778 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_RFBUS_REQ
,
3779 AR5K_PHY_RFBUS_REQ_REQUEST
);
3780 for (i
= 0; i
< 100; i
++) {
3781 if (ath5k_hw_reg_read(ah
, AR5K_PHY_RFBUS_GRANT
))
3789 /* Set channel and wait for synth */
3790 ret
= ath5k_hw_channel(ah
, channel
);
3794 ath5k_hw_wait_for_synth(ah
, channel
);
3800 * Note: We need to do that before we set
3801 * RF buffer settings on 5211/5212+ so that we
3802 * properly set curve indices.
3804 ret
= ath5k_hw_txpower(ah
, channel
, ah
->ah_txpower
.txp_requested
?
3805 ah
->ah_txpower
.txp_requested
* 2 :
3806 AR5K_TUNE_MAX_TXPOWER
);
3810 /* Write OFDM timings on 5212*/
3811 if (ah
->ah_version
== AR5K_AR5212
&&
3812 channel
->hw_value
!= AR5K_MODE_11B
) {
3814 ret
= ath5k_hw_write_ofdm_timings(ah
, channel
);
3818 /* Spur info is available only from EEPROM versions
3819 * greater than 5.3, but the EEPROM routines will use
3820 * static values for older versions */
3821 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
)
3822 ath5k_hw_set_spur_mitigation_filter(ah
,
3826 /* If we used fast channel switching
3827 * we are done, release RF bus and
3828 * fire up NF calibration.
3830 * Note: Only NF calibration due to
3831 * channel change, not AGC calibration
3832 * since AGC is still running !
3836 * Release RF Bus grant
3838 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_RFBUS_REQ
,
3839 AR5K_PHY_RFBUS_REQ_REQUEST
);
3842 * Start NF calibration
3844 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
3845 AR5K_PHY_AGCCTL_NF
);
3851 * For 5210 we do all initialization using
3852 * initvals, so we don't have to modify
3853 * any settings (5210 also only supports
3856 if (ah
->ah_version
!= AR5K_AR5210
) {
3859 * Write initial RF gain settings
3860 * This should work for both 5111/5112
3862 ret
= ath5k_hw_rfgain_init(ah
, channel
->band
);
3866 usleep_range(1000, 1500);
3871 ret
= ath5k_hw_rfregs_init(ah
, channel
, mode
);
3875 /*Enable/disable 802.11b mode on 5111
3876 (enable 2111 frequency converter + CCK)*/
3877 if (ah
->ah_radio
== AR5K_RF5111
) {
3878 if (mode
== AR5K_MODE_11B
)
3879 AR5K_REG_ENABLE_BITS(ah
, AR5K_TXCFG
,
3882 AR5K_REG_DISABLE_BITS(ah
, AR5K_TXCFG
,
3886 } else if (ah
->ah_version
== AR5K_AR5210
) {
3887 usleep_range(1000, 1500);
3888 /* Disable phy and wait */
3889 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_DISABLE
, AR5K_PHY_ACT
);
3890 usleep_range(1000, 1500);
3893 /* Set channel on PHY */
3894 ret
= ath5k_hw_channel(ah
, channel
);
3899 * Enable the PHY and wait until completion
3900 * This includes BaseBand and Synthesizer
3903 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_ENABLE
, AR5K_PHY_ACT
);
3905 ath5k_hw_wait_for_synth(ah
, channel
);
3908 * Perform ADC test to see if baseband is ready
3909 * Set tx hold and check adc test register
3911 phy_tst1
= ath5k_hw_reg_read(ah
, AR5K_PHY_TST1
);
3912 ath5k_hw_reg_write(ah
, AR5K_PHY_TST1_TXHOLD
, AR5K_PHY_TST1
);
3913 for (i
= 0; i
<= 20; i
++) {
3914 if (!(ath5k_hw_reg_read(ah
, AR5K_PHY_ADC_TEST
) & 0x10))
3916 usleep_range(200, 250);
3918 ath5k_hw_reg_write(ah
, phy_tst1
, AR5K_PHY_TST1
);
3921 * Start automatic gain control calibration
3923 * During AGC calibration RX path is re-routed to
3924 * a power detector so we don't receive anything.
3926 * This method is used to calibrate some static offsets
3927 * used together with on-the fly I/Q calibration (the
3928 * one performed via ath5k_hw_phy_calibrate), which doesn't
3929 * interrupt rx path.
3931 * While rx path is re-routed to the power detector we also
3932 * start a noise floor calibration to measure the
3933 * card's noise floor (the noise we measure when we are not
3934 * transmitting or receiving anything).
3936 * If we are in a noisy environment, AGC calibration may time
3937 * out and/or noise floor calibration might timeout.
3939 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
3940 AR5K_PHY_AGCCTL_CAL
| AR5K_PHY_AGCCTL_NF
);
3942 /* At the same time start I/Q calibration for QAM constellation
3943 * -no need for CCK- */
3944 ah
->ah_iq_cal_needed
= false;
3945 if (!(mode
== AR5K_MODE_11B
)) {
3946 ah
->ah_iq_cal_needed
= true;
3947 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
,
3948 AR5K_PHY_IQ_CAL_NUM_LOG_MAX
, 15);
3949 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
3953 /* Wait for gain calibration to finish (we check for I/Q calibration
3954 * during ath5k_phy_calibrate) */
3955 if (ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
3956 AR5K_PHY_AGCCTL_CAL
, 0, false)) {
3957 ATH5K_ERR(ah
, "gain calibration timeout (%uMHz)\n",
3958 channel
->center_freq
);
3961 /* Restore antenna mode */
3962 ath5k_hw_set_antenna_mode(ah
, ah
->ah_ant_mode
);