1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) Microsoft Corporation.
6 * Jake Oshins <jakeo@microsoft.com>
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
48 #include <linux/msi.h>
49 #include <linux/hyperv.h>
50 #include <linux/refcount.h>
51 #include <asm/mshyperv.h>
54 * Protocol versions. The low word is the minor version, the high word the
58 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
59 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
60 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 enum pci_protocol_version_t
{
63 PCI_PROTOCOL_VERSION_1_1
= PCI_MAKE_VERSION(1, 1), /* Win10 */
64 PCI_PROTOCOL_VERSION_1_2
= PCI_MAKE_VERSION(1, 2), /* RS1 */
67 #define CPU_AFFINITY_ALL -1ULL
70 * Supported protocol versions in the order of probing - highest go
73 static enum pci_protocol_version_t pci_protocol_versions
[] = {
74 PCI_PROTOCOL_VERSION_1_2
,
75 PCI_PROTOCOL_VERSION_1_1
,
79 * Protocol version negotiated by hv_pci_protocol_negotiation().
81 static enum pci_protocol_version_t pci_protocol_version
;
83 #define PCI_CONFIG_MMIO_LENGTH 0x2000
84 #define CFG_PAGE_OFFSET 0x1000
85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
89 #define STATUS_REVISION_MISMATCH 0xC0000059
95 enum pci_message_type
{
99 PCI_MESSAGE_BASE
= 0x42490000,
100 PCI_BUS_RELATIONS
= PCI_MESSAGE_BASE
+ 0,
101 PCI_QUERY_BUS_RELATIONS
= PCI_MESSAGE_BASE
+ 1,
102 PCI_POWER_STATE_CHANGE
= PCI_MESSAGE_BASE
+ 4,
103 PCI_QUERY_RESOURCE_REQUIREMENTS
= PCI_MESSAGE_BASE
+ 5,
104 PCI_QUERY_RESOURCE_RESOURCES
= PCI_MESSAGE_BASE
+ 6,
105 PCI_BUS_D0ENTRY
= PCI_MESSAGE_BASE
+ 7,
106 PCI_BUS_D0EXIT
= PCI_MESSAGE_BASE
+ 8,
107 PCI_READ_BLOCK
= PCI_MESSAGE_BASE
+ 9,
108 PCI_WRITE_BLOCK
= PCI_MESSAGE_BASE
+ 0xA,
109 PCI_EJECT
= PCI_MESSAGE_BASE
+ 0xB,
110 PCI_QUERY_STOP
= PCI_MESSAGE_BASE
+ 0xC,
111 PCI_REENABLE
= PCI_MESSAGE_BASE
+ 0xD,
112 PCI_QUERY_STOP_FAILED
= PCI_MESSAGE_BASE
+ 0xE,
113 PCI_EJECTION_COMPLETE
= PCI_MESSAGE_BASE
+ 0xF,
114 PCI_RESOURCES_ASSIGNED
= PCI_MESSAGE_BASE
+ 0x10,
115 PCI_RESOURCES_RELEASED
= PCI_MESSAGE_BASE
+ 0x11,
116 PCI_INVALIDATE_BLOCK
= PCI_MESSAGE_BASE
+ 0x12,
117 PCI_QUERY_PROTOCOL_VERSION
= PCI_MESSAGE_BASE
+ 0x13,
118 PCI_CREATE_INTERRUPT_MESSAGE
= PCI_MESSAGE_BASE
+ 0x14,
119 PCI_DELETE_INTERRUPT_MESSAGE
= PCI_MESSAGE_BASE
+ 0x15,
120 PCI_RESOURCES_ASSIGNED2
= PCI_MESSAGE_BASE
+ 0x16,
121 PCI_CREATE_INTERRUPT_MESSAGE2
= PCI_MESSAGE_BASE
+ 0x17,
122 PCI_DELETE_INTERRUPT_MESSAGE2
= PCI_MESSAGE_BASE
+ 0x18, /* unused */
127 * Structures defining the virtual PCI Express protocol.
139 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
140 * which is all this driver does. This representation is the one used in
141 * Windows, which is what is expected when sending this back and forth with
142 * the Hyper-V parent partition.
144 union win_slot_encoding
{
154 * Pretty much as defined in the PCI Specifications.
156 struct pci_function_description
{
157 u16 v_id
; /* vendor ID */
158 u16 d_id
; /* device ID */
164 union win_slot_encoding win_slot
;
165 u32 ser
; /* serial number */
171 * @delivery_mode: As defined in Intel's Programmer's
172 * Reference Manual, Volume 3, Chapter 8.
173 * @vector_count: Number of contiguous entries in the
174 * Interrupt Descriptor Table that are
175 * occupied by this Message-Signaled
176 * Interrupt. For "MSI", as first defined
177 * in PCI 2.2, this can be between 1 and
178 * 32. For "MSI-X," as first defined in PCI
179 * 3.0, this must be 1, as each MSI-X table
180 * entry would have its own descriptor.
181 * @reserved: Empty space
182 * @cpu_mask: All the target virtual processors.
193 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
195 * @delivery_mode: As defined in Intel's Programmer's
196 * Reference Manual, Volume 3, Chapter 8.
197 * @vector_count: Number of contiguous entries in the
198 * Interrupt Descriptor Table that are
199 * occupied by this Message-Signaled
200 * Interrupt. For "MSI", as first defined
201 * in PCI 2.2, this can be between 1 and
202 * 32. For "MSI-X," as first defined in PCI
203 * 3.0, this must be 1, as each MSI-X table
204 * entry would have its own descriptor.
205 * @processor_count: number of bits enabled in array.
206 * @processor_array: All the target virtual processors.
208 struct hv_msi_desc2
{
213 u16 processor_array
[32];
217 * struct tran_int_desc
218 * @reserved: unused, padding
219 * @vector_count: same as in hv_msi_desc
220 * @data: This is the "data payload" value that is
221 * written by the device when it generates
222 * a message-signaled interrupt, either MSI
224 * @address: This is the address to which the data
225 * payload is written on interrupt
228 struct tran_int_desc
{
236 * A generic message format for virtual PCI.
237 * Specific message formats are defined later in the file.
244 struct pci_child_message
{
245 struct pci_message message_type
;
246 union win_slot_encoding wslot
;
249 struct pci_incoming_message
{
250 struct vmpacket_descriptor hdr
;
251 struct pci_message message_type
;
254 struct pci_response
{
255 struct vmpacket_descriptor hdr
;
256 s32 status
; /* negative values are failures */
260 void (*completion_func
)(void *context
, struct pci_response
*resp
,
261 int resp_packet_size
);
264 struct pci_message message
[0];
268 * Specific message types supporting the PCI protocol.
272 * Version negotiation message. Sent from the guest to the host.
273 * The guest is free to try different versions until the host
274 * accepts the version.
276 * pci_version: The protocol version requested.
277 * is_last_attempt: If TRUE, this is the last version guest will request.
278 * reservedz: Reserved field, set to zero.
281 struct pci_version_request
{
282 struct pci_message message_type
;
283 u32 protocol_version
;
287 * Bus D0 Entry. This is sent from the guest to the host when the virtual
288 * bus (PCI Express port) is ready for action.
291 struct pci_bus_d0_entry
{
292 struct pci_message message_type
;
297 struct pci_bus_relations
{
298 struct pci_incoming_message incoming
;
300 struct pci_function_description func
[0];
303 struct pci_q_res_req_response
{
304 struct vmpacket_descriptor hdr
;
305 s32 status
; /* negative values are failures */
309 struct pci_set_power
{
310 struct pci_message message_type
;
311 union win_slot_encoding wslot
;
312 u32 power_state
; /* In Windows terms */
316 struct pci_set_power_response
{
317 struct vmpacket_descriptor hdr
;
318 s32 status
; /* negative values are failures */
319 union win_slot_encoding wslot
;
320 u32 resultant_state
; /* In Windows terms */
324 struct pci_resources_assigned
{
325 struct pci_message message_type
;
326 union win_slot_encoding wslot
;
327 u8 memory_range
[0x14][6]; /* not used here */
332 struct pci_resources_assigned2
{
333 struct pci_message message_type
;
334 union win_slot_encoding wslot
;
335 u8 memory_range
[0x14][6]; /* not used here */
336 u32 msi_descriptor_count
;
340 struct pci_create_interrupt
{
341 struct pci_message message_type
;
342 union win_slot_encoding wslot
;
343 struct hv_msi_desc int_desc
;
346 struct pci_create_int_response
{
347 struct pci_response response
;
349 struct tran_int_desc int_desc
;
352 struct pci_create_interrupt2
{
353 struct pci_message message_type
;
354 union win_slot_encoding wslot
;
355 struct hv_msi_desc2 int_desc
;
358 struct pci_delete_interrupt
{
359 struct pci_message message_type
;
360 union win_slot_encoding wslot
;
361 struct tran_int_desc int_desc
;
364 struct pci_dev_incoming
{
365 struct pci_incoming_message incoming
;
366 union win_slot_encoding wslot
;
369 struct pci_eject_response
{
370 struct pci_message message_type
;
371 union win_slot_encoding wslot
;
375 static int pci_ring_size
= (4 * PAGE_SIZE
);
378 * Definitions or interrupt steering hypercall.
380 #define HV_PARTITION_ID_SELF ((u64)-1)
381 #define HVCALL_RETARGET_INTERRUPT 0x7e
383 struct hv_interrupt_entry
{
384 u32 source
; /* 1 for MSI(-X) */
390 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */
393 u64 format
; /* 0 (HvGenericSetSparse4k) */
395 u64 masks
[HV_VP_SET_BANK_COUNT_MAX
];
399 * flags for hv_device_interrupt_target.flags
401 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
402 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
404 struct hv_device_interrupt_target
{
409 struct hv_vp_set vp_set
;
413 struct retarget_msi_interrupt
{
414 u64 partition_id
; /* use "self" */
416 struct hv_interrupt_entry int_entry
;
418 struct hv_device_interrupt_target int_target
;
422 * Driver specific state.
425 enum hv_pcibus_state
{
433 struct hv_pcibus_device
{
434 struct pci_sysdata sysdata
;
435 enum hv_pcibus_state state
;
436 atomic_t remove_lock
;
437 struct hv_device
*hdev
;
438 resource_size_t low_mmio_space
;
439 resource_size_t high_mmio_space
;
440 struct resource
*mem_config
;
441 struct resource
*low_mmio_res
;
442 struct resource
*high_mmio_res
;
443 struct completion
*survey_event
;
444 struct completion remove_event
;
445 struct pci_bus
*pci_bus
;
446 spinlock_t config_lock
; /* Avoid two threads writing index page */
447 spinlock_t device_list_lock
; /* Protect lists below */
448 void __iomem
*cfg_addr
;
450 struct semaphore enum_sem
;
451 struct list_head resources_for_children
;
453 struct list_head children
;
454 struct list_head dr_list
;
456 struct msi_domain_info msi_info
;
457 struct msi_controller msi_chip
;
458 struct irq_domain
*irq_domain
;
460 /* hypercall arg, must not cross page boundary */
461 struct retarget_msi_interrupt retarget_msi_interrupt_params
;
463 spinlock_t retarget_msi_interrupt_lock
;
467 * Tracks "Device Relations" messages from the host, which must be both
468 * processed in order and deferred so that they don't run in the context
469 * of the incoming packet callback.
472 struct work_struct wrk
;
473 struct hv_pcibus_device
*bus
;
477 struct list_head list_entry
;
479 struct pci_function_description func
[0];
482 enum hv_pcichild_state
{
483 hv_pcichild_init
= 0,
484 hv_pcichild_requirements
,
485 hv_pcichild_resourced
,
486 hv_pcichild_ejecting
,
490 enum hv_pcidev_ref_reason
{
491 hv_pcidev_ref_invalid
= 0,
492 hv_pcidev_ref_initial
,
493 hv_pcidev_ref_by_slot
,
494 hv_pcidev_ref_packet
,
496 hv_pcidev_ref_childlist
,
502 /* List protected by pci_rescan_remove_lock */
503 struct list_head list_entry
;
505 enum hv_pcichild_state state
;
506 struct pci_function_description desc
;
507 bool reported_missing
;
508 struct hv_pcibus_device
*hbus
;
509 struct work_struct wrk
;
512 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
513 * read it back, for each of the BAR offsets within config space.
518 struct hv_pci_compl
{
519 struct completion host_event
;
520 s32 completion_status
;
524 * hv_pci_generic_compl() - Invoked for a completion packet
525 * @context: Set up by the sender of the packet.
526 * @resp: The response packet
527 * @resp_packet_size: Size in bytes of the packet
529 * This function is used to trigger an event and report status
530 * for any message for which the completion packet contains a
531 * status and nothing else.
533 static void hv_pci_generic_compl(void *context
, struct pci_response
*resp
,
534 int resp_packet_size
)
536 struct hv_pci_compl
*comp_pkt
= context
;
538 if (resp_packet_size
>= offsetofend(struct pci_response
, status
))
539 comp_pkt
->completion_status
= resp
->status
;
541 comp_pkt
->completion_status
= -1;
543 complete(&comp_pkt
->host_event
);
546 static struct hv_pci_dev
*get_pcichild_wslot(struct hv_pcibus_device
*hbus
,
548 static void get_pcichild(struct hv_pci_dev
*hv_pcidev
,
549 enum hv_pcidev_ref_reason reason
);
550 static void put_pcichild(struct hv_pci_dev
*hv_pcidev
,
551 enum hv_pcidev_ref_reason reason
);
553 static void get_hvpcibus(struct hv_pcibus_device
*hv_pcibus
);
554 static void put_hvpcibus(struct hv_pcibus_device
*hv_pcibus
);
557 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
558 * @devfn: The Linux representation of PCI slot
560 * Windows uses a slightly different representation of PCI slot.
562 * Return: The Windows representation
564 static u32
devfn_to_wslot(int devfn
)
566 union win_slot_encoding wslot
;
569 wslot
.bits
.dev
= PCI_SLOT(devfn
);
570 wslot
.bits
.func
= PCI_FUNC(devfn
);
576 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
577 * @wslot: The Windows representation of PCI slot
579 * Windows uses a slightly different representation of PCI slot.
581 * Return: The Linux representation
583 static int wslot_to_devfn(u32 wslot
)
585 union win_slot_encoding slot_no
;
587 slot_no
.slot
= wslot
;
588 return PCI_DEVFN(slot_no
.bits
.dev
, slot_no
.bits
.func
);
592 * PCI Configuration Space for these root PCI buses is implemented as a pair
593 * of pages in memory-mapped I/O space. Writing to the first page chooses
594 * the PCI function being written or read. Once the first page has been
595 * written to, the following page maps in the entire configuration space of
600 * _hv_pcifront_read_config() - Internal PCI config read
601 * @hpdev: The PCI driver's representation of the device
602 * @where: Offset within config space
603 * @size: Size of the transfer
604 * @val: Pointer to the buffer receiving the data
606 static void _hv_pcifront_read_config(struct hv_pci_dev
*hpdev
, int where
,
610 void __iomem
*addr
= hpdev
->hbus
->cfg_addr
+ CFG_PAGE_OFFSET
+ where
;
613 * If the attempt is to read the IDs or the ROM BAR, simulate that.
615 if (where
+ size
<= PCI_COMMAND
) {
616 memcpy(val
, ((u8
*)&hpdev
->desc
.v_id
) + where
, size
);
617 } else if (where
>= PCI_CLASS_REVISION
&& where
+ size
<=
618 PCI_CACHE_LINE_SIZE
) {
619 memcpy(val
, ((u8
*)&hpdev
->desc
.rev
) + where
-
620 PCI_CLASS_REVISION
, size
);
621 } else if (where
>= PCI_SUBSYSTEM_VENDOR_ID
&& where
+ size
<=
623 memcpy(val
, (u8
*)&hpdev
->desc
.subsystem_id
+ where
-
624 PCI_SUBSYSTEM_VENDOR_ID
, size
);
625 } else if (where
>= PCI_ROM_ADDRESS
&& where
+ size
<=
626 PCI_CAPABILITY_LIST
) {
627 /* ROM BARs are unimplemented */
629 } else if (where
>= PCI_INTERRUPT_LINE
&& where
+ size
<=
632 * Interrupt Line and Interrupt PIN are hard-wired to zero
633 * because this front-end only supports message-signaled
637 } else if (where
+ size
<= CFG_PAGE_SIZE
) {
638 spin_lock_irqsave(&hpdev
->hbus
->config_lock
, flags
);
639 /* Choose the function to be read. (See comment above) */
640 writel(hpdev
->desc
.win_slot
.slot
, hpdev
->hbus
->cfg_addr
);
641 /* Make sure the function was chosen before we start reading. */
643 /* Read from that function's config space. */
656 * Make sure the write was done before we release the spinlock
657 * allowing consecutive reads/writes.
660 spin_unlock_irqrestore(&hpdev
->hbus
->config_lock
, flags
);
662 dev_err(&hpdev
->hbus
->hdev
->device
,
663 "Attempt to read beyond a function's config space.\n");
668 * _hv_pcifront_write_config() - Internal PCI config write
669 * @hpdev: The PCI driver's representation of the device
670 * @where: Offset within config space
671 * @size: Size of the transfer
672 * @val: The data being transferred
674 static void _hv_pcifront_write_config(struct hv_pci_dev
*hpdev
, int where
,
678 void __iomem
*addr
= hpdev
->hbus
->cfg_addr
+ CFG_PAGE_OFFSET
+ where
;
680 if (where
>= PCI_SUBSYSTEM_VENDOR_ID
&&
681 where
+ size
<= PCI_CAPABILITY_LIST
) {
682 /* SSIDs and ROM BARs are read-only */
683 } else if (where
>= PCI_COMMAND
&& where
+ size
<= CFG_PAGE_SIZE
) {
684 spin_lock_irqsave(&hpdev
->hbus
->config_lock
, flags
);
685 /* Choose the function to be written. (See comment above) */
686 writel(hpdev
->desc
.win_slot
.slot
, hpdev
->hbus
->cfg_addr
);
687 /* Make sure the function was chosen before we start writing. */
689 /* Write to that function's config space. */
702 * Make sure the write was done before we release the spinlock
703 * allowing consecutive reads/writes.
706 spin_unlock_irqrestore(&hpdev
->hbus
->config_lock
, flags
);
708 dev_err(&hpdev
->hbus
->hdev
->device
,
709 "Attempt to write beyond a function's config space.\n");
714 * hv_pcifront_read_config() - Read configuration space
715 * @bus: PCI Bus structure
716 * @devfn: Device/function
717 * @where: Offset from base
718 * @size: Byte/word/dword
719 * @val: Value to be read
721 * Return: PCIBIOS_SUCCESSFUL on success
722 * PCIBIOS_DEVICE_NOT_FOUND on failure
724 static int hv_pcifront_read_config(struct pci_bus
*bus
, unsigned int devfn
,
725 int where
, int size
, u32
*val
)
727 struct hv_pcibus_device
*hbus
=
728 container_of(bus
->sysdata
, struct hv_pcibus_device
, sysdata
);
729 struct hv_pci_dev
*hpdev
;
731 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(devfn
));
733 return PCIBIOS_DEVICE_NOT_FOUND
;
735 _hv_pcifront_read_config(hpdev
, where
, size
, val
);
737 put_pcichild(hpdev
, hv_pcidev_ref_by_slot
);
738 return PCIBIOS_SUCCESSFUL
;
742 * hv_pcifront_write_config() - Write configuration space
743 * @bus: PCI Bus structure
744 * @devfn: Device/function
745 * @where: Offset from base
746 * @size: Byte/word/dword
747 * @val: Value to be written to device
749 * Return: PCIBIOS_SUCCESSFUL on success
750 * PCIBIOS_DEVICE_NOT_FOUND on failure
752 static int hv_pcifront_write_config(struct pci_bus
*bus
, unsigned int devfn
,
753 int where
, int size
, u32 val
)
755 struct hv_pcibus_device
*hbus
=
756 container_of(bus
->sysdata
, struct hv_pcibus_device
, sysdata
);
757 struct hv_pci_dev
*hpdev
;
759 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(devfn
));
761 return PCIBIOS_DEVICE_NOT_FOUND
;
763 _hv_pcifront_write_config(hpdev
, where
, size
, val
);
765 put_pcichild(hpdev
, hv_pcidev_ref_by_slot
);
766 return PCIBIOS_SUCCESSFUL
;
769 /* PCIe operations */
770 static struct pci_ops hv_pcifront_ops
= {
771 .read
= hv_pcifront_read_config
,
772 .write
= hv_pcifront_write_config
,
775 /* Interrupt management hooks */
776 static void hv_int_desc_free(struct hv_pci_dev
*hpdev
,
777 struct tran_int_desc
*int_desc
)
779 struct pci_delete_interrupt
*int_pkt
;
781 struct pci_packet pkt
;
782 u8 buffer
[sizeof(struct pci_delete_interrupt
)];
785 memset(&ctxt
, 0, sizeof(ctxt
));
786 int_pkt
= (struct pci_delete_interrupt
*)&ctxt
.pkt
.message
;
787 int_pkt
->message_type
.type
=
788 PCI_DELETE_INTERRUPT_MESSAGE
;
789 int_pkt
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
790 int_pkt
->int_desc
= *int_desc
;
791 vmbus_sendpacket(hpdev
->hbus
->hdev
->channel
, int_pkt
, sizeof(*int_pkt
),
792 (unsigned long)&ctxt
.pkt
, VM_PKT_DATA_INBAND
, 0);
797 * hv_msi_free() - Free the MSI.
798 * @domain: The interrupt domain pointer
799 * @info: Extra MSI-related context
800 * @irq: Identifies the IRQ.
802 * The Hyper-V parent partition and hypervisor are tracking the
803 * messages that are in use, keeping the interrupt redirection
804 * table up to date. This callback sends a message that frees
805 * the IRT entry and related tracking nonsense.
807 static void hv_msi_free(struct irq_domain
*domain
, struct msi_domain_info
*info
,
810 struct hv_pcibus_device
*hbus
;
811 struct hv_pci_dev
*hpdev
;
812 struct pci_dev
*pdev
;
813 struct tran_int_desc
*int_desc
;
814 struct irq_data
*irq_data
= irq_domain_get_irq_data(domain
, irq
);
815 struct msi_desc
*msi
= irq_data_get_msi_desc(irq_data
);
817 pdev
= msi_desc_to_pci_dev(msi
);
819 int_desc
= irq_data_get_irq_chip_data(irq_data
);
823 irq_data
->chip_data
= NULL
;
824 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(pdev
->devfn
));
830 hv_int_desc_free(hpdev
, int_desc
);
831 put_pcichild(hpdev
, hv_pcidev_ref_by_slot
);
834 static int hv_set_affinity(struct irq_data
*data
, const struct cpumask
*dest
,
837 struct irq_data
*parent
= data
->parent_data
;
839 return parent
->chip
->irq_set_affinity(parent
, dest
, force
);
842 static void hv_irq_mask(struct irq_data
*data
)
844 pci_msi_mask_irq(data
);
848 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
850 * @data: Describes the IRQ
852 * Build new a destination for the MSI and make a hypercall to
853 * update the Interrupt Redirection Table. "Device Logical ID"
854 * is built out of this PCI bus's instance GUID and the function
855 * number of the device.
857 static void hv_irq_unmask(struct irq_data
*data
)
859 struct msi_desc
*msi_desc
= irq_data_get_msi_desc(data
);
860 struct irq_cfg
*cfg
= irqd_cfg(data
);
861 struct retarget_msi_interrupt
*params
;
862 struct hv_pcibus_device
*hbus
;
863 struct cpumask
*dest
;
864 struct pci_bus
*pbus
;
865 struct pci_dev
*pdev
;
872 dest
= irq_data_get_effective_affinity_mask(data
);
873 pdev
= msi_desc_to_pci_dev(msi_desc
);
875 hbus
= container_of(pbus
->sysdata
, struct hv_pcibus_device
, sysdata
);
877 spin_lock_irqsave(&hbus
->retarget_msi_interrupt_lock
, flags
);
879 params
= &hbus
->retarget_msi_interrupt_params
;
880 memset(params
, 0, sizeof(*params
));
881 params
->partition_id
= HV_PARTITION_ID_SELF
;
882 params
->int_entry
.source
= 1; /* MSI(-X) */
883 params
->int_entry
.address
= msi_desc
->msg
.address_lo
;
884 params
->int_entry
.data
= msi_desc
->msg
.data
;
885 params
->device_id
= (hbus
->hdev
->dev_instance
.b
[5] << 24) |
886 (hbus
->hdev
->dev_instance
.b
[4] << 16) |
887 (hbus
->hdev
->dev_instance
.b
[7] << 8) |
888 (hbus
->hdev
->dev_instance
.b
[6] & 0xf8) |
889 PCI_FUNC(pdev
->devfn
);
890 params
->int_target
.vector
= cfg
->vector
;
893 * Honoring apic->irq_delivery_mode set to dest_Fixed by
894 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
895 * spurious interrupt storm. Not doing so does not seem to have a
896 * negative effect (yet?).
899 if (pci_protocol_version
>= PCI_PROTOCOL_VERSION_1_2
) {
901 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
902 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
903 * with >64 VP support.
904 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
905 * is not sufficient for this hypercall.
907 params
->int_target
.flags
|=
908 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET
;
909 params
->int_target
.vp_set
.valid_banks
=
910 (1ull << HV_VP_SET_BANK_COUNT_MAX
) - 1;
913 * var-sized hypercall, var-size starts after vp_mask (thus
914 * vp_set.format does not count, but vp_set.valid_banks does).
916 var_size
= 1 + HV_VP_SET_BANK_COUNT_MAX
;
918 for_each_cpu_and(cpu
, dest
, cpu_online_mask
) {
919 cpu_vmbus
= hv_cpu_number_to_vp_number(cpu
);
921 if (cpu_vmbus
>= HV_VP_SET_BANK_COUNT_MAX
* 64) {
922 dev_err(&hbus
->hdev
->device
,
923 "too high CPU %d", cpu_vmbus
);
928 params
->int_target
.vp_set
.masks
[cpu_vmbus
/ 64] |=
929 (1ULL << (cpu_vmbus
& 63));
932 for_each_cpu_and(cpu
, dest
, cpu_online_mask
) {
933 params
->int_target
.vp_mask
|=
934 (1ULL << hv_cpu_number_to_vp_number(cpu
));
938 res
= hv_do_hypercall(HVCALL_RETARGET_INTERRUPT
| (var_size
<< 17),
942 spin_unlock_irqrestore(&hbus
->retarget_msi_interrupt_lock
, flags
);
945 dev_err(&hbus
->hdev
->device
,
946 "%s() failed: %#llx", __func__
, res
);
950 pci_msi_unmask_irq(data
);
953 struct compose_comp_ctxt
{
954 struct hv_pci_compl comp_pkt
;
955 struct tran_int_desc int_desc
;
958 static void hv_pci_compose_compl(void *context
, struct pci_response
*resp
,
959 int resp_packet_size
)
961 struct compose_comp_ctxt
*comp_pkt
= context
;
962 struct pci_create_int_response
*int_resp
=
963 (struct pci_create_int_response
*)resp
;
965 comp_pkt
->comp_pkt
.completion_status
= resp
->status
;
966 comp_pkt
->int_desc
= int_resp
->int_desc
;
967 complete(&comp_pkt
->comp_pkt
.host_event
);
970 static u32
hv_compose_msi_req_v1(
971 struct pci_create_interrupt
*int_pkt
, struct cpumask
*affinity
,
974 int_pkt
->message_type
.type
= PCI_CREATE_INTERRUPT_MESSAGE
;
975 int_pkt
->wslot
.slot
= slot
;
976 int_pkt
->int_desc
.vector
= vector
;
977 int_pkt
->int_desc
.vector_count
= 1;
978 int_pkt
->int_desc
.delivery_mode
= dest_Fixed
;
981 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
984 int_pkt
->int_desc
.cpu_mask
= CPU_AFFINITY_ALL
;
986 return sizeof(*int_pkt
);
989 static u32
hv_compose_msi_req_v2(
990 struct pci_create_interrupt2
*int_pkt
, struct cpumask
*affinity
,
995 int_pkt
->message_type
.type
= PCI_CREATE_INTERRUPT_MESSAGE2
;
996 int_pkt
->wslot
.slot
= slot
;
997 int_pkt
->int_desc
.vector
= vector
;
998 int_pkt
->int_desc
.vector_count
= 1;
999 int_pkt
->int_desc
.delivery_mode
= dest_Fixed
;
1002 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1003 * by subsequent retarget in hv_irq_unmask().
1005 cpu
= cpumask_first_and(affinity
, cpu_online_mask
);
1006 int_pkt
->int_desc
.processor_array
[0] =
1007 hv_cpu_number_to_vp_number(cpu
);
1008 int_pkt
->int_desc
.processor_count
= 1;
1010 return sizeof(*int_pkt
);
1014 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1015 * @data: Everything about this MSI
1016 * @msg: Buffer that is filled in by this function
1018 * This function unpacks the IRQ looking for target CPU set, IDT
1019 * vector and mode and sends a message to the parent partition
1020 * asking for a mapping for that tuple in this partition. The
1021 * response supplies a data value and address to which that data
1022 * should be written to trigger that interrupt.
1024 static void hv_compose_msi_msg(struct irq_data
*data
, struct msi_msg
*msg
)
1026 struct irq_cfg
*cfg
= irqd_cfg(data
);
1027 struct hv_pcibus_device
*hbus
;
1028 struct hv_pci_dev
*hpdev
;
1029 struct pci_bus
*pbus
;
1030 struct pci_dev
*pdev
;
1031 struct cpumask
*dest
;
1032 struct compose_comp_ctxt comp
;
1033 struct tran_int_desc
*int_desc
;
1035 struct pci_packet pci_pkt
;
1037 struct pci_create_interrupt v1
;
1038 struct pci_create_interrupt2 v2
;
1045 pdev
= msi_desc_to_pci_dev(irq_data_get_msi_desc(data
));
1046 dest
= irq_data_get_effective_affinity_mask(data
);
1048 hbus
= container_of(pbus
->sysdata
, struct hv_pcibus_device
, sysdata
);
1049 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(pdev
->devfn
));
1051 goto return_null_message
;
1053 /* Free any previous message that might have already been composed. */
1054 if (data
->chip_data
) {
1055 int_desc
= data
->chip_data
;
1056 data
->chip_data
= NULL
;
1057 hv_int_desc_free(hpdev
, int_desc
);
1060 int_desc
= kzalloc(sizeof(*int_desc
), GFP_ATOMIC
);
1062 goto drop_reference
;
1064 memset(&ctxt
, 0, sizeof(ctxt
));
1065 init_completion(&comp
.comp_pkt
.host_event
);
1066 ctxt
.pci_pkt
.completion_func
= hv_pci_compose_compl
;
1067 ctxt
.pci_pkt
.compl_ctxt
= &comp
;
1069 switch (pci_protocol_version
) {
1070 case PCI_PROTOCOL_VERSION_1_1
:
1071 size
= hv_compose_msi_req_v1(&ctxt
.int_pkts
.v1
,
1073 hpdev
->desc
.win_slot
.slot
,
1077 case PCI_PROTOCOL_VERSION_1_2
:
1078 size
= hv_compose_msi_req_v2(&ctxt
.int_pkts
.v2
,
1080 hpdev
->desc
.win_slot
.slot
,
1085 /* As we only negotiate protocol versions known to this driver,
1086 * this path should never hit. However, this is it not a hot
1087 * path so we print a message to aid future updates.
1089 dev_err(&hbus
->hdev
->device
,
1090 "Unexpected vPCI protocol, update driver.");
1094 ret
= vmbus_sendpacket(hpdev
->hbus
->hdev
->channel
, &ctxt
.int_pkts
,
1095 size
, (unsigned long)&ctxt
.pci_pkt
,
1097 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
1099 dev_err(&hbus
->hdev
->device
,
1100 "Sending request for interrupt failed: 0x%x",
1101 comp
.comp_pkt
.completion_status
);
1106 * Since this function is called with IRQ locks held, can't
1107 * do normal wait for completion; instead poll.
1109 while (!try_wait_for_completion(&comp
.comp_pkt
.host_event
))
1112 if (comp
.comp_pkt
.completion_status
< 0) {
1113 dev_err(&hbus
->hdev
->device
,
1114 "Request for interrupt failed: 0x%x",
1115 comp
.comp_pkt
.completion_status
);
1120 * Record the assignment so that this can be unwound later. Using
1121 * irq_set_chip_data() here would be appropriate, but the lock it takes
1124 *int_desc
= comp
.int_desc
;
1125 data
->chip_data
= int_desc
;
1127 /* Pass up the result. */
1128 msg
->address_hi
= comp
.int_desc
.address
>> 32;
1129 msg
->address_lo
= comp
.int_desc
.address
& 0xffffffff;
1130 msg
->data
= comp
.int_desc
.data
;
1132 put_pcichild(hpdev
, hv_pcidev_ref_by_slot
);
1138 put_pcichild(hpdev
, hv_pcidev_ref_by_slot
);
1139 return_null_message
:
1140 msg
->address_hi
= 0;
1141 msg
->address_lo
= 0;
1145 /* HW Interrupt Chip Descriptor */
1146 static struct irq_chip hv_msi_irq_chip
= {
1147 .name
= "Hyper-V PCIe MSI",
1148 .irq_compose_msi_msg
= hv_compose_msi_msg
,
1149 .irq_set_affinity
= hv_set_affinity
,
1150 .irq_ack
= irq_chip_ack_parent
,
1151 .irq_mask
= hv_irq_mask
,
1152 .irq_unmask
= hv_irq_unmask
,
1155 static irq_hw_number_t
hv_msi_domain_ops_get_hwirq(struct msi_domain_info
*info
,
1156 msi_alloc_info_t
*arg
)
1158 return arg
->msi_hwirq
;
1161 static struct msi_domain_ops hv_msi_ops
= {
1162 .get_hwirq
= hv_msi_domain_ops_get_hwirq
,
1163 .msi_prepare
= pci_msi_prepare
,
1164 .set_desc
= pci_msi_set_desc
,
1165 .msi_free
= hv_msi_free
,
1169 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1170 * @hbus: The root PCI bus
1172 * This function creates an IRQ domain which will be used for
1173 * interrupts from devices that have been passed through. These
1174 * devices only support MSI and MSI-X, not line-based interrupts
1175 * or simulations of line-based interrupts through PCIe's
1176 * fabric-layer messages. Because interrupts are remapped, we
1177 * can support multi-message MSI here.
1179 * Return: '0' on success and error value on failure
1181 static int hv_pcie_init_irq_domain(struct hv_pcibus_device
*hbus
)
1183 hbus
->msi_info
.chip
= &hv_msi_irq_chip
;
1184 hbus
->msi_info
.ops
= &hv_msi_ops
;
1185 hbus
->msi_info
.flags
= (MSI_FLAG_USE_DEF_DOM_OPS
|
1186 MSI_FLAG_USE_DEF_CHIP_OPS
| MSI_FLAG_MULTI_PCI_MSI
|
1188 hbus
->msi_info
.handler
= handle_edge_irq
;
1189 hbus
->msi_info
.handler_name
= "edge";
1190 hbus
->msi_info
.data
= hbus
;
1191 hbus
->irq_domain
= pci_msi_create_irq_domain(hbus
->sysdata
.fwnode
,
1194 if (!hbus
->irq_domain
) {
1195 dev_err(&hbus
->hdev
->device
,
1196 "Failed to build an MSI IRQ domain\n");
1204 * get_bar_size() - Get the address space consumed by a BAR
1205 * @bar_val: Value that a BAR returned after -1 was written
1208 * This function returns the size of the BAR, rounded up to 1
1209 * page. It has to be rounded up because the hypervisor's page
1210 * table entry that maps the BAR into the VM can't specify an
1211 * offset within a page. The invariant is that the hypervisor
1212 * must place any BARs of smaller than page length at the
1213 * beginning of a page.
1215 * Return: Size in bytes of the consumed MMIO space.
1217 static u64
get_bar_size(u64 bar_val
)
1219 return round_up((1 + ~(bar_val
& PCI_BASE_ADDRESS_MEM_MASK
)),
1224 * survey_child_resources() - Total all MMIO requirements
1225 * @hbus: Root PCI bus, as understood by this driver
1227 static void survey_child_resources(struct hv_pcibus_device
*hbus
)
1229 struct list_head
*iter
;
1230 struct hv_pci_dev
*hpdev
;
1231 resource_size_t bar_size
= 0;
1232 unsigned long flags
;
1233 struct completion
*event
;
1237 /* If nobody is waiting on the answer, don't compute it. */
1238 event
= xchg(&hbus
->survey_event
, NULL
);
1242 /* If the answer has already been computed, go with it. */
1243 if (hbus
->low_mmio_space
|| hbus
->high_mmio_space
) {
1248 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1251 * Due to an interesting quirk of the PCI spec, all memory regions
1252 * for a child device are a power of 2 in size and aligned in memory,
1253 * so it's sufficient to just add them up without tracking alignment.
1255 list_for_each(iter
, &hbus
->children
) {
1256 hpdev
= container_of(iter
, struct hv_pci_dev
, list_entry
);
1257 for (i
= 0; i
< 6; i
++) {
1258 if (hpdev
->probed_bar
[i
] & PCI_BASE_ADDRESS_SPACE_IO
)
1259 dev_err(&hbus
->hdev
->device
,
1260 "There's an I/O BAR in this list!\n");
1262 if (hpdev
->probed_bar
[i
] != 0) {
1264 * A probed BAR has all the upper bits set that
1268 bar_val
= hpdev
->probed_bar
[i
];
1269 if (bar_val
& PCI_BASE_ADDRESS_MEM_TYPE_64
)
1271 ((u64
)hpdev
->probed_bar
[++i
] << 32);
1273 bar_val
|= 0xffffffff00000000ULL
;
1275 bar_size
= get_bar_size(bar_val
);
1277 if (bar_val
& PCI_BASE_ADDRESS_MEM_TYPE_64
)
1278 hbus
->high_mmio_space
+= bar_size
;
1280 hbus
->low_mmio_space
+= bar_size
;
1285 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1290 * prepopulate_bars() - Fill in BARs with defaults
1291 * @hbus: Root PCI bus, as understood by this driver
1293 * The core PCI driver code seems much, much happier if the BARs
1294 * for a device have values upon first scan. So fill them in.
1295 * The algorithm below works down from large sizes to small,
1296 * attempting to pack the assignments optimally. The assumption,
1297 * enforced in other parts of the code, is that the beginning of
1298 * the memory-mapped I/O space will be aligned on the largest
1301 static void prepopulate_bars(struct hv_pcibus_device
*hbus
)
1303 resource_size_t high_size
= 0;
1304 resource_size_t low_size
= 0;
1305 resource_size_t high_base
= 0;
1306 resource_size_t low_base
= 0;
1307 resource_size_t bar_size
;
1308 struct hv_pci_dev
*hpdev
;
1309 struct list_head
*iter
;
1310 unsigned long flags
;
1316 if (hbus
->low_mmio_space
) {
1317 low_size
= 1ULL << (63 - __builtin_clzll(hbus
->low_mmio_space
));
1318 low_base
= hbus
->low_mmio_res
->start
;
1321 if (hbus
->high_mmio_space
) {
1323 (63 - __builtin_clzll(hbus
->high_mmio_space
));
1324 high_base
= hbus
->high_mmio_res
->start
;
1327 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1329 /* Pick addresses for the BARs. */
1331 list_for_each(iter
, &hbus
->children
) {
1332 hpdev
= container_of(iter
, struct hv_pci_dev
,
1334 for (i
= 0; i
< 6; i
++) {
1335 bar_val
= hpdev
->probed_bar
[i
];
1338 high
= bar_val
& PCI_BASE_ADDRESS_MEM_TYPE_64
;
1341 ((u64
)hpdev
->probed_bar
[i
+ 1]
1344 bar_val
|= 0xffffffffULL
<< 32;
1346 bar_size
= get_bar_size(bar_val
);
1348 if (high_size
!= bar_size
) {
1352 _hv_pcifront_write_config(hpdev
,
1353 PCI_BASE_ADDRESS_0
+ (4 * i
),
1355 (u32
)(high_base
& 0xffffff00));
1357 _hv_pcifront_write_config(hpdev
,
1358 PCI_BASE_ADDRESS_0
+ (4 * i
),
1359 4, (u32
)(high_base
>> 32));
1360 high_base
+= bar_size
;
1362 if (low_size
!= bar_size
)
1364 _hv_pcifront_write_config(hpdev
,
1365 PCI_BASE_ADDRESS_0
+ (4 * i
),
1367 (u32
)(low_base
& 0xffffff00));
1368 low_base
+= bar_size
;
1371 if (high_size
<= 1 && low_size
<= 1) {
1372 /* Set the memory enable bit. */
1373 _hv_pcifront_read_config(hpdev
, PCI_COMMAND
, 2,
1375 command
|= PCI_COMMAND_MEMORY
;
1376 _hv_pcifront_write_config(hpdev
, PCI_COMMAND
, 2,
1384 } while (high_size
|| low_size
);
1386 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1390 * create_root_hv_pci_bus() - Expose a new root PCI bus
1391 * @hbus: Root PCI bus, as understood by this driver
1393 * Return: 0 on success, -errno on failure
1395 static int create_root_hv_pci_bus(struct hv_pcibus_device
*hbus
)
1397 /* Register the device */
1398 hbus
->pci_bus
= pci_create_root_bus(&hbus
->hdev
->device
,
1399 0, /* bus number is always zero */
1402 &hbus
->resources_for_children
);
1406 hbus
->pci_bus
->msi
= &hbus
->msi_chip
;
1407 hbus
->pci_bus
->msi
->dev
= &hbus
->hdev
->device
;
1409 pci_lock_rescan_remove();
1410 pci_scan_child_bus(hbus
->pci_bus
);
1411 pci_bus_assign_resources(hbus
->pci_bus
);
1412 pci_bus_add_devices(hbus
->pci_bus
);
1413 pci_unlock_rescan_remove();
1414 hbus
->state
= hv_pcibus_installed
;
1418 struct q_res_req_compl
{
1419 struct completion host_event
;
1420 struct hv_pci_dev
*hpdev
;
1424 * q_resource_requirements() - Query Resource Requirements
1425 * @context: The completion context.
1426 * @resp: The response that came from the host.
1427 * @resp_packet_size: The size in bytes of resp.
1429 * This function is invoked on completion of a Query Resource
1430 * Requirements packet.
1432 static void q_resource_requirements(void *context
, struct pci_response
*resp
,
1433 int resp_packet_size
)
1435 struct q_res_req_compl
*completion
= context
;
1436 struct pci_q_res_req_response
*q_res_req
=
1437 (struct pci_q_res_req_response
*)resp
;
1440 if (resp
->status
< 0) {
1441 dev_err(&completion
->hpdev
->hbus
->hdev
->device
,
1442 "query resource requirements failed: %x\n",
1445 for (i
= 0; i
< 6; i
++) {
1446 completion
->hpdev
->probed_bar
[i
] =
1447 q_res_req
->probed_bar
[i
];
1451 complete(&completion
->host_event
);
1454 static void get_pcichild(struct hv_pci_dev
*hpdev
,
1455 enum hv_pcidev_ref_reason reason
)
1457 refcount_inc(&hpdev
->refs
);
1460 static void put_pcichild(struct hv_pci_dev
*hpdev
,
1461 enum hv_pcidev_ref_reason reason
)
1463 if (refcount_dec_and_test(&hpdev
->refs
))
1468 * new_pcichild_device() - Create a new child device
1469 * @hbus: The internal struct tracking this root PCI bus.
1470 * @desc: The information supplied so far from the host
1473 * This function creates the tracking structure for a new child
1474 * device and kicks off the process of figuring out what it is.
1476 * Return: Pointer to the new tracking struct
1478 static struct hv_pci_dev
*new_pcichild_device(struct hv_pcibus_device
*hbus
,
1479 struct pci_function_description
*desc
)
1481 struct hv_pci_dev
*hpdev
;
1482 struct pci_child_message
*res_req
;
1483 struct q_res_req_compl comp_pkt
;
1485 struct pci_packet init_packet
;
1486 u8 buffer
[sizeof(struct pci_child_message
)];
1488 unsigned long flags
;
1491 hpdev
= kzalloc(sizeof(*hpdev
), GFP_ATOMIC
);
1497 memset(&pkt
, 0, sizeof(pkt
));
1498 init_completion(&comp_pkt
.host_event
);
1499 comp_pkt
.hpdev
= hpdev
;
1500 pkt
.init_packet
.compl_ctxt
= &comp_pkt
;
1501 pkt
.init_packet
.completion_func
= q_resource_requirements
;
1502 res_req
= (struct pci_child_message
*)&pkt
.init_packet
.message
;
1503 res_req
->message_type
.type
= PCI_QUERY_RESOURCE_REQUIREMENTS
;
1504 res_req
->wslot
.slot
= desc
->win_slot
.slot
;
1506 ret
= vmbus_sendpacket(hbus
->hdev
->channel
, res_req
,
1507 sizeof(struct pci_child_message
),
1508 (unsigned long)&pkt
.init_packet
,
1510 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
1514 wait_for_completion(&comp_pkt
.host_event
);
1516 hpdev
->desc
= *desc
;
1517 refcount_set(&hpdev
->refs
, 1);
1518 get_pcichild(hpdev
, hv_pcidev_ref_childlist
);
1519 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1522 * When a device is being added to the bus, we set the PCI domain
1523 * number to be the device serial number, which is non-zero and
1524 * unique on the same VM. The serial numbers start with 1, and
1525 * increase by 1 for each device. So device names including this
1526 * can have shorter names than based on the bus instance UUID.
1527 * Only the first device serial number is used for domain, so the
1528 * domain number will not change after the first device is added.
1530 if (list_empty(&hbus
->children
))
1531 hbus
->sysdata
.domain
= desc
->ser
;
1532 list_add_tail(&hpdev
->list_entry
, &hbus
->children
);
1533 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1542 * get_pcichild_wslot() - Find device from slot
1543 * @hbus: Root PCI bus, as understood by this driver
1544 * @wslot: Location on the bus
1546 * This function looks up a PCI device and returns the internal
1547 * representation of it. It acquires a reference on it, so that
1548 * the device won't be deleted while somebody is using it. The
1549 * caller is responsible for calling put_pcichild() to release
1552 * Return: Internal representation of a PCI device
1554 static struct hv_pci_dev
*get_pcichild_wslot(struct hv_pcibus_device
*hbus
,
1557 unsigned long flags
;
1558 struct hv_pci_dev
*iter
, *hpdev
= NULL
;
1560 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1561 list_for_each_entry(iter
, &hbus
->children
, list_entry
) {
1562 if (iter
->desc
.win_slot
.slot
== wslot
) {
1564 get_pcichild(hpdev
, hv_pcidev_ref_by_slot
);
1568 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1574 * pci_devices_present_work() - Handle new list of child devices
1575 * @work: Work struct embedded in struct hv_dr_work
1577 * "Bus Relations" is the Windows term for "children of this
1578 * bus." The terminology is preserved here for people trying to
1579 * debug the interaction between Hyper-V and Linux. This
1580 * function is called when the parent partition reports a list
1581 * of functions that should be observed under this PCI Express
1584 * This function updates the list, and must tolerate being
1585 * called multiple times with the same information. The typical
1586 * number of child devices is one, with very atypical cases
1587 * involving three or four, so the algorithms used here can be
1588 * simple and inefficient.
1590 * It must also treat the omission of a previously observed device as
1591 * notification that the device no longer exists.
1593 * Note that this function is a work item, and it may not be
1594 * invoked in the order that it was queued. Back to back
1595 * updates of the list of present devices may involve queuing
1596 * multiple work items, and this one may run before ones that
1597 * were sent later. As such, this function only does something
1598 * if is the last one in the queue.
1600 static void pci_devices_present_work(struct work_struct
*work
)
1604 struct list_head
*iter
;
1605 struct pci_function_description
*new_desc
;
1606 struct hv_pci_dev
*hpdev
;
1607 struct hv_pcibus_device
*hbus
;
1608 struct list_head removed
;
1609 struct hv_dr_work
*dr_wrk
;
1610 struct hv_dr_state
*dr
= NULL
;
1611 unsigned long flags
;
1613 dr_wrk
= container_of(work
, struct hv_dr_work
, wrk
);
1617 INIT_LIST_HEAD(&removed
);
1619 if (down_interruptible(&hbus
->enum_sem
)) {
1624 /* Pull this off the queue and process it if it was the last one. */
1625 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1626 while (!list_empty(&hbus
->dr_list
)) {
1627 dr
= list_first_entry(&hbus
->dr_list
, struct hv_dr_state
,
1629 list_del(&dr
->list_entry
);
1631 /* Throw this away if the list still has stuff in it. */
1632 if (!list_empty(&hbus
->dr_list
)) {
1637 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1640 up(&hbus
->enum_sem
);
1645 /* First, mark all existing children as reported missing. */
1646 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1647 list_for_each(iter
, &hbus
->children
) {
1648 hpdev
= container_of(iter
, struct hv_pci_dev
,
1650 hpdev
->reported_missing
= true;
1652 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1654 /* Next, add back any reported devices. */
1655 for (child_no
= 0; child_no
< dr
->device_count
; child_no
++) {
1657 new_desc
= &dr
->func
[child_no
];
1659 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1660 list_for_each(iter
, &hbus
->children
) {
1661 hpdev
= container_of(iter
, struct hv_pci_dev
,
1663 if ((hpdev
->desc
.win_slot
.slot
==
1664 new_desc
->win_slot
.slot
) &&
1665 (hpdev
->desc
.v_id
== new_desc
->v_id
) &&
1666 (hpdev
->desc
.d_id
== new_desc
->d_id
) &&
1667 (hpdev
->desc
.ser
== new_desc
->ser
)) {
1668 hpdev
->reported_missing
= false;
1672 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1675 hpdev
= new_pcichild_device(hbus
, new_desc
);
1677 dev_err(&hbus
->hdev
->device
,
1678 "couldn't record a child device.\n");
1682 /* Move missing children to a list on the stack. */
1683 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1686 list_for_each(iter
, &hbus
->children
) {
1687 hpdev
= container_of(iter
, struct hv_pci_dev
,
1689 if (hpdev
->reported_missing
) {
1691 put_pcichild(hpdev
, hv_pcidev_ref_childlist
);
1692 list_move_tail(&hpdev
->list_entry
, &removed
);
1697 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1699 /* Delete everything that should no longer exist. */
1700 while (!list_empty(&removed
)) {
1701 hpdev
= list_first_entry(&removed
, struct hv_pci_dev
,
1703 list_del(&hpdev
->list_entry
);
1704 put_pcichild(hpdev
, hv_pcidev_ref_initial
);
1707 switch (hbus
->state
) {
1708 case hv_pcibus_installed
:
1710 * Tell the core to rescan bus
1711 * because there may have been changes.
1713 pci_lock_rescan_remove();
1714 pci_scan_child_bus(hbus
->pci_bus
);
1715 pci_unlock_rescan_remove();
1718 case hv_pcibus_init
:
1719 case hv_pcibus_probed
:
1720 survey_child_resources(hbus
);
1727 up(&hbus
->enum_sem
);
1733 * hv_pci_devices_present() - Handles list of new children
1734 * @hbus: Root PCI bus, as understood by this driver
1735 * @relations: Packet from host listing children
1737 * This function is invoked whenever a new list of devices for
1740 static void hv_pci_devices_present(struct hv_pcibus_device
*hbus
,
1741 struct pci_bus_relations
*relations
)
1743 struct hv_dr_state
*dr
;
1744 struct hv_dr_work
*dr_wrk
;
1745 unsigned long flags
;
1747 dr_wrk
= kzalloc(sizeof(*dr_wrk
), GFP_NOWAIT
);
1751 dr
= kzalloc(offsetof(struct hv_dr_state
, func
) +
1752 (sizeof(struct pci_function_description
) *
1753 (relations
->device_count
)), GFP_NOWAIT
);
1759 INIT_WORK(&dr_wrk
->wrk
, pci_devices_present_work
);
1761 dr
->device_count
= relations
->device_count
;
1762 if (dr
->device_count
!= 0) {
1763 memcpy(dr
->func
, relations
->func
,
1764 sizeof(struct pci_function_description
) *
1768 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1769 list_add_tail(&dr
->list_entry
, &hbus
->dr_list
);
1770 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1773 schedule_work(&dr_wrk
->wrk
);
1777 * hv_eject_device_work() - Asynchronously handles ejection
1778 * @work: Work struct embedded in internal device struct
1780 * This function handles ejecting a device. Windows will
1781 * attempt to gracefully eject a device, waiting 60 seconds to
1782 * hear back from the guest OS that this completed successfully.
1783 * If this timer expires, the device will be forcibly removed.
1785 static void hv_eject_device_work(struct work_struct
*work
)
1787 struct pci_eject_response
*ejct_pkt
;
1788 struct hv_pci_dev
*hpdev
;
1789 struct pci_dev
*pdev
;
1790 unsigned long flags
;
1793 struct pci_packet pkt
;
1794 u8 buffer
[sizeof(struct pci_eject_response
)];
1797 hpdev
= container_of(work
, struct hv_pci_dev
, wrk
);
1799 if (hpdev
->state
!= hv_pcichild_ejecting
) {
1800 put_pcichild(hpdev
, hv_pcidev_ref_pnp
);
1805 * Ejection can come before or after the PCI bus has been set up, so
1806 * attempt to find it and tear down the bus state, if it exists. This
1807 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1808 * because hbus->pci_bus may not exist yet.
1810 wslot
= wslot_to_devfn(hpdev
->desc
.win_slot
.slot
);
1811 pdev
= pci_get_domain_bus_and_slot(hpdev
->hbus
->sysdata
.domain
, 0,
1814 pci_lock_rescan_remove();
1815 pci_stop_and_remove_bus_device(pdev
);
1817 pci_unlock_rescan_remove();
1820 spin_lock_irqsave(&hpdev
->hbus
->device_list_lock
, flags
);
1821 list_del(&hpdev
->list_entry
);
1822 spin_unlock_irqrestore(&hpdev
->hbus
->device_list_lock
, flags
);
1824 memset(&ctxt
, 0, sizeof(ctxt
));
1825 ejct_pkt
= (struct pci_eject_response
*)&ctxt
.pkt
.message
;
1826 ejct_pkt
->message_type
.type
= PCI_EJECTION_COMPLETE
;
1827 ejct_pkt
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
1828 vmbus_sendpacket(hpdev
->hbus
->hdev
->channel
, ejct_pkt
,
1829 sizeof(*ejct_pkt
), (unsigned long)&ctxt
.pkt
,
1830 VM_PKT_DATA_INBAND
, 0);
1832 put_pcichild(hpdev
, hv_pcidev_ref_childlist
);
1833 put_pcichild(hpdev
, hv_pcidev_ref_pnp
);
1834 put_hvpcibus(hpdev
->hbus
);
1838 * hv_pci_eject_device() - Handles device ejection
1839 * @hpdev: Internal device tracking struct
1841 * This function is invoked when an ejection packet arrives. It
1842 * just schedules work so that we don't re-enter the packet
1843 * delivery code handling the ejection.
1845 static void hv_pci_eject_device(struct hv_pci_dev
*hpdev
)
1847 hpdev
->state
= hv_pcichild_ejecting
;
1848 get_pcichild(hpdev
, hv_pcidev_ref_pnp
);
1849 INIT_WORK(&hpdev
->wrk
, hv_eject_device_work
);
1850 get_hvpcibus(hpdev
->hbus
);
1851 schedule_work(&hpdev
->wrk
);
1855 * hv_pci_onchannelcallback() - Handles incoming packets
1856 * @context: Internal bus tracking struct
1858 * This function is invoked whenever the host sends a packet to
1859 * this channel (which is private to this root PCI bus).
1861 static void hv_pci_onchannelcallback(void *context
)
1863 const int packet_size
= 0x100;
1865 struct hv_pcibus_device
*hbus
= context
;
1868 struct vmpacket_descriptor
*desc
;
1869 unsigned char *buffer
;
1870 int bufferlen
= packet_size
;
1871 struct pci_packet
*comp_packet
;
1872 struct pci_response
*response
;
1873 struct pci_incoming_message
*new_message
;
1874 struct pci_bus_relations
*bus_rel
;
1875 struct pci_dev_incoming
*dev_message
;
1876 struct hv_pci_dev
*hpdev
;
1878 buffer
= kmalloc(bufferlen
, GFP_ATOMIC
);
1883 ret
= vmbus_recvpacket_raw(hbus
->hdev
->channel
, buffer
,
1884 bufferlen
, &bytes_recvd
, &req_id
);
1886 if (ret
== -ENOBUFS
) {
1888 /* Handle large packet */
1889 bufferlen
= bytes_recvd
;
1890 buffer
= kmalloc(bytes_recvd
, GFP_ATOMIC
);
1896 /* Zero length indicates there are no more packets. */
1897 if (ret
|| !bytes_recvd
)
1901 * All incoming packets must be at least as large as a
1904 if (bytes_recvd
<= sizeof(struct pci_response
))
1906 desc
= (struct vmpacket_descriptor
*)buffer
;
1908 switch (desc
->type
) {
1912 * The host is trusted, and thus it's safe to interpret
1913 * this transaction ID as a pointer.
1915 comp_packet
= (struct pci_packet
*)req_id
;
1916 response
= (struct pci_response
*)buffer
;
1917 comp_packet
->completion_func(comp_packet
->compl_ctxt
,
1922 case VM_PKT_DATA_INBAND
:
1924 new_message
= (struct pci_incoming_message
*)buffer
;
1925 switch (new_message
->message_type
.type
) {
1926 case PCI_BUS_RELATIONS
:
1928 bus_rel
= (struct pci_bus_relations
*)buffer
;
1930 offsetof(struct pci_bus_relations
, func
) +
1931 (sizeof(struct pci_function_description
) *
1932 (bus_rel
->device_count
))) {
1933 dev_err(&hbus
->hdev
->device
,
1934 "bus relations too small\n");
1938 hv_pci_devices_present(hbus
, bus_rel
);
1943 dev_message
= (struct pci_dev_incoming
*)buffer
;
1944 hpdev
= get_pcichild_wslot(hbus
,
1945 dev_message
->wslot
.slot
);
1947 hv_pci_eject_device(hpdev
);
1949 hv_pcidev_ref_by_slot
);
1954 dev_warn(&hbus
->hdev
->device
,
1955 "Unimplemented protocol message %x\n",
1956 new_message
->message_type
.type
);
1962 dev_err(&hbus
->hdev
->device
,
1963 "unhandled packet type %d, tid %llx len %d\n",
1964 desc
->type
, req_id
, bytes_recvd
);
1973 * hv_pci_protocol_negotiation() - Set up protocol
1974 * @hdev: VMBus's tracking struct for this root PCI bus
1976 * This driver is intended to support running on Windows 10
1977 * (server) and later versions. It will not run on earlier
1978 * versions, as they assume that many of the operations which
1979 * Linux needs accomplished with a spinlock held were done via
1980 * asynchronous messaging via VMBus. Windows 10 increases the
1981 * surface area of PCI emulation so that these actions can take
1982 * place by suspending a virtual processor for their duration.
1984 * This function negotiates the channel protocol version,
1985 * failing if the host doesn't support the necessary protocol
1988 static int hv_pci_protocol_negotiation(struct hv_device
*hdev
)
1990 struct pci_version_request
*version_req
;
1991 struct hv_pci_compl comp_pkt
;
1992 struct pci_packet
*pkt
;
1997 * Initiate the handshake with the host and negotiate
1998 * a version that the host can support. We start with the
1999 * highest version number and go down if the host cannot
2002 pkt
= kzalloc(sizeof(*pkt
) + sizeof(*version_req
), GFP_KERNEL
);
2006 init_completion(&comp_pkt
.host_event
);
2007 pkt
->completion_func
= hv_pci_generic_compl
;
2008 pkt
->compl_ctxt
= &comp_pkt
;
2009 version_req
= (struct pci_version_request
*)&pkt
->message
;
2010 version_req
->message_type
.type
= PCI_QUERY_PROTOCOL_VERSION
;
2012 for (i
= 0; i
< ARRAY_SIZE(pci_protocol_versions
); i
++) {
2013 version_req
->protocol_version
= pci_protocol_versions
[i
];
2014 ret
= vmbus_sendpacket(hdev
->channel
, version_req
,
2015 sizeof(struct pci_version_request
),
2016 (unsigned long)pkt
, VM_PKT_DATA_INBAND
,
2017 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2019 dev_err(&hdev
->device
,
2020 "PCI Pass-through VSP failed sending version reqquest: %#x",
2025 wait_for_completion(&comp_pkt
.host_event
);
2027 if (comp_pkt
.completion_status
>= 0) {
2028 pci_protocol_version
= pci_protocol_versions
[i
];
2029 dev_info(&hdev
->device
,
2030 "PCI VMBus probing: Using version %#x\n",
2031 pci_protocol_version
);
2035 if (comp_pkt
.completion_status
!= STATUS_REVISION_MISMATCH
) {
2036 dev_err(&hdev
->device
,
2037 "PCI Pass-through VSP failed version request: %#x",
2038 comp_pkt
.completion_status
);
2043 reinit_completion(&comp_pkt
.host_event
);
2046 dev_err(&hdev
->device
,
2047 "PCI pass-through VSP failed to find supported version");
2056 * hv_pci_free_bridge_windows() - Release memory regions for the
2058 * @hbus: Root PCI bus, as understood by this driver
2060 static void hv_pci_free_bridge_windows(struct hv_pcibus_device
*hbus
)
2063 * Set the resources back to the way they looked when they
2064 * were allocated by setting IORESOURCE_BUSY again.
2067 if (hbus
->low_mmio_space
&& hbus
->low_mmio_res
) {
2068 hbus
->low_mmio_res
->flags
|= IORESOURCE_BUSY
;
2069 vmbus_free_mmio(hbus
->low_mmio_res
->start
,
2070 resource_size(hbus
->low_mmio_res
));
2073 if (hbus
->high_mmio_space
&& hbus
->high_mmio_res
) {
2074 hbus
->high_mmio_res
->flags
|= IORESOURCE_BUSY
;
2075 vmbus_free_mmio(hbus
->high_mmio_res
->start
,
2076 resource_size(hbus
->high_mmio_res
));
2081 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2083 * @hbus: Root PCI bus, as understood by this driver
2085 * This function calls vmbus_allocate_mmio(), which is itself a
2086 * bit of a compromise. Ideally, we might change the pnp layer
2087 * in the kernel such that it comprehends either PCI devices
2088 * which are "grandchildren of ACPI," with some intermediate bus
2089 * node (in this case, VMBus) or change it such that it
2090 * understands VMBus. The pnp layer, however, has been declared
2091 * deprecated, and not subject to change.
2093 * The workaround, implemented here, is to ask VMBus to allocate
2094 * MMIO space for this bus. VMBus itself knows which ranges are
2095 * appropriate by looking at its own ACPI objects. Then, after
2096 * these ranges are claimed, they're modified to look like they
2097 * would have looked if the ACPI and pnp code had allocated
2098 * bridge windows. These descriptors have to exist in this form
2099 * in order to satisfy the code which will get invoked when the
2100 * endpoint PCI function driver calls request_mem_region() or
2101 * request_mem_region_exclusive().
2103 * Return: 0 on success, -errno on failure
2105 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device
*hbus
)
2107 resource_size_t align
;
2110 if (hbus
->low_mmio_space
) {
2111 align
= 1ULL << (63 - __builtin_clzll(hbus
->low_mmio_space
));
2112 ret
= vmbus_allocate_mmio(&hbus
->low_mmio_res
, hbus
->hdev
, 0,
2113 (u64
)(u32
)0xffffffff,
2114 hbus
->low_mmio_space
,
2117 dev_err(&hbus
->hdev
->device
,
2118 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2119 hbus
->low_mmio_space
);
2123 /* Modify this resource to become a bridge window. */
2124 hbus
->low_mmio_res
->flags
|= IORESOURCE_WINDOW
;
2125 hbus
->low_mmio_res
->flags
&= ~IORESOURCE_BUSY
;
2126 pci_add_resource(&hbus
->resources_for_children
,
2127 hbus
->low_mmio_res
);
2130 if (hbus
->high_mmio_space
) {
2131 align
= 1ULL << (63 - __builtin_clzll(hbus
->high_mmio_space
));
2132 ret
= vmbus_allocate_mmio(&hbus
->high_mmio_res
, hbus
->hdev
,
2134 hbus
->high_mmio_space
, align
,
2137 dev_err(&hbus
->hdev
->device
,
2138 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2139 hbus
->high_mmio_space
);
2140 goto release_low_mmio
;
2143 /* Modify this resource to become a bridge window. */
2144 hbus
->high_mmio_res
->flags
|= IORESOURCE_WINDOW
;
2145 hbus
->high_mmio_res
->flags
&= ~IORESOURCE_BUSY
;
2146 pci_add_resource(&hbus
->resources_for_children
,
2147 hbus
->high_mmio_res
);
2153 if (hbus
->low_mmio_res
) {
2154 vmbus_free_mmio(hbus
->low_mmio_res
->start
,
2155 resource_size(hbus
->low_mmio_res
));
2162 * hv_allocate_config_window() - Find MMIO space for PCI Config
2163 * @hbus: Root PCI bus, as understood by this driver
2165 * This function claims memory-mapped I/O space for accessing
2166 * configuration space for the functions on this bus.
2168 * Return: 0 on success, -errno on failure
2170 static int hv_allocate_config_window(struct hv_pcibus_device
*hbus
)
2175 * Set up a region of MMIO space to use for accessing configuration
2178 ret
= vmbus_allocate_mmio(&hbus
->mem_config
, hbus
->hdev
, 0, -1,
2179 PCI_CONFIG_MMIO_LENGTH
, 0x1000, false);
2184 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2185 * resource claims (those which cannot be overlapped) and the ranges
2186 * which are valid for the children of this bus, which are intended
2187 * to be overlapped by those children. Set the flag on this claim
2188 * meaning that this region can't be overlapped.
2191 hbus
->mem_config
->flags
|= IORESOURCE_BUSY
;
2196 static void hv_free_config_window(struct hv_pcibus_device
*hbus
)
2198 vmbus_free_mmio(hbus
->mem_config
->start
, PCI_CONFIG_MMIO_LENGTH
);
2202 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2203 * @hdev: VMBus's tracking struct for this root PCI bus
2205 * Return: 0 on success, -errno on failure
2207 static int hv_pci_enter_d0(struct hv_device
*hdev
)
2209 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2210 struct pci_bus_d0_entry
*d0_entry
;
2211 struct hv_pci_compl comp_pkt
;
2212 struct pci_packet
*pkt
;
2216 * Tell the host that the bus is ready to use, and moved into the
2217 * powered-on state. This includes telling the host which region
2218 * of memory-mapped I/O space has been chosen for configuration space
2221 pkt
= kzalloc(sizeof(*pkt
) + sizeof(*d0_entry
), GFP_KERNEL
);
2225 init_completion(&comp_pkt
.host_event
);
2226 pkt
->completion_func
= hv_pci_generic_compl
;
2227 pkt
->compl_ctxt
= &comp_pkt
;
2228 d0_entry
= (struct pci_bus_d0_entry
*)&pkt
->message
;
2229 d0_entry
->message_type
.type
= PCI_BUS_D0ENTRY
;
2230 d0_entry
->mmio_base
= hbus
->mem_config
->start
;
2232 ret
= vmbus_sendpacket(hdev
->channel
, d0_entry
, sizeof(*d0_entry
),
2233 (unsigned long)pkt
, VM_PKT_DATA_INBAND
,
2234 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2238 wait_for_completion(&comp_pkt
.host_event
);
2240 if (comp_pkt
.completion_status
< 0) {
2241 dev_err(&hdev
->device
,
2242 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2243 comp_pkt
.completion_status
);
2256 * hv_pci_query_relations() - Ask host to send list of child
2258 * @hdev: VMBus's tracking struct for this root PCI bus
2260 * Return: 0 on success, -errno on failure
2262 static int hv_pci_query_relations(struct hv_device
*hdev
)
2264 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2265 struct pci_message message
;
2266 struct completion comp
;
2269 /* Ask the host to send along the list of child devices */
2270 init_completion(&comp
);
2271 if (cmpxchg(&hbus
->survey_event
, NULL
, &comp
))
2274 memset(&message
, 0, sizeof(message
));
2275 message
.type
= PCI_QUERY_BUS_RELATIONS
;
2277 ret
= vmbus_sendpacket(hdev
->channel
, &message
, sizeof(message
),
2278 0, VM_PKT_DATA_INBAND
, 0);
2282 wait_for_completion(&comp
);
2287 * hv_send_resources_allocated() - Report local resource choices
2288 * @hdev: VMBus's tracking struct for this root PCI bus
2290 * The host OS is expecting to be sent a request as a message
2291 * which contains all the resources that the device will use.
2292 * The response contains those same resources, "translated"
2293 * which is to say, the values which should be used by the
2294 * hardware, when it delivers an interrupt. (MMIO resources are
2295 * used in local terms.) This is nice for Windows, and lines up
2296 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2297 * is deeply expecting to scan an emulated PCI configuration
2298 * space. So this message is sent here only to drive the state
2299 * machine on the host forward.
2301 * Return: 0 on success, -errno on failure
2303 static int hv_send_resources_allocated(struct hv_device
*hdev
)
2305 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2306 struct pci_resources_assigned
*res_assigned
;
2307 struct pci_resources_assigned2
*res_assigned2
;
2308 struct hv_pci_compl comp_pkt
;
2309 struct hv_pci_dev
*hpdev
;
2310 struct pci_packet
*pkt
;
2315 size_res
= (pci_protocol_version
< PCI_PROTOCOL_VERSION_1_2
)
2316 ? sizeof(*res_assigned
) : sizeof(*res_assigned2
);
2318 pkt
= kmalloc(sizeof(*pkt
) + size_res
, GFP_KERNEL
);
2324 for (wslot
= 0; wslot
< 256; wslot
++) {
2325 hpdev
= get_pcichild_wslot(hbus
, wslot
);
2329 memset(pkt
, 0, sizeof(*pkt
) + size_res
);
2330 init_completion(&comp_pkt
.host_event
);
2331 pkt
->completion_func
= hv_pci_generic_compl
;
2332 pkt
->compl_ctxt
= &comp_pkt
;
2334 if (pci_protocol_version
< PCI_PROTOCOL_VERSION_1_2
) {
2336 (struct pci_resources_assigned
*)&pkt
->message
;
2337 res_assigned
->message_type
.type
=
2338 PCI_RESOURCES_ASSIGNED
;
2339 res_assigned
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
2342 (struct pci_resources_assigned2
*)&pkt
->message
;
2343 res_assigned2
->message_type
.type
=
2344 PCI_RESOURCES_ASSIGNED2
;
2345 res_assigned2
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
2347 put_pcichild(hpdev
, hv_pcidev_ref_by_slot
);
2349 ret
= vmbus_sendpacket(hdev
->channel
, &pkt
->message
,
2350 size_res
, (unsigned long)pkt
,
2352 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2356 wait_for_completion(&comp_pkt
.host_event
);
2358 if (comp_pkt
.completion_status
< 0) {
2360 dev_err(&hdev
->device
,
2361 "resource allocated returned 0x%x",
2362 comp_pkt
.completion_status
);
2372 * hv_send_resources_released() - Report local resources
2374 * @hdev: VMBus's tracking struct for this root PCI bus
2376 * Return: 0 on success, -errno on failure
2378 static int hv_send_resources_released(struct hv_device
*hdev
)
2380 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2381 struct pci_child_message pkt
;
2382 struct hv_pci_dev
*hpdev
;
2386 for (wslot
= 0; wslot
< 256; wslot
++) {
2387 hpdev
= get_pcichild_wslot(hbus
, wslot
);
2391 memset(&pkt
, 0, sizeof(pkt
));
2392 pkt
.message_type
.type
= PCI_RESOURCES_RELEASED
;
2393 pkt
.wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
2395 put_pcichild(hpdev
, hv_pcidev_ref_by_slot
);
2397 ret
= vmbus_sendpacket(hdev
->channel
, &pkt
, sizeof(pkt
), 0,
2398 VM_PKT_DATA_INBAND
, 0);
2406 static void get_hvpcibus(struct hv_pcibus_device
*hbus
)
2408 atomic_inc(&hbus
->remove_lock
);
2411 static void put_hvpcibus(struct hv_pcibus_device
*hbus
)
2413 if (atomic_dec_and_test(&hbus
->remove_lock
))
2414 complete(&hbus
->remove_event
);
2418 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2419 * @hdev: VMBus's tracking struct for this root PCI bus
2420 * @dev_id: Identifies the device itself
2422 * Return: 0 on success, -errno on failure
2424 static int hv_pci_probe(struct hv_device
*hdev
,
2425 const struct hv_vmbus_device_id
*dev_id
)
2427 struct hv_pcibus_device
*hbus
;
2431 * hv_pcibus_device contains the hypercall arguments for retargeting in
2432 * hv_irq_unmask(). Those must not cross a page boundary.
2434 BUILD_BUG_ON(sizeof(*hbus
) > PAGE_SIZE
);
2436 hbus
= (struct hv_pcibus_device
*)get_zeroed_page(GFP_KERNEL
);
2439 hbus
->state
= hv_pcibus_init
;
2442 * The PCI bus "domain" is what is called "segment" in ACPI and
2443 * other specs. Pull it from the instance ID, to get something
2444 * unique. Bytes 8 and 9 are what is used in Windows guests, so
2445 * do the same thing for consistency. Note that, since this code
2446 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2447 * that (1) the only domain in use for something that looks like
2448 * a physical PCI bus (which is actually emulated by the
2449 * hypervisor) is domain 0 and (2) there will be no overlap
2450 * between domains derived from these instance IDs in the same
2453 hbus
->sysdata
.domain
= hdev
->dev_instance
.b
[9] |
2454 hdev
->dev_instance
.b
[8] << 8;
2457 atomic_inc(&hbus
->remove_lock
);
2458 INIT_LIST_HEAD(&hbus
->children
);
2459 INIT_LIST_HEAD(&hbus
->dr_list
);
2460 INIT_LIST_HEAD(&hbus
->resources_for_children
);
2461 spin_lock_init(&hbus
->config_lock
);
2462 spin_lock_init(&hbus
->device_list_lock
);
2463 spin_lock_init(&hbus
->retarget_msi_interrupt_lock
);
2464 sema_init(&hbus
->enum_sem
, 1);
2465 init_completion(&hbus
->remove_event
);
2467 ret
= vmbus_open(hdev
->channel
, pci_ring_size
, pci_ring_size
, NULL
, 0,
2468 hv_pci_onchannelcallback
, hbus
);
2472 hv_set_drvdata(hdev
, hbus
);
2474 ret
= hv_pci_protocol_negotiation(hdev
);
2478 ret
= hv_allocate_config_window(hbus
);
2482 hbus
->cfg_addr
= ioremap(hbus
->mem_config
->start
,
2483 PCI_CONFIG_MMIO_LENGTH
);
2484 if (!hbus
->cfg_addr
) {
2485 dev_err(&hdev
->device
,
2486 "Unable to map a virtual address for config space\n");
2491 hbus
->sysdata
.fwnode
= irq_domain_alloc_fwnode(hbus
);
2492 if (!hbus
->sysdata
.fwnode
) {
2497 ret
= hv_pcie_init_irq_domain(hbus
);
2501 ret
= hv_pci_query_relations(hdev
);
2503 goto free_irq_domain
;
2505 ret
= hv_pci_enter_d0(hdev
);
2507 goto free_irq_domain
;
2509 ret
= hv_pci_allocate_bridge_windows(hbus
);
2511 goto free_irq_domain
;
2513 ret
= hv_send_resources_allocated(hdev
);
2517 prepopulate_bars(hbus
);
2519 hbus
->state
= hv_pcibus_probed
;
2521 ret
= create_root_hv_pci_bus(hbus
);
2528 hv_pci_free_bridge_windows(hbus
);
2530 irq_domain_remove(hbus
->irq_domain
);
2532 irq_domain_free_fwnode(hbus
->sysdata
.fwnode
);
2534 iounmap(hbus
->cfg_addr
);
2536 hv_free_config_window(hbus
);
2538 vmbus_close(hdev
->channel
);
2540 free_page((unsigned long)hbus
);
2544 static void hv_pci_bus_exit(struct hv_device
*hdev
)
2546 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2548 struct pci_packet teardown_packet
;
2549 u8 buffer
[sizeof(struct pci_message
)];
2551 struct pci_bus_relations relations
;
2552 struct hv_pci_compl comp_pkt
;
2556 * After the host sends the RESCIND_CHANNEL message, it doesn't
2557 * access the per-channel ringbuffer any longer.
2559 if (hdev
->channel
->rescind
)
2562 /* Delete any children which might still exist. */
2563 memset(&relations
, 0, sizeof(relations
));
2564 hv_pci_devices_present(hbus
, &relations
);
2566 ret
= hv_send_resources_released(hdev
);
2568 dev_err(&hdev
->device
,
2569 "Couldn't send resources released packet(s)\n");
2571 memset(&pkt
.teardown_packet
, 0, sizeof(pkt
.teardown_packet
));
2572 init_completion(&comp_pkt
.host_event
);
2573 pkt
.teardown_packet
.completion_func
= hv_pci_generic_compl
;
2574 pkt
.teardown_packet
.compl_ctxt
= &comp_pkt
;
2575 pkt
.teardown_packet
.message
[0].type
= PCI_BUS_D0EXIT
;
2577 ret
= vmbus_sendpacket(hdev
->channel
, &pkt
.teardown_packet
.message
,
2578 sizeof(struct pci_message
),
2579 (unsigned long)&pkt
.teardown_packet
,
2581 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2583 wait_for_completion_timeout(&comp_pkt
.host_event
, 10 * HZ
);
2587 * hv_pci_remove() - Remove routine for this VMBus channel
2588 * @hdev: VMBus's tracking struct for this root PCI bus
2590 * Return: 0 on success, -errno on failure
2592 static int hv_pci_remove(struct hv_device
*hdev
)
2594 struct hv_pcibus_device
*hbus
;
2596 hbus
= hv_get_drvdata(hdev
);
2597 if (hbus
->state
== hv_pcibus_installed
) {
2598 /* Remove the bus from PCI's point of view. */
2599 pci_lock_rescan_remove();
2600 pci_stop_root_bus(hbus
->pci_bus
);
2601 pci_remove_root_bus(hbus
->pci_bus
);
2602 pci_unlock_rescan_remove();
2603 hbus
->state
= hv_pcibus_removed
;
2606 hv_pci_bus_exit(hdev
);
2608 vmbus_close(hdev
->channel
);
2610 iounmap(hbus
->cfg_addr
);
2611 hv_free_config_window(hbus
);
2612 pci_free_resource_list(&hbus
->resources_for_children
);
2613 hv_pci_free_bridge_windows(hbus
);
2614 irq_domain_remove(hbus
->irq_domain
);
2615 irq_domain_free_fwnode(hbus
->sysdata
.fwnode
);
2617 wait_for_completion(&hbus
->remove_event
);
2618 free_page((unsigned long)hbus
);
2622 static const struct hv_vmbus_device_id hv_pci_id_table
[] = {
2623 /* PCI Pass-through Class ID */
2624 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2629 MODULE_DEVICE_TABLE(vmbus
, hv_pci_id_table
);
2631 static struct hv_driver hv_pci_drv
= {
2633 .id_table
= hv_pci_id_table
,
2634 .probe
= hv_pci_probe
,
2635 .remove
= hv_pci_remove
,
2638 static void __exit
exit_hv_pci_drv(void)
2640 vmbus_driver_unregister(&hv_pci_drv
);
2643 static int __init
init_hv_pci_drv(void)
2645 return vmbus_driver_register(&hv_pci_drv
);
2648 module_init(init_hv_pci_drv
);
2649 module_exit(exit_hv_pci_drv
);
2651 MODULE_DESCRIPTION("Hyper-V PCI");
2652 MODULE_LICENSE("GPL v2");