1 // SPDX-License-Identifier: GPL-2.0+
3 * Compaq Hot Plug Controller Driver
5 * Copyright (C) 1995,2001 Compaq Computer Corporation
6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7 * Copyright (C) 2001 IBM Corp.
11 * Send feedback to <greg@kroah.com>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pci.h>
24 #include <linux/pci_hotplug.h>
25 #include <linux/kthread.h>
28 static u32
configure_new_device(struct controller
*ctrl
, struct pci_func
*func
,
29 u8 behind_bridge
, struct resource_lists
*resources
);
30 static int configure_new_function(struct controller
*ctrl
, struct pci_func
*func
,
31 u8 behind_bridge
, struct resource_lists
*resources
);
32 static void interrupt_event_handler(struct controller
*ctrl
);
35 static struct task_struct
*cpqhp_event_thread
;
36 static struct timer_list
*pushbutton_pending
; /* = NULL */
38 /* delay is in jiffies to wait for */
39 static void long_delay(int delay
)
42 * XXX(hch): if someone is bored please convert all callers
43 * to call msleep_interruptible directly. They really want
44 * to specify timeouts in natural units and spend a lot of
45 * effort converting them to jiffies..
47 msleep_interruptible(jiffies_to_msecs(delay
));
51 /* FIXME: The following line needs to be somewhere else... */
52 #define WRONG_BUS_FREQUENCY 0x07
53 static u8
handle_switch_change(u8 change
, struct controller
*ctrl
)
58 struct pci_func
*func
;
59 struct event_info
*taskInfo
;
65 dbg("cpqsbd: Switch interrupt received.\n");
67 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
68 if (change
& (0x1L
<< hp_slot
)) {
72 func
= cpqhp_slot_find(ctrl
->bus
,
73 (hp_slot
+ ctrl
->slot_device_offset
), 0);
75 /* this is the structure that tells the worker thread
78 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
79 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
80 taskInfo
->hp_slot
= hp_slot
;
84 temp_word
= ctrl
->ctrl_int_comp
>> 16;
85 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
86 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
88 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
93 func
->switch_save
= 0;
95 taskInfo
->event_type
= INT_SWITCH_OPEN
;
101 func
->switch_save
= 0x10;
103 taskInfo
->event_type
= INT_SWITCH_CLOSE
;
112 * cpqhp_find_slot - find the struct slot of given device
113 * @ctrl: scan lots of this controller
114 * @device: the device id to find
116 static struct slot
*cpqhp_find_slot(struct controller
*ctrl
, u8 device
)
118 struct slot
*slot
= ctrl
->slot
;
120 while (slot
&& (slot
->device
!= device
))
127 static u8
handle_presence_change(u16 change
, struct controller
*ctrl
)
133 struct pci_func
*func
;
134 struct event_info
*taskInfo
;
143 dbg("cpqsbd: Presence/Notify input change.\n");
144 dbg(" Changed bits are 0x%4.4x\n", change
);
146 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
147 if (change
& (0x0101 << hp_slot
)) {
151 func
= cpqhp_slot_find(ctrl
->bus
,
152 (hp_slot
+ ctrl
->slot_device_offset
), 0);
154 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
155 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
156 taskInfo
->hp_slot
= hp_slot
;
160 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ (readb(ctrl
->hpc_reg
+ SLOT_MASK
) >> 4));
164 /* If the switch closed, must be a button
165 * If not in button mode, nevermind
167 if (func
->switch_save
&& (ctrl
->push_button
== 1)) {
168 temp_word
= ctrl
->ctrl_int_comp
>> 16;
169 temp_byte
= (temp_word
>> hp_slot
) & 0x01;
170 temp_byte
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
172 if (temp_byte
!= func
->presence_save
) {
174 * button Pressed (doesn't do anything)
176 dbg("hp_slot %d button pressed\n", hp_slot
);
177 taskInfo
->event_type
= INT_BUTTON_PRESS
;
180 * button Released - TAKE ACTION!!!!
182 dbg("hp_slot %d button released\n", hp_slot
);
183 taskInfo
->event_type
= INT_BUTTON_RELEASE
;
185 /* Cancel if we are still blinking */
186 if ((p_slot
->state
== BLINKINGON_STATE
)
187 || (p_slot
->state
== BLINKINGOFF_STATE
)) {
188 taskInfo
->event_type
= INT_BUTTON_CANCEL
;
189 dbg("hp_slot %d button cancel\n", hp_slot
);
190 } else if ((p_slot
->state
== POWERON_STATE
)
191 || (p_slot
->state
== POWEROFF_STATE
)) {
192 /* info(msg_button_ignore, p_slot->number); */
193 taskInfo
->event_type
= INT_BUTTON_IGNORE
;
194 dbg("hp_slot %d button ignore\n", hp_slot
);
198 /* Switch is open, assume a presence change
199 * Save the presence state
201 temp_word
= ctrl
->ctrl_int_comp
>> 16;
202 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
203 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
205 if ((!(ctrl
->ctrl_int_comp
& (0x010000 << hp_slot
))) ||
206 (!(ctrl
->ctrl_int_comp
& (0x01000000 << hp_slot
)))) {
208 taskInfo
->event_type
= INT_PRESENCE_ON
;
211 taskInfo
->event_type
= INT_PRESENCE_OFF
;
221 static u8
handle_power_fault(u8 change
, struct controller
*ctrl
)
225 struct pci_func
*func
;
226 struct event_info
*taskInfo
;
235 info("power fault interrupt\n");
237 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
238 if (change
& (0x01 << hp_slot
)) {
242 func
= cpqhp_slot_find(ctrl
->bus
,
243 (hp_slot
+ ctrl
->slot_device_offset
), 0);
245 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
246 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
247 taskInfo
->hp_slot
= hp_slot
;
251 if (ctrl
->ctrl_int_comp
& (0x00000100 << hp_slot
)) {
253 * power fault Cleared
257 taskInfo
->event_type
= INT_POWER_FAULT_CLEAR
;
262 taskInfo
->event_type
= INT_POWER_FAULT
;
265 amber_LED_on(ctrl
, hp_slot
);
266 green_LED_off(ctrl
, hp_slot
);
269 /* this is a fatal condition, we want
270 * to crash the machine to protect from
271 * data corruption. simulated_NMI
272 * shouldn't ever return */
274 simulated_NMI(hp_slot, ctrl); */
276 /* The following code causes a software
277 * crash just in case simulated_NMI did
280 panic(msg_power_fault); */
282 /* set power fault status for this board */
284 info("power fault bit %x set\n", hp_slot
);
295 * sort_by_size - sort nodes on the list by their length, smallest first.
296 * @head: list to sort
298 static int sort_by_size(struct pci_resource
**head
)
300 struct pci_resource
*current_res
;
301 struct pci_resource
*next_res
;
302 int out_of_order
= 1;
307 if (!((*head
)->next
))
310 while (out_of_order
) {
313 /* Special case for swapping list head */
314 if (((*head
)->next
) &&
315 ((*head
)->length
> (*head
)->next
->length
)) {
318 *head
= (*head
)->next
;
319 current_res
->next
= (*head
)->next
;
320 (*head
)->next
= current_res
;
325 while (current_res
->next
&& current_res
->next
->next
) {
326 if (current_res
->next
->length
> current_res
->next
->next
->length
) {
328 next_res
= current_res
->next
;
329 current_res
->next
= current_res
->next
->next
;
330 current_res
= current_res
->next
;
331 next_res
->next
= current_res
->next
;
332 current_res
->next
= next_res
;
334 current_res
= current_res
->next
;
336 } /* End of out_of_order loop */
343 * sort_by_max_size - sort nodes on the list by their length, largest first.
344 * @head: list to sort
346 static int sort_by_max_size(struct pci_resource
**head
)
348 struct pci_resource
*current_res
;
349 struct pci_resource
*next_res
;
350 int out_of_order
= 1;
355 if (!((*head
)->next
))
358 while (out_of_order
) {
361 /* Special case for swapping list head */
362 if (((*head
)->next
) &&
363 ((*head
)->length
< (*head
)->next
->length
)) {
366 *head
= (*head
)->next
;
367 current_res
->next
= (*head
)->next
;
368 (*head
)->next
= current_res
;
373 while (current_res
->next
&& current_res
->next
->next
) {
374 if (current_res
->next
->length
< current_res
->next
->next
->length
) {
376 next_res
= current_res
->next
;
377 current_res
->next
= current_res
->next
->next
;
378 current_res
= current_res
->next
;
379 next_res
->next
= current_res
->next
;
380 current_res
->next
= next_res
;
382 current_res
= current_res
->next
;
384 } /* End of out_of_order loop */
391 * do_pre_bridge_resource_split - find node of resources that are unused
392 * @head: new list head
393 * @orig_head: original list head
394 * @alignment: max node size (?)
396 static struct pci_resource
*do_pre_bridge_resource_split(struct pci_resource
**head
,
397 struct pci_resource
**orig_head
, u32 alignment
)
399 struct pci_resource
*prevnode
= NULL
;
400 struct pci_resource
*node
;
401 struct pci_resource
*split_node
;
404 dbg("do_pre_bridge_resource_split\n");
406 if (!(*head
) || !(*orig_head
))
409 rc
= cpqhp_resource_sort_and_combine(head
);
414 if ((*head
)->base
!= (*orig_head
)->base
)
417 if ((*head
)->length
== (*orig_head
)->length
)
421 /* If we got here, there the bridge requires some of the resource, but
422 * we may be able to split some off of the front
427 if (node
->length
& (alignment
- 1)) {
428 /* this one isn't an aligned length, so we'll make a new entry
431 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
436 temp_dword
= (node
->length
| (alignment
-1)) + 1 - alignment
;
438 split_node
->base
= node
->base
;
439 split_node
->length
= temp_dword
;
441 node
->length
-= temp_dword
;
442 node
->base
+= split_node
->length
;
444 /* Put it in the list */
446 split_node
->next
= node
;
449 if (node
->length
< alignment
)
457 while (prevnode
->next
!= node
)
458 prevnode
= prevnode
->next
;
460 prevnode
->next
= node
->next
;
469 * do_bridge_resource_split - find one node of resources that aren't in use
471 * @alignment: max node size (?)
473 static struct pci_resource
*do_bridge_resource_split(struct pci_resource
**head
, u32 alignment
)
475 struct pci_resource
*prevnode
= NULL
;
476 struct pci_resource
*node
;
480 rc
= cpqhp_resource_sort_and_combine(head
);
493 if (node
->length
< alignment
)
496 if (node
->base
& (alignment
- 1)) {
497 /* Short circuit if adjusted size is too small */
498 temp_dword
= (node
->base
| (alignment
-1)) + 1;
499 if ((node
->length
- (temp_dword
- node
->base
)) < alignment
)
502 node
->length
-= (temp_dword
- node
->base
);
503 node
->base
= temp_dword
;
506 if (node
->length
& (alignment
- 1))
507 /* There's stuff in use after this node */
518 * get_io_resource - find first node of given size not in ISA aliasing window.
519 * @head: list to search
520 * @size: size of node to find, must be a power of two.
522 * Description: This function sorts the resource list by size and then returns
523 * returns the first node of "size" length that is not in the ISA aliasing
524 * window. If it finds a node larger than "size" it will split it up.
526 static struct pci_resource
*get_io_resource(struct pci_resource
**head
, u32 size
)
528 struct pci_resource
*prevnode
;
529 struct pci_resource
*node
;
530 struct pci_resource
*split_node
;
536 if (cpqhp_resource_sort_and_combine(head
))
539 if (sort_by_size(head
))
542 for (node
= *head
; node
; node
= node
->next
) {
543 if (node
->length
< size
)
546 if (node
->base
& (size
- 1)) {
547 /* this one isn't base aligned properly
548 * so we'll make a new entry and split it up
550 temp_dword
= (node
->base
| (size
-1)) + 1;
552 /* Short circuit if adjusted size is too small */
553 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
556 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
561 split_node
->base
= node
->base
;
562 split_node
->length
= temp_dword
- node
->base
;
563 node
->base
= temp_dword
;
564 node
->length
-= split_node
->length
;
566 /* Put it in the list */
567 split_node
->next
= node
->next
;
568 node
->next
= split_node
;
569 } /* End of non-aligned base */
571 /* Don't need to check if too small since we already did */
572 if (node
->length
> size
) {
573 /* this one is longer than we need
574 * so we'll make a new entry and split it up
576 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
581 split_node
->base
= node
->base
+ size
;
582 split_node
->length
= node
->length
- size
;
585 /* Put it in the list */
586 split_node
->next
= node
->next
;
587 node
->next
= split_node
;
588 } /* End of too big on top end */
590 /* For IO make sure it's not in the ISA aliasing space */
591 if (node
->base
& 0x300L
)
594 /* If we got here, then it is the right size
595 * Now take it out of the list and break
601 while (prevnode
->next
!= node
)
602 prevnode
= prevnode
->next
;
604 prevnode
->next
= node
->next
;
615 * get_max_resource - get largest node which has at least the given size.
616 * @head: the list to search the node in
617 * @size: the minimum size of the node to find
619 * Description: Gets the largest node that is at least "size" big from the
620 * list pointed to by head. It aligns the node on top and bottom
621 * to "size" alignment before returning it.
623 static struct pci_resource
*get_max_resource(struct pci_resource
**head
, u32 size
)
625 struct pci_resource
*max
;
626 struct pci_resource
*temp
;
627 struct pci_resource
*split_node
;
630 if (cpqhp_resource_sort_and_combine(head
))
633 if (sort_by_max_size(head
))
636 for (max
= *head
; max
; max
= max
->next
) {
637 /* If not big enough we could probably just bail,
638 * instead we'll continue to the next.
640 if (max
->length
< size
)
643 if (max
->base
& (size
- 1)) {
644 /* this one isn't base aligned properly
645 * so we'll make a new entry and split it up
647 temp_dword
= (max
->base
| (size
-1)) + 1;
649 /* Short circuit if adjusted size is too small */
650 if ((max
->length
- (temp_dword
- max
->base
)) < size
)
653 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
658 split_node
->base
= max
->base
;
659 split_node
->length
= temp_dword
- max
->base
;
660 max
->base
= temp_dword
;
661 max
->length
-= split_node
->length
;
663 split_node
->next
= max
->next
;
664 max
->next
= split_node
;
667 if ((max
->base
+ max
->length
) & (size
- 1)) {
668 /* this one isn't end aligned properly at the top
669 * so we'll make a new entry and split it up
671 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
675 temp_dword
= ((max
->base
+ max
->length
) & ~(size
- 1));
676 split_node
->base
= temp_dword
;
677 split_node
->length
= max
->length
+ max
->base
679 max
->length
-= split_node
->length
;
681 split_node
->next
= max
->next
;
682 max
->next
= split_node
;
685 /* Make sure it didn't shrink too much when we aligned it */
686 if (max
->length
< size
)
689 /* Now take it out of the list */
694 while (temp
&& temp
->next
!= max
)
698 temp
->next
= max
->next
;
710 * get_resource - find resource of given size and split up larger ones.
711 * @head: the list to search for resources
712 * @size: the size limit to use
714 * Description: This function sorts the resource list by size and then
715 * returns the first node of "size" length. If it finds a node
716 * larger than "size" it will split it up.
718 * size must be a power of two.
720 static struct pci_resource
*get_resource(struct pci_resource
**head
, u32 size
)
722 struct pci_resource
*prevnode
;
723 struct pci_resource
*node
;
724 struct pci_resource
*split_node
;
727 if (cpqhp_resource_sort_and_combine(head
))
730 if (sort_by_size(head
))
733 for (node
= *head
; node
; node
= node
->next
) {
734 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735 __func__
, size
, node
, node
->base
, node
->length
);
736 if (node
->length
< size
)
739 if (node
->base
& (size
- 1)) {
740 dbg("%s: not aligned\n", __func__
);
741 /* this one isn't base aligned properly
742 * so we'll make a new entry and split it up
744 temp_dword
= (node
->base
| (size
-1)) + 1;
746 /* Short circuit if adjusted size is too small */
747 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
750 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
755 split_node
->base
= node
->base
;
756 split_node
->length
= temp_dword
- node
->base
;
757 node
->base
= temp_dword
;
758 node
->length
-= split_node
->length
;
760 split_node
->next
= node
->next
;
761 node
->next
= split_node
;
762 } /* End of non-aligned base */
764 /* Don't need to check if too small since we already did */
765 if (node
->length
> size
) {
766 dbg("%s: too big\n", __func__
);
767 /* this one is longer than we need
768 * so we'll make a new entry and split it up
770 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
775 split_node
->base
= node
->base
+ size
;
776 split_node
->length
= node
->length
- size
;
779 /* Put it in the list */
780 split_node
->next
= node
->next
;
781 node
->next
= split_node
;
782 } /* End of too big on top end */
784 dbg("%s: got one!!!\n", __func__
);
785 /* If we got here, then it is the right size
786 * Now take it out of the list */
791 while (prevnode
->next
!= node
)
792 prevnode
= prevnode
->next
;
794 prevnode
->next
= node
->next
;
804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805 * @head: the list to sort and clean up
807 * Description: Sorts all of the nodes in the list in ascending order by
808 * their base addresses. Also does garbage collection by
809 * combining adjacent nodes.
811 * Returns %0 if success.
813 int cpqhp_resource_sort_and_combine(struct pci_resource
**head
)
815 struct pci_resource
*node1
;
816 struct pci_resource
*node2
;
817 int out_of_order
= 1;
819 dbg("%s: head = %p, *head = %p\n", __func__
, head
, *head
);
824 dbg("*head->next = %p\n", (*head
)->next
);
827 return 0; /* only one item on the list, already sorted! */
829 dbg("*head->base = 0x%x\n", (*head
)->base
);
830 dbg("*head->next->base = 0x%x\n", (*head
)->next
->base
);
831 while (out_of_order
) {
834 /* Special case for swapping list head */
835 if (((*head
)->next
) &&
836 ((*head
)->base
> (*head
)->next
->base
)) {
838 (*head
) = (*head
)->next
;
839 node1
->next
= (*head
)->next
;
840 (*head
)->next
= node1
;
846 while (node1
->next
&& node1
->next
->next
) {
847 if (node1
->next
->base
> node1
->next
->next
->base
) {
850 node1
->next
= node1
->next
->next
;
852 node2
->next
= node1
->next
;
857 } /* End of out_of_order loop */
861 while (node1
&& node1
->next
) {
862 if ((node1
->base
+ node1
->length
) == node1
->next
->base
) {
865 node1
->length
+= node1
->next
->length
;
867 node1
->next
= node1
->next
->next
;
877 irqreturn_t
cpqhp_ctrl_intr(int IRQ
, void *data
)
879 struct controller
*ctrl
= data
;
880 u8 schedule_flag
= 0;
887 misc
= readw(ctrl
->hpc_reg
+ MISC
);
889 * Check to see if it was our interrupt
891 if (!(misc
& 0x000C))
896 * Serial Output interrupt Pending
899 /* Clear the interrupt */
901 writew(misc
, ctrl
->hpc_reg
+ MISC
);
903 /* Read to clear posted writes */
904 misc
= readw(ctrl
->hpc_reg
+ MISC
);
906 dbg("%s - waking up\n", __func__
);
907 wake_up_interruptible(&ctrl
->queue
);
911 /* General-interrupt-input interrupt Pending */
912 Diff
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) ^ ctrl
->ctrl_int_comp
;
914 ctrl
->ctrl_int_comp
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
916 /* Clear the interrupt */
917 writel(Diff
, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
919 /* Read it back to clear any posted writes */
920 temp_dword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
923 /* Clear all interrupts */
924 writel(0xFFFFFFFF, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
926 schedule_flag
+= handle_switch_change((u8
)(Diff
& 0xFFL
), ctrl
);
927 schedule_flag
+= handle_presence_change((u16
)((Diff
& 0xFFFF0000L
) >> 16), ctrl
);
928 schedule_flag
+= handle_power_fault((u8
)((Diff
& 0xFF00L
) >> 8), ctrl
);
931 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
933 /* Bus reset has completed */
935 writeb(reset
, ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
936 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
937 wake_up_interruptible(&ctrl
->queue
);
941 wake_up_process(cpqhp_event_thread
);
942 dbg("Waking even thread");
949 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
950 * @busnumber: bus where new node is to be located
952 * Returns pointer to the new node or %NULL if unsuccessful.
954 struct pci_func
*cpqhp_slot_create(u8 busnumber
)
956 struct pci_func
*new_slot
;
957 struct pci_func
*next
;
959 new_slot
= kzalloc(sizeof(*new_slot
), GFP_KERNEL
);
960 if (new_slot
== NULL
)
963 new_slot
->next
= NULL
;
964 new_slot
->configured
= 1;
966 if (cpqhp_slot_list
[busnumber
] == NULL
) {
967 cpqhp_slot_list
[busnumber
] = new_slot
;
969 next
= cpqhp_slot_list
[busnumber
];
970 while (next
->next
!= NULL
)
972 next
->next
= new_slot
;
979 * slot_remove - Removes a node from the linked list of slots.
980 * @old_slot: slot to remove
982 * Returns %0 if successful, !0 otherwise.
984 static int slot_remove(struct pci_func
*old_slot
)
986 struct pci_func
*next
;
988 if (old_slot
== NULL
)
991 next
= cpqhp_slot_list
[old_slot
->bus
];
995 if (next
== old_slot
) {
996 cpqhp_slot_list
[old_slot
->bus
] = old_slot
->next
;
997 cpqhp_destroy_board_resources(old_slot
);
1002 while ((next
->next
!= old_slot
) && (next
->next
!= NULL
))
1005 if (next
->next
== old_slot
) {
1006 next
->next
= old_slot
->next
;
1007 cpqhp_destroy_board_resources(old_slot
);
1016 * bridge_slot_remove - Removes a node from the linked list of slots.
1017 * @bridge: bridge to remove
1019 * Returns %0 if successful, !0 otherwise.
1021 static int bridge_slot_remove(struct pci_func
*bridge
)
1023 u8 subordinateBus
, secondaryBus
;
1025 struct pci_func
*next
;
1027 secondaryBus
= (bridge
->config_space
[0x06] >> 8) & 0xFF;
1028 subordinateBus
= (bridge
->config_space
[0x06] >> 16) & 0xFF;
1030 for (tempBus
= secondaryBus
; tempBus
<= subordinateBus
; tempBus
++) {
1031 next
= cpqhp_slot_list
[tempBus
];
1033 while (!slot_remove(next
))
1034 next
= cpqhp_slot_list
[tempBus
];
1037 next
= cpqhp_slot_list
[bridge
->bus
];
1042 if (next
== bridge
) {
1043 cpqhp_slot_list
[bridge
->bus
] = bridge
->next
;
1047 while ((next
->next
!= bridge
) && (next
->next
!= NULL
))
1050 if (next
->next
!= bridge
)
1052 next
->next
= bridge
->next
;
1060 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1062 * @device: device to find
1063 * @index: is %0 for first function found, %1 for the second...
1065 * Returns pointer to the node if successful, %NULL otherwise.
1067 struct pci_func
*cpqhp_slot_find(u8 bus
, u8 device
, u8 index
)
1070 struct pci_func
*func
;
1072 func
= cpqhp_slot_list
[bus
];
1074 if ((func
== NULL
) || ((func
->device
== device
) && (index
== 0)))
1077 if (func
->device
== device
)
1080 while (func
->next
!= NULL
) {
1083 if (func
->device
== device
)
1094 /* DJZ: I don't think is_bridge will work as is.
1096 static int is_bridge(struct pci_func
*func
)
1098 /* Check the header type */
1099 if (((func
->config_space
[0x03] >> 16) & 0xFF) == 0x01)
1107 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108 * @ctrl: controller to change frequency/mode for.
1109 * @adapter_speed: the speed of the adapter we want to match.
1110 * @hp_slot: the slot number where the adapter is installed.
1112 * Returns %0 if we successfully change frequency and/or mode to match the
1115 static u8
set_controller_speed(struct controller
*ctrl
, u8 adapter_speed
, u8 hp_slot
)
1118 struct pci_bus
*bus
= ctrl
->pci_bus
;
1120 u8 slot_power
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1122 u32 leds
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
1124 if (bus
->cur_bus_speed
== adapter_speed
)
1127 /* We don't allow freq/mode changes if we find another adapter running
1128 * in another slot on this controller
1130 for (slot
= ctrl
->slot
; slot
; slot
= slot
->next
) {
1131 if (slot
->device
== (hp_slot
+ ctrl
->slot_device_offset
))
1133 if (!slot
->hotplug_slot
|| !slot
->hotplug_slot
->info
)
1135 if (slot
->hotplug_slot
->info
->adapter_status
== 0)
1137 /* If another adapter is running on the same segment but at a
1138 * lower speed/mode, we allow the new adapter to function at
1139 * this rate if supported
1141 if (bus
->cur_bus_speed
< adapter_speed
)
1147 /* If the controller doesn't support freq/mode changes and the
1148 * controller is running at a higher mode, we bail
1150 if ((bus
->cur_bus_speed
> adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1153 /* But we allow the adapter to run at a lower rate if possible */
1154 if ((bus
->cur_bus_speed
< adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1157 /* We try to set the max speed supported by both the adapter and
1160 if (bus
->max_bus_speed
< adapter_speed
) {
1161 if (bus
->cur_bus_speed
== bus
->max_bus_speed
)
1163 adapter_speed
= bus
->max_bus_speed
;
1166 writel(0x0L
, ctrl
->hpc_reg
+ LED_CONTROL
);
1167 writeb(0x00, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1170 wait_for_ctrl_irq(ctrl
);
1172 if (adapter_speed
!= PCI_SPEED_133MHz_PCIX
)
1176 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1178 reg16
= readw(ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1180 switch (adapter_speed
) {
1181 case(PCI_SPEED_133MHz_PCIX
):
1185 case(PCI_SPEED_100MHz_PCIX
):
1189 case(PCI_SPEED_66MHz_PCIX
):
1193 case(PCI_SPEED_66MHz
):
1197 default: /* 33MHz PCI 2.2 */
1203 writew(reg16
, ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1207 /* Reenable interrupts */
1208 writel(0, ctrl
->hpc_reg
+ INT_MASK
);
1210 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1212 /* Restart state machine */
1214 pci_read_config_byte(ctrl
->pci_dev
, 0x43, ®
);
1215 pci_write_config_byte(ctrl
->pci_dev
, 0x43, reg
);
1217 /* Only if mode change...*/
1218 if (((bus
->cur_bus_speed
== PCI_SPEED_66MHz
) && (adapter_speed
== PCI_SPEED_66MHz_PCIX
)) ||
1219 ((bus
->cur_bus_speed
== PCI_SPEED_66MHz_PCIX
) && (adapter_speed
== PCI_SPEED_66MHz
)))
1222 wait_for_ctrl_irq(ctrl
);
1225 /* Restore LED/Slot state */
1226 writel(leds
, ctrl
->hpc_reg
+ LED_CONTROL
);
1227 writeb(slot_power
, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1230 wait_for_ctrl_irq(ctrl
);
1232 bus
->cur_bus_speed
= adapter_speed
;
1233 slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1235 info("Successfully changed frequency/mode for adapter in slot %d\n",
1240 /* the following routines constitute the bulk of the
1241 * hotplug controller logic
1246 * board_replaced - Called after a board has been replaced in the system.
1247 * @func: PCI device/function information
1248 * @ctrl: hotplug controller
1250 * This is only used if we don't have resources for hot add.
1251 * Turns power on for the board.
1252 * Checks to see if board is the same.
1253 * If board is same, reconfigures it.
1254 * If board isn't same, turns it back off.
1256 static u32
board_replaced(struct pci_func
*func
, struct controller
*ctrl
)
1258 struct pci_bus
*bus
= ctrl
->pci_bus
;
1264 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1267 * The switch is open.
1269 if (readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) & (0x01L
<< hp_slot
))
1270 rc
= INTERLOCK_OPEN
;
1272 * The board is already on
1274 else if (is_slot_enabled(ctrl
, hp_slot
))
1275 rc
= CARD_FUNCTIONING
;
1277 mutex_lock(&ctrl
->crit_sect
);
1279 /* turn on board without attaching to the bus */
1280 enable_slot_power(ctrl
, hp_slot
);
1284 /* Wait for SOBS to be unset */
1285 wait_for_ctrl_irq(ctrl
);
1287 /* Change bits in slot power register to force another shift out
1288 * NOTE: this is to work around the timer bug */
1289 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1290 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1291 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1295 /* Wait for SOBS to be unset */
1296 wait_for_ctrl_irq(ctrl
);
1298 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1299 if (bus
->cur_bus_speed
!= adapter_speed
)
1300 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1301 rc
= WRONG_BUS_FREQUENCY
;
1303 /* turn off board without attaching to the bus */
1304 disable_slot_power(ctrl
, hp_slot
);
1308 /* Wait for SOBS to be unset */
1309 wait_for_ctrl_irq(ctrl
);
1311 mutex_unlock(&ctrl
->crit_sect
);
1316 mutex_lock(&ctrl
->crit_sect
);
1318 slot_enable(ctrl
, hp_slot
);
1319 green_LED_blink(ctrl
, hp_slot
);
1321 amber_LED_off(ctrl
, hp_slot
);
1325 /* Wait for SOBS to be unset */
1326 wait_for_ctrl_irq(ctrl
);
1328 mutex_unlock(&ctrl
->crit_sect
);
1330 /* Wait for ~1 second because of hot plug spec */
1333 /* Check for a power fault */
1334 if (func
->status
== 0xFF) {
1335 /* power fault occurred, but it was benign */
1339 rc
= cpqhp_valid_replace(ctrl
, func
);
1342 /* It must be the same board */
1344 rc
= cpqhp_configure_board(ctrl
, func
);
1346 /* If configuration fails, turn it off
1347 * Get slot won't work for devices behind
1348 * bridges, but in this case it will always be
1349 * called for the "base" bus/dev/func of an
1353 mutex_lock(&ctrl
->crit_sect
);
1355 amber_LED_on(ctrl
, hp_slot
);
1356 green_LED_off(ctrl
, hp_slot
);
1357 slot_disable(ctrl
, hp_slot
);
1361 /* Wait for SOBS to be unset */
1362 wait_for_ctrl_irq(ctrl
);
1364 mutex_unlock(&ctrl
->crit_sect
);
1372 /* Something is wrong
1374 * Get slot won't work for devices behind bridges, but
1375 * in this case it will always be called for the "base"
1376 * bus/dev/func of an adapter.
1379 mutex_lock(&ctrl
->crit_sect
);
1381 amber_LED_on(ctrl
, hp_slot
);
1382 green_LED_off(ctrl
, hp_slot
);
1383 slot_disable(ctrl
, hp_slot
);
1387 /* Wait for SOBS to be unset */
1388 wait_for_ctrl_irq(ctrl
);
1390 mutex_unlock(&ctrl
->crit_sect
);
1400 * board_added - Called after a board has been added to the system.
1401 * @func: PCI device/function info
1402 * @ctrl: hotplug controller
1404 * Turns power on for the board.
1407 static u32
board_added(struct pci_func
*func
, struct controller
*ctrl
)
1413 u32 temp_register
= 0xFFFFFFFF;
1415 struct pci_func
*new_slot
= NULL
;
1416 struct pci_bus
*bus
= ctrl
->pci_bus
;
1417 struct slot
*p_slot
;
1418 struct resource_lists res_lists
;
1420 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1421 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1422 __func__
, func
->device
, ctrl
->slot_device_offset
, hp_slot
);
1424 mutex_lock(&ctrl
->crit_sect
);
1426 /* turn on board without attaching to the bus */
1427 enable_slot_power(ctrl
, hp_slot
);
1431 /* Wait for SOBS to be unset */
1432 wait_for_ctrl_irq(ctrl
);
1434 /* Change bits in slot power register to force another shift out
1435 * NOTE: this is to work around the timer bug
1437 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1438 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1439 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1443 /* Wait for SOBS to be unset */
1444 wait_for_ctrl_irq(ctrl
);
1446 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1447 if (bus
->cur_bus_speed
!= adapter_speed
)
1448 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1449 rc
= WRONG_BUS_FREQUENCY
;
1451 /* turn off board without attaching to the bus */
1452 disable_slot_power(ctrl
, hp_slot
);
1456 /* Wait for SOBS to be unset */
1457 wait_for_ctrl_irq(ctrl
);
1459 mutex_unlock(&ctrl
->crit_sect
);
1464 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1466 /* turn on board and blink green LED */
1468 dbg("%s: before down\n", __func__
);
1469 mutex_lock(&ctrl
->crit_sect
);
1470 dbg("%s: after down\n", __func__
);
1472 dbg("%s: before slot_enable\n", __func__
);
1473 slot_enable(ctrl
, hp_slot
);
1475 dbg("%s: before green_LED_blink\n", __func__
);
1476 green_LED_blink(ctrl
, hp_slot
);
1478 dbg("%s: before amber_LED_blink\n", __func__
);
1479 amber_LED_off(ctrl
, hp_slot
);
1481 dbg("%s: before set_SOGO\n", __func__
);
1484 /* Wait for SOBS to be unset */
1485 dbg("%s: before wait_for_ctrl_irq\n", __func__
);
1486 wait_for_ctrl_irq(ctrl
);
1487 dbg("%s: after wait_for_ctrl_irq\n", __func__
);
1489 dbg("%s: before up\n", __func__
);
1490 mutex_unlock(&ctrl
->crit_sect
);
1491 dbg("%s: after up\n", __func__
);
1493 /* Wait for ~1 second because of hot plug spec */
1494 dbg("%s: before long_delay\n", __func__
);
1496 dbg("%s: after long_delay\n", __func__
);
1498 dbg("%s: func status = %x\n", __func__
, func
->status
);
1499 /* Check for a power fault */
1500 if (func
->status
== 0xFF) {
1501 /* power fault occurred, but it was benign */
1502 temp_register
= 0xFFFFFFFF;
1503 dbg("%s: temp register set to %x by power fault\n", __func__
, temp_register
);
1507 /* Get vendor/device ID u32 */
1508 ctrl
->pci_bus
->number
= func
->bus
;
1509 rc
= pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), PCI_VENDOR_ID
, &temp_register
);
1510 dbg("%s: pci_read_config_dword returns %d\n", __func__
, rc
);
1511 dbg("%s: temp_register is %x\n", __func__
, temp_register
);
1514 /* Something's wrong here */
1515 temp_register
= 0xFFFFFFFF;
1516 dbg("%s: temp register set to %x by error\n", __func__
, temp_register
);
1518 /* Preset return code. It will be changed later if things go okay. */
1519 rc
= NO_ADAPTER_PRESENT
;
1522 /* All F's is an empty slot or an invalid board */
1523 if (temp_register
!= 0xFFFFFFFF) {
1524 res_lists
.io_head
= ctrl
->io_head
;
1525 res_lists
.mem_head
= ctrl
->mem_head
;
1526 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1527 res_lists
.bus_head
= ctrl
->bus_head
;
1528 res_lists
.irqs
= NULL
;
1530 rc
= configure_new_device(ctrl
, func
, 0, &res_lists
);
1532 dbg("%s: back from configure_new_device\n", __func__
);
1533 ctrl
->io_head
= res_lists
.io_head
;
1534 ctrl
->mem_head
= res_lists
.mem_head
;
1535 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1536 ctrl
->bus_head
= res_lists
.bus_head
;
1538 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1539 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1540 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1541 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1544 mutex_lock(&ctrl
->crit_sect
);
1546 amber_LED_on(ctrl
, hp_slot
);
1547 green_LED_off(ctrl
, hp_slot
);
1548 slot_disable(ctrl
, hp_slot
);
1552 /* Wait for SOBS to be unset */
1553 wait_for_ctrl_irq(ctrl
);
1555 mutex_unlock(&ctrl
->crit_sect
);
1558 cpqhp_save_slot_config(ctrl
, func
);
1563 func
->switch_save
= 0x10;
1564 func
->is_a_board
= 0x01;
1566 /* next, we will instantiate the linux pci_dev structures (with
1567 * appropriate driver notification, if already present) */
1568 dbg("%s: configure linux pci_dev structure\n", __func__
);
1571 new_slot
= cpqhp_slot_find(ctrl
->bus
, func
->device
, index
++);
1572 if (new_slot
&& !new_slot
->pci_dev
)
1573 cpqhp_configure_device(ctrl
, new_slot
);
1576 mutex_lock(&ctrl
->crit_sect
);
1578 green_LED_on(ctrl
, hp_slot
);
1582 /* Wait for SOBS to be unset */
1583 wait_for_ctrl_irq(ctrl
);
1585 mutex_unlock(&ctrl
->crit_sect
);
1587 mutex_lock(&ctrl
->crit_sect
);
1589 amber_LED_on(ctrl
, hp_slot
);
1590 green_LED_off(ctrl
, hp_slot
);
1591 slot_disable(ctrl
, hp_slot
);
1595 /* Wait for SOBS to be unset */
1596 wait_for_ctrl_irq(ctrl
);
1598 mutex_unlock(&ctrl
->crit_sect
);
1607 * remove_board - Turns off slot and LEDs
1608 * @func: PCI device/function info
1609 * @replace_flag: whether replacing or adding a new device
1610 * @ctrl: target controller
1612 static u32
remove_board(struct pci_func
*func
, u32 replace_flag
, struct controller
*ctrl
)
1620 struct resource_lists res_lists
;
1621 struct pci_func
*temp_func
;
1623 if (cpqhp_unconfigure_device(func
))
1626 device
= func
->device
;
1628 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1629 dbg("In %s, hp_slot = %d\n", __func__
, hp_slot
);
1631 /* When we get here, it is safe to change base address registers.
1632 * We will attempt to save the base address register lengths */
1633 if (replace_flag
|| !ctrl
->add_support
)
1634 rc
= cpqhp_save_base_addr_length(ctrl
, func
);
1635 else if (!func
->bus_head
&& !func
->mem_head
&&
1636 !func
->p_mem_head
&& !func
->io_head
) {
1637 /* Here we check to see if we've saved any of the board's
1638 * resources already. If so, we'll skip the attempt to
1639 * determine what's being used. */
1641 temp_func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1643 if (temp_func
->bus_head
|| temp_func
->mem_head
1644 || temp_func
->p_mem_head
|| temp_func
->io_head
) {
1648 temp_func
= cpqhp_slot_find(temp_func
->bus
, temp_func
->device
, index
++);
1652 rc
= cpqhp_save_used_resources(ctrl
, func
);
1654 /* Change status to shutdown */
1655 if (func
->is_a_board
)
1656 func
->status
= 0x01;
1657 func
->configured
= 0;
1659 mutex_lock(&ctrl
->crit_sect
);
1661 green_LED_off(ctrl
, hp_slot
);
1662 slot_disable(ctrl
, hp_slot
);
1666 /* turn off SERR for slot */
1667 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_SERR
);
1668 temp_byte
&= ~(0x01 << hp_slot
);
1669 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_SERR
);
1671 /* Wait for SOBS to be unset */
1672 wait_for_ctrl_irq(ctrl
);
1674 mutex_unlock(&ctrl
->crit_sect
);
1676 if (!replace_flag
&& ctrl
->add_support
) {
1678 res_lists
.io_head
= ctrl
->io_head
;
1679 res_lists
.mem_head
= ctrl
->mem_head
;
1680 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1681 res_lists
.bus_head
= ctrl
->bus_head
;
1683 cpqhp_return_board_resources(func
, &res_lists
);
1685 ctrl
->io_head
= res_lists
.io_head
;
1686 ctrl
->mem_head
= res_lists
.mem_head
;
1687 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1688 ctrl
->bus_head
= res_lists
.bus_head
;
1690 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1691 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1692 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1693 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1695 if (is_bridge(func
)) {
1696 bridge_slot_remove(func
);
1700 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
1703 /* Setup slot structure with entry for empty slot */
1704 func
= cpqhp_slot_create(ctrl
->bus
);
1709 func
->bus
= ctrl
->bus
;
1710 func
->device
= device
;
1712 func
->configured
= 0;
1713 func
->switch_save
= 0x10;
1714 func
->is_a_board
= 0;
1715 func
->p_task_event
= NULL
;
1721 static void pushbutton_helper_thread(struct timer_list
*t
)
1723 pushbutton_pending
= t
;
1725 wake_up_process(cpqhp_event_thread
);
1729 /* this is the main worker thread */
1730 static int event_thread(void *data
)
1732 struct controller
*ctrl
;
1735 dbg("!!!!event_thread sleeping\n");
1736 set_current_state(TASK_INTERRUPTIBLE
);
1739 if (kthread_should_stop())
1742 if (pushbutton_pending
)
1743 cpqhp_pushbutton_thread(pushbutton_pending
);
1745 for (ctrl
= cpqhp_ctrl_list
; ctrl
; ctrl
= ctrl
->next
)
1746 interrupt_event_handler(ctrl
);
1748 dbg("event_thread signals exit\n");
1752 int cpqhp_event_start_thread(void)
1754 cpqhp_event_thread
= kthread_run(event_thread
, NULL
, "phpd_event");
1755 if (IS_ERR(cpqhp_event_thread
)) {
1756 err("Can't start up our event thread\n");
1757 return PTR_ERR(cpqhp_event_thread
);
1764 void cpqhp_event_stop_thread(void)
1766 kthread_stop(cpqhp_event_thread
);
1770 static int update_slot_info(struct controller
*ctrl
, struct slot
*slot
)
1772 struct hotplug_slot_info
*info
;
1775 info
= kmalloc(sizeof(*info
), GFP_KERNEL
);
1779 info
->power_status
= get_slot_enabled(ctrl
, slot
);
1780 info
->attention_status
= cpq_get_attention_status(ctrl
, slot
);
1781 info
->latch_status
= cpq_get_latch_status(ctrl
, slot
);
1782 info
->adapter_status
= get_presence_status(ctrl
, slot
);
1783 result
= pci_hp_change_slot_info(slot
->hotplug_slot
, info
);
1788 static void interrupt_event_handler(struct controller
*ctrl
)
1792 struct pci_func
*func
;
1794 struct slot
*p_slot
;
1799 for (loop
= 0; loop
< 10; loop
++) {
1800 /* dbg("loop %d\n", loop); */
1801 if (ctrl
->event_queue
[loop
].event_type
!= 0) {
1802 hp_slot
= ctrl
->event_queue
[loop
].hp_slot
;
1804 func
= cpqhp_slot_find(ctrl
->bus
, (hp_slot
+ ctrl
->slot_device_offset
), 0);
1808 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1812 dbg("hp_slot %d, func %p, p_slot %p\n",
1813 hp_slot
, func
, p_slot
);
1815 if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_PRESS
) {
1816 dbg("button pressed\n");
1817 } else if (ctrl
->event_queue
[loop
].event_type
==
1818 INT_BUTTON_CANCEL
) {
1819 dbg("button cancel\n");
1820 del_timer(&p_slot
->task_event
);
1822 mutex_lock(&ctrl
->crit_sect
);
1824 if (p_slot
->state
== BLINKINGOFF_STATE
) {
1826 dbg("turn on green LED\n");
1827 green_LED_on(ctrl
, hp_slot
);
1828 } else if (p_slot
->state
== BLINKINGON_STATE
) {
1830 dbg("turn off green LED\n");
1831 green_LED_off(ctrl
, hp_slot
);
1834 info(msg_button_cancel
, p_slot
->number
);
1836 p_slot
->state
= STATIC_STATE
;
1838 amber_LED_off(ctrl
, hp_slot
);
1842 /* Wait for SOBS to be unset */
1843 wait_for_ctrl_irq(ctrl
);
1845 mutex_unlock(&ctrl
->crit_sect
);
1847 /*** button Released (No action on press...) */
1848 else if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_RELEASE
) {
1849 dbg("button release\n");
1851 if (is_slot_enabled(ctrl
, hp_slot
)) {
1852 dbg("slot is on\n");
1853 p_slot
->state
= BLINKINGOFF_STATE
;
1854 info(msg_button_off
, p_slot
->number
);
1856 dbg("slot is off\n");
1857 p_slot
->state
= BLINKINGON_STATE
;
1858 info(msg_button_on
, p_slot
->number
);
1860 mutex_lock(&ctrl
->crit_sect
);
1862 dbg("blink green LED and turn off amber\n");
1864 amber_LED_off(ctrl
, hp_slot
);
1865 green_LED_blink(ctrl
, hp_slot
);
1869 /* Wait for SOBS to be unset */
1870 wait_for_ctrl_irq(ctrl
);
1872 mutex_unlock(&ctrl
->crit_sect
);
1873 timer_setup(&p_slot
->task_event
,
1874 pushbutton_helper_thread
,
1876 p_slot
->hp_slot
= hp_slot
;
1877 p_slot
->ctrl
= ctrl
;
1878 /* p_slot->physical_slot = physical_slot; */
1879 p_slot
->task_event
.expires
= jiffies
+ 5 * HZ
; /* 5 second delay */
1881 dbg("add_timer p_slot = %p\n", p_slot
);
1882 add_timer(&p_slot
->task_event
);
1884 /***********POWER FAULT */
1885 else if (ctrl
->event_queue
[loop
].event_type
== INT_POWER_FAULT
) {
1886 dbg("power fault\n");
1888 /* refresh notification */
1889 update_slot_info(ctrl
, p_slot
);
1892 ctrl
->event_queue
[loop
].event_type
= 0;
1896 } /* End of FOR loop */
1904 * cpqhp_pushbutton_thread - handle pushbutton events
1905 * @slot: target slot (struct)
1907 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1908 * Handles all pending events and exits.
1910 void cpqhp_pushbutton_thread(struct timer_list
*t
)
1914 struct pci_func
*func
;
1915 struct slot
*p_slot
= from_timer(p_slot
, t
, task_event
);
1916 struct controller
*ctrl
= (struct controller
*) p_slot
->ctrl
;
1918 pushbutton_pending
= NULL
;
1919 hp_slot
= p_slot
->hp_slot
;
1921 device
= p_slot
->device
;
1923 if (is_slot_enabled(ctrl
, hp_slot
)) {
1924 p_slot
->state
= POWEROFF_STATE
;
1925 /* power Down board */
1926 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
1927 dbg("In power_down_board, func = %p, ctrl = %p\n", func
, ctrl
);
1929 dbg("Error! func NULL in %s\n", __func__
);
1933 if (cpqhp_process_SS(ctrl
, func
) != 0) {
1934 amber_LED_on(ctrl
, hp_slot
);
1935 green_LED_on(ctrl
, hp_slot
);
1939 /* Wait for SOBS to be unset */
1940 wait_for_ctrl_irq(ctrl
);
1943 p_slot
->state
= STATIC_STATE
;
1945 p_slot
->state
= POWERON_STATE
;
1948 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
1949 dbg("In add_board, func = %p, ctrl = %p\n", func
, ctrl
);
1951 dbg("Error! func NULL in %s\n", __func__
);
1956 if (cpqhp_process_SI(ctrl
, func
) != 0) {
1957 amber_LED_on(ctrl
, hp_slot
);
1958 green_LED_off(ctrl
, hp_slot
);
1962 /* Wait for SOBS to be unset */
1963 wait_for_ctrl_irq(ctrl
);
1967 p_slot
->state
= STATIC_STATE
;
1974 int cpqhp_process_SI(struct controller
*ctrl
, struct pci_func
*func
)
1980 struct slot
*p_slot
;
1981 int physical_slot
= 0;
1985 device
= func
->device
;
1986 hp_slot
= device
- ctrl
->slot_device_offset
;
1987 p_slot
= cpqhp_find_slot(ctrl
, device
);
1989 physical_slot
= p_slot
->number
;
1991 /* Check to see if the interlock is closed */
1992 tempdword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
1994 if (tempdword
& (0x01 << hp_slot
))
1997 if (func
->is_a_board
) {
1998 rc
= board_replaced(func
, ctrl
);
2003 func
= cpqhp_slot_create(ctrl
->bus
);
2007 func
->bus
= ctrl
->bus
;
2008 func
->device
= device
;
2010 func
->configured
= 0;
2011 func
->is_a_board
= 1;
2013 /* We have to save the presence info for these slots */
2014 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2015 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2016 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
2018 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2019 func
->switch_save
= 0;
2021 func
->switch_save
= 0x10;
2024 rc
= board_added(func
, ctrl
);
2026 if (is_bridge(func
)) {
2027 bridge_slot_remove(func
);
2031 /* Setup slot structure with entry for empty slot */
2032 func
= cpqhp_slot_create(ctrl
->bus
);
2037 func
->bus
= ctrl
->bus
;
2038 func
->device
= device
;
2040 func
->configured
= 0;
2041 func
->is_a_board
= 0;
2043 /* We have to save the presence info for these slots */
2044 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2045 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2046 func
->presence_save
|=
2047 (temp_word
>> (hp_slot
+ 7)) & 0x02;
2049 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2050 func
->switch_save
= 0;
2052 func
->switch_save
= 0x10;
2058 dbg("%s: rc = %d\n", __func__
, rc
);
2061 update_slot_info(ctrl
, p_slot
);
2067 int cpqhp_process_SS(struct controller
*ctrl
, struct pci_func
*func
)
2069 u8 device
, class_code
, header_type
, BCR
;
2074 struct slot
*p_slot
;
2075 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
2076 int physical_slot
= 0;
2078 device
= func
->device
;
2079 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2080 p_slot
= cpqhp_find_slot(ctrl
, device
);
2082 physical_slot
= p_slot
->number
;
2084 /* Make sure there are no video controllers here */
2085 while (func
&& !rc
) {
2086 pci_bus
->number
= func
->bus
;
2087 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2089 /* Check the Class Code */
2090 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, 0x0B, &class_code
);
2094 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2095 /* Display/Video adapter (not supported) */
2096 rc
= REMOVE_NOT_SUPPORTED
;
2098 /* See if it's a bridge */
2099 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
2103 /* If it's a bridge, check the VGA Enable bit */
2104 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
2105 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, &BCR
);
2109 /* If the VGA Enable bit is set, remove isn't
2111 if (BCR
& PCI_BRIDGE_CTL_VGA
)
2112 rc
= REMOVE_NOT_SUPPORTED
;
2116 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2119 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
2120 if ((func
!= NULL
) && !rc
) {
2121 /* FIXME: Replace flag should be passed into process_SS */
2122 replace_flag
= !(ctrl
->add_support
);
2123 rc
= remove_board(func
, replace_flag
, ctrl
);
2129 update_slot_info(ctrl
, p_slot
);
2135 * switch_leds - switch the leds, go from one site to the other.
2136 * @ctrl: controller to use
2137 * @num_of_slots: number of slots to use
2138 * @work_LED: LED control value
2139 * @direction: 1 to start from the left side, 0 to start right.
2141 static void switch_leds(struct controller
*ctrl
, const int num_of_slots
,
2142 u32
*work_LED
, const int direction
)
2146 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2148 *work_LED
= *work_LED
>> 1;
2150 *work_LED
= *work_LED
<< 1;
2151 writel(*work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2155 /* Wait for SOGO interrupt */
2156 wait_for_ctrl_irq(ctrl
);
2158 /* Get ready for next iteration */
2159 long_delay((2*HZ
)/10);
2164 * cpqhp_hardware_test - runs hardware tests
2165 * @ctrl: target controller
2166 * @test_num: the number written to the "test" file in sysfs.
2168 * For hot plug ctrl folks to play with.
2170 int cpqhp_hardware_test(struct controller
*ctrl
, int test_num
)
2177 num_of_slots
= readb(ctrl
->hpc_reg
+ SLOT_MASK
) & 0x0f;
2181 /* Do stuff here! */
2183 /* Do that funky LED thing */
2184 /* so we can restore them later */
2185 save_LED
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
2186 work_LED
= 0x01010101;
2187 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2188 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2189 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2190 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2192 work_LED
= 0x01010000;
2193 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2194 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2195 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2196 work_LED
= 0x00000101;
2197 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2198 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2199 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2201 work_LED
= 0x01010000;
2202 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2203 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2206 /* Wait for SOGO interrupt */
2207 wait_for_ctrl_irq(ctrl
);
2209 /* Get ready for next iteration */
2210 long_delay((3*HZ
)/10);
2211 work_LED
= work_LED
>> 16;
2212 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2216 /* Wait for SOGO interrupt */
2217 wait_for_ctrl_irq(ctrl
);
2219 /* Get ready for next iteration */
2220 long_delay((3*HZ
)/10);
2221 work_LED
= work_LED
<< 16;
2222 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2223 work_LED
= work_LED
<< 1;
2224 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2227 /* put it back the way it was */
2228 writel(save_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2232 /* Wait for SOBS to be unset */
2233 wait_for_ctrl_irq(ctrl
);
2236 /* Do other stuff here! */
2247 * configure_new_device - Configures the PCI header information of one board.
2248 * @ctrl: pointer to controller structure
2249 * @func: pointer to function structure
2250 * @behind_bridge: 1 if this is a recursive call, 0 if not
2251 * @resources: pointer to set of resource lists
2253 * Returns 0 if success.
2255 static u32
configure_new_device(struct controller
*ctrl
, struct pci_func
*func
,
2256 u8 behind_bridge
, struct resource_lists
*resources
)
2258 u8 temp_byte
, function
, max_functions
, stop_it
;
2261 struct pci_func
*new_slot
;
2266 dbg("%s\n", __func__
);
2267 /* Check for Multi-function device */
2268 ctrl
->pci_bus
->number
= func
->bus
;
2269 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), 0x0E, &temp_byte
);
2271 dbg("%s: rc = %d\n", __func__
, rc
);
2275 if (temp_byte
& 0x80) /* Multi-function device */
2283 rc
= configure_new_function(ctrl
, new_slot
, behind_bridge
, resources
);
2286 dbg("configure_new_function failed %d\n", rc
);
2290 new_slot
= cpqhp_slot_find(new_slot
->bus
, new_slot
->device
, index
++);
2293 cpqhp_return_board_resources(new_slot
, resources
);
2303 /* The following loop skips to the next present function
2304 * and creates a board structure */
2306 while ((function
< max_functions
) && (!stop_it
)) {
2307 pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(func
->device
, function
), 0x00, &ID
);
2309 if (ID
== 0xFFFFFFFF) {
2312 /* Setup slot structure. */
2313 new_slot
= cpqhp_slot_create(func
->bus
);
2315 if (new_slot
== NULL
)
2318 new_slot
->bus
= func
->bus
;
2319 new_slot
->device
= func
->device
;
2320 new_slot
->function
= function
;
2321 new_slot
->is_a_board
= 1;
2322 new_slot
->status
= 0;
2328 } while (function
< max_functions
);
2329 dbg("returning from configure_new_device\n");
2336 * Configuration logic that involves the hotplug data structures and
2342 * configure_new_function - Configures the PCI header information of one device
2343 * @ctrl: pointer to controller structure
2344 * @func: pointer to function structure
2345 * @behind_bridge: 1 if this is a recursive call, 0 if not
2346 * @resources: pointer to set of resource lists
2348 * Calls itself recursively for bridged devices.
2349 * Returns 0 if success.
2351 static int configure_new_function(struct controller
*ctrl
, struct pci_func
*func
,
2353 struct resource_lists
*resources
)
2368 struct pci_resource
*mem_node
;
2369 struct pci_resource
*p_mem_node
;
2370 struct pci_resource
*io_node
;
2371 struct pci_resource
*bus_node
;
2372 struct pci_resource
*hold_mem_node
;
2373 struct pci_resource
*hold_p_mem_node
;
2374 struct pci_resource
*hold_IO_node
;
2375 struct pci_resource
*hold_bus_node
;
2376 struct irq_mapping irqs
;
2377 struct pci_func
*new_slot
;
2378 struct pci_bus
*pci_bus
;
2379 struct resource_lists temp_resources
;
2381 pci_bus
= ctrl
->pci_bus
;
2382 pci_bus
->number
= func
->bus
;
2383 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2385 /* Check for Bridge */
2386 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &temp_byte
);
2390 if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
2391 /* set Primary bus */
2392 dbg("set Primary bus = %d\n", func
->bus
);
2393 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_PRIMARY_BUS
, func
->bus
);
2397 /* find range of buses to use */
2398 dbg("find ranges of buses to use\n");
2399 bus_node
= get_max_resource(&(resources
->bus_head
), 1);
2401 /* If we don't have any buses to allocate, we can't continue */
2405 /* set Secondary bus */
2406 temp_byte
= bus_node
->base
;
2407 dbg("set Secondary bus = %d\n", bus_node
->base
);
2408 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, temp_byte
);
2412 /* set subordinate bus */
2413 temp_byte
= bus_node
->base
+ bus_node
->length
- 1;
2414 dbg("set subordinate bus = %d\n", bus_node
->base
+ bus_node
->length
- 1);
2415 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2419 /* set subordinate Latency Timer and base Latency Timer */
2421 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SEC_LATENCY_TIMER
, temp_byte
);
2424 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_LATENCY_TIMER
, temp_byte
);
2428 /* set Cache Line size */
2430 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_CACHE_LINE_SIZE
, temp_byte
);
2434 /* Setup the IO, memory, and prefetchable windows */
2435 io_node
= get_max_resource(&(resources
->io_head
), 0x1000);
2438 mem_node
= get_max_resource(&(resources
->mem_head
), 0x100000);
2441 p_mem_node
= get_max_resource(&(resources
->p_mem_head
), 0x100000);
2444 dbg("Setup the IO, memory, and prefetchable windows\n");
2446 dbg("(base, len, next) (%x, %x, %p)\n", io_node
->base
,
2447 io_node
->length
, io_node
->next
);
2449 dbg("(base, len, next) (%x, %x, %p)\n", mem_node
->base
,
2450 mem_node
->length
, mem_node
->next
);
2451 dbg("p_mem_node\n");
2452 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node
->base
,
2453 p_mem_node
->length
, p_mem_node
->next
);
2455 /* set up the IRQ info */
2456 if (!resources
->irqs
) {
2457 irqs
.barber_pole
= 0;
2458 irqs
.interrupt
[0] = 0;
2459 irqs
.interrupt
[1] = 0;
2460 irqs
.interrupt
[2] = 0;
2461 irqs
.interrupt
[3] = 0;
2464 irqs
.barber_pole
= resources
->irqs
->barber_pole
;
2465 irqs
.interrupt
[0] = resources
->irqs
->interrupt
[0];
2466 irqs
.interrupt
[1] = resources
->irqs
->interrupt
[1];
2467 irqs
.interrupt
[2] = resources
->irqs
->interrupt
[2];
2468 irqs
.interrupt
[3] = resources
->irqs
->interrupt
[3];
2469 irqs
.valid_INT
= resources
->irqs
->valid_INT
;
2472 /* set up resource lists that are now aligned on top and bottom
2473 * for anything behind the bridge. */
2474 temp_resources
.bus_head
= bus_node
;
2475 temp_resources
.io_head
= io_node
;
2476 temp_resources
.mem_head
= mem_node
;
2477 temp_resources
.p_mem_head
= p_mem_node
;
2478 temp_resources
.irqs
= &irqs
;
2480 /* Make copies of the nodes we are going to pass down so that
2481 * if there is a problem,we can just use these to free resources
2483 hold_bus_node
= kmalloc(sizeof(*hold_bus_node
), GFP_KERNEL
);
2484 hold_IO_node
= kmalloc(sizeof(*hold_IO_node
), GFP_KERNEL
);
2485 hold_mem_node
= kmalloc(sizeof(*hold_mem_node
), GFP_KERNEL
);
2486 hold_p_mem_node
= kmalloc(sizeof(*hold_p_mem_node
), GFP_KERNEL
);
2488 if (!hold_bus_node
|| !hold_IO_node
|| !hold_mem_node
|| !hold_p_mem_node
) {
2489 kfree(hold_bus_node
);
2490 kfree(hold_IO_node
);
2491 kfree(hold_mem_node
);
2492 kfree(hold_p_mem_node
);
2497 memcpy(hold_bus_node
, bus_node
, sizeof(struct pci_resource
));
2499 bus_node
->base
+= 1;
2500 bus_node
->length
-= 1;
2501 bus_node
->next
= NULL
;
2503 /* If we have IO resources copy them and fill in the bridge's
2504 * IO range registers */
2505 memcpy(hold_IO_node
, io_node
, sizeof(struct pci_resource
));
2506 io_node
->next
= NULL
;
2508 /* set IO base and Limit registers */
2509 temp_byte
= io_node
->base
>> 8;
2510 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2512 temp_byte
= (io_node
->base
+ io_node
->length
- 1) >> 8;
2513 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2515 /* Copy the memory resources and fill in the bridge's memory
2518 memcpy(hold_mem_node
, mem_node
, sizeof(struct pci_resource
));
2519 mem_node
->next
= NULL
;
2521 /* set Mem base and Limit registers */
2522 temp_word
= mem_node
->base
>> 16;
2523 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2525 temp_word
= (mem_node
->base
+ mem_node
->length
- 1) >> 16;
2526 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2528 memcpy(hold_p_mem_node
, p_mem_node
, sizeof(struct pci_resource
));
2529 p_mem_node
->next
= NULL
;
2531 /* set Pre Mem base and Limit registers */
2532 temp_word
= p_mem_node
->base
>> 16;
2533 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2535 temp_word
= (p_mem_node
->base
+ p_mem_node
->length
- 1) >> 16;
2536 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2538 /* Adjust this to compensate for extra adjustment in first loop
2544 /* Here we actually find the devices and configure them */
2545 for (device
= 0; (device
<= 0x1F) && !rc
; device
++) {
2546 irqs
.barber_pole
= (irqs
.barber_pole
+ 1) & 0x03;
2549 pci_bus
->number
= hold_bus_node
->base
;
2550 pci_bus_read_config_dword(pci_bus
, PCI_DEVFN(device
, 0), 0x00, &ID
);
2551 pci_bus
->number
= func
->bus
;
2553 if (ID
!= 0xFFFFFFFF) { /* device present */
2554 /* Setup slot structure. */
2555 new_slot
= cpqhp_slot_create(hold_bus_node
->base
);
2557 if (new_slot
== NULL
) {
2562 new_slot
->bus
= hold_bus_node
->base
;
2563 new_slot
->device
= device
;
2564 new_slot
->function
= 0;
2565 new_slot
->is_a_board
= 1;
2566 new_slot
->status
= 0;
2568 rc
= configure_new_device(ctrl
, new_slot
, 1, &temp_resources
);
2569 dbg("configure_new_device rc=0x%x\n", rc
);
2570 } /* End of IF (device in slot?) */
2571 } /* End of FOR loop */
2575 /* save the interrupt routing information */
2576 if (resources
->irqs
) {
2577 resources
->irqs
->interrupt
[0] = irqs
.interrupt
[0];
2578 resources
->irqs
->interrupt
[1] = irqs
.interrupt
[1];
2579 resources
->irqs
->interrupt
[2] = irqs
.interrupt
[2];
2580 resources
->irqs
->interrupt
[3] = irqs
.interrupt
[3];
2581 resources
->irqs
->valid_INT
= irqs
.valid_INT
;
2582 } else if (!behind_bridge
) {
2583 /* We need to hook up the interrupts here */
2584 for (cloop
= 0; cloop
< 4; cloop
++) {
2585 if (irqs
.valid_INT
& (0x01 << cloop
)) {
2586 rc
= cpqhp_set_irq(func
->bus
, func
->device
,
2587 cloop
+ 1, irqs
.interrupt
[cloop
]);
2591 } /* end of for loop */
2593 /* Return unused bus resources
2594 * First use the temporary node to store information for
2596 if (bus_node
&& temp_resources
.bus_head
) {
2597 hold_bus_node
->length
= bus_node
->base
- hold_bus_node
->base
;
2599 hold_bus_node
->next
= func
->bus_head
;
2600 func
->bus_head
= hold_bus_node
;
2602 temp_byte
= temp_resources
.bus_head
->base
- 1;
2604 /* set subordinate bus */
2605 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2607 if (temp_resources
.bus_head
->length
== 0) {
2608 kfree(temp_resources
.bus_head
);
2609 temp_resources
.bus_head
= NULL
;
2611 return_resource(&(resources
->bus_head
), temp_resources
.bus_head
);
2615 /* If we have IO space available and there is some left,
2616 * return the unused portion */
2617 if (hold_IO_node
&& temp_resources
.io_head
) {
2618 io_node
= do_pre_bridge_resource_split(&(temp_resources
.io_head
),
2619 &hold_IO_node
, 0x1000);
2621 /* Check if we were able to split something off */
2623 hold_IO_node
->base
= io_node
->base
+ io_node
->length
;
2625 temp_byte
= (hold_IO_node
->base
) >> 8;
2626 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2628 return_resource(&(resources
->io_head
), io_node
);
2631 io_node
= do_bridge_resource_split(&(temp_resources
.io_head
), 0x1000);
2633 /* Check if we were able to split something off */
2635 /* First use the temporary node to store
2636 * information for the board */
2637 hold_IO_node
->length
= io_node
->base
- hold_IO_node
->base
;
2639 /* If we used any, add it to the board's list */
2640 if (hold_IO_node
->length
) {
2641 hold_IO_node
->next
= func
->io_head
;
2642 func
->io_head
= hold_IO_node
;
2644 temp_byte
= (io_node
->base
- 1) >> 8;
2645 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2647 return_resource(&(resources
->io_head
), io_node
);
2649 /* it doesn't need any IO */
2651 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_word
);
2653 return_resource(&(resources
->io_head
), io_node
);
2654 kfree(hold_IO_node
);
2657 /* it used most of the range */
2658 hold_IO_node
->next
= func
->io_head
;
2659 func
->io_head
= hold_IO_node
;
2661 } else if (hold_IO_node
) {
2662 /* it used the whole range */
2663 hold_IO_node
->next
= func
->io_head
;
2664 func
->io_head
= hold_IO_node
;
2666 /* If we have memory space available and there is some left,
2667 * return the unused portion */
2668 if (hold_mem_node
&& temp_resources
.mem_head
) {
2669 mem_node
= do_pre_bridge_resource_split(&(temp_resources
. mem_head
),
2670 &hold_mem_node
, 0x100000);
2672 /* Check if we were able to split something off */
2674 hold_mem_node
->base
= mem_node
->base
+ mem_node
->length
;
2676 temp_word
= (hold_mem_node
->base
) >> 16;
2677 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2679 return_resource(&(resources
->mem_head
), mem_node
);
2682 mem_node
= do_bridge_resource_split(&(temp_resources
.mem_head
), 0x100000);
2684 /* Check if we were able to split something off */
2686 /* First use the temporary node to store
2687 * information for the board */
2688 hold_mem_node
->length
= mem_node
->base
- hold_mem_node
->base
;
2690 if (hold_mem_node
->length
) {
2691 hold_mem_node
->next
= func
->mem_head
;
2692 func
->mem_head
= hold_mem_node
;
2694 /* configure end address */
2695 temp_word
= (mem_node
->base
- 1) >> 16;
2696 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2698 /* Return unused resources to the pool */
2699 return_resource(&(resources
->mem_head
), mem_node
);
2701 /* it doesn't need any Mem */
2703 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2705 return_resource(&(resources
->mem_head
), mem_node
);
2706 kfree(hold_mem_node
);
2709 /* it used most of the range */
2710 hold_mem_node
->next
= func
->mem_head
;
2711 func
->mem_head
= hold_mem_node
;
2713 } else if (hold_mem_node
) {
2714 /* it used the whole range */
2715 hold_mem_node
->next
= func
->mem_head
;
2716 func
->mem_head
= hold_mem_node
;
2718 /* If we have prefetchable memory space available and there
2719 * is some left at the end, return the unused portion */
2720 if (temp_resources
.p_mem_head
) {
2721 p_mem_node
= do_pre_bridge_resource_split(&(temp_resources
.p_mem_head
),
2722 &hold_p_mem_node
, 0x100000);
2724 /* Check if we were able to split something off */
2726 hold_p_mem_node
->base
= p_mem_node
->base
+ p_mem_node
->length
;
2728 temp_word
= (hold_p_mem_node
->base
) >> 16;
2729 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2731 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2734 p_mem_node
= do_bridge_resource_split(&(temp_resources
.p_mem_head
), 0x100000);
2736 /* Check if we were able to split something off */
2738 /* First use the temporary node to store
2739 * information for the board */
2740 hold_p_mem_node
->length
= p_mem_node
->base
- hold_p_mem_node
->base
;
2742 /* If we used any, add it to the board's list */
2743 if (hold_p_mem_node
->length
) {
2744 hold_p_mem_node
->next
= func
->p_mem_head
;
2745 func
->p_mem_head
= hold_p_mem_node
;
2747 temp_word
= (p_mem_node
->base
- 1) >> 16;
2748 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2750 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2752 /* it doesn't need any PMem */
2754 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2756 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2757 kfree(hold_p_mem_node
);
2760 /* it used the most of the range */
2761 hold_p_mem_node
->next
= func
->p_mem_head
;
2762 func
->p_mem_head
= hold_p_mem_node
;
2764 } else if (hold_p_mem_node
) {
2765 /* it used the whole range */
2766 hold_p_mem_node
->next
= func
->p_mem_head
;
2767 func
->p_mem_head
= hold_p_mem_node
;
2769 /* We should be configuring an IRQ and the bridge's base address
2770 * registers if it needs them. Although we have never seen such
2774 command
= 0x0157; /* = PCI_COMMAND_IO |
2775 * PCI_COMMAND_MEMORY |
2776 * PCI_COMMAND_MASTER |
2777 * PCI_COMMAND_INVALIDATE |
2778 * PCI_COMMAND_PARITY |
2779 * PCI_COMMAND_SERR */
2780 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_COMMAND
, command
);
2782 /* set Bridge Control Register */
2783 command
= 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2784 * PCI_BRIDGE_CTL_SERR |
2785 * PCI_BRIDGE_CTL_NO_ISA */
2786 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, command
);
2787 } else if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_NORMAL
) {
2788 /* Standard device */
2789 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, 0x0B, &class_code
);
2791 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2792 /* Display (video) adapter (not supported) */
2793 return DEVICE_TYPE_NOT_SUPPORTED
;
2795 /* Figure out IO and memory needs */
2796 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
2797 temp_register
= 0xFFFFFFFF;
2799 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus
->number
, devfn
, cloop
);
2800 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
2802 rc
= pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &temp_register
);
2803 dbg("CND: base = 0x%x\n", temp_register
);
2805 if (temp_register
) { /* If this register is implemented */
2806 if ((temp_register
& 0x03L
) == 0x01) {
2809 /* set base = amount of IO space */
2810 base
= temp_register
& 0xFFFFFFFC;
2813 dbg("CND: length = 0x%x\n", base
);
2814 io_node
= get_io_resource(&(resources
->io_head
), base
);
2815 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2816 io_node
->base
, io_node
->length
, io_node
->next
);
2817 dbg("func (%p) io_head (%p)\n", func
, func
->io_head
);
2819 /* allocate the resource to the board */
2821 base
= io_node
->base
;
2823 io_node
->next
= func
->io_head
;
2824 func
->io_head
= io_node
;
2827 } else if ((temp_register
& 0x0BL
) == 0x08) {
2828 /* Map prefetchable memory */
2829 base
= temp_register
& 0xFFFFFFF0;
2832 dbg("CND: length = 0x%x\n", base
);
2833 p_mem_node
= get_resource(&(resources
->p_mem_head
), base
);
2835 /* allocate the resource to the board */
2837 base
= p_mem_node
->base
;
2839 p_mem_node
->next
= func
->p_mem_head
;
2840 func
->p_mem_head
= p_mem_node
;
2843 } else if ((temp_register
& 0x0BL
) == 0x00) {
2845 base
= temp_register
& 0xFFFFFFF0;
2848 dbg("CND: length = 0x%x\n", base
);
2849 mem_node
= get_resource(&(resources
->mem_head
), base
);
2851 /* allocate the resource to the board */
2853 base
= mem_node
->base
;
2855 mem_node
->next
= func
->mem_head
;
2856 func
->mem_head
= mem_node
;
2860 /* Reserved bits or requesting space below 1M */
2861 return NOT_ENOUGH_RESOURCES
;
2864 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
2866 /* Check for 64-bit base */
2867 if ((temp_register
& 0x07L
) == 0x04) {
2870 /* Upper 32 bits of address always zero
2871 * on today's systems */
2872 /* FIXME this is probably not true on
2873 * Alpha and ia64??? */
2875 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
2878 } /* End of base register loop */
2879 if (cpqhp_legacy_mode
) {
2880 /* Figure out which interrupt pin this function uses */
2881 rc
= pci_bus_read_config_byte(pci_bus
, devfn
,
2882 PCI_INTERRUPT_PIN
, &temp_byte
);
2884 /* If this function needs an interrupt and we are behind
2885 * a bridge and the pin is tied to something that's
2886 * already mapped, set this one the same */
2887 if (temp_byte
&& resources
->irqs
&&
2888 (resources
->irqs
->valid_INT
&
2889 (0x01 << ((temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03)))) {
2890 /* We have to share with something already set up */
2891 IRQ
= resources
->irqs
->interrupt
[(temp_byte
+
2892 resources
->irqs
->barber_pole
- 1) & 0x03];
2894 /* Program IRQ based on card type */
2895 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, 0x0B, &class_code
);
2897 if (class_code
== PCI_BASE_CLASS_STORAGE
)
2898 IRQ
= cpqhp_disk_irq
;
2900 IRQ
= cpqhp_nic_irq
;
2904 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_INTERRUPT_LINE
, IRQ
);
2907 if (!behind_bridge
) {
2908 rc
= cpqhp_set_irq(func
->bus
, func
->device
, temp_byte
, IRQ
);
2912 /* TBD - this code may also belong in the other clause
2913 * of this If statement */
2914 resources
->irqs
->interrupt
[(temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03] = IRQ
;
2915 resources
->irqs
->valid_INT
|= 0x01 << (temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03;
2920 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
2921 PCI_LATENCY_TIMER
, temp_byte
);
2923 /* Cache Line size */
2925 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
2926 PCI_CACHE_LINE_SIZE
, temp_byte
);
2928 /* disable ROM base Address */
2930 rc
= pci_bus_write_config_word(pci_bus
, devfn
,
2931 PCI_ROM_ADDRESS
, temp_dword
);
2934 temp_word
= 0x0157; /* = PCI_COMMAND_IO |
2935 * PCI_COMMAND_MEMORY |
2936 * PCI_COMMAND_MASTER |
2937 * PCI_COMMAND_INVALIDATE |
2938 * PCI_COMMAND_PARITY |
2939 * PCI_COMMAND_SERR */
2940 rc
= pci_bus_write_config_word(pci_bus
, devfn
,
2941 PCI_COMMAND
, temp_word
);
2942 } else { /* End of Not-A-Bridge else */
2943 /* It's some strange type of PCI adapter (Cardbus?) */
2944 return DEVICE_TYPE_NOT_SUPPORTED
;
2947 func
->configured
= 1;
2951 cpqhp_destroy_resource_list(&temp_resources
);
2953 return_resource(&(resources
->bus_head
), hold_bus_node
);
2954 return_resource(&(resources
->io_head
), hold_IO_node
);
2955 return_resource(&(resources
->mem_head
), hold_mem_node
);
2956 return_resource(&(resources
->p_mem_head
), hold_p_mem_node
);