1 // SPDX-License-Identifier: GPL-2.0
3 * PCIe driver for Marvell Armada 370 and Armada XP SoCs
5 * Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 #include <linux/kernel.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/gpio.h>
13 #include <linux/init.h>
14 #include <linux/mbus.h>
15 #include <linux/msi.h>
16 #include <linux/slab.h>
17 #include <linux/platform_device.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_gpio.h>
21 #include <linux/of_pci.h>
22 #include <linux/of_platform.h>
25 * PCIe unit register offsets.
27 #define PCIE_DEV_ID_OFF 0x0000
28 #define PCIE_CMD_OFF 0x0004
29 #define PCIE_DEV_REV_OFF 0x0008
30 #define PCIE_BAR_LO_OFF(n) (0x0010 + ((n) << 3))
31 #define PCIE_BAR_HI_OFF(n) (0x0014 + ((n) << 3))
32 #define PCIE_CAP_PCIEXP 0x0060
33 #define PCIE_HEADER_LOG_4_OFF 0x0128
34 #define PCIE_BAR_CTRL_OFF(n) (0x1804 + (((n) - 1) * 4))
35 #define PCIE_WIN04_CTRL_OFF(n) (0x1820 + ((n) << 4))
36 #define PCIE_WIN04_BASE_OFF(n) (0x1824 + ((n) << 4))
37 #define PCIE_WIN04_REMAP_OFF(n) (0x182c + ((n) << 4))
38 #define PCIE_WIN5_CTRL_OFF 0x1880
39 #define PCIE_WIN5_BASE_OFF 0x1884
40 #define PCIE_WIN5_REMAP_OFF 0x188c
41 #define PCIE_CONF_ADDR_OFF 0x18f8
42 #define PCIE_CONF_ADDR_EN 0x80000000
43 #define PCIE_CONF_REG(r) ((((r) & 0xf00) << 16) | ((r) & 0xfc))
44 #define PCIE_CONF_BUS(b) (((b) & 0xff) << 16)
45 #define PCIE_CONF_DEV(d) (((d) & 0x1f) << 11)
46 #define PCIE_CONF_FUNC(f) (((f) & 0x7) << 8)
47 #define PCIE_CONF_ADDR(bus, devfn, where) \
48 (PCIE_CONF_BUS(bus) | PCIE_CONF_DEV(PCI_SLOT(devfn)) | \
49 PCIE_CONF_FUNC(PCI_FUNC(devfn)) | PCIE_CONF_REG(where) | \
51 #define PCIE_CONF_DATA_OFF 0x18fc
52 #define PCIE_MASK_OFF 0x1910
53 #define PCIE_MASK_ENABLE_INTS 0x0f000000
54 #define PCIE_CTRL_OFF 0x1a00
55 #define PCIE_CTRL_X1_MODE 0x0001
56 #define PCIE_STAT_OFF 0x1a04
57 #define PCIE_STAT_BUS 0xff00
58 #define PCIE_STAT_DEV 0x1f0000
59 #define PCIE_STAT_LINK_DOWN BIT(0)
60 #define PCIE_RC_RTSTA 0x1a14
61 #define PCIE_DEBUG_CTRL 0x1a60
62 #define PCIE_DEBUG_SOFT_RESET BIT(20)
65 PCISWCAP
= PCI_BRIDGE_CONTROL
+ 2,
66 PCISWCAP_EXP_LIST_ID
= PCISWCAP
+ PCI_CAP_LIST_ID
,
67 PCISWCAP_EXP_DEVCAP
= PCISWCAP
+ PCI_EXP_DEVCAP
,
68 PCISWCAP_EXP_DEVCTL
= PCISWCAP
+ PCI_EXP_DEVCTL
,
69 PCISWCAP_EXP_LNKCAP
= PCISWCAP
+ PCI_EXP_LNKCAP
,
70 PCISWCAP_EXP_LNKCTL
= PCISWCAP
+ PCI_EXP_LNKCTL
,
71 PCISWCAP_EXP_SLTCAP
= PCISWCAP
+ PCI_EXP_SLTCAP
,
72 PCISWCAP_EXP_SLTCTL
= PCISWCAP
+ PCI_EXP_SLTCTL
,
73 PCISWCAP_EXP_RTCTL
= PCISWCAP
+ PCI_EXP_RTCTL
,
74 PCISWCAP_EXP_RTSTA
= PCISWCAP
+ PCI_EXP_RTSTA
,
75 PCISWCAP_EXP_DEVCAP2
= PCISWCAP
+ PCI_EXP_DEVCAP2
,
76 PCISWCAP_EXP_DEVCTL2
= PCISWCAP
+ PCI_EXP_DEVCTL2
,
77 PCISWCAP_EXP_LNKCAP2
= PCISWCAP
+ PCI_EXP_LNKCAP2
,
78 PCISWCAP_EXP_LNKCTL2
= PCISWCAP
+ PCI_EXP_LNKCTL2
,
79 PCISWCAP_EXP_SLTCAP2
= PCISWCAP
+ PCI_EXP_SLTCAP2
,
80 PCISWCAP_EXP_SLTCTL2
= PCISWCAP
+ PCI_EXP_SLTCTL2
,
83 /* PCI configuration space of a PCI-to-PCI bridge */
84 struct mvebu_sw_pci_bridge
{
100 u8 secondary_latency_timer
;
103 u16 secondary_status
;
113 /* PCI express capability */
119 struct mvebu_pcie_port
;
121 /* Structure representing all PCIe interfaces */
123 struct platform_device
*pdev
;
124 struct mvebu_pcie_port
*ports
;
125 struct msi_controller
*msi
;
127 struct resource realio
;
129 struct resource busn
;
133 struct mvebu_pcie_window
{
139 /* Structure representing one PCIe interface */
140 struct mvebu_pcie_port
{
146 unsigned int mem_target
;
147 unsigned int mem_attr
;
148 unsigned int io_target
;
149 unsigned int io_attr
;
151 struct gpio_desc
*reset_gpio
;
153 struct mvebu_sw_pci_bridge bridge
;
154 struct device_node
*dn
;
155 struct mvebu_pcie
*pcie
;
156 struct mvebu_pcie_window memwin
;
157 struct mvebu_pcie_window iowin
;
161 static inline void mvebu_writel(struct mvebu_pcie_port
*port
, u32 val
, u32 reg
)
163 writel(val
, port
->base
+ reg
);
166 static inline u32
mvebu_readl(struct mvebu_pcie_port
*port
, u32 reg
)
168 return readl(port
->base
+ reg
);
171 static inline bool mvebu_has_ioport(struct mvebu_pcie_port
*port
)
173 return port
->io_target
!= -1 && port
->io_attr
!= -1;
176 static bool mvebu_pcie_link_up(struct mvebu_pcie_port
*port
)
178 return !(mvebu_readl(port
, PCIE_STAT_OFF
) & PCIE_STAT_LINK_DOWN
);
181 static void mvebu_pcie_set_local_bus_nr(struct mvebu_pcie_port
*port
, int nr
)
185 stat
= mvebu_readl(port
, PCIE_STAT_OFF
);
186 stat
&= ~PCIE_STAT_BUS
;
188 mvebu_writel(port
, stat
, PCIE_STAT_OFF
);
191 static void mvebu_pcie_set_local_dev_nr(struct mvebu_pcie_port
*port
, int nr
)
195 stat
= mvebu_readl(port
, PCIE_STAT_OFF
);
196 stat
&= ~PCIE_STAT_DEV
;
198 mvebu_writel(port
, stat
, PCIE_STAT_OFF
);
202 * Setup PCIE BARs and Address Decode Wins:
203 * BAR[0,2] -> disabled, BAR[1] -> covers all DRAM banks
204 * WIN[0-3] -> DRAM bank[0-3]
206 static void mvebu_pcie_setup_wins(struct mvebu_pcie_port
*port
)
208 const struct mbus_dram_target_info
*dram
;
212 dram
= mv_mbus_dram_info();
214 /* First, disable and clear BARs and windows. */
215 for (i
= 1; i
< 3; i
++) {
216 mvebu_writel(port
, 0, PCIE_BAR_CTRL_OFF(i
));
217 mvebu_writel(port
, 0, PCIE_BAR_LO_OFF(i
));
218 mvebu_writel(port
, 0, PCIE_BAR_HI_OFF(i
));
221 for (i
= 0; i
< 5; i
++) {
222 mvebu_writel(port
, 0, PCIE_WIN04_CTRL_OFF(i
));
223 mvebu_writel(port
, 0, PCIE_WIN04_BASE_OFF(i
));
224 mvebu_writel(port
, 0, PCIE_WIN04_REMAP_OFF(i
));
227 mvebu_writel(port
, 0, PCIE_WIN5_CTRL_OFF
);
228 mvebu_writel(port
, 0, PCIE_WIN5_BASE_OFF
);
229 mvebu_writel(port
, 0, PCIE_WIN5_REMAP_OFF
);
231 /* Setup windows for DDR banks. Count total DDR size on the fly. */
233 for (i
= 0; i
< dram
->num_cs
; i
++) {
234 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
236 mvebu_writel(port
, cs
->base
& 0xffff0000,
237 PCIE_WIN04_BASE_OFF(i
));
238 mvebu_writel(port
, 0, PCIE_WIN04_REMAP_OFF(i
));
240 ((cs
->size
- 1) & 0xffff0000) |
241 (cs
->mbus_attr
<< 8) |
242 (dram
->mbus_dram_target_id
<< 4) | 1,
243 PCIE_WIN04_CTRL_OFF(i
));
248 /* Round up 'size' to the nearest power of two. */
249 if ((size
& (size
- 1)) != 0)
250 size
= 1 << fls(size
);
252 /* Setup BAR[1] to all DRAM banks. */
253 mvebu_writel(port
, dram
->cs
[0].base
, PCIE_BAR_LO_OFF(1));
254 mvebu_writel(port
, 0, PCIE_BAR_HI_OFF(1));
255 mvebu_writel(port
, ((size
- 1) & 0xffff0000) | 1,
256 PCIE_BAR_CTRL_OFF(1));
259 static void mvebu_pcie_setup_hw(struct mvebu_pcie_port
*port
)
263 /* Point PCIe unit MBUS decode windows to DRAM space. */
264 mvebu_pcie_setup_wins(port
);
266 /* Master + slave enable. */
267 cmd
= mvebu_readl(port
, PCIE_CMD_OFF
);
268 cmd
|= PCI_COMMAND_IO
;
269 cmd
|= PCI_COMMAND_MEMORY
;
270 cmd
|= PCI_COMMAND_MASTER
;
271 mvebu_writel(port
, cmd
, PCIE_CMD_OFF
);
273 /* Enable interrupt lines A-D. */
274 mask
= mvebu_readl(port
, PCIE_MASK_OFF
);
275 mask
|= PCIE_MASK_ENABLE_INTS
;
276 mvebu_writel(port
, mask
, PCIE_MASK_OFF
);
279 static int mvebu_pcie_hw_rd_conf(struct mvebu_pcie_port
*port
,
281 u32 devfn
, int where
, int size
, u32
*val
)
283 void __iomem
*conf_data
= port
->base
+ PCIE_CONF_DATA_OFF
;
285 mvebu_writel(port
, PCIE_CONF_ADDR(bus
->number
, devfn
, where
),
290 *val
= readb_relaxed(conf_data
+ (where
& 3));
293 *val
= readw_relaxed(conf_data
+ (where
& 2));
296 *val
= readl_relaxed(conf_data
);
300 return PCIBIOS_SUCCESSFUL
;
303 static int mvebu_pcie_hw_wr_conf(struct mvebu_pcie_port
*port
,
305 u32 devfn
, int where
, int size
, u32 val
)
307 void __iomem
*conf_data
= port
->base
+ PCIE_CONF_DATA_OFF
;
309 mvebu_writel(port
, PCIE_CONF_ADDR(bus
->number
, devfn
, where
),
314 writeb(val
, conf_data
+ (where
& 3));
317 writew(val
, conf_data
+ (where
& 2));
320 writel(val
, conf_data
);
323 return PCIBIOS_BAD_REGISTER_NUMBER
;
326 return PCIBIOS_SUCCESSFUL
;
330 * Remove windows, starting from the largest ones to the smallest
333 static void mvebu_pcie_del_windows(struct mvebu_pcie_port
*port
,
334 phys_addr_t base
, size_t size
)
337 size_t sz
= 1 << (fls(size
) - 1);
339 mvebu_mbus_del_window(base
, sz
);
346 * MBus windows can only have a power of two size, but PCI BARs do not
347 * have this constraint. Therefore, we have to split the PCI BAR into
348 * areas each having a power of two size. We start from the largest
349 * one (i.e highest order bit set in the size).
351 static void mvebu_pcie_add_windows(struct mvebu_pcie_port
*port
,
352 unsigned int target
, unsigned int attribute
,
353 phys_addr_t base
, size_t size
,
356 size_t size_mapped
= 0;
359 size_t sz
= 1 << (fls(size
) - 1);
362 ret
= mvebu_mbus_add_window_remap_by_id(target
, attribute
, base
,
365 phys_addr_t end
= base
+ sz
- 1;
367 dev_err(&port
->pcie
->pdev
->dev
,
368 "Could not create MBus window at [mem %pa-%pa]: %d\n",
370 mvebu_pcie_del_windows(port
, base
- size_mapped
,
378 if (remap
!= MVEBU_MBUS_NO_REMAP
)
383 static void mvebu_pcie_set_window(struct mvebu_pcie_port
*port
,
384 unsigned int target
, unsigned int attribute
,
385 const struct mvebu_pcie_window
*desired
,
386 struct mvebu_pcie_window
*cur
)
388 if (desired
->base
== cur
->base
&& desired
->remap
== cur
->remap
&&
389 desired
->size
== cur
->size
)
392 if (cur
->size
!= 0) {
393 mvebu_pcie_del_windows(port
, cur
->base
, cur
->size
);
398 * If something tries to change the window while it is enabled
399 * the change will not be done atomically. That would be
400 * difficult to do in the general case.
404 if (desired
->size
== 0)
407 mvebu_pcie_add_windows(port
, target
, attribute
, desired
->base
,
408 desired
->size
, desired
->remap
);
412 static void mvebu_pcie_handle_iobase_change(struct mvebu_pcie_port
*port
)
414 struct mvebu_pcie_window desired
= {};
416 /* Are the new iobase/iolimit values invalid? */
417 if (port
->bridge
.iolimit
< port
->bridge
.iobase
||
418 port
->bridge
.iolimitupper
< port
->bridge
.iobaseupper
||
419 !(port
->bridge
.command
& PCI_COMMAND_IO
)) {
420 mvebu_pcie_set_window(port
, port
->io_target
, port
->io_attr
,
421 &desired
, &port
->iowin
);
425 if (!mvebu_has_ioport(port
)) {
426 dev_WARN(&port
->pcie
->pdev
->dev
,
427 "Attempt to set IO when IO is disabled\n");
432 * We read the PCI-to-PCI bridge emulated registers, and
433 * calculate the base address and size of the address decoding
434 * window to setup, according to the PCI-to-PCI bridge
435 * specifications. iobase is the bus address, port->iowin_base
436 * is the CPU address.
438 desired
.remap
= ((port
->bridge
.iobase
& 0xF0) << 8) |
439 (port
->bridge
.iobaseupper
<< 16);
440 desired
.base
= port
->pcie
->io
.start
+ desired
.remap
;
441 desired
.size
= ((0xFFF | ((port
->bridge
.iolimit
& 0xF0) << 8) |
442 (port
->bridge
.iolimitupper
<< 16)) -
446 mvebu_pcie_set_window(port
, port
->io_target
, port
->io_attr
, &desired
,
450 static void mvebu_pcie_handle_membase_change(struct mvebu_pcie_port
*port
)
452 struct mvebu_pcie_window desired
= {.remap
= MVEBU_MBUS_NO_REMAP
};
454 /* Are the new membase/memlimit values invalid? */
455 if (port
->bridge
.memlimit
< port
->bridge
.membase
||
456 !(port
->bridge
.command
& PCI_COMMAND_MEMORY
)) {
457 mvebu_pcie_set_window(port
, port
->mem_target
, port
->mem_attr
,
458 &desired
, &port
->memwin
);
463 * We read the PCI-to-PCI bridge emulated registers, and
464 * calculate the base address and size of the address decoding
465 * window to setup, according to the PCI-to-PCI bridge
468 desired
.base
= ((port
->bridge
.membase
& 0xFFF0) << 16);
469 desired
.size
= (((port
->bridge
.memlimit
& 0xFFF0) << 16) | 0xFFFFF) -
472 mvebu_pcie_set_window(port
, port
->mem_target
, port
->mem_attr
, &desired
,
477 * Initialize the configuration space of the PCI-to-PCI bridge
478 * associated with the given PCIe interface.
480 static void mvebu_sw_pci_bridge_init(struct mvebu_pcie_port
*port
)
482 struct mvebu_sw_pci_bridge
*bridge
= &port
->bridge
;
484 memset(bridge
, 0, sizeof(struct mvebu_sw_pci_bridge
));
486 bridge
->class = PCI_CLASS_BRIDGE_PCI
;
487 bridge
->vendor
= PCI_VENDOR_ID_MARVELL
;
488 bridge
->device
= mvebu_readl(port
, PCIE_DEV_ID_OFF
) >> 16;
489 bridge
->revision
= mvebu_readl(port
, PCIE_DEV_REV_OFF
) & 0xff;
490 bridge
->header_type
= PCI_HEADER_TYPE_BRIDGE
;
491 bridge
->cache_line_size
= 0x10;
493 /* We support 32 bits I/O addressing */
494 bridge
->iobase
= PCI_IO_RANGE_TYPE_32
;
495 bridge
->iolimit
= PCI_IO_RANGE_TYPE_32
;
497 /* Add capabilities */
498 bridge
->status
= PCI_STATUS_CAP_LIST
;
502 * Read the configuration space of the PCI-to-PCI bridge associated to
503 * the given PCIe interface.
505 static int mvebu_sw_pci_bridge_read(struct mvebu_pcie_port
*port
,
506 unsigned int where
, int size
, u32
*value
)
508 struct mvebu_sw_pci_bridge
*bridge
= &port
->bridge
;
510 switch (where
& ~3) {
512 *value
= bridge
->device
<< 16 | bridge
->vendor
;
516 *value
= bridge
->command
| bridge
->status
<< 16;
519 case PCI_CLASS_REVISION
:
520 *value
= bridge
->class << 16 | bridge
->interface
<< 8 |
524 case PCI_CACHE_LINE_SIZE
:
525 *value
= bridge
->bist
<< 24 | bridge
->header_type
<< 16 |
526 bridge
->latency_timer
<< 8 | bridge
->cache_line_size
;
529 case PCI_BASE_ADDRESS_0
... PCI_BASE_ADDRESS_1
:
530 *value
= bridge
->bar
[((where
& ~3) - PCI_BASE_ADDRESS_0
) / 4];
533 case PCI_PRIMARY_BUS
:
534 *value
= (bridge
->secondary_latency_timer
<< 24 |
535 bridge
->subordinate_bus
<< 16 |
536 bridge
->secondary_bus
<< 8 |
537 bridge
->primary_bus
);
541 if (!mvebu_has_ioport(port
))
542 *value
= bridge
->secondary_status
<< 16;
544 *value
= (bridge
->secondary_status
<< 16 |
545 bridge
->iolimit
<< 8 |
549 case PCI_MEMORY_BASE
:
550 *value
= (bridge
->memlimit
<< 16 | bridge
->membase
);
553 case PCI_PREF_MEMORY_BASE
:
557 case PCI_IO_BASE_UPPER16
:
558 *value
= (bridge
->iolimitupper
<< 16 | bridge
->iobaseupper
);
561 case PCI_CAPABILITY_LIST
:
565 case PCI_ROM_ADDRESS1
:
569 case PCI_INTERRUPT_LINE
:
570 /* LINE PIN MIN_GNT MAX_LAT */
574 case PCISWCAP_EXP_LIST_ID
:
575 /* Set PCIe v2, root port, slot support */
576 *value
= (PCI_EXP_TYPE_ROOT_PORT
<< 4 | 2 |
577 PCI_EXP_FLAGS_SLOT
) << 16 | PCI_CAP_ID_EXP
;
580 case PCISWCAP_EXP_DEVCAP
:
581 *value
= mvebu_readl(port
, PCIE_CAP_PCIEXP
+ PCI_EXP_DEVCAP
);
584 case PCISWCAP_EXP_DEVCTL
:
585 *value
= mvebu_readl(port
, PCIE_CAP_PCIEXP
+ PCI_EXP_DEVCTL
) &
586 ~(PCI_EXP_DEVCTL_URRE
| PCI_EXP_DEVCTL_FERE
|
587 PCI_EXP_DEVCTL_NFERE
| PCI_EXP_DEVCTL_CERE
);
588 *value
|= bridge
->pcie_devctl
;
591 case PCISWCAP_EXP_LNKCAP
:
593 * PCIe requires the clock power management capability to be
594 * hard-wired to zero for downstream ports
596 *value
= mvebu_readl(port
, PCIE_CAP_PCIEXP
+ PCI_EXP_LNKCAP
) &
597 ~PCI_EXP_LNKCAP_CLKPM
;
600 case PCISWCAP_EXP_LNKCTL
:
601 *value
= mvebu_readl(port
, PCIE_CAP_PCIEXP
+ PCI_EXP_LNKCTL
);
604 case PCISWCAP_EXP_SLTCAP
:
605 *value
= bridge
->pcie_sltcap
;
608 case PCISWCAP_EXP_SLTCTL
:
609 *value
= PCI_EXP_SLTSTA_PDS
<< 16;
612 case PCISWCAP_EXP_RTCTL
:
613 *value
= bridge
->pcie_rtctl
;
616 case PCISWCAP_EXP_RTSTA
:
617 *value
= mvebu_readl(port
, PCIE_RC_RTSTA
);
620 /* PCIe requires the v2 fields to be hard-wired to zero */
621 case PCISWCAP_EXP_DEVCAP2
:
622 case PCISWCAP_EXP_DEVCTL2
:
623 case PCISWCAP_EXP_LNKCAP2
:
624 case PCISWCAP_EXP_LNKCTL2
:
625 case PCISWCAP_EXP_SLTCAP2
:
626 case PCISWCAP_EXP_SLTCTL2
:
629 * PCI defines configuration read accesses to reserved or
630 * unimplemented registers to read as zero and complete
634 return PCIBIOS_SUCCESSFUL
;
638 *value
= (*value
>> (8 * (where
& 3))) & 0xffff;
640 *value
= (*value
>> (8 * (where
& 3))) & 0xff;
642 return PCIBIOS_SUCCESSFUL
;
645 /* Write to the PCI-to-PCI bridge configuration space */
646 static int mvebu_sw_pci_bridge_write(struct mvebu_pcie_port
*port
,
647 unsigned int where
, int size
, u32 value
)
649 struct mvebu_sw_pci_bridge
*bridge
= &port
->bridge
;
656 mask
= ~(0xffff << ((where
& 3) * 8));
658 mask
= ~(0xff << ((where
& 3) * 8));
660 return PCIBIOS_BAD_REGISTER_NUMBER
;
662 err
= mvebu_sw_pci_bridge_read(port
, where
& ~3, 4, ®
);
666 value
= (reg
& mask
) | value
<< ((where
& 3) * 8);
668 switch (where
& ~3) {
671 u32 old
= bridge
->command
;
673 if (!mvebu_has_ioport(port
))
674 value
&= ~PCI_COMMAND_IO
;
676 bridge
->command
= value
& 0xffff;
677 if ((old
^ bridge
->command
) & PCI_COMMAND_IO
)
678 mvebu_pcie_handle_iobase_change(port
);
679 if ((old
^ bridge
->command
) & PCI_COMMAND_MEMORY
)
680 mvebu_pcie_handle_membase_change(port
);
684 case PCI_BASE_ADDRESS_0
... PCI_BASE_ADDRESS_1
:
685 bridge
->bar
[((where
& ~3) - PCI_BASE_ADDRESS_0
) / 4] = value
;
690 * We also keep bit 1 set, it is a read-only bit that
691 * indicates we support 32 bits addressing for the
694 bridge
->iobase
= (value
& 0xff) | PCI_IO_RANGE_TYPE_32
;
695 bridge
->iolimit
= ((value
>> 8) & 0xff) | PCI_IO_RANGE_TYPE_32
;
696 mvebu_pcie_handle_iobase_change(port
);
699 case PCI_MEMORY_BASE
:
700 bridge
->membase
= value
& 0xffff;
701 bridge
->memlimit
= value
>> 16;
702 mvebu_pcie_handle_membase_change(port
);
705 case PCI_IO_BASE_UPPER16
:
706 bridge
->iobaseupper
= value
& 0xffff;
707 bridge
->iolimitupper
= value
>> 16;
708 mvebu_pcie_handle_iobase_change(port
);
711 case PCI_PRIMARY_BUS
:
712 bridge
->primary_bus
= value
& 0xff;
713 bridge
->secondary_bus
= (value
>> 8) & 0xff;
714 bridge
->subordinate_bus
= (value
>> 16) & 0xff;
715 bridge
->secondary_latency_timer
= (value
>> 24) & 0xff;
716 mvebu_pcie_set_local_bus_nr(port
, bridge
->secondary_bus
);
719 case PCISWCAP_EXP_DEVCTL
:
721 * Armada370 data says these bits must always
722 * be zero when in root complex mode.
724 value
&= ~(PCI_EXP_DEVCTL_URRE
| PCI_EXP_DEVCTL_FERE
|
725 PCI_EXP_DEVCTL_NFERE
| PCI_EXP_DEVCTL_CERE
);
728 * If the mask is 0xffff0000, then we only want to write
729 * the device control register, rather than clearing the
730 * RW1C bits in the device status register. Mask out the
731 * status register bits.
733 if (mask
== 0xffff0000)
736 mvebu_writel(port
, value
, PCIE_CAP_PCIEXP
+ PCI_EXP_DEVCTL
);
739 case PCISWCAP_EXP_LNKCTL
:
741 * If we don't support CLKREQ, we must ensure that the
742 * CLKREQ enable bit always reads zero. Since we haven't
743 * had this capability, and it's dependent on board wiring,
744 * disable it for the time being.
746 value
&= ~PCI_EXP_LNKCTL_CLKREQ_EN
;
749 * If the mask is 0xffff0000, then we only want to write
750 * the link control register, rather than clearing the
751 * RW1C bits in the link status register. Mask out the
752 * RW1C status register bits.
754 if (mask
== 0xffff0000)
755 value
&= ~((PCI_EXP_LNKSTA_LABS
|
756 PCI_EXP_LNKSTA_LBMS
) << 16);
758 mvebu_writel(port
, value
, PCIE_CAP_PCIEXP
+ PCI_EXP_LNKCTL
);
761 case PCISWCAP_EXP_RTSTA
:
762 mvebu_writel(port
, value
, PCIE_RC_RTSTA
);
769 return PCIBIOS_SUCCESSFUL
;
772 static inline struct mvebu_pcie
*sys_to_pcie(struct pci_sys_data
*sys
)
774 return sys
->private_data
;
777 static struct mvebu_pcie_port
*mvebu_pcie_find_port(struct mvebu_pcie
*pcie
,
783 for (i
= 0; i
< pcie
->nports
; i
++) {
784 struct mvebu_pcie_port
*port
= &pcie
->ports
[i
];
786 if (bus
->number
== 0 && port
->devfn
== devfn
)
788 if (bus
->number
!= 0 &&
789 bus
->number
>= port
->bridge
.secondary_bus
&&
790 bus
->number
<= port
->bridge
.subordinate_bus
)
797 /* PCI configuration space write function */
798 static int mvebu_pcie_wr_conf(struct pci_bus
*bus
, u32 devfn
,
799 int where
, int size
, u32 val
)
801 struct mvebu_pcie
*pcie
= sys_to_pcie(bus
->sysdata
);
802 struct mvebu_pcie_port
*port
;
805 port
= mvebu_pcie_find_port(pcie
, bus
, devfn
);
807 return PCIBIOS_DEVICE_NOT_FOUND
;
809 /* Access the emulated PCI-to-PCI bridge */
810 if (bus
->number
== 0)
811 return mvebu_sw_pci_bridge_write(port
, where
, size
, val
);
813 if (!mvebu_pcie_link_up(port
))
814 return PCIBIOS_DEVICE_NOT_FOUND
;
816 /* Access the real PCIe interface */
817 ret
= mvebu_pcie_hw_wr_conf(port
, bus
, devfn
,
823 /* PCI configuration space read function */
824 static int mvebu_pcie_rd_conf(struct pci_bus
*bus
, u32 devfn
, int where
,
827 struct mvebu_pcie
*pcie
= sys_to_pcie(bus
->sysdata
);
828 struct mvebu_pcie_port
*port
;
831 port
= mvebu_pcie_find_port(pcie
, bus
, devfn
);
834 return PCIBIOS_DEVICE_NOT_FOUND
;
837 /* Access the emulated PCI-to-PCI bridge */
838 if (bus
->number
== 0)
839 return mvebu_sw_pci_bridge_read(port
, where
, size
, val
);
841 if (!mvebu_pcie_link_up(port
)) {
843 return PCIBIOS_DEVICE_NOT_FOUND
;
846 /* Access the real PCIe interface */
847 ret
= mvebu_pcie_hw_rd_conf(port
, bus
, devfn
,
853 static struct pci_ops mvebu_pcie_ops
= {
854 .read
= mvebu_pcie_rd_conf
,
855 .write
= mvebu_pcie_wr_conf
,
858 static int mvebu_pcie_setup(int nr
, struct pci_sys_data
*sys
)
860 struct mvebu_pcie
*pcie
= sys_to_pcie(sys
);
863 pcie
->mem
.name
= "PCI MEM";
864 pcie
->realio
.name
= "PCI I/O";
866 if (resource_size(&pcie
->realio
) != 0)
867 pci_add_resource_offset(&sys
->resources
, &pcie
->realio
,
870 pci_add_resource_offset(&sys
->resources
, &pcie
->mem
, sys
->mem_offset
);
871 pci_add_resource(&sys
->resources
, &pcie
->busn
);
873 err
= devm_request_pci_bus_resources(&pcie
->pdev
->dev
, &sys
->resources
);
877 for (i
= 0; i
< pcie
->nports
; i
++) {
878 struct mvebu_pcie_port
*port
= &pcie
->ports
[i
];
882 mvebu_pcie_setup_hw(port
);
888 static resource_size_t
mvebu_pcie_align_resource(struct pci_dev
*dev
,
889 const struct resource
*res
,
890 resource_size_t start
,
891 resource_size_t size
,
892 resource_size_t align
)
894 if (dev
->bus
->number
!= 0)
898 * On the PCI-to-PCI bridge side, the I/O windows must have at
899 * least a 64 KB size and the memory windows must have at
900 * least a 1 MB size. Moreover, MBus windows need to have a
901 * base address aligned on their size, and their size must be
902 * a power of two. This means that if the BAR doesn't have a
903 * power of two size, several MBus windows will actually be
904 * created. We need to ensure that the biggest MBus window
905 * (which will be the first one) is aligned on its size, which
906 * explains the rounddown_pow_of_two() being done here.
908 if (res
->flags
& IORESOURCE_IO
)
909 return round_up(start
, max_t(resource_size_t
, SZ_64K
,
910 rounddown_pow_of_two(size
)));
911 else if (res
->flags
& IORESOURCE_MEM
)
912 return round_up(start
, max_t(resource_size_t
, SZ_1M
,
913 rounddown_pow_of_two(size
)));
918 static void mvebu_pcie_enable(struct mvebu_pcie
*pcie
)
922 memset(&hw
, 0, sizeof(hw
));
924 #ifdef CONFIG_PCI_MSI
925 hw
.msi_ctrl
= pcie
->msi
;
928 hw
.nr_controllers
= 1;
929 hw
.private_data
= (void **)&pcie
;
930 hw
.setup
= mvebu_pcie_setup
;
931 hw
.map_irq
= of_irq_parse_and_map_pci
;
932 hw
.ops
= &mvebu_pcie_ops
;
933 hw
.align_resource
= mvebu_pcie_align_resource
;
935 pci_common_init_dev(&pcie
->pdev
->dev
, &hw
);
939 * Looks up the list of register addresses encoded into the reg =
940 * <...> property for one that matches the given port/lane. Once
943 static void __iomem
*mvebu_pcie_map_registers(struct platform_device
*pdev
,
944 struct device_node
*np
,
945 struct mvebu_pcie_port
*port
)
947 struct resource regs
;
950 ret
= of_address_to_resource(np
, 0, ®s
);
954 return devm_ioremap_resource(&pdev
->dev
, ®s
);
957 #define DT_FLAGS_TO_TYPE(flags) (((flags) >> 24) & 0x03)
958 #define DT_TYPE_IO 0x1
959 #define DT_TYPE_MEM32 0x2
960 #define DT_CPUADDR_TO_TARGET(cpuaddr) (((cpuaddr) >> 56) & 0xFF)
961 #define DT_CPUADDR_TO_ATTR(cpuaddr) (((cpuaddr) >> 48) & 0xFF)
963 static int mvebu_get_tgt_attr(struct device_node
*np
, int devfn
,
968 const int na
= 3, ns
= 2;
970 int rlen
, nranges
, rangesz
, pna
, i
;
975 range
= of_get_property(np
, "ranges", &rlen
);
979 pna
= of_n_addr_cells(np
);
980 rangesz
= pna
+ na
+ ns
;
981 nranges
= rlen
/ sizeof(__be32
) / rangesz
;
983 for (i
= 0; i
< nranges
; i
++, range
+= rangesz
) {
984 u32 flags
= of_read_number(range
, 1);
985 u32 slot
= of_read_number(range
+ 1, 1);
986 u64 cpuaddr
= of_read_number(range
+ na
, pna
);
989 if (DT_FLAGS_TO_TYPE(flags
) == DT_TYPE_IO
)
990 rtype
= IORESOURCE_IO
;
991 else if (DT_FLAGS_TO_TYPE(flags
) == DT_TYPE_MEM32
)
992 rtype
= IORESOURCE_MEM
;
996 if (slot
== PCI_SLOT(devfn
) && type
== rtype
) {
997 *tgt
= DT_CPUADDR_TO_TARGET(cpuaddr
);
998 *attr
= DT_CPUADDR_TO_ATTR(cpuaddr
);
1006 #ifdef CONFIG_PM_SLEEP
1007 static int mvebu_pcie_suspend(struct device
*dev
)
1009 struct mvebu_pcie
*pcie
;
1012 pcie
= dev_get_drvdata(dev
);
1013 for (i
= 0; i
< pcie
->nports
; i
++) {
1014 struct mvebu_pcie_port
*port
= pcie
->ports
+ i
;
1015 port
->saved_pcie_stat
= mvebu_readl(port
, PCIE_STAT_OFF
);
1021 static int mvebu_pcie_resume(struct device
*dev
)
1023 struct mvebu_pcie
*pcie
;
1026 pcie
= dev_get_drvdata(dev
);
1027 for (i
= 0; i
< pcie
->nports
; i
++) {
1028 struct mvebu_pcie_port
*port
= pcie
->ports
+ i
;
1029 mvebu_writel(port
, port
->saved_pcie_stat
, PCIE_STAT_OFF
);
1030 mvebu_pcie_setup_hw(port
);
1037 static void mvebu_pcie_port_clk_put(void *data
)
1039 struct mvebu_pcie_port
*port
= data
;
1044 static int mvebu_pcie_parse_port(struct mvebu_pcie
*pcie
,
1045 struct mvebu_pcie_port
*port
, struct device_node
*child
)
1047 struct device
*dev
= &pcie
->pdev
->dev
;
1048 enum of_gpio_flags flags
;
1049 int reset_gpio
, ret
;
1053 if (of_property_read_u32(child
, "marvell,pcie-port", &port
->port
)) {
1054 dev_warn(dev
, "ignoring %pOF, missing pcie-port property\n",
1059 if (of_property_read_u32(child
, "marvell,pcie-lane", &port
->lane
))
1062 port
->name
= devm_kasprintf(dev
, GFP_KERNEL
, "pcie%d.%d", port
->port
,
1069 port
->devfn
= of_pci_get_devfn(child
);
1070 if (port
->devfn
< 0)
1073 ret
= mvebu_get_tgt_attr(dev
->of_node
, port
->devfn
, IORESOURCE_MEM
,
1074 &port
->mem_target
, &port
->mem_attr
);
1076 dev_err(dev
, "%s: cannot get tgt/attr for mem window\n",
1081 if (resource_size(&pcie
->io
) != 0) {
1082 mvebu_get_tgt_attr(dev
->of_node
, port
->devfn
, IORESOURCE_IO
,
1083 &port
->io_target
, &port
->io_attr
);
1085 port
->io_target
= -1;
1089 reset_gpio
= of_get_named_gpio_flags(child
, "reset-gpios", 0, &flags
);
1090 if (reset_gpio
== -EPROBE_DEFER
) {
1095 if (gpio_is_valid(reset_gpio
)) {
1096 unsigned long gpio_flags
;
1098 port
->reset_name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s-reset",
1100 if (!port
->reset_name
) {
1105 if (flags
& OF_GPIO_ACTIVE_LOW
) {
1106 dev_info(dev
, "%pOF: reset gpio is active low\n",
1108 gpio_flags
= GPIOF_ACTIVE_LOW
|
1111 gpio_flags
= GPIOF_OUT_INIT_HIGH
;
1114 ret
= devm_gpio_request_one(dev
, reset_gpio
, gpio_flags
,
1117 if (ret
== -EPROBE_DEFER
)
1122 port
->reset_gpio
= gpio_to_desc(reset_gpio
);
1125 port
->clk
= of_clk_get_by_name(child
, NULL
);
1126 if (IS_ERR(port
->clk
)) {
1127 dev_err(dev
, "%s: cannot get clock\n", port
->name
);
1131 ret
= devm_add_action(dev
, mvebu_pcie_port_clk_put
, port
);
1142 /* In the case of skipping, we need to free these */
1143 devm_kfree(dev
, port
->reset_name
);
1144 port
->reset_name
= NULL
;
1145 devm_kfree(dev
, port
->name
);
1153 * Power up a PCIe port. PCIe requires the refclk to be stable for 100µs
1154 * prior to releasing PERST. See table 2-4 in section 2.6.2 AC Specifications
1155 * of the PCI Express Card Electromechanical Specification, 1.1.
1157 static int mvebu_pcie_powerup(struct mvebu_pcie_port
*port
)
1161 ret
= clk_prepare_enable(port
->clk
);
1165 if (port
->reset_gpio
) {
1166 u32 reset_udelay
= PCI_PM_D3COLD_WAIT
* 1000;
1168 of_property_read_u32(port
->dn
, "reset-delay-us",
1173 gpiod_set_value_cansleep(port
->reset_gpio
, 0);
1174 msleep(reset_udelay
/ 1000);
1181 * Power down a PCIe port. Strictly, PCIe requires us to place the card
1182 * in D3hot state before asserting PERST#.
1184 static void mvebu_pcie_powerdown(struct mvebu_pcie_port
*port
)
1186 gpiod_set_value_cansleep(port
->reset_gpio
, 1);
1188 clk_disable_unprepare(port
->clk
);
1191 static int mvebu_pcie_probe(struct platform_device
*pdev
)
1193 struct device
*dev
= &pdev
->dev
;
1194 struct mvebu_pcie
*pcie
;
1195 struct device_node
*np
= dev
->of_node
;
1196 struct device_node
*child
;
1199 pcie
= devm_kzalloc(dev
, sizeof(*pcie
), GFP_KERNEL
);
1204 platform_set_drvdata(pdev
, pcie
);
1206 /* Get the PCIe memory and I/O aperture */
1207 mvebu_mbus_get_pcie_mem_aperture(&pcie
->mem
);
1208 if (resource_size(&pcie
->mem
) == 0) {
1209 dev_err(dev
, "invalid memory aperture size\n");
1213 mvebu_mbus_get_pcie_io_aperture(&pcie
->io
);
1215 if (resource_size(&pcie
->io
) != 0) {
1216 pcie
->realio
.flags
= pcie
->io
.flags
;
1217 pcie
->realio
.start
= PCIBIOS_MIN_IO
;
1218 pcie
->realio
.end
= min_t(resource_size_t
,
1220 resource_size(&pcie
->io
));
1222 pcie
->realio
= pcie
->io
;
1224 /* Get the bus range */
1225 ret
= of_pci_parse_bus_range(np
, &pcie
->busn
);
1227 dev_err(dev
, "failed to parse bus-range property: %d\n", ret
);
1231 num
= of_get_available_child_count(np
);
1233 pcie
->ports
= devm_kcalloc(dev
, num
, sizeof(*pcie
->ports
), GFP_KERNEL
);
1238 for_each_available_child_of_node(np
, child
) {
1239 struct mvebu_pcie_port
*port
= &pcie
->ports
[i
];
1241 ret
= mvebu_pcie_parse_port(pcie
, port
, child
);
1245 } else if (ret
== 0) {
1254 for (i
= 0; i
< pcie
->nports
; i
++) {
1255 struct mvebu_pcie_port
*port
= &pcie
->ports
[i
];
1261 ret
= mvebu_pcie_powerup(port
);
1265 port
->base
= mvebu_pcie_map_registers(pdev
, child
, port
);
1266 if (IS_ERR(port
->base
)) {
1267 dev_err(dev
, "%s: cannot map registers\n", port
->name
);
1269 mvebu_pcie_powerdown(port
);
1273 mvebu_pcie_set_local_dev_nr(port
, 1);
1274 mvebu_sw_pci_bridge_init(port
);
1279 for (i
= 0; i
< (IO_SPACE_LIMIT
- SZ_64K
); i
+= SZ_64K
)
1280 pci_ioremap_io(i
, pcie
->io
.start
+ i
);
1282 mvebu_pcie_enable(pcie
);
1284 platform_set_drvdata(pdev
, pcie
);
1289 static const struct of_device_id mvebu_pcie_of_match_table
[] = {
1290 { .compatible
= "marvell,armada-xp-pcie", },
1291 { .compatible
= "marvell,armada-370-pcie", },
1292 { .compatible
= "marvell,dove-pcie", },
1293 { .compatible
= "marvell,kirkwood-pcie", },
1297 static const struct dev_pm_ops mvebu_pcie_pm_ops
= {
1298 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(mvebu_pcie_suspend
, mvebu_pcie_resume
)
1301 static struct platform_driver mvebu_pcie_driver
= {
1303 .name
= "mvebu-pcie",
1304 .of_match_table
= mvebu_pcie_of_match_table
,
1305 /* driver unloading/unbinding currently not supported */
1306 .suppress_bind_attrs
= true,
1307 .pm
= &mvebu_pcie_pm_ops
,
1309 .probe
= mvebu_pcie_probe
,
1311 builtin_platform_driver(mvebu_pcie_driver
);