1 /******************************************************************************
3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
7 * Portions of this file are derived from the ipw3945 project, as well
8 * as portions of the ieee80211 subsystem header files.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
23 * The full GNU General Public License is included in this distribution in the
24 * file called LICENSE.
26 * Contact Information:
27 * Intel Linux Wireless <linuxwifi@intel.com>
28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
38 #include "iwl-op-mode.h"
40 /******************************************************************************
44 ******************************************************************************/
47 * Rx theory of operation
49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50 * each of which point to Receive Buffers to be filled by the NIC. These get
51 * used not only for Rx frames, but for any command response or notification
52 * from the NIC. The driver and NIC manage the Rx buffers by means
53 * of indexes into the circular buffer.
56 * The host/firmware share two index registers for managing the Rx buffers.
58 * The READ index maps to the first position that the firmware may be writing
59 * to -- the driver can read up to (but not including) this position and get
61 * The READ index is managed by the firmware once the card is enabled.
63 * The WRITE index maps to the last position the driver has read from -- the
64 * position preceding WRITE is the last slot the firmware can place a packet.
66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
69 * During initialization, the host sets up the READ queue position to the first
70 * INDEX position, and WRITE to the last (READ - 1 wrapped)
72 * When the firmware places a packet in a buffer, it will advance the READ index
73 * and fire the RX interrupt. The driver can then query the READ index and
74 * process as many packets as possible, moving the WRITE index forward as it
75 * resets the Rx queue buffers with new memory.
77 * The management in the driver is as follows:
78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79 * When the interrupt handler is called, the request is processed.
80 * The page is either stolen - transferred to the upper layer
81 * or reused - added immediately to the iwl->rxq->rx_free list.
82 * + When the page is stolen - the driver updates the matching queue's used
83 * count, detaches the RBD and transfers it to the queue used list.
84 * When there are two used RBDs - they are transferred to the allocator empty
85 * list. Work is then scheduled for the allocator to start allocating
87 * When there are another 6 used RBDs - they are transferred to the allocator
88 * empty list and the driver tries to claim the pre-allocated buffers and
89 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
91 * When there are 8+ buffers in the free list - either from allocation or from
92 * 8 reused unstolen pages - restock is called to update the FW and indexes.
93 * + In order to make sure the allocator always has RBDs to use for allocation
94 * the allocator has initial pool in the size of num_queues*(8-2) - the
95 * maximum missing RBDs per allocation request (request posted with 2
96 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97 * The queues supplies the recycle of the rest of the RBDs.
98 * + A received packet is processed and handed to the kernel network stack,
99 * detached from the iwl->rxq. The driver 'processed' index is updated.
100 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102 * If there were enough free buffers and RX_STALLED is set it is cleared.
107 * iwl_rxq_alloc() Allocates rx_free
108 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
109 * iwl_pcie_rxq_restock.
110 * Used only during initialization.
111 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
112 * queue, updates firmware pointers, and updates
114 * iwl_pcie_rx_allocator() Background work for allocating pages.
116 * -- enable interrupts --
117 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
118 * READ INDEX, detaching the SKB from the pool.
119 * Moves the packet buffer from queue to rx_used.
120 * Posts and claims requests to the allocator.
121 * Calls iwl_pcie_rxq_restock to refill any empty
127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
129 * Regular Receive interrupt:
131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
134 * rxq.queue -> rxq.rx_free -> rxq.queue
140 * iwl_rxq_space - Return number of free slots available in queue.
142 static int iwl_rxq_space(const struct iwl_rxq
*rxq
)
144 /* Make sure rx queue size is a power of 2 */
145 WARN_ON(rxq
->queue_size
& (rxq
->queue_size
- 1));
148 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149 * between empty and completely full queues.
150 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151 * defined for negative dividends.
153 return (rxq
->read
- rxq
->write
- 1) & (rxq
->queue_size
- 1);
157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
159 static inline __le32
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr
)
161 return cpu_to_le32((u32
)(dma_addr
>> 8));
165 * iwl_pcie_rx_stop - stops the Rx DMA
167 int iwl_pcie_rx_stop(struct iwl_trans
*trans
)
169 if (trans
->cfg
->mq_rx_supported
) {
170 iwl_write_prph(trans
, RFH_RXF_DMA_CFG
, 0);
171 return iwl_poll_prph_bit(trans
, RFH_GEN_STATUS
,
172 RXF_DMA_IDLE
, RXF_DMA_IDLE
, 1000);
174 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
, 0);
175 return iwl_poll_direct_bit(trans
, FH_MEM_RSSR_RX_STATUS_REG
,
176 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE
,
182 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans
*trans
,
189 lockdep_assert_held(&rxq
->lock
);
192 * explicitly wake up the NIC if:
193 * 1. shadow registers aren't enabled
194 * 2. there is a chance that the NIC is asleep
196 if (!trans
->cfg
->base_params
->shadow_reg_enable
&&
197 test_bit(STATUS_TPOWER_PMI
, &trans
->status
)) {
198 reg
= iwl_read32(trans
, CSR_UCODE_DRV_GP1
);
200 if (reg
& CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP
) {
201 IWL_DEBUG_INFO(trans
, "Rx queue requesting wakeup, GP1 = 0x%x\n",
203 iwl_set_bit(trans
, CSR_GP_CNTRL
,
204 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ
);
205 rxq
->need_update
= true;
210 rxq
->write_actual
= round_down(rxq
->write
, 8);
211 if (trans
->cfg
->mq_rx_supported
)
212 iwl_write32(trans
, RFH_Q_FRBDCB_WIDX_TRG(rxq
->id
),
215 iwl_write32(trans
, FH_RSCSR_CHNL0_WPTR
, rxq
->write_actual
);
218 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans
*trans
)
220 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
223 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
224 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[i
];
226 if (!rxq
->need_update
)
228 spin_lock(&rxq
->lock
);
229 iwl_pcie_rxq_inc_wr_ptr(trans
, rxq
);
230 rxq
->need_update
= false;
231 spin_unlock(&rxq
->lock
);
236 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
238 static void iwl_pcie_rxmq_restock(struct iwl_trans
*trans
,
241 struct iwl_rx_mem_buffer
*rxb
;
244 * If the device isn't enabled - no need to try to add buffers...
245 * This can happen when we stop the device and still have an interrupt
246 * pending. We stop the APM before we sync the interrupts because we
247 * have to (see comment there). On the other hand, since the APM is
248 * stopped, we cannot access the HW (in particular not prph).
249 * So don't try to restock if the APM has been already stopped.
251 if (!test_bit(STATUS_DEVICE_ENABLED
, &trans
->status
))
254 spin_lock(&rxq
->lock
);
255 while (rxq
->free_count
) {
256 __le64
*bd
= (__le64
*)rxq
->bd
;
258 /* Get next free Rx buffer, remove from free list */
259 rxb
= list_first_entry(&rxq
->rx_free
, struct iwl_rx_mem_buffer
,
261 list_del(&rxb
->list
);
262 rxb
->invalid
= false;
263 /* 12 first bits are expected to be empty */
264 WARN_ON(rxb
->page_dma
& DMA_BIT_MASK(12));
265 /* Point to Rx buffer via next RBD in circular buffer */
266 bd
[rxq
->write
] = cpu_to_le64(rxb
->page_dma
| rxb
->vid
);
267 rxq
->write
= (rxq
->write
+ 1) & MQ_RX_TABLE_MASK
;
270 spin_unlock(&rxq
->lock
);
273 * If we've added more space for the firmware to place data, tell it.
274 * Increment device's write pointer in multiples of 8.
276 if (rxq
->write_actual
!= (rxq
->write
& ~0x7)) {
277 spin_lock(&rxq
->lock
);
278 iwl_pcie_rxq_inc_wr_ptr(trans
, rxq
);
279 spin_unlock(&rxq
->lock
);
284 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
286 static void iwl_pcie_rxsq_restock(struct iwl_trans
*trans
,
289 struct iwl_rx_mem_buffer
*rxb
;
292 * If the device isn't enabled - not need to try to add buffers...
293 * This can happen when we stop the device and still have an interrupt
294 * pending. We stop the APM before we sync the interrupts because we
295 * have to (see comment there). On the other hand, since the APM is
296 * stopped, we cannot access the HW (in particular not prph).
297 * So don't try to restock if the APM has been already stopped.
299 if (!test_bit(STATUS_DEVICE_ENABLED
, &trans
->status
))
302 spin_lock(&rxq
->lock
);
303 while ((iwl_rxq_space(rxq
) > 0) && (rxq
->free_count
)) {
304 __le32
*bd
= (__le32
*)rxq
->bd
;
305 /* The overwritten rxb must be a used one */
306 rxb
= rxq
->queue
[rxq
->write
];
307 BUG_ON(rxb
&& rxb
->page
);
309 /* Get next free Rx buffer, remove from free list */
310 rxb
= list_first_entry(&rxq
->rx_free
, struct iwl_rx_mem_buffer
,
312 list_del(&rxb
->list
);
313 rxb
->invalid
= false;
315 /* Point to Rx buffer via next RBD in circular buffer */
316 bd
[rxq
->write
] = iwl_pcie_dma_addr2rbd_ptr(rxb
->page_dma
);
317 rxq
->queue
[rxq
->write
] = rxb
;
318 rxq
->write
= (rxq
->write
+ 1) & RX_QUEUE_MASK
;
321 spin_unlock(&rxq
->lock
);
323 /* If we've added more space for the firmware to place data, tell it.
324 * Increment device's write pointer in multiples of 8. */
325 if (rxq
->write_actual
!= (rxq
->write
& ~0x7)) {
326 spin_lock(&rxq
->lock
);
327 iwl_pcie_rxq_inc_wr_ptr(trans
, rxq
);
328 spin_unlock(&rxq
->lock
);
333 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
335 * If there are slots in the RX queue that need to be restocked,
336 * and we have free pre-allocated buffers, fill the ranks as much
337 * as we can, pulling from rx_free.
339 * This moves the 'write' index forward to catch up with 'processed', and
340 * also updates the memory address in the firmware to reference the new
344 void iwl_pcie_rxq_restock(struct iwl_trans
*trans
, struct iwl_rxq
*rxq
)
346 if (trans
->cfg
->mq_rx_supported
)
347 iwl_pcie_rxmq_restock(trans
, rxq
);
349 iwl_pcie_rxsq_restock(trans
, rxq
);
353 * iwl_pcie_rx_alloc_page - allocates and returns a page.
356 static struct page
*iwl_pcie_rx_alloc_page(struct iwl_trans
*trans
,
359 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
361 gfp_t gfp_mask
= priority
;
363 if (trans_pcie
->rx_page_order
> 0)
364 gfp_mask
|= __GFP_COMP
;
366 /* Alloc a new receive buffer */
367 page
= alloc_pages(gfp_mask
, trans_pcie
->rx_page_order
);
370 IWL_DEBUG_INFO(trans
, "alloc_pages failed, order: %d\n",
371 trans_pcie
->rx_page_order
);
373 * Issue an error if we don't have enough pre-allocated
376 if (!(gfp_mask
& __GFP_NOWARN
) && net_ratelimit())
378 "Failed to alloc_pages\n");
385 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
387 * A used RBD is an Rx buffer that has been given to the stack. To use it again
388 * a page must be allocated and the RBD must point to the page. This function
389 * doesn't change the HW pointer but handles the list of pages that is used by
390 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
393 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans
*trans
, gfp_t priority
,
396 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
397 struct iwl_rx_mem_buffer
*rxb
;
401 spin_lock(&rxq
->lock
);
402 if (list_empty(&rxq
->rx_used
)) {
403 spin_unlock(&rxq
->lock
);
406 spin_unlock(&rxq
->lock
);
408 /* Alloc a new receive buffer */
409 page
= iwl_pcie_rx_alloc_page(trans
, priority
);
413 spin_lock(&rxq
->lock
);
415 if (list_empty(&rxq
->rx_used
)) {
416 spin_unlock(&rxq
->lock
);
417 __free_pages(page
, trans_pcie
->rx_page_order
);
420 rxb
= list_first_entry(&rxq
->rx_used
, struct iwl_rx_mem_buffer
,
422 list_del(&rxb
->list
);
423 spin_unlock(&rxq
->lock
);
427 /* Get physical address of the RB */
429 dma_map_page(trans
->dev
, page
, 0,
430 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
432 if (dma_mapping_error(trans
->dev
, rxb
->page_dma
)) {
434 spin_lock(&rxq
->lock
);
435 list_add(&rxb
->list
, &rxq
->rx_used
);
436 spin_unlock(&rxq
->lock
);
437 __free_pages(page
, trans_pcie
->rx_page_order
);
441 spin_lock(&rxq
->lock
);
443 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
446 spin_unlock(&rxq
->lock
);
450 static void iwl_pcie_free_rbs_pool(struct iwl_trans
*trans
)
452 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
455 for (i
= 0; i
< RX_POOL_SIZE
; i
++) {
456 if (!trans_pcie
->rx_pool
[i
].page
)
458 dma_unmap_page(trans
->dev
, trans_pcie
->rx_pool
[i
].page_dma
,
459 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
461 __free_pages(trans_pcie
->rx_pool
[i
].page
,
462 trans_pcie
->rx_page_order
);
463 trans_pcie
->rx_pool
[i
].page
= NULL
;
468 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
470 * Allocates for each received request 8 pages
471 * Called as a scheduled work item.
473 static void iwl_pcie_rx_allocator(struct iwl_trans
*trans
)
475 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
476 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
477 struct list_head local_empty
;
478 int pending
= atomic_xchg(&rba
->req_pending
, 0);
480 IWL_DEBUG_RX(trans
, "Pending allocation requests = %d\n", pending
);
482 /* If we were scheduled - there is at least one request */
483 spin_lock(&rba
->lock
);
484 /* swap out the rba->rbd_empty to a local list */
485 list_replace_init(&rba
->rbd_empty
, &local_empty
);
486 spin_unlock(&rba
->lock
);
490 LIST_HEAD(local_allocated
);
491 gfp_t gfp_mask
= GFP_KERNEL
;
493 /* Do not post a warning if there are only a few requests */
494 if (pending
< RX_PENDING_WATERMARK
)
495 gfp_mask
|= __GFP_NOWARN
;
497 for (i
= 0; i
< RX_CLAIM_REQ_ALLOC
;) {
498 struct iwl_rx_mem_buffer
*rxb
;
501 /* List should never be empty - each reused RBD is
502 * returned to the list, and initial pool covers any
503 * possible gap between the time the page is allocated
504 * to the time the RBD is added.
506 BUG_ON(list_empty(&local_empty
));
507 /* Get the first rxb from the rbd list */
508 rxb
= list_first_entry(&local_empty
,
509 struct iwl_rx_mem_buffer
, list
);
512 /* Alloc a new receive buffer */
513 page
= iwl_pcie_rx_alloc_page(trans
, gfp_mask
);
518 /* Get physical address of the RB */
519 rxb
->page_dma
= dma_map_page(trans
->dev
, page
, 0,
520 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
522 if (dma_mapping_error(trans
->dev
, rxb
->page_dma
)) {
524 __free_pages(page
, trans_pcie
->rx_page_order
);
528 /* move the allocated entry to the out list */
529 list_move(&rxb
->list
, &local_allocated
);
535 pending
= atomic_xchg(&rba
->req_pending
, 0);
537 "Pending allocation requests = %d\n",
541 spin_lock(&rba
->lock
);
542 /* add the allocated rbds to the allocator allocated list */
543 list_splice_tail(&local_allocated
, &rba
->rbd_allocated
);
544 /* get more empty RBDs for current pending requests */
545 list_splice_tail_init(&rba
->rbd_empty
, &local_empty
);
546 spin_unlock(&rba
->lock
);
548 atomic_inc(&rba
->req_ready
);
551 spin_lock(&rba
->lock
);
552 /* return unused rbds to the allocator empty list */
553 list_splice_tail(&local_empty
, &rba
->rbd_empty
);
554 spin_unlock(&rba
->lock
);
558 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
560 .* Called by queue when the queue posted allocation request and
561 * has freed 8 RBDs in order to restock itself.
562 * This function directly moves the allocated RBs to the queue's ownership
563 * and updates the relevant counters.
565 static void iwl_pcie_rx_allocator_get(struct iwl_trans
*trans
,
568 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
569 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
572 lockdep_assert_held(&rxq
->lock
);
575 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
576 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
577 * function will return early, as there are no ready requests.
578 * atomic_dec_if_positive will perofrm the *actual* decrement only if
579 * req_ready > 0, i.e. - there are ready requests and the function
580 * hands one request to the caller.
582 if (atomic_dec_if_positive(&rba
->req_ready
) < 0)
585 spin_lock(&rba
->lock
);
586 for (i
= 0; i
< RX_CLAIM_REQ_ALLOC
; i
++) {
587 /* Get next free Rx buffer, remove it from free list */
588 struct iwl_rx_mem_buffer
*rxb
=
589 list_first_entry(&rba
->rbd_allocated
,
590 struct iwl_rx_mem_buffer
, list
);
592 list_move(&rxb
->list
, &rxq
->rx_free
);
594 spin_unlock(&rba
->lock
);
596 rxq
->used_count
-= RX_CLAIM_REQ_ALLOC
;
597 rxq
->free_count
+= RX_CLAIM_REQ_ALLOC
;
600 void iwl_pcie_rx_allocator_work(struct work_struct
*data
)
602 struct iwl_rb_allocator
*rba_p
=
603 container_of(data
, struct iwl_rb_allocator
, rx_alloc
);
604 struct iwl_trans_pcie
*trans_pcie
=
605 container_of(rba_p
, struct iwl_trans_pcie
, rba
);
607 iwl_pcie_rx_allocator(trans_pcie
->trans
);
610 static int iwl_pcie_rx_alloc(struct iwl_trans
*trans
)
612 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
613 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
614 struct device
*dev
= trans
->dev
;
616 int free_size
= trans
->cfg
->mq_rx_supported
? sizeof(__le64
) :
619 if (WARN_ON(trans_pcie
->rxq
))
622 trans_pcie
->rxq
= kcalloc(trans
->num_rx_queues
, sizeof(struct iwl_rxq
),
624 if (!trans_pcie
->rxq
)
627 spin_lock_init(&rba
->lock
);
629 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
630 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[i
];
632 spin_lock_init(&rxq
->lock
);
633 if (trans
->cfg
->mq_rx_supported
)
634 rxq
->queue_size
= MQ_RX_TABLE_SIZE
;
636 rxq
->queue_size
= RX_QUEUE_SIZE
;
639 * Allocate the circular buffer of Read Buffer Descriptors
642 rxq
->bd
= dma_zalloc_coherent(dev
,
643 free_size
* rxq
->queue_size
,
644 &rxq
->bd_dma
, GFP_KERNEL
);
648 if (trans
->cfg
->mq_rx_supported
) {
649 rxq
->used_bd
= dma_zalloc_coherent(dev
,
658 /*Allocate the driver's pointer to receive buffer status */
659 rxq
->rb_stts
= dma_zalloc_coherent(dev
, sizeof(*rxq
->rb_stts
),
668 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
669 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[i
];
672 dma_free_coherent(dev
, free_size
* rxq
->queue_size
,
673 rxq
->bd
, rxq
->bd_dma
);
678 dma_free_coherent(trans
->dev
,
679 sizeof(struct iwl_rb_status
),
680 rxq
->rb_stts
, rxq
->rb_stts_dma
);
683 dma_free_coherent(dev
, sizeof(__le32
) * rxq
->queue_size
,
684 rxq
->used_bd
, rxq
->used_bd_dma
);
685 rxq
->used_bd_dma
= 0;
688 kfree(trans_pcie
->rxq
);
693 static void iwl_pcie_rx_hw_init(struct iwl_trans
*trans
, struct iwl_rxq
*rxq
)
695 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
698 const u32 rfdnlog
= RX_QUEUE_SIZE_LOG
; /* 256 RBDs */
700 switch (trans_pcie
->rx_buf_size
) {
702 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K
;
705 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K
;
708 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K
;
712 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K
;
715 if (!iwl_trans_grab_nic_access(trans
, &flags
))
719 iwl_write32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
, 0);
720 /* reset and flush pointers */
721 iwl_write32(trans
, FH_MEM_RCSR_CHNL0_RBDCB_WPTR
, 0);
722 iwl_write32(trans
, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ
, 0);
723 iwl_write32(trans
, FH_RSCSR_CHNL0_RDPTR
, 0);
725 /* Reset driver's Rx queue write index */
726 iwl_write32(trans
, FH_RSCSR_CHNL0_RBDCB_WPTR_REG
, 0);
728 /* Tell device where to find RBD circular buffer in DRAM */
729 iwl_write32(trans
, FH_RSCSR_CHNL0_RBDCB_BASE_REG
,
730 (u32
)(rxq
->bd_dma
>> 8));
732 /* Tell device where in DRAM to update its Rx status */
733 iwl_write32(trans
, FH_RSCSR_CHNL0_STTS_WPTR_REG
,
734 rxq
->rb_stts_dma
>> 4);
737 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
738 * the credit mechanism in 5000 HW RX FIFO
739 * Direct rx interrupts to hosts
740 * Rx buffer size 4 or 8k or 12k
744 iwl_write32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
,
745 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL
|
746 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY
|
747 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL
|
749 (RX_RB_TIMEOUT
<< FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS
) |
750 (rfdnlog
<< FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS
));
752 iwl_trans_release_nic_access(trans
, &flags
);
754 /* Set interrupt coalescing timer to default (2048 usecs) */
755 iwl_write8(trans
, CSR_INT_COALESCING
, IWL_HOST_INT_TIMEOUT_DEF
);
757 /* W/A for interrupt coalescing bug in 7260 and 3160 */
758 if (trans
->cfg
->host_interrupt_operation_mode
)
759 iwl_set_bit(trans
, CSR_INT_COALESCING
, IWL_HOST_INT_OPER_MODE
);
762 void iwl_pcie_enable_rx_wake(struct iwl_trans
*trans
, bool enable
)
764 if (trans
->cfg
->device_family
!= IWL_DEVICE_FAMILY_9000
)
767 if (CSR_HW_REV_STEP(trans
->hw_rev
) != SILICON_A_STEP
)
770 if (!trans
->cfg
->integrated
)
774 * Turn on the chicken-bits that cause MAC wakeup for RX-related
776 * This costs some power, but needed for W/A 9000 integrated A-step
777 * bug where shadow registers are not in the retention list and their
778 * value is lost when NIC powers down
780 iwl_set_bit(trans
, CSR_MAC_SHADOW_REG_CTRL
,
781 CSR_MAC_SHADOW_REG_CTRL_RX_WAKE
);
782 iwl_set_bit(trans
, CSR_MAC_SHADOW_REG_CTL2
,
783 CSR_MAC_SHADOW_REG_CTL2_RX_WAKE
);
786 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans
*trans
)
788 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
789 u32 rb_size
, enabled
= 0;
793 switch (trans_pcie
->rx_buf_size
) {
795 rb_size
= RFH_RXF_DMA_RB_SIZE_4K
;
798 rb_size
= RFH_RXF_DMA_RB_SIZE_8K
;
801 rb_size
= RFH_RXF_DMA_RB_SIZE_12K
;
805 rb_size
= RFH_RXF_DMA_RB_SIZE_4K
;
808 if (!iwl_trans_grab_nic_access(trans
, &flags
))
812 iwl_write_prph_no_grab(trans
, RFH_RXF_DMA_CFG
, 0);
813 /* disable free amd used rx queue operation */
814 iwl_write_prph_no_grab(trans
, RFH_RXF_RXQ_ACTIVE
, 0);
816 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
817 /* Tell device where to find RBD free table in DRAM */
818 iwl_write_prph64_no_grab(trans
,
819 RFH_Q_FRBDCB_BA_LSB(i
),
820 trans_pcie
->rxq
[i
].bd_dma
);
821 /* Tell device where to find RBD used table in DRAM */
822 iwl_write_prph64_no_grab(trans
,
823 RFH_Q_URBDCB_BA_LSB(i
),
824 trans_pcie
->rxq
[i
].used_bd_dma
);
825 /* Tell device where in DRAM to update its Rx status */
826 iwl_write_prph64_no_grab(trans
,
827 RFH_Q_URBD_STTS_WPTR_LSB(i
),
828 trans_pcie
->rxq
[i
].rb_stts_dma
);
829 /* Reset device indice tables */
830 iwl_write_prph_no_grab(trans
, RFH_Q_FRBDCB_WIDX(i
), 0);
831 iwl_write_prph_no_grab(trans
, RFH_Q_FRBDCB_RIDX(i
), 0);
832 iwl_write_prph_no_grab(trans
, RFH_Q_URBDCB_WIDX(i
), 0);
834 enabled
|= BIT(i
) | BIT(i
+ 16);
839 * Rx buffer size 4 or 8k or 12k
841 * Drop frames that exceed RB size
844 iwl_write_prph_no_grab(trans
, RFH_RXF_DMA_CFG
,
845 RFH_DMA_EN_ENABLE_VAL
| rb_size
|
846 RFH_RXF_DMA_MIN_RB_4_8
|
847 RFH_RXF_DMA_DROP_TOO_LARGE_MASK
|
848 RFH_RXF_DMA_RBDCB_SIZE_512
);
851 * Activate DMA snooping.
852 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
855 iwl_write_prph_no_grab(trans
, RFH_GEN_CFG
,
856 RFH_GEN_CFG_RFH_DMA_SNOOP
|
857 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM
, 0) |
858 RFH_GEN_CFG_SERVICE_DMA_SNOOP
|
859 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE
,
860 trans
->cfg
->integrated
?
861 RFH_GEN_CFG_RB_CHUNK_SIZE_64
:
862 RFH_GEN_CFG_RB_CHUNK_SIZE_128
));
863 /* Enable the relevant rx queues */
864 iwl_write_prph_no_grab(trans
, RFH_RXF_RXQ_ACTIVE
, enabled
);
866 iwl_trans_release_nic_access(trans
, &flags
);
868 /* Set interrupt coalescing timer to default (2048 usecs) */
869 iwl_write8(trans
, CSR_INT_COALESCING
, IWL_HOST_INT_TIMEOUT_DEF
);
871 iwl_pcie_enable_rx_wake(trans
, true);
874 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq
*rxq
)
876 lockdep_assert_held(&rxq
->lock
);
878 INIT_LIST_HEAD(&rxq
->rx_free
);
879 INIT_LIST_HEAD(&rxq
->rx_used
);
884 static int iwl_pcie_dummy_napi_poll(struct napi_struct
*napi
, int budget
)
890 static int _iwl_pcie_rx_init(struct iwl_trans
*trans
)
892 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
893 struct iwl_rxq
*def_rxq
;
894 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
895 int i
, err
, queue_size
, allocator_pool_size
, num_alloc
;
897 if (!trans_pcie
->rxq
) {
898 err
= iwl_pcie_rx_alloc(trans
);
902 def_rxq
= trans_pcie
->rxq
;
904 spin_lock(&rba
->lock
);
905 atomic_set(&rba
->req_pending
, 0);
906 atomic_set(&rba
->req_ready
, 0);
907 INIT_LIST_HEAD(&rba
->rbd_allocated
);
908 INIT_LIST_HEAD(&rba
->rbd_empty
);
909 spin_unlock(&rba
->lock
);
911 /* free all first - we might be reconfigured for a different size */
912 iwl_pcie_free_rbs_pool(trans
);
914 for (i
= 0; i
< RX_QUEUE_SIZE
; i
++)
915 def_rxq
->queue
[i
] = NULL
;
917 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
918 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[i
];
922 spin_lock(&rxq
->lock
);
924 * Set read write pointer to reflect that we have processed
925 * and used all buffers, but have not restocked the Rx queue
930 rxq
->write_actual
= 0;
931 memset(rxq
->rb_stts
, 0, sizeof(*rxq
->rb_stts
));
933 iwl_pcie_rx_init_rxb_lists(rxq
);
936 netif_napi_add(&trans_pcie
->napi_dev
, &rxq
->napi
,
937 iwl_pcie_dummy_napi_poll
, 64);
939 spin_unlock(&rxq
->lock
);
942 /* move the pool to the default queue and allocator ownerships */
943 queue_size
= trans
->cfg
->mq_rx_supported
?
944 MQ_RX_NUM_RBDS
: RX_QUEUE_SIZE
;
945 allocator_pool_size
= trans
->num_rx_queues
*
946 (RX_CLAIM_REQ_ALLOC
- RX_POST_REQ_ALLOC
);
947 num_alloc
= queue_size
+ allocator_pool_size
;
948 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie
->global_table
) !=
949 ARRAY_SIZE(trans_pcie
->rx_pool
));
950 for (i
= 0; i
< num_alloc
; i
++) {
951 struct iwl_rx_mem_buffer
*rxb
= &trans_pcie
->rx_pool
[i
];
953 if (i
< allocator_pool_size
)
954 list_add(&rxb
->list
, &rba
->rbd_empty
);
956 list_add(&rxb
->list
, &def_rxq
->rx_used
);
957 trans_pcie
->global_table
[i
] = rxb
;
958 rxb
->vid
= (u16
)(i
+ 1);
962 iwl_pcie_rxq_alloc_rbs(trans
, GFP_KERNEL
, def_rxq
);
967 int iwl_pcie_rx_init(struct iwl_trans
*trans
)
969 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
970 int ret
= _iwl_pcie_rx_init(trans
);
975 if (trans
->cfg
->mq_rx_supported
)
976 iwl_pcie_rx_mq_hw_init(trans
);
978 iwl_pcie_rx_hw_init(trans
, trans_pcie
->rxq
);
980 iwl_pcie_rxq_restock(trans
, trans_pcie
->rxq
);
982 spin_lock(&trans_pcie
->rxq
->lock
);
983 iwl_pcie_rxq_inc_wr_ptr(trans
, trans_pcie
->rxq
);
984 spin_unlock(&trans_pcie
->rxq
->lock
);
989 int iwl_pcie_gen2_rx_init(struct iwl_trans
*trans
)
992 * We don't configure the RFH.
993 * Restock will be done at alive, after firmware configured the RFH.
995 return _iwl_pcie_rx_init(trans
);
998 void iwl_pcie_rx_free(struct iwl_trans
*trans
)
1000 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1001 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
1002 int free_size
= trans
->cfg
->mq_rx_supported
? sizeof(__le64
) :
1007 * if rxq is NULL, it means that nothing has been allocated,
1010 if (!trans_pcie
->rxq
) {
1011 IWL_DEBUG_INFO(trans
, "Free NULL rx context\n");
1015 cancel_work_sync(&rba
->rx_alloc
);
1017 iwl_pcie_free_rbs_pool(trans
);
1019 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
1020 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[i
];
1023 dma_free_coherent(trans
->dev
,
1024 free_size
* rxq
->queue_size
,
1025 rxq
->bd
, rxq
->bd_dma
);
1030 dma_free_coherent(trans
->dev
,
1031 sizeof(struct iwl_rb_status
),
1032 rxq
->rb_stts
, rxq
->rb_stts_dma
);
1034 IWL_DEBUG_INFO(trans
,
1035 "Free rxq->rb_stts which is NULL\n");
1038 dma_free_coherent(trans
->dev
,
1039 sizeof(__le32
) * rxq
->queue_size
,
1040 rxq
->used_bd
, rxq
->used_bd_dma
);
1041 rxq
->used_bd_dma
= 0;
1042 rxq
->used_bd
= NULL
;
1045 netif_napi_del(&rxq
->napi
);
1047 kfree(trans_pcie
->rxq
);
1051 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1053 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1054 * When there are 2 empty RBDs - a request for allocation is posted
1056 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans
*trans
,
1057 struct iwl_rx_mem_buffer
*rxb
,
1058 struct iwl_rxq
*rxq
, bool emergency
)
1060 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1061 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
1063 /* Move the RBD to the used list, will be moved to allocator in batches
1064 * before claiming or posting a request*/
1065 list_add_tail(&rxb
->list
, &rxq
->rx_used
);
1067 if (unlikely(emergency
))
1070 /* Count the allocator owned RBDs */
1073 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1074 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1075 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1076 * after but we still need to post another request.
1078 if ((rxq
->used_count
% RX_CLAIM_REQ_ALLOC
) == RX_POST_REQ_ALLOC
) {
1079 /* Move the 2 RBDs to the allocator ownership.
1080 Allocator has another 6 from pool for the request completion*/
1081 spin_lock(&rba
->lock
);
1082 list_splice_tail_init(&rxq
->rx_used
, &rba
->rbd_empty
);
1083 spin_unlock(&rba
->lock
);
1085 atomic_inc(&rba
->req_pending
);
1086 queue_work(rba
->alloc_wq
, &rba
->rx_alloc
);
1090 static void iwl_pcie_rx_handle_rb(struct iwl_trans
*trans
,
1091 struct iwl_rxq
*rxq
,
1092 struct iwl_rx_mem_buffer
*rxb
,
1095 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1096 struct iwl_txq
*txq
= trans_pcie
->txq
[trans_pcie
->cmd_queue
];
1097 bool page_stolen
= false;
1098 int max_len
= PAGE_SIZE
<< trans_pcie
->rx_page_order
;
1104 dma_unmap_page(trans
->dev
, rxb
->page_dma
, max_len
, DMA_FROM_DEVICE
);
1106 while (offset
+ sizeof(u32
) + sizeof(struct iwl_cmd_header
) < max_len
) {
1107 struct iwl_rx_packet
*pkt
;
1110 int index
, cmd_index
, len
;
1111 struct iwl_rx_cmd_buffer rxcb
= {
1113 ._rx_page_order
= trans_pcie
->rx_page_order
,
1115 ._page_stolen
= false,
1116 .truesize
= max_len
,
1119 pkt
= rxb_addr(&rxcb
);
1121 if (pkt
->len_n_flags
== cpu_to_le32(FH_RSCSR_FRAME_INVALID
)) {
1123 "Q %d: RB end marker at offset %d\n",
1128 WARN((le32_to_cpu(pkt
->len_n_flags
) & FH_RSCSR_RXQ_MASK
) >>
1129 FH_RSCSR_RXQ_POS
!= rxq
->id
,
1130 "frame on invalid queue - is on %d and indicates %d\n",
1132 (le32_to_cpu(pkt
->len_n_flags
) & FH_RSCSR_RXQ_MASK
) >>
1136 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1138 iwl_get_cmd_string(trans
,
1139 iwl_cmd_id(pkt
->hdr
.cmd
,
1142 pkt
->hdr
.group_id
, pkt
->hdr
.cmd
,
1143 le16_to_cpu(pkt
->hdr
.sequence
));
1145 len
= iwl_rx_packet_len(pkt
);
1146 len
+= sizeof(u32
); /* account for status word */
1147 trace_iwlwifi_dev_rx(trans
->dev
, trans
, pkt
, len
);
1148 trace_iwlwifi_dev_rx_data(trans
->dev
, trans
, pkt
, len
);
1150 /* Reclaim a command buffer only if this packet is a response
1151 * to a (driver-originated) command.
1152 * If the packet (e.g. Rx frame) originated from uCode,
1153 * there is no command buffer to reclaim.
1154 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1155 * but apparently a few don't get set; catch them here. */
1156 reclaim
= !(pkt
->hdr
.sequence
& SEQ_RX_FRAME
);
1157 if (reclaim
&& !pkt
->hdr
.group_id
) {
1160 for (i
= 0; i
< trans_pcie
->n_no_reclaim_cmds
; i
++) {
1161 if (trans_pcie
->no_reclaim_cmds
[i
] ==
1169 sequence
= le16_to_cpu(pkt
->hdr
.sequence
);
1170 index
= SEQ_TO_INDEX(sequence
);
1171 cmd_index
= iwl_pcie_get_cmd_index(txq
, index
);
1174 iwl_op_mode_rx(trans
->op_mode
, &rxq
->napi
,
1177 iwl_op_mode_rx_rss(trans
->op_mode
, &rxq
->napi
,
1181 kzfree(txq
->entries
[cmd_index
].free_buf
);
1182 txq
->entries
[cmd_index
].free_buf
= NULL
;
1186 * After here, we should always check rxcb._page_stolen,
1187 * if it is true then one of the handlers took the page.
1191 /* Invoke any callbacks, transfer the buffer to caller,
1192 * and fire off the (possibly) blocking
1193 * iwl_trans_send_cmd()
1194 * as we reclaim the driver command queue */
1195 if (!rxcb
._page_stolen
)
1196 iwl_pcie_hcmd_complete(trans
, &rxcb
);
1198 IWL_WARN(trans
, "Claim null rxb?\n");
1201 page_stolen
|= rxcb
._page_stolen
;
1202 offset
+= ALIGN(len
, FH_RSCSR_FRAME_ALIGN
);
1205 /* page was stolen from us -- free our reference */
1207 __free_pages(rxb
->page
, trans_pcie
->rx_page_order
);
1211 /* Reuse the page if possible. For notification packets and
1212 * SKBs that fail to Rx correctly, add them back into the
1213 * rx_free list for reuse later. */
1214 if (rxb
->page
!= NULL
) {
1216 dma_map_page(trans
->dev
, rxb
->page
, 0,
1217 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
1219 if (dma_mapping_error(trans
->dev
, rxb
->page_dma
)) {
1221 * free the page(s) as well to not break
1222 * the invariant that the items on the used
1223 * list have no page(s)
1225 __free_pages(rxb
->page
, trans_pcie
->rx_page_order
);
1227 iwl_pcie_rx_reuse_rbd(trans
, rxb
, rxq
, emergency
);
1229 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
1233 iwl_pcie_rx_reuse_rbd(trans
, rxb
, rxq
, emergency
);
1237 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1239 static void iwl_pcie_rx_handle(struct iwl_trans
*trans
, int queue
)
1241 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1242 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[queue
];
1243 u32 r
, i
, count
= 0;
1244 bool emergency
= false;
1247 spin_lock(&rxq
->lock
);
1248 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1249 * buffer that the driver may process (last buffer filled by ucode). */
1250 r
= le16_to_cpu(READ_ONCE(rxq
->rb_stts
->closed_rb_num
)) & 0x0FFF;
1253 /* W/A 9000 device step A0 wrap-around bug */
1254 r
&= (rxq
->queue_size
- 1);
1256 /* Rx interrupt, but nothing sent from uCode */
1258 IWL_DEBUG_RX(trans
, "Q %d: HW = SW = %d\n", rxq
->id
, r
);
1261 struct iwl_rx_mem_buffer
*rxb
;
1263 if (unlikely(rxq
->used_count
== rxq
->queue_size
/ 2))
1266 if (trans
->cfg
->mq_rx_supported
) {
1268 * used_bd is a 32 bit but only 12 are used to retrieve
1271 u16 vid
= le32_to_cpu(rxq
->used_bd
[i
]) & 0x0FFF;
1274 vid
> ARRAY_SIZE(trans_pcie
->global_table
),
1275 "Invalid rxb index from HW %u\n", (u32
)vid
)) {
1276 iwl_force_nmi(trans
);
1279 rxb
= trans_pcie
->global_table
[vid
- 1];
1280 if (WARN(rxb
->invalid
,
1281 "Invalid rxb from HW %u\n", (u32
)vid
)) {
1282 iwl_force_nmi(trans
);
1285 rxb
->invalid
= true;
1287 rxb
= rxq
->queue
[i
];
1288 rxq
->queue
[i
] = NULL
;
1291 IWL_DEBUG_RX(trans
, "Q %d: HW = %d, SW = %d\n", rxq
->id
, r
, i
);
1292 iwl_pcie_rx_handle_rb(trans
, rxq
, rxb
, emergency
);
1294 i
= (i
+ 1) & (rxq
->queue_size
- 1);
1297 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1298 * try to claim the pre-allocated buffers from the allocator.
1299 * If not ready - will try to reclaim next time.
1300 * There is no need to reschedule work - allocator exits only
1303 if (rxq
->used_count
>= RX_CLAIM_REQ_ALLOC
)
1304 iwl_pcie_rx_allocator_get(trans
, rxq
);
1306 if (rxq
->used_count
% RX_CLAIM_REQ_ALLOC
== 0 && !emergency
) {
1307 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
1309 /* Add the remaining empty RBDs for allocator use */
1310 spin_lock(&rba
->lock
);
1311 list_splice_tail_init(&rxq
->rx_used
, &rba
->rbd_empty
);
1312 spin_unlock(&rba
->lock
);
1313 } else if (emergency
) {
1317 if (rxq
->used_count
< rxq
->queue_size
/ 3)
1321 spin_unlock(&rxq
->lock
);
1322 iwl_pcie_rxq_alloc_rbs(trans
, GFP_ATOMIC
, rxq
);
1323 iwl_pcie_rxq_restock(trans
, rxq
);
1329 /* Backtrack one entry */
1331 spin_unlock(&rxq
->lock
);
1334 * handle a case where in emergency there are some unallocated RBDs.
1335 * those RBDs are in the used list, but are not tracked by the queue's
1336 * used_count which counts allocator owned RBDs.
1337 * unallocated emergency RBDs must be allocated on exit, otherwise
1338 * when called again the function may not be in emergency mode and
1339 * they will be handed to the allocator with no tracking in the RBD
1340 * allocator counters, which will lead to them never being claimed back
1342 * by allocating them here, they are now in the queue free list, and
1343 * will be restocked by the next call of iwl_pcie_rxq_restock.
1345 if (unlikely(emergency
&& count
))
1346 iwl_pcie_rxq_alloc_rbs(trans
, GFP_ATOMIC
, rxq
);
1349 napi_gro_flush(&rxq
->napi
, false);
1351 iwl_pcie_rxq_restock(trans
, rxq
);
1354 static struct iwl_trans_pcie
*iwl_pcie_get_trans_pcie(struct msix_entry
*entry
)
1356 u8 queue
= entry
->entry
;
1357 struct msix_entry
*entries
= entry
- queue
;
1359 return container_of(entries
, struct iwl_trans_pcie
, msix_entries
[0]);
1362 static inline void iwl_pcie_clear_irq(struct iwl_trans
*trans
,
1363 struct msix_entry
*entry
)
1366 * Before sending the interrupt the HW disables it to prevent
1367 * a nested interrupt. This is done by writing 1 to the corresponding
1368 * bit in the mask register. After handling the interrupt, it should be
1369 * re-enabled by clearing this bit. This register is defined as
1370 * write 1 clear (W1C) register, meaning that it's being clear
1371 * by writing 1 to the bit.
1373 iwl_write32(trans
, CSR_MSIX_AUTOMASK_ST_AD
, BIT(entry
->entry
));
1377 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1378 * This interrupt handler should be used with RSS queue only.
1380 irqreturn_t
iwl_pcie_irq_rx_msix_handler(int irq
, void *dev_id
)
1382 struct msix_entry
*entry
= dev_id
;
1383 struct iwl_trans_pcie
*trans_pcie
= iwl_pcie_get_trans_pcie(entry
);
1384 struct iwl_trans
*trans
= trans_pcie
->trans
;
1386 trace_iwlwifi_dev_irq_msix(trans
->dev
, entry
, false, 0, 0);
1388 if (WARN_ON(entry
->entry
>= trans
->num_rx_queues
))
1391 lock_map_acquire(&trans
->sync_cmd_lockdep_map
);
1394 iwl_pcie_rx_handle(trans
, entry
->entry
);
1397 iwl_pcie_clear_irq(trans
, entry
);
1399 lock_map_release(&trans
->sync_cmd_lockdep_map
);
1405 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1407 static void iwl_pcie_irq_handle_error(struct iwl_trans
*trans
)
1409 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1412 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1413 if (trans
->cfg
->internal_wimax_coex
&&
1414 !trans
->cfg
->apmg_not_supported
&&
1415 (!(iwl_read_prph(trans
, APMG_CLK_CTRL_REG
) &
1416 APMS_CLK_VAL_MRB_FUNC_MODE
) ||
1417 (iwl_read_prph(trans
, APMG_PS_CTRL_REG
) &
1418 APMG_PS_CTRL_VAL_RESET_REQ
))) {
1419 clear_bit(STATUS_SYNC_HCMD_ACTIVE
, &trans
->status
);
1420 iwl_op_mode_wimax_active(trans
->op_mode
);
1421 wake_up(&trans_pcie
->wait_command_queue
);
1425 for (i
= 0; i
< trans
->cfg
->base_params
->num_of_queues
; i
++) {
1426 if (!trans_pcie
->txq
[i
])
1428 del_timer(&trans_pcie
->txq
[i
]->stuck_timer
);
1431 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1432 * before we wake up the command caller, to ensure a proper cleanup. */
1433 iwl_trans_fw_error(trans
);
1435 clear_bit(STATUS_SYNC_HCMD_ACTIVE
, &trans
->status
);
1436 wake_up(&trans_pcie
->wait_command_queue
);
1439 static u32
iwl_pcie_int_cause_non_ict(struct iwl_trans
*trans
)
1443 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans
)->irq_lock
);
1445 trace_iwlwifi_dev_irq(trans
->dev
);
1447 /* Discover which interrupts are active/pending */
1448 inta
= iwl_read32(trans
, CSR_INT
);
1450 /* the thread will service interrupts and re-enable them */
1454 /* a device (PCI-E) page is 4096 bytes long */
1455 #define ICT_SHIFT 12
1456 #define ICT_SIZE (1 << ICT_SHIFT)
1457 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1459 /* interrupt handler using ict table, with this interrupt driver will
1460 * stop using INTA register to get device's interrupt, reading this register
1461 * is expensive, device will write interrupts in ICT dram table, increment
1462 * index then will fire interrupt to driver, driver will OR all ICT table
1463 * entries from current index up to table entry with 0 value. the result is
1464 * the interrupt we need to service, driver will set the entries back to 0 and
1467 static u32
iwl_pcie_int_cause_ict(struct iwl_trans
*trans
)
1469 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1474 trace_iwlwifi_dev_irq(trans
->dev
);
1476 /* Ignore interrupt if there's nothing in NIC to service.
1477 * This may be due to IRQ shared with another device,
1478 * or due to sporadic interrupts thrown from our NIC. */
1479 read
= le32_to_cpu(trans_pcie
->ict_tbl
[trans_pcie
->ict_index
]);
1480 trace_iwlwifi_dev_ict_read(trans
->dev
, trans_pcie
->ict_index
, read
);
1485 * Collect all entries up to the first 0, starting from ict_index;
1486 * note we already read at ict_index.
1490 IWL_DEBUG_ISR(trans
, "ICT index %d value 0x%08X\n",
1491 trans_pcie
->ict_index
, read
);
1492 trans_pcie
->ict_tbl
[trans_pcie
->ict_index
] = 0;
1493 trans_pcie
->ict_index
=
1494 ((trans_pcie
->ict_index
+ 1) & (ICT_COUNT
- 1));
1496 read
= le32_to_cpu(trans_pcie
->ict_tbl
[trans_pcie
->ict_index
]);
1497 trace_iwlwifi_dev_ict_read(trans
->dev
, trans_pcie
->ict_index
,
1501 /* We should not get this value, just ignore it. */
1502 if (val
== 0xffffffff)
1506 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1507 * (bit 15 before shifting it to 31) to clear when using interrupt
1508 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1509 * so we use them to decide on the real state of the Rx bit.
1510 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1515 inta
= (0xff & val
) | ((0xff00 & val
) << 16);
1519 void iwl_pcie_handle_rfkill_irq(struct iwl_trans
*trans
)
1521 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1522 struct isr_statistics
*isr_stats
= &trans_pcie
->isr_stats
;
1523 bool hw_rfkill
, prev
, report
;
1525 mutex_lock(&trans_pcie
->mutex
);
1526 prev
= test_bit(STATUS_RFKILL_OPMODE
, &trans
->status
);
1527 hw_rfkill
= iwl_is_rfkill_set(trans
);
1529 set_bit(STATUS_RFKILL_OPMODE
, &trans
->status
);
1530 set_bit(STATUS_RFKILL_HW
, &trans
->status
);
1532 if (trans_pcie
->opmode_down
)
1535 report
= test_bit(STATUS_RFKILL_OPMODE
, &trans
->status
);
1537 IWL_WARN(trans
, "RF_KILL bit toggled to %s.\n",
1538 hw_rfkill
? "disable radio" : "enable radio");
1540 isr_stats
->rfkill
++;
1543 iwl_trans_pcie_rf_kill(trans
, report
);
1544 mutex_unlock(&trans_pcie
->mutex
);
1547 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE
,
1549 IWL_DEBUG_RF_KILL(trans
,
1550 "Rfkill while SYNC HCMD in flight\n");
1551 wake_up(&trans_pcie
->wait_command_queue
);
1553 clear_bit(STATUS_RFKILL_HW
, &trans
->status
);
1554 if (trans_pcie
->opmode_down
)
1555 clear_bit(STATUS_RFKILL_OPMODE
, &trans
->status
);
1559 irqreturn_t
iwl_pcie_irq_handler(int irq
, void *dev_id
)
1561 struct iwl_trans
*trans
= dev_id
;
1562 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1563 struct isr_statistics
*isr_stats
= &trans_pcie
->isr_stats
;
1567 lock_map_acquire(&trans
->sync_cmd_lockdep_map
);
1569 spin_lock(&trans_pcie
->irq_lock
);
1571 /* dram interrupt table not set yet,
1572 * use legacy interrupt.
1574 if (likely(trans_pcie
->use_ict
))
1575 inta
= iwl_pcie_int_cause_ict(trans
);
1577 inta
= iwl_pcie_int_cause_non_ict(trans
);
1579 if (iwl_have_debug_level(IWL_DL_ISR
)) {
1580 IWL_DEBUG_ISR(trans
,
1581 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1582 inta
, trans_pcie
->inta_mask
,
1583 iwl_read32(trans
, CSR_INT_MASK
),
1584 iwl_read32(trans
, CSR_FH_INT_STATUS
));
1585 if (inta
& (~trans_pcie
->inta_mask
))
1586 IWL_DEBUG_ISR(trans
,
1587 "We got a masked interrupt (0x%08x)\n",
1588 inta
& (~trans_pcie
->inta_mask
));
1591 inta
&= trans_pcie
->inta_mask
;
1594 * Ignore interrupt if there's nothing in NIC to service.
1595 * This may be due to IRQ shared with another device,
1596 * or due to sporadic interrupts thrown from our NIC.
1598 if (unlikely(!inta
)) {
1599 IWL_DEBUG_ISR(trans
, "Ignore interrupt, inta == 0\n");
1601 * Re-enable interrupts here since we don't
1602 * have anything to service
1604 if (test_bit(STATUS_INT_ENABLED
, &trans
->status
))
1605 _iwl_enable_interrupts(trans
);
1606 spin_unlock(&trans_pcie
->irq_lock
);
1607 lock_map_release(&trans
->sync_cmd_lockdep_map
);
1611 if (unlikely(inta
== 0xFFFFFFFF || (inta
& 0xFFFFFFF0) == 0xa5a5a5a0)) {
1613 * Hardware disappeared. It might have
1614 * already raised an interrupt.
1616 IWL_WARN(trans
, "HARDWARE GONE?? INTA == 0x%08x\n", inta
);
1617 spin_unlock(&trans_pcie
->irq_lock
);
1621 /* Ack/clear/reset pending uCode interrupts.
1622 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1624 /* There is a hardware bug in the interrupt mask function that some
1625 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1626 * they are disabled in the CSR_INT_MASK register. Furthermore the
1627 * ICT interrupt handling mechanism has another bug that might cause
1628 * these unmasked interrupts fail to be detected. We workaround the
1629 * hardware bugs here by ACKing all the possible interrupts so that
1630 * interrupt coalescing can still be achieved.
1632 iwl_write32(trans
, CSR_INT
, inta
| ~trans_pcie
->inta_mask
);
1634 if (iwl_have_debug_level(IWL_DL_ISR
))
1635 IWL_DEBUG_ISR(trans
, "inta 0x%08x, enabled 0x%08x\n",
1636 inta
, iwl_read32(trans
, CSR_INT_MASK
));
1638 spin_unlock(&trans_pcie
->irq_lock
);
1640 /* Now service all interrupt bits discovered above. */
1641 if (inta
& CSR_INT_BIT_HW_ERR
) {
1642 IWL_ERR(trans
, "Hardware error detected. Restarting.\n");
1644 /* Tell the device to stop sending interrupts */
1645 iwl_disable_interrupts(trans
);
1648 iwl_pcie_irq_handle_error(trans
);
1650 handled
|= CSR_INT_BIT_HW_ERR
;
1655 if (iwl_have_debug_level(IWL_DL_ISR
)) {
1656 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1657 if (inta
& CSR_INT_BIT_SCD
) {
1658 IWL_DEBUG_ISR(trans
,
1659 "Scheduler finished to transmit the frame/frames.\n");
1663 /* Alive notification via Rx interrupt will do the real work */
1664 if (inta
& CSR_INT_BIT_ALIVE
) {
1665 IWL_DEBUG_ISR(trans
, "Alive interrupt\n");
1667 if (trans
->cfg
->gen2
) {
1669 * We can restock, since firmware configured
1672 iwl_pcie_rxmq_restock(trans
, trans_pcie
->rxq
);
1677 /* Safely ignore these bits for debug checks below */
1678 inta
&= ~(CSR_INT_BIT_SCD
| CSR_INT_BIT_ALIVE
);
1680 /* HW RF KILL switch toggled */
1681 if (inta
& CSR_INT_BIT_RF_KILL
) {
1682 iwl_pcie_handle_rfkill_irq(trans
);
1683 handled
|= CSR_INT_BIT_RF_KILL
;
1686 /* Chip got too hot and stopped itself */
1687 if (inta
& CSR_INT_BIT_CT_KILL
) {
1688 IWL_ERR(trans
, "Microcode CT kill error detected.\n");
1689 isr_stats
->ctkill
++;
1690 handled
|= CSR_INT_BIT_CT_KILL
;
1693 /* Error detected by uCode */
1694 if (inta
& CSR_INT_BIT_SW_ERR
) {
1695 IWL_ERR(trans
, "Microcode SW error detected. "
1696 " Restarting 0x%X.\n", inta
);
1698 iwl_pcie_irq_handle_error(trans
);
1699 handled
|= CSR_INT_BIT_SW_ERR
;
1702 /* uCode wakes up after power-down sleep */
1703 if (inta
& CSR_INT_BIT_WAKEUP
) {
1704 IWL_DEBUG_ISR(trans
, "Wakeup interrupt\n");
1705 iwl_pcie_rxq_check_wrptr(trans
);
1706 iwl_pcie_txq_check_wrptrs(trans
);
1708 isr_stats
->wakeup
++;
1710 handled
|= CSR_INT_BIT_WAKEUP
;
1713 /* All uCode command responses, including Tx command responses,
1714 * Rx "responses" (frame-received notification), and other
1715 * notifications from uCode come through here*/
1716 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
|
1717 CSR_INT_BIT_RX_PERIODIC
)) {
1718 IWL_DEBUG_ISR(trans
, "Rx interrupt\n");
1719 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
)) {
1720 handled
|= (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
);
1721 iwl_write32(trans
, CSR_FH_INT_STATUS
,
1722 CSR_FH_INT_RX_MASK
);
1724 if (inta
& CSR_INT_BIT_RX_PERIODIC
) {
1725 handled
|= CSR_INT_BIT_RX_PERIODIC
;
1727 CSR_INT
, CSR_INT_BIT_RX_PERIODIC
);
1729 /* Sending RX interrupt require many steps to be done in the
1731 * 1- write interrupt to current index in ICT table.
1733 * 3- update RX shared data to indicate last write index.
1734 * 4- send interrupt.
1735 * This could lead to RX race, driver could receive RX interrupt
1736 * but the shared data changes does not reflect this;
1737 * periodic interrupt will detect any dangling Rx activity.
1740 /* Disable periodic interrupt; we use it as just a one-shot. */
1741 iwl_write8(trans
, CSR_INT_PERIODIC_REG
,
1742 CSR_INT_PERIODIC_DIS
);
1745 * Enable periodic interrupt in 8 msec only if we received
1746 * real RX interrupt (instead of just periodic int), to catch
1747 * any dangling Rx interrupt. If it was just the periodic
1748 * interrupt, there was no dangling Rx activity, and no need
1749 * to extend the periodic interrupt; one-shot is enough.
1751 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
))
1752 iwl_write8(trans
, CSR_INT_PERIODIC_REG
,
1753 CSR_INT_PERIODIC_ENA
);
1758 iwl_pcie_rx_handle(trans
, 0);
1762 /* This "Tx" DMA channel is used only for loading uCode */
1763 if (inta
& CSR_INT_BIT_FH_TX
) {
1764 iwl_write32(trans
, CSR_FH_INT_STATUS
, CSR_FH_INT_TX_MASK
);
1765 IWL_DEBUG_ISR(trans
, "uCode load interrupt\n");
1767 handled
|= CSR_INT_BIT_FH_TX
;
1768 /* Wake up uCode load routine, now that load is complete */
1769 trans_pcie
->ucode_write_complete
= true;
1770 wake_up(&trans_pcie
->ucode_write_waitq
);
1773 if (inta
& ~handled
) {
1774 IWL_ERR(trans
, "Unhandled INTA bits 0x%08x\n", inta
& ~handled
);
1775 isr_stats
->unhandled
++;
1778 if (inta
& ~(trans_pcie
->inta_mask
)) {
1779 IWL_WARN(trans
, "Disabled INTA bits 0x%08x were pending\n",
1780 inta
& ~trans_pcie
->inta_mask
);
1783 spin_lock(&trans_pcie
->irq_lock
);
1784 /* only Re-enable all interrupt if disabled by irq */
1785 if (test_bit(STATUS_INT_ENABLED
, &trans
->status
))
1786 _iwl_enable_interrupts(trans
);
1787 /* we are loading the firmware, enable FH_TX interrupt only */
1788 else if (handled
& CSR_INT_BIT_FH_TX
)
1789 iwl_enable_fw_load_int(trans
);
1790 /* Re-enable RF_KILL if it occurred */
1791 else if (handled
& CSR_INT_BIT_RF_KILL
)
1792 iwl_enable_rfkill_int(trans
);
1793 spin_unlock(&trans_pcie
->irq_lock
);
1796 lock_map_release(&trans
->sync_cmd_lockdep_map
);
1800 /******************************************************************************
1804 ******************************************************************************/
1806 /* Free dram table */
1807 void iwl_pcie_free_ict(struct iwl_trans
*trans
)
1809 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1811 if (trans_pcie
->ict_tbl
) {
1812 dma_free_coherent(trans
->dev
, ICT_SIZE
,
1813 trans_pcie
->ict_tbl
,
1814 trans_pcie
->ict_tbl_dma
);
1815 trans_pcie
->ict_tbl
= NULL
;
1816 trans_pcie
->ict_tbl_dma
= 0;
1821 * allocate dram shared table, it is an aligned memory
1822 * block of ICT_SIZE.
1823 * also reset all data related to ICT table interrupt.
1825 int iwl_pcie_alloc_ict(struct iwl_trans
*trans
)
1827 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1829 trans_pcie
->ict_tbl
=
1830 dma_zalloc_coherent(trans
->dev
, ICT_SIZE
,
1831 &trans_pcie
->ict_tbl_dma
,
1833 if (!trans_pcie
->ict_tbl
)
1836 /* just an API sanity check ... it is guaranteed to be aligned */
1837 if (WARN_ON(trans_pcie
->ict_tbl_dma
& (ICT_SIZE
- 1))) {
1838 iwl_pcie_free_ict(trans
);
1845 /* Device is going up inform it about using ICT interrupt table,
1846 * also we need to tell the driver to start using ICT interrupt.
1848 void iwl_pcie_reset_ict(struct iwl_trans
*trans
)
1850 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1853 if (!trans_pcie
->ict_tbl
)
1856 spin_lock(&trans_pcie
->irq_lock
);
1857 _iwl_disable_interrupts(trans
);
1859 memset(trans_pcie
->ict_tbl
, 0, ICT_SIZE
);
1861 val
= trans_pcie
->ict_tbl_dma
>> ICT_SHIFT
;
1863 val
|= CSR_DRAM_INT_TBL_ENABLE
|
1864 CSR_DRAM_INIT_TBL_WRAP_CHECK
|
1865 CSR_DRAM_INIT_TBL_WRITE_POINTER
;
1867 IWL_DEBUG_ISR(trans
, "CSR_DRAM_INT_TBL_REG =0x%x\n", val
);
1869 iwl_write32(trans
, CSR_DRAM_INT_TBL_REG
, val
);
1870 trans_pcie
->use_ict
= true;
1871 trans_pcie
->ict_index
= 0;
1872 iwl_write32(trans
, CSR_INT
, trans_pcie
->inta_mask
);
1873 _iwl_enable_interrupts(trans
);
1874 spin_unlock(&trans_pcie
->irq_lock
);
1877 /* Device is going down disable ict interrupt usage */
1878 void iwl_pcie_disable_ict(struct iwl_trans
*trans
)
1880 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1882 spin_lock(&trans_pcie
->irq_lock
);
1883 trans_pcie
->use_ict
= false;
1884 spin_unlock(&trans_pcie
->irq_lock
);
1887 irqreturn_t
iwl_pcie_isr(int irq
, void *data
)
1889 struct iwl_trans
*trans
= data
;
1894 /* Disable (but don't clear!) interrupts here to avoid
1895 * back-to-back ISRs and sporadic interrupts from our NIC.
1896 * If we have something to service, the tasklet will re-enable ints.
1897 * If we *don't* have something, we'll re-enable before leaving here.
1899 iwl_write32(trans
, CSR_INT_MASK
, 0x00000000);
1901 return IRQ_WAKE_THREAD
;
1904 irqreturn_t
iwl_pcie_msix_isr(int irq
, void *data
)
1906 return IRQ_WAKE_THREAD
;
1909 irqreturn_t
iwl_pcie_irq_msix_handler(int irq
, void *dev_id
)
1911 struct msix_entry
*entry
= dev_id
;
1912 struct iwl_trans_pcie
*trans_pcie
= iwl_pcie_get_trans_pcie(entry
);
1913 struct iwl_trans
*trans
= trans_pcie
->trans
;
1914 struct isr_statistics
*isr_stats
= &trans_pcie
->isr_stats
;
1915 u32 inta_fh
, inta_hw
;
1917 lock_map_acquire(&trans
->sync_cmd_lockdep_map
);
1919 spin_lock(&trans_pcie
->irq_lock
);
1920 inta_fh
= iwl_read32(trans
, CSR_MSIX_FH_INT_CAUSES_AD
);
1921 inta_hw
= iwl_read32(trans
, CSR_MSIX_HW_INT_CAUSES_AD
);
1923 * Clear causes registers to avoid being handling the same cause.
1925 iwl_write32(trans
, CSR_MSIX_FH_INT_CAUSES_AD
, inta_fh
);
1926 iwl_write32(trans
, CSR_MSIX_HW_INT_CAUSES_AD
, inta_hw
);
1927 spin_unlock(&trans_pcie
->irq_lock
);
1929 trace_iwlwifi_dev_irq_msix(trans
->dev
, entry
, true, inta_fh
, inta_hw
);
1931 if (unlikely(!(inta_fh
| inta_hw
))) {
1932 IWL_DEBUG_ISR(trans
, "Ignore interrupt, inta == 0\n");
1933 lock_map_release(&trans
->sync_cmd_lockdep_map
);
1937 if (iwl_have_debug_level(IWL_DL_ISR
))
1938 IWL_DEBUG_ISR(trans
, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1940 iwl_read32(trans
, CSR_MSIX_FH_INT_MASK_AD
));
1942 if ((trans_pcie
->shared_vec_mask
& IWL_SHARED_IRQ_NON_RX
) &&
1943 inta_fh
& MSIX_FH_INT_CAUSES_Q0
) {
1945 iwl_pcie_rx_handle(trans
, 0);
1949 if ((trans_pcie
->shared_vec_mask
& IWL_SHARED_IRQ_FIRST_RSS
) &&
1950 inta_fh
& MSIX_FH_INT_CAUSES_Q1
) {
1952 iwl_pcie_rx_handle(trans
, 1);
1956 /* This "Tx" DMA channel is used only for loading uCode */
1957 if (inta_fh
& MSIX_FH_INT_CAUSES_D2S_CH0_NUM
) {
1958 IWL_DEBUG_ISR(trans
, "uCode load interrupt\n");
1961 * Wake up uCode load routine,
1962 * now that load is complete
1964 trans_pcie
->ucode_write_complete
= true;
1965 wake_up(&trans_pcie
->ucode_write_waitq
);
1968 /* Error detected by uCode */
1969 if ((inta_fh
& MSIX_FH_INT_CAUSES_FH_ERR
) ||
1970 (inta_hw
& MSIX_HW_INT_CAUSES_REG_SW_ERR
)) {
1972 "Microcode SW error detected. Restarting 0x%X.\n",
1975 iwl_pcie_irq_handle_error(trans
);
1978 /* After checking FH register check HW register */
1979 if (iwl_have_debug_level(IWL_DL_ISR
))
1980 IWL_DEBUG_ISR(trans
,
1981 "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1983 iwl_read32(trans
, CSR_MSIX_HW_INT_MASK_AD
));
1985 /* Alive notification via Rx interrupt will do the real work */
1986 if (inta_hw
& MSIX_HW_INT_CAUSES_REG_ALIVE
) {
1987 IWL_DEBUG_ISR(trans
, "Alive interrupt\n");
1989 if (trans
->cfg
->gen2
) {
1990 /* We can restock, since firmware configured the RFH */
1991 iwl_pcie_rxmq_restock(trans
, trans_pcie
->rxq
);
1995 /* uCode wakes up after power-down sleep */
1996 if (inta_hw
& MSIX_HW_INT_CAUSES_REG_WAKEUP
) {
1997 IWL_DEBUG_ISR(trans
, "Wakeup interrupt\n");
1998 iwl_pcie_rxq_check_wrptr(trans
);
1999 iwl_pcie_txq_check_wrptrs(trans
);
2001 isr_stats
->wakeup
++;
2004 /* Chip got too hot and stopped itself */
2005 if (inta_hw
& MSIX_HW_INT_CAUSES_REG_CT_KILL
) {
2006 IWL_ERR(trans
, "Microcode CT kill error detected.\n");
2007 isr_stats
->ctkill
++;
2010 /* HW RF KILL switch toggled */
2011 if (inta_hw
& MSIX_HW_INT_CAUSES_REG_RF_KILL
)
2012 iwl_pcie_handle_rfkill_irq(trans
);
2014 if (inta_hw
& MSIX_HW_INT_CAUSES_REG_HW_ERR
) {
2016 "Hardware error detected. Restarting.\n");
2019 iwl_pcie_irq_handle_error(trans
);
2022 iwl_pcie_clear_irq(trans
, entry
);
2024 lock_map_release(&trans
->sync_cmd_lockdep_map
);