Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / wireless / ath / ath9k / hw.c
blobcd0f023ccf7790a72e03a03d4e0c87844126252f
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
26 #include "hw.h"
27 #include "hw-ops.h"
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
31 #include "ath9k.h"
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
42 struct ath_common *common = ath9k_hw_common(ah);
43 struct ath9k_channel *chan = ah->curchan;
44 unsigned int clockrate;
46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 clockrate = 117;
49 else if (!chan) /* should really check for CCK instead */
50 clockrate = ATH9K_CLOCK_RATE_CCK;
51 else if (IS_CHAN_2GHZ(chan))
52 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 else
56 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
58 if (chan) {
59 if (IS_CHAN_HT40(chan))
60 clockrate *= 2;
61 if (IS_CHAN_HALF_RATE(chan))
62 clockrate /= 2;
63 if (IS_CHAN_QUARTER_RATE(chan))
64 clockrate /= 4;
67 common->clockrate = clockrate;
70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
72 struct ath_common *common = ath9k_hw_common(ah);
74 return usecs * common->clockrate;
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
79 int i;
81 BUG_ON(timeout < AH_TIME_QUANTUM);
83 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 if ((REG_READ(ah, reg) & mask) == val)
85 return true;
87 udelay(AH_TIME_QUANTUM);
90 ath_dbg(ath9k_hw_common(ah), ANY,
91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 timeout, reg, REG_READ(ah, reg), mask, val);
94 return false;
96 EXPORT_SYMBOL(ath9k_hw_wait);
98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 int hw_delay)
101 hw_delay /= 10;
103 if (IS_CHAN_HALF_RATE(chan))
104 hw_delay *= 2;
105 else if (IS_CHAN_QUARTER_RATE(chan))
106 hw_delay *= 4;
108 udelay(hw_delay + BASE_ACTIVATE_DELAY);
111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 int column, unsigned int *writecnt)
114 int r;
116 ENABLE_REGWRITE_BUFFER(ah);
117 for (r = 0; r < array->ia_rows; r++) {
118 REG_WRITE(ah, INI_RA(array, r, 0),
119 INI_RA(array, r, column));
120 DO_DELAY(*writecnt);
122 REGWRITE_BUFFER_FLUSH(ah);
125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
127 u32 *tmp_reg_list, *tmp_data;
128 int i;
130 tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
131 if (!tmp_reg_list) {
132 dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
133 return;
136 tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
137 if (!tmp_data) {
138 dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
139 goto error_tmp_data;
142 for (i = 0; i < size; i++)
143 tmp_reg_list[i] = array[i][0];
145 REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
147 for (i = 0; i < size; i++)
148 array[i][1] = tmp_data[i];
150 kfree(tmp_data);
151 error_tmp_data:
152 kfree(tmp_reg_list);
155 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
157 u32 retval;
158 int i;
160 for (i = 0, retval = 0; i < n; i++) {
161 retval = (retval << 1) | (val & 1);
162 val >>= 1;
164 return retval;
167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168 u8 phy, int kbps,
169 u32 frameLen, u16 rateix,
170 bool shortPreamble)
172 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
174 if (kbps == 0)
175 return 0;
177 switch (phy) {
178 case WLAN_RC_PHY_CCK:
179 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
180 if (shortPreamble)
181 phyTime >>= 1;
182 numBits = frameLen << 3;
183 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
184 break;
185 case WLAN_RC_PHY_OFDM:
186 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
187 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
188 numBits = OFDM_PLCP_BITS + (frameLen << 3);
189 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190 txTime = OFDM_SIFS_TIME_QUARTER
191 + OFDM_PREAMBLE_TIME_QUARTER
192 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
193 } else if (ah->curchan &&
194 IS_CHAN_HALF_RATE(ah->curchan)) {
195 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
196 numBits = OFDM_PLCP_BITS + (frameLen << 3);
197 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
198 txTime = OFDM_SIFS_TIME_HALF +
199 OFDM_PREAMBLE_TIME_HALF
200 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
201 } else {
202 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
203 numBits = OFDM_PLCP_BITS + (frameLen << 3);
204 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
205 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
206 + (numSymbols * OFDM_SYMBOL_TIME);
208 break;
209 default:
210 ath_err(ath9k_hw_common(ah),
211 "Unknown phy %u (rate ix %u)\n", phy, rateix);
212 txTime = 0;
213 break;
216 return txTime;
218 EXPORT_SYMBOL(ath9k_hw_computetxtime);
220 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
221 struct ath9k_channel *chan,
222 struct chan_centers *centers)
224 int8_t extoff;
226 if (!IS_CHAN_HT40(chan)) {
227 centers->ctl_center = centers->ext_center =
228 centers->synth_center = chan->channel;
229 return;
232 if (IS_CHAN_HT40PLUS(chan)) {
233 centers->synth_center =
234 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
235 extoff = 1;
236 } else {
237 centers->synth_center =
238 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
239 extoff = -1;
242 centers->ctl_center =
243 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
244 /* 25 MHz spacing is supported by hw but not on upper layers */
245 centers->ext_center =
246 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
249 /******************/
250 /* Chip Revisions */
251 /******************/
253 static void ath9k_hw_read_revisions(struct ath_hw *ah)
255 u32 val;
257 if (ah->get_mac_revision)
258 ah->hw_version.macRev = ah->get_mac_revision();
260 switch (ah->hw_version.devid) {
261 case AR5416_AR9100_DEVID:
262 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263 break;
264 case AR9300_DEVID_AR9330:
265 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266 if (!ah->get_mac_revision) {
267 val = REG_READ(ah, AR_SREV);
268 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
270 return;
271 case AR9300_DEVID_AR9340:
272 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
273 return;
274 case AR9300_DEVID_QCA955X:
275 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
276 return;
277 case AR9300_DEVID_AR953X:
278 ah->hw_version.macVersion = AR_SREV_VERSION_9531;
279 return;
280 case AR9300_DEVID_QCA956X:
281 ah->hw_version.macVersion = AR_SREV_VERSION_9561;
282 return;
285 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
287 if (val == 0xFF) {
288 val = REG_READ(ah, AR_SREV);
289 ah->hw_version.macVersion =
290 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
291 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
293 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
294 ah->is_pciexpress = true;
295 else
296 ah->is_pciexpress = (val &
297 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
298 } else {
299 if (!AR_SREV_9100(ah))
300 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
302 ah->hw_version.macRev = val & AR_SREV_REVISION;
304 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
305 ah->is_pciexpress = true;
309 /************************************/
310 /* HW Attach, Detach, Init Routines */
311 /************************************/
313 static void ath9k_hw_disablepcie(struct ath_hw *ah)
315 if (!AR_SREV_5416(ah))
316 return;
318 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
319 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
320 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
321 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
322 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
323 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
324 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
325 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
326 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
328 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
331 /* This should work for all families including legacy */
332 static bool ath9k_hw_chip_test(struct ath_hw *ah)
334 struct ath_common *common = ath9k_hw_common(ah);
335 u32 regAddr[2] = { AR_STA_ID0 };
336 u32 regHold[2];
337 static const u32 patternData[4] = {
338 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
340 int i, j, loop_max;
342 if (!AR_SREV_9300_20_OR_LATER(ah)) {
343 loop_max = 2;
344 regAddr[1] = AR_PHY_BASE + (8 << 2);
345 } else
346 loop_max = 1;
348 for (i = 0; i < loop_max; i++) {
349 u32 addr = regAddr[i];
350 u32 wrData, rdData;
352 regHold[i] = REG_READ(ah, addr);
353 for (j = 0; j < 0x100; j++) {
354 wrData = (j << 16) | j;
355 REG_WRITE(ah, addr, wrData);
356 rdData = REG_READ(ah, addr);
357 if (rdData != wrData) {
358 ath_err(common,
359 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
360 addr, wrData, rdData);
361 return false;
364 for (j = 0; j < 4; j++) {
365 wrData = patternData[j];
366 REG_WRITE(ah, addr, wrData);
367 rdData = REG_READ(ah, addr);
368 if (wrData != rdData) {
369 ath_err(common,
370 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
371 addr, wrData, rdData);
372 return false;
375 REG_WRITE(ah, regAddr[i], regHold[i]);
377 udelay(100);
379 return true;
382 static void ath9k_hw_init_config(struct ath_hw *ah)
384 struct ath_common *common = ath9k_hw_common(ah);
386 ah->config.dma_beacon_response_time = 1;
387 ah->config.sw_beacon_response_time = 6;
388 ah->config.cwm_ignore_extcca = false;
389 ah->config.analog_shiftreg = 1;
391 ah->config.rx_intr_mitigation = true;
393 if (AR_SREV_9300_20_OR_LATER(ah)) {
394 ah->config.rimt_last = 500;
395 ah->config.rimt_first = 2000;
396 } else {
397 ah->config.rimt_last = 250;
398 ah->config.rimt_first = 700;
401 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
402 ah->config.pll_pwrsave = 7;
405 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
406 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
407 * This means we use it for all AR5416 devices, and the few
408 * minor PCI AR9280 devices out there.
410 * Serialization is required because these devices do not handle
411 * well the case of two concurrent reads/writes due to the latency
412 * involved. During one read/write another read/write can be issued
413 * on another CPU while the previous read/write may still be working
414 * on our hardware, if we hit this case the hardware poops in a loop.
415 * We prevent this by serializing reads and writes.
417 * This issue is not present on PCI-Express devices or pre-AR5416
418 * devices (legacy, 802.11abg).
420 if (num_possible_cpus() > 1)
421 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
423 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
424 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
425 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
426 !ah->is_pciexpress)) {
427 ah->config.serialize_regmode = SER_REG_MODE_ON;
428 } else {
429 ah->config.serialize_regmode = SER_REG_MODE_OFF;
433 ath_dbg(common, RESET, "serialize_regmode is %d\n",
434 ah->config.serialize_regmode);
436 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
437 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
438 else
439 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
442 static void ath9k_hw_init_defaults(struct ath_hw *ah)
444 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
446 regulatory->country_code = CTRY_DEFAULT;
447 regulatory->power_limit = MAX_RATE_POWER;
449 ah->hw_version.magic = AR5416_MAGIC;
450 ah->hw_version.subvendorid = 0;
452 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
453 AR_STA_ID1_MCAST_KSRCH;
454 if (AR_SREV_9100(ah))
455 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
457 ah->slottime = 9;
458 ah->globaltxtimeout = (u32) -1;
459 ah->power_mode = ATH9K_PM_UNDEFINED;
460 ah->htc_reset_init = true;
462 ah->tpc_enabled = false;
464 ah->ani_function = ATH9K_ANI_ALL;
465 if (!AR_SREV_9300_20_OR_LATER(ah))
466 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
468 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
469 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
470 else
471 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
474 static void ath9k_hw_init_macaddr(struct ath_hw *ah)
476 struct ath_common *common = ath9k_hw_common(ah);
477 int i;
478 u16 eeval;
479 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
481 /* MAC address may already be loaded via ath9k_platform_data */
482 if (is_valid_ether_addr(common->macaddr))
483 return;
485 for (i = 0; i < 3; i++) {
486 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
487 common->macaddr[2 * i] = eeval >> 8;
488 common->macaddr[2 * i + 1] = eeval & 0xff;
491 if (is_valid_ether_addr(common->macaddr))
492 return;
494 ath_err(common, "eeprom contains invalid mac address: %pM\n",
495 common->macaddr);
497 random_ether_addr(common->macaddr);
498 ath_err(common, "random mac address will be used: %pM\n",
499 common->macaddr);
501 return;
504 static int ath9k_hw_post_init(struct ath_hw *ah)
506 struct ath_common *common = ath9k_hw_common(ah);
507 int ecode;
509 if (common->bus_ops->ath_bus_type != ATH_USB) {
510 if (!ath9k_hw_chip_test(ah))
511 return -ENODEV;
514 if (!AR_SREV_9300_20_OR_LATER(ah)) {
515 ecode = ar9002_hw_rf_claim(ah);
516 if (ecode != 0)
517 return ecode;
520 ecode = ath9k_hw_eeprom_init(ah);
521 if (ecode != 0)
522 return ecode;
524 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
525 ah->eep_ops->get_eeprom_ver(ah),
526 ah->eep_ops->get_eeprom_rev(ah));
528 ath9k_hw_ani_init(ah);
531 * EEPROM needs to be initialized before we do this.
532 * This is required for regulatory compliance.
534 if (AR_SREV_9300_20_OR_LATER(ah)) {
535 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
536 if ((regdmn & 0xF0) == CTL_FCC) {
537 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
538 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
542 return 0;
545 static int ath9k_hw_attach_ops(struct ath_hw *ah)
547 if (!AR_SREV_9300_20_OR_LATER(ah))
548 return ar9002_hw_attach_ops(ah);
550 ar9003_hw_attach_ops(ah);
551 return 0;
554 /* Called for all hardware families */
555 static int __ath9k_hw_init(struct ath_hw *ah)
557 struct ath_common *common = ath9k_hw_common(ah);
558 int r = 0;
560 ath9k_hw_read_revisions(ah);
562 switch (ah->hw_version.macVersion) {
563 case AR_SREV_VERSION_5416_PCI:
564 case AR_SREV_VERSION_5416_PCIE:
565 case AR_SREV_VERSION_9160:
566 case AR_SREV_VERSION_9100:
567 case AR_SREV_VERSION_9280:
568 case AR_SREV_VERSION_9285:
569 case AR_SREV_VERSION_9287:
570 case AR_SREV_VERSION_9271:
571 case AR_SREV_VERSION_9300:
572 case AR_SREV_VERSION_9330:
573 case AR_SREV_VERSION_9485:
574 case AR_SREV_VERSION_9340:
575 case AR_SREV_VERSION_9462:
576 case AR_SREV_VERSION_9550:
577 case AR_SREV_VERSION_9565:
578 case AR_SREV_VERSION_9531:
579 case AR_SREV_VERSION_9561:
580 break;
581 default:
582 ath_err(common,
583 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
584 ah->hw_version.macVersion, ah->hw_version.macRev);
585 return -EOPNOTSUPP;
589 * Read back AR_WA into a permanent copy and set bits 14 and 17.
590 * We need to do this to avoid RMW of this register. We cannot
591 * read the reg when chip is asleep.
593 if (AR_SREV_9300_20_OR_LATER(ah)) {
594 ah->WARegVal = REG_READ(ah, AR_WA);
595 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
596 AR_WA_ASPM_TIMER_BASED_DISABLE);
599 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
600 ath_err(common, "Couldn't reset chip\n");
601 return -EIO;
604 if (AR_SREV_9565(ah)) {
605 ah->WARegVal |= AR_WA_BIT22;
606 REG_WRITE(ah, AR_WA, ah->WARegVal);
609 ath9k_hw_init_defaults(ah);
610 ath9k_hw_init_config(ah);
612 r = ath9k_hw_attach_ops(ah);
613 if (r)
614 return r;
616 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
617 ath_err(common, "Couldn't wakeup chip\n");
618 return -EIO;
621 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
622 AR_SREV_9330(ah) || AR_SREV_9550(ah))
623 ah->is_pciexpress = false;
625 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
626 ath9k_hw_init_cal_settings(ah);
628 if (!ah->is_pciexpress)
629 ath9k_hw_disablepcie(ah);
631 r = ath9k_hw_post_init(ah);
632 if (r)
633 return r;
635 ath9k_hw_init_mode_gain_regs(ah);
636 r = ath9k_hw_fill_cap_info(ah);
637 if (r)
638 return r;
640 ath9k_hw_init_macaddr(ah);
641 ath9k_hw_init_hang_checks(ah);
643 common->state = ATH_HW_INITIALIZED;
645 return 0;
648 int ath9k_hw_init(struct ath_hw *ah)
650 int ret;
651 struct ath_common *common = ath9k_hw_common(ah);
653 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
654 switch (ah->hw_version.devid) {
655 case AR5416_DEVID_PCI:
656 case AR5416_DEVID_PCIE:
657 case AR5416_AR9100_DEVID:
658 case AR9160_DEVID_PCI:
659 case AR9280_DEVID_PCI:
660 case AR9280_DEVID_PCIE:
661 case AR9285_DEVID_PCIE:
662 case AR9287_DEVID_PCI:
663 case AR9287_DEVID_PCIE:
664 case AR2427_DEVID_PCIE:
665 case AR9300_DEVID_PCIE:
666 case AR9300_DEVID_AR9485_PCIE:
667 case AR9300_DEVID_AR9330:
668 case AR9300_DEVID_AR9340:
669 case AR9300_DEVID_QCA955X:
670 case AR9300_DEVID_AR9580:
671 case AR9300_DEVID_AR9462:
672 case AR9485_DEVID_AR1111:
673 case AR9300_DEVID_AR9565:
674 case AR9300_DEVID_AR953X:
675 case AR9300_DEVID_QCA956X:
676 break;
677 default:
678 if (common->bus_ops->ath_bus_type == ATH_USB)
679 break;
680 ath_err(common, "Hardware device ID 0x%04x not supported\n",
681 ah->hw_version.devid);
682 return -EOPNOTSUPP;
685 ret = __ath9k_hw_init(ah);
686 if (ret) {
687 ath_err(common,
688 "Unable to initialize hardware; initialization status: %d\n",
689 ret);
690 return ret;
693 ath_dynack_init(ah);
695 return 0;
697 EXPORT_SYMBOL(ath9k_hw_init);
699 static void ath9k_hw_init_qos(struct ath_hw *ah)
701 ENABLE_REGWRITE_BUFFER(ah);
703 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
704 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
706 REG_WRITE(ah, AR_QOS_NO_ACK,
707 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
708 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
709 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
711 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
712 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
713 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
714 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
715 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
717 REGWRITE_BUFFER_FLUSH(ah);
720 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
722 struct ath_common *common = ath9k_hw_common(ah);
723 int i = 0;
725 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
726 udelay(100);
727 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
729 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
731 udelay(100);
733 if (WARN_ON_ONCE(i >= 100)) {
734 ath_err(common, "PLL4 measurement not done\n");
735 break;
738 i++;
741 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
743 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
745 static void ath9k_hw_init_pll(struct ath_hw *ah,
746 struct ath9k_channel *chan)
748 u32 pll;
750 pll = ath9k_hw_compute_pll_control(ah, chan);
752 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
753 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
754 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
755 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
756 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
757 AR_CH0_DPLL2_KD, 0x40);
758 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
759 AR_CH0_DPLL2_KI, 0x4);
761 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
762 AR_CH0_BB_DPLL1_REFDIV, 0x5);
763 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
764 AR_CH0_BB_DPLL1_NINI, 0x58);
765 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
766 AR_CH0_BB_DPLL1_NFRAC, 0x0);
768 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
769 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
770 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
771 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
772 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
773 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
775 /* program BB PLL phase_shift to 0x6 */
776 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
777 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
779 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
780 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
781 udelay(1000);
782 } else if (AR_SREV_9330(ah)) {
783 u32 ddr_dpll2, pll_control2, kd;
785 if (ah->is_clk_25mhz) {
786 ddr_dpll2 = 0x18e82f01;
787 pll_control2 = 0xe04a3d;
788 kd = 0x1d;
789 } else {
790 ddr_dpll2 = 0x19e82f01;
791 pll_control2 = 0x886666;
792 kd = 0x3d;
795 /* program DDR PLL ki and kd value */
796 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
798 /* program DDR PLL phase_shift */
799 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
800 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
802 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
803 pll | AR_RTC_9300_PLL_BYPASS);
804 udelay(1000);
806 /* program refdiv, nint, frac to RTC register */
807 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
809 /* program BB PLL kd and ki value */
810 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
811 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
813 /* program BB PLL phase_shift */
814 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
815 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
816 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
817 AR_SREV_9561(ah)) {
818 u32 regval, pll2_divint, pll2_divfrac, refdiv;
820 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
821 pll | AR_RTC_9300_SOC_PLL_BYPASS);
822 udelay(1000);
824 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
825 udelay(100);
827 if (ah->is_clk_25mhz) {
828 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
829 pll2_divint = 0x1c;
830 pll2_divfrac = 0xa3d2;
831 refdiv = 1;
832 } else {
833 pll2_divint = 0x54;
834 pll2_divfrac = 0x1eb85;
835 refdiv = 3;
837 } else {
838 if (AR_SREV_9340(ah)) {
839 pll2_divint = 88;
840 pll2_divfrac = 0;
841 refdiv = 5;
842 } else {
843 pll2_divint = 0x11;
844 pll2_divfrac = (AR_SREV_9531(ah) ||
845 AR_SREV_9561(ah)) ?
846 0x26665 : 0x26666;
847 refdiv = 1;
851 regval = REG_READ(ah, AR_PHY_PLL_MODE);
852 if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
853 regval |= (0x1 << 22);
854 else
855 regval |= (0x1 << 16);
856 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
857 udelay(100);
859 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
860 (pll2_divint << 18) | pll2_divfrac);
861 udelay(100);
863 regval = REG_READ(ah, AR_PHY_PLL_MODE);
864 if (AR_SREV_9340(ah))
865 regval = (regval & 0x80071fff) |
866 (0x1 << 30) |
867 (0x1 << 13) |
868 (0x4 << 26) |
869 (0x18 << 19);
870 else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
871 regval = (regval & 0x01c00fff) |
872 (0x1 << 31) |
873 (0x2 << 29) |
874 (0xa << 25) |
875 (0x1 << 19);
877 if (AR_SREV_9531(ah))
878 regval |= (0x6 << 12);
879 } else
880 regval = (regval & 0x80071fff) |
881 (0x3 << 30) |
882 (0x1 << 13) |
883 (0x4 << 26) |
884 (0x60 << 19);
885 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
887 if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
888 REG_WRITE(ah, AR_PHY_PLL_MODE,
889 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
890 else
891 REG_WRITE(ah, AR_PHY_PLL_MODE,
892 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
894 udelay(1000);
897 if (AR_SREV_9565(ah))
898 pll |= 0x40000;
899 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
901 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
902 AR_SREV_9550(ah))
903 udelay(1000);
905 /* Switch the core clock for ar9271 to 117Mhz */
906 if (AR_SREV_9271(ah)) {
907 udelay(500);
908 REG_WRITE(ah, 0x50040, 0x304);
911 udelay(RTC_PLL_SETTLE_DELAY);
913 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
916 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
917 enum nl80211_iftype opmode)
919 u32 sync_default = AR_INTR_SYNC_DEFAULT;
920 u32 imr_reg = AR_IMR_TXERR |
921 AR_IMR_TXURN |
922 AR_IMR_RXERR |
923 AR_IMR_RXORN |
924 AR_IMR_BCNMISC;
925 u32 msi_cfg = 0;
927 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
928 AR_SREV_9561(ah))
929 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
931 if (AR_SREV_9300_20_OR_LATER(ah)) {
932 imr_reg |= AR_IMR_RXOK_HP;
933 if (ah->config.rx_intr_mitigation) {
934 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
935 msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
936 } else {
937 imr_reg |= AR_IMR_RXOK_LP;
938 msi_cfg |= AR_INTCFG_MSI_RXOK;
940 } else {
941 if (ah->config.rx_intr_mitigation) {
942 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
943 msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
944 } else {
945 imr_reg |= AR_IMR_RXOK;
946 msi_cfg |= AR_INTCFG_MSI_RXOK;
950 if (ah->config.tx_intr_mitigation) {
951 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
952 msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
953 } else {
954 imr_reg |= AR_IMR_TXOK;
955 msi_cfg |= AR_INTCFG_MSI_TXOK;
958 ENABLE_REGWRITE_BUFFER(ah);
960 REG_WRITE(ah, AR_IMR, imr_reg);
961 ah->imrs2_reg |= AR_IMR_S2_GTT;
962 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
964 if (ah->msi_enabled) {
965 ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
966 ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
967 ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
968 REG_WRITE(ah, AR_INTCFG, msi_cfg);
969 ath_dbg(ath9k_hw_common(ah), ANY,
970 "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
971 REG_READ(ah, AR_INTCFG), msi_cfg);
974 if (!AR_SREV_9100(ah)) {
975 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
976 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
977 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
980 REGWRITE_BUFFER_FLUSH(ah);
982 if (AR_SREV_9300_20_OR_LATER(ah)) {
983 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
984 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
985 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
986 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
990 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
992 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
993 val = min(val, (u32) 0xFFFF);
994 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
997 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
999 u32 val = ath9k_hw_mac_to_clks(ah, us);
1000 val = min(val, (u32) 0xFFFF);
1001 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1004 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1006 u32 val = ath9k_hw_mac_to_clks(ah, us);
1007 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1008 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1011 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1013 u32 val = ath9k_hw_mac_to_clks(ah, us);
1014 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1015 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1018 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1020 if (tu > 0xFFFF) {
1021 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1022 tu);
1023 ah->globaltxtimeout = (u32) -1;
1024 return false;
1025 } else {
1026 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1027 ah->globaltxtimeout = tu;
1028 return true;
1032 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1034 struct ath_common *common = ath9k_hw_common(ah);
1035 const struct ath9k_channel *chan = ah->curchan;
1036 int acktimeout, ctstimeout, ack_offset = 0;
1037 int slottime;
1038 int sifstime;
1039 int rx_lat = 0, tx_lat = 0, eifs = 0;
1040 u32 reg;
1042 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1043 ah->misc_mode);
1045 if (!chan)
1046 return;
1048 if (ah->misc_mode != 0)
1049 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1051 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1052 rx_lat = 41;
1053 else
1054 rx_lat = 37;
1055 tx_lat = 54;
1057 if (IS_CHAN_5GHZ(chan))
1058 sifstime = 16;
1059 else
1060 sifstime = 10;
1062 if (IS_CHAN_HALF_RATE(chan)) {
1063 eifs = 175;
1064 rx_lat *= 2;
1065 tx_lat *= 2;
1066 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1067 tx_lat += 11;
1069 sifstime = 32;
1070 ack_offset = 16;
1071 slottime = 13;
1072 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1073 eifs = 340;
1074 rx_lat = (rx_lat * 4) - 1;
1075 tx_lat *= 4;
1076 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1077 tx_lat += 22;
1079 sifstime = 64;
1080 ack_offset = 32;
1081 slottime = 21;
1082 } else {
1083 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1084 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1085 reg = AR_USEC_ASYNC_FIFO;
1086 } else {
1087 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1088 common->clockrate;
1089 reg = REG_READ(ah, AR_USEC);
1091 rx_lat = MS(reg, AR_USEC_RX_LAT);
1092 tx_lat = MS(reg, AR_USEC_TX_LAT);
1094 slottime = ah->slottime;
1097 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1098 slottime += 3 * ah->coverage_class;
1099 acktimeout = slottime + sifstime + ack_offset;
1100 ctstimeout = acktimeout;
1103 * Workaround for early ACK timeouts, add an offset to match the
1104 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1105 * This was initially only meant to work around an issue with delayed
1106 * BA frames in some implementations, but it has been found to fix ACK
1107 * timeout issues in other cases as well.
1109 if (IS_CHAN_2GHZ(chan) &&
1110 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1111 acktimeout += 64 - sifstime - ah->slottime;
1112 ctstimeout += 48 - sifstime - ah->slottime;
1115 if (ah->dynack.enabled) {
1116 acktimeout = ah->dynack.ackto;
1117 ctstimeout = acktimeout;
1118 slottime = (acktimeout - 3) / 2;
1119 } else {
1120 ah->dynack.ackto = acktimeout;
1123 ath9k_hw_set_sifs_time(ah, sifstime);
1124 ath9k_hw_setslottime(ah, slottime);
1125 ath9k_hw_set_ack_timeout(ah, acktimeout);
1126 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1127 if (ah->globaltxtimeout != (u32) -1)
1128 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1130 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1131 REG_RMW(ah, AR_USEC,
1132 (common->clockrate - 1) |
1133 SM(rx_lat, AR_USEC_RX_LAT) |
1134 SM(tx_lat, AR_USEC_TX_LAT),
1135 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1138 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1140 void ath9k_hw_deinit(struct ath_hw *ah)
1142 struct ath_common *common = ath9k_hw_common(ah);
1144 if (common->state < ATH_HW_INITIALIZED)
1145 return;
1147 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1149 EXPORT_SYMBOL(ath9k_hw_deinit);
1151 /*******/
1152 /* INI */
1153 /*******/
1155 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1157 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1159 if (IS_CHAN_2GHZ(chan))
1160 ctl |= CTL_11G;
1161 else
1162 ctl |= CTL_11A;
1164 return ctl;
1167 /****************************************/
1168 /* Reset and Channel Switching Routines */
1169 /****************************************/
1171 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1173 struct ath_common *common = ath9k_hw_common(ah);
1174 int txbuf_size;
1176 ENABLE_REGWRITE_BUFFER(ah);
1179 * set AHB_MODE not to do cacheline prefetches
1181 if (!AR_SREV_9300_20_OR_LATER(ah))
1182 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1185 * let mac dma reads be in 128 byte chunks
1187 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1189 REGWRITE_BUFFER_FLUSH(ah);
1192 * Restore TX Trigger Level to its pre-reset value.
1193 * The initial value depends on whether aggregation is enabled, and is
1194 * adjusted whenever underruns are detected.
1196 if (!AR_SREV_9300_20_OR_LATER(ah))
1197 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1199 ENABLE_REGWRITE_BUFFER(ah);
1202 * let mac dma writes be in 128 byte chunks
1204 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1207 * Setup receive FIFO threshold to hold off TX activities
1209 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1211 if (AR_SREV_9300_20_OR_LATER(ah)) {
1212 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1213 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1215 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1216 ah->caps.rx_status_len);
1220 * reduce the number of usable entries in PCU TXBUF to avoid
1221 * wrap around issues.
1223 if (AR_SREV_9285(ah)) {
1224 /* For AR9285 the number of Fifos are reduced to half.
1225 * So set the usable tx buf size also to half to
1226 * avoid data/delimiter underruns
1228 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1229 } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1230 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1231 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1232 } else {
1233 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1236 if (!AR_SREV_9271(ah))
1237 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1239 REGWRITE_BUFFER_FLUSH(ah);
1241 if (AR_SREV_9300_20_OR_LATER(ah))
1242 ath9k_hw_reset_txstatus_ring(ah);
1245 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1247 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1248 u32 set = AR_STA_ID1_KSRCH_MODE;
1250 ENABLE_REG_RMW_BUFFER(ah);
1251 switch (opmode) {
1252 case NL80211_IFTYPE_ADHOC:
1253 if (!AR_SREV_9340_13(ah)) {
1254 set |= AR_STA_ID1_ADHOC;
1255 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1256 break;
1258 /* fall through */
1259 case NL80211_IFTYPE_OCB:
1260 case NL80211_IFTYPE_MESH_POINT:
1261 case NL80211_IFTYPE_AP:
1262 set |= AR_STA_ID1_STA_AP;
1263 /* fall through */
1264 case NL80211_IFTYPE_STATION:
1265 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1266 break;
1267 default:
1268 if (!ah->is_monitoring)
1269 set = 0;
1270 break;
1272 REG_RMW(ah, AR_STA_ID1, set, mask);
1273 REG_RMW_BUFFER_FLUSH(ah);
1276 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1277 u32 *coef_mantissa, u32 *coef_exponent)
1279 u32 coef_exp, coef_man;
1281 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1282 if ((coef_scaled >> coef_exp) & 0x1)
1283 break;
1285 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1287 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1289 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1290 *coef_exponent = coef_exp - 16;
1293 /* AR9330 WAR:
1294 * call external reset function to reset WMAC if:
1295 * - doing a cold reset
1296 * - we have pending frames in the TX queues.
1298 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1300 int i, npend = 0;
1302 for (i = 0; i < AR_NUM_QCU; i++) {
1303 npend = ath9k_hw_numtxpending(ah, i);
1304 if (npend)
1305 break;
1308 if (ah->external_reset &&
1309 (npend || type == ATH9K_RESET_COLD)) {
1310 int reset_err = 0;
1312 ath_dbg(ath9k_hw_common(ah), RESET,
1313 "reset MAC via external reset\n");
1315 reset_err = ah->external_reset();
1316 if (reset_err) {
1317 ath_err(ath9k_hw_common(ah),
1318 "External reset failed, err=%d\n",
1319 reset_err);
1320 return false;
1323 REG_WRITE(ah, AR_RTC_RESET, 1);
1326 return true;
1329 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1331 u32 rst_flags;
1332 u32 tmpReg;
1334 if (AR_SREV_9100(ah)) {
1335 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1336 AR_RTC_DERIVED_CLK_PERIOD, 1);
1337 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1340 ENABLE_REGWRITE_BUFFER(ah);
1342 if (AR_SREV_9300_20_OR_LATER(ah)) {
1343 REG_WRITE(ah, AR_WA, ah->WARegVal);
1344 udelay(10);
1347 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1348 AR_RTC_FORCE_WAKE_ON_INT);
1350 if (AR_SREV_9100(ah)) {
1351 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1352 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1353 } else {
1354 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1355 if (AR_SREV_9340(ah))
1356 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1357 else
1358 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1359 AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1361 if (tmpReg) {
1362 u32 val;
1363 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1365 val = AR_RC_HOSTIF;
1366 if (!AR_SREV_9300_20_OR_LATER(ah))
1367 val |= AR_RC_AHB;
1368 REG_WRITE(ah, AR_RC, val);
1370 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1371 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1373 rst_flags = AR_RTC_RC_MAC_WARM;
1374 if (type == ATH9K_RESET_COLD)
1375 rst_flags |= AR_RTC_RC_MAC_COLD;
1378 if (AR_SREV_9330(ah)) {
1379 if (!ath9k_hw_ar9330_reset_war(ah, type))
1380 return false;
1383 if (ath9k_hw_mci_is_enabled(ah))
1384 ar9003_mci_check_gpm_offset(ah);
1386 /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1387 * RTC_RC reg read
1389 if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1390 REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1391 ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1392 20 * AH_WAIT_TIMEOUT);
1393 REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1396 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1398 REGWRITE_BUFFER_FLUSH(ah);
1400 if (AR_SREV_9300_20_OR_LATER(ah))
1401 udelay(50);
1402 else if (AR_SREV_9100(ah))
1403 mdelay(10);
1404 else
1405 udelay(100);
1407 REG_WRITE(ah, AR_RTC_RC, 0);
1408 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1409 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1410 return false;
1413 if (!AR_SREV_9100(ah))
1414 REG_WRITE(ah, AR_RC, 0);
1416 if (AR_SREV_9100(ah))
1417 udelay(50);
1419 return true;
1422 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1424 ENABLE_REGWRITE_BUFFER(ah);
1426 if (AR_SREV_9300_20_OR_LATER(ah)) {
1427 REG_WRITE(ah, AR_WA, ah->WARegVal);
1428 udelay(10);
1431 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1432 AR_RTC_FORCE_WAKE_ON_INT);
1434 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1435 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1437 REG_WRITE(ah, AR_RTC_RESET, 0);
1439 REGWRITE_BUFFER_FLUSH(ah);
1441 udelay(2);
1443 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1444 REG_WRITE(ah, AR_RC, 0);
1446 REG_WRITE(ah, AR_RTC_RESET, 1);
1448 if (!ath9k_hw_wait(ah,
1449 AR_RTC_STATUS,
1450 AR_RTC_STATUS_M,
1451 AR_RTC_STATUS_ON,
1452 AH_WAIT_TIMEOUT)) {
1453 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1454 return false;
1457 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1460 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1462 bool ret = false;
1464 if (AR_SREV_9300_20_OR_LATER(ah)) {
1465 REG_WRITE(ah, AR_WA, ah->WARegVal);
1466 udelay(10);
1469 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1470 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1472 if (!ah->reset_power_on)
1473 type = ATH9K_RESET_POWER_ON;
1475 switch (type) {
1476 case ATH9K_RESET_POWER_ON:
1477 ret = ath9k_hw_set_reset_power_on(ah);
1478 if (ret)
1479 ah->reset_power_on = true;
1480 break;
1481 case ATH9K_RESET_WARM:
1482 case ATH9K_RESET_COLD:
1483 ret = ath9k_hw_set_reset(ah, type);
1484 break;
1485 default:
1486 break;
1489 return ret;
1492 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1493 struct ath9k_channel *chan)
1495 int reset_type = ATH9K_RESET_WARM;
1497 if (AR_SREV_9280(ah)) {
1498 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1499 reset_type = ATH9K_RESET_POWER_ON;
1500 else
1501 reset_type = ATH9K_RESET_COLD;
1502 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1503 (REG_READ(ah, AR_CR) & AR_CR_RXE))
1504 reset_type = ATH9K_RESET_COLD;
1506 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1507 return false;
1509 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1510 return false;
1512 ah->chip_fullsleep = false;
1514 if (AR_SREV_9330(ah))
1515 ar9003_hw_internal_regulator_apply(ah);
1516 ath9k_hw_init_pll(ah, chan);
1518 return true;
1521 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1522 struct ath9k_channel *chan)
1524 struct ath_common *common = ath9k_hw_common(ah);
1525 struct ath9k_hw_capabilities *pCap = &ah->caps;
1526 bool band_switch = false, mode_diff = false;
1527 u8 ini_reloaded = 0;
1528 u32 qnum;
1529 int r;
1531 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1532 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1533 band_switch = !!(flags_diff & CHANNEL_5GHZ);
1534 mode_diff = !!(flags_diff & ~CHANNEL_HT);
1537 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1538 if (ath9k_hw_numtxpending(ah, qnum)) {
1539 ath_dbg(common, QUEUE,
1540 "Transmit frames pending on queue %d\n", qnum);
1541 return false;
1545 if (!ath9k_hw_rfbus_req(ah)) {
1546 ath_err(common, "Could not kill baseband RX\n");
1547 return false;
1550 if (band_switch || mode_diff) {
1551 ath9k_hw_mark_phy_inactive(ah);
1552 udelay(5);
1554 if (band_switch)
1555 ath9k_hw_init_pll(ah, chan);
1557 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1558 ath_err(common, "Failed to do fast channel change\n");
1559 return false;
1563 ath9k_hw_set_channel_regs(ah, chan);
1565 r = ath9k_hw_rf_set_freq(ah, chan);
1566 if (r) {
1567 ath_err(common, "Failed to set channel\n");
1568 return false;
1570 ath9k_hw_set_clockrate(ah);
1571 ath9k_hw_apply_txpower(ah, chan, false);
1573 ath9k_hw_set_delta_slope(ah, chan);
1574 ath9k_hw_spur_mitigate_freq(ah, chan);
1576 if (band_switch || ini_reloaded)
1577 ah->eep_ops->set_board_values(ah, chan);
1579 ath9k_hw_init_bb(ah, chan);
1580 ath9k_hw_rfbus_done(ah);
1582 if (band_switch || ini_reloaded) {
1583 ah->ah_flags |= AH_FASTCC;
1584 ath9k_hw_init_cal(ah, chan);
1585 ah->ah_flags &= ~AH_FASTCC;
1588 return true;
1591 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1593 u32 gpio_mask = ah->gpio_mask;
1594 int i;
1596 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1597 if (!(gpio_mask & 1))
1598 continue;
1600 ath9k_hw_gpio_request_out(ah, i, NULL,
1601 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1602 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1603 ath9k_hw_gpio_free(ah, i);
1607 void ath9k_hw_check_nav(struct ath_hw *ah)
1609 struct ath_common *common = ath9k_hw_common(ah);
1610 u32 val;
1612 val = REG_READ(ah, AR_NAV);
1613 if (val != 0xdeadbeef && val > 0x7fff) {
1614 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1615 REG_WRITE(ah, AR_NAV, 0);
1618 EXPORT_SYMBOL(ath9k_hw_check_nav);
1620 bool ath9k_hw_check_alive(struct ath_hw *ah)
1622 int count = 50;
1623 u32 reg, last_val;
1625 /* Check if chip failed to wake up */
1626 if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1627 return false;
1629 if (AR_SREV_9300(ah))
1630 return !ath9k_hw_detect_mac_hang(ah);
1632 if (AR_SREV_9285_12_OR_LATER(ah))
1633 return true;
1635 last_val = REG_READ(ah, AR_OBS_BUS_1);
1636 do {
1637 reg = REG_READ(ah, AR_OBS_BUS_1);
1638 if (reg != last_val)
1639 return true;
1641 udelay(1);
1642 last_val = reg;
1643 if ((reg & 0x7E7FFFEF) == 0x00702400)
1644 continue;
1646 switch (reg & 0x7E000B00) {
1647 case 0x1E000000:
1648 case 0x52000B00:
1649 case 0x18000B00:
1650 continue;
1651 default:
1652 return true;
1654 } while (count-- > 0);
1656 return false;
1658 EXPORT_SYMBOL(ath9k_hw_check_alive);
1660 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1662 /* Setup MFP options for CCMP */
1663 if (AR_SREV_9280_20_OR_LATER(ah)) {
1664 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1665 * frames when constructing CCMP AAD. */
1666 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1667 0xc7ff);
1668 if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1669 ah->sw_mgmt_crypto_tx = true;
1670 else
1671 ah->sw_mgmt_crypto_tx = false;
1672 ah->sw_mgmt_crypto_rx = false;
1673 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1674 /* Disable hardware crypto for management frames */
1675 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1676 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1677 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1678 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1679 ah->sw_mgmt_crypto_tx = true;
1680 ah->sw_mgmt_crypto_rx = true;
1681 } else {
1682 ah->sw_mgmt_crypto_tx = true;
1683 ah->sw_mgmt_crypto_rx = true;
1687 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1688 u32 macStaId1, u32 saveDefAntenna)
1690 struct ath_common *common = ath9k_hw_common(ah);
1692 ENABLE_REGWRITE_BUFFER(ah);
1694 REG_RMW(ah, AR_STA_ID1, macStaId1
1695 | AR_STA_ID1_RTS_USE_DEF
1696 | ah->sta_id1_defaults,
1697 ~AR_STA_ID1_SADH_MASK);
1698 ath_hw_setbssidmask(common);
1699 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1700 ath9k_hw_write_associd(ah);
1701 REG_WRITE(ah, AR_ISR, ~0);
1702 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1704 REGWRITE_BUFFER_FLUSH(ah);
1706 ath9k_hw_set_operating_mode(ah, ah->opmode);
1709 static void ath9k_hw_init_queues(struct ath_hw *ah)
1711 int i;
1713 ENABLE_REGWRITE_BUFFER(ah);
1715 for (i = 0; i < AR_NUM_DCU; i++)
1716 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1718 REGWRITE_BUFFER_FLUSH(ah);
1720 ah->intr_txqs = 0;
1721 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1722 ath9k_hw_resettxqueue(ah, i);
1726 * For big endian systems turn on swapping for descriptors
1728 static void ath9k_hw_init_desc(struct ath_hw *ah)
1730 struct ath_common *common = ath9k_hw_common(ah);
1732 if (AR_SREV_9100(ah)) {
1733 u32 mask;
1734 mask = REG_READ(ah, AR_CFG);
1735 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1736 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1737 mask);
1738 } else {
1739 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1740 REG_WRITE(ah, AR_CFG, mask);
1741 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1742 REG_READ(ah, AR_CFG));
1744 } else {
1745 if (common->bus_ops->ath_bus_type == ATH_USB) {
1746 /* Configure AR9271 target WLAN */
1747 if (AR_SREV_9271(ah))
1748 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1749 else
1750 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1752 #ifdef __BIG_ENDIAN
1753 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1754 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1755 AR_SREV_9561(ah))
1756 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1757 else
1758 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1759 #endif
1764 * Fast channel change:
1765 * (Change synthesizer based on channel freq without resetting chip)
1767 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1769 struct ath_common *common = ath9k_hw_common(ah);
1770 struct ath9k_hw_capabilities *pCap = &ah->caps;
1771 int ret;
1773 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1774 goto fail;
1776 if (ah->chip_fullsleep)
1777 goto fail;
1779 if (!ah->curchan)
1780 goto fail;
1782 if (chan->channel == ah->curchan->channel)
1783 goto fail;
1785 if ((ah->curchan->channelFlags | chan->channelFlags) &
1786 (CHANNEL_HALF | CHANNEL_QUARTER))
1787 goto fail;
1790 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1792 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1793 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1794 goto fail;
1796 if (!ath9k_hw_check_alive(ah))
1797 goto fail;
1800 * For AR9462, make sure that calibration data for
1801 * re-using are present.
1803 if (AR_SREV_9462(ah) && (ah->caldata &&
1804 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1805 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1806 !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1807 goto fail;
1809 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1810 ah->curchan->channel, chan->channel);
1812 ret = ath9k_hw_channel_change(ah, chan);
1813 if (!ret)
1814 goto fail;
1816 if (ath9k_hw_mci_is_enabled(ah))
1817 ar9003_mci_2g5g_switch(ah, false);
1819 ath9k_hw_loadnf(ah, ah->curchan);
1820 ath9k_hw_start_nfcal(ah, true);
1822 if (AR_SREV_9271(ah))
1823 ar9002_hw_load_ani_reg(ah, chan);
1825 return 0;
1826 fail:
1827 return -EINVAL;
1830 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1832 struct timespec ts;
1833 s64 usec;
1835 if (!cur) {
1836 getrawmonotonic(&ts);
1837 cur = &ts;
1840 usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1841 usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1843 return (u32) usec;
1845 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1847 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1848 struct ath9k_hw_cal_data *caldata, bool fastcc)
1850 struct ath_common *common = ath9k_hw_common(ah);
1851 u32 saveLedState;
1852 u32 saveDefAntenna;
1853 u32 macStaId1;
1854 struct timespec tsf_ts;
1855 u32 tsf_offset;
1856 u64 tsf = 0;
1857 int r;
1858 bool start_mci_reset = false;
1859 bool save_fullsleep = ah->chip_fullsleep;
1861 if (ath9k_hw_mci_is_enabled(ah)) {
1862 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1863 if (start_mci_reset)
1864 return 0;
1867 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1868 return -EIO;
1870 if (ah->curchan && !ah->chip_fullsleep)
1871 ath9k_hw_getnf(ah, ah->curchan);
1873 ah->caldata = caldata;
1874 if (caldata && (chan->channel != caldata->channel ||
1875 chan->channelFlags != caldata->channelFlags)) {
1876 /* Operating channel changed, reset channel calibration data */
1877 memset(caldata, 0, sizeof(*caldata));
1878 ath9k_init_nfcal_hist_buffer(ah, chan);
1879 } else if (caldata) {
1880 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1882 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1884 if (fastcc) {
1885 r = ath9k_hw_do_fastcc(ah, chan);
1886 if (!r)
1887 return r;
1890 if (ath9k_hw_mci_is_enabled(ah))
1891 ar9003_mci_stop_bt(ah, save_fullsleep);
1893 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1894 if (saveDefAntenna == 0)
1895 saveDefAntenna = 1;
1897 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1899 /* Save TSF before chip reset, a cold reset clears it */
1900 getrawmonotonic(&tsf_ts);
1901 tsf = ath9k_hw_gettsf64(ah);
1903 saveLedState = REG_READ(ah, AR_CFG_LED) &
1904 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1905 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1907 ath9k_hw_mark_phy_inactive(ah);
1909 ah->paprd_table_write_done = false;
1911 /* Only required on the first reset */
1912 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1913 REG_WRITE(ah,
1914 AR9271_RESET_POWER_DOWN_CONTROL,
1915 AR9271_RADIO_RF_RST);
1916 udelay(50);
1919 if (!ath9k_hw_chip_reset(ah, chan)) {
1920 ath_err(common, "Chip reset failed\n");
1921 return -EINVAL;
1924 /* Only required on the first reset */
1925 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1926 ah->htc_reset_init = false;
1927 REG_WRITE(ah,
1928 AR9271_RESET_POWER_DOWN_CONTROL,
1929 AR9271_GATE_MAC_CTL);
1930 udelay(50);
1933 /* Restore TSF */
1934 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1935 ath9k_hw_settsf64(ah, tsf + tsf_offset);
1937 if (AR_SREV_9280_20_OR_LATER(ah))
1938 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1940 if (!AR_SREV_9300_20_OR_LATER(ah))
1941 ar9002_hw_enable_async_fifo(ah);
1943 r = ath9k_hw_process_ini(ah, chan);
1944 if (r)
1945 return r;
1947 ath9k_hw_set_rfmode(ah, chan);
1949 if (ath9k_hw_mci_is_enabled(ah))
1950 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1953 * Some AR91xx SoC devices frequently fail to accept TSF writes
1954 * right after the chip reset. When that happens, write a new
1955 * value after the initvals have been applied.
1957 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1958 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1959 ath9k_hw_settsf64(ah, tsf + tsf_offset);
1962 ath9k_hw_init_mfp(ah);
1964 ath9k_hw_set_delta_slope(ah, chan);
1965 ath9k_hw_spur_mitigate_freq(ah, chan);
1966 ah->eep_ops->set_board_values(ah, chan);
1968 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1970 r = ath9k_hw_rf_set_freq(ah, chan);
1971 if (r)
1972 return r;
1974 ath9k_hw_set_clockrate(ah);
1976 ath9k_hw_init_queues(ah);
1977 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1978 ath9k_hw_ani_cache_ini_regs(ah);
1979 ath9k_hw_init_qos(ah);
1981 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1982 ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
1984 ath9k_hw_init_global_settings(ah);
1986 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1987 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1988 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1989 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1990 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1991 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1992 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1995 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1997 ath9k_hw_set_dma(ah);
1999 if (!ath9k_hw_mci_is_enabled(ah))
2000 REG_WRITE(ah, AR_OBS, 8);
2002 ENABLE_REG_RMW_BUFFER(ah);
2003 if (ah->config.rx_intr_mitigation) {
2004 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2005 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2008 if (ah->config.tx_intr_mitigation) {
2009 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2010 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2012 REG_RMW_BUFFER_FLUSH(ah);
2014 ath9k_hw_init_bb(ah, chan);
2016 if (caldata) {
2017 clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2018 clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2020 if (!ath9k_hw_init_cal(ah, chan))
2021 return -EIO;
2023 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2024 return -EIO;
2026 ENABLE_REGWRITE_BUFFER(ah);
2028 ath9k_hw_restore_chainmask(ah);
2029 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2031 REGWRITE_BUFFER_FLUSH(ah);
2033 ath9k_hw_gen_timer_start_tsf2(ah);
2035 ath9k_hw_init_desc(ah);
2037 if (ath9k_hw_btcoex_is_enabled(ah))
2038 ath9k_hw_btcoex_enable(ah);
2040 if (ath9k_hw_mci_is_enabled(ah))
2041 ar9003_mci_check_bt(ah);
2043 if (AR_SREV_9300_20_OR_LATER(ah)) {
2044 ath9k_hw_loadnf(ah, chan);
2045 ath9k_hw_start_nfcal(ah, true);
2048 if (AR_SREV_9300_20_OR_LATER(ah))
2049 ar9003_hw_bb_watchdog_config(ah);
2051 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2052 ar9003_hw_disable_phy_restart(ah);
2054 ath9k_hw_apply_gpio_override(ah);
2056 if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2057 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2059 if (ah->hw->conf.radar_enabled) {
2060 /* set HW specific DFS configuration */
2061 ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2062 ath9k_hw_set_radar_params(ah);
2065 return 0;
2067 EXPORT_SYMBOL(ath9k_hw_reset);
2069 /******************************/
2070 /* Power Management (Chipset) */
2071 /******************************/
2074 * Notify Power Mgt is disabled in self-generated frames.
2075 * If requested, force chip to sleep.
2077 static void ath9k_set_power_sleep(struct ath_hw *ah)
2079 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2081 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2082 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2083 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2084 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2085 /* xxx Required for WLAN only case ? */
2086 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2087 udelay(100);
2091 * Clear the RTC force wake bit to allow the
2092 * mac to go to sleep.
2094 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2096 if (ath9k_hw_mci_is_enabled(ah))
2097 udelay(100);
2099 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2100 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2102 /* Shutdown chip. Active low */
2103 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2104 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2105 udelay(2);
2108 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2109 if (AR_SREV_9300_20_OR_LATER(ah))
2110 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2114 * Notify Power Management is enabled in self-generating
2115 * frames. If request, set power mode of chip to
2116 * auto/normal. Duration in units of 128us (1/8 TU).
2118 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2120 struct ath9k_hw_capabilities *pCap = &ah->caps;
2122 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2124 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2125 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2126 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2127 AR_RTC_FORCE_WAKE_ON_INT);
2128 } else {
2130 /* When chip goes into network sleep, it could be waken
2131 * up by MCI_INT interrupt caused by BT's HW messages
2132 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2133 * rate (~100us). This will cause chip to leave and
2134 * re-enter network sleep mode frequently, which in
2135 * consequence will have WLAN MCI HW to generate lots of
2136 * SYS_WAKING and SYS_SLEEPING messages which will make
2137 * BT CPU to busy to process.
2139 if (ath9k_hw_mci_is_enabled(ah))
2140 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2141 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2143 * Clear the RTC force wake bit to allow the
2144 * mac to go to sleep.
2146 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2148 if (ath9k_hw_mci_is_enabled(ah))
2149 udelay(30);
2152 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2153 if (AR_SREV_9300_20_OR_LATER(ah))
2154 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2157 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2159 u32 val;
2160 int i;
2162 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2163 if (AR_SREV_9300_20_OR_LATER(ah)) {
2164 REG_WRITE(ah, AR_WA, ah->WARegVal);
2165 udelay(10);
2168 if ((REG_READ(ah, AR_RTC_STATUS) &
2169 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2170 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2171 return false;
2173 if (!AR_SREV_9300_20_OR_LATER(ah))
2174 ath9k_hw_init_pll(ah, NULL);
2176 if (AR_SREV_9100(ah))
2177 REG_SET_BIT(ah, AR_RTC_RESET,
2178 AR_RTC_RESET_EN);
2180 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2181 AR_RTC_FORCE_WAKE_EN);
2182 if (AR_SREV_9100(ah))
2183 mdelay(10);
2184 else
2185 udelay(50);
2187 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2188 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2189 if (val == AR_RTC_STATUS_ON)
2190 break;
2191 udelay(50);
2192 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2193 AR_RTC_FORCE_WAKE_EN);
2195 if (i == 0) {
2196 ath_err(ath9k_hw_common(ah),
2197 "Failed to wakeup in %uus\n",
2198 POWER_UP_TIME / 20);
2199 return false;
2202 if (ath9k_hw_mci_is_enabled(ah))
2203 ar9003_mci_set_power_awake(ah);
2205 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2207 return true;
2210 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2212 struct ath_common *common = ath9k_hw_common(ah);
2213 int status = true;
2214 static const char *modes[] = {
2215 "AWAKE",
2216 "FULL-SLEEP",
2217 "NETWORK SLEEP",
2218 "UNDEFINED"
2221 if (ah->power_mode == mode)
2222 return status;
2224 ath_dbg(common, RESET, "%s -> %s\n",
2225 modes[ah->power_mode], modes[mode]);
2227 switch (mode) {
2228 case ATH9K_PM_AWAKE:
2229 status = ath9k_hw_set_power_awake(ah);
2230 break;
2231 case ATH9K_PM_FULL_SLEEP:
2232 if (ath9k_hw_mci_is_enabled(ah))
2233 ar9003_mci_set_full_sleep(ah);
2235 ath9k_set_power_sleep(ah);
2236 ah->chip_fullsleep = true;
2237 break;
2238 case ATH9K_PM_NETWORK_SLEEP:
2239 ath9k_set_power_network_sleep(ah);
2240 break;
2241 default:
2242 ath_err(common, "Unknown power mode %u\n", mode);
2243 return false;
2245 ah->power_mode = mode;
2248 * XXX: If this warning never comes up after a while then
2249 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2250 * ath9k_hw_setpower() return type void.
2253 if (!(ah->ah_flags & AH_UNPLUGGED))
2254 ATH_DBG_WARN_ON_ONCE(!status);
2256 return status;
2258 EXPORT_SYMBOL(ath9k_hw_setpower);
2260 /*******************/
2261 /* Beacon Handling */
2262 /*******************/
2264 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2266 int flags = 0;
2268 ENABLE_REGWRITE_BUFFER(ah);
2270 switch (ah->opmode) {
2271 case NL80211_IFTYPE_ADHOC:
2272 REG_SET_BIT(ah, AR_TXCFG,
2273 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2274 case NL80211_IFTYPE_MESH_POINT:
2275 case NL80211_IFTYPE_AP:
2276 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2277 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2278 TU_TO_USEC(ah->config.dma_beacon_response_time));
2279 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2280 TU_TO_USEC(ah->config.sw_beacon_response_time));
2281 flags |=
2282 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2283 break;
2284 default:
2285 ath_dbg(ath9k_hw_common(ah), BEACON,
2286 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2287 return;
2288 break;
2291 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2292 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2293 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2295 REGWRITE_BUFFER_FLUSH(ah);
2297 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2299 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2301 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2302 const struct ath9k_beacon_state *bs)
2304 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2305 struct ath9k_hw_capabilities *pCap = &ah->caps;
2306 struct ath_common *common = ath9k_hw_common(ah);
2308 ENABLE_REGWRITE_BUFFER(ah);
2310 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2311 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2312 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2314 REGWRITE_BUFFER_FLUSH(ah);
2316 REG_RMW_FIELD(ah, AR_RSSI_THR,
2317 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2319 beaconintval = bs->bs_intval;
2321 if (bs->bs_sleepduration > beaconintval)
2322 beaconintval = bs->bs_sleepduration;
2324 dtimperiod = bs->bs_dtimperiod;
2325 if (bs->bs_sleepduration > dtimperiod)
2326 dtimperiod = bs->bs_sleepduration;
2328 if (beaconintval == dtimperiod)
2329 nextTbtt = bs->bs_nextdtim;
2330 else
2331 nextTbtt = bs->bs_nexttbtt;
2333 ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2334 ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2335 ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2336 ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2338 ENABLE_REGWRITE_BUFFER(ah);
2340 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2341 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2343 REG_WRITE(ah, AR_SLEEP1,
2344 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2345 | AR_SLEEP1_ASSUME_DTIM);
2347 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2348 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2349 else
2350 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2352 REG_WRITE(ah, AR_SLEEP2,
2353 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2355 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2356 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2358 REGWRITE_BUFFER_FLUSH(ah);
2360 REG_SET_BIT(ah, AR_TIMER_MODE,
2361 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2362 AR_DTIM_TIMER_EN);
2364 /* TSF Out of Range Threshold */
2365 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2367 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2369 /*******************/
2370 /* HW Capabilities */
2371 /*******************/
2373 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2375 eeprom_chainmask &= chip_chainmask;
2376 if (eeprom_chainmask)
2377 return eeprom_chainmask;
2378 else
2379 return chip_chainmask;
2383 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2384 * @ah: the atheros hardware data structure
2386 * We enable DFS support upstream on chipsets which have passed a series
2387 * of tests. The testing requirements are going to be documented. Desired
2388 * test requirements are documented at:
2390 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2392 * Once a new chipset gets properly tested an individual commit can be used
2393 * to document the testing for DFS for that chipset.
2395 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2398 switch (ah->hw_version.macVersion) {
2399 /* for temporary testing DFS with 9280 */
2400 case AR_SREV_VERSION_9280:
2401 /* AR9580 will likely be our first target to get testing on */
2402 case AR_SREV_VERSION_9580:
2403 return true;
2404 default:
2405 return false;
2409 static void ath9k_gpio_cap_init(struct ath_hw *ah)
2411 struct ath9k_hw_capabilities *pCap = &ah->caps;
2413 if (AR_SREV_9271(ah)) {
2414 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2415 pCap->gpio_mask = AR9271_GPIO_MASK;
2416 } else if (AR_DEVID_7010(ah)) {
2417 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2418 pCap->gpio_mask = AR7010_GPIO_MASK;
2419 } else if (AR_SREV_9287(ah)) {
2420 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2421 pCap->gpio_mask = AR9287_GPIO_MASK;
2422 } else if (AR_SREV_9285(ah)) {
2423 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2424 pCap->gpio_mask = AR9285_GPIO_MASK;
2425 } else if (AR_SREV_9280(ah)) {
2426 pCap->num_gpio_pins = AR9280_NUM_GPIO;
2427 pCap->gpio_mask = AR9280_GPIO_MASK;
2428 } else if (AR_SREV_9300(ah)) {
2429 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2430 pCap->gpio_mask = AR9300_GPIO_MASK;
2431 } else if (AR_SREV_9330(ah)) {
2432 pCap->num_gpio_pins = AR9330_NUM_GPIO;
2433 pCap->gpio_mask = AR9330_GPIO_MASK;
2434 } else if (AR_SREV_9340(ah)) {
2435 pCap->num_gpio_pins = AR9340_NUM_GPIO;
2436 pCap->gpio_mask = AR9340_GPIO_MASK;
2437 } else if (AR_SREV_9462(ah)) {
2438 pCap->num_gpio_pins = AR9462_NUM_GPIO;
2439 pCap->gpio_mask = AR9462_GPIO_MASK;
2440 } else if (AR_SREV_9485(ah)) {
2441 pCap->num_gpio_pins = AR9485_NUM_GPIO;
2442 pCap->gpio_mask = AR9485_GPIO_MASK;
2443 } else if (AR_SREV_9531(ah)) {
2444 pCap->num_gpio_pins = AR9531_NUM_GPIO;
2445 pCap->gpio_mask = AR9531_GPIO_MASK;
2446 } else if (AR_SREV_9550(ah)) {
2447 pCap->num_gpio_pins = AR9550_NUM_GPIO;
2448 pCap->gpio_mask = AR9550_GPIO_MASK;
2449 } else if (AR_SREV_9561(ah)) {
2450 pCap->num_gpio_pins = AR9561_NUM_GPIO;
2451 pCap->gpio_mask = AR9561_GPIO_MASK;
2452 } else if (AR_SREV_9565(ah)) {
2453 pCap->num_gpio_pins = AR9565_NUM_GPIO;
2454 pCap->gpio_mask = AR9565_GPIO_MASK;
2455 } else if (AR_SREV_9580(ah)) {
2456 pCap->num_gpio_pins = AR9580_NUM_GPIO;
2457 pCap->gpio_mask = AR9580_GPIO_MASK;
2458 } else {
2459 pCap->num_gpio_pins = AR_NUM_GPIO;
2460 pCap->gpio_mask = AR_GPIO_MASK;
2464 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2466 struct ath9k_hw_capabilities *pCap = &ah->caps;
2467 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2468 struct ath_common *common = ath9k_hw_common(ah);
2470 u16 eeval;
2471 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2473 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2474 regulatory->current_rd = eeval;
2476 if (ah->opmode != NL80211_IFTYPE_AP &&
2477 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2478 if (regulatory->current_rd == 0x64 ||
2479 regulatory->current_rd == 0x65)
2480 regulatory->current_rd += 5;
2481 else if (regulatory->current_rd == 0x41)
2482 regulatory->current_rd = 0x43;
2483 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2484 regulatory->current_rd);
2487 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2489 if (eeval & AR5416_OPFLAGS_11A) {
2490 if (ah->disable_5ghz)
2491 ath_warn(common, "disabling 5GHz band\n");
2492 else
2493 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2496 if (eeval & AR5416_OPFLAGS_11G) {
2497 if (ah->disable_2ghz)
2498 ath_warn(common, "disabling 2GHz band\n");
2499 else
2500 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2503 if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2504 ath_err(common, "both bands are disabled\n");
2505 return -EINVAL;
2508 ath9k_gpio_cap_init(ah);
2510 if (AR_SREV_9485(ah) ||
2511 AR_SREV_9285(ah) ||
2512 AR_SREV_9330(ah) ||
2513 AR_SREV_9565(ah))
2514 pCap->chip_chainmask = 1;
2515 else if (!AR_SREV_9280_20_OR_LATER(ah))
2516 pCap->chip_chainmask = 7;
2517 else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2518 AR_SREV_9340(ah) ||
2519 AR_SREV_9462(ah) ||
2520 AR_SREV_9531(ah))
2521 pCap->chip_chainmask = 3;
2522 else
2523 pCap->chip_chainmask = 7;
2525 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2527 * For AR9271 we will temporarilly uses the rx chainmax as read from
2528 * the EEPROM.
2530 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2531 !(eeval & AR5416_OPFLAGS_11A) &&
2532 !(AR_SREV_9271(ah)))
2533 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2534 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2535 else if (AR_SREV_9100(ah))
2536 pCap->rx_chainmask = 0x7;
2537 else
2538 /* Use rx_chainmask from EEPROM. */
2539 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2541 pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2542 pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2543 ah->txchainmask = pCap->tx_chainmask;
2544 ah->rxchainmask = pCap->rx_chainmask;
2546 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2548 /* enable key search for every frame in an aggregate */
2549 if (AR_SREV_9300_20_OR_LATER(ah))
2550 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2552 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2554 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2555 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2556 else
2557 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2559 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2560 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2561 else
2562 pCap->rts_aggr_limit = (8 * 1024);
2564 #ifdef CONFIG_ATH9K_RFKILL
2565 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2566 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2567 ah->rfkill_gpio =
2568 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2569 ah->rfkill_polarity =
2570 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2572 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2574 #endif
2575 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2576 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2577 else
2578 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2580 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2581 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2582 else
2583 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2585 if (AR_SREV_9300_20_OR_LATER(ah)) {
2586 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2587 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2588 !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2589 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2591 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2592 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2593 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2594 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2595 pCap->txs_len = sizeof(struct ar9003_txs);
2596 } else {
2597 pCap->tx_desc_len = sizeof(struct ath_desc);
2598 if (AR_SREV_9280_20(ah))
2599 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2602 if (AR_SREV_9300_20_OR_LATER(ah))
2603 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2605 if (AR_SREV_9561(ah))
2606 ah->ent_mode = 0x3BDA000;
2607 else if (AR_SREV_9300_20_OR_LATER(ah))
2608 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2610 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2611 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2613 if (AR_SREV_9285(ah)) {
2614 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2615 ant_div_ctl1 =
2616 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2617 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2618 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2619 ath_info(common, "Enable LNA combining\n");
2624 if (AR_SREV_9300_20_OR_LATER(ah)) {
2625 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2626 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2629 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2630 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2631 if ((ant_div_ctl1 >> 0x6) == 0x3) {
2632 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2633 ath_info(common, "Enable LNA combining\n");
2637 if (ath9k_hw_dfs_tested(ah))
2638 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2640 tx_chainmask = pCap->tx_chainmask;
2641 rx_chainmask = pCap->rx_chainmask;
2642 while (tx_chainmask || rx_chainmask) {
2643 if (tx_chainmask & BIT(0))
2644 pCap->max_txchains++;
2645 if (rx_chainmask & BIT(0))
2646 pCap->max_rxchains++;
2648 tx_chainmask >>= 1;
2649 rx_chainmask >>= 1;
2652 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2653 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2654 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2656 if (AR_SREV_9462_20_OR_LATER(ah))
2657 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2660 if (AR_SREV_9300_20_OR_LATER(ah) &&
2661 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2662 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2664 #ifdef CONFIG_ATH9K_WOW
2665 if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2666 ah->wow.max_patterns = MAX_NUM_PATTERN;
2667 else
2668 ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2669 #endif
2671 return 0;
2674 /****************************/
2675 /* GPIO / RFKILL / Antennae */
2676 /****************************/
2678 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2680 int addr;
2681 u32 gpio_shift, tmp;
2683 if (gpio > 11)
2684 addr = AR_GPIO_OUTPUT_MUX3;
2685 else if (gpio > 5)
2686 addr = AR_GPIO_OUTPUT_MUX2;
2687 else
2688 addr = AR_GPIO_OUTPUT_MUX1;
2690 gpio_shift = (gpio % 6) * 5;
2692 if (AR_SREV_9280_20_OR_LATER(ah) ||
2693 (addr != AR_GPIO_OUTPUT_MUX1)) {
2694 REG_RMW(ah, addr, (type << gpio_shift),
2695 (0x1f << gpio_shift));
2696 } else {
2697 tmp = REG_READ(ah, addr);
2698 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2699 tmp &= ~(0x1f << gpio_shift);
2700 tmp |= (type << gpio_shift);
2701 REG_WRITE(ah, addr, tmp);
2705 /* BSP should set the corresponding MUX register correctly.
2707 static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2708 const char *label)
2710 if (ah->caps.gpio_requested & BIT(gpio))
2711 return;
2713 /* may be requested by BSP, free anyway */
2714 gpio_free(gpio);
2716 if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label))
2717 return;
2719 ah->caps.gpio_requested |= BIT(gpio);
2722 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2723 u32 ah_signal_type)
2725 u32 gpio_set, gpio_shift = gpio;
2727 if (AR_DEVID_7010(ah)) {
2728 gpio_set = out ?
2729 AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2730 REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2731 AR7010_GPIO_OE_MASK << gpio_shift);
2732 } else if (AR_SREV_SOC(ah)) {
2733 gpio_set = out ? 1 : 0;
2734 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2735 gpio_set << gpio_shift);
2736 } else {
2737 gpio_shift = gpio << 1;
2738 gpio_set = out ?
2739 AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2740 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2741 AR_GPIO_OE_OUT_DRV << gpio_shift);
2743 if (out)
2744 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2748 static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2749 const char *label, u32 ah_signal_type)
2751 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2753 if (BIT(gpio) & ah->caps.gpio_mask)
2754 ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2755 else if (AR_SREV_SOC(ah))
2756 ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2757 else
2758 WARN_ON(1);
2761 void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2763 ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2765 EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2767 void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2768 u32 ah_signal_type)
2770 ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2772 EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2774 void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2776 if (!AR_SREV_SOC(ah))
2777 return;
2779 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2781 if (ah->caps.gpio_requested & BIT(gpio)) {
2782 gpio_free(gpio);
2783 ah->caps.gpio_requested &= ~BIT(gpio);
2786 EXPORT_SYMBOL(ath9k_hw_gpio_free);
2788 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2790 u32 val = 0xffffffff;
2792 #define MS_REG_READ(x, y) \
2793 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2795 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2797 if (BIT(gpio) & ah->caps.gpio_mask) {
2798 if (AR_SREV_9271(ah))
2799 val = MS_REG_READ(AR9271, gpio);
2800 else if (AR_SREV_9287(ah))
2801 val = MS_REG_READ(AR9287, gpio);
2802 else if (AR_SREV_9285(ah))
2803 val = MS_REG_READ(AR9285, gpio);
2804 else if (AR_SREV_9280(ah))
2805 val = MS_REG_READ(AR928X, gpio);
2806 else if (AR_DEVID_7010(ah))
2807 val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2808 else if (AR_SREV_9300_20_OR_LATER(ah))
2809 val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2810 else
2811 val = MS_REG_READ(AR, gpio);
2812 } else if (BIT(gpio) & ah->caps.gpio_requested) {
2813 val = gpio_get_value(gpio) & BIT(gpio);
2814 } else {
2815 WARN_ON(1);
2818 return !!val;
2820 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2822 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2824 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2826 if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2827 val = !val;
2828 else
2829 val = !!val;
2831 if (BIT(gpio) & ah->caps.gpio_mask) {
2832 u32 out_addr = AR_DEVID_7010(ah) ?
2833 AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2835 REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2836 } else if (BIT(gpio) & ah->caps.gpio_requested) {
2837 gpio_set_value(gpio, val);
2838 } else {
2839 WARN_ON(1);
2842 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2844 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2846 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2848 EXPORT_SYMBOL(ath9k_hw_setantenna);
2850 /*********************/
2851 /* General Operation */
2852 /*********************/
2854 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2856 u32 bits = REG_READ(ah, AR_RX_FILTER);
2857 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2859 if (phybits & AR_PHY_ERR_RADAR)
2860 bits |= ATH9K_RX_FILTER_PHYRADAR;
2861 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2862 bits |= ATH9K_RX_FILTER_PHYERR;
2864 return bits;
2866 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2868 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2870 u32 phybits;
2872 ENABLE_REGWRITE_BUFFER(ah);
2874 REG_WRITE(ah, AR_RX_FILTER, bits);
2876 phybits = 0;
2877 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2878 phybits |= AR_PHY_ERR_RADAR;
2879 if (bits & ATH9K_RX_FILTER_PHYERR)
2880 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2881 REG_WRITE(ah, AR_PHY_ERR, phybits);
2883 if (phybits)
2884 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2885 else
2886 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2888 REGWRITE_BUFFER_FLUSH(ah);
2890 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2892 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2894 if (ath9k_hw_mci_is_enabled(ah))
2895 ar9003_mci_bt_gain_ctrl(ah);
2897 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2898 return false;
2900 ath9k_hw_init_pll(ah, NULL);
2901 ah->htc_reset_init = true;
2902 return true;
2904 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2906 bool ath9k_hw_disable(struct ath_hw *ah)
2908 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2909 return false;
2911 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2912 return false;
2914 ath9k_hw_init_pll(ah, NULL);
2915 return true;
2917 EXPORT_SYMBOL(ath9k_hw_disable);
2919 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2921 enum eeprom_param gain_param;
2923 if (IS_CHAN_2GHZ(chan))
2924 gain_param = EEP_ANTENNA_GAIN_2G;
2925 else
2926 gain_param = EEP_ANTENNA_GAIN_5G;
2928 return ah->eep_ops->get_eeprom(ah, gain_param);
2931 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2932 bool test)
2934 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2935 struct ieee80211_channel *channel;
2936 int chan_pwr, new_pwr;
2938 if (!chan)
2939 return;
2941 channel = chan->chan;
2942 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2943 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2945 ah->eep_ops->set_txpower(ah, chan,
2946 ath9k_regd_get_ctl(reg, chan),
2947 get_antenna_gain(ah, chan), new_pwr, test);
2950 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2952 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2953 struct ath9k_channel *chan = ah->curchan;
2954 struct ieee80211_channel *channel = chan->chan;
2956 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2957 if (test)
2958 channel->max_power = MAX_RATE_POWER / 2;
2960 ath9k_hw_apply_txpower(ah, chan, test);
2962 if (test)
2963 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2965 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2967 void ath9k_hw_setopmode(struct ath_hw *ah)
2969 ath9k_hw_set_operating_mode(ah, ah->opmode);
2971 EXPORT_SYMBOL(ath9k_hw_setopmode);
2973 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2975 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2976 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2978 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2980 void ath9k_hw_write_associd(struct ath_hw *ah)
2982 struct ath_common *common = ath9k_hw_common(ah);
2984 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2985 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2986 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2988 EXPORT_SYMBOL(ath9k_hw_write_associd);
2990 #define ATH9K_MAX_TSF_READ 10
2992 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2994 u32 tsf_lower, tsf_upper1, tsf_upper2;
2995 int i;
2997 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2998 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2999 tsf_lower = REG_READ(ah, AR_TSF_L32);
3000 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3001 if (tsf_upper2 == tsf_upper1)
3002 break;
3003 tsf_upper1 = tsf_upper2;
3006 WARN_ON( i == ATH9K_MAX_TSF_READ );
3008 return (((u64)tsf_upper1 << 32) | tsf_lower);
3010 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3012 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3014 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3015 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3017 EXPORT_SYMBOL(ath9k_hw_settsf64);
3019 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3021 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3022 AH_TSF_WRITE_TIMEOUT))
3023 ath_dbg(ath9k_hw_common(ah), RESET,
3024 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3026 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3028 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3030 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3032 if (set)
3033 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3034 else
3035 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3037 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3039 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3041 u32 macmode;
3043 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3044 macmode = AR_2040_JOINED_RX_CLEAR;
3045 else
3046 macmode = 0;
3048 REG_WRITE(ah, AR_2040_MODE, macmode);
3051 /* HW Generic timers configuration */
3053 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3055 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3056 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3057 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3058 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3059 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3060 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3061 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3062 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3063 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3064 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3065 AR_NDP2_TIMER_MODE, 0x0002},
3066 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3067 AR_NDP2_TIMER_MODE, 0x0004},
3068 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3069 AR_NDP2_TIMER_MODE, 0x0008},
3070 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3071 AR_NDP2_TIMER_MODE, 0x0010},
3072 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3073 AR_NDP2_TIMER_MODE, 0x0020},
3074 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3075 AR_NDP2_TIMER_MODE, 0x0040},
3076 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3077 AR_NDP2_TIMER_MODE, 0x0080}
3080 /* HW generic timer primitives */
3082 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3084 return REG_READ(ah, AR_TSF_L32);
3086 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3088 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3090 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3092 if (timer_table->tsf2_enabled) {
3093 REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3094 REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3098 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3099 void (*trigger)(void *),
3100 void (*overflow)(void *),
3101 void *arg,
3102 u8 timer_index)
3104 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3105 struct ath_gen_timer *timer;
3107 if ((timer_index < AR_FIRST_NDP_TIMER) ||
3108 (timer_index >= ATH_MAX_GEN_TIMER))
3109 return NULL;
3111 if ((timer_index > AR_FIRST_NDP_TIMER) &&
3112 !AR_SREV_9300_20_OR_LATER(ah))
3113 return NULL;
3115 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3116 if (timer == NULL)
3117 return NULL;
3119 /* allocate a hardware generic timer slot */
3120 timer_table->timers[timer_index] = timer;
3121 timer->index = timer_index;
3122 timer->trigger = trigger;
3123 timer->overflow = overflow;
3124 timer->arg = arg;
3126 if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3127 timer_table->tsf2_enabled = true;
3128 ath9k_hw_gen_timer_start_tsf2(ah);
3131 return timer;
3133 EXPORT_SYMBOL(ath_gen_timer_alloc);
3135 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3136 struct ath_gen_timer *timer,
3137 u32 timer_next,
3138 u32 timer_period)
3140 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3141 u32 mask = 0;
3143 timer_table->timer_mask |= BIT(timer->index);
3146 * Program generic timer registers
3148 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3149 timer_next);
3150 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3151 timer_period);
3152 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3153 gen_tmr_configuration[timer->index].mode_mask);
3155 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3157 * Starting from AR9462, each generic timer can select which tsf
3158 * to use. But we still follow the old rule, 0 - 7 use tsf and
3159 * 8 - 15 use tsf2.
3161 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3162 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3163 (1 << timer->index));
3164 else
3165 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3166 (1 << timer->index));
3169 if (timer->trigger)
3170 mask |= SM(AR_GENTMR_BIT(timer->index),
3171 AR_IMR_S5_GENTIMER_TRIG);
3172 if (timer->overflow)
3173 mask |= SM(AR_GENTMR_BIT(timer->index),
3174 AR_IMR_S5_GENTIMER_THRESH);
3176 REG_SET_BIT(ah, AR_IMR_S5, mask);
3178 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3179 ah->imask |= ATH9K_INT_GENTIMER;
3180 ath9k_hw_set_interrupts(ah);
3183 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3185 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3187 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3189 /* Clear generic timer enable bits. */
3190 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3191 gen_tmr_configuration[timer->index].mode_mask);
3193 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3195 * Need to switch back to TSF if it was using TSF2.
3197 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3198 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3199 (1 << timer->index));
3203 /* Disable both trigger and thresh interrupt masks */
3204 REG_CLR_BIT(ah, AR_IMR_S5,
3205 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3206 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3208 timer_table->timer_mask &= ~BIT(timer->index);
3210 if (timer_table->timer_mask == 0) {
3211 ah->imask &= ~ATH9K_INT_GENTIMER;
3212 ath9k_hw_set_interrupts(ah);
3215 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3217 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3219 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3221 /* free the hardware generic timer slot */
3222 timer_table->timers[timer->index] = NULL;
3223 kfree(timer);
3225 EXPORT_SYMBOL(ath_gen_timer_free);
3228 * Generic Timer Interrupts handling
3230 void ath_gen_timer_isr(struct ath_hw *ah)
3232 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3233 struct ath_gen_timer *timer;
3234 unsigned long trigger_mask, thresh_mask;
3235 unsigned int index;
3237 /* get hardware generic timer interrupt status */
3238 trigger_mask = ah->intr_gen_timer_trigger;
3239 thresh_mask = ah->intr_gen_timer_thresh;
3240 trigger_mask &= timer_table->timer_mask;
3241 thresh_mask &= timer_table->timer_mask;
3243 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3244 timer = timer_table->timers[index];
3245 if (!timer)
3246 continue;
3247 if (!timer->overflow)
3248 continue;
3250 trigger_mask &= ~BIT(index);
3251 timer->overflow(timer->arg);
3254 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3255 timer = timer_table->timers[index];
3256 if (!timer)
3257 continue;
3258 if (!timer->trigger)
3259 continue;
3260 timer->trigger(timer->arg);
3263 EXPORT_SYMBOL(ath_gen_timer_isr);
3265 /********/
3266 /* HTC */
3267 /********/
3269 static struct {
3270 u32 version;
3271 const char * name;
3272 } ath_mac_bb_names[] = {
3273 /* Devices with external radios */
3274 { AR_SREV_VERSION_5416_PCI, "5416" },
3275 { AR_SREV_VERSION_5416_PCIE, "5418" },
3276 { AR_SREV_VERSION_9100, "9100" },
3277 { AR_SREV_VERSION_9160, "9160" },
3278 /* Single-chip solutions */
3279 { AR_SREV_VERSION_9280, "9280" },
3280 { AR_SREV_VERSION_9285, "9285" },
3281 { AR_SREV_VERSION_9287, "9287" },
3282 { AR_SREV_VERSION_9271, "9271" },
3283 { AR_SREV_VERSION_9300, "9300" },
3284 { AR_SREV_VERSION_9330, "9330" },
3285 { AR_SREV_VERSION_9340, "9340" },
3286 { AR_SREV_VERSION_9485, "9485" },
3287 { AR_SREV_VERSION_9462, "9462" },
3288 { AR_SREV_VERSION_9550, "9550" },
3289 { AR_SREV_VERSION_9565, "9565" },
3290 { AR_SREV_VERSION_9531, "9531" },
3291 { AR_SREV_VERSION_9561, "9561" },
3294 /* For devices with external radios */
3295 static struct {
3296 u16 version;
3297 const char * name;
3298 } ath_rf_names[] = {
3299 { 0, "5133" },
3300 { AR_RAD5133_SREV_MAJOR, "5133" },
3301 { AR_RAD5122_SREV_MAJOR, "5122" },
3302 { AR_RAD2133_SREV_MAJOR, "2133" },
3303 { AR_RAD2122_SREV_MAJOR, "2122" }
3307 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3309 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3311 int i;
3313 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3314 if (ath_mac_bb_names[i].version == mac_bb_version) {
3315 return ath_mac_bb_names[i].name;
3319 return "????";
3323 * Return the RF name. "????" is returned if the RF is unknown.
3324 * Used for devices with external radios.
3326 static const char *ath9k_hw_rf_name(u16 rf_version)
3328 int i;
3330 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3331 if (ath_rf_names[i].version == rf_version) {
3332 return ath_rf_names[i].name;
3336 return "????";
3339 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3341 int used;
3343 /* chipsets >= AR9280 are single-chip */
3344 if (AR_SREV_9280_20_OR_LATER(ah)) {
3345 used = scnprintf(hw_name, len,
3346 "Atheros AR%s Rev:%x",
3347 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3348 ah->hw_version.macRev);
3350 else {
3351 used = scnprintf(hw_name, len,
3352 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3353 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3354 ah->hw_version.macRev,
3355 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3356 & AR_RADIO_SREV_MAJOR)),
3357 ah->hw_version.phyRev);
3360 hw_name[used] = '\0';
3362 EXPORT_SYMBOL(ath9k_hw_name);