2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
19 #include "ar9002_phy.h"
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw
*ah
)
23 u16 version
= le16_to_cpu(ah
->eeprom
.map4k
.baseEepHeader
.version
);
25 return (version
& AR5416_EEP_VER_MAJOR_MASK
) >>
26 AR5416_EEP_VER_MAJOR_SHIFT
;
29 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw
*ah
)
31 u16 version
= le16_to_cpu(ah
->eeprom
.map4k
.baseEepHeader
.version
);
33 return version
& AR5416_EEP_VER_MINOR_MASK
;
36 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
38 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw
*ah
)
40 u16
*eep_data
= (u16
*)&ah
->eeprom
.map4k
;
41 int addr
, eep_start_loc
= 64;
43 for (addr
= 0; addr
< SIZE_EEPROM_4K
; addr
++) {
44 if (!ath9k_hw_nvram_read(ah
, addr
+ eep_start_loc
, eep_data
))
52 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw
*ah
)
54 u16
*eep_data
= (u16
*)&ah
->eeprom
.map4k
;
56 ath9k_hw_usb_gen_fill_eeprom(ah
, eep_data
, 64, SIZE_EEPROM_4K
);
61 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw
*ah
)
63 struct ath_common
*common
= ath9k_hw_common(ah
);
65 if (!ath9k_hw_use_flash(ah
)) {
66 ath_dbg(common
, EEPROM
, "Reading from EEPROM, not flash\n");
69 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
70 return __ath9k_hw_usb_4k_fill_eeprom(ah
);
72 return __ath9k_hw_4k_fill_eeprom(ah
);
75 #ifdef CONFIG_ATH9K_COMMON_DEBUG
76 static u32
ath9k_dump_4k_modal_eeprom(char *buf
, u32 len
, u32 size
,
77 struct modal_eep_4k_header
*modal_hdr
)
79 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr
->antCtrlChain
[0]));
80 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr
->antCtrlCommon
));
81 PR_EEP("Chain0 Ant. Gain", modal_hdr
->antennaGainCh
[0]);
82 PR_EEP("Switch Settle", modal_hdr
->switchSettling
);
83 PR_EEP("Chain0 TxRxAtten", modal_hdr
->txRxAttenCh
[0]);
84 PR_EEP("Chain0 RxTxMargin", modal_hdr
->rxTxMarginCh
[0]);
85 PR_EEP("ADC Desired size", modal_hdr
->adcDesiredSize
);
86 PR_EEP("PGA Desired size", modal_hdr
->pgaDesiredSize
);
87 PR_EEP("Chain0 xlna Gain", modal_hdr
->xlnaGainCh
[0]);
88 PR_EEP("txEndToXpaOff", modal_hdr
->txEndToXpaOff
);
89 PR_EEP("txEndToRxOn", modal_hdr
->txEndToRxOn
);
90 PR_EEP("txFrameToXpaOn", modal_hdr
->txFrameToXpaOn
);
91 PR_EEP("CCA Threshold)", modal_hdr
->thresh62
);
92 PR_EEP("Chain0 NF Threshold", modal_hdr
->noiseFloorThreshCh
[0]);
93 PR_EEP("xpdGain", modal_hdr
->xpdGain
);
94 PR_EEP("External PD", modal_hdr
->xpd
);
95 PR_EEP("Chain0 I Coefficient", modal_hdr
->iqCalICh
[0]);
96 PR_EEP("Chain0 Q Coefficient", modal_hdr
->iqCalQCh
[0]);
97 PR_EEP("pdGainOverlap", modal_hdr
->pdGainOverlap
);
98 PR_EEP("O/D Bias Version", modal_hdr
->version
);
99 PR_EEP("CCK OutputBias", modal_hdr
->ob_0
);
100 PR_EEP("BPSK OutputBias", modal_hdr
->ob_1
);
101 PR_EEP("QPSK OutputBias", modal_hdr
->ob_2
);
102 PR_EEP("16QAM OutputBias", modal_hdr
->ob_3
);
103 PR_EEP("64QAM OutputBias", modal_hdr
->ob_4
);
104 PR_EEP("CCK Driver1_Bias", modal_hdr
->db1_0
);
105 PR_EEP("BPSK Driver1_Bias", modal_hdr
->db1_1
);
106 PR_EEP("QPSK Driver1_Bias", modal_hdr
->db1_2
);
107 PR_EEP("16QAM Driver1_Bias", modal_hdr
->db1_3
);
108 PR_EEP("64QAM Driver1_Bias", modal_hdr
->db1_4
);
109 PR_EEP("CCK Driver2_Bias", modal_hdr
->db2_0
);
110 PR_EEP("BPSK Driver2_Bias", modal_hdr
->db2_1
);
111 PR_EEP("QPSK Driver2_Bias", modal_hdr
->db2_2
);
112 PR_EEP("16QAM Driver2_Bias", modal_hdr
->db2_3
);
113 PR_EEP("64QAM Driver2_Bias", modal_hdr
->db2_4
);
114 PR_EEP("xPA Bias Level", modal_hdr
->xpaBiasLvl
);
115 PR_EEP("txFrameToDataStart", modal_hdr
->txFrameToDataStart
);
116 PR_EEP("txFrameToPaOn", modal_hdr
->txFrameToPaOn
);
117 PR_EEP("HT40 Power Inc.", modal_hdr
->ht40PowerIncForPdadc
);
118 PR_EEP("Chain0 bswAtten", modal_hdr
->bswAtten
[0]);
119 PR_EEP("Chain0 bswMargin", modal_hdr
->bswMargin
[0]);
120 PR_EEP("HT40 Switch Settle", modal_hdr
->swSettleHt40
);
121 PR_EEP("Chain0 xatten2Db", modal_hdr
->xatten2Db
[0]);
122 PR_EEP("Chain0 xatten2Margin", modal_hdr
->xatten2Margin
[0]);
123 PR_EEP("Ant. Diversity ctl1", modal_hdr
->antdiv_ctl1
);
124 PR_EEP("Ant. Diversity ctl2", modal_hdr
->antdiv_ctl2
);
125 PR_EEP("TX Diversity", modal_hdr
->tx_diversity
);
130 static u32
ath9k_hw_4k_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
131 u8
*buf
, u32 len
, u32 size
)
133 struct ar5416_eeprom_4k
*eep
= &ah
->eeprom
.map4k
;
134 struct base_eep_header_4k
*pBase
= &eep
->baseEepHeader
;
135 u32 binBuildNumber
= le32_to_cpu(pBase
->binBuildNumber
);
137 if (!dump_base_hdr
) {
138 len
+= scnprintf(buf
+ len
, size
- len
,
139 "%20s :\n", "2GHz modal Header");
140 len
= ath9k_dump_4k_modal_eeprom(buf
, len
, size
,
145 PR_EEP("Major Version", ath9k_hw_4k_get_eeprom_ver(ah
));
146 PR_EEP("Minor Version", ath9k_hw_4k_get_eeprom_rev(ah
));
147 PR_EEP("Checksum", le16_to_cpu(pBase
->checksum
));
148 PR_EEP("Length", le16_to_cpu(pBase
->length
));
149 PR_EEP("RegDomain1", le16_to_cpu(pBase
->regDmn
[0]));
150 PR_EEP("RegDomain2", le16_to_cpu(pBase
->regDmn
[1]));
151 PR_EEP("TX Mask", pBase
->txMask
);
152 PR_EEP("RX Mask", pBase
->rxMask
);
153 PR_EEP("Allow 5GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11A
));
154 PR_EEP("Allow 2GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11G
));
155 PR_EEP("Disable 2GHz HT20", !!(pBase
->opCapFlags
&
156 AR5416_OPFLAGS_N_2G_HT20
));
157 PR_EEP("Disable 2GHz HT40", !!(pBase
->opCapFlags
&
158 AR5416_OPFLAGS_N_2G_HT40
));
159 PR_EEP("Disable 5Ghz HT20", !!(pBase
->opCapFlags
&
160 AR5416_OPFLAGS_N_5G_HT20
));
161 PR_EEP("Disable 5Ghz HT40", !!(pBase
->opCapFlags
&
162 AR5416_OPFLAGS_N_5G_HT40
));
163 PR_EEP("Big Endian", !!(pBase
->eepMisc
& AR5416_EEPMISC_BIG_ENDIAN
));
164 PR_EEP("Cal Bin Major Ver", (binBuildNumber
>> 24) & 0xFF);
165 PR_EEP("Cal Bin Minor Ver", (binBuildNumber
>> 16) & 0xFF);
166 PR_EEP("Cal Bin Build", (binBuildNumber
>> 8) & 0xFF);
167 PR_EEP("TX Gain type", pBase
->txGainType
);
169 len
+= scnprintf(buf
+ len
, size
- len
, "%20s : %pM\n", "MacAddress",
179 static u32
ath9k_hw_4k_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
180 u8
*buf
, u32 len
, u32 size
)
186 static int ath9k_hw_4k_check_eeprom(struct ath_hw
*ah
)
188 struct ar5416_eeprom_4k
*eep
= &ah
->eeprom
.map4k
;
193 err
= ath9k_hw_nvram_swap_data(ah
, &need_swap
, SIZE_EEPROM_4K
);
198 el
= swab16((__force u16
)eep
->baseEepHeader
.length
);
200 el
= le16_to_cpu(eep
->baseEepHeader
.length
);
202 el
= min(el
/ sizeof(u16
), SIZE_EEPROM_4K
);
203 if (!ath9k_hw_nvram_validate_checksum(ah
, el
))
207 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.length
);
208 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.checksum
);
209 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.version
);
210 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.regDmn
[0]);
211 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.regDmn
[1]);
212 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.rfSilent
);
213 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.blueToothOptions
);
214 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.deviceCap
);
215 EEPROM_FIELD_SWAB32(eep
->modalHeader
.antCtrlCommon
);
217 for (i
= 0; i
< AR5416_EEP4K_MAX_CHAINS
; i
++)
218 EEPROM_FIELD_SWAB32(eep
->modalHeader
.antCtrlChain
[i
]);
220 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++)
222 eep
->modalHeader
.spurChans
[i
].spurChan
);
225 if (!ath9k_hw_nvram_check_version(ah
, AR5416_EEP_VER
,
226 AR5416_EEP_NO_BACK_VER
))
232 #undef SIZE_EEPROM_4K
234 static u32
ath9k_hw_4k_get_eeprom(struct ath_hw
*ah
,
235 enum eeprom_param param
)
237 struct ar5416_eeprom_4k
*eep
= &ah
->eeprom
.map4k
;
238 struct modal_eep_4k_header
*pModal
= &eep
->modalHeader
;
239 struct base_eep_header_4k
*pBase
= &eep
->baseEepHeader
;
243 return pModal
->noiseFloorThreshCh
[0];
245 return get_unaligned_be16(pBase
->macAddr
);
247 return get_unaligned_be16(pBase
->macAddr
+ 2);
249 return get_unaligned_be16(pBase
->macAddr
+ 4);
251 return le16_to_cpu(pBase
->regDmn
[0]);
253 return le16_to_cpu(pBase
->deviceCap
);
255 return pBase
->opCapFlags
;
257 return le16_to_cpu(pBase
->rfSilent
);
261 return pModal
->db1_1
;
263 return pBase
->txMask
;
265 return pBase
->rxMask
;
268 case EEP_PWR_TABLE_OFFSET
:
269 return AR5416_PWR_TABLE_OFFSET_DB
;
271 return pModal
->version
;
272 case EEP_ANT_DIV_CTL1
:
273 return pModal
->antdiv_ctl1
;
274 case EEP_TXGAIN_TYPE
:
275 return pBase
->txGainType
;
276 case EEP_ANTENNA_GAIN_2G
:
277 return pModal
->antennaGainCh
[0];
283 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw
*ah
,
284 struct ath9k_channel
*chan
)
286 struct ath_common
*common
= ath9k_hw_common(ah
);
287 struct ar5416_eeprom_4k
*pEepData
= &ah
->eeprom
.map4k
;
288 struct cal_data_per_freq_4k
*pRawDataset
;
289 u8
*pCalBChans
= NULL
;
290 u16 pdGainOverlap_t2
;
291 static u8 pdadcValues
[AR5416_NUM_PDADC_VALUES
];
292 u16 gainBoundaries
[AR5416_PD_GAINS_IN_MASK
];
294 u16 numXpdGain
, xpdMask
;
295 u16 xpdGainValues
[AR5416_EEP4K_NUM_PD_GAINS
] = { 0, 0 };
296 u32 reg32
, regOffset
, regChainOffset
;
298 xpdMask
= pEepData
->modalHeader
.xpdGain
;
300 if (ath9k_hw_4k_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_2
)
302 pEepData
->modalHeader
.pdGainOverlap
;
304 pdGainOverlap_t2
= (u16
)(MS(REG_READ(ah
, AR_PHY_TPCRG5
),
305 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
));
307 pCalBChans
= pEepData
->calFreqPier2G
;
308 numPiers
= AR5416_EEP4K_NUM_2G_CAL_PIERS
;
312 for (i
= 1; i
<= AR5416_PD_GAINS_IN_MASK
; i
++) {
313 if ((xpdMask
>> (AR5416_PD_GAINS_IN_MASK
- i
)) & 1) {
314 if (numXpdGain
>= AR5416_EEP4K_NUM_PD_GAINS
)
316 xpdGainValues
[numXpdGain
] =
317 (u16
)(AR5416_PD_GAINS_IN_MASK
- i
);
322 ENABLE_REG_RMW_BUFFER(ah
);
323 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_NUM_PD_GAIN
,
324 (numXpdGain
- 1) & 0x3);
325 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_1
,
327 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_2
,
329 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_3
, 0);
330 REG_RMW_BUFFER_FLUSH(ah
);
332 for (i
= 0; i
< AR5416_EEP4K_MAX_CHAINS
; i
++) {
333 regChainOffset
= i
* 0x1000;
335 if (pEepData
->baseEepHeader
.txMask
& (1 << i
)) {
336 pRawDataset
= pEepData
->calPierData2G
[i
];
338 ath9k_hw_get_gain_boundaries_pdadcs(ah
, chan
,
339 pRawDataset
, pCalBChans
,
340 numPiers
, pdGainOverlap_t2
,
342 pdadcValues
, numXpdGain
);
344 ENABLE_REGWRITE_BUFFER(ah
);
346 REG_WRITE(ah
, AR_PHY_TPCRG5
+ regChainOffset
,
348 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
)
349 | SM(gainBoundaries
[0],
350 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1
)
351 | SM(gainBoundaries
[1],
352 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2
)
353 | SM(gainBoundaries
[2],
354 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3
)
355 | SM(gainBoundaries
[3],
356 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4
));
358 regOffset
= AR_PHY_BASE
+ (672 << 2) + regChainOffset
;
359 for (j
= 0; j
< 32; j
++) {
360 reg32
= get_unaligned_le32(&pdadcValues
[4 * j
]);
361 REG_WRITE(ah
, regOffset
, reg32
);
363 ath_dbg(common
, EEPROM
,
364 "PDADC (%d,%4x): %4.4x %8.8x\n",
365 i
, regChainOffset
, regOffset
,
367 ath_dbg(common
, EEPROM
,
369 "PDADC %3d Value %3d | "
370 "PDADC %3d Value %3d | "
371 "PDADC %3d Value %3d | "
372 "PDADC %3d Value %3d |\n",
373 i
, 4 * j
, pdadcValues
[4 * j
],
374 4 * j
+ 1, pdadcValues
[4 * j
+ 1],
375 4 * j
+ 2, pdadcValues
[4 * j
+ 2],
376 4 * j
+ 3, pdadcValues
[4 * j
+ 3]);
381 REGWRITE_BUFFER_FLUSH(ah
);
386 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw
*ah
,
387 struct ath9k_channel
*chan
,
390 u16 antenna_reduction
,
393 #define CMP_TEST_GRP \
394 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
395 pEepData->ctlIndex[i]) \
396 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
397 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
400 u16 twiceMinEdgePower
;
401 u16 twiceMaxEdgePower
;
402 u16 scaledPower
= 0, minCtlPower
;
406 struct chan_centers centers
;
407 struct cal_ctl_data_4k
*rep
;
408 struct ar5416_eeprom_4k
*pEepData
= &ah
->eeprom
.map4k
;
409 struct cal_target_power_leg targetPowerOfdm
, targetPowerCck
= {
412 struct cal_target_power_leg targetPowerOfdmExt
= {
413 0, { 0, 0, 0, 0} }, targetPowerCckExt
= {
416 struct cal_target_power_ht targetPowerHt20
, targetPowerHt40
= {
419 static const u16 ctlModesFor11g
[] = {
420 CTL_11B
, CTL_11G
, CTL_2GHT20
,
421 CTL_11B_EXT
, CTL_11G_EXT
, CTL_2GHT40
424 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
426 scaledPower
= powerLimit
- antenna_reduction
;
427 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
) - SUB_NUM_CTL_MODES_AT_2G_40
;
428 pCtlMode
= ctlModesFor11g
;
430 ath9k_hw_get_legacy_target_powers(ah
, chan
,
431 pEepData
->calTargetPowerCck
,
432 AR5416_NUM_2G_CCK_TARGET_POWERS
,
433 &targetPowerCck
, 4, false);
434 ath9k_hw_get_legacy_target_powers(ah
, chan
,
435 pEepData
->calTargetPower2G
,
436 AR5416_NUM_2G_20_TARGET_POWERS
,
437 &targetPowerOfdm
, 4, false);
438 ath9k_hw_get_target_powers(ah
, chan
,
439 pEepData
->calTargetPower2GHT20
,
440 AR5416_NUM_2G_20_TARGET_POWERS
,
441 &targetPowerHt20
, 8, false);
443 if (IS_CHAN_HT40(chan
)) {
444 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
);
445 ath9k_hw_get_target_powers(ah
, chan
,
446 pEepData
->calTargetPower2GHT40
,
447 AR5416_NUM_2G_40_TARGET_POWERS
,
448 &targetPowerHt40
, 8, true);
449 ath9k_hw_get_legacy_target_powers(ah
, chan
,
450 pEepData
->calTargetPowerCck
,
451 AR5416_NUM_2G_CCK_TARGET_POWERS
,
452 &targetPowerCckExt
, 4, true);
453 ath9k_hw_get_legacy_target_powers(ah
, chan
,
454 pEepData
->calTargetPower2G
,
455 AR5416_NUM_2G_20_TARGET_POWERS
,
456 &targetPowerOfdmExt
, 4, true);
459 for (ctlMode
= 0; ctlMode
< numCtlModes
; ctlMode
++) {
460 bool isHt40CtlMode
= (pCtlMode
[ctlMode
] == CTL_5GHT40
) ||
461 (pCtlMode
[ctlMode
] == CTL_2GHT40
);
464 freq
= centers
.synth_center
;
465 else if (pCtlMode
[ctlMode
] & EXT_ADDITIVE
)
466 freq
= centers
.ext_center
;
468 freq
= centers
.ctl_center
;
470 twiceMaxEdgePower
= MAX_RATE_POWER
;
472 for (i
= 0; (i
< AR5416_EEP4K_NUM_CTLS
) &&
473 pEepData
->ctlIndex
[i
]; i
++) {
476 rep
= &(pEepData
->ctlData
[i
]);
478 twiceMinEdgePower
= ath9k_hw_get_max_edge_power(
481 ar5416_get_ntxchains(ah
->txchainmask
) - 1],
483 AR5416_EEP4K_NUM_BAND_EDGES
);
485 if ((cfgCtl
& ~CTL_MODE_M
) == SD_NO_CTL
) {
487 min(twiceMaxEdgePower
,
490 twiceMaxEdgePower
= twiceMinEdgePower
;
496 minCtlPower
= (u8
)min(twiceMaxEdgePower
, scaledPower
);
498 switch (pCtlMode
[ctlMode
]) {
500 for (i
= 0; i
< ARRAY_SIZE(targetPowerCck
.tPow2x
); i
++) {
501 targetPowerCck
.tPow2x
[i
] =
502 min((u16
)targetPowerCck
.tPow2x
[i
],
507 for (i
= 0; i
< ARRAY_SIZE(targetPowerOfdm
.tPow2x
); i
++) {
508 targetPowerOfdm
.tPow2x
[i
] =
509 min((u16
)targetPowerOfdm
.tPow2x
[i
],
514 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++) {
515 targetPowerHt20
.tPow2x
[i
] =
516 min((u16
)targetPowerHt20
.tPow2x
[i
],
521 targetPowerCckExt
.tPow2x
[0] =
522 min((u16
)targetPowerCckExt
.tPow2x
[0],
526 targetPowerOfdmExt
.tPow2x
[0] =
527 min((u16
)targetPowerOfdmExt
.tPow2x
[0],
531 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
532 targetPowerHt40
.tPow2x
[i
] =
533 min((u16
)targetPowerHt40
.tPow2x
[i
],
542 ratesArray
[rate6mb
] =
543 ratesArray
[rate9mb
] =
544 ratesArray
[rate12mb
] =
545 ratesArray
[rate18mb
] =
546 ratesArray
[rate24mb
] =
547 targetPowerOfdm
.tPow2x
[0];
549 ratesArray
[rate36mb
] = targetPowerOfdm
.tPow2x
[1];
550 ratesArray
[rate48mb
] = targetPowerOfdm
.tPow2x
[2];
551 ratesArray
[rate54mb
] = targetPowerOfdm
.tPow2x
[3];
552 ratesArray
[rateXr
] = targetPowerOfdm
.tPow2x
[0];
554 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++)
555 ratesArray
[rateHt20_0
+ i
] = targetPowerHt20
.tPow2x
[i
];
557 ratesArray
[rate1l
] = targetPowerCck
.tPow2x
[0];
558 ratesArray
[rate2s
] = ratesArray
[rate2l
] = targetPowerCck
.tPow2x
[1];
559 ratesArray
[rate5_5s
] = ratesArray
[rate5_5l
] = targetPowerCck
.tPow2x
[2];
560 ratesArray
[rate11s
] = ratesArray
[rate11l
] = targetPowerCck
.tPow2x
[3];
562 if (IS_CHAN_HT40(chan
)) {
563 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
564 ratesArray
[rateHt40_0
+ i
] =
565 targetPowerHt40
.tPow2x
[i
];
567 ratesArray
[rateDupOfdm
] = targetPowerHt40
.tPow2x
[0];
568 ratesArray
[rateDupCck
] = targetPowerHt40
.tPow2x
[0];
569 ratesArray
[rateExtOfdm
] = targetPowerOfdmExt
.tPow2x
[0];
570 ratesArray
[rateExtCck
] = targetPowerCckExt
.tPow2x
[0];
576 static void ath9k_hw_4k_set_txpower(struct ath_hw
*ah
,
577 struct ath9k_channel
*chan
,
579 u8 twiceAntennaReduction
,
580 u8 powerLimit
, bool test
)
582 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
583 struct ar5416_eeprom_4k
*pEepData
= &ah
->eeprom
.map4k
;
584 struct modal_eep_4k_header
*pModal
= &pEepData
->modalHeader
;
585 int16_t ratesArray
[Ar5416RateSize
];
586 u8 ht40PowerIncForPdadc
= 2;
589 memset(ratesArray
, 0, sizeof(ratesArray
));
591 if (ath9k_hw_4k_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_2
)
592 ht40PowerIncForPdadc
= pModal
->ht40PowerIncForPdadc
;
594 ath9k_hw_set_4k_power_per_rate_table(ah
, chan
,
595 &ratesArray
[0], cfgCtl
,
596 twiceAntennaReduction
,
599 ath9k_hw_set_4k_power_cal_table(ah
, chan
);
601 regulatory
->max_power_level
= 0;
602 for (i
= 0; i
< ARRAY_SIZE(ratesArray
); i
++) {
603 if (ratesArray
[i
] > MAX_RATE_POWER
)
604 ratesArray
[i
] = MAX_RATE_POWER
;
606 if (ratesArray
[i
] > regulatory
->max_power_level
)
607 regulatory
->max_power_level
= ratesArray
[i
];
613 for (i
= 0; i
< Ar5416RateSize
; i
++)
614 ratesArray
[i
] -= AR5416_PWR_TABLE_OFFSET_DB
* 2;
616 ENABLE_REGWRITE_BUFFER(ah
);
618 /* OFDM power per rate */
619 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE1
,
620 ATH9K_POW_SM(ratesArray
[rate18mb
], 24)
621 | ATH9K_POW_SM(ratesArray
[rate12mb
], 16)
622 | ATH9K_POW_SM(ratesArray
[rate9mb
], 8)
623 | ATH9K_POW_SM(ratesArray
[rate6mb
], 0));
624 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE2
,
625 ATH9K_POW_SM(ratesArray
[rate54mb
], 24)
626 | ATH9K_POW_SM(ratesArray
[rate48mb
], 16)
627 | ATH9K_POW_SM(ratesArray
[rate36mb
], 8)
628 | ATH9K_POW_SM(ratesArray
[rate24mb
], 0));
630 /* CCK power per rate */
631 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
632 ATH9K_POW_SM(ratesArray
[rate2s
], 24)
633 | ATH9K_POW_SM(ratesArray
[rate2l
], 16)
634 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
635 | ATH9K_POW_SM(ratesArray
[rate1l
], 0));
636 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
637 ATH9K_POW_SM(ratesArray
[rate11s
], 24)
638 | ATH9K_POW_SM(ratesArray
[rate11l
], 16)
639 | ATH9K_POW_SM(ratesArray
[rate5_5s
], 8)
640 | ATH9K_POW_SM(ratesArray
[rate5_5l
], 0));
642 /* HT20 power per rate */
643 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE5
,
644 ATH9K_POW_SM(ratesArray
[rateHt20_3
], 24)
645 | ATH9K_POW_SM(ratesArray
[rateHt20_2
], 16)
646 | ATH9K_POW_SM(ratesArray
[rateHt20_1
], 8)
647 | ATH9K_POW_SM(ratesArray
[rateHt20_0
], 0));
648 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE6
,
649 ATH9K_POW_SM(ratesArray
[rateHt20_7
], 24)
650 | ATH9K_POW_SM(ratesArray
[rateHt20_6
], 16)
651 | ATH9K_POW_SM(ratesArray
[rateHt20_5
], 8)
652 | ATH9K_POW_SM(ratesArray
[rateHt20_4
], 0));
654 /* HT40 power per rate */
655 if (IS_CHAN_HT40(chan
)) {
656 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
657 ATH9K_POW_SM(ratesArray
[rateHt40_3
] +
658 ht40PowerIncForPdadc
, 24)
659 | ATH9K_POW_SM(ratesArray
[rateHt40_2
] +
660 ht40PowerIncForPdadc
, 16)
661 | ATH9K_POW_SM(ratesArray
[rateHt40_1
] +
662 ht40PowerIncForPdadc
, 8)
663 | ATH9K_POW_SM(ratesArray
[rateHt40_0
] +
664 ht40PowerIncForPdadc
, 0));
665 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
666 ATH9K_POW_SM(ratesArray
[rateHt40_7
] +
667 ht40PowerIncForPdadc
, 24)
668 | ATH9K_POW_SM(ratesArray
[rateHt40_6
] +
669 ht40PowerIncForPdadc
, 16)
670 | ATH9K_POW_SM(ratesArray
[rateHt40_5
] +
671 ht40PowerIncForPdadc
, 8)
672 | ATH9K_POW_SM(ratesArray
[rateHt40_4
] +
673 ht40PowerIncForPdadc
, 0));
674 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
675 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
676 | ATH9K_POW_SM(ratesArray
[rateExtCck
], 16)
677 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
678 | ATH9K_POW_SM(ratesArray
[rateDupCck
], 0));
681 /* TPC initializations */
682 if (ah
->tpc_enabled
) {
685 ht40_delta
= (IS_CHAN_HT40(chan
)) ? ht40PowerIncForPdadc
: 0;
686 ar5008_hw_init_rate_txpower(ah
, ratesArray
, chan
, ht40_delta
);
688 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE_MAX
,
689 MAX_RATE_POWER
| AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE
);
692 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE_MAX
, MAX_RATE_POWER
);
695 REGWRITE_BUFFER_FLUSH(ah
);
698 static void ath9k_hw_4k_set_gain(struct ath_hw
*ah
,
699 struct modal_eep_4k_header
*pModal
,
700 struct ar5416_eeprom_4k
*eep
,
703 ENABLE_REG_RMW_BUFFER(ah
);
704 REG_RMW(ah
, AR_PHY_SWITCH_CHAIN_0
,
705 le32_to_cpu(pModal
->antCtrlChain
[0]), 0);
707 REG_RMW(ah
, AR_PHY_TIMING_CTRL4(0),
708 SM(pModal
->iqCalICh
[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
) |
709 SM(pModal
->iqCalQCh
[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
),
710 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
| AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
);
712 if (ath9k_hw_4k_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_3
) {
713 txRxAttenLocal
= pModal
->txRxAttenCh
[0];
715 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
,
716 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN
, pModal
->bswMargin
[0]);
717 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
,
718 AR_PHY_GAIN_2GHZ_XATTEN1_DB
, pModal
->bswAtten
[0]);
719 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
,
720 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN
,
721 pModal
->xatten2Margin
[0]);
722 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
,
723 AR_PHY_GAIN_2GHZ_XATTEN2_DB
, pModal
->xatten2Db
[0]);
725 /* Set the block 1 value to block 0 value */
726 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ 0x1000,
727 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN
,
728 pModal
->bswMargin
[0]);
729 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ 0x1000,
730 AR_PHY_GAIN_2GHZ_XATTEN1_DB
, pModal
->bswAtten
[0]);
731 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ 0x1000,
732 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN
,
733 pModal
->xatten2Margin
[0]);
734 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ 0x1000,
735 AR_PHY_GAIN_2GHZ_XATTEN2_DB
,
736 pModal
->xatten2Db
[0]);
739 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
,
740 AR9280_PHY_RXGAIN_TXRX_ATTEN
, txRxAttenLocal
);
741 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
,
742 AR9280_PHY_RXGAIN_TXRX_MARGIN
, pModal
->rxTxMarginCh
[0]);
744 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
+ 0x1000,
745 AR9280_PHY_RXGAIN_TXRX_ATTEN
, txRxAttenLocal
);
746 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
+ 0x1000,
747 AR9280_PHY_RXGAIN_TXRX_MARGIN
, pModal
->rxTxMarginCh
[0]);
748 REG_RMW_BUFFER_FLUSH(ah
);
752 * Read EEPROM header info and program the device for correct operation
753 * given the channel value.
755 static void ath9k_hw_4k_set_board_values(struct ath_hw
*ah
,
756 struct ath9k_channel
*chan
)
758 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
759 struct modal_eep_4k_header
*pModal
;
760 struct ar5416_eeprom_4k
*eep
= &ah
->eeprom
.map4k
;
761 struct base_eep_header_4k
*pBase
= &eep
->baseEepHeader
;
763 u8 ob
[5], db1
[5], db2
[5];
764 u8 ant_div_control1
, ant_div_control2
;
768 pModal
= &eep
->modalHeader
;
771 REG_WRITE(ah
, AR_PHY_SWITCH_COM
, le32_to_cpu(pModal
->antCtrlCommon
));
773 /* Single chain for 4K EEPROM*/
774 ath9k_hw_4k_set_gain(ah
, pModal
, eep
, txRxAttenLocal
);
776 /* Initialize Ant Diversity settings from EEPROM */
777 if (pModal
->version
>= 3) {
778 ant_div_control1
= pModal
->antdiv_ctl1
;
779 ant_div_control2
= pModal
->antdiv_ctl2
;
781 regVal
= REG_READ(ah
, AR_PHY_MULTICHAIN_GAIN_CTL
);
782 regVal
&= (~(AR_PHY_9285_ANT_DIV_CTL_ALL
));
784 regVal
|= SM(ant_div_control1
,
785 AR_PHY_9285_ANT_DIV_CTL
);
786 regVal
|= SM(ant_div_control2
,
787 AR_PHY_9285_ANT_DIV_ALT_LNACONF
);
788 regVal
|= SM((ant_div_control2
>> 2),
789 AR_PHY_9285_ANT_DIV_MAIN_LNACONF
);
790 regVal
|= SM((ant_div_control1
>> 1),
791 AR_PHY_9285_ANT_DIV_ALT_GAINTB
);
792 regVal
|= SM((ant_div_control1
>> 2),
793 AR_PHY_9285_ANT_DIV_MAIN_GAINTB
);
796 REG_WRITE(ah
, AR_PHY_MULTICHAIN_GAIN_CTL
, regVal
);
797 regVal
= REG_READ(ah
, AR_PHY_MULTICHAIN_GAIN_CTL
);
798 regVal
= REG_READ(ah
, AR_PHY_CCK_DETECT
);
799 regVal
&= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
);
800 regVal
|= SM((ant_div_control1
>> 3),
801 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
);
803 REG_WRITE(ah
, AR_PHY_CCK_DETECT
, regVal
);
804 regVal
= REG_READ(ah
, AR_PHY_CCK_DETECT
);
806 if (pCap
->hw_caps
& ATH9K_HW_CAP_ANT_DIV_COMB
) {
808 * If diversity combining is enabled,
809 * set MAIN to LNA1 and ALT to LNA2 initially.
811 regVal
= REG_READ(ah
, AR_PHY_MULTICHAIN_GAIN_CTL
);
812 regVal
&= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF
|
813 AR_PHY_9285_ANT_DIV_ALT_LNACONF
));
815 regVal
|= (ATH_ANT_DIV_COMB_LNA1
<<
816 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S
);
817 regVal
|= (ATH_ANT_DIV_COMB_LNA2
<<
818 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S
);
819 regVal
&= (~(AR_PHY_9285_FAST_DIV_BIAS
));
820 regVal
|= (0 << AR_PHY_9285_FAST_DIV_BIAS_S
);
821 REG_WRITE(ah
, AR_PHY_MULTICHAIN_GAIN_CTL
, regVal
);
825 if (pModal
->version
>= 2) {
826 ob
[0] = pModal
->ob_0
;
827 ob
[1] = pModal
->ob_1
;
828 ob
[2] = pModal
->ob_2
;
829 ob
[3] = pModal
->ob_3
;
830 ob
[4] = pModal
->ob_4
;
832 db1
[0] = pModal
->db1_0
;
833 db1
[1] = pModal
->db1_1
;
834 db1
[2] = pModal
->db1_2
;
835 db1
[3] = pModal
->db1_3
;
836 db1
[4] = pModal
->db1_4
;
838 db2
[0] = pModal
->db2_0
;
839 db2
[1] = pModal
->db2_1
;
840 db2
[2] = pModal
->db2_2
;
841 db2
[3] = pModal
->db2_3
;
842 db2
[4] = pModal
->db2_4
;
843 } else if (pModal
->version
== 1) {
844 ob
[0] = pModal
->ob_0
;
845 ob
[1] = ob
[2] = ob
[3] = ob
[4] = pModal
->ob_1
;
846 db1
[0] = pModal
->db1_0
;
847 db1
[1] = db1
[2] = db1
[3] = db1
[4] = pModal
->db1_1
;
848 db2
[0] = pModal
->db2_0
;
849 db2
[1] = db2
[2] = db2
[3] = db2
[4] = pModal
->db2_1
;
853 for (i
= 0; i
< 5; i
++) {
854 ob
[i
] = pModal
->ob_0
;
855 db1
[i
] = pModal
->db1_0
;
856 db2
[i
] = pModal
->db1_0
;
860 ENABLE_REG_RMW_BUFFER(ah
);
861 if (AR_SREV_9271(ah
)) {
862 ath9k_hw_analog_shift_rmw(ah
,
864 AR9271_AN_RF2G3_OB_cck
,
865 AR9271_AN_RF2G3_OB_cck_S
,
867 ath9k_hw_analog_shift_rmw(ah
,
869 AR9271_AN_RF2G3_OB_psk
,
870 AR9271_AN_RF2G3_OB_psk_S
,
872 ath9k_hw_analog_shift_rmw(ah
,
874 AR9271_AN_RF2G3_OB_qam
,
875 AR9271_AN_RF2G3_OB_qam_S
,
877 ath9k_hw_analog_shift_rmw(ah
,
879 AR9271_AN_RF2G3_DB_1
,
880 AR9271_AN_RF2G3_DB_1_S
,
882 ath9k_hw_analog_shift_rmw(ah
,
884 AR9271_AN_RF2G4_DB_2
,
885 AR9271_AN_RF2G4_DB_2_S
,
888 ath9k_hw_analog_shift_rmw(ah
,
890 AR9285_AN_RF2G3_OB_0
,
891 AR9285_AN_RF2G3_OB_0_S
,
893 ath9k_hw_analog_shift_rmw(ah
,
895 AR9285_AN_RF2G3_OB_1
,
896 AR9285_AN_RF2G3_OB_1_S
,
898 ath9k_hw_analog_shift_rmw(ah
,
900 AR9285_AN_RF2G3_OB_2
,
901 AR9285_AN_RF2G3_OB_2_S
,
903 ath9k_hw_analog_shift_rmw(ah
,
905 AR9285_AN_RF2G3_OB_3
,
906 AR9285_AN_RF2G3_OB_3_S
,
908 ath9k_hw_analog_shift_rmw(ah
,
910 AR9285_AN_RF2G3_OB_4
,
911 AR9285_AN_RF2G3_OB_4_S
,
914 ath9k_hw_analog_shift_rmw(ah
,
916 AR9285_AN_RF2G3_DB1_0
,
917 AR9285_AN_RF2G3_DB1_0_S
,
919 ath9k_hw_analog_shift_rmw(ah
,
921 AR9285_AN_RF2G3_DB1_1
,
922 AR9285_AN_RF2G3_DB1_1_S
,
924 ath9k_hw_analog_shift_rmw(ah
,
926 AR9285_AN_RF2G3_DB1_2
,
927 AR9285_AN_RF2G3_DB1_2_S
,
929 ath9k_hw_analog_shift_rmw(ah
,
931 AR9285_AN_RF2G4_DB1_3
,
932 AR9285_AN_RF2G4_DB1_3_S
,
934 ath9k_hw_analog_shift_rmw(ah
,
936 AR9285_AN_RF2G4_DB1_4
,
937 AR9285_AN_RF2G4_DB1_4_S
, db1
[4]);
939 ath9k_hw_analog_shift_rmw(ah
,
941 AR9285_AN_RF2G4_DB2_0
,
942 AR9285_AN_RF2G4_DB2_0_S
,
944 ath9k_hw_analog_shift_rmw(ah
,
946 AR9285_AN_RF2G4_DB2_1
,
947 AR9285_AN_RF2G4_DB2_1_S
,
949 ath9k_hw_analog_shift_rmw(ah
,
951 AR9285_AN_RF2G4_DB2_2
,
952 AR9285_AN_RF2G4_DB2_2_S
,
954 ath9k_hw_analog_shift_rmw(ah
,
956 AR9285_AN_RF2G4_DB2_3
,
957 AR9285_AN_RF2G4_DB2_3_S
,
959 ath9k_hw_analog_shift_rmw(ah
,
961 AR9285_AN_RF2G4_DB2_4
,
962 AR9285_AN_RF2G4_DB2_4_S
,
965 REG_RMW_BUFFER_FLUSH(ah
);
967 ENABLE_REG_RMW_BUFFER(ah
);
968 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
, AR_PHY_SETTLING_SWITCH
,
969 pModal
->switchSettling
);
970 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
, AR_PHY_DESIRED_SZ_ADC
,
971 pModal
->adcDesiredSize
);
973 REG_RMW(ah
, AR_PHY_RF_CTL4
,
974 SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAA_OFF
) |
975 SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAB_OFF
) |
976 SM(pModal
->txFrameToXpaOn
, AR_PHY_RF_CTL4_FRAME_XPAA_ON
) |
977 SM(pModal
->txFrameToXpaOn
, AR_PHY_RF_CTL4_FRAME_XPAB_ON
), 0);
979 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL3
, AR_PHY_TX_END_TO_A2_RX_ON
,
980 pModal
->txEndToRxOn
);
982 if (AR_SREV_9271_10(ah
))
983 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL3
, AR_PHY_TX_END_TO_A2_RX_ON
,
984 pModal
->txEndToRxOn
);
985 REG_RMW_FIELD(ah
, AR_PHY_CCA
, AR9280_PHY_CCA_THRESH62
,
987 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA0
, AR_PHY_EXT_CCA0_THRESH62
,
990 if (ath9k_hw_4k_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_2
) {
991 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
, AR_PHY_TX_END_DATA_START
,
992 pModal
->txFrameToDataStart
);
993 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
, AR_PHY_TX_END_PA_ON
,
994 pModal
->txFrameToPaOn
);
997 if (ath9k_hw_4k_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_3
) {
998 if (IS_CHAN_HT40(chan
))
999 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
1000 AR_PHY_SETTLING_SWITCH
,
1001 pModal
->swSettleHt40
);
1004 REG_RMW_BUFFER_FLUSH(ah
);
1006 bb_desired_scale
= (pModal
->bb_scale_smrt_antenna
&
1007 EEP_4K_BB_DESIRED_SCALE_MASK
);
1008 if ((pBase
->txGainType
== 0) && (bb_desired_scale
!= 0)) {
1009 u32 pwrctrl
, mask
, clr
;
1011 mask
= BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1012 pwrctrl
= mask
* bb_desired_scale
;
1014 ENABLE_REG_RMW_BUFFER(ah
);
1015 REG_RMW(ah
, AR_PHY_TX_PWRCTRL8
, pwrctrl
, clr
);
1016 REG_RMW(ah
, AR_PHY_TX_PWRCTRL10
, pwrctrl
, clr
);
1017 REG_RMW(ah
, AR_PHY_CH0_TX_PWRCTRL12
, pwrctrl
, clr
);
1019 mask
= BIT(0)|BIT(5)|BIT(15);
1020 pwrctrl
= mask
* bb_desired_scale
;
1022 REG_RMW(ah
, AR_PHY_TX_PWRCTRL9
, pwrctrl
, clr
);
1024 mask
= BIT(0)|BIT(5);
1025 pwrctrl
= mask
* bb_desired_scale
;
1027 REG_RMW(ah
, AR_PHY_CH0_TX_PWRCTRL11
, pwrctrl
, clr
);
1028 REG_RMW(ah
, AR_PHY_CH0_TX_PWRCTRL13
, pwrctrl
, clr
);
1029 REG_RMW_BUFFER_FLUSH(ah
);
1033 static u16
ath9k_hw_4k_get_spur_channel(struct ath_hw
*ah
, u16 i
, bool is2GHz
)
1035 return le16_to_cpu(ah
->eeprom
.map4k
.modalHeader
.spurChans
[i
].spurChan
);
1038 static u8
ath9k_hw_4k_get_eepmisc(struct ath_hw
*ah
)
1040 return ah
->eeprom
.map4k
.baseEepHeader
.eepMisc
;
1043 const struct eeprom_ops eep_4k_ops
= {
1044 .check_eeprom
= ath9k_hw_4k_check_eeprom
,
1045 .get_eeprom
= ath9k_hw_4k_get_eeprom
,
1046 .fill_eeprom
= ath9k_hw_4k_fill_eeprom
,
1047 .dump_eeprom
= ath9k_hw_4k_dump_eeprom
,
1048 .get_eeprom_ver
= ath9k_hw_4k_get_eeprom_ver
,
1049 .get_eeprom_rev
= ath9k_hw_4k_get_eeprom_rev
,
1050 .set_board_values
= ath9k_hw_4k_set_board_values
,
1051 .set_txpower
= ath9k_hw_4k_set_txpower
,
1052 .get_spur_channel
= ath9k_hw_4k_get_spur_channel
,
1053 .get_eepmisc
= ath9k_hw_4k_get_eepmisc