Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / wireless / ath / wil6210 / txrx.c
blob16b8a4e5201fc3765ab428d4e970031ac3fc967d
1 /*
2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/etherdevice.h>
18 #include <net/ieee80211_radiotap.h>
19 #include <linux/if_arp.h>
20 #include <linux/moduleparam.h>
21 #include <linux/ip.h>
22 #include <linux/ipv6.h>
23 #include <net/ipv6.h>
24 #include <linux/prefetch.h>
26 #include "wil6210.h"
27 #include "wmi.h"
28 #include "txrx.h"
29 #include "trace.h"
31 static bool rtap_include_phy_info;
32 module_param(rtap_include_phy_info, bool, 0444);
33 MODULE_PARM_DESC(rtap_include_phy_info,
34 " Include PHY info in the radiotap header, default - no");
36 bool rx_align_2;
37 module_param(rx_align_2, bool, 0444);
38 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
40 bool rx_large_buf;
41 module_param(rx_large_buf, bool, 0444);
42 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
44 static inline uint wil_rx_snaplen(void)
46 return rx_align_2 ? 6 : 0;
49 static inline int wil_vring_is_empty(struct vring *vring)
51 return vring->swhead == vring->swtail;
54 static inline u32 wil_vring_next_tail(struct vring *vring)
56 return (vring->swtail + 1) % vring->size;
59 static inline void wil_vring_advance_head(struct vring *vring, int n)
61 vring->swhead = (vring->swhead + n) % vring->size;
64 static inline int wil_vring_is_full(struct vring *vring)
66 return wil_vring_next_tail(vring) == vring->swhead;
69 /* Used space in Tx Vring */
70 static inline int wil_vring_used_tx(struct vring *vring)
72 u32 swhead = vring->swhead;
73 u32 swtail = vring->swtail;
74 return (vring->size + swhead - swtail) % vring->size;
77 /* Available space in Tx Vring */
78 static inline int wil_vring_avail_tx(struct vring *vring)
80 return vring->size - wil_vring_used_tx(vring) - 1;
83 /* wil_vring_wmark_low - low watermark for available descriptor space */
84 static inline int wil_vring_wmark_low(struct vring *vring)
86 return vring->size/8;
89 /* wil_vring_wmark_high - high watermark for available descriptor space */
90 static inline int wil_vring_wmark_high(struct vring *vring)
92 return vring->size/4;
95 /* returns true if num avail descriptors is lower than wmark_low */
96 static inline int wil_vring_avail_low(struct vring *vring)
98 return wil_vring_avail_tx(vring) < wil_vring_wmark_low(vring);
101 /* returns true if num avail descriptors is higher than wmark_high */
102 static inline int wil_vring_avail_high(struct vring *vring)
104 return wil_vring_avail_tx(vring) > wil_vring_wmark_high(vring);
107 /* returns true when all tx vrings are empty */
108 bool wil_is_tx_idle(struct wil6210_priv *wil)
110 int i;
111 unsigned long data_comp_to;
113 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
114 struct vring *vring = &wil->vring_tx[i];
115 int vring_index = vring - wil->vring_tx;
116 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
118 spin_lock(&txdata->lock);
120 if (!vring->va || !txdata->enabled) {
121 spin_unlock(&txdata->lock);
122 continue;
125 data_comp_to = jiffies + msecs_to_jiffies(
126 WIL_DATA_COMPLETION_TO_MS);
127 if (test_bit(wil_status_napi_en, wil->status)) {
128 while (!wil_vring_is_empty(vring)) {
129 if (time_after(jiffies, data_comp_to)) {
130 wil_dbg_pm(wil,
131 "TO waiting for idle tx\n");
132 spin_unlock(&txdata->lock);
133 return false;
135 wil_dbg_ratelimited(wil,
136 "tx vring is not empty -> NAPI\n");
137 spin_unlock(&txdata->lock);
138 napi_synchronize(&wil->napi_tx);
139 msleep(20);
140 spin_lock(&txdata->lock);
141 if (!vring->va || !txdata->enabled)
142 break;
146 spin_unlock(&txdata->lock);
149 return true;
152 /* wil_val_in_range - check if value in [min,max) */
153 static inline bool wil_val_in_range(int val, int min, int max)
155 return val >= min && val < max;
158 static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
160 struct device *dev = wil_to_dev(wil);
161 size_t sz = vring->size * sizeof(vring->va[0]);
162 uint i;
164 wil_dbg_misc(wil, "vring_alloc:\n");
166 BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
168 vring->swhead = 0;
169 vring->swtail = 0;
170 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
171 if (!vring->ctx) {
172 vring->va = NULL;
173 return -ENOMEM;
176 /* vring->va should be aligned on its size rounded up to power of 2
177 * This is granted by the dma_alloc_coherent.
179 * HW has limitation that all vrings addresses must share the same
180 * upper 16 msb bits part of 48 bits address. To workaround that,
181 * if we are using more than 32 bit addresses switch to 32 bit
182 * allocation before allocating vring memory.
184 * There's no check for the return value of dma_set_mask_and_coherent,
185 * since we assume if we were able to set the mask during
186 * initialization in this system it will not fail if we set it again
188 if (wil->dma_addr_size > 32)
189 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
191 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
192 if (!vring->va) {
193 kfree(vring->ctx);
194 vring->ctx = NULL;
195 return -ENOMEM;
198 if (wil->dma_addr_size > 32)
199 dma_set_mask_and_coherent(dev,
200 DMA_BIT_MASK(wil->dma_addr_size));
202 /* initially, all descriptors are SW owned
203 * For Tx and Rx, ownership bit is at the same location, thus
204 * we can use any
206 for (i = 0; i < vring->size; i++) {
207 volatile struct vring_tx_desc *_d = &vring->va[i].tx;
209 _d->dma.status = TX_DMA_STATUS_DU;
212 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
213 vring->va, &vring->pa, vring->ctx);
215 return 0;
218 static void wil_txdesc_unmap(struct device *dev, struct vring_tx_desc *d,
219 struct wil_ctx *ctx)
221 dma_addr_t pa = wil_desc_addr(&d->dma.addr);
222 u16 dmalen = le16_to_cpu(d->dma.length);
224 switch (ctx->mapped_as) {
225 case wil_mapped_as_single:
226 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
227 break;
228 case wil_mapped_as_page:
229 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
230 break;
231 default:
232 break;
236 static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
237 int tx)
239 struct device *dev = wil_to_dev(wil);
240 size_t sz = vring->size * sizeof(vring->va[0]);
242 lockdep_assert_held(&wil->mutex);
243 if (tx) {
244 int vring_index = vring - wil->vring_tx;
246 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
247 vring_index, vring->size, vring->va,
248 &vring->pa, vring->ctx);
249 } else {
250 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
251 vring->size, vring->va,
252 &vring->pa, vring->ctx);
255 while (!wil_vring_is_empty(vring)) {
256 dma_addr_t pa;
257 u16 dmalen;
258 struct wil_ctx *ctx;
260 if (tx) {
261 struct vring_tx_desc dd, *d = &dd;
262 volatile struct vring_tx_desc *_d =
263 &vring->va[vring->swtail].tx;
265 ctx = &vring->ctx[vring->swtail];
266 if (!ctx) {
267 wil_dbg_txrx(wil,
268 "ctx(%d) was already completed\n",
269 vring->swtail);
270 vring->swtail = wil_vring_next_tail(vring);
271 continue;
273 *d = *_d;
274 wil_txdesc_unmap(dev, d, ctx);
275 if (ctx->skb)
276 dev_kfree_skb_any(ctx->skb);
277 vring->swtail = wil_vring_next_tail(vring);
278 } else { /* rx */
279 struct vring_rx_desc dd, *d = &dd;
280 volatile struct vring_rx_desc *_d =
281 &vring->va[vring->swhead].rx;
283 ctx = &vring->ctx[vring->swhead];
284 *d = *_d;
285 pa = wil_desc_addr(&d->dma.addr);
286 dmalen = le16_to_cpu(d->dma.length);
287 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
288 kfree_skb(ctx->skb);
289 wil_vring_advance_head(vring, 1);
292 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
293 kfree(vring->ctx);
294 vring->pa = 0;
295 vring->va = NULL;
296 vring->ctx = NULL;
300 * Allocate one skb for Rx VRING
302 * Safe to call from IRQ
304 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
305 u32 i, int headroom)
307 struct device *dev = wil_to_dev(wil);
308 unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
309 struct vring_rx_desc dd, *d = &dd;
310 volatile struct vring_rx_desc *_d = &vring->va[i].rx;
311 dma_addr_t pa;
312 struct sk_buff *skb = dev_alloc_skb(sz + headroom);
314 if (unlikely(!skb))
315 return -ENOMEM;
317 skb_reserve(skb, headroom);
318 skb_put(skb, sz);
320 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
321 if (unlikely(dma_mapping_error(dev, pa))) {
322 kfree_skb(skb);
323 return -ENOMEM;
326 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
327 wil_desc_addr_set(&d->dma.addr, pa);
328 /* ip_length don't care */
329 /* b11 don't care */
330 /* error don't care */
331 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
332 d->dma.length = cpu_to_le16(sz);
333 *_d = *d;
334 vring->ctx[i].skb = skb;
336 return 0;
340 * Adds radiotap header
342 * Any error indicated as "Bad FCS"
344 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
345 * - Rx descriptor: 32 bytes
346 * - Phy info
348 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
349 struct sk_buff *skb)
351 struct wil6210_rtap {
352 struct ieee80211_radiotap_header rthdr;
353 /* fields should be in the order of bits in rthdr.it_present */
354 /* flags */
355 u8 flags;
356 /* channel */
357 __le16 chnl_freq __aligned(2);
358 __le16 chnl_flags;
359 /* MCS */
360 u8 mcs_present;
361 u8 mcs_flags;
362 u8 mcs_index;
363 } __packed;
364 struct wil6210_rtap_vendor {
365 struct wil6210_rtap rtap;
366 /* vendor */
367 u8 vendor_oui[3] __aligned(2);
368 u8 vendor_ns;
369 __le16 vendor_skip;
370 u8 vendor_data[0];
371 } __packed;
372 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
373 struct wil6210_rtap_vendor *rtap_vendor;
374 int rtap_len = sizeof(struct wil6210_rtap);
375 int phy_length = 0; /* phy info header size, bytes */
376 static char phy_data[128];
377 struct ieee80211_channel *ch = wil->monitor_chandef.chan;
379 if (rtap_include_phy_info) {
380 rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
381 /* calculate additional length */
382 if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
384 * PHY info starts from 8-byte boundary
385 * there are 8-byte lines, last line may be partially
386 * written (HW bug), thus FW configures for last line
387 * to be excessive. Driver skips this last line.
389 int len = min_t(int, 8 + sizeof(phy_data),
390 wil_rxdesc_phy_length(d));
392 if (len > 8) {
393 void *p = skb_tail_pointer(skb);
394 void *pa = PTR_ALIGN(p, 8);
396 if (skb_tailroom(skb) >= len + (pa - p)) {
397 phy_length = len - 8;
398 memcpy(phy_data, pa, phy_length);
402 rtap_len += phy_length;
405 if (skb_headroom(skb) < rtap_len &&
406 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
407 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
408 return;
411 rtap_vendor = skb_push(skb, rtap_len);
412 memset(rtap_vendor, 0, rtap_len);
414 rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
415 rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
416 rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
417 (1 << IEEE80211_RADIOTAP_FLAGS) |
418 (1 << IEEE80211_RADIOTAP_CHANNEL) |
419 (1 << IEEE80211_RADIOTAP_MCS));
420 if (d->dma.status & RX_DMA_STATUS_ERROR)
421 rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
423 rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
424 rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
426 rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
427 rtap_vendor->rtap.mcs_flags = 0;
428 rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
430 if (rtap_include_phy_info) {
431 rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
432 IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
433 /* OUI for Wilocity 04:ce:14 */
434 rtap_vendor->vendor_oui[0] = 0x04;
435 rtap_vendor->vendor_oui[1] = 0xce;
436 rtap_vendor->vendor_oui[2] = 0x14;
437 rtap_vendor->vendor_ns = 1;
438 /* Rx descriptor + PHY data */
439 rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
440 phy_length);
441 memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
442 memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
443 phy_length);
447 /* similar to ieee80211_ version, but FC contain only 1-st byte */
448 static inline int wil_is_back_req(u8 fc)
450 return (fc & (IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
451 (IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
454 bool wil_is_rx_idle(struct wil6210_priv *wil)
456 struct vring_rx_desc *_d;
457 struct vring *vring = &wil->vring_rx;
459 _d = (struct vring_rx_desc *)&vring->va[vring->swhead].rx;
460 if (_d->dma.status & RX_DMA_STATUS_DU)
461 return false;
463 return true;
467 * reap 1 frame from @swhead
469 * Rx descriptor copied to skb->cb
471 * Safe to call from IRQ
473 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
474 struct vring *vring)
476 struct device *dev = wil_to_dev(wil);
477 struct net_device *ndev = wil_to_ndev(wil);
478 volatile struct vring_rx_desc *_d;
479 struct vring_rx_desc *d;
480 struct sk_buff *skb;
481 dma_addr_t pa;
482 unsigned int snaplen = wil_rx_snaplen();
483 unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
484 u16 dmalen;
485 u8 ftype;
486 int cid;
487 int i;
488 struct wil_net_stats *stats;
490 BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
492 again:
493 if (unlikely(wil_vring_is_empty(vring)))
494 return NULL;
496 i = (int)vring->swhead;
497 _d = &vring->va[i].rx;
498 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
499 /* it is not error, we just reached end of Rx done area */
500 return NULL;
503 skb = vring->ctx[i].skb;
504 vring->ctx[i].skb = NULL;
505 wil_vring_advance_head(vring, 1);
506 if (!skb) {
507 wil_err(wil, "No Rx skb at [%d]\n", i);
508 goto again;
510 d = wil_skb_rxdesc(skb);
511 *d = *_d;
512 pa = wil_desc_addr(&d->dma.addr);
514 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
515 dmalen = le16_to_cpu(d->dma.length);
517 trace_wil6210_rx(i, d);
518 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
519 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
520 (const void *)d, sizeof(*d), false);
522 cid = wil_rxdesc_cid(d);
523 stats = &wil->sta[cid].stats;
525 if (unlikely(dmalen > sz)) {
526 wil_err(wil, "Rx size too large: %d bytes!\n", dmalen);
527 stats->rx_large_frame++;
528 kfree_skb(skb);
529 goto again;
531 skb_trim(skb, dmalen);
533 prefetch(skb->data);
535 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
536 skb->data, skb_headlen(skb), false);
538 stats->last_mcs_rx = wil_rxdesc_mcs(d);
539 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
540 stats->rx_per_mcs[stats->last_mcs_rx]++;
542 /* use radiotap header only if required */
543 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
544 wil_rx_add_radiotap_header(wil, skb);
546 /* no extra checks if in sniffer mode */
547 if (ndev->type != ARPHRD_ETHER)
548 return skb;
549 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
550 * Driver should recognize it by frame type, that is found
551 * in Rx descriptor. If type is not data, it is 802.11 frame as is
553 ftype = wil_rxdesc_ftype(d) << 2;
554 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
555 u8 fc1 = wil_rxdesc_fc1(d);
556 int mid = wil_rxdesc_mid(d);
557 int tid = wil_rxdesc_tid(d);
558 u16 seq = wil_rxdesc_seq(d);
560 wil_dbg_txrx(wil,
561 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
562 fc1, mid, cid, tid, seq);
563 stats->rx_non_data_frame++;
564 if (wil_is_back_req(fc1)) {
565 wil_dbg_txrx(wil,
566 "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
567 mid, cid, tid, seq);
568 wil_rx_bar(wil, cid, tid, seq);
569 } else {
570 /* print again all info. One can enable only this
571 * without overhead for printing every Rx frame
573 wil_dbg_txrx(wil,
574 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
575 fc1, mid, cid, tid, seq);
576 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
577 (const void *)d, sizeof(*d), false);
578 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
579 skb->data, skb_headlen(skb), false);
581 kfree_skb(skb);
582 goto again;
585 if (unlikely(skb->len < ETH_HLEN + snaplen)) {
586 wil_err(wil, "Short frame, len = %d\n", skb->len);
587 stats->rx_short_frame++;
588 kfree_skb(skb);
589 goto again;
592 /* L4 IDENT is on when HW calculated checksum, check status
593 * and in case of error drop the packet
594 * higher stack layers will handle retransmission (if required)
596 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
597 /* L4 protocol identified, csum calculated */
598 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
599 skb->ip_summed = CHECKSUM_UNNECESSARY;
600 /* If HW reports bad checksum, let IP stack re-check it
601 * For example, HW don't understand Microsoft IP stack that
602 * mis-calculates TCP checksum - if it should be 0x0,
603 * it writes 0xffff in violation of RFC 1624
607 if (snaplen) {
608 /* Packet layout
609 * +-------+-------+---------+------------+------+
610 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
611 * +-------+-------+---------+------------+------+
612 * Need to remove SNAP, shifting SA and DA forward
614 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
615 skb_pull(skb, snaplen);
618 return skb;
622 * allocate and fill up to @count buffers in rx ring
623 * buffers posted at @swtail
625 static int wil_rx_refill(struct wil6210_priv *wil, int count)
627 struct net_device *ndev = wil_to_ndev(wil);
628 struct vring *v = &wil->vring_rx;
629 u32 next_tail;
630 int rc = 0;
631 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
632 WIL6210_RTAP_SIZE : 0;
634 for (; next_tail = wil_vring_next_tail(v),
635 (next_tail != v->swhead) && (count-- > 0);
636 v->swtail = next_tail) {
637 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
638 if (unlikely(rc)) {
639 wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
640 rc, v->swtail);
641 break;
645 /* make sure all writes to descriptors (shared memory) are done before
646 * committing them to HW
648 wmb();
650 wil_w(wil, v->hwtail, v->swtail);
652 return rc;
656 * reverse_memcmp - Compare two areas of memory, in reverse order
657 * @cs: One area of memory
658 * @ct: Another area of memory
659 * @count: The size of the area.
661 * Cut'n'paste from original memcmp (see lib/string.c)
662 * with minimal modifications
664 static int reverse_memcmp(const void *cs, const void *ct, size_t count)
666 const unsigned char *su1, *su2;
667 int res = 0;
669 for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
670 --su1, --su2, count--) {
671 res = *su1 - *su2;
672 if (res)
673 break;
675 return res;
678 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
680 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
681 int cid = wil_rxdesc_cid(d);
682 int tid = wil_rxdesc_tid(d);
683 int key_id = wil_rxdesc_key_id(d);
684 int mc = wil_rxdesc_mcast(d);
685 struct wil_sta_info *s = &wil->sta[cid];
686 struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
687 &s->tid_crypto_rx[tid];
688 struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
689 const u8 *pn = (u8 *)&d->mac.pn_15_0;
691 if (!cc->key_set) {
692 wil_err_ratelimited(wil,
693 "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
694 cid, tid, mc, key_id);
695 return -EINVAL;
698 if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
699 wil_err_ratelimited(wil,
700 "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
701 cid, tid, mc, key_id, pn, cc->pn);
702 return -EINVAL;
704 memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
706 return 0;
710 * Pass Rx packet to the netif. Update statistics.
711 * Called in softirq context (NAPI poll).
713 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
715 gro_result_t rc = GRO_NORMAL;
716 struct wil6210_priv *wil = ndev_to_wil(ndev);
717 struct wireless_dev *wdev = wil_to_wdev(wil);
718 unsigned int len = skb->len;
719 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
720 int cid = wil_rxdesc_cid(d); /* always 0..7, no need to check */
721 int security = wil_rxdesc_security(d);
722 struct ethhdr *eth = (void *)skb->data;
723 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
724 * is not suitable, need to look at data
726 int mcast = is_multicast_ether_addr(eth->h_dest);
727 struct wil_net_stats *stats = &wil->sta[cid].stats;
728 struct sk_buff *xmit_skb = NULL;
729 static const char * const gro_res_str[] = {
730 [GRO_MERGED] = "GRO_MERGED",
731 [GRO_MERGED_FREE] = "GRO_MERGED_FREE",
732 [GRO_HELD] = "GRO_HELD",
733 [GRO_NORMAL] = "GRO_NORMAL",
734 [GRO_DROP] = "GRO_DROP",
737 if (ndev->features & NETIF_F_RXHASH)
738 /* fake L4 to ensure it won't be re-calculated later
739 * set hash to any non-zero value to activate rps
740 * mechanism, core will be chosen according
741 * to user-level rps configuration.
743 skb_set_hash(skb, 1, PKT_HASH_TYPE_L4);
745 skb_orphan(skb);
747 if (security && (wil_rx_crypto_check(wil, skb) != 0)) {
748 rc = GRO_DROP;
749 dev_kfree_skb(skb);
750 stats->rx_replay++;
751 goto stats;
754 if (wdev->iftype == NL80211_IFTYPE_AP && !wil->ap_isolate) {
755 if (mcast) {
756 /* send multicast frames both to higher layers in
757 * local net stack and back to the wireless medium
759 xmit_skb = skb_copy(skb, GFP_ATOMIC);
760 } else {
761 int xmit_cid = wil_find_cid(wil, eth->h_dest);
763 if (xmit_cid >= 0) {
764 /* The destination station is associated to
765 * this AP (in this VLAN), so send the frame
766 * directly to it and do not pass it to local
767 * net stack.
769 xmit_skb = skb;
770 skb = NULL;
774 if (xmit_skb) {
775 /* Send to wireless media and increase priority by 256 to
776 * keep the received priority instead of reclassifying
777 * the frame (see cfg80211_classify8021d).
779 xmit_skb->dev = ndev;
780 xmit_skb->priority += 256;
781 xmit_skb->protocol = htons(ETH_P_802_3);
782 skb_reset_network_header(xmit_skb);
783 skb_reset_mac_header(xmit_skb);
784 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
785 dev_queue_xmit(xmit_skb);
788 if (skb) { /* deliver to local stack */
790 skb->protocol = eth_type_trans(skb, ndev);
791 rc = napi_gro_receive(&wil->napi_rx, skb);
792 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
793 len, gro_res_str[rc]);
795 stats:
796 /* statistics. rc set to GRO_NORMAL for AP bridging */
797 if (unlikely(rc == GRO_DROP)) {
798 ndev->stats.rx_dropped++;
799 stats->rx_dropped++;
800 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
801 } else {
802 ndev->stats.rx_packets++;
803 stats->rx_packets++;
804 ndev->stats.rx_bytes += len;
805 stats->rx_bytes += len;
806 if (mcast)
807 ndev->stats.multicast++;
812 * Proceed all completed skb's from Rx VRING
814 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
816 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
818 struct net_device *ndev = wil_to_ndev(wil);
819 struct vring *v = &wil->vring_rx;
820 struct sk_buff *skb;
822 if (unlikely(!v->va)) {
823 wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
824 return;
826 wil_dbg_txrx(wil, "rx_handle\n");
827 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
828 (*quota)--;
830 if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
831 skb->dev = ndev;
832 skb_reset_mac_header(skb);
833 skb->ip_summed = CHECKSUM_UNNECESSARY;
834 skb->pkt_type = PACKET_OTHERHOST;
835 skb->protocol = htons(ETH_P_802_2);
836 wil_netif_rx_any(skb, ndev);
837 } else {
838 wil_rx_reorder(wil, skb);
841 wil_rx_refill(wil, v->size);
844 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
846 wil->rx_buf_len = rx_large_buf ?
847 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
848 if (mtu_max > wil->rx_buf_len) {
849 /* do not allow RX buffers to be smaller than mtu_max, for
850 * backward compatibility (mtu_max parameter was also used
851 * to support receiving large packets)
853 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
854 wil->rx_buf_len = mtu_max;
858 int wil_rx_init(struct wil6210_priv *wil, u16 size)
860 struct vring *vring = &wil->vring_rx;
861 int rc;
863 wil_dbg_misc(wil, "rx_init\n");
865 if (vring->va) {
866 wil_err(wil, "Rx ring already allocated\n");
867 return -EINVAL;
870 wil_rx_buf_len_init(wil);
872 vring->size = size;
873 rc = wil_vring_alloc(wil, vring);
874 if (rc)
875 return rc;
877 rc = wmi_rx_chain_add(wil, vring);
878 if (rc)
879 goto err_free;
881 rc = wil_rx_refill(wil, vring->size);
882 if (rc)
883 goto err_free;
885 return 0;
886 err_free:
887 wil_vring_free(wil, vring, 0);
889 return rc;
892 void wil_rx_fini(struct wil6210_priv *wil)
894 struct vring *vring = &wil->vring_rx;
896 wil_dbg_misc(wil, "rx_fini\n");
898 if (vring->va)
899 wil_vring_free(wil, vring, 0);
902 static inline void wil_tx_data_init(struct vring_tx_data *txdata)
904 spin_lock_bh(&txdata->lock);
905 txdata->dot1x_open = 0;
906 txdata->enabled = 0;
907 txdata->idle = 0;
908 txdata->last_idle = 0;
909 txdata->begin = 0;
910 txdata->agg_wsize = 0;
911 txdata->agg_timeout = 0;
912 txdata->agg_amsdu = 0;
913 txdata->addba_in_progress = false;
914 spin_unlock_bh(&txdata->lock);
917 int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
918 int cid, int tid)
920 int rc;
921 struct wmi_vring_cfg_cmd cmd = {
922 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
923 .vring_cfg = {
924 .tx_sw_ring = {
925 .max_mpdu_size =
926 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
927 .ring_size = cpu_to_le16(size),
929 .ringid = id,
930 .cidxtid = mk_cidxtid(cid, tid),
931 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
932 .mac_ctrl = 0,
933 .to_resolution = 0,
934 .agg_max_wsize = 0,
935 .schd_params = {
936 .priority = cpu_to_le16(0),
937 .timeslot_us = cpu_to_le16(0xfff),
941 struct {
942 struct wmi_cmd_hdr wmi;
943 struct wmi_vring_cfg_done_event cmd;
944 } __packed reply;
945 struct vring *vring = &wil->vring_tx[id];
946 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
948 wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
949 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
950 lockdep_assert_held(&wil->mutex);
952 if (vring->va) {
953 wil_err(wil, "Tx ring [%d] already allocated\n", id);
954 rc = -EINVAL;
955 goto out;
958 wil_tx_data_init(txdata);
959 vring->size = size;
960 rc = wil_vring_alloc(wil, vring);
961 if (rc)
962 goto out;
964 wil->vring2cid_tid[id][0] = cid;
965 wil->vring2cid_tid[id][1] = tid;
967 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
969 if (!wil->privacy)
970 txdata->dot1x_open = true;
971 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
972 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
973 if (rc)
974 goto out_free;
976 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
977 wil_err(wil, "Tx config failed, status 0x%02x\n",
978 reply.cmd.status);
979 rc = -EINVAL;
980 goto out_free;
983 spin_lock_bh(&txdata->lock);
984 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
985 txdata->enabled = 1;
986 spin_unlock_bh(&txdata->lock);
988 if (txdata->dot1x_open && (agg_wsize >= 0))
989 wil_addba_tx_request(wil, id, agg_wsize);
991 return 0;
992 out_free:
993 spin_lock_bh(&txdata->lock);
994 txdata->dot1x_open = false;
995 txdata->enabled = 0;
996 spin_unlock_bh(&txdata->lock);
997 wil_vring_free(wil, vring, 1);
998 wil->vring2cid_tid[id][0] = WIL6210_MAX_CID;
999 wil->vring2cid_tid[id][1] = 0;
1001 out:
1003 return rc;
1006 int wil_vring_init_bcast(struct wil6210_priv *wil, int id, int size)
1008 int rc;
1009 struct wmi_bcast_vring_cfg_cmd cmd = {
1010 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1011 .vring_cfg = {
1012 .tx_sw_ring = {
1013 .max_mpdu_size =
1014 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1015 .ring_size = cpu_to_le16(size),
1017 .ringid = id,
1018 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1021 struct {
1022 struct wmi_cmd_hdr wmi;
1023 struct wmi_vring_cfg_done_event cmd;
1024 } __packed reply;
1025 struct vring *vring = &wil->vring_tx[id];
1026 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
1028 wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1029 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1030 lockdep_assert_held(&wil->mutex);
1032 if (vring->va) {
1033 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1034 rc = -EINVAL;
1035 goto out;
1038 wil_tx_data_init(txdata);
1039 vring->size = size;
1040 rc = wil_vring_alloc(wil, vring);
1041 if (rc)
1042 goto out;
1044 wil->vring2cid_tid[id][0] = WIL6210_MAX_CID; /* CID */
1045 wil->vring2cid_tid[id][1] = 0; /* TID */
1047 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1049 if (!wil->privacy)
1050 txdata->dot1x_open = true;
1051 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, &cmd, sizeof(cmd),
1052 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1053 if (rc)
1054 goto out_free;
1056 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1057 wil_err(wil, "Tx config failed, status 0x%02x\n",
1058 reply.cmd.status);
1059 rc = -EINVAL;
1060 goto out_free;
1063 spin_lock_bh(&txdata->lock);
1064 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1065 txdata->enabled = 1;
1066 spin_unlock_bh(&txdata->lock);
1068 return 0;
1069 out_free:
1070 spin_lock_bh(&txdata->lock);
1071 txdata->enabled = 0;
1072 txdata->dot1x_open = false;
1073 spin_unlock_bh(&txdata->lock);
1074 wil_vring_free(wil, vring, 1);
1075 out:
1077 return rc;
1080 void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
1082 struct vring *vring = &wil->vring_tx[id];
1083 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
1085 lockdep_assert_held(&wil->mutex);
1087 if (!vring->va)
1088 return;
1090 wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
1092 spin_lock_bh(&txdata->lock);
1093 txdata->dot1x_open = false;
1094 txdata->enabled = 0; /* no Tx can be in progress or start anew */
1095 spin_unlock_bh(&txdata->lock);
1096 /* napi_synchronize waits for completion of the current NAPI but will
1097 * not prevent the next NAPI run.
1098 * Add a memory barrier to guarantee that txdata->enabled is zeroed
1099 * before napi_synchronize so that the next scheduled NAPI will not
1100 * handle this vring
1102 wmb();
1103 /* make sure NAPI won't touch this vring */
1104 if (test_bit(wil_status_napi_en, wil->status))
1105 napi_synchronize(&wil->napi_tx);
1107 wil_vring_free(wil, vring, 1);
1110 static struct vring *wil_find_tx_ucast(struct wil6210_priv *wil,
1111 struct sk_buff *skb)
1113 int i;
1114 struct ethhdr *eth = (void *)skb->data;
1115 int cid = wil_find_cid(wil, eth->h_dest);
1117 if (cid < 0)
1118 return NULL;
1120 /* TODO: fix for multiple TID */
1121 for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) {
1122 if (!wil->vring_tx_data[i].dot1x_open &&
1123 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1124 continue;
1125 if (wil->vring2cid_tid[i][0] == cid) {
1126 struct vring *v = &wil->vring_tx[i];
1127 struct vring_tx_data *txdata = &wil->vring_tx_data[i];
1129 wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1130 eth->h_dest, i);
1131 if (v->va && txdata->enabled) {
1132 return v;
1133 } else {
1134 wil_dbg_txrx(wil,
1135 "find_tx_ucast: vring[%d] not valid\n",
1137 return NULL;
1142 return NULL;
1145 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1146 struct sk_buff *skb);
1148 static struct vring *wil_find_tx_vring_sta(struct wil6210_priv *wil,
1149 struct sk_buff *skb)
1151 struct vring *v;
1152 int i;
1153 u8 cid;
1154 struct vring_tx_data *txdata;
1156 /* In the STA mode, it is expected to have only 1 VRING
1157 * for the AP we connected to.
1158 * find 1-st vring eligible for this skb and use it.
1160 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1161 v = &wil->vring_tx[i];
1162 txdata = &wil->vring_tx_data[i];
1163 if (!v->va || !txdata->enabled)
1164 continue;
1166 cid = wil->vring2cid_tid[i][0];
1167 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1168 continue;
1170 if (!wil->vring_tx_data[i].dot1x_open &&
1171 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1172 continue;
1174 wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1176 return v;
1179 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1181 return NULL;
1184 /* Use one of 2 strategies:
1186 * 1. New (real broadcast):
1187 * use dedicated broadcast vring
1188 * 2. Old (pseudo-DMS):
1189 * Find 1-st vring and return it;
1190 * duplicate skb and send it to other active vrings;
1191 * in all cases override dest address to unicast peer's address
1192 * Use old strategy when new is not supported yet:
1193 * - for PBSS
1195 static struct vring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1196 struct sk_buff *skb)
1198 struct vring *v;
1199 struct vring_tx_data *txdata;
1200 int i = wil->bcast_vring;
1202 if (i < 0)
1203 return NULL;
1204 v = &wil->vring_tx[i];
1205 txdata = &wil->vring_tx_data[i];
1206 if (!v->va || !txdata->enabled)
1207 return NULL;
1208 if (!wil->vring_tx_data[i].dot1x_open &&
1209 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1210 return NULL;
1212 return v;
1215 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1216 struct sk_buff *skb, int vring_index)
1218 struct ethhdr *eth = (void *)skb->data;
1219 int cid = wil->vring2cid_tid[vring_index][0];
1221 ether_addr_copy(eth->h_dest, wil->sta[cid].addr);
1224 static struct vring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1225 struct sk_buff *skb)
1227 struct vring *v, *v2;
1228 struct sk_buff *skb2;
1229 int i;
1230 u8 cid;
1231 struct ethhdr *eth = (void *)skb->data;
1232 char *src = eth->h_source;
1233 struct vring_tx_data *txdata;
1235 /* find 1-st vring eligible for data */
1236 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1237 v = &wil->vring_tx[i];
1238 txdata = &wil->vring_tx_data[i];
1239 if (!v->va || !txdata->enabled)
1240 continue;
1242 cid = wil->vring2cid_tid[i][0];
1243 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1244 continue;
1245 if (!wil->vring_tx_data[i].dot1x_open &&
1246 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1247 continue;
1249 /* don't Tx back to source when re-routing Rx->Tx at the AP */
1250 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1251 continue;
1253 goto found;
1256 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1258 return NULL;
1260 found:
1261 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1262 wil_set_da_for_vring(wil, skb, i);
1264 /* find other active vrings and duplicate skb for each */
1265 for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1266 v2 = &wil->vring_tx[i];
1267 if (!v2->va)
1268 continue;
1269 cid = wil->vring2cid_tid[i][0];
1270 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1271 continue;
1272 if (!wil->vring_tx_data[i].dot1x_open &&
1273 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1274 continue;
1276 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1277 continue;
1279 skb2 = skb_copy(skb, GFP_ATOMIC);
1280 if (skb2) {
1281 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1282 wil_set_da_for_vring(wil, skb2, i);
1283 wil_tx_vring(wil, v2, skb2);
1284 } else {
1285 wil_err(wil, "skb_copy failed\n");
1289 return v;
1292 static int wil_tx_desc_map(struct vring_tx_desc *d, dma_addr_t pa, u32 len,
1293 int vring_index)
1295 wil_desc_addr_set(&d->dma.addr, pa);
1296 d->dma.ip_length = 0;
1297 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1298 d->dma.b11 = 0/*14 | BIT(7)*/;
1299 d->dma.error = 0;
1300 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1301 d->dma.length = cpu_to_le16((u16)len);
1302 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1303 d->mac.d[0] = 0;
1304 d->mac.d[1] = 0;
1305 d->mac.d[2] = 0;
1306 d->mac.ucode_cmd = 0;
1307 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
1308 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1309 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1311 return 0;
1314 static inline
1315 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1317 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1321 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1322 * @skb is used to obtain the protocol and headers length.
1323 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1324 * 2 - middle, 3 - last descriptor.
1327 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1328 struct sk_buff *skb,
1329 int tso_desc_type, bool is_ipv4,
1330 int tcp_hdr_len, int skb_net_hdr_len)
1332 d->dma.b11 = ETH_HLEN; /* MAC header length */
1333 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1335 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1336 /* L4 header len: TCP header length */
1337 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1339 /* Setup TSO: bit and desc type */
1340 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1341 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1342 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1344 d->dma.ip_length = skb_net_hdr_len;
1345 /* Enable TCP/UDP checksum */
1346 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1347 /* Calculate pseudo-header */
1348 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1352 * Sets the descriptor @d up for csum. The corresponding
1353 * @skb is used to obtain the protocol and headers length.
1354 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1355 * Note, if d==NULL, the function only returns the protocol result.
1357 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1358 * is "if unrolling" to optimize the critical path.
1361 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1362 struct sk_buff *skb){
1363 int protocol;
1365 if (skb->ip_summed != CHECKSUM_PARTIAL)
1366 return 0;
1368 d->dma.b11 = ETH_HLEN; /* MAC header length */
1370 switch (skb->protocol) {
1371 case cpu_to_be16(ETH_P_IP):
1372 protocol = ip_hdr(skb)->protocol;
1373 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1374 break;
1375 case cpu_to_be16(ETH_P_IPV6):
1376 protocol = ipv6_hdr(skb)->nexthdr;
1377 break;
1378 default:
1379 return -EINVAL;
1382 switch (protocol) {
1383 case IPPROTO_TCP:
1384 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1385 /* L4 header len: TCP header length */
1386 d->dma.d0 |=
1387 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1388 break;
1389 case IPPROTO_UDP:
1390 /* L4 header len: UDP header length */
1391 d->dma.d0 |=
1392 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1393 break;
1394 default:
1395 return -EINVAL;
1398 d->dma.ip_length = skb_network_header_len(skb);
1399 /* Enable TCP/UDP checksum */
1400 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1401 /* Calculate pseudo-header */
1402 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1404 return 0;
1407 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1409 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1410 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1411 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1414 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1416 d->dma.d0 |= wil_tso_type_lst <<
1417 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1420 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct vring *vring,
1421 struct sk_buff *skb)
1423 struct device *dev = wil_to_dev(wil);
1425 /* point to descriptors in shared memory */
1426 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1427 *_first_desc = NULL;
1429 /* pointers to shadow descriptors */
1430 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1431 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1432 *first_desc = &first_desc_mem;
1434 /* pointer to shadow descriptors' context */
1435 struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1437 int descs_used = 0; /* total number of used descriptors */
1438 int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1440 u32 swhead = vring->swhead;
1441 int used, avail = wil_vring_avail_tx(vring);
1442 int nr_frags = skb_shinfo(skb)->nr_frags;
1443 int min_desc_required = nr_frags + 1;
1444 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */
1445 int f, len, hdrlen, headlen;
1446 int vring_index = vring - wil->vring_tx;
1447 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1448 uint i = swhead;
1449 dma_addr_t pa;
1450 const skb_frag_t *frag = NULL;
1451 int rem_data = mss;
1452 int lenmss;
1453 int hdr_compensation_need = true;
1454 int desc_tso_type = wil_tso_type_first;
1455 bool is_ipv4;
1456 int tcp_hdr_len;
1457 int skb_net_hdr_len;
1458 int gso_type;
1459 int rc = -EINVAL;
1461 wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1462 vring_index);
1464 if (unlikely(!txdata->enabled))
1465 return -EINVAL;
1467 /* A typical page 4K is 3-4 payloads, we assume each fragment
1468 * is a full payload, that's how min_desc_required has been
1469 * calculated. In real we might need more or less descriptors,
1470 * this is the initial check only.
1472 if (unlikely(avail < min_desc_required)) {
1473 wil_err_ratelimited(wil,
1474 "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1475 vring_index, min_desc_required);
1476 return -ENOMEM;
1479 /* Header Length = MAC header len + IP header len + TCP header len*/
1480 hdrlen = ETH_HLEN +
1481 (int)skb_network_header_len(skb) +
1482 tcp_hdrlen(skb);
1484 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1485 switch (gso_type) {
1486 case SKB_GSO_TCPV4:
1487 /* TCP v4, zero out the IP length and IPv4 checksum fields
1488 * as required by the offloading doc
1490 ip_hdr(skb)->tot_len = 0;
1491 ip_hdr(skb)->check = 0;
1492 is_ipv4 = true;
1493 break;
1494 case SKB_GSO_TCPV6:
1495 /* TCP v6, zero out the payload length */
1496 ipv6_hdr(skb)->payload_len = 0;
1497 is_ipv4 = false;
1498 break;
1499 default:
1500 /* other than TCPv4 or TCPv6 types are not supported for TSO.
1501 * It is also illegal for both to be set simultaneously
1503 return -EINVAL;
1506 if (skb->ip_summed != CHECKSUM_PARTIAL)
1507 return -EINVAL;
1509 /* tcp header length and skb network header length are fixed for all
1510 * packet's descriptors - read then once here
1512 tcp_hdr_len = tcp_hdrlen(skb);
1513 skb_net_hdr_len = skb_network_header_len(skb);
1515 _hdr_desc = &vring->va[i].tx;
1517 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1518 if (unlikely(dma_mapping_error(dev, pa))) {
1519 wil_err(wil, "TSO: Skb head DMA map error\n");
1520 goto err_exit;
1523 wil_tx_desc_map(hdr_desc, pa, hdrlen, vring_index);
1524 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1525 tcp_hdr_len, skb_net_hdr_len);
1526 wil_tx_last_desc(hdr_desc);
1528 vring->ctx[i].mapped_as = wil_mapped_as_single;
1529 hdr_ctx = &vring->ctx[i];
1531 descs_used++;
1532 headlen = skb_headlen(skb) - hdrlen;
1534 for (f = headlen ? -1 : 0; f < nr_frags; f++) {
1535 if (headlen) {
1536 len = headlen;
1537 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1538 len);
1539 } else {
1540 frag = &skb_shinfo(skb)->frags[f];
1541 len = frag->size;
1542 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1545 while (len) {
1546 wil_dbg_txrx(wil,
1547 "TSO: len %d, rem_data %d, descs_used %d\n",
1548 len, rem_data, descs_used);
1550 if (descs_used == avail) {
1551 wil_err_ratelimited(wil, "TSO: ring overflow\n");
1552 rc = -ENOMEM;
1553 goto mem_error;
1556 lenmss = min_t(int, rem_data, len);
1557 i = (swhead + descs_used) % vring->size;
1558 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1560 if (!headlen) {
1561 pa = skb_frag_dma_map(dev, frag,
1562 frag->size - len, lenmss,
1563 DMA_TO_DEVICE);
1564 vring->ctx[i].mapped_as = wil_mapped_as_page;
1565 } else {
1566 pa = dma_map_single(dev,
1567 skb->data +
1568 skb_headlen(skb) - headlen,
1569 lenmss,
1570 DMA_TO_DEVICE);
1571 vring->ctx[i].mapped_as = wil_mapped_as_single;
1572 headlen -= lenmss;
1575 if (unlikely(dma_mapping_error(dev, pa))) {
1576 wil_err(wil, "TSO: DMA map page error\n");
1577 goto mem_error;
1580 _desc = &vring->va[i].tx;
1582 if (!_first_desc) {
1583 _first_desc = _desc;
1584 first_ctx = &vring->ctx[i];
1585 d = first_desc;
1586 } else {
1587 d = &desc_mem;
1590 wil_tx_desc_map(d, pa, lenmss, vring_index);
1591 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1592 is_ipv4, tcp_hdr_len,
1593 skb_net_hdr_len);
1595 /* use tso_type_first only once */
1596 desc_tso_type = wil_tso_type_mid;
1598 descs_used++; /* desc used so far */
1599 sg_desc_cnt++; /* desc used for this segment */
1600 len -= lenmss;
1601 rem_data -= lenmss;
1603 wil_dbg_txrx(wil,
1604 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1605 len, rem_data, descs_used, sg_desc_cnt);
1607 /* Close the segment if reached mss size or last frag*/
1608 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1609 if (hdr_compensation_need) {
1610 /* first segment include hdr desc for
1611 * release
1613 hdr_ctx->nr_frags = sg_desc_cnt;
1614 wil_tx_desc_set_nr_frags(first_desc,
1615 sg_desc_cnt +
1617 hdr_compensation_need = false;
1618 } else {
1619 wil_tx_desc_set_nr_frags(first_desc,
1620 sg_desc_cnt);
1622 first_ctx->nr_frags = sg_desc_cnt - 1;
1624 wil_tx_last_desc(d);
1626 /* first descriptor may also be the last
1627 * for this mss - make sure not to copy
1628 * it twice
1630 if (first_desc != d)
1631 *_first_desc = *first_desc;
1633 /*last descriptor will be copied at the end
1634 * of this TS processing
1636 if (f < nr_frags - 1 || len > 0)
1637 *_desc = *d;
1639 rem_data = mss;
1640 _first_desc = NULL;
1641 sg_desc_cnt = 0;
1642 } else if (first_desc != d) /* update mid descriptor */
1643 *_desc = *d;
1647 /* first descriptor may also be the last.
1648 * in this case d pointer is invalid
1650 if (_first_desc == _desc)
1651 d = first_desc;
1653 /* Last data descriptor */
1654 wil_set_tx_desc_last_tso(d);
1655 *_desc = *d;
1657 /* Fill the total number of descriptors in first desc (hdr)*/
1658 wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1659 *_hdr_desc = *hdr_desc;
1661 /* hold reference to skb
1662 * to prevent skb release before accounting
1663 * in case of immediate "tx done"
1665 vring->ctx[i].skb = skb_get(skb);
1667 /* performance monitoring */
1668 used = wil_vring_used_tx(vring);
1669 if (wil_val_in_range(wil->vring_idle_trsh,
1670 used, used + descs_used)) {
1671 txdata->idle += get_cycles() - txdata->last_idle;
1672 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1673 vring_index, used, used + descs_used);
1676 /* Make sure to advance the head only after descriptor update is done.
1677 * This will prevent a race condition where the completion thread
1678 * will see the DU bit set from previous run and will handle the
1679 * skb before it was completed.
1681 wmb();
1683 /* advance swhead */
1684 wil_vring_advance_head(vring, descs_used);
1685 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1687 /* make sure all writes to descriptors (shared memory) are done before
1688 * committing them to HW
1690 wmb();
1692 wil_w(wil, vring->hwtail, vring->swhead);
1693 return 0;
1695 mem_error:
1696 while (descs_used > 0) {
1697 struct wil_ctx *ctx;
1699 i = (swhead + descs_used - 1) % vring->size;
1700 d = (struct vring_tx_desc *)&vring->va[i].tx;
1701 _desc = &vring->va[i].tx;
1702 *d = *_desc;
1703 _desc->dma.status = TX_DMA_STATUS_DU;
1704 ctx = &vring->ctx[i];
1705 wil_txdesc_unmap(dev, d, ctx);
1706 memset(ctx, 0, sizeof(*ctx));
1707 descs_used--;
1709 err_exit:
1710 return rc;
1713 static int __wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1714 struct sk_buff *skb)
1716 struct device *dev = wil_to_dev(wil);
1717 struct vring_tx_desc dd, *d = &dd;
1718 volatile struct vring_tx_desc *_d;
1719 u32 swhead = vring->swhead;
1720 int avail = wil_vring_avail_tx(vring);
1721 int nr_frags = skb_shinfo(skb)->nr_frags;
1722 uint f = 0;
1723 int vring_index = vring - wil->vring_tx;
1724 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1725 uint i = swhead;
1726 dma_addr_t pa;
1727 int used;
1728 bool mcast = (vring_index == wil->bcast_vring);
1729 uint len = skb_headlen(skb);
1731 wil_dbg_txrx(wil, "tx_vring: %d bytes to vring %d\n", skb->len,
1732 vring_index);
1734 if (unlikely(!txdata->enabled))
1735 return -EINVAL;
1737 if (unlikely(avail < 1 + nr_frags)) {
1738 wil_err_ratelimited(wil,
1739 "Tx ring[%2d] full. No space for %d fragments\n",
1740 vring_index, 1 + nr_frags);
1741 return -ENOMEM;
1743 _d = &vring->va[i].tx;
1745 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1747 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", vring_index,
1748 skb_headlen(skb), skb->data, &pa);
1749 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1750 skb->data, skb_headlen(skb), false);
1752 if (unlikely(dma_mapping_error(dev, pa)))
1753 return -EINVAL;
1754 vring->ctx[i].mapped_as = wil_mapped_as_single;
1755 /* 1-st segment */
1756 wil_tx_desc_map(d, pa, len, vring_index);
1757 if (unlikely(mcast)) {
1758 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1759 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1760 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1762 /* Process TCP/UDP checksum offloading */
1763 if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1764 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1765 vring_index);
1766 goto dma_error;
1769 vring->ctx[i].nr_frags = nr_frags;
1770 wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1772 /* middle segments */
1773 for (; f < nr_frags; f++) {
1774 const struct skb_frag_struct *frag =
1775 &skb_shinfo(skb)->frags[f];
1776 int len = skb_frag_size(frag);
1778 *_d = *d;
1779 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1780 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1781 (const void *)d, sizeof(*d), false);
1782 i = (swhead + f + 1) % vring->size;
1783 _d = &vring->va[i].tx;
1784 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1785 DMA_TO_DEVICE);
1786 if (unlikely(dma_mapping_error(dev, pa))) {
1787 wil_err(wil, "Tx[%2d] failed to map fragment\n",
1788 vring_index);
1789 goto dma_error;
1791 vring->ctx[i].mapped_as = wil_mapped_as_page;
1792 wil_tx_desc_map(d, pa, len, vring_index);
1793 /* no need to check return code -
1794 * if it succeeded for 1-st descriptor,
1795 * it will succeed here too
1797 wil_tx_desc_offload_setup(d, skb);
1799 /* for the last seg only */
1800 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1801 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1802 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1803 *_d = *d;
1804 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1805 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1806 (const void *)d, sizeof(*d), false);
1808 /* hold reference to skb
1809 * to prevent skb release before accounting
1810 * in case of immediate "tx done"
1812 vring->ctx[i].skb = skb_get(skb);
1814 /* performance monitoring */
1815 used = wil_vring_used_tx(vring);
1816 if (wil_val_in_range(wil->vring_idle_trsh,
1817 used, used + nr_frags + 1)) {
1818 txdata->idle += get_cycles() - txdata->last_idle;
1819 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1820 vring_index, used, used + nr_frags + 1);
1823 /* Make sure to advance the head only after descriptor update is done.
1824 * This will prevent a race condition where the completion thread
1825 * will see the DU bit set from previous run and will handle the
1826 * skb before it was completed.
1828 wmb();
1830 /* advance swhead */
1831 wil_vring_advance_head(vring, nr_frags + 1);
1832 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", vring_index, swhead,
1833 vring->swhead);
1834 trace_wil6210_tx(vring_index, swhead, skb->len, nr_frags);
1836 /* make sure all writes to descriptors (shared memory) are done before
1837 * committing them to HW
1839 wmb();
1841 wil_w(wil, vring->hwtail, vring->swhead);
1843 return 0;
1844 dma_error:
1845 /* unmap what we have mapped */
1846 nr_frags = f + 1; /* frags mapped + one for skb head */
1847 for (f = 0; f < nr_frags; f++) {
1848 struct wil_ctx *ctx;
1850 i = (swhead + f) % vring->size;
1851 ctx = &vring->ctx[i];
1852 _d = &vring->va[i].tx;
1853 *d = *_d;
1854 _d->dma.status = TX_DMA_STATUS_DU;
1855 wil_txdesc_unmap(dev, d, ctx);
1857 memset(ctx, 0, sizeof(*ctx));
1860 return -EINVAL;
1863 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1864 struct sk_buff *skb)
1866 int vring_index = vring - wil->vring_tx;
1867 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1868 int rc;
1870 spin_lock(&txdata->lock);
1872 if (test_bit(wil_status_suspending, wil->status) ||
1873 test_bit(wil_status_suspended, wil->status) ||
1874 test_bit(wil_status_resuming, wil->status)) {
1875 wil_dbg_txrx(wil,
1876 "suspend/resume in progress. drop packet\n");
1877 spin_unlock(&txdata->lock);
1878 return -EINVAL;
1881 rc = (skb_is_gso(skb) ? __wil_tx_vring_tso : __wil_tx_vring)
1882 (wil, vring, skb);
1884 spin_unlock(&txdata->lock);
1886 return rc;
1890 * Check status of tx vrings and stop/wake net queues if needed
1892 * This function does one of two checks:
1893 * In case check_stop is true, will check if net queues need to be stopped. If
1894 * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
1895 * In case check_stop is false, will check if net queues need to be waked. If
1896 * the conditions for waking are met, netif_tx_wake_all_queues() is called.
1897 * vring is the vring which is currently being modified by either adding
1898 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
1899 * be null when irrelevant (e.g. connect/disconnect events).
1901 * The implementation is to stop net queues if modified vring has low
1902 * descriptor availability. Wake if all vrings are not in low descriptor
1903 * availability and modified vring has high descriptor availability.
1905 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
1906 struct vring *vring,
1907 bool check_stop)
1909 int i;
1911 if (vring)
1912 wil_dbg_txrx(wil, "vring %d, check_stop=%d, stopped=%d",
1913 (int)(vring - wil->vring_tx), check_stop,
1914 wil->net_queue_stopped);
1915 else
1916 wil_dbg_txrx(wil, "check_stop=%d, stopped=%d",
1917 check_stop, wil->net_queue_stopped);
1919 if (check_stop == wil->net_queue_stopped)
1920 /* net queues already in desired state */
1921 return;
1923 if (check_stop) {
1924 if (!vring || unlikely(wil_vring_avail_low(vring))) {
1925 /* not enough room in the vring */
1926 netif_tx_stop_all_queues(wil_to_ndev(wil));
1927 wil->net_queue_stopped = true;
1928 wil_dbg_txrx(wil, "netif_tx_stop called\n");
1930 return;
1933 /* Do not wake the queues in suspend flow */
1934 if (test_bit(wil_status_suspending, wil->status) ||
1935 test_bit(wil_status_suspended, wil->status))
1936 return;
1938 /* check wake */
1939 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1940 struct vring *cur_vring = &wil->vring_tx[i];
1941 struct vring_tx_data *txdata = &wil->vring_tx_data[i];
1943 if (!cur_vring->va || !txdata->enabled || cur_vring == vring)
1944 continue;
1946 if (wil_vring_avail_low(cur_vring)) {
1947 wil_dbg_txrx(wil, "vring %d full, can't wake\n",
1948 (int)(cur_vring - wil->vring_tx));
1949 return;
1953 if (!vring || wil_vring_avail_high(vring)) {
1954 /* enough room in the vring */
1955 wil_dbg_txrx(wil, "calling netif_tx_wake\n");
1956 netif_tx_wake_all_queues(wil_to_ndev(wil));
1957 wil->net_queue_stopped = false;
1961 void wil_update_net_queues(struct wil6210_priv *wil, struct vring *vring,
1962 bool check_stop)
1964 spin_lock(&wil->net_queue_lock);
1965 __wil_update_net_queues(wil, vring, check_stop);
1966 spin_unlock(&wil->net_queue_lock);
1969 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct vring *vring,
1970 bool check_stop)
1972 spin_lock_bh(&wil->net_queue_lock);
1973 __wil_update_net_queues(wil, vring, check_stop);
1974 spin_unlock_bh(&wil->net_queue_lock);
1977 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1979 struct wil6210_priv *wil = ndev_to_wil(ndev);
1980 struct ethhdr *eth = (void *)skb->data;
1981 bool bcast = is_multicast_ether_addr(eth->h_dest);
1982 struct vring *vring;
1983 static bool pr_once_fw;
1984 int rc;
1986 wil_dbg_txrx(wil, "start_xmit\n");
1987 if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
1988 if (!pr_once_fw) {
1989 wil_err(wil, "FW not ready\n");
1990 pr_once_fw = true;
1992 goto drop;
1994 if (unlikely(!test_bit(wil_status_fwconnected, wil->status))) {
1995 wil_dbg_ratelimited(wil, "FW not connected, packet dropped\n");
1996 goto drop;
1998 if (unlikely(wil->wdev->iftype == NL80211_IFTYPE_MONITOR)) {
1999 wil_err(wil, "Xmit in monitor mode not supported\n");
2000 goto drop;
2002 pr_once_fw = false;
2004 /* find vring */
2005 if (wil->wdev->iftype == NL80211_IFTYPE_STATION && !wil->pbss) {
2006 /* in STA mode (ESS), all to same VRING (to AP) */
2007 vring = wil_find_tx_vring_sta(wil, skb);
2008 } else if (bcast) {
2009 if (wil->pbss)
2010 /* in pbss, no bcast VRING - duplicate skb in
2011 * all stations VRINGs
2013 vring = wil_find_tx_bcast_2(wil, skb);
2014 else if (wil->wdev->iftype == NL80211_IFTYPE_AP)
2015 /* AP has a dedicated bcast VRING */
2016 vring = wil_find_tx_bcast_1(wil, skb);
2017 else
2018 /* unexpected combination, fallback to duplicating
2019 * the skb in all stations VRINGs
2021 vring = wil_find_tx_bcast_2(wil, skb);
2022 } else {
2023 /* unicast, find specific VRING by dest. address */
2024 vring = wil_find_tx_ucast(wil, skb);
2026 if (unlikely(!vring)) {
2027 wil_dbg_txrx(wil, "No Tx VRING found for %pM\n", eth->h_dest);
2028 goto drop;
2030 /* set up vring entry */
2031 rc = wil_tx_vring(wil, vring, skb);
2033 switch (rc) {
2034 case 0:
2035 /* shall we stop net queues? */
2036 wil_update_net_queues_bh(wil, vring, true);
2037 /* statistics will be updated on the tx_complete */
2038 dev_kfree_skb_any(skb);
2039 return NETDEV_TX_OK;
2040 case -ENOMEM:
2041 return NETDEV_TX_BUSY;
2042 default:
2043 break; /* goto drop; */
2045 drop:
2046 ndev->stats.tx_dropped++;
2047 dev_kfree_skb_any(skb);
2049 return NET_XMIT_DROP;
2052 static inline bool wil_need_txstat(struct sk_buff *skb)
2054 struct ethhdr *eth = (void *)skb->data;
2056 return is_unicast_ether_addr(eth->h_dest) && skb->sk &&
2057 (skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS);
2060 static inline void wil_consume_skb(struct sk_buff *skb, bool acked)
2062 if (unlikely(wil_need_txstat(skb)))
2063 skb_complete_wifi_ack(skb, acked);
2064 else
2065 acked ? dev_consume_skb_any(skb) : dev_kfree_skb_any(skb);
2069 * Clean up transmitted skb's from the Tx VRING
2071 * Return number of descriptors cleared
2073 * Safe to call from IRQ
2075 int wil_tx_complete(struct wil6210_priv *wil, int ringid)
2077 struct net_device *ndev = wil_to_ndev(wil);
2078 struct device *dev = wil_to_dev(wil);
2079 struct vring *vring = &wil->vring_tx[ringid];
2080 struct vring_tx_data *txdata = &wil->vring_tx_data[ringid];
2081 int done = 0;
2082 int cid = wil->vring2cid_tid[ringid][0];
2083 struct wil_net_stats *stats = NULL;
2084 volatile struct vring_tx_desc *_d;
2085 int used_before_complete;
2086 int used_new;
2088 if (unlikely(!vring->va)) {
2089 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2090 return 0;
2093 if (unlikely(!txdata->enabled)) {
2094 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2095 return 0;
2098 wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2100 used_before_complete = wil_vring_used_tx(vring);
2102 if (cid < WIL6210_MAX_CID)
2103 stats = &wil->sta[cid].stats;
2105 while (!wil_vring_is_empty(vring)) {
2106 int new_swtail;
2107 struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2109 * For the fragmented skb, HW will set DU bit only for the
2110 * last fragment. look for it.
2111 * In TSO the first DU will include hdr desc
2113 int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2114 /* TODO: check we are not past head */
2116 _d = &vring->va[lf].tx;
2117 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2118 break;
2120 new_swtail = (lf + 1) % vring->size;
2121 while (vring->swtail != new_swtail) {
2122 struct vring_tx_desc dd, *d = &dd;
2123 u16 dmalen;
2124 struct sk_buff *skb;
2126 ctx = &vring->ctx[vring->swtail];
2127 skb = ctx->skb;
2128 _d = &vring->va[vring->swtail].tx;
2130 *d = *_d;
2132 dmalen = le16_to_cpu(d->dma.length);
2133 trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2134 d->dma.error);
2135 wil_dbg_txrx(wil,
2136 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2137 ringid, vring->swtail, dmalen,
2138 d->dma.status, d->dma.error);
2139 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2140 (const void *)d, sizeof(*d), false);
2142 wil_txdesc_unmap(dev, d, ctx);
2144 if (skb) {
2145 if (likely(d->dma.error == 0)) {
2146 ndev->stats.tx_packets++;
2147 ndev->stats.tx_bytes += skb->len;
2148 if (stats) {
2149 stats->tx_packets++;
2150 stats->tx_bytes += skb->len;
2152 } else {
2153 ndev->stats.tx_errors++;
2154 if (stats)
2155 stats->tx_errors++;
2157 wil_consume_skb(skb, d->dma.error == 0);
2159 memset(ctx, 0, sizeof(*ctx));
2160 /* Make sure the ctx is zeroed before updating the tail
2161 * to prevent a case where wil_tx_vring will see
2162 * this descriptor as used and handle it before ctx zero
2163 * is completed.
2165 wmb();
2166 /* There is no need to touch HW descriptor:
2167 * - ststus bit TX_DMA_STATUS_DU is set by design,
2168 * so hardware will not try to process this desc.,
2169 * - rest of descriptor will be initialized on Tx.
2171 vring->swtail = wil_vring_next_tail(vring);
2172 done++;
2176 /* performance monitoring */
2177 used_new = wil_vring_used_tx(vring);
2178 if (wil_val_in_range(wil->vring_idle_trsh,
2179 used_new, used_before_complete)) {
2180 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2181 ringid, used_before_complete, used_new);
2182 txdata->last_idle = get_cycles();
2185 /* shall we wake net queues? */
2186 if (done)
2187 wil_update_net_queues(wil, vring, false);
2189 return done;