1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of version 2 of the GNU General Public License as
14 * published by the Free Software Foundation.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
26 * The full GNU General Public License is included in this distribution
27 * in the file called COPYING.
29 * Contact Information:
30 * Intel Linux Wireless <linuxwifi@intel.com>
31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38 * All rights reserved.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
44 * * Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * * Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in
48 * the documentation and/or other materials provided with the
50 * * Neither the name Intel Corporation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *****************************************************************************/
66 #include <linux/types.h>
67 #include <linux/slab.h>
68 #include <linux/export.h>
69 #include <linux/etherdevice.h>
70 #include <linux/pci.h>
73 #include "iwl-modparams.h"
74 #include "iwl-nvm-parse.h"
80 /* NVM offsets (in words) definitions */
82 /* NVM HW-Section offset (in words) definitions */
86 /* NVM SW-Section offset (in words) definitions */
87 NVM_SW_SECTION
= 0x1C0,
92 NVM_CHANNELS
= 0x1E0 - NVM_SW_SECTION
,
94 /* NVM calibration section offset (in words) definitions */
95 NVM_CALIB_SECTION
= 0x2B8,
96 XTAL_CALIB
= 0x316 - NVM_CALIB_SECTION
,
98 /* NVM REGULATORY -Section offset (in words) definitions */
102 enum ext_nvm_offsets
{
103 /* NVM HW-Section offset (in words) definitions */
104 MAC_ADDRESS_OVERRIDE_EXT_NVM
= 1,
106 /* NVM SW-Section offset (in words) definitions */
107 NVM_VERSION_EXT_NVM
= 0,
108 RADIO_CFG_FAMILY_EXT_NVM
= 0,
110 N_HW_ADDRS_FAMILY_8000
= 3,
112 /* NVM REGULATORY -Section offset (in words) definitions */
113 NVM_CHANNELS_EXTENDED
= 0,
114 NVM_LAR_OFFSET_OLD
= 0x4C7,
115 NVM_LAR_OFFSET
= 0x507,
116 NVM_LAR_ENABLED
= 0x7,
119 /* SKU Capabilities (actual values from NVM definition) */
121 NVM_SKU_CAP_BAND_24GHZ
= BIT(0),
122 NVM_SKU_CAP_BAND_52GHZ
= BIT(1),
123 NVM_SKU_CAP_11N_ENABLE
= BIT(2),
124 NVM_SKU_CAP_11AC_ENABLE
= BIT(3),
125 NVM_SKU_CAP_MIMO_DISABLE
= BIT(5),
129 * These are the channel numbers in the order that they are stored in the NVM
131 static const u8 iwl_nvm_channels
[] = {
133 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
135 36, 40, 44 , 48, 52, 56, 60, 64,
136 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
137 149, 153, 157, 161, 165
140 static const u8 iwl_ext_nvm_channels
[] = {
142 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
144 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
145 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
146 149, 153, 157, 161, 165, 169, 173, 177, 181
149 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
150 #define IWL_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
151 #define NUM_2GHZ_CHANNELS 14
152 #define NUM_2GHZ_CHANNELS_EXT 14
153 #define FIRST_2GHZ_HT_MINUS 5
154 #define LAST_2GHZ_HT_PLUS 9
155 #define LAST_5GHZ_HT 165
156 #define LAST_5GHZ_HT_FAMILY_8000 181
157 #define N_HW_ADDR_MASK 0xF
159 /* rate data (static) */
160 static struct ieee80211_rate iwl_cfg80211_rates
[] = {
161 { .bitrate
= 1 * 10, .hw_value
= 0, .hw_value_short
= 0, },
162 { .bitrate
= 2 * 10, .hw_value
= 1, .hw_value_short
= 1,
163 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
, },
164 { .bitrate
= 5.5 * 10, .hw_value
= 2, .hw_value_short
= 2,
165 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
, },
166 { .bitrate
= 11 * 10, .hw_value
= 3, .hw_value_short
= 3,
167 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
, },
168 { .bitrate
= 6 * 10, .hw_value
= 4, .hw_value_short
= 4, },
169 { .bitrate
= 9 * 10, .hw_value
= 5, .hw_value_short
= 5, },
170 { .bitrate
= 12 * 10, .hw_value
= 6, .hw_value_short
= 6, },
171 { .bitrate
= 18 * 10, .hw_value
= 7, .hw_value_short
= 7, },
172 { .bitrate
= 24 * 10, .hw_value
= 8, .hw_value_short
= 8, },
173 { .bitrate
= 36 * 10, .hw_value
= 9, .hw_value_short
= 9, },
174 { .bitrate
= 48 * 10, .hw_value
= 10, .hw_value_short
= 10, },
175 { .bitrate
= 54 * 10, .hw_value
= 11, .hw_value_short
= 11, },
177 #define RATES_24_OFFS 0
178 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
179 #define RATES_52_OFFS 4
180 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
183 * enum iwl_nvm_channel_flags - channel flags in NVM
184 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
185 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
186 * @NVM_CHANNEL_ACTIVE: active scanning allowed
187 * @NVM_CHANNEL_RADAR: radar detection required
188 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
189 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
190 * on same channel on 2.4 or same UNII band on 5.2
191 * @NVM_CHANNEL_UNIFORM: uniform spreading required
192 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
193 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
194 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
195 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
196 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
198 enum iwl_nvm_channel_flags
{
199 NVM_CHANNEL_VALID
= BIT(0),
200 NVM_CHANNEL_IBSS
= BIT(1),
201 NVM_CHANNEL_ACTIVE
= BIT(3),
202 NVM_CHANNEL_RADAR
= BIT(4),
203 NVM_CHANNEL_INDOOR_ONLY
= BIT(5),
204 NVM_CHANNEL_GO_CONCURRENT
= BIT(6),
205 NVM_CHANNEL_UNIFORM
= BIT(7),
206 NVM_CHANNEL_20MHZ
= BIT(8),
207 NVM_CHANNEL_40MHZ
= BIT(9),
208 NVM_CHANNEL_80MHZ
= BIT(10),
209 NVM_CHANNEL_160MHZ
= BIT(11),
210 NVM_CHANNEL_DC_HIGH
= BIT(12),
213 static inline void iwl_nvm_print_channel_flags(struct device
*dev
, u32 level
,
216 #define CHECK_AND_PRINT_I(x) \
217 ((flags & NVM_CHANNEL_##x) ? " " #x : "")
219 if (!(flags
& NVM_CHANNEL_VALID
)) {
220 IWL_DEBUG_DEV(dev
, level
, "Ch. %d: 0x%x: No traffic\n",
225 /* Note: already can print up to 101 characters, 110 is the limit! */
226 IWL_DEBUG_DEV(dev
, level
,
227 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
229 CHECK_AND_PRINT_I(VALID
),
230 CHECK_AND_PRINT_I(IBSS
),
231 CHECK_AND_PRINT_I(ACTIVE
),
232 CHECK_AND_PRINT_I(RADAR
),
233 CHECK_AND_PRINT_I(INDOOR_ONLY
),
234 CHECK_AND_PRINT_I(GO_CONCURRENT
),
235 CHECK_AND_PRINT_I(UNIFORM
),
236 CHECK_AND_PRINT_I(20MHZ
),
237 CHECK_AND_PRINT_I(40MHZ
),
238 CHECK_AND_PRINT_I(80MHZ
),
239 CHECK_AND_PRINT_I(160MHZ
),
240 CHECK_AND_PRINT_I(DC_HIGH
));
241 #undef CHECK_AND_PRINT_I
244 static u32
iwl_get_channel_flags(u8 ch_num
, int ch_idx
, bool is_5ghz
,
245 u16 nvm_flags
, const struct iwl_cfg
*cfg
)
247 u32 flags
= IEEE80211_CHAN_NO_HT40
;
248 u32 last_5ghz_ht
= LAST_5GHZ_HT
;
250 if (cfg
->nvm_type
== IWL_NVM_EXT
)
251 last_5ghz_ht
= LAST_5GHZ_HT_FAMILY_8000
;
253 if (!is_5ghz
&& (nvm_flags
& NVM_CHANNEL_40MHZ
)) {
254 if (ch_num
<= LAST_2GHZ_HT_PLUS
)
255 flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
256 if (ch_num
>= FIRST_2GHZ_HT_MINUS
)
257 flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
258 } else if (ch_num
<= last_5ghz_ht
&& (nvm_flags
& NVM_CHANNEL_40MHZ
)) {
259 if ((ch_idx
- NUM_2GHZ_CHANNELS
) % 2 == 0)
260 flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
262 flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
264 if (!(nvm_flags
& NVM_CHANNEL_80MHZ
))
265 flags
|= IEEE80211_CHAN_NO_80MHZ
;
266 if (!(nvm_flags
& NVM_CHANNEL_160MHZ
))
267 flags
|= IEEE80211_CHAN_NO_160MHZ
;
269 if (!(nvm_flags
& NVM_CHANNEL_IBSS
))
270 flags
|= IEEE80211_CHAN_NO_IR
;
272 if (!(nvm_flags
& NVM_CHANNEL_ACTIVE
))
273 flags
|= IEEE80211_CHAN_NO_IR
;
275 if (nvm_flags
& NVM_CHANNEL_RADAR
)
276 flags
|= IEEE80211_CHAN_RADAR
;
278 if (nvm_flags
& NVM_CHANNEL_INDOOR_ONLY
)
279 flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
281 /* Set the GO concurrent flag only in case that NO_IR is set.
282 * Otherwise it is meaningless
284 if ((nvm_flags
& NVM_CHANNEL_GO_CONCURRENT
) &&
285 (flags
& IEEE80211_CHAN_NO_IR
))
286 flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
291 static int iwl_init_channel_map(struct device
*dev
, const struct iwl_cfg
*cfg
,
292 struct iwl_nvm_data
*data
,
293 const __le16
* const nvm_ch_flags
,
294 bool lar_supported
, bool no_wide_in_5ghz
)
298 struct ieee80211_channel
*channel
;
300 int num_of_ch
, num_2ghz_channels
;
303 if (cfg
->nvm_type
!= IWL_NVM_EXT
) {
304 num_of_ch
= IWL_NUM_CHANNELS
;
305 nvm_chan
= &iwl_nvm_channels
[0];
306 num_2ghz_channels
= NUM_2GHZ_CHANNELS
;
308 num_of_ch
= IWL_NUM_CHANNELS_EXT
;
309 nvm_chan
= &iwl_ext_nvm_channels
[0];
310 num_2ghz_channels
= NUM_2GHZ_CHANNELS_EXT
;
313 for (ch_idx
= 0; ch_idx
< num_of_ch
; ch_idx
++) {
314 bool is_5ghz
= (ch_idx
>= num_2ghz_channels
);
316 ch_flags
= __le16_to_cpup(nvm_ch_flags
+ ch_idx
);
318 if (is_5ghz
&& !data
->sku_cap_band_52GHz_enable
)
321 /* workaround to disable wide channels in 5GHz */
322 if (no_wide_in_5ghz
&& is_5ghz
) {
323 ch_flags
&= ~(NVM_CHANNEL_40MHZ
|
328 if (ch_flags
& NVM_CHANNEL_160MHZ
)
329 data
->vht160_supported
= true;
331 if (!lar_supported
&& !(ch_flags
& NVM_CHANNEL_VALID
)) {
333 * Channels might become valid later if lar is
334 * supported, hence we still want to add them to
335 * the list of supported channels to cfg80211.
337 iwl_nvm_print_channel_flags(dev
, IWL_DL_EEPROM
,
338 nvm_chan
[ch_idx
], ch_flags
);
342 channel
= &data
->channels
[n_channels
];
345 channel
->hw_value
= nvm_chan
[ch_idx
];
346 channel
->band
= is_5ghz
?
347 NL80211_BAND_5GHZ
: NL80211_BAND_2GHZ
;
348 channel
->center_freq
=
349 ieee80211_channel_to_frequency(
350 channel
->hw_value
, channel
->band
);
352 /* Initialize regulatory-based run-time data */
355 * Default value - highest tx power value. max_power
356 * is not used in mvm, and is used for backwards compatibility
358 channel
->max_power
= IWL_DEFAULT_MAX_TX_POWER
;
360 /* don't put limitations in case we're using LAR */
362 channel
->flags
= iwl_get_channel_flags(nvm_chan
[ch_idx
],
368 iwl_nvm_print_channel_flags(dev
, IWL_DL_EEPROM
,
369 channel
->hw_value
, ch_flags
);
370 IWL_DEBUG_EEPROM(dev
, "Ch. %d: %ddBm\n",
371 channel
->hw_value
, channel
->max_power
);
377 static void iwl_init_vht_hw_capab(const struct iwl_cfg
*cfg
,
378 struct iwl_nvm_data
*data
,
379 struct ieee80211_sta_vht_cap
*vht_cap
,
380 u8 tx_chains
, u8 rx_chains
)
382 int num_rx_ants
= num_of_ant(rx_chains
);
383 int num_tx_ants
= num_of_ant(tx_chains
);
384 unsigned int max_ampdu_exponent
= (cfg
->max_vht_ampdu_exponent
?:
385 IEEE80211_VHT_MAX_AMPDU_1024K
);
387 vht_cap
->vht_supported
= true;
389 vht_cap
->cap
= IEEE80211_VHT_CAP_SHORT_GI_80
|
390 IEEE80211_VHT_CAP_RXSTBC_1
|
391 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE
|
392 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT
|
393 max_ampdu_exponent
<<
394 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT
;
396 if (data
->vht160_supported
)
397 vht_cap
->cap
|= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ
|
398 IEEE80211_VHT_CAP_SHORT_GI_160
;
400 if (cfg
->vht_mu_mimo_supported
)
401 vht_cap
->cap
|= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE
;
403 if (cfg
->ht_params
->ldpc
)
404 vht_cap
->cap
|= IEEE80211_VHT_CAP_RXLDPC
;
406 if (data
->sku_cap_mimo_disabled
) {
412 vht_cap
->cap
|= IEEE80211_VHT_CAP_TXSTBC
;
414 vht_cap
->cap
|= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN
;
416 switch (iwlwifi_mod_params
.amsdu_size
) {
418 if (cfg
->mq_rx_supported
)
420 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454
;
422 vht_cap
->cap
|= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895
;
425 vht_cap
->cap
|= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895
;
428 vht_cap
->cap
|= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991
;
431 vht_cap
->cap
|= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454
;
437 vht_cap
->vht_mcs
.rx_mcs_map
=
438 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9
<< 0 |
439 IEEE80211_VHT_MCS_SUPPORT_0_9
<< 2 |
440 IEEE80211_VHT_MCS_NOT_SUPPORTED
<< 4 |
441 IEEE80211_VHT_MCS_NOT_SUPPORTED
<< 6 |
442 IEEE80211_VHT_MCS_NOT_SUPPORTED
<< 8 |
443 IEEE80211_VHT_MCS_NOT_SUPPORTED
<< 10 |
444 IEEE80211_VHT_MCS_NOT_SUPPORTED
<< 12 |
445 IEEE80211_VHT_MCS_NOT_SUPPORTED
<< 14);
447 if (num_rx_ants
== 1 || cfg
->rx_with_siso_diversity
) {
448 vht_cap
->cap
|= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN
;
449 /* this works because NOT_SUPPORTED == 3 */
450 vht_cap
->vht_mcs
.rx_mcs_map
|=
451 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED
<< 2);
454 vht_cap
->vht_mcs
.tx_mcs_map
= vht_cap
->vht_mcs
.rx_mcs_map
;
457 void iwl_init_sbands(struct device
*dev
, const struct iwl_cfg
*cfg
,
458 struct iwl_nvm_data
*data
, const __le16
*nvm_ch_flags
,
459 u8 tx_chains
, u8 rx_chains
, bool lar_supported
,
460 bool no_wide_in_5ghz
)
464 struct ieee80211_supported_band
*sband
;
466 n_channels
= iwl_init_channel_map(dev
, cfg
, data
, nvm_ch_flags
,
467 lar_supported
, no_wide_in_5ghz
);
468 sband
= &data
->bands
[NL80211_BAND_2GHZ
];
469 sband
->band
= NL80211_BAND_2GHZ
;
470 sband
->bitrates
= &iwl_cfg80211_rates
[RATES_24_OFFS
];
471 sband
->n_bitrates
= N_RATES_24
;
472 n_used
+= iwl_init_sband_channels(data
, sband
, n_channels
,
474 iwl_init_ht_hw_capab(cfg
, data
, &sband
->ht_cap
, NL80211_BAND_2GHZ
,
475 tx_chains
, rx_chains
);
477 sband
= &data
->bands
[NL80211_BAND_5GHZ
];
478 sband
->band
= NL80211_BAND_5GHZ
;
479 sband
->bitrates
= &iwl_cfg80211_rates
[RATES_52_OFFS
];
480 sband
->n_bitrates
= N_RATES_52
;
481 n_used
+= iwl_init_sband_channels(data
, sband
, n_channels
,
483 iwl_init_ht_hw_capab(cfg
, data
, &sband
->ht_cap
, NL80211_BAND_5GHZ
,
484 tx_chains
, rx_chains
);
485 if (data
->sku_cap_11ac_enable
&& !iwlwifi_mod_params
.disable_11ac
)
486 iwl_init_vht_hw_capab(cfg
, data
, &sband
->vht_cap
,
487 tx_chains
, rx_chains
);
489 if (n_channels
!= n_used
)
490 IWL_ERR_DEV(dev
, "NVM: used only %d of %d channels\n",
493 IWL_EXPORT_SYMBOL(iwl_init_sbands
);
495 static int iwl_get_sku(const struct iwl_cfg
*cfg
, const __le16
*nvm_sw
,
496 const __le16
*phy_sku
)
498 if (cfg
->nvm_type
!= IWL_NVM_EXT
)
499 return le16_to_cpup(nvm_sw
+ SKU
);
501 return le32_to_cpup((__le32
*)(phy_sku
+ SKU_FAMILY_8000
));
504 static int iwl_get_nvm_version(const struct iwl_cfg
*cfg
, const __le16
*nvm_sw
)
506 if (cfg
->nvm_type
!= IWL_NVM_EXT
)
507 return le16_to_cpup(nvm_sw
+ NVM_VERSION
);
509 return le32_to_cpup((__le32
*)(nvm_sw
+
510 NVM_VERSION_EXT_NVM
));
513 static int iwl_get_radio_cfg(const struct iwl_cfg
*cfg
, const __le16
*nvm_sw
,
514 const __le16
*phy_sku
)
516 if (cfg
->nvm_type
!= IWL_NVM_EXT
)
517 return le16_to_cpup(nvm_sw
+ RADIO_CFG
);
519 return le32_to_cpup((__le32
*)(phy_sku
+ RADIO_CFG_FAMILY_EXT_NVM
));
523 static int iwl_get_n_hw_addrs(const struct iwl_cfg
*cfg
, const __le16
*nvm_sw
)
527 if (cfg
->nvm_type
!= IWL_NVM_EXT
)
528 return le16_to_cpup(nvm_sw
+ N_HW_ADDRS
);
530 n_hw_addr
= le32_to_cpup((__le32
*)(nvm_sw
+ N_HW_ADDRS_FAMILY_8000
));
532 return n_hw_addr
& N_HW_ADDR_MASK
;
535 static void iwl_set_radio_cfg(const struct iwl_cfg
*cfg
,
536 struct iwl_nvm_data
*data
,
539 if (cfg
->nvm_type
!= IWL_NVM_EXT
) {
540 data
->radio_cfg_type
= NVM_RF_CFG_TYPE_MSK(radio_cfg
);
541 data
->radio_cfg_step
= NVM_RF_CFG_STEP_MSK(radio_cfg
);
542 data
->radio_cfg_dash
= NVM_RF_CFG_DASH_MSK(radio_cfg
);
543 data
->radio_cfg_pnum
= NVM_RF_CFG_PNUM_MSK(radio_cfg
);
547 /* set the radio configuration for family 8000 */
548 data
->radio_cfg_type
= EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg
);
549 data
->radio_cfg_step
= EXT_NVM_RF_CFG_STEP_MSK(radio_cfg
);
550 data
->radio_cfg_dash
= EXT_NVM_RF_CFG_DASH_MSK(radio_cfg
);
551 data
->radio_cfg_pnum
= EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg
);
552 data
->valid_tx_ant
= EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg
);
553 data
->valid_rx_ant
= EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg
);
556 static void iwl_flip_hw_address(__le32 mac_addr0
, __le32 mac_addr1
, u8
*dest
)
560 hw_addr
= (const u8
*)&mac_addr0
;
561 dest
[0] = hw_addr
[3];
562 dest
[1] = hw_addr
[2];
563 dest
[2] = hw_addr
[1];
564 dest
[3] = hw_addr
[0];
566 hw_addr
= (const u8
*)&mac_addr1
;
567 dest
[4] = hw_addr
[1];
568 dest
[5] = hw_addr
[0];
571 void iwl_set_hw_address_from_csr(struct iwl_trans
*trans
,
572 struct iwl_nvm_data
*data
)
574 __le32 mac_addr0
= cpu_to_le32(iwl_read32(trans
, CSR_MAC_ADDR0_STRAP
));
575 __le32 mac_addr1
= cpu_to_le32(iwl_read32(trans
, CSR_MAC_ADDR1_STRAP
));
577 iwl_flip_hw_address(mac_addr0
, mac_addr1
, data
->hw_addr
);
579 * If the OEM fused a valid address, use it instead of the one in the
582 if (is_valid_ether_addr(data
->hw_addr
))
585 mac_addr0
= cpu_to_le32(iwl_read32(trans
, CSR_MAC_ADDR0_OTP
));
586 mac_addr1
= cpu_to_le32(iwl_read32(trans
, CSR_MAC_ADDR1_OTP
));
588 iwl_flip_hw_address(mac_addr0
, mac_addr1
, data
->hw_addr
);
590 IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr
);
592 static void iwl_set_hw_address_family_8000(struct iwl_trans
*trans
,
593 const struct iwl_cfg
*cfg
,
594 struct iwl_nvm_data
*data
,
595 const __le16
*mac_override
,
596 const __be16
*nvm_hw
)
601 static const u8 reserved_mac
[] = {
602 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
605 hw_addr
= (const u8
*)(mac_override
+
606 MAC_ADDRESS_OVERRIDE_EXT_NVM
);
609 * Store the MAC address from MAO section.
610 * No byte swapping is required in MAO section
612 memcpy(data
->hw_addr
, hw_addr
, ETH_ALEN
);
615 * Force the use of the OTP MAC address in case of reserved MAC
616 * address in the NVM, or if address is given but invalid.
618 if (is_valid_ether_addr(data
->hw_addr
) &&
619 memcmp(reserved_mac
, hw_addr
, ETH_ALEN
) != 0)
623 "mac address from nvm override section is not valid\n");
627 /* read the mac address from WFMP registers */
628 __le32 mac_addr0
= cpu_to_le32(iwl_trans_read_prph(trans
,
630 __le32 mac_addr1
= cpu_to_le32(iwl_trans_read_prph(trans
,
633 iwl_flip_hw_address(mac_addr0
, mac_addr1
, data
->hw_addr
);
638 IWL_ERR(trans
, "mac address is not found\n");
641 static int iwl_set_hw_address(struct iwl_trans
*trans
,
642 const struct iwl_cfg
*cfg
,
643 struct iwl_nvm_data
*data
, const __be16
*nvm_hw
,
644 const __le16
*mac_override
)
646 if (cfg
->mac_addr_from_csr
) {
647 iwl_set_hw_address_from_csr(trans
, data
);
648 } else if (cfg
->nvm_type
!= IWL_NVM_EXT
) {
649 const u8
*hw_addr
= (const u8
*)(nvm_hw
+ HW_ADDR
);
651 /* The byte order is little endian 16 bit, meaning 214365 */
652 data
->hw_addr
[0] = hw_addr
[1];
653 data
->hw_addr
[1] = hw_addr
[0];
654 data
->hw_addr
[2] = hw_addr
[3];
655 data
->hw_addr
[3] = hw_addr
[2];
656 data
->hw_addr
[4] = hw_addr
[5];
657 data
->hw_addr
[5] = hw_addr
[4];
659 iwl_set_hw_address_family_8000(trans
, cfg
, data
,
660 mac_override
, nvm_hw
);
663 if (!is_valid_ether_addr(data
->hw_addr
)) {
664 IWL_ERR(trans
, "no valid mac address was found\n");
668 IWL_INFO(trans
, "base HW address: %pM\n", data
->hw_addr
);
674 iwl_nvm_no_wide_in_5ghz(struct device
*dev
, const struct iwl_cfg
*cfg
,
675 const __be16
*nvm_hw
)
678 * Workaround a bug in Indonesia SKUs where the regulatory in
679 * some 7000-family OTPs erroneously allow wide channels in
680 * 5GHz. To check for Indonesia, we take the SKU value from
681 * bits 1-4 in the subsystem ID and check if it is either 5 or
682 * 9. In those cases, we need to force-disable wide channels
683 * in 5GHz otherwise the FW will throw a sysassert when we try
686 if (cfg
->device_family
== IWL_DEVICE_FAMILY_7000
) {
688 * Unlike the other sections in the NVM, the hw
689 * section uses big-endian.
691 u16 subsystem_id
= be16_to_cpup(nvm_hw
+ SUBSYSTEM_ID
);
692 u8 sku
= (subsystem_id
& 0x1e) >> 1;
694 if (sku
== 5 || sku
== 9) {
695 IWL_DEBUG_EEPROM(dev
,
696 "disabling wide channels in 5GHz (0x%0x %d)\n",
705 struct iwl_nvm_data
*
706 iwl_parse_nvm_data(struct iwl_trans
*trans
, const struct iwl_cfg
*cfg
,
707 const __be16
*nvm_hw
, const __le16
*nvm_sw
,
708 const __le16
*nvm_calib
, const __le16
*regulatory
,
709 const __le16
*mac_override
, const __le16
*phy_sku
,
710 u8 tx_chains
, u8 rx_chains
, bool lar_fw_supported
)
712 struct device
*dev
= trans
->dev
;
713 struct iwl_nvm_data
*data
;
715 bool no_wide_in_5ghz
= iwl_nvm_no_wide_in_5ghz(dev
, cfg
, nvm_hw
);
718 const __le16
*ch_section
;
720 if (cfg
->nvm_type
!= IWL_NVM_EXT
)
721 data
= kzalloc(sizeof(*data
) +
722 sizeof(struct ieee80211_channel
) *
726 data
= kzalloc(sizeof(*data
) +
727 sizeof(struct ieee80211_channel
) *
728 IWL_NUM_CHANNELS_EXT
,
733 data
->nvm_version
= iwl_get_nvm_version(cfg
, nvm_sw
);
735 radio_cfg
= iwl_get_radio_cfg(cfg
, nvm_sw
, phy_sku
);
736 iwl_set_radio_cfg(cfg
, data
, radio_cfg
);
737 if (data
->valid_tx_ant
)
738 tx_chains
&= data
->valid_tx_ant
;
739 if (data
->valid_rx_ant
)
740 rx_chains
&= data
->valid_rx_ant
;
742 sku
= iwl_get_sku(cfg
, nvm_sw
, phy_sku
);
743 data
->sku_cap_band_24GHz_enable
= sku
& NVM_SKU_CAP_BAND_24GHZ
;
744 data
->sku_cap_band_52GHz_enable
= sku
& NVM_SKU_CAP_BAND_52GHZ
;
745 data
->sku_cap_11n_enable
= sku
& NVM_SKU_CAP_11N_ENABLE
;
746 if (iwlwifi_mod_params
.disable_11n
& IWL_DISABLE_HT_ALL
)
747 data
->sku_cap_11n_enable
= false;
748 data
->sku_cap_11ac_enable
= data
->sku_cap_11n_enable
&&
749 (sku
& NVM_SKU_CAP_11AC_ENABLE
);
750 data
->sku_cap_mimo_disabled
= sku
& NVM_SKU_CAP_MIMO_DISABLE
;
752 data
->n_hw_addrs
= iwl_get_n_hw_addrs(cfg
, nvm_sw
);
754 if (cfg
->nvm_type
!= IWL_NVM_EXT
) {
755 /* Checking for required sections */
758 "Can't parse empty Calib NVM sections\n");
763 ch_section
= cfg
->nvm_type
== IWL_NVM_SDP
?
764 ®ulatory
[NVM_CHANNELS_SDP
] :
765 &nvm_sw
[NVM_CHANNELS
];
767 /* in family 8000 Xtal calibration values moved to OTP */
768 data
->xtal_calib
[0] = *(nvm_calib
+ XTAL_CALIB
);
769 data
->xtal_calib
[1] = *(nvm_calib
+ XTAL_CALIB
+ 1);
772 u16 lar_offset
= data
->nvm_version
< 0xE39 ?
776 lar_config
= le16_to_cpup(regulatory
+ lar_offset
);
777 data
->lar_enabled
= !!(lar_config
&
779 lar_enabled
= data
->lar_enabled
;
780 ch_section
= ®ulatory
[NVM_CHANNELS_EXTENDED
];
783 /* If no valid mac address was found - bail out */
784 if (iwl_set_hw_address(trans
, cfg
, data
, nvm_hw
, mac_override
)) {
789 iwl_init_sbands(dev
, cfg
, data
, ch_section
, tx_chains
, rx_chains
,
790 lar_fw_supported
&& lar_enabled
, no_wide_in_5ghz
);
791 data
->calib_version
= 255;
795 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data
);
797 static u32
iwl_nvm_get_regdom_bw_flags(const u8
*nvm_chan
,
798 int ch_idx
, u16 nvm_flags
,
799 const struct iwl_cfg
*cfg
)
801 u32 flags
= NL80211_RRF_NO_HT40
;
802 u32 last_5ghz_ht
= LAST_5GHZ_HT
;
804 if (cfg
->nvm_type
== IWL_NVM_EXT
)
805 last_5ghz_ht
= LAST_5GHZ_HT_FAMILY_8000
;
807 if (ch_idx
< NUM_2GHZ_CHANNELS
&&
808 (nvm_flags
& NVM_CHANNEL_40MHZ
)) {
809 if (nvm_chan
[ch_idx
] <= LAST_2GHZ_HT_PLUS
)
810 flags
&= ~NL80211_RRF_NO_HT40PLUS
;
811 if (nvm_chan
[ch_idx
] >= FIRST_2GHZ_HT_MINUS
)
812 flags
&= ~NL80211_RRF_NO_HT40MINUS
;
813 } else if (nvm_chan
[ch_idx
] <= last_5ghz_ht
&&
814 (nvm_flags
& NVM_CHANNEL_40MHZ
)) {
815 if ((ch_idx
- NUM_2GHZ_CHANNELS
) % 2 == 0)
816 flags
&= ~NL80211_RRF_NO_HT40PLUS
;
818 flags
&= ~NL80211_RRF_NO_HT40MINUS
;
821 if (!(nvm_flags
& NVM_CHANNEL_80MHZ
))
822 flags
|= NL80211_RRF_NO_80MHZ
;
823 if (!(nvm_flags
& NVM_CHANNEL_160MHZ
))
824 flags
|= NL80211_RRF_NO_160MHZ
;
826 if (!(nvm_flags
& NVM_CHANNEL_ACTIVE
))
827 flags
|= NL80211_RRF_NO_IR
;
829 if (nvm_flags
& NVM_CHANNEL_RADAR
)
830 flags
|= NL80211_RRF_DFS
;
832 if (nvm_flags
& NVM_CHANNEL_INDOOR_ONLY
)
833 flags
|= NL80211_RRF_NO_OUTDOOR
;
835 /* Set the GO concurrent flag only in case that NO_IR is set.
836 * Otherwise it is meaningless
838 if ((nvm_flags
& NVM_CHANNEL_GO_CONCURRENT
) &&
839 (flags
& NL80211_RRF_NO_IR
))
840 flags
|= NL80211_RRF_GO_CONCURRENT
;
845 struct ieee80211_regdomain
*
846 iwl_parse_nvm_mcc_info(struct device
*dev
, const struct iwl_cfg
*cfg
,
847 int num_of_ch
, __le32
*channels
, u16 fw_mcc
)
851 u32 reg_rule_flags
, prev_reg_rule_flags
= 0;
852 const u8
*nvm_chan
= cfg
->nvm_type
== IWL_NVM_EXT
?
853 iwl_ext_nvm_channels
: iwl_nvm_channels
;
854 struct ieee80211_regdomain
*regd
;
856 struct ieee80211_reg_rule
*rule
;
857 enum nl80211_band band
;
858 int center_freq
, prev_center_freq
= 0;
861 int max_num_ch
= cfg
->nvm_type
== IWL_NVM_EXT
?
862 IWL_NUM_CHANNELS_EXT
: IWL_NUM_CHANNELS
;
864 if (WARN_ON_ONCE(num_of_ch
> NL80211_MAX_SUPP_REG_RULES
))
865 return ERR_PTR(-EINVAL
);
867 if (WARN_ON(num_of_ch
> max_num_ch
))
868 num_of_ch
= max_num_ch
;
870 IWL_DEBUG_DEV(dev
, IWL_DL_LAR
, "building regdom for %d channels\n",
873 /* build a regdomain rule for every valid channel */
875 sizeof(struct ieee80211_regdomain
) +
876 num_of_ch
* sizeof(struct ieee80211_reg_rule
);
878 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
880 return ERR_PTR(-ENOMEM
);
882 for (ch_idx
= 0; ch_idx
< num_of_ch
; ch_idx
++) {
883 ch_flags
= (u16
)__le32_to_cpup(channels
+ ch_idx
);
884 band
= (ch_idx
< NUM_2GHZ_CHANNELS
) ?
885 NL80211_BAND_2GHZ
: NL80211_BAND_5GHZ
;
886 center_freq
= ieee80211_channel_to_frequency(nvm_chan
[ch_idx
],
890 if (!(ch_flags
& NVM_CHANNEL_VALID
)) {
891 iwl_nvm_print_channel_flags(dev
, IWL_DL_LAR
,
892 nvm_chan
[ch_idx
], ch_flags
);
896 reg_rule_flags
= iwl_nvm_get_regdom_bw_flags(nvm_chan
, ch_idx
,
899 /* we can't continue the same rule */
900 if (ch_idx
== 0 || prev_reg_rule_flags
!= reg_rule_flags
||
901 center_freq
- prev_center_freq
> 20) {
906 rule
= ®d
->reg_rules
[valid_rules
- 1];
909 rule
->freq_range
.start_freq_khz
=
910 MHZ_TO_KHZ(center_freq
- 10);
912 rule
->freq_range
.end_freq_khz
= MHZ_TO_KHZ(center_freq
+ 10);
914 /* this doesn't matter - not used by FW */
915 rule
->power_rule
.max_antenna_gain
= DBI_TO_MBI(6);
916 rule
->power_rule
.max_eirp
=
917 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER
);
919 rule
->flags
= reg_rule_flags
;
921 /* rely on auto-calculation to merge BW of contiguous chans */
922 rule
->flags
|= NL80211_RRF_AUTO_BW
;
923 rule
->freq_range
.max_bandwidth_khz
= 0;
925 prev_center_freq
= center_freq
;
926 prev_reg_rule_flags
= reg_rule_flags
;
928 iwl_nvm_print_channel_flags(dev
, IWL_DL_LAR
,
929 nvm_chan
[ch_idx
], ch_flags
);
932 regd
->n_reg_rules
= valid_rules
;
934 /* set alpha2 from FW. */
935 regd
->alpha2
[0] = fw_mcc
>> 8;
936 regd
->alpha2
[1] = fw_mcc
& 0xff;
940 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info
);