2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
33 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
40 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
42 struct ath_common
*common
= ath9k_hw_common(ah
);
43 struct ath9k_channel
*chan
= ah
->curchan
;
44 unsigned int clockrate
;
46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
))
49 else if (!chan
) /* should really check for CCK instead */
50 clockrate
= ATH9K_CLOCK_RATE_CCK
;
51 else if (IS_CHAN_2GHZ(chan
))
52 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
53 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
54 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
56 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
59 if (IS_CHAN_HT40(chan
))
61 if (IS_CHAN_HALF_RATE(chan
))
63 if (IS_CHAN_QUARTER_RATE(chan
))
67 common
->clockrate
= clockrate
;
70 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
72 struct ath_common
*common
= ath9k_hw_common(ah
);
74 return usecs
* common
->clockrate
;
77 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
81 BUG_ON(timeout
< AH_TIME_QUANTUM
);
83 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
84 if ((REG_READ(ah
, reg
) & mask
) == val
)
87 udelay(AH_TIME_QUANTUM
);
90 ath_dbg(ath9k_hw_common(ah
), ANY
,
91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
96 EXPORT_SYMBOL(ath9k_hw_wait
);
98 void ath9k_hw_synth_delay(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
103 if (IS_CHAN_HALF_RATE(chan
))
105 else if (IS_CHAN_QUARTER_RATE(chan
))
108 udelay(hw_delay
+ BASE_ACTIVATE_DELAY
);
111 void ath9k_hw_write_array(struct ath_hw
*ah
, const struct ar5416IniArray
*array
,
112 int column
, unsigned int *writecnt
)
116 ENABLE_REGWRITE_BUFFER(ah
);
117 for (r
= 0; r
< array
->ia_rows
; r
++) {
118 REG_WRITE(ah
, INI_RA(array
, r
, 0),
119 INI_RA(array
, r
, column
));
122 REGWRITE_BUFFER_FLUSH(ah
);
125 void ath9k_hw_read_array(struct ath_hw
*ah
, u32 array
[][2], int size
)
127 u32
*tmp_reg_list
, *tmp_data
;
130 tmp_reg_list
= kmalloc(size
* sizeof(u32
), GFP_KERNEL
);
132 dev_err(ah
->dev
, "%s: tmp_reg_list: alloc filed\n", __func__
);
136 tmp_data
= kmalloc(size
* sizeof(u32
), GFP_KERNEL
);
138 dev_err(ah
->dev
, "%s tmp_data: alloc filed\n", __func__
);
142 for (i
= 0; i
< size
; i
++)
143 tmp_reg_list
[i
] = array
[i
][0];
145 REG_READ_MULTI(ah
, tmp_reg_list
, tmp_data
, size
);
147 for (i
= 0; i
< size
; i
++)
148 array
[i
][1] = tmp_data
[i
];
155 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
160 for (i
= 0, retval
= 0; i
< n
; i
++) {
161 retval
= (retval
<< 1) | (val
& 1);
167 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
169 u32 frameLen
, u16 rateix
,
172 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
178 case WLAN_RC_PHY_CCK
:
179 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
182 numBits
= frameLen
<< 3;
183 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
185 case WLAN_RC_PHY_OFDM
:
186 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
187 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
188 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
189 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
190 txTime
= OFDM_SIFS_TIME_QUARTER
191 + OFDM_PREAMBLE_TIME_QUARTER
192 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
193 } else if (ah
->curchan
&&
194 IS_CHAN_HALF_RATE(ah
->curchan
)) {
195 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
196 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
197 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
198 txTime
= OFDM_SIFS_TIME_HALF
+
199 OFDM_PREAMBLE_TIME_HALF
200 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
202 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
203 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
204 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
205 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
206 + (numSymbols
* OFDM_SYMBOL_TIME
);
210 ath_err(ath9k_hw_common(ah
),
211 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
218 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
220 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
221 struct ath9k_channel
*chan
,
222 struct chan_centers
*centers
)
226 if (!IS_CHAN_HT40(chan
)) {
227 centers
->ctl_center
= centers
->ext_center
=
228 centers
->synth_center
= chan
->channel
;
232 if (IS_CHAN_HT40PLUS(chan
)) {
233 centers
->synth_center
=
234 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
237 centers
->synth_center
=
238 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
242 centers
->ctl_center
=
243 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
244 /* 25 MHz spacing is supported by hw but not on upper layers */
245 centers
->ext_center
=
246 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
253 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
257 if (ah
->get_mac_revision
)
258 ah
->hw_version
.macRev
= ah
->get_mac_revision();
260 switch (ah
->hw_version
.devid
) {
261 case AR5416_AR9100_DEVID
:
262 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
264 case AR9300_DEVID_AR9330
:
265 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9330
;
266 if (!ah
->get_mac_revision
) {
267 val
= REG_READ(ah
, AR_SREV
);
268 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
271 case AR9300_DEVID_AR9340
:
272 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9340
;
274 case AR9300_DEVID_QCA955X
:
275 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9550
;
277 case AR9300_DEVID_AR953X
:
278 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9531
;
280 case AR9300_DEVID_QCA956X
:
281 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9561
;
285 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
288 val
= REG_READ(ah
, AR_SREV
);
289 ah
->hw_version
.macVersion
=
290 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
291 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
293 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
294 ah
->is_pciexpress
= true;
296 ah
->is_pciexpress
= (val
&
297 AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
299 if (!AR_SREV_9100(ah
))
300 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
302 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
304 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
305 ah
->is_pciexpress
= true;
309 /************************************/
310 /* HW Attach, Detach, Init Routines */
311 /************************************/
313 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
315 if (!AR_SREV_5416(ah
))
318 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
319 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
320 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
321 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
322 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
323 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
324 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
325 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
326 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
328 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
331 /* This should work for all families including legacy */
332 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
334 struct ath_common
*common
= ath9k_hw_common(ah
);
335 u32 regAddr
[2] = { AR_STA_ID0
};
337 static const u32 patternData
[4] = {
338 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
342 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
344 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
348 for (i
= 0; i
< loop_max
; i
++) {
349 u32 addr
= regAddr
[i
];
352 regHold
[i
] = REG_READ(ah
, addr
);
353 for (j
= 0; j
< 0x100; j
++) {
354 wrData
= (j
<< 16) | j
;
355 REG_WRITE(ah
, addr
, wrData
);
356 rdData
= REG_READ(ah
, addr
);
357 if (rdData
!= wrData
) {
359 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
360 addr
, wrData
, rdData
);
364 for (j
= 0; j
< 4; j
++) {
365 wrData
= patternData
[j
];
366 REG_WRITE(ah
, addr
, wrData
);
367 rdData
= REG_READ(ah
, addr
);
368 if (wrData
!= rdData
) {
370 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
371 addr
, wrData
, rdData
);
375 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
382 static void ath9k_hw_init_config(struct ath_hw
*ah
)
384 struct ath_common
*common
= ath9k_hw_common(ah
);
386 ah
->config
.dma_beacon_response_time
= 1;
387 ah
->config
.sw_beacon_response_time
= 6;
388 ah
->config
.cwm_ignore_extcca
= false;
389 ah
->config
.analog_shiftreg
= 1;
391 ah
->config
.rx_intr_mitigation
= true;
393 if (AR_SREV_9300_20_OR_LATER(ah
)) {
394 ah
->config
.rimt_last
= 500;
395 ah
->config
.rimt_first
= 2000;
397 ah
->config
.rimt_last
= 250;
398 ah
->config
.rimt_first
= 700;
401 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
402 ah
->config
.pll_pwrsave
= 7;
405 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
406 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
407 * This means we use it for all AR5416 devices, and the few
408 * minor PCI AR9280 devices out there.
410 * Serialization is required because these devices do not handle
411 * well the case of two concurrent reads/writes due to the latency
412 * involved. During one read/write another read/write can be issued
413 * on another CPU while the previous read/write may still be working
414 * on our hardware, if we hit this case the hardware poops in a loop.
415 * We prevent this by serializing reads and writes.
417 * This issue is not present on PCI-Express devices or pre-AR5416
418 * devices (legacy, 802.11abg).
420 if (num_possible_cpus() > 1)
421 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
423 if (NR_CPUS
> 1 && ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
424 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
425 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
) || AR_SREV_9287(ah
)) &&
426 !ah
->is_pciexpress
)) {
427 ah
->config
.serialize_regmode
= SER_REG_MODE_ON
;
429 ah
->config
.serialize_regmode
= SER_REG_MODE_OFF
;
433 ath_dbg(common
, RESET
, "serialize_regmode is %d\n",
434 ah
->config
.serialize_regmode
);
436 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
437 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
439 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
442 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
444 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
446 regulatory
->country_code
= CTRY_DEFAULT
;
447 regulatory
->power_limit
= MAX_RATE_POWER
;
449 ah
->hw_version
.magic
= AR5416_MAGIC
;
450 ah
->hw_version
.subvendorid
= 0;
452 ah
->sta_id1_defaults
= AR_STA_ID1_CRPT_MIC_ENABLE
|
453 AR_STA_ID1_MCAST_KSRCH
;
454 if (AR_SREV_9100(ah
))
455 ah
->sta_id1_defaults
|= AR_STA_ID1_AR9100_BA_FIX
;
458 ah
->globaltxtimeout
= (u32
) -1;
459 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
460 ah
->htc_reset_init
= true;
462 ah
->tpc_enabled
= false;
464 ah
->ani_function
= ATH9K_ANI_ALL
;
465 if (!AR_SREV_9300_20_OR_LATER(ah
))
466 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
468 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
469 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
471 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
474 static void ath9k_hw_init_macaddr(struct ath_hw
*ah
)
476 struct ath_common
*common
= ath9k_hw_common(ah
);
479 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
481 /* MAC address may already be loaded via ath9k_platform_data */
482 if (is_valid_ether_addr(common
->macaddr
))
485 for (i
= 0; i
< 3; i
++) {
486 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
487 common
->macaddr
[2 * i
] = eeval
>> 8;
488 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
491 if (is_valid_ether_addr(common
->macaddr
))
494 ath_err(common
, "eeprom contains invalid mac address: %pM\n",
497 random_ether_addr(common
->macaddr
);
498 ath_err(common
, "random mac address will be used: %pM\n",
504 static int ath9k_hw_post_init(struct ath_hw
*ah
)
506 struct ath_common
*common
= ath9k_hw_common(ah
);
509 if (common
->bus_ops
->ath_bus_type
!= ATH_USB
) {
510 if (!ath9k_hw_chip_test(ah
))
514 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
515 ecode
= ar9002_hw_rf_claim(ah
);
520 ecode
= ath9k_hw_eeprom_init(ah
);
524 ath_dbg(ath9k_hw_common(ah
), CONFIG
, "Eeprom VER: %d, REV: %d\n",
525 ah
->eep_ops
->get_eeprom_ver(ah
),
526 ah
->eep_ops
->get_eeprom_rev(ah
));
528 ath9k_hw_ani_init(ah
);
531 * EEPROM needs to be initialized before we do this.
532 * This is required for regulatory compliance.
534 if (AR_SREV_9300_20_OR_LATER(ah
)) {
535 u16 regdmn
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
536 if ((regdmn
& 0xF0) == CTL_FCC
) {
537 ah
->nf_2g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ
;
538 ah
->nf_5g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ
;
545 static int ath9k_hw_attach_ops(struct ath_hw
*ah
)
547 if (!AR_SREV_9300_20_OR_LATER(ah
))
548 return ar9002_hw_attach_ops(ah
);
550 ar9003_hw_attach_ops(ah
);
554 /* Called for all hardware families */
555 static int __ath9k_hw_init(struct ath_hw
*ah
)
557 struct ath_common
*common
= ath9k_hw_common(ah
);
560 ath9k_hw_read_revisions(ah
);
562 switch (ah
->hw_version
.macVersion
) {
563 case AR_SREV_VERSION_5416_PCI
:
564 case AR_SREV_VERSION_5416_PCIE
:
565 case AR_SREV_VERSION_9160
:
566 case AR_SREV_VERSION_9100
:
567 case AR_SREV_VERSION_9280
:
568 case AR_SREV_VERSION_9285
:
569 case AR_SREV_VERSION_9287
:
570 case AR_SREV_VERSION_9271
:
571 case AR_SREV_VERSION_9300
:
572 case AR_SREV_VERSION_9330
:
573 case AR_SREV_VERSION_9485
:
574 case AR_SREV_VERSION_9340
:
575 case AR_SREV_VERSION_9462
:
576 case AR_SREV_VERSION_9550
:
577 case AR_SREV_VERSION_9565
:
578 case AR_SREV_VERSION_9531
:
579 case AR_SREV_VERSION_9561
:
583 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
584 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
589 * Read back AR_WA into a permanent copy and set bits 14 and 17.
590 * We need to do this to avoid RMW of this register. We cannot
591 * read the reg when chip is asleep.
593 if (AR_SREV_9300_20_OR_LATER(ah
)) {
594 ah
->WARegVal
= REG_READ(ah
, AR_WA
);
595 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
596 AR_WA_ASPM_TIMER_BASED_DISABLE
);
599 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
600 ath_err(common
, "Couldn't reset chip\n");
604 if (AR_SREV_9565(ah
)) {
605 ah
->WARegVal
|= AR_WA_BIT22
;
606 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
609 ath9k_hw_init_defaults(ah
);
610 ath9k_hw_init_config(ah
);
612 r
= ath9k_hw_attach_ops(ah
);
616 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
617 ath_err(common
, "Couldn't wakeup chip\n");
621 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
) || AR_SREV_9340(ah
) ||
622 AR_SREV_9330(ah
) || AR_SREV_9550(ah
))
623 ah
->is_pciexpress
= false;
625 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
626 ath9k_hw_init_cal_settings(ah
);
628 if (!ah
->is_pciexpress
)
629 ath9k_hw_disablepcie(ah
);
631 r
= ath9k_hw_post_init(ah
);
635 ath9k_hw_init_mode_gain_regs(ah
);
636 r
= ath9k_hw_fill_cap_info(ah
);
640 ath9k_hw_init_macaddr(ah
);
641 ath9k_hw_init_hang_checks(ah
);
643 common
->state
= ATH_HW_INITIALIZED
;
648 int ath9k_hw_init(struct ath_hw
*ah
)
651 struct ath_common
*common
= ath9k_hw_common(ah
);
653 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
654 switch (ah
->hw_version
.devid
) {
655 case AR5416_DEVID_PCI
:
656 case AR5416_DEVID_PCIE
:
657 case AR5416_AR9100_DEVID
:
658 case AR9160_DEVID_PCI
:
659 case AR9280_DEVID_PCI
:
660 case AR9280_DEVID_PCIE
:
661 case AR9285_DEVID_PCIE
:
662 case AR9287_DEVID_PCI
:
663 case AR9287_DEVID_PCIE
:
664 case AR2427_DEVID_PCIE
:
665 case AR9300_DEVID_PCIE
:
666 case AR9300_DEVID_AR9485_PCIE
:
667 case AR9300_DEVID_AR9330
:
668 case AR9300_DEVID_AR9340
:
669 case AR9300_DEVID_QCA955X
:
670 case AR9300_DEVID_AR9580
:
671 case AR9300_DEVID_AR9462
:
672 case AR9485_DEVID_AR1111
:
673 case AR9300_DEVID_AR9565
:
674 case AR9300_DEVID_AR953X
:
675 case AR9300_DEVID_QCA956X
:
678 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
680 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
681 ah
->hw_version
.devid
);
685 ret
= __ath9k_hw_init(ah
);
688 "Unable to initialize hardware; initialization status: %d\n",
697 EXPORT_SYMBOL(ath9k_hw_init
);
699 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
701 ENABLE_REGWRITE_BUFFER(ah
);
703 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
704 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
706 REG_WRITE(ah
, AR_QOS_NO_ACK
,
707 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
708 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
709 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
711 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
712 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
713 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
714 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
715 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
717 REGWRITE_BUFFER_FLUSH(ah
);
720 u32
ar9003_get_pll_sqsum_dvc(struct ath_hw
*ah
)
722 struct ath_common
*common
= ath9k_hw_common(ah
);
725 REG_CLR_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
727 REG_SET_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
729 while ((REG_READ(ah
, PLL4
) & PLL4_MEAS_DONE
) == 0) {
733 if (WARN_ON_ONCE(i
>= 100)) {
734 ath_err(common
, "PLL4 measurement not done\n");
741 return (REG_READ(ah
, PLL3
) & SQSUM_DVC_MASK
) >> 3;
743 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc
);
745 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
746 struct ath9k_channel
*chan
)
750 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
752 if (AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
753 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
754 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
755 AR_CH0_BB_DPLL2_PLL_PWD
, 0x1);
756 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
757 AR_CH0_DPLL2_KD
, 0x40);
758 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
759 AR_CH0_DPLL2_KI
, 0x4);
761 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
762 AR_CH0_BB_DPLL1_REFDIV
, 0x5);
763 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
764 AR_CH0_BB_DPLL1_NINI
, 0x58);
765 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
766 AR_CH0_BB_DPLL1_NFRAC
, 0x0);
768 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
769 AR_CH0_BB_DPLL2_OUTDIV
, 0x1);
770 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
771 AR_CH0_BB_DPLL2_LOCAL_PLL
, 0x1);
772 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
773 AR_CH0_BB_DPLL2_EN_NEGTRIG
, 0x1);
775 /* program BB PLL phase_shift to 0x6 */
776 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
777 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x6);
779 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
780 AR_CH0_BB_DPLL2_PLL_PWD
, 0x0);
782 } else if (AR_SREV_9330(ah
)) {
783 u32 ddr_dpll2
, pll_control2
, kd
;
785 if (ah
->is_clk_25mhz
) {
786 ddr_dpll2
= 0x18e82f01;
787 pll_control2
= 0xe04a3d;
790 ddr_dpll2
= 0x19e82f01;
791 pll_control2
= 0x886666;
795 /* program DDR PLL ki and kd value */
796 REG_WRITE(ah
, AR_CH0_DDR_DPLL2
, ddr_dpll2
);
798 /* program DDR PLL phase_shift */
799 REG_RMW_FIELD(ah
, AR_CH0_DDR_DPLL3
,
800 AR_CH0_DPLL3_PHASE_SHIFT
, 0x1);
802 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
,
803 pll
| AR_RTC_9300_PLL_BYPASS
);
806 /* program refdiv, nint, frac to RTC register */
807 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, pll_control2
);
809 /* program BB PLL kd and ki value */
810 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KD
, kd
);
811 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KI
, 0x06);
813 /* program BB PLL phase_shift */
814 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
815 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x1);
816 } else if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
818 u32 regval
, pll2_divint
, pll2_divfrac
, refdiv
;
820 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
,
821 pll
| AR_RTC_9300_SOC_PLL_BYPASS
);
824 REG_SET_BIT(ah
, AR_PHY_PLL_MODE
, 0x1 << 16);
827 if (ah
->is_clk_25mhz
) {
828 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
)) {
830 pll2_divfrac
= 0xa3d2;
834 pll2_divfrac
= 0x1eb85;
838 if (AR_SREV_9340(ah
)) {
844 pll2_divfrac
= (AR_SREV_9531(ah
) ||
851 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
852 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
))
853 regval
|= (0x1 << 22);
855 regval
|= (0x1 << 16);
856 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
859 REG_WRITE(ah
, AR_PHY_PLL_CONTROL
, (refdiv
<< 27) |
860 (pll2_divint
<< 18) | pll2_divfrac
);
863 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
864 if (AR_SREV_9340(ah
))
865 regval
= (regval
& 0x80071fff) |
870 else if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
)) {
871 regval
= (regval
& 0x01c00fff) |
877 if (AR_SREV_9531(ah
))
878 regval
|= (0x6 << 12);
880 regval
= (regval
& 0x80071fff) |
885 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
887 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
))
888 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
889 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xffbfffff);
891 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
892 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xfffeffff);
897 if (AR_SREV_9565(ah
))
899 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
901 if (AR_SREV_9485(ah
) || AR_SREV_9340(ah
) || AR_SREV_9330(ah
) ||
905 /* Switch the core clock for ar9271 to 117Mhz */
906 if (AR_SREV_9271(ah
)) {
908 REG_WRITE(ah
, 0x50040, 0x304);
911 udelay(RTC_PLL_SETTLE_DELAY
);
913 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
916 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
917 enum nl80211_iftype opmode
)
919 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
920 u32 imr_reg
= AR_IMR_TXERR
|
927 if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
929 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
931 if (AR_SREV_9300_20_OR_LATER(ah
)) {
932 imr_reg
|= AR_IMR_RXOK_HP
;
933 if (ah
->config
.rx_intr_mitigation
) {
934 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
935 msi_cfg
|= AR_INTCFG_MSI_RXINTM
| AR_INTCFG_MSI_RXMINTR
;
937 imr_reg
|= AR_IMR_RXOK_LP
;
938 msi_cfg
|= AR_INTCFG_MSI_RXOK
;
941 if (ah
->config
.rx_intr_mitigation
) {
942 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
943 msi_cfg
|= AR_INTCFG_MSI_RXINTM
| AR_INTCFG_MSI_RXMINTR
;
945 imr_reg
|= AR_IMR_RXOK
;
946 msi_cfg
|= AR_INTCFG_MSI_RXOK
;
950 if (ah
->config
.tx_intr_mitigation
) {
951 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
952 msi_cfg
|= AR_INTCFG_MSI_TXINTM
| AR_INTCFG_MSI_TXMINTR
;
954 imr_reg
|= AR_IMR_TXOK
;
955 msi_cfg
|= AR_INTCFG_MSI_TXOK
;
958 ENABLE_REGWRITE_BUFFER(ah
);
960 REG_WRITE(ah
, AR_IMR
, imr_reg
);
961 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
962 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
964 if (ah
->msi_enabled
) {
965 ah
->msi_reg
= REG_READ(ah
, AR_PCIE_MSI
);
966 ah
->msi_reg
|= AR_PCIE_MSI_HW_DBI_WR_EN
;
967 ah
->msi_reg
&= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64
;
968 REG_WRITE(ah
, AR_INTCFG
, msi_cfg
);
969 ath_dbg(ath9k_hw_common(ah
), ANY
,
970 "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
971 REG_READ(ah
, AR_INTCFG
), msi_cfg
);
974 if (!AR_SREV_9100(ah
)) {
975 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
976 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
977 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
980 REGWRITE_BUFFER_FLUSH(ah
);
982 if (AR_SREV_9300_20_OR_LATER(ah
)) {
983 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
984 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, 0);
985 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE
, 0);
986 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK
, 0);
990 static void ath9k_hw_set_sifs_time(struct ath_hw
*ah
, u32 us
)
992 u32 val
= ath9k_hw_mac_to_clks(ah
, us
- 2);
993 val
= min(val
, (u32
) 0xFFFF);
994 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
, val
);
997 void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
999 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1000 val
= min(val
, (u32
) 0xFFFF);
1001 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
1004 void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
1006 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1007 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
1008 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
1011 void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
1013 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1014 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
1015 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
1018 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
1021 ath_dbg(ath9k_hw_common(ah
), XMIT
, "bad global tx timeout %u\n",
1023 ah
->globaltxtimeout
= (u32
) -1;
1026 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
1027 ah
->globaltxtimeout
= tu
;
1032 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
1034 struct ath_common
*common
= ath9k_hw_common(ah
);
1035 const struct ath9k_channel
*chan
= ah
->curchan
;
1036 int acktimeout
, ctstimeout
, ack_offset
= 0;
1039 int rx_lat
= 0, tx_lat
= 0, eifs
= 0;
1042 ath_dbg(ath9k_hw_common(ah
), RESET
, "ah->misc_mode 0x%x\n",
1048 if (ah
->misc_mode
!= 0)
1049 REG_SET_BIT(ah
, AR_PCU_MISC
, ah
->misc_mode
);
1051 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1057 if (IS_CHAN_5GHZ(chan
))
1062 if (IS_CHAN_HALF_RATE(chan
)) {
1066 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1072 } else if (IS_CHAN_QUARTER_RATE(chan
)) {
1074 rx_lat
= (rx_lat
* 4) - 1;
1076 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1083 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1084 eifs
= AR_D_GBL_IFS_EIFS_ASYNC_FIFO
;
1085 reg
= AR_USEC_ASYNC_FIFO
;
1087 eifs
= REG_READ(ah
, AR_D_GBL_IFS_EIFS
)/
1089 reg
= REG_READ(ah
, AR_USEC
);
1091 rx_lat
= MS(reg
, AR_USEC_RX_LAT
);
1092 tx_lat
= MS(reg
, AR_USEC_TX_LAT
);
1094 slottime
= ah
->slottime
;
1097 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1098 slottime
+= 3 * ah
->coverage_class
;
1099 acktimeout
= slottime
+ sifstime
+ ack_offset
;
1100 ctstimeout
= acktimeout
;
1103 * Workaround for early ACK timeouts, add an offset to match the
1104 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1105 * This was initially only meant to work around an issue with delayed
1106 * BA frames in some implementations, but it has been found to fix ACK
1107 * timeout issues in other cases as well.
1109 if (IS_CHAN_2GHZ(chan
) &&
1110 !IS_CHAN_HALF_RATE(chan
) && !IS_CHAN_QUARTER_RATE(chan
)) {
1111 acktimeout
+= 64 - sifstime
- ah
->slottime
;
1112 ctstimeout
+= 48 - sifstime
- ah
->slottime
;
1115 if (ah
->dynack
.enabled
) {
1116 acktimeout
= ah
->dynack
.ackto
;
1117 ctstimeout
= acktimeout
;
1118 slottime
= (acktimeout
- 3) / 2;
1120 ah
->dynack
.ackto
= acktimeout
;
1123 ath9k_hw_set_sifs_time(ah
, sifstime
);
1124 ath9k_hw_setslottime(ah
, slottime
);
1125 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
1126 ath9k_hw_set_cts_timeout(ah
, ctstimeout
);
1127 if (ah
->globaltxtimeout
!= (u32
) -1)
1128 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1130 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
, ath9k_hw_mac_to_clks(ah
, eifs
));
1131 REG_RMW(ah
, AR_USEC
,
1132 (common
->clockrate
- 1) |
1133 SM(rx_lat
, AR_USEC_RX_LAT
) |
1134 SM(tx_lat
, AR_USEC_TX_LAT
),
1135 AR_USEC_TX_LAT
| AR_USEC_RX_LAT
| AR_USEC_USEC
);
1138 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
1140 void ath9k_hw_deinit(struct ath_hw
*ah
)
1142 struct ath_common
*common
= ath9k_hw_common(ah
);
1144 if (common
->state
< ATH_HW_INITIALIZED
)
1147 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1149 EXPORT_SYMBOL(ath9k_hw_deinit
);
1155 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
1157 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1159 if (IS_CHAN_2GHZ(chan
))
1167 /****************************************/
1168 /* Reset and Channel Switching Routines */
1169 /****************************************/
1171 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1173 struct ath_common
*common
= ath9k_hw_common(ah
);
1176 ENABLE_REGWRITE_BUFFER(ah
);
1179 * set AHB_MODE not to do cacheline prefetches
1181 if (!AR_SREV_9300_20_OR_LATER(ah
))
1182 REG_SET_BIT(ah
, AR_AHB_MODE
, AR_AHB_PREFETCH_RD_EN
);
1185 * let mac dma reads be in 128 byte chunks
1187 REG_RMW(ah
, AR_TXCFG
, AR_TXCFG_DMASZ_128B
, AR_TXCFG_DMASZ_MASK
);
1189 REGWRITE_BUFFER_FLUSH(ah
);
1192 * Restore TX Trigger Level to its pre-reset value.
1193 * The initial value depends on whether aggregation is enabled, and is
1194 * adjusted whenever underruns are detected.
1196 if (!AR_SREV_9300_20_OR_LATER(ah
))
1197 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1199 ENABLE_REGWRITE_BUFFER(ah
);
1202 * let mac dma writes be in 128 byte chunks
1204 REG_RMW(ah
, AR_RXCFG
, AR_RXCFG_DMASZ_128B
, AR_RXCFG_DMASZ_MASK
);
1207 * Setup receive FIFO threshold to hold off TX activities
1209 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1211 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1212 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
1213 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
1215 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
1216 ah
->caps
.rx_status_len
);
1220 * reduce the number of usable entries in PCU TXBUF to avoid
1221 * wrap around issues.
1223 if (AR_SREV_9285(ah
)) {
1224 /* For AR9285 the number of Fifos are reduced to half.
1225 * So set the usable tx buf size also to half to
1226 * avoid data/delimiter underruns
1228 txbuf_size
= AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
;
1229 } else if (AR_SREV_9340_13_OR_LATER(ah
)) {
1230 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1231 txbuf_size
= AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE
;
1233 txbuf_size
= AR_PCU_TXBUF_CTRL_USABLE_SIZE
;
1236 if (!AR_SREV_9271(ah
))
1237 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
, txbuf_size
);
1239 REGWRITE_BUFFER_FLUSH(ah
);
1241 if (AR_SREV_9300_20_OR_LATER(ah
))
1242 ath9k_hw_reset_txstatus_ring(ah
);
1245 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1247 u32 mask
= AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
;
1248 u32 set
= AR_STA_ID1_KSRCH_MODE
;
1250 ENABLE_REG_RMW_BUFFER(ah
);
1252 case NL80211_IFTYPE_ADHOC
:
1253 if (!AR_SREV_9340_13(ah
)) {
1254 set
|= AR_STA_ID1_ADHOC
;
1255 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1259 case NL80211_IFTYPE_OCB
:
1260 case NL80211_IFTYPE_MESH_POINT
:
1261 case NL80211_IFTYPE_AP
:
1262 set
|= AR_STA_ID1_STA_AP
;
1264 case NL80211_IFTYPE_STATION
:
1265 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1268 if (!ah
->is_monitoring
)
1272 REG_RMW(ah
, AR_STA_ID1
, set
, mask
);
1273 REG_RMW_BUFFER_FLUSH(ah
);
1276 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
1277 u32
*coef_mantissa
, u32
*coef_exponent
)
1279 u32 coef_exp
, coef_man
;
1281 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1282 if ((coef_scaled
>> coef_exp
) & 0x1)
1285 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1287 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1289 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1290 *coef_exponent
= coef_exp
- 16;
1294 * call external reset function to reset WMAC if:
1295 * - doing a cold reset
1296 * - we have pending frames in the TX queues.
1298 static bool ath9k_hw_ar9330_reset_war(struct ath_hw
*ah
, int type
)
1302 for (i
= 0; i
< AR_NUM_QCU
; i
++) {
1303 npend
= ath9k_hw_numtxpending(ah
, i
);
1308 if (ah
->external_reset
&&
1309 (npend
|| type
== ATH9K_RESET_COLD
)) {
1312 ath_dbg(ath9k_hw_common(ah
), RESET
,
1313 "reset MAC via external reset\n");
1315 reset_err
= ah
->external_reset();
1317 ath_err(ath9k_hw_common(ah
),
1318 "External reset failed, err=%d\n",
1323 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1329 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1334 if (AR_SREV_9100(ah
)) {
1335 REG_RMW_FIELD(ah
, AR_RTC_DERIVED_CLK
,
1336 AR_RTC_DERIVED_CLK_PERIOD
, 1);
1337 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1340 ENABLE_REGWRITE_BUFFER(ah
);
1342 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1343 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1347 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1348 AR_RTC_FORCE_WAKE_ON_INT
);
1350 if (AR_SREV_9100(ah
)) {
1351 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1352 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1354 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1355 if (AR_SREV_9340(ah
))
1356 tmpReg
&= AR9340_INTR_SYNC_LOCAL_TIMEOUT
;
1358 tmpReg
&= AR_INTR_SYNC_LOCAL_TIMEOUT
|
1359 AR_INTR_SYNC_RADM_CPL_TIMEOUT
;
1363 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1366 if (!AR_SREV_9300_20_OR_LATER(ah
))
1368 REG_WRITE(ah
, AR_RC
, val
);
1370 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1371 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1373 rst_flags
= AR_RTC_RC_MAC_WARM
;
1374 if (type
== ATH9K_RESET_COLD
)
1375 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1378 if (AR_SREV_9330(ah
)) {
1379 if (!ath9k_hw_ar9330_reset_war(ah
, type
))
1383 if (ath9k_hw_mci_is_enabled(ah
))
1384 ar9003_mci_check_gpm_offset(ah
);
1386 /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1389 if (AR_SREV_9300(ah
) || AR_SREV_9580(ah
)) {
1390 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_HALT_REQ
);
1391 ath9k_hw_wait(ah
, AR_CFG
, AR_CFG_HALT_ACK
, AR_CFG_HALT_ACK
,
1392 20 * AH_WAIT_TIMEOUT
);
1393 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_HALT_REQ
);
1396 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1398 REGWRITE_BUFFER_FLUSH(ah
);
1400 if (AR_SREV_9300_20_OR_LATER(ah
))
1402 else if (AR_SREV_9100(ah
))
1407 REG_WRITE(ah
, AR_RTC_RC
, 0);
1408 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1409 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC stuck in MAC reset\n");
1413 if (!AR_SREV_9100(ah
))
1414 REG_WRITE(ah
, AR_RC
, 0);
1416 if (AR_SREV_9100(ah
))
1422 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1424 ENABLE_REGWRITE_BUFFER(ah
);
1426 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1427 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1431 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1432 AR_RTC_FORCE_WAKE_ON_INT
);
1434 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1435 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1437 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1439 REGWRITE_BUFFER_FLUSH(ah
);
1443 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1444 REG_WRITE(ah
, AR_RC
, 0);
1446 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1448 if (!ath9k_hw_wait(ah
,
1453 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC not waking up\n");
1457 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1460 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1464 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1465 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1469 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1470 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1472 if (!ah
->reset_power_on
)
1473 type
= ATH9K_RESET_POWER_ON
;
1476 case ATH9K_RESET_POWER_ON
:
1477 ret
= ath9k_hw_set_reset_power_on(ah
);
1479 ah
->reset_power_on
= true;
1481 case ATH9K_RESET_WARM
:
1482 case ATH9K_RESET_COLD
:
1483 ret
= ath9k_hw_set_reset(ah
, type
);
1492 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1493 struct ath9k_channel
*chan
)
1495 int reset_type
= ATH9K_RESET_WARM
;
1497 if (AR_SREV_9280(ah
)) {
1498 if (ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
))
1499 reset_type
= ATH9K_RESET_POWER_ON
;
1501 reset_type
= ATH9K_RESET_COLD
;
1502 } else if (ah
->chip_fullsleep
|| REG_READ(ah
, AR_Q_TXE
) ||
1503 (REG_READ(ah
, AR_CR
) & AR_CR_RXE
))
1504 reset_type
= ATH9K_RESET_COLD
;
1506 if (!ath9k_hw_set_reset_reg(ah
, reset_type
))
1509 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1512 ah
->chip_fullsleep
= false;
1514 if (AR_SREV_9330(ah
))
1515 ar9003_hw_internal_regulator_apply(ah
);
1516 ath9k_hw_init_pll(ah
, chan
);
1521 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1522 struct ath9k_channel
*chan
)
1524 struct ath_common
*common
= ath9k_hw_common(ah
);
1525 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1526 bool band_switch
= false, mode_diff
= false;
1527 u8 ini_reloaded
= 0;
1531 if (pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) {
1532 u32 flags_diff
= chan
->channelFlags
^ ah
->curchan
->channelFlags
;
1533 band_switch
= !!(flags_diff
& CHANNEL_5GHZ
);
1534 mode_diff
= !!(flags_diff
& ~CHANNEL_HT
);
1537 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1538 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1539 ath_dbg(common
, QUEUE
,
1540 "Transmit frames pending on queue %d\n", qnum
);
1545 if (!ath9k_hw_rfbus_req(ah
)) {
1546 ath_err(common
, "Could not kill baseband RX\n");
1550 if (band_switch
|| mode_diff
) {
1551 ath9k_hw_mark_phy_inactive(ah
);
1555 ath9k_hw_init_pll(ah
, chan
);
1557 if (ath9k_hw_fast_chan_change(ah
, chan
, &ini_reloaded
)) {
1558 ath_err(common
, "Failed to do fast channel change\n");
1563 ath9k_hw_set_channel_regs(ah
, chan
);
1565 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1567 ath_err(common
, "Failed to set channel\n");
1570 ath9k_hw_set_clockrate(ah
);
1571 ath9k_hw_apply_txpower(ah
, chan
, false);
1573 ath9k_hw_set_delta_slope(ah
, chan
);
1574 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1576 if (band_switch
|| ini_reloaded
)
1577 ah
->eep_ops
->set_board_values(ah
, chan
);
1579 ath9k_hw_init_bb(ah
, chan
);
1580 ath9k_hw_rfbus_done(ah
);
1582 if (band_switch
|| ini_reloaded
) {
1583 ah
->ah_flags
|= AH_FASTCC
;
1584 ath9k_hw_init_cal(ah
, chan
);
1585 ah
->ah_flags
&= ~AH_FASTCC
;
1591 static void ath9k_hw_apply_gpio_override(struct ath_hw
*ah
)
1593 u32 gpio_mask
= ah
->gpio_mask
;
1596 for (i
= 0; gpio_mask
; i
++, gpio_mask
>>= 1) {
1597 if (!(gpio_mask
& 1))
1600 ath9k_hw_gpio_request_out(ah
, i
, NULL
,
1601 AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1602 ath9k_hw_set_gpio(ah
, i
, !!(ah
->gpio_val
& BIT(i
)));
1603 ath9k_hw_gpio_free(ah
, i
);
1607 void ath9k_hw_check_nav(struct ath_hw
*ah
)
1609 struct ath_common
*common
= ath9k_hw_common(ah
);
1612 val
= REG_READ(ah
, AR_NAV
);
1613 if (val
!= 0xdeadbeef && val
> 0x7fff) {
1614 ath_dbg(common
, BSTUCK
, "Abnormal NAV: 0x%x\n", val
);
1615 REG_WRITE(ah
, AR_NAV
, 0);
1618 EXPORT_SYMBOL(ath9k_hw_check_nav
);
1620 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1625 /* Check if chip failed to wake up */
1626 if (REG_READ(ah
, AR_CFG
) == 0xdeadbeef)
1629 if (AR_SREV_9300(ah
))
1630 return !ath9k_hw_detect_mac_hang(ah
);
1632 if (AR_SREV_9285_12_OR_LATER(ah
))
1635 last_val
= REG_READ(ah
, AR_OBS_BUS_1
);
1637 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1638 if (reg
!= last_val
)
1643 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1646 switch (reg
& 0x7E000B00) {
1654 } while (count
-- > 0);
1658 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1660 static void ath9k_hw_init_mfp(struct ath_hw
*ah
)
1662 /* Setup MFP options for CCMP */
1663 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1664 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1665 * frames when constructing CCMP AAD. */
1666 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1668 if (AR_SREV_9271(ah
) || AR_DEVID_7010(ah
))
1669 ah
->sw_mgmt_crypto_tx
= true;
1671 ah
->sw_mgmt_crypto_tx
= false;
1672 ah
->sw_mgmt_crypto_rx
= false;
1673 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1674 /* Disable hardware crypto for management frames */
1675 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1676 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1677 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1678 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1679 ah
->sw_mgmt_crypto_tx
= true;
1680 ah
->sw_mgmt_crypto_rx
= true;
1682 ah
->sw_mgmt_crypto_tx
= true;
1683 ah
->sw_mgmt_crypto_rx
= true;
1687 static void ath9k_hw_reset_opmode(struct ath_hw
*ah
,
1688 u32 macStaId1
, u32 saveDefAntenna
)
1690 struct ath_common
*common
= ath9k_hw_common(ah
);
1692 ENABLE_REGWRITE_BUFFER(ah
);
1694 REG_RMW(ah
, AR_STA_ID1
, macStaId1
1695 | AR_STA_ID1_RTS_USE_DEF
1696 | ah
->sta_id1_defaults
,
1697 ~AR_STA_ID1_SADH_MASK
);
1698 ath_hw_setbssidmask(common
);
1699 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1700 ath9k_hw_write_associd(ah
);
1701 REG_WRITE(ah
, AR_ISR
, ~0);
1702 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1704 REGWRITE_BUFFER_FLUSH(ah
);
1706 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1709 static void ath9k_hw_init_queues(struct ath_hw
*ah
)
1713 ENABLE_REGWRITE_BUFFER(ah
);
1715 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1716 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1718 REGWRITE_BUFFER_FLUSH(ah
);
1721 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1722 ath9k_hw_resettxqueue(ah
, i
);
1726 * For big endian systems turn on swapping for descriptors
1728 static void ath9k_hw_init_desc(struct ath_hw
*ah
)
1730 struct ath_common
*common
= ath9k_hw_common(ah
);
1732 if (AR_SREV_9100(ah
)) {
1734 mask
= REG_READ(ah
, AR_CFG
);
1735 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1736 ath_dbg(common
, RESET
, "CFG Byte Swap Set 0x%x\n",
1739 mask
= INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1740 REG_WRITE(ah
, AR_CFG
, mask
);
1741 ath_dbg(common
, RESET
, "Setting CFG 0x%x\n",
1742 REG_READ(ah
, AR_CFG
));
1745 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1746 /* Configure AR9271 target WLAN */
1747 if (AR_SREV_9271(ah
))
1748 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1750 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1753 else if (AR_SREV_9330(ah
) || AR_SREV_9340(ah
) ||
1754 AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
1756 REG_RMW(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
, 0);
1758 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1764 * Fast channel change:
1765 * (Change synthesizer based on channel freq without resetting chip)
1767 static int ath9k_hw_do_fastcc(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1769 struct ath_common
*common
= ath9k_hw_common(ah
);
1770 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1773 if (AR_SREV_9280(ah
) && common
->bus_ops
->ath_bus_type
== ATH_PCI
)
1776 if (ah
->chip_fullsleep
)
1782 if (chan
->channel
== ah
->curchan
->channel
)
1785 if ((ah
->curchan
->channelFlags
| chan
->channelFlags
) &
1786 (CHANNEL_HALF
| CHANNEL_QUARTER
))
1790 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1792 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) &&
1793 ((chan
->channelFlags
^ ah
->curchan
->channelFlags
) & ~CHANNEL_HT
))
1796 if (!ath9k_hw_check_alive(ah
))
1800 * For AR9462, make sure that calibration data for
1801 * re-using are present.
1803 if (AR_SREV_9462(ah
) && (ah
->caldata
&&
1804 (!test_bit(TXIQCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1805 !test_bit(TXCLCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1806 !test_bit(RTT_DONE
, &ah
->caldata
->cal_flags
))))
1809 ath_dbg(common
, RESET
, "FastChannelChange for %d -> %d\n",
1810 ah
->curchan
->channel
, chan
->channel
);
1812 ret
= ath9k_hw_channel_change(ah
, chan
);
1816 if (ath9k_hw_mci_is_enabled(ah
))
1817 ar9003_mci_2g5g_switch(ah
, false);
1819 ath9k_hw_loadnf(ah
, ah
->curchan
);
1820 ath9k_hw_start_nfcal(ah
, true);
1822 if (AR_SREV_9271(ah
))
1823 ar9002_hw_load_ani_reg(ah
, chan
);
1830 u32
ath9k_hw_get_tsf_offset(struct timespec
*last
, struct timespec
*cur
)
1836 getrawmonotonic(&ts
);
1840 usec
= cur
->tv_sec
* 1000000ULL + cur
->tv_nsec
/ 1000;
1841 usec
-= last
->tv_sec
* 1000000ULL + last
->tv_nsec
/ 1000;
1845 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset
);
1847 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1848 struct ath9k_hw_cal_data
*caldata
, bool fastcc
)
1850 struct ath_common
*common
= ath9k_hw_common(ah
);
1854 struct timespec tsf_ts
;
1858 bool start_mci_reset
= false;
1859 bool save_fullsleep
= ah
->chip_fullsleep
;
1861 if (ath9k_hw_mci_is_enabled(ah
)) {
1862 start_mci_reset
= ar9003_mci_start_reset(ah
, chan
);
1863 if (start_mci_reset
)
1867 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1870 if (ah
->curchan
&& !ah
->chip_fullsleep
)
1871 ath9k_hw_getnf(ah
, ah
->curchan
);
1873 ah
->caldata
= caldata
;
1874 if (caldata
&& (chan
->channel
!= caldata
->channel
||
1875 chan
->channelFlags
!= caldata
->channelFlags
)) {
1876 /* Operating channel changed, reset channel calibration data */
1877 memset(caldata
, 0, sizeof(*caldata
));
1878 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1879 } else if (caldata
) {
1880 clear_bit(PAPRD_PACKET_SENT
, &caldata
->cal_flags
);
1882 ah
->noise
= ath9k_hw_getchan_noise(ah
, chan
, chan
->noisefloor
);
1885 r
= ath9k_hw_do_fastcc(ah
, chan
);
1890 if (ath9k_hw_mci_is_enabled(ah
))
1891 ar9003_mci_stop_bt(ah
, save_fullsleep
);
1893 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1894 if (saveDefAntenna
== 0)
1897 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1899 /* Save TSF before chip reset, a cold reset clears it */
1900 getrawmonotonic(&tsf_ts
);
1901 tsf
= ath9k_hw_gettsf64(ah
);
1903 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1904 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1905 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1907 ath9k_hw_mark_phy_inactive(ah
);
1909 ah
->paprd_table_write_done
= false;
1911 /* Only required on the first reset */
1912 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1914 AR9271_RESET_POWER_DOWN_CONTROL
,
1915 AR9271_RADIO_RF_RST
);
1919 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1920 ath_err(common
, "Chip reset failed\n");
1924 /* Only required on the first reset */
1925 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1926 ah
->htc_reset_init
= false;
1928 AR9271_RESET_POWER_DOWN_CONTROL
,
1929 AR9271_GATE_MAC_CTL
);
1934 tsf_offset
= ath9k_hw_get_tsf_offset(&tsf_ts
, NULL
);
1935 ath9k_hw_settsf64(ah
, tsf
+ tsf_offset
);
1937 if (AR_SREV_9280_20_OR_LATER(ah
))
1938 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
1940 if (!AR_SREV_9300_20_OR_LATER(ah
))
1941 ar9002_hw_enable_async_fifo(ah
);
1943 r
= ath9k_hw_process_ini(ah
, chan
);
1947 ath9k_hw_set_rfmode(ah
, chan
);
1949 if (ath9k_hw_mci_is_enabled(ah
))
1950 ar9003_mci_reset(ah
, false, IS_CHAN_2GHZ(chan
), save_fullsleep
);
1953 * Some AR91xx SoC devices frequently fail to accept TSF writes
1954 * right after the chip reset. When that happens, write a new
1955 * value after the initvals have been applied.
1957 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1958 tsf_offset
= ath9k_hw_get_tsf_offset(&tsf_ts
, NULL
);
1959 ath9k_hw_settsf64(ah
, tsf
+ tsf_offset
);
1962 ath9k_hw_init_mfp(ah
);
1964 ath9k_hw_set_delta_slope(ah
, chan
);
1965 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1966 ah
->eep_ops
->set_board_values(ah
, chan
);
1968 ath9k_hw_reset_opmode(ah
, macStaId1
, saveDefAntenna
);
1970 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1974 ath9k_hw_set_clockrate(ah
);
1976 ath9k_hw_init_queues(ah
);
1977 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
1978 ath9k_hw_ani_cache_ini_regs(ah
);
1979 ath9k_hw_init_qos(ah
);
1981 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1982 ath9k_hw_gpio_request_in(ah
, ah
->rfkill_gpio
, "ath9k-rfkill");
1984 ath9k_hw_init_global_settings(ah
);
1986 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1987 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
1988 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
1989 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
1990 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
1991 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1992 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
1995 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PRESERVE_SEQNUM
);
1997 ath9k_hw_set_dma(ah
);
1999 if (!ath9k_hw_mci_is_enabled(ah
))
2000 REG_WRITE(ah
, AR_OBS
, 8);
2002 ENABLE_REG_RMW_BUFFER(ah
);
2003 if (ah
->config
.rx_intr_mitigation
) {
2004 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, ah
->config
.rimt_last
);
2005 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, ah
->config
.rimt_first
);
2008 if (ah
->config
.tx_intr_mitigation
) {
2009 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
2010 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
2012 REG_RMW_BUFFER_FLUSH(ah
);
2014 ath9k_hw_init_bb(ah
, chan
);
2017 clear_bit(TXIQCAL_DONE
, &caldata
->cal_flags
);
2018 clear_bit(TXCLCAL_DONE
, &caldata
->cal_flags
);
2020 if (!ath9k_hw_init_cal(ah
, chan
))
2023 if (ath9k_hw_mci_is_enabled(ah
) && ar9003_mci_end_reset(ah
, chan
, caldata
))
2026 ENABLE_REGWRITE_BUFFER(ah
);
2028 ath9k_hw_restore_chainmask(ah
);
2029 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
2031 REGWRITE_BUFFER_FLUSH(ah
);
2033 ath9k_hw_gen_timer_start_tsf2(ah
);
2035 ath9k_hw_init_desc(ah
);
2037 if (ath9k_hw_btcoex_is_enabled(ah
))
2038 ath9k_hw_btcoex_enable(ah
);
2040 if (ath9k_hw_mci_is_enabled(ah
))
2041 ar9003_mci_check_bt(ah
);
2043 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2044 ath9k_hw_loadnf(ah
, chan
);
2045 ath9k_hw_start_nfcal(ah
, true);
2048 if (AR_SREV_9300_20_OR_LATER(ah
))
2049 ar9003_hw_bb_watchdog_config(ah
);
2051 if (ah
->config
.hw_hang_checks
& HW_PHYRESTART_CLC_WAR
)
2052 ar9003_hw_disable_phy_restart(ah
);
2054 ath9k_hw_apply_gpio_override(ah
);
2056 if (AR_SREV_9565(ah
) && common
->bt_ant_diversity
)
2057 REG_SET_BIT(ah
, AR_BTCOEX_WL_LNADIV
, AR_BTCOEX_WL_LNADIV_FORCE_ON
);
2059 if (ah
->hw
->conf
.radar_enabled
) {
2060 /* set HW specific DFS configuration */
2061 ah
->radar_conf
.ext_channel
= IS_CHAN_HT40(chan
);
2062 ath9k_hw_set_radar_params(ah
);
2067 EXPORT_SYMBOL(ath9k_hw_reset
);
2069 /******************************/
2070 /* Power Management (Chipset) */
2071 /******************************/
2074 * Notify Power Mgt is disabled in self-generated frames.
2075 * If requested, force chip to sleep.
2077 static void ath9k_set_power_sleep(struct ath_hw
*ah
)
2079 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2081 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2082 REG_CLR_BIT(ah
, AR_TIMER_MODE
, 0xff);
2083 REG_CLR_BIT(ah
, AR_NDP2_TIMER_MODE
, 0xff);
2084 REG_CLR_BIT(ah
, AR_SLP32_INC
, 0xfffff);
2085 /* xxx Required for WLAN only case ? */
2086 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
, 0);
2091 * Clear the RTC force wake bit to allow the
2092 * mac to go to sleep.
2094 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
2096 if (ath9k_hw_mci_is_enabled(ah
))
2099 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
2100 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
2102 /* Shutdown chip. Active low */
2103 if (!AR_SREV_5416(ah
) && !AR_SREV_9271(ah
)) {
2104 REG_CLR_BIT(ah
, AR_RTC_RESET
, AR_RTC_RESET_EN
);
2108 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2109 if (AR_SREV_9300_20_OR_LATER(ah
))
2110 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2114 * Notify Power Management is enabled in self-generating
2115 * frames. If request, set power mode of chip to
2116 * auto/normal. Duration in units of 128us (1/8 TU).
2118 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
)
2120 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2122 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2124 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
2125 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2126 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
2127 AR_RTC_FORCE_WAKE_ON_INT
);
2130 /* When chip goes into network sleep, it could be waken
2131 * up by MCI_INT interrupt caused by BT's HW messages
2132 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2133 * rate (~100us). This will cause chip to leave and
2134 * re-enter network sleep mode frequently, which in
2135 * consequence will have WLAN MCI HW to generate lots of
2136 * SYS_WAKING and SYS_SLEEPING messages which will make
2137 * BT CPU to busy to process.
2139 if (ath9k_hw_mci_is_enabled(ah
))
2140 REG_CLR_BIT(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
,
2141 AR_MCI_INTERRUPT_RX_HW_MSG_MASK
);
2143 * Clear the RTC force wake bit to allow the
2144 * mac to go to sleep.
2146 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
2148 if (ath9k_hw_mci_is_enabled(ah
))
2152 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2153 if (AR_SREV_9300_20_OR_LATER(ah
))
2154 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2157 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
)
2162 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2163 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2164 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
2168 if ((REG_READ(ah
, AR_RTC_STATUS
) &
2169 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
2170 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
2173 if (!AR_SREV_9300_20_OR_LATER(ah
))
2174 ath9k_hw_init_pll(ah
, NULL
);
2176 if (AR_SREV_9100(ah
))
2177 REG_SET_BIT(ah
, AR_RTC_RESET
,
2180 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2181 AR_RTC_FORCE_WAKE_EN
);
2182 if (AR_SREV_9100(ah
))
2187 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2188 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
2189 if (val
== AR_RTC_STATUS_ON
)
2192 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2193 AR_RTC_FORCE_WAKE_EN
);
2196 ath_err(ath9k_hw_common(ah
),
2197 "Failed to wakeup in %uus\n",
2198 POWER_UP_TIME
/ 20);
2202 if (ath9k_hw_mci_is_enabled(ah
))
2203 ar9003_mci_set_power_awake(ah
);
2205 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2210 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
2212 struct ath_common
*common
= ath9k_hw_common(ah
);
2214 static const char *modes
[] = {
2221 if (ah
->power_mode
== mode
)
2224 ath_dbg(common
, RESET
, "%s -> %s\n",
2225 modes
[ah
->power_mode
], modes
[mode
]);
2228 case ATH9K_PM_AWAKE
:
2229 status
= ath9k_hw_set_power_awake(ah
);
2231 case ATH9K_PM_FULL_SLEEP
:
2232 if (ath9k_hw_mci_is_enabled(ah
))
2233 ar9003_mci_set_full_sleep(ah
);
2235 ath9k_set_power_sleep(ah
);
2236 ah
->chip_fullsleep
= true;
2238 case ATH9K_PM_NETWORK_SLEEP
:
2239 ath9k_set_power_network_sleep(ah
);
2242 ath_err(common
, "Unknown power mode %u\n", mode
);
2245 ah
->power_mode
= mode
;
2248 * XXX: If this warning never comes up after a while then
2249 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2250 * ath9k_hw_setpower() return type void.
2253 if (!(ah
->ah_flags
& AH_UNPLUGGED
))
2254 ATH_DBG_WARN_ON_ONCE(!status
);
2258 EXPORT_SYMBOL(ath9k_hw_setpower
);
2260 /*******************/
2261 /* Beacon Handling */
2262 /*******************/
2264 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
2268 ENABLE_REGWRITE_BUFFER(ah
);
2270 switch (ah
->opmode
) {
2271 case NL80211_IFTYPE_ADHOC
:
2272 REG_SET_BIT(ah
, AR_TXCFG
,
2273 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
2274 case NL80211_IFTYPE_MESH_POINT
:
2275 case NL80211_IFTYPE_AP
:
2276 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, next_beacon
);
2277 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, next_beacon
-
2278 TU_TO_USEC(ah
->config
.dma_beacon_response_time
));
2279 REG_WRITE(ah
, AR_NEXT_SWBA
, next_beacon
-
2280 TU_TO_USEC(ah
->config
.sw_beacon_response_time
));
2282 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
2285 ath_dbg(ath9k_hw_common(ah
), BEACON
,
2286 "%s: unsupported opmode: %d\n", __func__
, ah
->opmode
);
2291 REG_WRITE(ah
, AR_BEACON_PERIOD
, beacon_period
);
2292 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, beacon_period
);
2293 REG_WRITE(ah
, AR_SWBA_PERIOD
, beacon_period
);
2295 REGWRITE_BUFFER_FLUSH(ah
);
2297 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
2299 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
2301 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
2302 const struct ath9k_beacon_state
*bs
)
2304 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
2305 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2306 struct ath_common
*common
= ath9k_hw_common(ah
);
2308 ENABLE_REGWRITE_BUFFER(ah
);
2310 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, bs
->bs_nexttbtt
);
2311 REG_WRITE(ah
, AR_BEACON_PERIOD
, bs
->bs_intval
);
2312 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, bs
->bs_intval
);
2314 REGWRITE_BUFFER_FLUSH(ah
);
2316 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
2317 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
2319 beaconintval
= bs
->bs_intval
;
2321 if (bs
->bs_sleepduration
> beaconintval
)
2322 beaconintval
= bs
->bs_sleepduration
;
2324 dtimperiod
= bs
->bs_dtimperiod
;
2325 if (bs
->bs_sleepduration
> dtimperiod
)
2326 dtimperiod
= bs
->bs_sleepduration
;
2328 if (beaconintval
== dtimperiod
)
2329 nextTbtt
= bs
->bs_nextdtim
;
2331 nextTbtt
= bs
->bs_nexttbtt
;
2333 ath_dbg(common
, BEACON
, "next DTIM %u\n", bs
->bs_nextdtim
);
2334 ath_dbg(common
, BEACON
, "next beacon %u\n", nextTbtt
);
2335 ath_dbg(common
, BEACON
, "beacon period %u\n", beaconintval
);
2336 ath_dbg(common
, BEACON
, "DTIM period %u\n", dtimperiod
);
2338 ENABLE_REGWRITE_BUFFER(ah
);
2340 REG_WRITE(ah
, AR_NEXT_DTIM
, bs
->bs_nextdtim
- SLEEP_SLOP
);
2341 REG_WRITE(ah
, AR_NEXT_TIM
, nextTbtt
- SLEEP_SLOP
);
2343 REG_WRITE(ah
, AR_SLEEP1
,
2344 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
2345 | AR_SLEEP1_ASSUME_DTIM
);
2347 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
2348 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
2350 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
2352 REG_WRITE(ah
, AR_SLEEP2
,
2353 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
2355 REG_WRITE(ah
, AR_TIM_PERIOD
, beaconintval
);
2356 REG_WRITE(ah
, AR_DTIM_PERIOD
, dtimperiod
);
2358 REGWRITE_BUFFER_FLUSH(ah
);
2360 REG_SET_BIT(ah
, AR_TIMER_MODE
,
2361 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
2364 /* TSF Out of Range Threshold */
2365 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
2367 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
2369 /*******************/
2370 /* HW Capabilities */
2371 /*******************/
2373 static u8
fixup_chainmask(u8 chip_chainmask
, u8 eeprom_chainmask
)
2375 eeprom_chainmask
&= chip_chainmask
;
2376 if (eeprom_chainmask
)
2377 return eeprom_chainmask
;
2379 return chip_chainmask
;
2383 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2384 * @ah: the atheros hardware data structure
2386 * We enable DFS support upstream on chipsets which have passed a series
2387 * of tests. The testing requirements are going to be documented. Desired
2388 * test requirements are documented at:
2390 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2392 * Once a new chipset gets properly tested an individual commit can be used
2393 * to document the testing for DFS for that chipset.
2395 static bool ath9k_hw_dfs_tested(struct ath_hw
*ah
)
2398 switch (ah
->hw_version
.macVersion
) {
2399 /* for temporary testing DFS with 9280 */
2400 case AR_SREV_VERSION_9280
:
2401 /* AR9580 will likely be our first target to get testing on */
2402 case AR_SREV_VERSION_9580
:
2409 static void ath9k_gpio_cap_init(struct ath_hw
*ah
)
2411 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2413 if (AR_SREV_9271(ah
)) {
2414 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
2415 pCap
->gpio_mask
= AR9271_GPIO_MASK
;
2416 } else if (AR_DEVID_7010(ah
)) {
2417 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
2418 pCap
->gpio_mask
= AR7010_GPIO_MASK
;
2419 } else if (AR_SREV_9287(ah
)) {
2420 pCap
->num_gpio_pins
= AR9287_NUM_GPIO
;
2421 pCap
->gpio_mask
= AR9287_GPIO_MASK
;
2422 } else if (AR_SREV_9285(ah
)) {
2423 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
2424 pCap
->gpio_mask
= AR9285_GPIO_MASK
;
2425 } else if (AR_SREV_9280(ah
)) {
2426 pCap
->num_gpio_pins
= AR9280_NUM_GPIO
;
2427 pCap
->gpio_mask
= AR9280_GPIO_MASK
;
2428 } else if (AR_SREV_9300(ah
)) {
2429 pCap
->num_gpio_pins
= AR9300_NUM_GPIO
;
2430 pCap
->gpio_mask
= AR9300_GPIO_MASK
;
2431 } else if (AR_SREV_9330(ah
)) {
2432 pCap
->num_gpio_pins
= AR9330_NUM_GPIO
;
2433 pCap
->gpio_mask
= AR9330_GPIO_MASK
;
2434 } else if (AR_SREV_9340(ah
)) {
2435 pCap
->num_gpio_pins
= AR9340_NUM_GPIO
;
2436 pCap
->gpio_mask
= AR9340_GPIO_MASK
;
2437 } else if (AR_SREV_9462(ah
)) {
2438 pCap
->num_gpio_pins
= AR9462_NUM_GPIO
;
2439 pCap
->gpio_mask
= AR9462_GPIO_MASK
;
2440 } else if (AR_SREV_9485(ah
)) {
2441 pCap
->num_gpio_pins
= AR9485_NUM_GPIO
;
2442 pCap
->gpio_mask
= AR9485_GPIO_MASK
;
2443 } else if (AR_SREV_9531(ah
)) {
2444 pCap
->num_gpio_pins
= AR9531_NUM_GPIO
;
2445 pCap
->gpio_mask
= AR9531_GPIO_MASK
;
2446 } else if (AR_SREV_9550(ah
)) {
2447 pCap
->num_gpio_pins
= AR9550_NUM_GPIO
;
2448 pCap
->gpio_mask
= AR9550_GPIO_MASK
;
2449 } else if (AR_SREV_9561(ah
)) {
2450 pCap
->num_gpio_pins
= AR9561_NUM_GPIO
;
2451 pCap
->gpio_mask
= AR9561_GPIO_MASK
;
2452 } else if (AR_SREV_9565(ah
)) {
2453 pCap
->num_gpio_pins
= AR9565_NUM_GPIO
;
2454 pCap
->gpio_mask
= AR9565_GPIO_MASK
;
2455 } else if (AR_SREV_9580(ah
)) {
2456 pCap
->num_gpio_pins
= AR9580_NUM_GPIO
;
2457 pCap
->gpio_mask
= AR9580_GPIO_MASK
;
2459 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
2460 pCap
->gpio_mask
= AR_GPIO_MASK
;
2464 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
2466 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2467 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2468 struct ath_common
*common
= ath9k_hw_common(ah
);
2471 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
2473 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
2474 regulatory
->current_rd
= eeval
;
2476 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
2477 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
2478 if (regulatory
->current_rd
== 0x64 ||
2479 regulatory
->current_rd
== 0x65)
2480 regulatory
->current_rd
+= 5;
2481 else if (regulatory
->current_rd
== 0x41)
2482 regulatory
->current_rd
= 0x43;
2483 ath_dbg(common
, REGULATORY
, "regdomain mapped to 0x%x\n",
2484 regulatory
->current_rd
);
2487 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
2489 if (eeval
& AR5416_OPFLAGS_11A
) {
2490 if (ah
->disable_5ghz
)
2491 ath_warn(common
, "disabling 5GHz band\n");
2493 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
2496 if (eeval
& AR5416_OPFLAGS_11G
) {
2497 if (ah
->disable_2ghz
)
2498 ath_warn(common
, "disabling 2GHz band\n");
2500 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
2503 if ((pCap
->hw_caps
& (ATH9K_HW_CAP_2GHZ
| ATH9K_HW_CAP_5GHZ
)) == 0) {
2504 ath_err(common
, "both bands are disabled\n");
2508 ath9k_gpio_cap_init(ah
);
2510 if (AR_SREV_9485(ah
) ||
2514 pCap
->chip_chainmask
= 1;
2515 else if (!AR_SREV_9280_20_OR_LATER(ah
))
2516 pCap
->chip_chainmask
= 7;
2517 else if (!AR_SREV_9300_20_OR_LATER(ah
) ||
2521 pCap
->chip_chainmask
= 3;
2523 pCap
->chip_chainmask
= 7;
2525 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
2527 * For AR9271 we will temporarilly uses the rx chainmax as read from
2530 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
2531 !(eeval
& AR5416_OPFLAGS_11A
) &&
2532 !(AR_SREV_9271(ah
)))
2533 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2534 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
2535 else if (AR_SREV_9100(ah
))
2536 pCap
->rx_chainmask
= 0x7;
2538 /* Use rx_chainmask from EEPROM. */
2539 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
2541 pCap
->tx_chainmask
= fixup_chainmask(pCap
->chip_chainmask
, pCap
->tx_chainmask
);
2542 pCap
->rx_chainmask
= fixup_chainmask(pCap
->chip_chainmask
, pCap
->rx_chainmask
);
2543 ah
->txchainmask
= pCap
->tx_chainmask
;
2544 ah
->rxchainmask
= pCap
->rx_chainmask
;
2546 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
2548 /* enable key search for every frame in an aggregate */
2549 if (AR_SREV_9300_20_OR_LATER(ah
))
2550 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
2552 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
2554 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
2555 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
2557 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
2559 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
))
2560 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
2562 pCap
->rts_aggr_limit
= (8 * 1024);
2564 #ifdef CONFIG_ATH9K_RFKILL
2565 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
2566 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
2568 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
2569 ah
->rfkill_polarity
=
2570 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
2572 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
2575 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
2576 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
2578 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
2580 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
2581 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
2583 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
2585 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2586 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
2587 if (!AR_SREV_9330(ah
) && !AR_SREV_9485(ah
) &&
2588 !AR_SREV_9561(ah
) && !AR_SREV_9565(ah
))
2589 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
2591 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
2592 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
2593 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
2594 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
2595 pCap
->txs_len
= sizeof(struct ar9003_txs
);
2597 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
2598 if (AR_SREV_9280_20(ah
))
2599 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
2602 if (AR_SREV_9300_20_OR_LATER(ah
))
2603 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
2605 if (AR_SREV_9561(ah
))
2606 ah
->ent_mode
= 0x3BDA000;
2607 else if (AR_SREV_9300_20_OR_LATER(ah
))
2608 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
2610 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
2611 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
2613 if (AR_SREV_9285(ah
)) {
2614 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
2616 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2617 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1)) {
2618 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2619 ath_info(common
, "Enable LNA combining\n");
2624 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2625 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
2626 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
2629 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
2630 ant_div_ctl1
= ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2631 if ((ant_div_ctl1
>> 0x6) == 0x3) {
2632 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2633 ath_info(common
, "Enable LNA combining\n");
2637 if (ath9k_hw_dfs_tested(ah
))
2638 pCap
->hw_caps
|= ATH9K_HW_CAP_DFS
;
2640 tx_chainmask
= pCap
->tx_chainmask
;
2641 rx_chainmask
= pCap
->rx_chainmask
;
2642 while (tx_chainmask
|| rx_chainmask
) {
2643 if (tx_chainmask
& BIT(0))
2644 pCap
->max_txchains
++;
2645 if (rx_chainmask
& BIT(0))
2646 pCap
->max_rxchains
++;
2652 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2653 if (!(ah
->ent_mode
& AR_ENT_OTP_49GHZ_DISABLE
))
2654 pCap
->hw_caps
|= ATH9K_HW_CAP_MCI
;
2656 if (AR_SREV_9462_20_OR_LATER(ah
))
2657 pCap
->hw_caps
|= ATH9K_HW_CAP_RTT
;
2660 if (AR_SREV_9300_20_OR_LATER(ah
) &&
2661 ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
2662 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
2664 #ifdef CONFIG_ATH9K_WOW
2665 if (AR_SREV_9462_20_OR_LATER(ah
) || AR_SREV_9565_11_OR_LATER(ah
))
2666 ah
->wow
.max_patterns
= MAX_NUM_PATTERN
;
2668 ah
->wow
.max_patterns
= MAX_NUM_PATTERN_LEGACY
;
2674 /****************************/
2675 /* GPIO / RFKILL / Antennae */
2676 /****************************/
2678 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
, u32 gpio
, u32 type
)
2681 u32 gpio_shift
, tmp
;
2684 addr
= AR_GPIO_OUTPUT_MUX3
;
2686 addr
= AR_GPIO_OUTPUT_MUX2
;
2688 addr
= AR_GPIO_OUTPUT_MUX1
;
2690 gpio_shift
= (gpio
% 6) * 5;
2692 if (AR_SREV_9280_20_OR_LATER(ah
) ||
2693 (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
2694 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2695 (0x1f << gpio_shift
));
2697 tmp
= REG_READ(ah
, addr
);
2698 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2699 tmp
&= ~(0x1f << gpio_shift
);
2700 tmp
|= (type
<< gpio_shift
);
2701 REG_WRITE(ah
, addr
, tmp
);
2705 /* BSP should set the corresponding MUX register correctly.
2707 static void ath9k_hw_gpio_cfg_soc(struct ath_hw
*ah
, u32 gpio
, bool out
,
2710 if (ah
->caps
.gpio_requested
& BIT(gpio
))
2713 /* may be requested by BSP, free anyway */
2716 if (gpio_request_one(gpio
, out
? GPIOF_OUT_INIT_LOW
: GPIOF_IN
, label
))
2719 ah
->caps
.gpio_requested
|= BIT(gpio
);
2722 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw
*ah
, u32 gpio
, bool out
,
2725 u32 gpio_set
, gpio_shift
= gpio
;
2727 if (AR_DEVID_7010(ah
)) {
2729 AR7010_GPIO_OE_AS_OUTPUT
: AR7010_GPIO_OE_AS_INPUT
;
2730 REG_RMW(ah
, AR7010_GPIO_OE
, gpio_set
<< gpio_shift
,
2731 AR7010_GPIO_OE_MASK
<< gpio_shift
);
2732 } else if (AR_SREV_SOC(ah
)) {
2733 gpio_set
= out
? 1 : 0;
2734 REG_RMW(ah
, AR_GPIO_OE_OUT
, gpio_set
<< gpio_shift
,
2735 gpio_set
<< gpio_shift
);
2737 gpio_shift
= gpio
<< 1;
2739 AR_GPIO_OE_OUT_DRV_ALL
: AR_GPIO_OE_OUT_DRV_NO
;
2740 REG_RMW(ah
, AR_GPIO_OE_OUT
, gpio_set
<< gpio_shift
,
2741 AR_GPIO_OE_OUT_DRV
<< gpio_shift
);
2744 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2748 static void ath9k_hw_gpio_request(struct ath_hw
*ah
, u32 gpio
, bool out
,
2749 const char *label
, u32 ah_signal_type
)
2751 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2753 if (BIT(gpio
) & ah
->caps
.gpio_mask
)
2754 ath9k_hw_gpio_cfg_wmac(ah
, gpio
, out
, ah_signal_type
);
2755 else if (AR_SREV_SOC(ah
))
2756 ath9k_hw_gpio_cfg_soc(ah
, gpio
, out
, label
);
2761 void ath9k_hw_gpio_request_in(struct ath_hw
*ah
, u32 gpio
, const char *label
)
2763 ath9k_hw_gpio_request(ah
, gpio
, false, label
, 0);
2765 EXPORT_SYMBOL(ath9k_hw_gpio_request_in
);
2767 void ath9k_hw_gpio_request_out(struct ath_hw
*ah
, u32 gpio
, const char *label
,
2770 ath9k_hw_gpio_request(ah
, gpio
, true, label
, ah_signal_type
);
2772 EXPORT_SYMBOL(ath9k_hw_gpio_request_out
);
2774 void ath9k_hw_gpio_free(struct ath_hw
*ah
, u32 gpio
)
2776 if (!AR_SREV_SOC(ah
))
2779 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2781 if (ah
->caps
.gpio_requested
& BIT(gpio
)) {
2783 ah
->caps
.gpio_requested
&= ~BIT(gpio
);
2786 EXPORT_SYMBOL(ath9k_hw_gpio_free
);
2788 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2790 u32 val
= 0xffffffff;
2792 #define MS_REG_READ(x, y) \
2793 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2795 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2797 if (BIT(gpio
) & ah
->caps
.gpio_mask
) {
2798 if (AR_SREV_9271(ah
))
2799 val
= MS_REG_READ(AR9271
, gpio
);
2800 else if (AR_SREV_9287(ah
))
2801 val
= MS_REG_READ(AR9287
, gpio
);
2802 else if (AR_SREV_9285(ah
))
2803 val
= MS_REG_READ(AR9285
, gpio
);
2804 else if (AR_SREV_9280(ah
))
2805 val
= MS_REG_READ(AR928X
, gpio
);
2806 else if (AR_DEVID_7010(ah
))
2807 val
= REG_READ(ah
, AR7010_GPIO_IN
) & BIT(gpio
);
2808 else if (AR_SREV_9300_20_OR_LATER(ah
))
2809 val
= REG_READ(ah
, AR_GPIO_IN
) & BIT(gpio
);
2811 val
= MS_REG_READ(AR
, gpio
);
2812 } else if (BIT(gpio
) & ah
->caps
.gpio_requested
) {
2813 val
= gpio_get_value(gpio
) & BIT(gpio
);
2820 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2822 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2824 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2826 if (AR_DEVID_7010(ah
) || AR_SREV_9271(ah
))
2831 if (BIT(gpio
) & ah
->caps
.gpio_mask
) {
2832 u32 out_addr
= AR_DEVID_7010(ah
) ?
2833 AR7010_GPIO_OUT
: AR_GPIO_IN_OUT
;
2835 REG_RMW(ah
, out_addr
, val
<< gpio
, BIT(gpio
));
2836 } else if (BIT(gpio
) & ah
->caps
.gpio_requested
) {
2837 gpio_set_value(gpio
, val
);
2842 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2844 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2846 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2848 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2850 /*********************/
2851 /* General Operation */
2852 /*********************/
2854 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2856 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2857 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2859 if (phybits
& AR_PHY_ERR_RADAR
)
2860 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2861 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2862 bits
|= ATH9K_RX_FILTER_PHYERR
;
2866 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2868 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2872 ENABLE_REGWRITE_BUFFER(ah
);
2874 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2877 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2878 phybits
|= AR_PHY_ERR_RADAR
;
2879 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2880 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2881 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2884 REG_SET_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2886 REG_CLR_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2888 REGWRITE_BUFFER_FLUSH(ah
);
2890 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2892 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2894 if (ath9k_hw_mci_is_enabled(ah
))
2895 ar9003_mci_bt_gain_ctrl(ah
);
2897 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2900 ath9k_hw_init_pll(ah
, NULL
);
2901 ah
->htc_reset_init
= true;
2904 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2906 bool ath9k_hw_disable(struct ath_hw
*ah
)
2908 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2911 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2914 ath9k_hw_init_pll(ah
, NULL
);
2917 EXPORT_SYMBOL(ath9k_hw_disable
);
2919 static int get_antenna_gain(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2921 enum eeprom_param gain_param
;
2923 if (IS_CHAN_2GHZ(chan
))
2924 gain_param
= EEP_ANTENNA_GAIN_2G
;
2926 gain_param
= EEP_ANTENNA_GAIN_5G
;
2928 return ah
->eep_ops
->get_eeprom(ah
, gain_param
);
2931 void ath9k_hw_apply_txpower(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
2934 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2935 struct ieee80211_channel
*channel
;
2936 int chan_pwr
, new_pwr
;
2941 channel
= chan
->chan
;
2942 chan_pwr
= min_t(int, channel
->max_power
* 2, MAX_RATE_POWER
);
2943 new_pwr
= min_t(int, chan_pwr
, reg
->power_limit
);
2945 ah
->eep_ops
->set_txpower(ah
, chan
,
2946 ath9k_regd_get_ctl(reg
, chan
),
2947 get_antenna_gain(ah
, chan
), new_pwr
, test
);
2950 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2952 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2953 struct ath9k_channel
*chan
= ah
->curchan
;
2954 struct ieee80211_channel
*channel
= chan
->chan
;
2956 reg
->power_limit
= min_t(u32
, limit
, MAX_RATE_POWER
);
2958 channel
->max_power
= MAX_RATE_POWER
/ 2;
2960 ath9k_hw_apply_txpower(ah
, chan
, test
);
2963 channel
->max_power
= DIV_ROUND_UP(reg
->max_power_level
, 2);
2965 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2967 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2969 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2971 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2973 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
2975 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
2976 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
2978 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
2980 void ath9k_hw_write_associd(struct ath_hw
*ah
)
2982 struct ath_common
*common
= ath9k_hw_common(ah
);
2984 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
2985 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
2986 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2988 EXPORT_SYMBOL(ath9k_hw_write_associd
);
2990 #define ATH9K_MAX_TSF_READ 10
2992 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
2994 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
2997 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
2998 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
2999 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
3000 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
3001 if (tsf_upper2
== tsf_upper1
)
3003 tsf_upper1
= tsf_upper2
;
3006 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
3008 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
3010 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
3012 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
3014 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
3015 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
3017 EXPORT_SYMBOL(ath9k_hw_settsf64
);
3019 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
3021 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
3022 AH_TSF_WRITE_TIMEOUT
))
3023 ath_dbg(ath9k_hw_common(ah
), RESET
,
3024 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3026 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
3028 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
3030 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, bool set
)
3033 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
3035 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
3037 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
3039 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
3043 if (IS_CHAN_HT40(chan
) && !ah
->config
.cwm_ignore_extcca
)
3044 macmode
= AR_2040_JOINED_RX_CLEAR
;
3048 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
3051 /* HW Generic timers configuration */
3053 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
3055 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3056 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3057 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3058 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3059 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3060 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3061 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3062 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3063 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
3064 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
3065 AR_NDP2_TIMER_MODE
, 0x0002},
3066 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
3067 AR_NDP2_TIMER_MODE
, 0x0004},
3068 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
3069 AR_NDP2_TIMER_MODE
, 0x0008},
3070 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
3071 AR_NDP2_TIMER_MODE
, 0x0010},
3072 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
3073 AR_NDP2_TIMER_MODE
, 0x0020},
3074 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
3075 AR_NDP2_TIMER_MODE
, 0x0040},
3076 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
3077 AR_NDP2_TIMER_MODE
, 0x0080}
3080 /* HW generic timer primitives */
3082 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
3084 return REG_READ(ah
, AR_TSF_L32
);
3086 EXPORT_SYMBOL(ath9k_hw_gettsf32
);
3088 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw
*ah
)
3090 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3092 if (timer_table
->tsf2_enabled
) {
3093 REG_SET_BIT(ah
, AR_DIRECT_CONNECT
, AR_DC_AP_STA_EN
);
3094 REG_SET_BIT(ah
, AR_RESET_TSF
, AR_RESET_TSF2_ONCE
);
3098 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
3099 void (*trigger
)(void *),
3100 void (*overflow
)(void *),
3104 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3105 struct ath_gen_timer
*timer
;
3107 if ((timer_index
< AR_FIRST_NDP_TIMER
) ||
3108 (timer_index
>= ATH_MAX_GEN_TIMER
))
3111 if ((timer_index
> AR_FIRST_NDP_TIMER
) &&
3112 !AR_SREV_9300_20_OR_LATER(ah
))
3115 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
3119 /* allocate a hardware generic timer slot */
3120 timer_table
->timers
[timer_index
] = timer
;
3121 timer
->index
= timer_index
;
3122 timer
->trigger
= trigger
;
3123 timer
->overflow
= overflow
;
3126 if ((timer_index
> AR_FIRST_NDP_TIMER
) && !timer_table
->tsf2_enabled
) {
3127 timer_table
->tsf2_enabled
= true;
3128 ath9k_hw_gen_timer_start_tsf2(ah
);
3133 EXPORT_SYMBOL(ath_gen_timer_alloc
);
3135 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
3136 struct ath_gen_timer
*timer
,
3140 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3143 timer_table
->timer_mask
|= BIT(timer
->index
);
3146 * Program generic timer registers
3148 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
3150 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
3152 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3153 gen_tmr_configuration
[timer
->index
].mode_mask
);
3155 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3157 * Starting from AR9462, each generic timer can select which tsf
3158 * to use. But we still follow the old rule, 0 - 7 use tsf and
3161 if ((timer
->index
< AR_GEN_TIMER_BANK_1_LEN
))
3162 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3163 (1 << timer
->index
));
3165 REG_SET_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3166 (1 << timer
->index
));
3170 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
3171 AR_IMR_S5_GENTIMER_TRIG
);
3172 if (timer
->overflow
)
3173 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
3174 AR_IMR_S5_GENTIMER_THRESH
);
3176 REG_SET_BIT(ah
, AR_IMR_S5
, mask
);
3178 if ((ah
->imask
& ATH9K_INT_GENTIMER
) == 0) {
3179 ah
->imask
|= ATH9K_INT_GENTIMER
;
3180 ath9k_hw_set_interrupts(ah
);
3183 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
3185 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3187 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3189 /* Clear generic timer enable bits. */
3190 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3191 gen_tmr_configuration
[timer
->index
].mode_mask
);
3193 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3195 * Need to switch back to TSF if it was using TSF2.
3197 if ((timer
->index
>= AR_GEN_TIMER_BANK_1_LEN
)) {
3198 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3199 (1 << timer
->index
));
3203 /* Disable both trigger and thresh interrupt masks */
3204 REG_CLR_BIT(ah
, AR_IMR_S5
,
3205 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
3206 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
3208 timer_table
->timer_mask
&= ~BIT(timer
->index
);
3210 if (timer_table
->timer_mask
== 0) {
3211 ah
->imask
&= ~ATH9K_INT_GENTIMER
;
3212 ath9k_hw_set_interrupts(ah
);
3215 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
3217 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3219 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3221 /* free the hardware generic timer slot */
3222 timer_table
->timers
[timer
->index
] = NULL
;
3225 EXPORT_SYMBOL(ath_gen_timer_free
);
3228 * Generic Timer Interrupts handling
3230 void ath_gen_timer_isr(struct ath_hw
*ah
)
3232 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3233 struct ath_gen_timer
*timer
;
3234 unsigned long trigger_mask
, thresh_mask
;
3237 /* get hardware generic timer interrupt status */
3238 trigger_mask
= ah
->intr_gen_timer_trigger
;
3239 thresh_mask
= ah
->intr_gen_timer_thresh
;
3240 trigger_mask
&= timer_table
->timer_mask
;
3241 thresh_mask
&= timer_table
->timer_mask
;
3243 for_each_set_bit(index
, &thresh_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3244 timer
= timer_table
->timers
[index
];
3247 if (!timer
->overflow
)
3250 trigger_mask
&= ~BIT(index
);
3251 timer
->overflow(timer
->arg
);
3254 for_each_set_bit(index
, &trigger_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3255 timer
= timer_table
->timers
[index
];
3258 if (!timer
->trigger
)
3260 timer
->trigger(timer
->arg
);
3263 EXPORT_SYMBOL(ath_gen_timer_isr
);
3272 } ath_mac_bb_names
[] = {
3273 /* Devices with external radios */
3274 { AR_SREV_VERSION_5416_PCI
, "5416" },
3275 { AR_SREV_VERSION_5416_PCIE
, "5418" },
3276 { AR_SREV_VERSION_9100
, "9100" },
3277 { AR_SREV_VERSION_9160
, "9160" },
3278 /* Single-chip solutions */
3279 { AR_SREV_VERSION_9280
, "9280" },
3280 { AR_SREV_VERSION_9285
, "9285" },
3281 { AR_SREV_VERSION_9287
, "9287" },
3282 { AR_SREV_VERSION_9271
, "9271" },
3283 { AR_SREV_VERSION_9300
, "9300" },
3284 { AR_SREV_VERSION_9330
, "9330" },
3285 { AR_SREV_VERSION_9340
, "9340" },
3286 { AR_SREV_VERSION_9485
, "9485" },
3287 { AR_SREV_VERSION_9462
, "9462" },
3288 { AR_SREV_VERSION_9550
, "9550" },
3289 { AR_SREV_VERSION_9565
, "9565" },
3290 { AR_SREV_VERSION_9531
, "9531" },
3291 { AR_SREV_VERSION_9561
, "9561" },
3294 /* For devices with external radios */
3298 } ath_rf_names
[] = {
3300 { AR_RAD5133_SREV_MAJOR
, "5133" },
3301 { AR_RAD5122_SREV_MAJOR
, "5122" },
3302 { AR_RAD2133_SREV_MAJOR
, "2133" },
3303 { AR_RAD2122_SREV_MAJOR
, "2122" }
3307 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3309 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
3313 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
3314 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
3315 return ath_mac_bb_names
[i
].name
;
3323 * Return the RF name. "????" is returned if the RF is unknown.
3324 * Used for devices with external radios.
3326 static const char *ath9k_hw_rf_name(u16 rf_version
)
3330 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
3331 if (ath_rf_names
[i
].version
== rf_version
) {
3332 return ath_rf_names
[i
].name
;
3339 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
3343 /* chipsets >= AR9280 are single-chip */
3344 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3345 used
= scnprintf(hw_name
, len
,
3346 "Atheros AR%s Rev:%x",
3347 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3348 ah
->hw_version
.macRev
);
3351 used
= scnprintf(hw_name
, len
,
3352 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3353 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3354 ah
->hw_version
.macRev
,
3355 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
3356 & AR_RADIO_SREV_MAJOR
)),
3357 ah
->hw_version
.phyRev
);
3360 hw_name
[used
] = '\0';
3362 EXPORT_SYMBOL(ath9k_hw_name
);