Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / wireless / ath / ath9k / ar5008_phy.c
blob7922550c2159bbd6269aae15abbab79df4d99017
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include "../regd.h"
20 #include "ar9002_phy.h"
21 #include "ar5008_initvals.h"
23 /* All code below is for AR5008, AR9001, AR9002 */
25 #define AR5008_OFDM_RATES 8
26 #define AR5008_HT_SS_RATES 8
27 #define AR5008_HT_DS_RATES 8
29 #define AR5008_HT20_SHIFT 16
30 #define AR5008_HT40_SHIFT 24
32 #define AR5008_11NA_OFDM_SHIFT 0
33 #define AR5008_11NA_HT_SS_SHIFT 8
34 #define AR5008_11NA_HT_DS_SHIFT 16
36 #define AR5008_11NG_OFDM_SHIFT 4
37 #define AR5008_11NG_HT_SS_SHIFT 12
38 #define AR5008_11NG_HT_DS_SHIFT 20
40 static const int firstep_table[] =
41 /* level: 0 1 2 3 4 5 6 7 8 */
42 { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
45 * register values to turn OFDM weak signal detection OFF
47 static const int m1ThreshLow_off = 127;
48 static const int m2ThreshLow_off = 127;
49 static const int m1Thresh_off = 127;
50 static const int m2Thresh_off = 127;
51 static const int m2CountThr_off = 31;
52 static const int m2CountThrLow_off = 63;
53 static const int m1ThreshLowExt_off = 127;
54 static const int m2ThreshLowExt_off = 127;
55 static const int m1ThreshExt_off = 127;
56 static const int m2ThreshExt_off = 127;
58 static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
59 static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
60 static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
61 static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
62 static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
64 static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
66 struct ar5416IniArray *array = &ah->iniBank6;
67 u32 *data = ah->analogBank6Data;
68 int r;
70 ENABLE_REGWRITE_BUFFER(ah);
72 for (r = 0; r < array->ia_rows; r++) {
73 REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
74 DO_DELAY(*writecnt);
77 REGWRITE_BUFFER_FLUSH(ah);
80 /**
81 * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
82 * @rfbuf:
83 * @reg32:
84 * @numBits:
85 * @firstBit:
86 * @column:
88 * Performs analog "swizzling" of parameters into their location.
89 * Used on external AR2133/AR5133 radios.
91 static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
92 u32 numBits, u32 firstBit,
93 u32 column)
95 u32 tmp32, mask, arrayEntry, lastBit;
96 int32_t bitPosition, bitsLeft;
98 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
99 arrayEntry = (firstBit - 1) / 8;
100 bitPosition = (firstBit - 1) % 8;
101 bitsLeft = numBits;
102 while (bitsLeft > 0) {
103 lastBit = (bitPosition + bitsLeft > 8) ?
104 8 : bitPosition + bitsLeft;
105 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
106 (column * 8);
107 rfBuf[arrayEntry] &= ~mask;
108 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
109 (column * 8)) & mask;
110 bitsLeft -= 8 - bitPosition;
111 tmp32 = tmp32 >> (8 - bitPosition);
112 bitPosition = 0;
113 arrayEntry++;
118 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
119 * rf_pwd_icsyndiv.
121 * Theoretical Rules:
122 * if 2 GHz band
123 * if forceBiasAuto
124 * if synth_freq < 2412
125 * bias = 0
126 * else if 2412 <= synth_freq <= 2422
127 * bias = 1
128 * else // synth_freq > 2422
129 * bias = 2
130 * else if forceBias > 0
131 * bias = forceBias & 7
132 * else
133 * no change, use value from ini file
134 * else
135 * no change, invalid band
137 * 1st Mod:
138 * 2422 also uses value of 2
139 * <approved>
141 * 2nd Mod:
142 * Less than 2412 uses value of 0, 2412 and above uses value of 2
144 static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
146 struct ath_common *common = ath9k_hw_common(ah);
147 u32 tmp_reg;
148 int reg_writes = 0;
149 u32 new_bias = 0;
151 if (!AR_SREV_5416(ah) || synth_freq >= 3000)
152 return;
154 BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
156 if (synth_freq < 2412)
157 new_bias = 0;
158 else if (synth_freq < 2422)
159 new_bias = 1;
160 else
161 new_bias = 2;
163 /* pre-reverse this field */
164 tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
166 ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
167 new_bias, synth_freq);
169 /* swizzle rf_pwd_icsyndiv */
170 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
172 /* write Bank 6 with new params */
173 ar5008_write_bank6(ah, &reg_writes);
177 * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
178 * @ah: atheros hardware structure
179 * @chan:
181 * For the external AR2133/AR5133 radios, takes the MHz channel value and set
182 * the channel value. Assumes writes enabled to analog bus and bank6 register
183 * cache in ah->analogBank6Data.
185 static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
187 struct ath_common *common = ath9k_hw_common(ah);
188 u32 channelSel = 0;
189 u32 bModeSynth = 0;
190 u32 aModeRefSel = 0;
191 u32 reg32 = 0;
192 u16 freq;
193 struct chan_centers centers;
195 ath9k_hw_get_channel_centers(ah, chan, &centers);
196 freq = centers.synth_center;
198 if (freq < 4800) {
199 u32 txctl;
201 if (((freq - 2192) % 5) == 0) {
202 channelSel = ((freq - 672) * 2 - 3040) / 10;
203 bModeSynth = 0;
204 } else if (((freq - 2224) % 5) == 0) {
205 channelSel = ((freq - 704) * 2 - 3040) / 10;
206 bModeSynth = 1;
207 } else {
208 ath_err(common, "Invalid channel %u MHz\n", freq);
209 return -EINVAL;
212 channelSel = (channelSel << 2) & 0xff;
213 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
215 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
216 if (freq == 2484) {
218 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
219 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
220 } else {
221 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
222 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
225 } else if ((freq % 20) == 0 && freq >= 5120) {
226 channelSel =
227 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
228 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
229 } else if ((freq % 10) == 0) {
230 channelSel =
231 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
232 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
233 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
234 else
235 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
236 } else if ((freq % 5) == 0) {
237 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
238 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
239 } else {
240 ath_err(common, "Invalid channel %u MHz\n", freq);
241 return -EINVAL;
244 ar5008_hw_force_bias(ah, freq);
246 reg32 =
247 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
248 (1 << 5) | 0x1;
250 REG_WRITE(ah, AR_PHY(0x37), reg32);
252 ah->curchan = chan;
254 return 0;
257 void ar5008_hw_cmn_spur_mitigate(struct ath_hw *ah,
258 struct ath9k_channel *chan, int bin)
260 int cur_bin;
261 int upper, lower, cur_vit_mask;
262 int i;
263 int8_t mask_m[123] = {0};
264 int8_t mask_p[123] = {0};
265 int8_t mask_amt;
266 int tmp_mask;
267 static const int pilot_mask_reg[4] = {
268 AR_PHY_TIMING7, AR_PHY_TIMING8,
269 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
271 static const int chan_mask_reg[4] = {
272 AR_PHY_TIMING9, AR_PHY_TIMING10,
273 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
275 static const int inc[4] = { 0, 100, 0, 0 };
277 cur_bin = -6000;
278 upper = bin + 100;
279 lower = bin - 100;
281 for (i = 0; i < 4; i++) {
282 int pilot_mask = 0;
283 int chan_mask = 0;
284 int bp = 0;
286 for (bp = 0; bp < 30; bp++) {
287 if ((cur_bin > lower) && (cur_bin < upper)) {
288 pilot_mask = pilot_mask | 0x1 << bp;
289 chan_mask = chan_mask | 0x1 << bp;
291 cur_bin += 100;
293 cur_bin += inc[i];
294 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
295 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
298 cur_vit_mask = 6100;
299 upper = bin + 120;
300 lower = bin - 120;
302 for (i = 0; i < ARRAY_SIZE(mask_m); i++) {
303 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
304 /* workaround for gcc bug #37014 */
305 volatile int tmp_v = abs(cur_vit_mask - bin);
307 if (tmp_v < 75)
308 mask_amt = 1;
309 else
310 mask_amt = 0;
311 if (cur_vit_mask < 0)
312 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
313 else
314 mask_p[cur_vit_mask / 100] = mask_amt;
316 cur_vit_mask -= 100;
319 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
320 | (mask_m[48] << 26) | (mask_m[49] << 24)
321 | (mask_m[50] << 22) | (mask_m[51] << 20)
322 | (mask_m[52] << 18) | (mask_m[53] << 16)
323 | (mask_m[54] << 14) | (mask_m[55] << 12)
324 | (mask_m[56] << 10) | (mask_m[57] << 8)
325 | (mask_m[58] << 6) | (mask_m[59] << 4)
326 | (mask_m[60] << 2) | (mask_m[61] << 0);
327 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
328 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
330 tmp_mask = (mask_m[31] << 28)
331 | (mask_m[32] << 26) | (mask_m[33] << 24)
332 | (mask_m[34] << 22) | (mask_m[35] << 20)
333 | (mask_m[36] << 18) | (mask_m[37] << 16)
334 | (mask_m[48] << 14) | (mask_m[39] << 12)
335 | (mask_m[40] << 10) | (mask_m[41] << 8)
336 | (mask_m[42] << 6) | (mask_m[43] << 4)
337 | (mask_m[44] << 2) | (mask_m[45] << 0);
338 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
339 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
341 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
342 | (mask_m[18] << 26) | (mask_m[18] << 24)
343 | (mask_m[20] << 22) | (mask_m[20] << 20)
344 | (mask_m[22] << 18) | (mask_m[22] << 16)
345 | (mask_m[24] << 14) | (mask_m[24] << 12)
346 | (mask_m[25] << 10) | (mask_m[26] << 8)
347 | (mask_m[27] << 6) | (mask_m[28] << 4)
348 | (mask_m[29] << 2) | (mask_m[30] << 0);
349 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
350 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
352 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
353 | (mask_m[2] << 26) | (mask_m[3] << 24)
354 | (mask_m[4] << 22) | (mask_m[5] << 20)
355 | (mask_m[6] << 18) | (mask_m[7] << 16)
356 | (mask_m[8] << 14) | (mask_m[9] << 12)
357 | (mask_m[10] << 10) | (mask_m[11] << 8)
358 | (mask_m[12] << 6) | (mask_m[13] << 4)
359 | (mask_m[14] << 2) | (mask_m[15] << 0);
360 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
361 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
363 tmp_mask = (mask_p[15] << 28)
364 | (mask_p[14] << 26) | (mask_p[13] << 24)
365 | (mask_p[12] << 22) | (mask_p[11] << 20)
366 | (mask_p[10] << 18) | (mask_p[9] << 16)
367 | (mask_p[8] << 14) | (mask_p[7] << 12)
368 | (mask_p[6] << 10) | (mask_p[5] << 8)
369 | (mask_p[4] << 6) | (mask_p[3] << 4)
370 | (mask_p[2] << 2) | (mask_p[1] << 0);
371 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
372 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
374 tmp_mask = (mask_p[30] << 28)
375 | (mask_p[29] << 26) | (mask_p[28] << 24)
376 | (mask_p[27] << 22) | (mask_p[26] << 20)
377 | (mask_p[25] << 18) | (mask_p[24] << 16)
378 | (mask_p[23] << 14) | (mask_p[22] << 12)
379 | (mask_p[21] << 10) | (mask_p[20] << 8)
380 | (mask_p[19] << 6) | (mask_p[18] << 4)
381 | (mask_p[17] << 2) | (mask_p[16] << 0);
382 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
383 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
385 tmp_mask = (mask_p[45] << 28)
386 | (mask_p[44] << 26) | (mask_p[43] << 24)
387 | (mask_p[42] << 22) | (mask_p[41] << 20)
388 | (mask_p[40] << 18) | (mask_p[39] << 16)
389 | (mask_p[38] << 14) | (mask_p[37] << 12)
390 | (mask_p[36] << 10) | (mask_p[35] << 8)
391 | (mask_p[34] << 6) | (mask_p[33] << 4)
392 | (mask_p[32] << 2) | (mask_p[31] << 0);
393 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
394 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
396 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
397 | (mask_p[59] << 26) | (mask_p[58] << 24)
398 | (mask_p[57] << 22) | (mask_p[56] << 20)
399 | (mask_p[55] << 18) | (mask_p[54] << 16)
400 | (mask_p[53] << 14) | (mask_p[52] << 12)
401 | (mask_p[51] << 10) | (mask_p[50] << 8)
402 | (mask_p[49] << 6) | (mask_p[48] << 4)
403 | (mask_p[47] << 2) | (mask_p[46] << 0);
404 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
405 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
409 * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
410 * @ah: atheros hardware structure
411 * @chan:
413 * For non single-chip solutions. Converts to baseband spur frequency given the
414 * input channel frequency and compute register settings below.
416 static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
417 struct ath9k_channel *chan)
419 int bb_spur = AR_NO_SPUR;
420 int bin;
421 int spur_freq_sd;
422 int spur_delta_phase;
423 int denominator;
424 int tmp, new;
425 int i;
427 int cur_bb_spur;
428 bool is2GHz = IS_CHAN_2GHZ(chan);
430 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
431 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
432 if (AR_NO_SPUR == cur_bb_spur)
433 break;
434 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
435 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
436 bb_spur = cur_bb_spur;
437 break;
441 if (AR_NO_SPUR == bb_spur)
442 return;
444 bin = bb_spur * 32;
446 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
447 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
448 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
449 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
450 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
452 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
454 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
455 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
456 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
457 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
458 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
459 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
461 spur_delta_phase = ((bb_spur * 524288) / 100) &
462 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
464 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
465 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
467 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
468 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
469 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
470 REG_WRITE(ah, AR_PHY_TIMING11, new);
472 ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
476 * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
477 * @ah: atheros hardware structure
479 * Only required for older devices with external AR2133/AR5133 radios.
481 static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
483 int size = ah->iniBank6.ia_rows * sizeof(u32);
485 if (AR_SREV_9280_20_OR_LATER(ah))
486 return 0;
488 ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
489 if (!ah->analogBank6Data)
490 return -ENOMEM;
492 return 0;
496 /* *
497 * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
498 * @ah: atheros hardware structure
499 * @chan:
500 * @modesIndex:
502 * Used for the external AR2133/AR5133 radios.
504 * Reads the EEPROM header info from the device structure and programs
505 * all rf registers. This routine requires access to the analog
506 * rf device. This is not required for single-chip devices.
508 static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
509 struct ath9k_channel *chan,
510 u16 modesIndex)
512 u32 eepMinorRev;
513 u32 ob5GHz = 0, db5GHz = 0;
514 u32 ob2GHz = 0, db2GHz = 0;
515 int regWrites = 0;
516 int i;
519 * Software does not need to program bank data
520 * for single chip devices, that is AR9280 or anything
521 * after that.
523 if (AR_SREV_9280_20_OR_LATER(ah))
524 return true;
526 /* Setup rf parameters */
527 eepMinorRev = ah->eep_ops->get_eeprom_rev(ah);
529 for (i = 0; i < ah->iniBank6.ia_rows; i++)
530 ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
532 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
533 if (eepMinorRev >= 2) {
534 if (IS_CHAN_2GHZ(chan)) {
535 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
536 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
537 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
538 ob2GHz, 3, 197, 0);
539 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
540 db2GHz, 3, 194, 0);
541 } else {
542 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
543 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
544 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
545 ob5GHz, 3, 203, 0);
546 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
547 db5GHz, 3, 200, 0);
551 /* Write Analog registers */
552 REG_WRITE_ARRAY(&bank0, 1, regWrites);
553 REG_WRITE_ARRAY(&bank1, 1, regWrites);
554 REG_WRITE_ARRAY(&bank2, 1, regWrites);
555 REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
556 ar5008_write_bank6(ah, &regWrites);
557 REG_WRITE_ARRAY(&bank7, 1, regWrites);
559 return true;
562 static void ar5008_hw_init_bb(struct ath_hw *ah,
563 struct ath9k_channel *chan)
565 u32 synthDelay;
567 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
569 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
571 ath9k_hw_synth_delay(ah, chan, synthDelay);
574 static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
576 int rx_chainmask, tx_chainmask;
578 rx_chainmask = ah->rxchainmask;
579 tx_chainmask = ah->txchainmask;
582 switch (rx_chainmask) {
583 case 0x5:
584 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
585 AR_PHY_SWAP_ALT_CHAIN);
586 case 0x3:
587 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
588 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
589 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
590 break;
592 case 0x1:
593 case 0x2:
594 case 0x7:
595 ENABLE_REGWRITE_BUFFER(ah);
596 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
597 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
598 break;
599 default:
600 ENABLE_REGWRITE_BUFFER(ah);
601 break;
604 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
606 REGWRITE_BUFFER_FLUSH(ah);
608 if (tx_chainmask == 0x5) {
609 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
610 AR_PHY_SWAP_ALT_CHAIN);
612 if (AR_SREV_9100(ah))
613 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
614 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
617 static void ar5008_hw_override_ini(struct ath_hw *ah,
618 struct ath9k_channel *chan)
620 u32 val;
623 * Set the RX_ABORT and RX_DIS and clear if off only after
624 * RXE is set for MAC. This prevents frames with corrupted
625 * descriptor status.
627 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
629 if (AR_SREV_9280_20_OR_LATER(ah)) {
631 * For AR9280 and above, there is a new feature that allows
632 * Multicast search based on both MAC Address and Key ID.
633 * By default, this feature is enabled. But since the driver
634 * is not using this feature, we switch it off; otherwise
635 * multicast search based on MAC addr only will fail.
637 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
638 (~AR_ADHOC_MCAST_KEYID_ENABLE);
640 if (!AR_SREV_9271(ah))
641 val &= ~AR_PCU_MISC_MODE2_HWWAR1;
643 if (AR_SREV_9287_11_OR_LATER(ah))
644 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
646 val |= AR_PCU_MISC_MODE2_CFP_IGNORE;
648 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
651 if (AR_SREV_9280_20_OR_LATER(ah))
652 return;
654 * Disable BB clock gating
655 * Necessary to avoid issues on AR5416 2.0
657 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
660 * Disable RIFS search on some chips to avoid baseband
661 * hang issues.
663 if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
664 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
665 val &= ~AR_PHY_RIFS_INIT_DELAY;
666 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
670 static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
671 struct ath9k_channel *chan)
673 u32 phymode;
674 u32 enableDacFifo = 0;
676 if (AR_SREV_9285_12_OR_LATER(ah))
677 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
678 AR_PHY_FC_ENABLE_DAC_FIFO);
680 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
681 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
683 if (IS_CHAN_HT40(chan)) {
684 phymode |= AR_PHY_FC_DYN2040_EN;
686 if (IS_CHAN_HT40PLUS(chan))
687 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
690 ENABLE_REGWRITE_BUFFER(ah);
691 REG_WRITE(ah, AR_PHY_TURBO, phymode);
693 /* This function do only REG_WRITE, so
694 * we can include it to REGWRITE_BUFFER. */
695 ath9k_hw_set11nmac2040(ah, chan);
697 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
698 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
700 REGWRITE_BUFFER_FLUSH(ah);
704 static int ar5008_hw_process_ini(struct ath_hw *ah,
705 struct ath9k_channel *chan)
707 struct ath_common *common = ath9k_hw_common(ah);
708 int i, regWrites = 0;
709 u32 modesIndex, freqIndex;
711 if (IS_CHAN_5GHZ(chan)) {
712 freqIndex = 1;
713 modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
714 } else {
715 freqIndex = 2;
716 modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
720 * Set correct baseband to analog shift setting to
721 * access analog chips.
723 REG_WRITE(ah, AR_PHY(0), 0x00000007);
725 /* Write ADDAC shifts */
726 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
727 if (ah->eep_ops->set_addac)
728 ah->eep_ops->set_addac(ah, chan);
730 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
731 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
733 ENABLE_REGWRITE_BUFFER(ah);
735 for (i = 0; i < ah->iniModes.ia_rows; i++) {
736 u32 reg = INI_RA(&ah->iniModes, i, 0);
737 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
739 if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
740 val &= ~AR_AN_TOP2_PWDCLKIND;
742 REG_WRITE(ah, reg, val);
744 if (reg >= 0x7800 && reg < 0x78a0
745 && ah->config.analog_shiftreg
746 && (common->bus_ops->ath_bus_type != ATH_USB)) {
747 udelay(100);
750 DO_DELAY(regWrites);
753 REGWRITE_BUFFER_FLUSH(ah);
755 if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
756 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
758 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
759 AR_SREV_9287_11_OR_LATER(ah))
760 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
762 if (AR_SREV_9271_10(ah)) {
763 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
764 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
767 ENABLE_REGWRITE_BUFFER(ah);
769 /* Write common array parameters */
770 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
771 u32 reg = INI_RA(&ah->iniCommon, i, 0);
772 u32 val = INI_RA(&ah->iniCommon, i, 1);
774 REG_WRITE(ah, reg, val);
776 if (reg >= 0x7800 && reg < 0x78a0
777 && ah->config.analog_shiftreg
778 && (common->bus_ops->ath_bus_type != ATH_USB)) {
779 udelay(100);
782 DO_DELAY(regWrites);
785 REGWRITE_BUFFER_FLUSH(ah);
787 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
789 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
790 REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
791 regWrites);
793 ar5008_hw_override_ini(ah, chan);
794 ar5008_hw_set_channel_regs(ah, chan);
795 ar5008_hw_init_chain_masks(ah);
796 ath9k_olc_init(ah);
797 ath9k_hw_apply_txpower(ah, chan, false);
799 /* Write analog registers */
800 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
801 ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
802 return -EIO;
805 return 0;
808 static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
810 u32 rfMode = 0;
812 if (chan == NULL)
813 return;
815 if (IS_CHAN_2GHZ(chan))
816 rfMode |= AR_PHY_MODE_DYNAMIC;
817 else
818 rfMode |= AR_PHY_MODE_OFDM;
820 if (!AR_SREV_9280_20_OR_LATER(ah))
821 rfMode |= (IS_CHAN_5GHZ(chan)) ?
822 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
824 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
825 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
827 REG_WRITE(ah, AR_PHY_MODE, rfMode);
830 static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
832 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
835 static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
836 struct ath9k_channel *chan)
838 u32 coef_scaled, ds_coef_exp, ds_coef_man;
839 u32 clockMhzScaled = 0x64000000;
840 struct chan_centers centers;
842 if (IS_CHAN_HALF_RATE(chan))
843 clockMhzScaled = clockMhzScaled >> 1;
844 else if (IS_CHAN_QUARTER_RATE(chan))
845 clockMhzScaled = clockMhzScaled >> 2;
847 ath9k_hw_get_channel_centers(ah, chan, &centers);
848 coef_scaled = clockMhzScaled / centers.synth_center;
850 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
851 &ds_coef_exp);
853 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
854 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
855 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
856 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
858 coef_scaled = (9 * coef_scaled) / 10;
860 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
861 &ds_coef_exp);
863 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
864 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
865 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
866 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
869 static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
871 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
872 return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
873 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
876 static void ar5008_hw_rfbus_done(struct ath_hw *ah)
878 u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
880 ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
882 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
885 static void ar5008_restore_chainmask(struct ath_hw *ah)
887 int rx_chainmask = ah->rxchainmask;
889 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
890 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
891 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
895 static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
896 struct ath9k_channel *chan)
898 u32 pll;
900 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
902 if (chan && IS_CHAN_HALF_RATE(chan))
903 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
904 else if (chan && IS_CHAN_QUARTER_RATE(chan))
905 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
907 if (chan && IS_CHAN_5GHZ(chan))
908 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
909 else
910 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
912 return pll;
915 static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
916 struct ath9k_channel *chan)
918 u32 pll;
920 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
922 if (chan && IS_CHAN_HALF_RATE(chan))
923 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
924 else if (chan && IS_CHAN_QUARTER_RATE(chan))
925 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
927 if (chan && IS_CHAN_5GHZ(chan))
928 pll |= SM(0xa, AR_RTC_PLL_DIV);
929 else
930 pll |= SM(0xb, AR_RTC_PLL_DIV);
932 return pll;
935 static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
936 enum ath9k_ani_cmd cmd,
937 int param)
939 struct ath_common *common = ath9k_hw_common(ah);
940 struct ath9k_channel *chan = ah->curchan;
941 struct ar5416AniState *aniState = &ah->ani;
942 s32 value;
944 switch (cmd & ah->ani_function) {
945 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
947 * on == 1 means ofdm weak signal detection is ON
948 * on == 1 is the default, for less noise immunity
950 * on == 0 means ofdm weak signal detection is OFF
951 * on == 0 means more noise imm
953 u32 on = param ? 1 : 0;
955 * make register setting for default
956 * (weak sig detect ON) come from INI file
958 int m1ThreshLow = on ?
959 aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
960 int m2ThreshLow = on ?
961 aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
962 int m1Thresh = on ?
963 aniState->iniDef.m1Thresh : m1Thresh_off;
964 int m2Thresh = on ?
965 aniState->iniDef.m2Thresh : m2Thresh_off;
966 int m2CountThr = on ?
967 aniState->iniDef.m2CountThr : m2CountThr_off;
968 int m2CountThrLow = on ?
969 aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
970 int m1ThreshLowExt = on ?
971 aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
972 int m2ThreshLowExt = on ?
973 aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
974 int m1ThreshExt = on ?
975 aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
976 int m2ThreshExt = on ?
977 aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
979 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
980 AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
981 m1ThreshLow);
982 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
983 AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
984 m2ThreshLow);
985 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
986 AR_PHY_SFCORR_M1_THRESH, m1Thresh);
987 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
988 AR_PHY_SFCORR_M2_THRESH, m2Thresh);
989 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
990 AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
991 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
992 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
993 m2CountThrLow);
995 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
996 AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
997 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
998 AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
999 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1000 AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
1001 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1002 AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
1004 if (on)
1005 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1006 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1007 else
1008 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1009 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1011 if (on != aniState->ofdmWeakSigDetect) {
1012 ath_dbg(common, ANI,
1013 "** ch %d: ofdm weak signal: %s=>%s\n",
1014 chan->channel,
1015 aniState->ofdmWeakSigDetect ?
1016 "on" : "off",
1017 on ? "on" : "off");
1018 if (on)
1019 ah->stats.ast_ani_ofdmon++;
1020 else
1021 ah->stats.ast_ani_ofdmoff++;
1022 aniState->ofdmWeakSigDetect = on;
1024 break;
1026 case ATH9K_ANI_FIRSTEP_LEVEL:{
1027 u32 level = param;
1029 value = level * 2;
1030 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1031 AR_PHY_FIND_SIG_FIRSTEP, value);
1032 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1033 AR_PHY_FIND_SIG_FIRSTEP_LOW, value);
1035 if (level != aniState->firstepLevel) {
1036 ath_dbg(common, ANI,
1037 "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1038 chan->channel,
1039 aniState->firstepLevel,
1040 level,
1041 ATH9K_ANI_FIRSTEP_LVL,
1042 value,
1043 aniState->iniDef.firstep);
1044 ath_dbg(common, ANI,
1045 "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1046 chan->channel,
1047 aniState->firstepLevel,
1048 level,
1049 ATH9K_ANI_FIRSTEP_LVL,
1050 value,
1051 aniState->iniDef.firstepLow);
1052 if (level > aniState->firstepLevel)
1053 ah->stats.ast_ani_stepup++;
1054 else if (level < aniState->firstepLevel)
1055 ah->stats.ast_ani_stepdown++;
1056 aniState->firstepLevel = level;
1058 break;
1060 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1061 u32 level = param;
1063 value = (level + 1) * 2;
1064 REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1065 AR_PHY_TIMING5_CYCPWR_THR1, value);
1067 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1068 AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1);
1070 if (level != aniState->spurImmunityLevel) {
1071 ath_dbg(common, ANI,
1072 "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1073 chan->channel,
1074 aniState->spurImmunityLevel,
1075 level,
1076 ATH9K_ANI_SPUR_IMMUNE_LVL,
1077 value,
1078 aniState->iniDef.cycpwrThr1);
1079 ath_dbg(common, ANI,
1080 "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1081 chan->channel,
1082 aniState->spurImmunityLevel,
1083 level,
1084 ATH9K_ANI_SPUR_IMMUNE_LVL,
1085 value,
1086 aniState->iniDef.cycpwrThr1Ext);
1087 if (level > aniState->spurImmunityLevel)
1088 ah->stats.ast_ani_spurup++;
1089 else if (level < aniState->spurImmunityLevel)
1090 ah->stats.ast_ani_spurdown++;
1091 aniState->spurImmunityLevel = level;
1093 break;
1095 case ATH9K_ANI_MRC_CCK:
1097 * You should not see this as AR5008, AR9001, AR9002
1098 * does not have hardware support for MRC CCK.
1100 WARN_ON(1);
1101 break;
1102 default:
1103 ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
1104 return false;
1107 ath_dbg(common, ANI,
1108 "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1109 aniState->spurImmunityLevel,
1110 aniState->ofdmWeakSigDetect ? "on" : "off",
1111 aniState->firstepLevel,
1112 aniState->mrcCCK ? "on" : "off",
1113 aniState->listenTime,
1114 aniState->ofdmPhyErrCount,
1115 aniState->cckPhyErrCount);
1116 return true;
1119 static void ar5008_hw_do_getnf(struct ath_hw *ah,
1120 int16_t nfarray[NUM_NF_READINGS])
1122 int16_t nf;
1124 nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1125 nfarray[0] = sign_extend32(nf, 8);
1127 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1128 nfarray[1] = sign_extend32(nf, 8);
1130 nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1131 nfarray[2] = sign_extend32(nf, 8);
1133 if (!IS_CHAN_HT40(ah->curchan))
1134 return;
1136 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1137 nfarray[3] = sign_extend32(nf, 8);
1139 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1140 nfarray[4] = sign_extend32(nf, 8);
1142 nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1143 nfarray[5] = sign_extend32(nf, 8);
1147 * Initialize the ANI register values with default (ini) values.
1148 * This routine is called during a (full) hardware reset after
1149 * all the registers are initialised from the INI.
1151 static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1153 struct ath_common *common = ath9k_hw_common(ah);
1154 struct ath9k_channel *chan = ah->curchan;
1155 struct ar5416AniState *aniState = &ah->ani;
1156 struct ath9k_ani_default *iniDef;
1157 u32 val;
1159 iniDef = &aniState->iniDef;
1161 ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
1162 ah->hw_version.macVersion,
1163 ah->hw_version.macRev,
1164 ah->opmode,
1165 chan->channel);
1167 val = REG_READ(ah, AR_PHY_SFCORR);
1168 iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1169 iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1170 iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1172 val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1173 iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1174 iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1175 iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1177 val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1178 iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1179 iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1180 iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1181 iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1182 iniDef->firstep = REG_READ_FIELD(ah,
1183 AR_PHY_FIND_SIG,
1184 AR_PHY_FIND_SIG_FIRSTEP);
1185 iniDef->firstepLow = REG_READ_FIELD(ah,
1186 AR_PHY_FIND_SIG_LOW,
1187 AR_PHY_FIND_SIG_FIRSTEP_LOW);
1188 iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1189 AR_PHY_TIMING5,
1190 AR_PHY_TIMING5_CYCPWR_THR1);
1191 iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1192 AR_PHY_EXT_CCA,
1193 AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1195 /* these levels just got reset to defaults by the INI */
1196 aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
1197 aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
1198 aniState->ofdmWeakSigDetect = true;
1199 aniState->mrcCCK = false; /* not available on pre AR9003 */
1202 static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1204 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1205 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1206 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1207 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1208 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1209 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1212 static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1213 struct ath_hw_radar_conf *conf)
1215 u32 radar_0 = 0, radar_1;
1217 if (!conf) {
1218 REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1219 return;
1222 radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1223 radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1224 radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1225 radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1226 radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1227 radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1229 radar_1 = REG_READ(ah, AR_PHY_RADAR_1);
1230 radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH |
1231 AR_PHY_RADAR_1_RELPWR_THRESH);
1232 radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1233 radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1234 radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1235 radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1236 radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1238 REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1239 REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1240 if (conf->ext_channel)
1241 REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1242 else
1243 REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1246 static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1248 struct ath_hw_radar_conf *conf = &ah->radar_conf;
1250 conf->fir_power = -33;
1251 conf->radar_rssi = 20;
1252 conf->pulse_height = 10;
1253 conf->pulse_rssi = 15;
1254 conf->pulse_inband = 15;
1255 conf->pulse_maxlen = 255;
1256 conf->pulse_inband_step = 12;
1257 conf->radar_inband = 8;
1260 static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array)
1262 #define CCK_DELTA(x) ((OLC_FOR_AR9280_20_LATER) ? max((x) - 2, 0) : (x))
1263 ah->tx_power[0] = CCK_DELTA(rate_array[rate1l]);
1264 ah->tx_power[1] = CCK_DELTA(min(rate_array[rate2l],
1265 rate_array[rate2s]));
1266 ah->tx_power[2] = CCK_DELTA(min(rate_array[rate5_5l],
1267 rate_array[rate5_5s]));
1268 ah->tx_power[3] = CCK_DELTA(min(rate_array[rate11l],
1269 rate_array[rate11s]));
1270 #undef CCK_DELTA
1273 static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array,
1274 int offset)
1276 int i, idx = 0;
1278 for (i = offset; i < offset + AR5008_OFDM_RATES; i++) {
1279 ah->tx_power[i] = rate_array[idx];
1280 idx++;
1284 static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array,
1285 int ss_offset, int ds_offset,
1286 bool is_40, int ht40_delta)
1288 int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT;
1290 for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) {
1291 ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta;
1292 mcs_idx++;
1294 memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset],
1295 AR5008_HT_SS_RATES);
1298 void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array,
1299 struct ath9k_channel *chan, int ht40_delta)
1301 if (IS_CHAN_5GHZ(chan)) {
1302 ar5008_hw_init_txpower_ofdm(ah, rate_array,
1303 AR5008_11NA_OFDM_SHIFT);
1304 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1305 ar5008_hw_init_txpower_ht(ah, rate_array,
1306 AR5008_11NA_HT_SS_SHIFT,
1307 AR5008_11NA_HT_DS_SHIFT,
1308 IS_CHAN_HT40(chan),
1309 ht40_delta);
1311 } else {
1312 ar5008_hw_init_txpower_cck(ah, rate_array);
1313 ar5008_hw_init_txpower_ofdm(ah, rate_array,
1314 AR5008_11NG_OFDM_SHIFT);
1315 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1316 ar5008_hw_init_txpower_ht(ah, rate_array,
1317 AR5008_11NG_HT_SS_SHIFT,
1318 AR5008_11NG_HT_DS_SHIFT,
1319 IS_CHAN_HT40(chan),
1320 ht40_delta);
1325 int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1327 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1328 static const u32 ar5416_cca_regs[6] = {
1329 AR_PHY_CCA,
1330 AR_PHY_CH1_CCA,
1331 AR_PHY_CH2_CCA,
1332 AR_PHY_EXT_CCA,
1333 AR_PHY_CH1_EXT_CCA,
1334 AR_PHY_CH2_EXT_CCA
1336 int ret;
1338 ret = ar5008_hw_rf_alloc_ext_banks(ah);
1339 if (ret)
1340 return ret;
1342 priv_ops->rf_set_freq = ar5008_hw_set_channel;
1343 priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1345 priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1346 priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1347 priv_ops->init_bb = ar5008_hw_init_bb;
1348 priv_ops->process_ini = ar5008_hw_process_ini;
1349 priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1350 priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1351 priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1352 priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1353 priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1354 priv_ops->restore_chainmask = ar5008_restore_chainmask;
1355 priv_ops->do_getnf = ar5008_hw_do_getnf;
1356 priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1358 priv_ops->ani_control = ar5008_hw_ani_control_new;
1359 priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1361 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
1362 priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1363 else
1364 priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1366 ar5008_hw_set_nf_limits(ah);
1367 ar5008_hw_set_radar_conf(ah);
1368 memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1369 return 0;