Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
blobb8c0a08066a010c22e4031f0254dde0f66749824
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
23 u16 version = le16_to_cpu(ah->eeprom.map4k.baseEepHeader.version);
25 return (version & AR5416_EEP_VER_MAJOR_MASK) >>
26 AR5416_EEP_VER_MAJOR_SHIFT;
29 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
31 u16 version = le16_to_cpu(ah->eeprom.map4k.baseEepHeader.version);
33 return version & AR5416_EEP_VER_MINOR_MASK;
36 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
38 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
40 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
41 int addr, eep_start_loc = 64;
43 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
44 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
45 return false;
46 eep_data++;
49 return true;
52 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
54 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
56 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
58 return true;
61 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
63 struct ath_common *common = ath9k_hw_common(ah);
65 if (!ath9k_hw_use_flash(ah)) {
66 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
69 if (common->bus_ops->ath_bus_type == ATH_USB)
70 return __ath9k_hw_usb_4k_fill_eeprom(ah);
71 else
72 return __ath9k_hw_4k_fill_eeprom(ah);
75 #ifdef CONFIG_ATH9K_COMMON_DEBUG
76 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
77 struct modal_eep_4k_header *modal_hdr)
79 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
80 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
81 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
82 PR_EEP("Switch Settle", modal_hdr->switchSettling);
83 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
84 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
85 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
86 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
87 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
88 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
89 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
90 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
91 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
92 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
93 PR_EEP("xpdGain", modal_hdr->xpdGain);
94 PR_EEP("External PD", modal_hdr->xpd);
95 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
96 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
97 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
98 PR_EEP("O/D Bias Version", modal_hdr->version);
99 PR_EEP("CCK OutputBias", modal_hdr->ob_0);
100 PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
101 PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
102 PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
103 PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
104 PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
105 PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
106 PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
107 PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
108 PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
109 PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
110 PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
111 PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
112 PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
113 PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
114 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
115 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
116 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
117 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
118 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
119 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
120 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
121 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
122 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
123 PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
124 PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
125 PR_EEP("TX Diversity", modal_hdr->tx_diversity);
127 return len;
130 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
131 u8 *buf, u32 len, u32 size)
133 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
134 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
135 u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
137 if (!dump_base_hdr) {
138 len += scnprintf(buf + len, size - len,
139 "%20s :\n", "2GHz modal Header");
140 len = ath9k_dump_4k_modal_eeprom(buf, len, size,
141 &eep->modalHeader);
142 goto out;
145 PR_EEP("Major Version", ath9k_hw_4k_get_eeprom_ver(ah));
146 PR_EEP("Minor Version", ath9k_hw_4k_get_eeprom_rev(ah));
147 PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
148 PR_EEP("Length", le16_to_cpu(pBase->length));
149 PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
150 PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
151 PR_EEP("TX Mask", pBase->txMask);
152 PR_EEP("RX Mask", pBase->rxMask);
153 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
154 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
155 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
156 AR5416_OPFLAGS_N_2G_HT20));
157 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
158 AR5416_OPFLAGS_N_2G_HT40));
159 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
160 AR5416_OPFLAGS_N_5G_HT20));
161 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
162 AR5416_OPFLAGS_N_5G_HT40));
163 PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
164 PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
165 PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
166 PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
167 PR_EEP("TX Gain type", pBase->txGainType);
169 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
170 pBase->macAddr);
172 out:
173 if (len > size)
174 len = size;
176 return len;
178 #else
179 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
180 u8 *buf, u32 len, u32 size)
182 return 0;
184 #endif
186 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
188 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
189 u32 el;
190 bool need_swap;
191 int i, err;
193 err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_4K);
194 if (err)
195 return err;
197 if (need_swap)
198 el = swab16((__force u16)eep->baseEepHeader.length);
199 else
200 el = le16_to_cpu(eep->baseEepHeader.length);
202 el = min(el / sizeof(u16), SIZE_EEPROM_4K);
203 if (!ath9k_hw_nvram_validate_checksum(ah, el))
204 return -EINVAL;
206 if (need_swap) {
207 EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
208 EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
209 EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
210 EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
211 EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
212 EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
213 EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
214 EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
215 EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlCommon);
217 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++)
218 EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlChain[i]);
220 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
221 EEPROM_FIELD_SWAB16(
222 eep->modalHeader.spurChans[i].spurChan);
225 if (!ath9k_hw_nvram_check_version(ah, AR5416_EEP_VER,
226 AR5416_EEP_NO_BACK_VER))
227 return -EINVAL;
229 return 0;
232 #undef SIZE_EEPROM_4K
234 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
235 enum eeprom_param param)
237 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
238 struct modal_eep_4k_header *pModal = &eep->modalHeader;
239 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
241 switch (param) {
242 case EEP_NFTHRESH_2:
243 return pModal->noiseFloorThreshCh[0];
244 case EEP_MAC_LSW:
245 return get_unaligned_be16(pBase->macAddr);
246 case EEP_MAC_MID:
247 return get_unaligned_be16(pBase->macAddr + 2);
248 case EEP_MAC_MSW:
249 return get_unaligned_be16(pBase->macAddr + 4);
250 case EEP_REG_0:
251 return le16_to_cpu(pBase->regDmn[0]);
252 case EEP_OP_CAP:
253 return le16_to_cpu(pBase->deviceCap);
254 case EEP_OP_MODE:
255 return pBase->opCapFlags;
256 case EEP_RF_SILENT:
257 return le16_to_cpu(pBase->rfSilent);
258 case EEP_OB_2:
259 return pModal->ob_0;
260 case EEP_DB_2:
261 return pModal->db1_1;
262 case EEP_TX_MASK:
263 return pBase->txMask;
264 case EEP_RX_MASK:
265 return pBase->rxMask;
266 case EEP_FRAC_N_5G:
267 return 0;
268 case EEP_PWR_TABLE_OFFSET:
269 return AR5416_PWR_TABLE_OFFSET_DB;
270 case EEP_MODAL_VER:
271 return pModal->version;
272 case EEP_ANT_DIV_CTL1:
273 return pModal->antdiv_ctl1;
274 case EEP_TXGAIN_TYPE:
275 return pBase->txGainType;
276 case EEP_ANTENNA_GAIN_2G:
277 return pModal->antennaGainCh[0];
278 default:
279 return 0;
283 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
284 struct ath9k_channel *chan)
286 struct ath_common *common = ath9k_hw_common(ah);
287 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
288 struct cal_data_per_freq_4k *pRawDataset;
289 u8 *pCalBChans = NULL;
290 u16 pdGainOverlap_t2;
291 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
292 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
293 u16 numPiers, i, j;
294 u16 numXpdGain, xpdMask;
295 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
296 u32 reg32, regOffset, regChainOffset;
298 xpdMask = pEepData->modalHeader.xpdGain;
300 if (ath9k_hw_4k_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2)
301 pdGainOverlap_t2 =
302 pEepData->modalHeader.pdGainOverlap;
303 else
304 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
305 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
307 pCalBChans = pEepData->calFreqPier2G;
308 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
310 numXpdGain = 0;
312 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
313 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
314 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
315 break;
316 xpdGainValues[numXpdGain] =
317 (u16)(AR5416_PD_GAINS_IN_MASK - i);
318 numXpdGain++;
322 ENABLE_REG_RMW_BUFFER(ah);
323 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
324 (numXpdGain - 1) & 0x3);
325 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
326 xpdGainValues[0]);
327 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
328 xpdGainValues[1]);
329 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
330 REG_RMW_BUFFER_FLUSH(ah);
332 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
333 regChainOffset = i * 0x1000;
335 if (pEepData->baseEepHeader.txMask & (1 << i)) {
336 pRawDataset = pEepData->calPierData2G[i];
338 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
339 pRawDataset, pCalBChans,
340 numPiers, pdGainOverlap_t2,
341 gainBoundaries,
342 pdadcValues, numXpdGain);
344 ENABLE_REGWRITE_BUFFER(ah);
346 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
347 SM(pdGainOverlap_t2,
348 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
349 | SM(gainBoundaries[0],
350 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
351 | SM(gainBoundaries[1],
352 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
353 | SM(gainBoundaries[2],
354 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
355 | SM(gainBoundaries[3],
356 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
358 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
359 for (j = 0; j < 32; j++) {
360 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
361 REG_WRITE(ah, regOffset, reg32);
363 ath_dbg(common, EEPROM,
364 "PDADC (%d,%4x): %4.4x %8.8x\n",
365 i, regChainOffset, regOffset,
366 reg32);
367 ath_dbg(common, EEPROM,
368 "PDADC: Chain %d | "
369 "PDADC %3d Value %3d | "
370 "PDADC %3d Value %3d | "
371 "PDADC %3d Value %3d | "
372 "PDADC %3d Value %3d |\n",
373 i, 4 * j, pdadcValues[4 * j],
374 4 * j + 1, pdadcValues[4 * j + 1],
375 4 * j + 2, pdadcValues[4 * j + 2],
376 4 * j + 3, pdadcValues[4 * j + 3]);
378 regOffset += 4;
381 REGWRITE_BUFFER_FLUSH(ah);
386 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
387 struct ath9k_channel *chan,
388 int16_t *ratesArray,
389 u16 cfgCtl,
390 u16 antenna_reduction,
391 u16 powerLimit)
393 #define CMP_TEST_GRP \
394 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
395 pEepData->ctlIndex[i]) \
396 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
397 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
399 int i;
400 u16 twiceMinEdgePower;
401 u16 twiceMaxEdgePower;
402 u16 scaledPower = 0, minCtlPower;
403 u16 numCtlModes;
404 const u16 *pCtlMode;
405 u16 ctlMode, freq;
406 struct chan_centers centers;
407 struct cal_ctl_data_4k *rep;
408 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
409 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
410 0, { 0, 0, 0, 0}
412 struct cal_target_power_leg targetPowerOfdmExt = {
413 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
414 0, { 0, 0, 0, 0 }
416 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
417 0, {0, 0, 0, 0}
419 static const u16 ctlModesFor11g[] = {
420 CTL_11B, CTL_11G, CTL_2GHT20,
421 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
424 ath9k_hw_get_channel_centers(ah, chan, &centers);
426 scaledPower = powerLimit - antenna_reduction;
427 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
428 pCtlMode = ctlModesFor11g;
430 ath9k_hw_get_legacy_target_powers(ah, chan,
431 pEepData->calTargetPowerCck,
432 AR5416_NUM_2G_CCK_TARGET_POWERS,
433 &targetPowerCck, 4, false);
434 ath9k_hw_get_legacy_target_powers(ah, chan,
435 pEepData->calTargetPower2G,
436 AR5416_NUM_2G_20_TARGET_POWERS,
437 &targetPowerOfdm, 4, false);
438 ath9k_hw_get_target_powers(ah, chan,
439 pEepData->calTargetPower2GHT20,
440 AR5416_NUM_2G_20_TARGET_POWERS,
441 &targetPowerHt20, 8, false);
443 if (IS_CHAN_HT40(chan)) {
444 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
445 ath9k_hw_get_target_powers(ah, chan,
446 pEepData->calTargetPower2GHT40,
447 AR5416_NUM_2G_40_TARGET_POWERS,
448 &targetPowerHt40, 8, true);
449 ath9k_hw_get_legacy_target_powers(ah, chan,
450 pEepData->calTargetPowerCck,
451 AR5416_NUM_2G_CCK_TARGET_POWERS,
452 &targetPowerCckExt, 4, true);
453 ath9k_hw_get_legacy_target_powers(ah, chan,
454 pEepData->calTargetPower2G,
455 AR5416_NUM_2G_20_TARGET_POWERS,
456 &targetPowerOfdmExt, 4, true);
459 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
460 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
461 (pCtlMode[ctlMode] == CTL_2GHT40);
463 if (isHt40CtlMode)
464 freq = centers.synth_center;
465 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
466 freq = centers.ext_center;
467 else
468 freq = centers.ctl_center;
470 twiceMaxEdgePower = MAX_RATE_POWER;
472 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
473 pEepData->ctlIndex[i]; i++) {
475 if (CMP_TEST_GRP) {
476 rep = &(pEepData->ctlData[i]);
478 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
479 freq,
480 rep->ctlEdges[
481 ar5416_get_ntxchains(ah->txchainmask) - 1],
482 IS_CHAN_2GHZ(chan),
483 AR5416_EEP4K_NUM_BAND_EDGES);
485 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
486 twiceMaxEdgePower =
487 min(twiceMaxEdgePower,
488 twiceMinEdgePower);
489 } else {
490 twiceMaxEdgePower = twiceMinEdgePower;
491 break;
496 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
498 switch (pCtlMode[ctlMode]) {
499 case CTL_11B:
500 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
501 targetPowerCck.tPow2x[i] =
502 min((u16)targetPowerCck.tPow2x[i],
503 minCtlPower);
505 break;
506 case CTL_11G:
507 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
508 targetPowerOfdm.tPow2x[i] =
509 min((u16)targetPowerOfdm.tPow2x[i],
510 minCtlPower);
512 break;
513 case CTL_2GHT20:
514 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
515 targetPowerHt20.tPow2x[i] =
516 min((u16)targetPowerHt20.tPow2x[i],
517 minCtlPower);
519 break;
520 case CTL_11B_EXT:
521 targetPowerCckExt.tPow2x[0] =
522 min((u16)targetPowerCckExt.tPow2x[0],
523 minCtlPower);
524 break;
525 case CTL_11G_EXT:
526 targetPowerOfdmExt.tPow2x[0] =
527 min((u16)targetPowerOfdmExt.tPow2x[0],
528 minCtlPower);
529 break;
530 case CTL_2GHT40:
531 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
532 targetPowerHt40.tPow2x[i] =
533 min((u16)targetPowerHt40.tPow2x[i],
534 minCtlPower);
536 break;
537 default:
538 break;
542 ratesArray[rate6mb] =
543 ratesArray[rate9mb] =
544 ratesArray[rate12mb] =
545 ratesArray[rate18mb] =
546 ratesArray[rate24mb] =
547 targetPowerOfdm.tPow2x[0];
549 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
550 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
551 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
552 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
554 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
555 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
557 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
558 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
559 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
560 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
562 if (IS_CHAN_HT40(chan)) {
563 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
564 ratesArray[rateHt40_0 + i] =
565 targetPowerHt40.tPow2x[i];
567 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
568 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
569 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
570 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
573 #undef CMP_TEST_GRP
576 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
577 struct ath9k_channel *chan,
578 u16 cfgCtl,
579 u8 twiceAntennaReduction,
580 u8 powerLimit, bool test)
582 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
583 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
584 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
585 int16_t ratesArray[Ar5416RateSize];
586 u8 ht40PowerIncForPdadc = 2;
587 int i;
589 memset(ratesArray, 0, sizeof(ratesArray));
591 if (ath9k_hw_4k_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2)
592 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
594 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
595 &ratesArray[0], cfgCtl,
596 twiceAntennaReduction,
597 powerLimit);
599 ath9k_hw_set_4k_power_cal_table(ah, chan);
601 regulatory->max_power_level = 0;
602 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
603 if (ratesArray[i] > MAX_RATE_POWER)
604 ratesArray[i] = MAX_RATE_POWER;
606 if (ratesArray[i] > regulatory->max_power_level)
607 regulatory->max_power_level = ratesArray[i];
610 if (test)
611 return;
613 for (i = 0; i < Ar5416RateSize; i++)
614 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
616 ENABLE_REGWRITE_BUFFER(ah);
618 /* OFDM power per rate */
619 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
620 ATH9K_POW_SM(ratesArray[rate18mb], 24)
621 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
622 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
623 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
624 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
625 ATH9K_POW_SM(ratesArray[rate54mb], 24)
626 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
627 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
628 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
630 /* CCK power per rate */
631 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
632 ATH9K_POW_SM(ratesArray[rate2s], 24)
633 | ATH9K_POW_SM(ratesArray[rate2l], 16)
634 | ATH9K_POW_SM(ratesArray[rateXr], 8)
635 | ATH9K_POW_SM(ratesArray[rate1l], 0));
636 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
637 ATH9K_POW_SM(ratesArray[rate11s], 24)
638 | ATH9K_POW_SM(ratesArray[rate11l], 16)
639 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
640 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
642 /* HT20 power per rate */
643 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
644 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
645 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
646 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
647 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
648 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
649 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
650 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
651 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
652 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
654 /* HT40 power per rate */
655 if (IS_CHAN_HT40(chan)) {
656 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
657 ATH9K_POW_SM(ratesArray[rateHt40_3] +
658 ht40PowerIncForPdadc, 24)
659 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
660 ht40PowerIncForPdadc, 16)
661 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
662 ht40PowerIncForPdadc, 8)
663 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
664 ht40PowerIncForPdadc, 0));
665 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
666 ATH9K_POW_SM(ratesArray[rateHt40_7] +
667 ht40PowerIncForPdadc, 24)
668 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
669 ht40PowerIncForPdadc, 16)
670 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
671 ht40PowerIncForPdadc, 8)
672 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
673 ht40PowerIncForPdadc, 0));
674 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
675 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
676 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
677 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
678 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
681 /* TPC initializations */
682 if (ah->tpc_enabled) {
683 int ht40_delta;
685 ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
686 ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
687 /* Enable TPC */
688 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
689 MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
690 } else {
691 /* Disable TPC */
692 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
695 REGWRITE_BUFFER_FLUSH(ah);
698 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
699 struct modal_eep_4k_header *pModal,
700 struct ar5416_eeprom_4k *eep,
701 u8 txRxAttenLocal)
703 ENABLE_REG_RMW_BUFFER(ah);
704 REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0,
705 le32_to_cpu(pModal->antCtrlChain[0]), 0);
707 REG_RMW(ah, AR_PHY_TIMING_CTRL4(0),
708 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
709 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF),
710 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF);
712 if (ath9k_hw_4k_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_3) {
713 txRxAttenLocal = pModal->txRxAttenCh[0];
715 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
716 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
717 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
718 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
719 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
720 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
721 pModal->xatten2Margin[0]);
722 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
723 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
725 /* Set the block 1 value to block 0 value */
726 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
727 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
728 pModal->bswMargin[0]);
729 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
730 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
731 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
732 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
733 pModal->xatten2Margin[0]);
734 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
735 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
736 pModal->xatten2Db[0]);
739 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
740 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
741 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
742 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
744 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
745 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
746 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
747 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
748 REG_RMW_BUFFER_FLUSH(ah);
752 * Read EEPROM header info and program the device for correct operation
753 * given the channel value.
755 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
756 struct ath9k_channel *chan)
758 struct ath9k_hw_capabilities *pCap = &ah->caps;
759 struct modal_eep_4k_header *pModal;
760 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
761 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
762 u8 txRxAttenLocal;
763 u8 ob[5], db1[5], db2[5];
764 u8 ant_div_control1, ant_div_control2;
765 u8 bb_desired_scale;
766 u32 regVal;
768 pModal = &eep->modalHeader;
769 txRxAttenLocal = 23;
771 REG_WRITE(ah, AR_PHY_SWITCH_COM, le32_to_cpu(pModal->antCtrlCommon));
773 /* Single chain for 4K EEPROM*/
774 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
776 /* Initialize Ant Diversity settings from EEPROM */
777 if (pModal->version >= 3) {
778 ant_div_control1 = pModal->antdiv_ctl1;
779 ant_div_control2 = pModal->antdiv_ctl2;
781 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
782 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
784 regVal |= SM(ant_div_control1,
785 AR_PHY_9285_ANT_DIV_CTL);
786 regVal |= SM(ant_div_control2,
787 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
788 regVal |= SM((ant_div_control2 >> 2),
789 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
790 regVal |= SM((ant_div_control1 >> 1),
791 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
792 regVal |= SM((ant_div_control1 >> 2),
793 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
796 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
797 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
798 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
799 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
800 regVal |= SM((ant_div_control1 >> 3),
801 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
803 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
804 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
806 if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
808 * If diversity combining is enabled,
809 * set MAIN to LNA1 and ALT to LNA2 initially.
811 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
812 regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
813 AR_PHY_9285_ANT_DIV_ALT_LNACONF));
815 regVal |= (ATH_ANT_DIV_COMB_LNA1 <<
816 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S);
817 regVal |= (ATH_ANT_DIV_COMB_LNA2 <<
818 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S);
819 regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS));
820 regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S);
821 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
825 if (pModal->version >= 2) {
826 ob[0] = pModal->ob_0;
827 ob[1] = pModal->ob_1;
828 ob[2] = pModal->ob_2;
829 ob[3] = pModal->ob_3;
830 ob[4] = pModal->ob_4;
832 db1[0] = pModal->db1_0;
833 db1[1] = pModal->db1_1;
834 db1[2] = pModal->db1_2;
835 db1[3] = pModal->db1_3;
836 db1[4] = pModal->db1_4;
838 db2[0] = pModal->db2_0;
839 db2[1] = pModal->db2_1;
840 db2[2] = pModal->db2_2;
841 db2[3] = pModal->db2_3;
842 db2[4] = pModal->db2_4;
843 } else if (pModal->version == 1) {
844 ob[0] = pModal->ob_0;
845 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
846 db1[0] = pModal->db1_0;
847 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
848 db2[0] = pModal->db2_0;
849 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
850 } else {
851 int i;
853 for (i = 0; i < 5; i++) {
854 ob[i] = pModal->ob_0;
855 db1[i] = pModal->db1_0;
856 db2[i] = pModal->db1_0;
860 ENABLE_REG_RMW_BUFFER(ah);
861 if (AR_SREV_9271(ah)) {
862 ath9k_hw_analog_shift_rmw(ah,
863 AR9285_AN_RF2G3,
864 AR9271_AN_RF2G3_OB_cck,
865 AR9271_AN_RF2G3_OB_cck_S,
866 ob[0]);
867 ath9k_hw_analog_shift_rmw(ah,
868 AR9285_AN_RF2G3,
869 AR9271_AN_RF2G3_OB_psk,
870 AR9271_AN_RF2G3_OB_psk_S,
871 ob[1]);
872 ath9k_hw_analog_shift_rmw(ah,
873 AR9285_AN_RF2G3,
874 AR9271_AN_RF2G3_OB_qam,
875 AR9271_AN_RF2G3_OB_qam_S,
876 ob[2]);
877 ath9k_hw_analog_shift_rmw(ah,
878 AR9285_AN_RF2G3,
879 AR9271_AN_RF2G3_DB_1,
880 AR9271_AN_RF2G3_DB_1_S,
881 db1[0]);
882 ath9k_hw_analog_shift_rmw(ah,
883 AR9285_AN_RF2G4,
884 AR9271_AN_RF2G4_DB_2,
885 AR9271_AN_RF2G4_DB_2_S,
886 db2[0]);
887 } else {
888 ath9k_hw_analog_shift_rmw(ah,
889 AR9285_AN_RF2G3,
890 AR9285_AN_RF2G3_OB_0,
891 AR9285_AN_RF2G3_OB_0_S,
892 ob[0]);
893 ath9k_hw_analog_shift_rmw(ah,
894 AR9285_AN_RF2G3,
895 AR9285_AN_RF2G3_OB_1,
896 AR9285_AN_RF2G3_OB_1_S,
897 ob[1]);
898 ath9k_hw_analog_shift_rmw(ah,
899 AR9285_AN_RF2G3,
900 AR9285_AN_RF2G3_OB_2,
901 AR9285_AN_RF2G3_OB_2_S,
902 ob[2]);
903 ath9k_hw_analog_shift_rmw(ah,
904 AR9285_AN_RF2G3,
905 AR9285_AN_RF2G3_OB_3,
906 AR9285_AN_RF2G3_OB_3_S,
907 ob[3]);
908 ath9k_hw_analog_shift_rmw(ah,
909 AR9285_AN_RF2G3,
910 AR9285_AN_RF2G3_OB_4,
911 AR9285_AN_RF2G3_OB_4_S,
912 ob[4]);
914 ath9k_hw_analog_shift_rmw(ah,
915 AR9285_AN_RF2G3,
916 AR9285_AN_RF2G3_DB1_0,
917 AR9285_AN_RF2G3_DB1_0_S,
918 db1[0]);
919 ath9k_hw_analog_shift_rmw(ah,
920 AR9285_AN_RF2G3,
921 AR9285_AN_RF2G3_DB1_1,
922 AR9285_AN_RF2G3_DB1_1_S,
923 db1[1]);
924 ath9k_hw_analog_shift_rmw(ah,
925 AR9285_AN_RF2G3,
926 AR9285_AN_RF2G3_DB1_2,
927 AR9285_AN_RF2G3_DB1_2_S,
928 db1[2]);
929 ath9k_hw_analog_shift_rmw(ah,
930 AR9285_AN_RF2G4,
931 AR9285_AN_RF2G4_DB1_3,
932 AR9285_AN_RF2G4_DB1_3_S,
933 db1[3]);
934 ath9k_hw_analog_shift_rmw(ah,
935 AR9285_AN_RF2G4,
936 AR9285_AN_RF2G4_DB1_4,
937 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
939 ath9k_hw_analog_shift_rmw(ah,
940 AR9285_AN_RF2G4,
941 AR9285_AN_RF2G4_DB2_0,
942 AR9285_AN_RF2G4_DB2_0_S,
943 db2[0]);
944 ath9k_hw_analog_shift_rmw(ah,
945 AR9285_AN_RF2G4,
946 AR9285_AN_RF2G4_DB2_1,
947 AR9285_AN_RF2G4_DB2_1_S,
948 db2[1]);
949 ath9k_hw_analog_shift_rmw(ah,
950 AR9285_AN_RF2G4,
951 AR9285_AN_RF2G4_DB2_2,
952 AR9285_AN_RF2G4_DB2_2_S,
953 db2[2]);
954 ath9k_hw_analog_shift_rmw(ah,
955 AR9285_AN_RF2G4,
956 AR9285_AN_RF2G4_DB2_3,
957 AR9285_AN_RF2G4_DB2_3_S,
958 db2[3]);
959 ath9k_hw_analog_shift_rmw(ah,
960 AR9285_AN_RF2G4,
961 AR9285_AN_RF2G4_DB2_4,
962 AR9285_AN_RF2G4_DB2_4_S,
963 db2[4]);
965 REG_RMW_BUFFER_FLUSH(ah);
967 ENABLE_REG_RMW_BUFFER(ah);
968 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
969 pModal->switchSettling);
970 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
971 pModal->adcDesiredSize);
973 REG_RMW(ah, AR_PHY_RF_CTL4,
974 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
975 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
976 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
977 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON), 0);
979 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
980 pModal->txEndToRxOn);
982 if (AR_SREV_9271_10(ah))
983 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
984 pModal->txEndToRxOn);
985 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
986 pModal->thresh62);
987 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
988 pModal->thresh62);
990 if (ath9k_hw_4k_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2) {
991 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
992 pModal->txFrameToDataStart);
993 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
994 pModal->txFrameToPaOn);
997 if (ath9k_hw_4k_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_3) {
998 if (IS_CHAN_HT40(chan))
999 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1000 AR_PHY_SETTLING_SWITCH,
1001 pModal->swSettleHt40);
1004 REG_RMW_BUFFER_FLUSH(ah);
1006 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1007 EEP_4K_BB_DESIRED_SCALE_MASK);
1008 if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1009 u32 pwrctrl, mask, clr;
1011 mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1012 pwrctrl = mask * bb_desired_scale;
1013 clr = mask * 0x1f;
1014 ENABLE_REG_RMW_BUFFER(ah);
1015 REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1016 REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1017 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1019 mask = BIT(0)|BIT(5)|BIT(15);
1020 pwrctrl = mask * bb_desired_scale;
1021 clr = mask * 0x1f;
1022 REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1024 mask = BIT(0)|BIT(5);
1025 pwrctrl = mask * bb_desired_scale;
1026 clr = mask * 0x1f;
1027 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1028 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1029 REG_RMW_BUFFER_FLUSH(ah);
1033 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1035 return le16_to_cpu(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan);
1038 static u8 ath9k_hw_4k_get_eepmisc(struct ath_hw *ah)
1040 return ah->eeprom.map4k.baseEepHeader.eepMisc;
1043 const struct eeprom_ops eep_4k_ops = {
1044 .check_eeprom = ath9k_hw_4k_check_eeprom,
1045 .get_eeprom = ath9k_hw_4k_get_eeprom,
1046 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1047 .dump_eeprom = ath9k_hw_4k_dump_eeprom,
1048 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1049 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1050 .set_board_values = ath9k_hw_4k_set_board_values,
1051 .set_txpower = ath9k_hw_4k_set_txpower,
1052 .get_spur_channel = ath9k_hw_4k_get_spur_channel,
1053 .get_eepmisc = ath9k_hw_4k_get_eepmisc