Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
blobf25ce3a1ea50347678c5662e5868a3e37b9d139e
1 /******************************************************************************
3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
7 * Portions of this file are derived from the ipw3945 project, as well
8 * as portions of the ieee80211 subsystem header files.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
23 * The full GNU General Public License is included in this distribution in the
24 * file called LICENSE.
26 * Contact Information:
27 * Intel Linux Wireless <linuxwifi@intel.com>
28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
40 /******************************************************************************
42 * RX path functions
44 ******************************************************************************/
47 * Rx theory of operation
49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50 * each of which point to Receive Buffers to be filled by the NIC. These get
51 * used not only for Rx frames, but for any command response or notification
52 * from the NIC. The driver and NIC manage the Rx buffers by means
53 * of indexes into the circular buffer.
55 * Rx Queue Indexes
56 * The host/firmware share two index registers for managing the Rx buffers.
58 * The READ index maps to the first position that the firmware may be writing
59 * to -- the driver can read up to (but not including) this position and get
60 * good data.
61 * The READ index is managed by the firmware once the card is enabled.
63 * The WRITE index maps to the last position the driver has read from -- the
64 * position preceding WRITE is the last slot the firmware can place a packet.
66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67 * WRITE = READ.
69 * During initialization, the host sets up the READ queue position to the first
70 * INDEX position, and WRITE to the last (READ - 1 wrapped)
72 * When the firmware places a packet in a buffer, it will advance the READ index
73 * and fire the RX interrupt. The driver can then query the READ index and
74 * process as many packets as possible, moving the WRITE index forward as it
75 * resets the Rx queue buffers with new memory.
77 * The management in the driver is as follows:
78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79 * When the interrupt handler is called, the request is processed.
80 * The page is either stolen - transferred to the upper layer
81 * or reused - added immediately to the iwl->rxq->rx_free list.
82 * + When the page is stolen - the driver updates the matching queue's used
83 * count, detaches the RBD and transfers it to the queue used list.
84 * When there are two used RBDs - they are transferred to the allocator empty
85 * list. Work is then scheduled for the allocator to start allocating
86 * eight buffers.
87 * When there are another 6 used RBDs - they are transferred to the allocator
88 * empty list and the driver tries to claim the pre-allocated buffers and
89 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90 * until ready.
91 * When there are 8+ buffers in the free list - either from allocation or from
92 * 8 reused unstolen pages - restock is called to update the FW and indexes.
93 * + In order to make sure the allocator always has RBDs to use for allocation
94 * the allocator has initial pool in the size of num_queues*(8-2) - the
95 * maximum missing RBDs per allocation request (request posted with 2
96 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97 * The queues supplies the recycle of the rest of the RBDs.
98 * + A received packet is processed and handed to the kernel network stack,
99 * detached from the iwl->rxq. The driver 'processed' index is updated.
100 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102 * If there were enough free buffers and RX_STALLED is set it is cleared.
105 * Driver sequence:
107 * iwl_rxq_alloc() Allocates rx_free
108 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
109 * iwl_pcie_rxq_restock.
110 * Used only during initialization.
111 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
112 * queue, updates firmware pointers, and updates
113 * the WRITE index.
114 * iwl_pcie_rx_allocator() Background work for allocating pages.
116 * -- enable interrupts --
117 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
118 * READ INDEX, detaching the SKB from the pool.
119 * Moves the packet buffer from queue to rx_used.
120 * Posts and claims requests to the allocator.
121 * Calls iwl_pcie_rxq_restock to refill any empty
122 * slots.
124 * RBD life-cycle:
126 * Init:
127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
129 * Regular Receive interrupt:
130 * Page Stolen:
131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133 * Page not Stolen:
134 * rxq.queue -> rxq.rx_free -> rxq.queue
135 * ...
140 * iwl_rxq_space - Return number of free slots available in queue.
142 static int iwl_rxq_space(const struct iwl_rxq *rxq)
144 /* Make sure rx queue size is a power of 2 */
145 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
148 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149 * between empty and completely full queues.
150 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151 * defined for negative dividends.
153 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
161 return cpu_to_le32((u32)(dma_addr >> 8));
165 * iwl_pcie_rx_stop - stops the Rx DMA
167 int iwl_pcie_rx_stop(struct iwl_trans *trans)
169 if (trans->cfg->mq_rx_supported) {
170 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
171 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
172 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
173 } else {
174 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
175 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
176 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
177 1000);
182 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
185 struct iwl_rxq *rxq)
187 u32 reg;
189 lockdep_assert_held(&rxq->lock);
192 * explicitly wake up the NIC if:
193 * 1. shadow registers aren't enabled
194 * 2. there is a chance that the NIC is asleep
196 if (!trans->cfg->base_params->shadow_reg_enable &&
197 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
198 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
200 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
201 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
202 reg);
203 iwl_set_bit(trans, CSR_GP_CNTRL,
204 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205 rxq->need_update = true;
206 return;
210 rxq->write_actual = round_down(rxq->write, 8);
211 if (trans->cfg->mq_rx_supported)
212 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
213 rxq->write_actual);
214 else
215 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
218 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
220 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
221 int i;
223 for (i = 0; i < trans->num_rx_queues; i++) {
224 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
226 if (!rxq->need_update)
227 continue;
228 spin_lock(&rxq->lock);
229 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
230 rxq->need_update = false;
231 spin_unlock(&rxq->lock);
236 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
238 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
239 struct iwl_rxq *rxq)
241 struct iwl_rx_mem_buffer *rxb;
244 * If the device isn't enabled - no need to try to add buffers...
245 * This can happen when we stop the device and still have an interrupt
246 * pending. We stop the APM before we sync the interrupts because we
247 * have to (see comment there). On the other hand, since the APM is
248 * stopped, we cannot access the HW (in particular not prph).
249 * So don't try to restock if the APM has been already stopped.
251 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
252 return;
254 spin_lock(&rxq->lock);
255 while (rxq->free_count) {
256 __le64 *bd = (__le64 *)rxq->bd;
258 /* Get next free Rx buffer, remove from free list */
259 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
260 list);
261 list_del(&rxb->list);
262 rxb->invalid = false;
263 /* 12 first bits are expected to be empty */
264 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
265 /* Point to Rx buffer via next RBD in circular buffer */
266 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
267 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
268 rxq->free_count--;
270 spin_unlock(&rxq->lock);
273 * If we've added more space for the firmware to place data, tell it.
274 * Increment device's write pointer in multiples of 8.
276 if (rxq->write_actual != (rxq->write & ~0x7)) {
277 spin_lock(&rxq->lock);
278 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
279 spin_unlock(&rxq->lock);
284 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
286 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
287 struct iwl_rxq *rxq)
289 struct iwl_rx_mem_buffer *rxb;
292 * If the device isn't enabled - not need to try to add buffers...
293 * This can happen when we stop the device and still have an interrupt
294 * pending. We stop the APM before we sync the interrupts because we
295 * have to (see comment there). On the other hand, since the APM is
296 * stopped, we cannot access the HW (in particular not prph).
297 * So don't try to restock if the APM has been already stopped.
299 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
300 return;
302 spin_lock(&rxq->lock);
303 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
304 __le32 *bd = (__le32 *)rxq->bd;
305 /* The overwritten rxb must be a used one */
306 rxb = rxq->queue[rxq->write];
307 BUG_ON(rxb && rxb->page);
309 /* Get next free Rx buffer, remove from free list */
310 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
311 list);
312 list_del(&rxb->list);
313 rxb->invalid = false;
315 /* Point to Rx buffer via next RBD in circular buffer */
316 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
317 rxq->queue[rxq->write] = rxb;
318 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
319 rxq->free_count--;
321 spin_unlock(&rxq->lock);
323 /* If we've added more space for the firmware to place data, tell it.
324 * Increment device's write pointer in multiples of 8. */
325 if (rxq->write_actual != (rxq->write & ~0x7)) {
326 spin_lock(&rxq->lock);
327 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
328 spin_unlock(&rxq->lock);
333 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
335 * If there are slots in the RX queue that need to be restocked,
336 * and we have free pre-allocated buffers, fill the ranks as much
337 * as we can, pulling from rx_free.
339 * This moves the 'write' index forward to catch up with 'processed', and
340 * also updates the memory address in the firmware to reference the new
341 * target buffer.
343 static
344 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
346 if (trans->cfg->mq_rx_supported)
347 iwl_pcie_rxmq_restock(trans, rxq);
348 else
349 iwl_pcie_rxsq_restock(trans, rxq);
353 * iwl_pcie_rx_alloc_page - allocates and returns a page.
356 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
357 gfp_t priority)
359 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
360 struct page *page;
361 gfp_t gfp_mask = priority;
363 if (trans_pcie->rx_page_order > 0)
364 gfp_mask |= __GFP_COMP;
366 /* Alloc a new receive buffer */
367 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
368 if (!page) {
369 if (net_ratelimit())
370 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
371 trans_pcie->rx_page_order);
373 * Issue an error if we don't have enough pre-allocated
374 * buffers.
375 ` */
376 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
377 IWL_CRIT(trans,
378 "Failed to alloc_pages\n");
379 return NULL;
381 return page;
385 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
387 * A used RBD is an Rx buffer that has been given to the stack. To use it again
388 * a page must be allocated and the RBD must point to the page. This function
389 * doesn't change the HW pointer but handles the list of pages that is used by
390 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
391 * allocated buffers.
393 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
394 struct iwl_rxq *rxq)
396 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
397 struct iwl_rx_mem_buffer *rxb;
398 struct page *page;
400 while (1) {
401 spin_lock(&rxq->lock);
402 if (list_empty(&rxq->rx_used)) {
403 spin_unlock(&rxq->lock);
404 return;
406 spin_unlock(&rxq->lock);
408 /* Alloc a new receive buffer */
409 page = iwl_pcie_rx_alloc_page(trans, priority);
410 if (!page)
411 return;
413 spin_lock(&rxq->lock);
415 if (list_empty(&rxq->rx_used)) {
416 spin_unlock(&rxq->lock);
417 __free_pages(page, trans_pcie->rx_page_order);
418 return;
420 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
421 list);
422 list_del(&rxb->list);
423 spin_unlock(&rxq->lock);
425 BUG_ON(rxb->page);
426 rxb->page = page;
427 /* Get physical address of the RB */
428 rxb->page_dma =
429 dma_map_page(trans->dev, page, 0,
430 PAGE_SIZE << trans_pcie->rx_page_order,
431 DMA_FROM_DEVICE);
432 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
433 rxb->page = NULL;
434 spin_lock(&rxq->lock);
435 list_add(&rxb->list, &rxq->rx_used);
436 spin_unlock(&rxq->lock);
437 __free_pages(page, trans_pcie->rx_page_order);
438 return;
441 spin_lock(&rxq->lock);
443 list_add_tail(&rxb->list, &rxq->rx_free);
444 rxq->free_count++;
446 spin_unlock(&rxq->lock);
450 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
452 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
453 int i;
455 for (i = 0; i < RX_POOL_SIZE; i++) {
456 if (!trans_pcie->rx_pool[i].page)
457 continue;
458 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
459 PAGE_SIZE << trans_pcie->rx_page_order,
460 DMA_FROM_DEVICE);
461 __free_pages(trans_pcie->rx_pool[i].page,
462 trans_pcie->rx_page_order);
463 trans_pcie->rx_pool[i].page = NULL;
468 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
470 * Allocates for each received request 8 pages
471 * Called as a scheduled work item.
473 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
475 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
476 struct iwl_rb_allocator *rba = &trans_pcie->rba;
477 struct list_head local_empty;
478 int pending = atomic_xchg(&rba->req_pending, 0);
480 IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
482 /* If we were scheduled - there is at least one request */
483 spin_lock(&rba->lock);
484 /* swap out the rba->rbd_empty to a local list */
485 list_replace_init(&rba->rbd_empty, &local_empty);
486 spin_unlock(&rba->lock);
488 while (pending) {
489 int i;
490 LIST_HEAD(local_allocated);
491 gfp_t gfp_mask = GFP_KERNEL;
493 /* Do not post a warning if there are only a few requests */
494 if (pending < RX_PENDING_WATERMARK)
495 gfp_mask |= __GFP_NOWARN;
497 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
498 struct iwl_rx_mem_buffer *rxb;
499 struct page *page;
501 /* List should never be empty - each reused RBD is
502 * returned to the list, and initial pool covers any
503 * possible gap between the time the page is allocated
504 * to the time the RBD is added.
506 BUG_ON(list_empty(&local_empty));
507 /* Get the first rxb from the rbd list */
508 rxb = list_first_entry(&local_empty,
509 struct iwl_rx_mem_buffer, list);
510 BUG_ON(rxb->page);
512 /* Alloc a new receive buffer */
513 page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
514 if (!page)
515 continue;
516 rxb->page = page;
518 /* Get physical address of the RB */
519 rxb->page_dma = dma_map_page(trans->dev, page, 0,
520 PAGE_SIZE << trans_pcie->rx_page_order,
521 DMA_FROM_DEVICE);
522 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
523 rxb->page = NULL;
524 __free_pages(page, trans_pcie->rx_page_order);
525 continue;
528 /* move the allocated entry to the out list */
529 list_move(&rxb->list, &local_allocated);
530 i++;
533 pending--;
534 if (!pending) {
535 pending = atomic_xchg(&rba->req_pending, 0);
536 IWL_DEBUG_RX(trans,
537 "Pending allocation requests = %d\n",
538 pending);
541 spin_lock(&rba->lock);
542 /* add the allocated rbds to the allocator allocated list */
543 list_splice_tail(&local_allocated, &rba->rbd_allocated);
544 /* get more empty RBDs for current pending requests */
545 list_splice_tail_init(&rba->rbd_empty, &local_empty);
546 spin_unlock(&rba->lock);
548 atomic_inc(&rba->req_ready);
551 spin_lock(&rba->lock);
552 /* return unused rbds to the allocator empty list */
553 list_splice_tail(&local_empty, &rba->rbd_empty);
554 spin_unlock(&rba->lock);
558 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
560 .* Called by queue when the queue posted allocation request and
561 * has freed 8 RBDs in order to restock itself.
562 * This function directly moves the allocated RBs to the queue's ownership
563 * and updates the relevant counters.
565 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
566 struct iwl_rxq *rxq)
568 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
569 struct iwl_rb_allocator *rba = &trans_pcie->rba;
570 int i;
572 lockdep_assert_held(&rxq->lock);
575 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
576 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
577 * function will return early, as there are no ready requests.
578 * atomic_dec_if_positive will perofrm the *actual* decrement only if
579 * req_ready > 0, i.e. - there are ready requests and the function
580 * hands one request to the caller.
582 if (atomic_dec_if_positive(&rba->req_ready) < 0)
583 return;
585 spin_lock(&rba->lock);
586 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
587 /* Get next free Rx buffer, remove it from free list */
588 struct iwl_rx_mem_buffer *rxb =
589 list_first_entry(&rba->rbd_allocated,
590 struct iwl_rx_mem_buffer, list);
592 list_move(&rxb->list, &rxq->rx_free);
594 spin_unlock(&rba->lock);
596 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
597 rxq->free_count += RX_CLAIM_REQ_ALLOC;
600 void iwl_pcie_rx_allocator_work(struct work_struct *data)
602 struct iwl_rb_allocator *rba_p =
603 container_of(data, struct iwl_rb_allocator, rx_alloc);
604 struct iwl_trans_pcie *trans_pcie =
605 container_of(rba_p, struct iwl_trans_pcie, rba);
607 iwl_pcie_rx_allocator(trans_pcie->trans);
610 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
612 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
613 struct iwl_rb_allocator *rba = &trans_pcie->rba;
614 struct device *dev = trans->dev;
615 int i;
616 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
617 sizeof(__le32);
619 if (WARN_ON(trans_pcie->rxq))
620 return -EINVAL;
622 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
623 GFP_KERNEL);
624 if (!trans_pcie->rxq)
625 return -EINVAL;
627 spin_lock_init(&rba->lock);
629 for (i = 0; i < trans->num_rx_queues; i++) {
630 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
632 spin_lock_init(&rxq->lock);
633 if (trans->cfg->mq_rx_supported)
634 rxq->queue_size = MQ_RX_TABLE_SIZE;
635 else
636 rxq->queue_size = RX_QUEUE_SIZE;
639 * Allocate the circular buffer of Read Buffer Descriptors
640 * (RBDs)
642 rxq->bd = dma_zalloc_coherent(dev,
643 free_size * rxq->queue_size,
644 &rxq->bd_dma, GFP_KERNEL);
645 if (!rxq->bd)
646 goto err;
648 if (trans->cfg->mq_rx_supported) {
649 rxq->used_bd = dma_zalloc_coherent(dev,
650 sizeof(__le32) *
651 rxq->queue_size,
652 &rxq->used_bd_dma,
653 GFP_KERNEL);
654 if (!rxq->used_bd)
655 goto err;
658 /*Allocate the driver's pointer to receive buffer status */
659 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
660 &rxq->rb_stts_dma,
661 GFP_KERNEL);
662 if (!rxq->rb_stts)
663 goto err;
665 return 0;
667 err:
668 for (i = 0; i < trans->num_rx_queues; i++) {
669 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
671 if (rxq->bd)
672 dma_free_coherent(dev, free_size * rxq->queue_size,
673 rxq->bd, rxq->bd_dma);
674 rxq->bd_dma = 0;
675 rxq->bd = NULL;
677 if (rxq->rb_stts)
678 dma_free_coherent(trans->dev,
679 sizeof(struct iwl_rb_status),
680 rxq->rb_stts, rxq->rb_stts_dma);
682 if (rxq->used_bd)
683 dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
684 rxq->used_bd, rxq->used_bd_dma);
685 rxq->used_bd_dma = 0;
686 rxq->used_bd = NULL;
688 kfree(trans_pcie->rxq);
690 return -ENOMEM;
693 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
695 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
696 u32 rb_size;
697 unsigned long flags;
698 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
700 switch (trans_pcie->rx_buf_size) {
701 case IWL_AMSDU_4K:
702 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
703 break;
704 case IWL_AMSDU_8K:
705 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
706 break;
707 case IWL_AMSDU_12K:
708 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
709 break;
710 default:
711 WARN_ON(1);
712 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
715 if (!iwl_trans_grab_nic_access(trans, &flags))
716 return;
718 /* Stop Rx DMA */
719 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
720 /* reset and flush pointers */
721 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
722 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
723 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
725 /* Reset driver's Rx queue write index */
726 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
728 /* Tell device where to find RBD circular buffer in DRAM */
729 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
730 (u32)(rxq->bd_dma >> 8));
732 /* Tell device where in DRAM to update its Rx status */
733 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
734 rxq->rb_stts_dma >> 4);
736 /* Enable Rx DMA
737 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
738 * the credit mechanism in 5000 HW RX FIFO
739 * Direct rx interrupts to hosts
740 * Rx buffer size 4 or 8k or 12k
741 * RB timeout 0x10
742 * 256 RBDs
744 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
745 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
746 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
747 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
748 rb_size |
749 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
750 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
752 iwl_trans_release_nic_access(trans, &flags);
754 /* Set interrupt coalescing timer to default (2048 usecs) */
755 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
757 /* W/A for interrupt coalescing bug in 7260 and 3160 */
758 if (trans->cfg->host_interrupt_operation_mode)
759 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
762 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
764 if (trans->cfg->device_family != IWL_DEVICE_FAMILY_9000)
765 return;
767 if (CSR_HW_REV_STEP(trans->hw_rev) != SILICON_A_STEP)
768 return;
770 if (!trans->cfg->integrated)
771 return;
774 * Turn on the chicken-bits that cause MAC wakeup for RX-related
775 * values.
776 * This costs some power, but needed for W/A 9000 integrated A-step
777 * bug where shadow registers are not in the retention list and their
778 * value is lost when NIC powers down
780 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
781 CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
782 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
783 CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
786 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
788 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
789 u32 rb_size, enabled = 0;
790 unsigned long flags;
791 int i;
793 switch (trans_pcie->rx_buf_size) {
794 case IWL_AMSDU_4K:
795 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
796 break;
797 case IWL_AMSDU_8K:
798 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
799 break;
800 case IWL_AMSDU_12K:
801 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
802 break;
803 default:
804 WARN_ON(1);
805 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
808 if (!iwl_trans_grab_nic_access(trans, &flags))
809 return;
811 /* Stop Rx DMA */
812 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
813 /* disable free amd used rx queue operation */
814 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
816 for (i = 0; i < trans->num_rx_queues; i++) {
817 /* Tell device where to find RBD free table in DRAM */
818 iwl_write_prph64_no_grab(trans,
819 RFH_Q_FRBDCB_BA_LSB(i),
820 trans_pcie->rxq[i].bd_dma);
821 /* Tell device where to find RBD used table in DRAM */
822 iwl_write_prph64_no_grab(trans,
823 RFH_Q_URBDCB_BA_LSB(i),
824 trans_pcie->rxq[i].used_bd_dma);
825 /* Tell device where in DRAM to update its Rx status */
826 iwl_write_prph64_no_grab(trans,
827 RFH_Q_URBD_STTS_WPTR_LSB(i),
828 trans_pcie->rxq[i].rb_stts_dma);
829 /* Reset device indice tables */
830 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
831 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
832 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
834 enabled |= BIT(i) | BIT(i + 16);
838 * Enable Rx DMA
839 * Rx buffer size 4 or 8k or 12k
840 * Min RB size 4 or 8
841 * Drop frames that exceed RB size
842 * 512 RBDs
844 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
845 RFH_DMA_EN_ENABLE_VAL | rb_size |
846 RFH_RXF_DMA_MIN_RB_4_8 |
847 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
848 RFH_RXF_DMA_RBDCB_SIZE_512);
851 * Activate DMA snooping.
852 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
853 * Default queue is 0
855 iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
856 RFH_GEN_CFG_RFH_DMA_SNOOP |
857 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
858 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
859 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
860 trans->cfg->integrated ?
861 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
862 RFH_GEN_CFG_RB_CHUNK_SIZE_128));
863 /* Enable the relevant rx queues */
864 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
866 iwl_trans_release_nic_access(trans, &flags);
868 /* Set interrupt coalescing timer to default (2048 usecs) */
869 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
871 iwl_pcie_enable_rx_wake(trans, true);
874 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
876 lockdep_assert_held(&rxq->lock);
878 INIT_LIST_HEAD(&rxq->rx_free);
879 INIT_LIST_HEAD(&rxq->rx_used);
880 rxq->free_count = 0;
881 rxq->used_count = 0;
884 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
886 WARN_ON(1);
887 return 0;
890 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
892 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
893 struct iwl_rxq *def_rxq;
894 struct iwl_rb_allocator *rba = &trans_pcie->rba;
895 int i, err, queue_size, allocator_pool_size, num_alloc;
897 if (!trans_pcie->rxq) {
898 err = iwl_pcie_rx_alloc(trans);
899 if (err)
900 return err;
902 def_rxq = trans_pcie->rxq;
904 spin_lock(&rba->lock);
905 atomic_set(&rba->req_pending, 0);
906 atomic_set(&rba->req_ready, 0);
907 INIT_LIST_HEAD(&rba->rbd_allocated);
908 INIT_LIST_HEAD(&rba->rbd_empty);
909 spin_unlock(&rba->lock);
911 /* free all first - we might be reconfigured for a different size */
912 iwl_pcie_free_rbs_pool(trans);
914 for (i = 0; i < RX_QUEUE_SIZE; i++)
915 def_rxq->queue[i] = NULL;
917 for (i = 0; i < trans->num_rx_queues; i++) {
918 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
920 rxq->id = i;
922 spin_lock(&rxq->lock);
924 * Set read write pointer to reflect that we have processed
925 * and used all buffers, but have not restocked the Rx queue
926 * with fresh buffers
928 rxq->read = 0;
929 rxq->write = 0;
930 rxq->write_actual = 0;
931 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
933 iwl_pcie_rx_init_rxb_lists(rxq);
935 if (!rxq->napi.poll)
936 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
937 iwl_pcie_dummy_napi_poll, 64);
939 spin_unlock(&rxq->lock);
942 /* move the pool to the default queue and allocator ownerships */
943 queue_size = trans->cfg->mq_rx_supported ?
944 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
945 allocator_pool_size = trans->num_rx_queues *
946 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
947 num_alloc = queue_size + allocator_pool_size;
948 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
949 ARRAY_SIZE(trans_pcie->rx_pool));
950 for (i = 0; i < num_alloc; i++) {
951 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
953 if (i < allocator_pool_size)
954 list_add(&rxb->list, &rba->rbd_empty);
955 else
956 list_add(&rxb->list, &def_rxq->rx_used);
957 trans_pcie->global_table[i] = rxb;
958 rxb->vid = (u16)(i + 1);
959 rxb->invalid = true;
962 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
964 return 0;
967 int iwl_pcie_rx_init(struct iwl_trans *trans)
969 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
970 int ret = _iwl_pcie_rx_init(trans);
972 if (ret)
973 return ret;
975 if (trans->cfg->mq_rx_supported)
976 iwl_pcie_rx_mq_hw_init(trans);
977 else
978 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
980 iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
982 spin_lock(&trans_pcie->rxq->lock);
983 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
984 spin_unlock(&trans_pcie->rxq->lock);
986 return 0;
989 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
992 * We don't configure the RFH.
993 * Restock will be done at alive, after firmware configured the RFH.
995 return _iwl_pcie_rx_init(trans);
998 void iwl_pcie_rx_free(struct iwl_trans *trans)
1000 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1001 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1002 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
1003 sizeof(__le32);
1004 int i;
1007 * if rxq is NULL, it means that nothing has been allocated,
1008 * exit now
1010 if (!trans_pcie->rxq) {
1011 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1012 return;
1015 cancel_work_sync(&rba->rx_alloc);
1017 iwl_pcie_free_rbs_pool(trans);
1019 for (i = 0; i < trans->num_rx_queues; i++) {
1020 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1022 if (rxq->bd)
1023 dma_free_coherent(trans->dev,
1024 free_size * rxq->queue_size,
1025 rxq->bd, rxq->bd_dma);
1026 rxq->bd_dma = 0;
1027 rxq->bd = NULL;
1029 if (rxq->rb_stts)
1030 dma_free_coherent(trans->dev,
1031 sizeof(struct iwl_rb_status),
1032 rxq->rb_stts, rxq->rb_stts_dma);
1033 else
1034 IWL_DEBUG_INFO(trans,
1035 "Free rxq->rb_stts which is NULL\n");
1037 if (rxq->used_bd)
1038 dma_free_coherent(trans->dev,
1039 sizeof(__le32) * rxq->queue_size,
1040 rxq->used_bd, rxq->used_bd_dma);
1041 rxq->used_bd_dma = 0;
1042 rxq->used_bd = NULL;
1044 if (rxq->napi.poll)
1045 netif_napi_del(&rxq->napi);
1047 kfree(trans_pcie->rxq);
1051 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1053 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1054 * When there are 2 empty RBDs - a request for allocation is posted
1056 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1057 struct iwl_rx_mem_buffer *rxb,
1058 struct iwl_rxq *rxq, bool emergency)
1060 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1061 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1063 /* Move the RBD to the used list, will be moved to allocator in batches
1064 * before claiming or posting a request*/
1065 list_add_tail(&rxb->list, &rxq->rx_used);
1067 if (unlikely(emergency))
1068 return;
1070 /* Count the allocator owned RBDs */
1071 rxq->used_count++;
1073 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1074 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1075 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1076 * after but we still need to post another request.
1078 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1079 /* Move the 2 RBDs to the allocator ownership.
1080 Allocator has another 6 from pool for the request completion*/
1081 spin_lock(&rba->lock);
1082 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1083 spin_unlock(&rba->lock);
1085 atomic_inc(&rba->req_pending);
1086 queue_work(rba->alloc_wq, &rba->rx_alloc);
1090 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1091 struct iwl_rxq *rxq,
1092 struct iwl_rx_mem_buffer *rxb,
1093 bool emergency)
1095 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1096 struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1097 bool page_stolen = false;
1098 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1099 u32 offset = 0;
1101 if (WARN_ON(!rxb))
1102 return;
1104 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1106 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1107 struct iwl_rx_packet *pkt;
1108 u16 sequence;
1109 bool reclaim;
1110 int index, cmd_index, len;
1111 struct iwl_rx_cmd_buffer rxcb = {
1112 ._offset = offset,
1113 ._rx_page_order = trans_pcie->rx_page_order,
1114 ._page = rxb->page,
1115 ._page_stolen = false,
1116 .truesize = max_len,
1119 pkt = rxb_addr(&rxcb);
1121 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1122 IWL_DEBUG_RX(trans,
1123 "Q %d: RB end marker at offset %d\n",
1124 rxq->id, offset);
1125 break;
1128 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1129 FH_RSCSR_RXQ_POS != rxq->id,
1130 "frame on invalid queue - is on %d and indicates %d\n",
1131 rxq->id,
1132 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1133 FH_RSCSR_RXQ_POS);
1135 IWL_DEBUG_RX(trans,
1136 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1137 rxq->id, offset,
1138 iwl_get_cmd_string(trans,
1139 iwl_cmd_id(pkt->hdr.cmd,
1140 pkt->hdr.group_id,
1141 0)),
1142 pkt->hdr.group_id, pkt->hdr.cmd,
1143 le16_to_cpu(pkt->hdr.sequence));
1145 len = iwl_rx_packet_len(pkt);
1146 len += sizeof(u32); /* account for status word */
1147 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1148 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1150 /* Reclaim a command buffer only if this packet is a response
1151 * to a (driver-originated) command.
1152 * If the packet (e.g. Rx frame) originated from uCode,
1153 * there is no command buffer to reclaim.
1154 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1155 * but apparently a few don't get set; catch them here. */
1156 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1157 if (reclaim && !pkt->hdr.group_id) {
1158 int i;
1160 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1161 if (trans_pcie->no_reclaim_cmds[i] ==
1162 pkt->hdr.cmd) {
1163 reclaim = false;
1164 break;
1169 sequence = le16_to_cpu(pkt->hdr.sequence);
1170 index = SEQ_TO_INDEX(sequence);
1171 cmd_index = iwl_pcie_get_cmd_index(txq, index);
1173 if (rxq->id == 0)
1174 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1175 &rxcb);
1176 else
1177 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1178 &rxcb, rxq->id);
1180 if (reclaim) {
1181 kzfree(txq->entries[cmd_index].free_buf);
1182 txq->entries[cmd_index].free_buf = NULL;
1186 * After here, we should always check rxcb._page_stolen,
1187 * if it is true then one of the handlers took the page.
1190 if (reclaim) {
1191 /* Invoke any callbacks, transfer the buffer to caller,
1192 * and fire off the (possibly) blocking
1193 * iwl_trans_send_cmd()
1194 * as we reclaim the driver command queue */
1195 if (!rxcb._page_stolen)
1196 iwl_pcie_hcmd_complete(trans, &rxcb);
1197 else
1198 IWL_WARN(trans, "Claim null rxb?\n");
1201 page_stolen |= rxcb._page_stolen;
1202 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1205 /* page was stolen from us -- free our reference */
1206 if (page_stolen) {
1207 __free_pages(rxb->page, trans_pcie->rx_page_order);
1208 rxb->page = NULL;
1211 /* Reuse the page if possible. For notification packets and
1212 * SKBs that fail to Rx correctly, add them back into the
1213 * rx_free list for reuse later. */
1214 if (rxb->page != NULL) {
1215 rxb->page_dma =
1216 dma_map_page(trans->dev, rxb->page, 0,
1217 PAGE_SIZE << trans_pcie->rx_page_order,
1218 DMA_FROM_DEVICE);
1219 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1221 * free the page(s) as well to not break
1222 * the invariant that the items on the used
1223 * list have no page(s)
1225 __free_pages(rxb->page, trans_pcie->rx_page_order);
1226 rxb->page = NULL;
1227 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1228 } else {
1229 list_add_tail(&rxb->list, &rxq->rx_free);
1230 rxq->free_count++;
1232 } else
1233 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1237 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1239 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1241 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1242 struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1243 u32 r, i, count = 0;
1244 bool emergency = false;
1246 restart:
1247 spin_lock(&rxq->lock);
1248 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1249 * buffer that the driver may process (last buffer filled by ucode). */
1250 r = le16_to_cpu(READ_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1251 i = rxq->read;
1253 /* W/A 9000 device step A0 wrap-around bug */
1254 r &= (rxq->queue_size - 1);
1256 /* Rx interrupt, but nothing sent from uCode */
1257 if (i == r)
1258 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1260 while (i != r) {
1261 struct iwl_rx_mem_buffer *rxb;
1263 if (unlikely(rxq->used_count == rxq->queue_size / 2))
1264 emergency = true;
1266 if (trans->cfg->mq_rx_supported) {
1268 * used_bd is a 32 bit but only 12 are used to retrieve
1269 * the vid
1271 u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1273 if (WARN(!vid ||
1274 vid > ARRAY_SIZE(trans_pcie->global_table),
1275 "Invalid rxb index from HW %u\n", (u32)vid)) {
1276 iwl_force_nmi(trans);
1277 goto out;
1279 rxb = trans_pcie->global_table[vid - 1];
1280 if (WARN(rxb->invalid,
1281 "Invalid rxb from HW %u\n", (u32)vid)) {
1282 iwl_force_nmi(trans);
1283 goto out;
1285 rxb->invalid = true;
1286 } else {
1287 rxb = rxq->queue[i];
1288 rxq->queue[i] = NULL;
1291 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1292 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1294 i = (i + 1) & (rxq->queue_size - 1);
1297 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1298 * try to claim the pre-allocated buffers from the allocator.
1299 * If not ready - will try to reclaim next time.
1300 * There is no need to reschedule work - allocator exits only
1301 * on success
1303 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1304 iwl_pcie_rx_allocator_get(trans, rxq);
1306 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1307 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1309 /* Add the remaining empty RBDs for allocator use */
1310 spin_lock(&rba->lock);
1311 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1312 spin_unlock(&rba->lock);
1313 } else if (emergency) {
1314 count++;
1315 if (count == 8) {
1316 count = 0;
1317 if (rxq->used_count < rxq->queue_size / 3)
1318 emergency = false;
1320 rxq->read = i;
1321 spin_unlock(&rxq->lock);
1322 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1323 iwl_pcie_rxq_restock(trans, rxq);
1324 goto restart;
1328 out:
1329 /* Backtrack one entry */
1330 rxq->read = i;
1331 spin_unlock(&rxq->lock);
1334 * handle a case where in emergency there are some unallocated RBDs.
1335 * those RBDs are in the used list, but are not tracked by the queue's
1336 * used_count which counts allocator owned RBDs.
1337 * unallocated emergency RBDs must be allocated on exit, otherwise
1338 * when called again the function may not be in emergency mode and
1339 * they will be handed to the allocator with no tracking in the RBD
1340 * allocator counters, which will lead to them never being claimed back
1341 * by the queue.
1342 * by allocating them here, they are now in the queue free list, and
1343 * will be restocked by the next call of iwl_pcie_rxq_restock.
1345 if (unlikely(emergency && count))
1346 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1348 if (rxq->napi.poll)
1349 napi_gro_flush(&rxq->napi, false);
1351 iwl_pcie_rxq_restock(trans, rxq);
1354 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1356 u8 queue = entry->entry;
1357 struct msix_entry *entries = entry - queue;
1359 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1362 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1363 struct msix_entry *entry)
1366 * Before sending the interrupt the HW disables it to prevent
1367 * a nested interrupt. This is done by writing 1 to the corresponding
1368 * bit in the mask register. After handling the interrupt, it should be
1369 * re-enabled by clearing this bit. This register is defined as
1370 * write 1 clear (W1C) register, meaning that it's being clear
1371 * by writing 1 to the bit.
1373 iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1377 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1378 * This interrupt handler should be used with RSS queue only.
1380 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1382 struct msix_entry *entry = dev_id;
1383 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1384 struct iwl_trans *trans = trans_pcie->trans;
1386 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1388 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1389 return IRQ_NONE;
1391 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1393 local_bh_disable();
1394 iwl_pcie_rx_handle(trans, entry->entry);
1395 local_bh_enable();
1397 iwl_pcie_clear_irq(trans, entry);
1399 lock_map_release(&trans->sync_cmd_lockdep_map);
1401 return IRQ_HANDLED;
1405 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1407 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1409 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1410 int i;
1412 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1413 if (trans->cfg->internal_wimax_coex &&
1414 !trans->cfg->apmg_not_supported &&
1415 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1416 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1417 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1418 APMG_PS_CTRL_VAL_RESET_REQ))) {
1419 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1420 iwl_op_mode_wimax_active(trans->op_mode);
1421 wake_up(&trans_pcie->wait_command_queue);
1422 return;
1425 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
1426 if (!trans_pcie->txq[i])
1427 continue;
1428 del_timer(&trans_pcie->txq[i]->stuck_timer);
1431 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1432 * before we wake up the command caller, to ensure a proper cleanup. */
1433 iwl_trans_fw_error(trans);
1435 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1436 wake_up(&trans_pcie->wait_command_queue);
1439 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1441 u32 inta;
1443 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1445 trace_iwlwifi_dev_irq(trans->dev);
1447 /* Discover which interrupts are active/pending */
1448 inta = iwl_read32(trans, CSR_INT);
1450 /* the thread will service interrupts and re-enable them */
1451 return inta;
1454 /* a device (PCI-E) page is 4096 bytes long */
1455 #define ICT_SHIFT 12
1456 #define ICT_SIZE (1 << ICT_SHIFT)
1457 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1459 /* interrupt handler using ict table, with this interrupt driver will
1460 * stop using INTA register to get device's interrupt, reading this register
1461 * is expensive, device will write interrupts in ICT dram table, increment
1462 * index then will fire interrupt to driver, driver will OR all ICT table
1463 * entries from current index up to table entry with 0 value. the result is
1464 * the interrupt we need to service, driver will set the entries back to 0 and
1465 * set index.
1467 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1469 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1470 u32 inta;
1471 u32 val = 0;
1472 u32 read;
1474 trace_iwlwifi_dev_irq(trans->dev);
1476 /* Ignore interrupt if there's nothing in NIC to service.
1477 * This may be due to IRQ shared with another device,
1478 * or due to sporadic interrupts thrown from our NIC. */
1479 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1480 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1481 if (!read)
1482 return 0;
1485 * Collect all entries up to the first 0, starting from ict_index;
1486 * note we already read at ict_index.
1488 do {
1489 val |= read;
1490 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1491 trans_pcie->ict_index, read);
1492 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1493 trans_pcie->ict_index =
1494 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1496 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1497 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1498 read);
1499 } while (read);
1501 /* We should not get this value, just ignore it. */
1502 if (val == 0xffffffff)
1503 val = 0;
1506 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1507 * (bit 15 before shifting it to 31) to clear when using interrupt
1508 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1509 * so we use them to decide on the real state of the Rx bit.
1510 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1512 if (val & 0xC0000)
1513 val |= 0x8000;
1515 inta = (0xff & val) | ((0xff00 & val) << 16);
1516 return inta;
1519 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1521 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1522 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1523 bool hw_rfkill, prev, report;
1525 mutex_lock(&trans_pcie->mutex);
1526 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1527 hw_rfkill = iwl_is_rfkill_set(trans);
1528 if (hw_rfkill) {
1529 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1530 set_bit(STATUS_RFKILL_HW, &trans->status);
1532 if (trans_pcie->opmode_down)
1533 report = hw_rfkill;
1534 else
1535 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1537 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1538 hw_rfkill ? "disable radio" : "enable radio");
1540 isr_stats->rfkill++;
1542 if (prev != report)
1543 iwl_trans_pcie_rf_kill(trans, report);
1544 mutex_unlock(&trans_pcie->mutex);
1546 if (hw_rfkill) {
1547 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1548 &trans->status))
1549 IWL_DEBUG_RF_KILL(trans,
1550 "Rfkill while SYNC HCMD in flight\n");
1551 wake_up(&trans_pcie->wait_command_queue);
1552 } else {
1553 clear_bit(STATUS_RFKILL_HW, &trans->status);
1554 if (trans_pcie->opmode_down)
1555 clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1559 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1561 struct iwl_trans *trans = dev_id;
1562 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1563 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1564 u32 inta = 0;
1565 u32 handled = 0;
1567 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1569 spin_lock(&trans_pcie->irq_lock);
1571 /* dram interrupt table not set yet,
1572 * use legacy interrupt.
1574 if (likely(trans_pcie->use_ict))
1575 inta = iwl_pcie_int_cause_ict(trans);
1576 else
1577 inta = iwl_pcie_int_cause_non_ict(trans);
1579 if (iwl_have_debug_level(IWL_DL_ISR)) {
1580 IWL_DEBUG_ISR(trans,
1581 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1582 inta, trans_pcie->inta_mask,
1583 iwl_read32(trans, CSR_INT_MASK),
1584 iwl_read32(trans, CSR_FH_INT_STATUS));
1585 if (inta & (~trans_pcie->inta_mask))
1586 IWL_DEBUG_ISR(trans,
1587 "We got a masked interrupt (0x%08x)\n",
1588 inta & (~trans_pcie->inta_mask));
1591 inta &= trans_pcie->inta_mask;
1594 * Ignore interrupt if there's nothing in NIC to service.
1595 * This may be due to IRQ shared with another device,
1596 * or due to sporadic interrupts thrown from our NIC.
1598 if (unlikely(!inta)) {
1599 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1601 * Re-enable interrupts here since we don't
1602 * have anything to service
1604 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1605 _iwl_enable_interrupts(trans);
1606 spin_unlock(&trans_pcie->irq_lock);
1607 lock_map_release(&trans->sync_cmd_lockdep_map);
1608 return IRQ_NONE;
1611 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1613 * Hardware disappeared. It might have
1614 * already raised an interrupt.
1616 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1617 spin_unlock(&trans_pcie->irq_lock);
1618 goto out;
1621 /* Ack/clear/reset pending uCode interrupts.
1622 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1624 /* There is a hardware bug in the interrupt mask function that some
1625 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1626 * they are disabled in the CSR_INT_MASK register. Furthermore the
1627 * ICT interrupt handling mechanism has another bug that might cause
1628 * these unmasked interrupts fail to be detected. We workaround the
1629 * hardware bugs here by ACKing all the possible interrupts so that
1630 * interrupt coalescing can still be achieved.
1632 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1634 if (iwl_have_debug_level(IWL_DL_ISR))
1635 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1636 inta, iwl_read32(trans, CSR_INT_MASK));
1638 spin_unlock(&trans_pcie->irq_lock);
1640 /* Now service all interrupt bits discovered above. */
1641 if (inta & CSR_INT_BIT_HW_ERR) {
1642 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1644 /* Tell the device to stop sending interrupts */
1645 iwl_disable_interrupts(trans);
1647 isr_stats->hw++;
1648 iwl_pcie_irq_handle_error(trans);
1650 handled |= CSR_INT_BIT_HW_ERR;
1652 goto out;
1655 if (iwl_have_debug_level(IWL_DL_ISR)) {
1656 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1657 if (inta & CSR_INT_BIT_SCD) {
1658 IWL_DEBUG_ISR(trans,
1659 "Scheduler finished to transmit the frame/frames.\n");
1660 isr_stats->sch++;
1663 /* Alive notification via Rx interrupt will do the real work */
1664 if (inta & CSR_INT_BIT_ALIVE) {
1665 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1666 isr_stats->alive++;
1667 if (trans->cfg->gen2) {
1669 * We can restock, since firmware configured
1670 * the RFH
1672 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1677 /* Safely ignore these bits for debug checks below */
1678 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1680 /* HW RF KILL switch toggled */
1681 if (inta & CSR_INT_BIT_RF_KILL) {
1682 iwl_pcie_handle_rfkill_irq(trans);
1683 handled |= CSR_INT_BIT_RF_KILL;
1686 /* Chip got too hot and stopped itself */
1687 if (inta & CSR_INT_BIT_CT_KILL) {
1688 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1689 isr_stats->ctkill++;
1690 handled |= CSR_INT_BIT_CT_KILL;
1693 /* Error detected by uCode */
1694 if (inta & CSR_INT_BIT_SW_ERR) {
1695 IWL_ERR(trans, "Microcode SW error detected. "
1696 " Restarting 0x%X.\n", inta);
1697 isr_stats->sw++;
1698 iwl_pcie_irq_handle_error(trans);
1699 handled |= CSR_INT_BIT_SW_ERR;
1702 /* uCode wakes up after power-down sleep */
1703 if (inta & CSR_INT_BIT_WAKEUP) {
1704 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1705 iwl_pcie_rxq_check_wrptr(trans);
1706 iwl_pcie_txq_check_wrptrs(trans);
1708 isr_stats->wakeup++;
1710 handled |= CSR_INT_BIT_WAKEUP;
1713 /* All uCode command responses, including Tx command responses,
1714 * Rx "responses" (frame-received notification), and other
1715 * notifications from uCode come through here*/
1716 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1717 CSR_INT_BIT_RX_PERIODIC)) {
1718 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1719 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1720 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1721 iwl_write32(trans, CSR_FH_INT_STATUS,
1722 CSR_FH_INT_RX_MASK);
1724 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1725 handled |= CSR_INT_BIT_RX_PERIODIC;
1726 iwl_write32(trans,
1727 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1729 /* Sending RX interrupt require many steps to be done in the
1730 * the device:
1731 * 1- write interrupt to current index in ICT table.
1732 * 2- dma RX frame.
1733 * 3- update RX shared data to indicate last write index.
1734 * 4- send interrupt.
1735 * This could lead to RX race, driver could receive RX interrupt
1736 * but the shared data changes does not reflect this;
1737 * periodic interrupt will detect any dangling Rx activity.
1740 /* Disable periodic interrupt; we use it as just a one-shot. */
1741 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1742 CSR_INT_PERIODIC_DIS);
1745 * Enable periodic interrupt in 8 msec only if we received
1746 * real RX interrupt (instead of just periodic int), to catch
1747 * any dangling Rx interrupt. If it was just the periodic
1748 * interrupt, there was no dangling Rx activity, and no need
1749 * to extend the periodic interrupt; one-shot is enough.
1751 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1752 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1753 CSR_INT_PERIODIC_ENA);
1755 isr_stats->rx++;
1757 local_bh_disable();
1758 iwl_pcie_rx_handle(trans, 0);
1759 local_bh_enable();
1762 /* This "Tx" DMA channel is used only for loading uCode */
1763 if (inta & CSR_INT_BIT_FH_TX) {
1764 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1765 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1766 isr_stats->tx++;
1767 handled |= CSR_INT_BIT_FH_TX;
1768 /* Wake up uCode load routine, now that load is complete */
1769 trans_pcie->ucode_write_complete = true;
1770 wake_up(&trans_pcie->ucode_write_waitq);
1773 if (inta & ~handled) {
1774 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1775 isr_stats->unhandled++;
1778 if (inta & ~(trans_pcie->inta_mask)) {
1779 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1780 inta & ~trans_pcie->inta_mask);
1783 spin_lock(&trans_pcie->irq_lock);
1784 /* only Re-enable all interrupt if disabled by irq */
1785 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1786 _iwl_enable_interrupts(trans);
1787 /* we are loading the firmware, enable FH_TX interrupt only */
1788 else if (handled & CSR_INT_BIT_FH_TX)
1789 iwl_enable_fw_load_int(trans);
1790 /* Re-enable RF_KILL if it occurred */
1791 else if (handled & CSR_INT_BIT_RF_KILL)
1792 iwl_enable_rfkill_int(trans);
1793 spin_unlock(&trans_pcie->irq_lock);
1795 out:
1796 lock_map_release(&trans->sync_cmd_lockdep_map);
1797 return IRQ_HANDLED;
1800 /******************************************************************************
1802 * ICT functions
1804 ******************************************************************************/
1806 /* Free dram table */
1807 void iwl_pcie_free_ict(struct iwl_trans *trans)
1809 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1811 if (trans_pcie->ict_tbl) {
1812 dma_free_coherent(trans->dev, ICT_SIZE,
1813 trans_pcie->ict_tbl,
1814 trans_pcie->ict_tbl_dma);
1815 trans_pcie->ict_tbl = NULL;
1816 trans_pcie->ict_tbl_dma = 0;
1821 * allocate dram shared table, it is an aligned memory
1822 * block of ICT_SIZE.
1823 * also reset all data related to ICT table interrupt.
1825 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1827 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1829 trans_pcie->ict_tbl =
1830 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1831 &trans_pcie->ict_tbl_dma,
1832 GFP_KERNEL);
1833 if (!trans_pcie->ict_tbl)
1834 return -ENOMEM;
1836 /* just an API sanity check ... it is guaranteed to be aligned */
1837 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1838 iwl_pcie_free_ict(trans);
1839 return -EINVAL;
1842 return 0;
1845 /* Device is going up inform it about using ICT interrupt table,
1846 * also we need to tell the driver to start using ICT interrupt.
1848 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1850 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1851 u32 val;
1853 if (!trans_pcie->ict_tbl)
1854 return;
1856 spin_lock(&trans_pcie->irq_lock);
1857 _iwl_disable_interrupts(trans);
1859 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1861 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1863 val |= CSR_DRAM_INT_TBL_ENABLE |
1864 CSR_DRAM_INIT_TBL_WRAP_CHECK |
1865 CSR_DRAM_INIT_TBL_WRITE_POINTER;
1867 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1869 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1870 trans_pcie->use_ict = true;
1871 trans_pcie->ict_index = 0;
1872 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1873 _iwl_enable_interrupts(trans);
1874 spin_unlock(&trans_pcie->irq_lock);
1877 /* Device is going down disable ict interrupt usage */
1878 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1880 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1882 spin_lock(&trans_pcie->irq_lock);
1883 trans_pcie->use_ict = false;
1884 spin_unlock(&trans_pcie->irq_lock);
1887 irqreturn_t iwl_pcie_isr(int irq, void *data)
1889 struct iwl_trans *trans = data;
1891 if (!trans)
1892 return IRQ_NONE;
1894 /* Disable (but don't clear!) interrupts here to avoid
1895 * back-to-back ISRs and sporadic interrupts from our NIC.
1896 * If we have something to service, the tasklet will re-enable ints.
1897 * If we *don't* have something, we'll re-enable before leaving here.
1899 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1901 return IRQ_WAKE_THREAD;
1904 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1906 return IRQ_WAKE_THREAD;
1909 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1911 struct msix_entry *entry = dev_id;
1912 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1913 struct iwl_trans *trans = trans_pcie->trans;
1914 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1915 u32 inta_fh, inta_hw;
1917 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1919 spin_lock(&trans_pcie->irq_lock);
1920 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1921 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1923 * Clear causes registers to avoid being handling the same cause.
1925 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1926 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1927 spin_unlock(&trans_pcie->irq_lock);
1929 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
1931 if (unlikely(!(inta_fh | inta_hw))) {
1932 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1933 lock_map_release(&trans->sync_cmd_lockdep_map);
1934 return IRQ_NONE;
1937 if (iwl_have_debug_level(IWL_DL_ISR))
1938 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1939 inta_fh,
1940 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1942 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
1943 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
1944 local_bh_disable();
1945 iwl_pcie_rx_handle(trans, 0);
1946 local_bh_enable();
1949 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
1950 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
1951 local_bh_disable();
1952 iwl_pcie_rx_handle(trans, 1);
1953 local_bh_enable();
1956 /* This "Tx" DMA channel is used only for loading uCode */
1957 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1958 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1959 isr_stats->tx++;
1961 * Wake up uCode load routine,
1962 * now that load is complete
1964 trans_pcie->ucode_write_complete = true;
1965 wake_up(&trans_pcie->ucode_write_waitq);
1968 /* Error detected by uCode */
1969 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1970 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1971 IWL_ERR(trans,
1972 "Microcode SW error detected. Restarting 0x%X.\n",
1973 inta_fh);
1974 isr_stats->sw++;
1975 iwl_pcie_irq_handle_error(trans);
1978 /* After checking FH register check HW register */
1979 if (iwl_have_debug_level(IWL_DL_ISR))
1980 IWL_DEBUG_ISR(trans,
1981 "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1982 inta_hw,
1983 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1985 /* Alive notification via Rx interrupt will do the real work */
1986 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1987 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1988 isr_stats->alive++;
1989 if (trans->cfg->gen2) {
1990 /* We can restock, since firmware configured the RFH */
1991 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1995 /* uCode wakes up after power-down sleep */
1996 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1997 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1998 iwl_pcie_rxq_check_wrptr(trans);
1999 iwl_pcie_txq_check_wrptrs(trans);
2001 isr_stats->wakeup++;
2004 /* Chip got too hot and stopped itself */
2005 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2006 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2007 isr_stats->ctkill++;
2010 /* HW RF KILL switch toggled */
2011 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2012 iwl_pcie_handle_rfkill_irq(trans);
2014 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2015 IWL_ERR(trans,
2016 "Hardware error detected. Restarting.\n");
2018 isr_stats->hw++;
2019 iwl_pcie_irq_handle_error(trans);
2022 iwl_pcie_clear_irq(trans, entry);
2024 lock_map_release(&trans->sync_cmd_lockdep_map);
2026 return IRQ_HANDLED;