1 // SPDX-License-Identifier: GPL-2.0+
3 * Driver for AMBA serial ports
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
20 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
24 #include <linux/module.h>
25 #include <linux/ioport.h>
26 #include <linux/init.h>
27 #include <linux/console.h>
28 #include <linux/sysrq.h>
29 #include <linux/device.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial_core.h>
33 #include <linux/serial.h>
34 #include <linux/amba/bus.h>
35 #include <linux/amba/serial.h>
36 #include <linux/clk.h>
37 #include <linux/slab.h>
38 #include <linux/dmaengine.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/scatterlist.h>
41 #include <linux/delay.h>
42 #include <linux/types.h>
44 #include <linux/of_device.h>
45 #include <linux/pinctrl/consumer.h>
46 #include <linux/sizes.h>
48 #include <linux/acpi.h>
50 #include "amba-pl011.h"
54 #define SERIAL_AMBA_MAJOR 204
55 #define SERIAL_AMBA_MINOR 64
56 #define SERIAL_AMBA_NR UART_NR
58 #define AMBA_ISR_PASS_LIMIT 256
60 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
61 #define UART_DUMMY_DR_RX (1 << 16)
63 static u16 pl011_std_offsets
[REG_ARRAY_SIZE
] = {
64 [REG_DR
] = UART01x_DR
,
65 [REG_FR
] = UART01x_FR
,
66 [REG_LCRH_RX
] = UART011_LCRH
,
67 [REG_LCRH_TX
] = UART011_LCRH
,
68 [REG_IBRD
] = UART011_IBRD
,
69 [REG_FBRD
] = UART011_FBRD
,
70 [REG_CR
] = UART011_CR
,
71 [REG_IFLS
] = UART011_IFLS
,
72 [REG_IMSC
] = UART011_IMSC
,
73 [REG_RIS
] = UART011_RIS
,
74 [REG_MIS
] = UART011_MIS
,
75 [REG_ICR
] = UART011_ICR
,
76 [REG_DMACR
] = UART011_DMACR
,
79 /* There is by now at least one vendor with differing details, so handle it */
81 const u16
*reg_offset
;
91 bool cts_event_workaround
;
95 unsigned int (*get_fifosize
)(struct amba_device
*dev
);
98 static unsigned int get_fifosize_arm(struct amba_device
*dev
)
100 return amba_rev(dev
) < 3 ? 16 : 32;
103 static struct vendor_data vendor_arm
= {
104 .reg_offset
= pl011_std_offsets
,
105 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
106 .fr_busy
= UART01x_FR_BUSY
,
107 .fr_dsr
= UART01x_FR_DSR
,
108 .fr_cts
= UART01x_FR_CTS
,
109 .fr_ri
= UART011_FR_RI
,
110 .oversampling
= false,
111 .dma_threshold
= false,
112 .cts_event_workaround
= false,
113 .always_enabled
= false,
114 .fixed_options
= false,
115 .get_fifosize
= get_fifosize_arm
,
118 static const struct vendor_data vendor_sbsa
= {
119 .reg_offset
= pl011_std_offsets
,
120 .fr_busy
= UART01x_FR_BUSY
,
121 .fr_dsr
= UART01x_FR_DSR
,
122 .fr_cts
= UART01x_FR_CTS
,
123 .fr_ri
= UART011_FR_RI
,
125 .oversampling
= false,
126 .dma_threshold
= false,
127 .cts_event_workaround
= false,
128 .always_enabled
= true,
129 .fixed_options
= true,
132 #ifdef CONFIG_ACPI_SPCR_TABLE
133 static const struct vendor_data vendor_qdt_qdf2400_e44
= {
134 .reg_offset
= pl011_std_offsets
,
135 .fr_busy
= UART011_FR_TXFE
,
136 .fr_dsr
= UART01x_FR_DSR
,
137 .fr_cts
= UART01x_FR_CTS
,
138 .fr_ri
= UART011_FR_RI
,
139 .inv_fr
= UART011_FR_TXFE
,
141 .oversampling
= false,
142 .dma_threshold
= false,
143 .cts_event_workaround
= false,
144 .always_enabled
= true,
145 .fixed_options
= true,
149 static u16 pl011_st_offsets
[REG_ARRAY_SIZE
] = {
150 [REG_DR
] = UART01x_DR
,
151 [REG_ST_DMAWM
] = ST_UART011_DMAWM
,
152 [REG_ST_TIMEOUT
] = ST_UART011_TIMEOUT
,
153 [REG_FR
] = UART01x_FR
,
154 [REG_LCRH_RX
] = ST_UART011_LCRH_RX
,
155 [REG_LCRH_TX
] = ST_UART011_LCRH_TX
,
156 [REG_IBRD
] = UART011_IBRD
,
157 [REG_FBRD
] = UART011_FBRD
,
158 [REG_CR
] = UART011_CR
,
159 [REG_IFLS
] = UART011_IFLS
,
160 [REG_IMSC
] = UART011_IMSC
,
161 [REG_RIS
] = UART011_RIS
,
162 [REG_MIS
] = UART011_MIS
,
163 [REG_ICR
] = UART011_ICR
,
164 [REG_DMACR
] = UART011_DMACR
,
165 [REG_ST_XFCR
] = ST_UART011_XFCR
,
166 [REG_ST_XON1
] = ST_UART011_XON1
,
167 [REG_ST_XON2
] = ST_UART011_XON2
,
168 [REG_ST_XOFF1
] = ST_UART011_XOFF1
,
169 [REG_ST_XOFF2
] = ST_UART011_XOFF2
,
170 [REG_ST_ITCR
] = ST_UART011_ITCR
,
171 [REG_ST_ITIP
] = ST_UART011_ITIP
,
172 [REG_ST_ABCR
] = ST_UART011_ABCR
,
173 [REG_ST_ABIMSC
] = ST_UART011_ABIMSC
,
176 static unsigned int get_fifosize_st(struct amba_device
*dev
)
181 static struct vendor_data vendor_st
= {
182 .reg_offset
= pl011_st_offsets
,
183 .ifls
= UART011_IFLS_RX_HALF
|UART011_IFLS_TX_HALF
,
184 .fr_busy
= UART01x_FR_BUSY
,
185 .fr_dsr
= UART01x_FR_DSR
,
186 .fr_cts
= UART01x_FR_CTS
,
187 .fr_ri
= UART011_FR_RI
,
188 .oversampling
= true,
189 .dma_threshold
= true,
190 .cts_event_workaround
= true,
191 .always_enabled
= false,
192 .fixed_options
= false,
193 .get_fifosize
= get_fifosize_st
,
196 static const u16 pl011_zte_offsets
[REG_ARRAY_SIZE
] = {
197 [REG_DR
] = ZX_UART011_DR
,
198 [REG_FR
] = ZX_UART011_FR
,
199 [REG_LCRH_RX
] = ZX_UART011_LCRH
,
200 [REG_LCRH_TX
] = ZX_UART011_LCRH
,
201 [REG_IBRD
] = ZX_UART011_IBRD
,
202 [REG_FBRD
] = ZX_UART011_FBRD
,
203 [REG_CR
] = ZX_UART011_CR
,
204 [REG_IFLS
] = ZX_UART011_IFLS
,
205 [REG_IMSC
] = ZX_UART011_IMSC
,
206 [REG_RIS
] = ZX_UART011_RIS
,
207 [REG_MIS
] = ZX_UART011_MIS
,
208 [REG_ICR
] = ZX_UART011_ICR
,
209 [REG_DMACR
] = ZX_UART011_DMACR
,
212 static unsigned int get_fifosize_zte(struct amba_device
*dev
)
217 static struct vendor_data vendor_zte
= {
218 .reg_offset
= pl011_zte_offsets
,
220 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
221 .fr_busy
= ZX_UART01x_FR_BUSY
,
222 .fr_dsr
= ZX_UART01x_FR_DSR
,
223 .fr_cts
= ZX_UART01x_FR_CTS
,
224 .fr_ri
= ZX_UART011_FR_RI
,
225 .get_fifosize
= get_fifosize_zte
,
228 /* Deals with DMA transactions */
231 struct scatterlist sg
;
235 struct pl011_dmarx_data
{
236 struct dma_chan
*chan
;
237 struct completion complete
;
239 struct pl011_sgbuf sgbuf_a
;
240 struct pl011_sgbuf sgbuf_b
;
243 struct timer_list timer
;
244 unsigned int last_residue
;
245 unsigned long last_jiffies
;
247 unsigned int poll_rate
;
248 unsigned int poll_timeout
;
251 struct pl011_dmatx_data
{
252 struct dma_chan
*chan
;
253 struct scatterlist sg
;
259 * We wrap our port structure around the generic uart_port.
261 struct uart_amba_port
{
262 struct uart_port port
;
263 const u16
*reg_offset
;
265 const struct vendor_data
*vendor
;
266 unsigned int dmacr
; /* dma control reg */
267 unsigned int im
; /* interrupt mask */
268 unsigned int old_status
;
269 unsigned int fifosize
; /* vendor-specific */
270 unsigned int old_cr
; /* state during shutdown */
271 unsigned int fixed_baud
; /* vendor-set fixed baud rate */
273 #ifdef CONFIG_DMA_ENGINE
277 struct pl011_dmarx_data dmarx
;
278 struct pl011_dmatx_data dmatx
;
283 static unsigned int pl011_reg_to_offset(const struct uart_amba_port
*uap
,
286 return uap
->reg_offset
[reg
];
289 static unsigned int pl011_read(const struct uart_amba_port
*uap
,
292 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
294 return (uap
->port
.iotype
== UPIO_MEM32
) ?
295 readl_relaxed(addr
) : readw_relaxed(addr
);
298 static void pl011_write(unsigned int val
, const struct uart_amba_port
*uap
,
301 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
303 if (uap
->port
.iotype
== UPIO_MEM32
)
304 writel_relaxed(val
, addr
);
306 writew_relaxed(val
, addr
);
310 * Reads up to 256 characters from the FIFO or until it's empty and
311 * inserts them into the TTY layer. Returns the number of characters
312 * read from the FIFO.
314 static int pl011_fifo_to_tty(struct uart_amba_port
*uap
)
317 unsigned int ch
, flag
, fifotaken
;
319 for (fifotaken
= 0; fifotaken
!= 256; fifotaken
++) {
320 status
= pl011_read(uap
, REG_FR
);
321 if (status
& UART01x_FR_RXFE
)
324 /* Take chars from the FIFO and update status */
325 ch
= pl011_read(uap
, REG_DR
) | UART_DUMMY_DR_RX
;
327 uap
->port
.icount
.rx
++;
329 if (unlikely(ch
& UART_DR_ERROR
)) {
330 if (ch
& UART011_DR_BE
) {
331 ch
&= ~(UART011_DR_FE
| UART011_DR_PE
);
332 uap
->port
.icount
.brk
++;
333 if (uart_handle_break(&uap
->port
))
335 } else if (ch
& UART011_DR_PE
)
336 uap
->port
.icount
.parity
++;
337 else if (ch
& UART011_DR_FE
)
338 uap
->port
.icount
.frame
++;
339 if (ch
& UART011_DR_OE
)
340 uap
->port
.icount
.overrun
++;
342 ch
&= uap
->port
.read_status_mask
;
344 if (ch
& UART011_DR_BE
)
346 else if (ch
& UART011_DR_PE
)
348 else if (ch
& UART011_DR_FE
)
352 if (uart_handle_sysrq_char(&uap
->port
, ch
& 255))
355 uart_insert_char(&uap
->port
, ch
, UART011_DR_OE
, ch
, flag
);
363 * All the DMA operation mode stuff goes inside this ifdef.
364 * This assumes that you have a generic DMA device interface,
365 * no custom DMA interfaces are supported.
367 #ifdef CONFIG_DMA_ENGINE
369 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
371 static int pl011_sgbuf_init(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
372 enum dma_data_direction dir
)
376 sg
->buf
= dma_alloc_coherent(chan
->device
->dev
,
377 PL011_DMA_BUFFER_SIZE
, &dma_addr
, GFP_KERNEL
);
381 sg_init_table(&sg
->sg
, 1);
382 sg_set_page(&sg
->sg
, phys_to_page(dma_addr
),
383 PL011_DMA_BUFFER_SIZE
, offset_in_page(dma_addr
));
384 sg_dma_address(&sg
->sg
) = dma_addr
;
385 sg_dma_len(&sg
->sg
) = PL011_DMA_BUFFER_SIZE
;
390 static void pl011_sgbuf_free(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
391 enum dma_data_direction dir
)
394 dma_free_coherent(chan
->device
->dev
,
395 PL011_DMA_BUFFER_SIZE
, sg
->buf
,
396 sg_dma_address(&sg
->sg
));
400 static void pl011_dma_probe(struct uart_amba_port
*uap
)
402 /* DMA is the sole user of the platform data right now */
403 struct amba_pl011_data
*plat
= dev_get_platdata(uap
->port
.dev
);
404 struct device
*dev
= uap
->port
.dev
;
405 struct dma_slave_config tx_conf
= {
406 .dst_addr
= uap
->port
.mapbase
+
407 pl011_reg_to_offset(uap
, REG_DR
),
408 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
409 .direction
= DMA_MEM_TO_DEV
,
410 .dst_maxburst
= uap
->fifosize
>> 1,
413 struct dma_chan
*chan
;
416 uap
->dma_probed
= true;
417 chan
= dma_request_slave_channel_reason(dev
, "tx");
419 if (PTR_ERR(chan
) == -EPROBE_DEFER
) {
420 uap
->dma_probed
= false;
424 /* We need platform data */
425 if (!plat
|| !plat
->dma_filter
) {
426 dev_info(uap
->port
.dev
, "no DMA platform data\n");
430 /* Try to acquire a generic DMA engine slave TX channel */
432 dma_cap_set(DMA_SLAVE
, mask
);
434 chan
= dma_request_channel(mask
, plat
->dma_filter
,
437 dev_err(uap
->port
.dev
, "no TX DMA channel!\n");
442 dmaengine_slave_config(chan
, &tx_conf
);
443 uap
->dmatx
.chan
= chan
;
445 dev_info(uap
->port
.dev
, "DMA channel TX %s\n",
446 dma_chan_name(uap
->dmatx
.chan
));
448 /* Optionally make use of an RX channel as well */
449 chan
= dma_request_slave_channel(dev
, "rx");
451 if (!chan
&& plat
&& plat
->dma_rx_param
) {
452 chan
= dma_request_channel(mask
, plat
->dma_filter
, plat
->dma_rx_param
);
455 dev_err(uap
->port
.dev
, "no RX DMA channel!\n");
461 struct dma_slave_config rx_conf
= {
462 .src_addr
= uap
->port
.mapbase
+
463 pl011_reg_to_offset(uap
, REG_DR
),
464 .src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
465 .direction
= DMA_DEV_TO_MEM
,
466 .src_maxburst
= uap
->fifosize
>> 2,
469 struct dma_slave_caps caps
;
472 * Some DMA controllers provide information on their capabilities.
473 * If the controller does, check for suitable residue processing
474 * otherwise assime all is well.
476 if (0 == dma_get_slave_caps(chan
, &caps
)) {
477 if (caps
.residue_granularity
==
478 DMA_RESIDUE_GRANULARITY_DESCRIPTOR
) {
479 dma_release_channel(chan
);
480 dev_info(uap
->port
.dev
,
481 "RX DMA disabled - no residue processing\n");
485 dmaengine_slave_config(chan
, &rx_conf
);
486 uap
->dmarx
.chan
= chan
;
488 uap
->dmarx
.auto_poll_rate
= false;
489 if (plat
&& plat
->dma_rx_poll_enable
) {
490 /* Set poll rate if specified. */
491 if (plat
->dma_rx_poll_rate
) {
492 uap
->dmarx
.auto_poll_rate
= false;
493 uap
->dmarx
.poll_rate
= plat
->dma_rx_poll_rate
;
496 * 100 ms defaults to poll rate if not
497 * specified. This will be adjusted with
498 * the baud rate at set_termios.
500 uap
->dmarx
.auto_poll_rate
= true;
501 uap
->dmarx
.poll_rate
= 100;
503 /* 3 secs defaults poll_timeout if not specified. */
504 if (plat
->dma_rx_poll_timeout
)
505 uap
->dmarx
.poll_timeout
=
506 plat
->dma_rx_poll_timeout
;
508 uap
->dmarx
.poll_timeout
= 3000;
509 } else if (!plat
&& dev
->of_node
) {
510 uap
->dmarx
.auto_poll_rate
= of_property_read_bool(
511 dev
->of_node
, "auto-poll");
512 if (uap
->dmarx
.auto_poll_rate
) {
515 if (0 == of_property_read_u32(dev
->of_node
,
517 uap
->dmarx
.poll_rate
= x
;
519 uap
->dmarx
.poll_rate
= 100;
520 if (0 == of_property_read_u32(dev
->of_node
,
521 "poll-timeout-ms", &x
))
522 uap
->dmarx
.poll_timeout
= x
;
524 uap
->dmarx
.poll_timeout
= 3000;
527 dev_info(uap
->port
.dev
, "DMA channel RX %s\n",
528 dma_chan_name(uap
->dmarx
.chan
));
532 static void pl011_dma_remove(struct uart_amba_port
*uap
)
535 dma_release_channel(uap
->dmatx
.chan
);
537 dma_release_channel(uap
->dmarx
.chan
);
540 /* Forward declare these for the refill routine */
541 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
);
542 static void pl011_start_tx_pio(struct uart_amba_port
*uap
);
545 * The current DMA TX buffer has been sent.
546 * Try to queue up another DMA buffer.
548 static void pl011_dma_tx_callback(void *data
)
550 struct uart_amba_port
*uap
= data
;
551 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
555 spin_lock_irqsave(&uap
->port
.lock
, flags
);
556 if (uap
->dmatx
.queued
)
557 dma_unmap_sg(dmatx
->chan
->device
->dev
, &dmatx
->sg
, 1,
561 uap
->dmacr
= dmacr
& ~UART011_TXDMAE
;
562 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
565 * If TX DMA was disabled, it means that we've stopped the DMA for
566 * some reason (eg, XOFF received, or we want to send an X-char.)
568 * Note: we need to be careful here of a potential race between DMA
569 * and the rest of the driver - if the driver disables TX DMA while
570 * a TX buffer completing, we must update the tx queued status to
571 * get further refills (hence we check dmacr).
573 if (!(dmacr
& UART011_TXDMAE
) || uart_tx_stopped(&uap
->port
) ||
574 uart_circ_empty(&uap
->port
.state
->xmit
)) {
575 uap
->dmatx
.queued
= false;
576 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
580 if (pl011_dma_tx_refill(uap
) <= 0)
582 * We didn't queue a DMA buffer for some reason, but we
583 * have data pending to be sent. Re-enable the TX IRQ.
585 pl011_start_tx_pio(uap
);
587 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
591 * Try to refill the TX DMA buffer.
592 * Locking: called with port lock held and IRQs disabled.
594 * 1 if we queued up a TX DMA buffer.
595 * 0 if we didn't want to handle this by DMA
598 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
)
600 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
601 struct dma_chan
*chan
= dmatx
->chan
;
602 struct dma_device
*dma_dev
= chan
->device
;
603 struct dma_async_tx_descriptor
*desc
;
604 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
608 * Try to avoid the overhead involved in using DMA if the
609 * transaction fits in the first half of the FIFO, by using
610 * the standard interrupt handling. This ensures that we
611 * issue a uart_write_wakeup() at the appropriate time.
613 count
= uart_circ_chars_pending(xmit
);
614 if (count
< (uap
->fifosize
>> 1)) {
615 uap
->dmatx
.queued
= false;
620 * Bodge: don't send the last character by DMA, as this
621 * will prevent XON from notifying us to restart DMA.
625 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
626 if (count
> PL011_DMA_BUFFER_SIZE
)
627 count
= PL011_DMA_BUFFER_SIZE
;
629 if (xmit
->tail
< xmit
->head
)
630 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], count
);
632 size_t first
= UART_XMIT_SIZE
- xmit
->tail
;
637 second
= count
- first
;
639 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], first
);
641 memcpy(&dmatx
->buf
[first
], &xmit
->buf
[0], second
);
644 dmatx
->sg
.length
= count
;
646 if (dma_map_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
) != 1) {
647 uap
->dmatx
.queued
= false;
648 dev_dbg(uap
->port
.dev
, "unable to map TX DMA\n");
652 desc
= dmaengine_prep_slave_sg(chan
, &dmatx
->sg
, 1, DMA_MEM_TO_DEV
,
653 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
655 dma_unmap_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
);
656 uap
->dmatx
.queued
= false;
658 * If DMA cannot be used right now, we complete this
659 * transaction via IRQ and let the TTY layer retry.
661 dev_dbg(uap
->port
.dev
, "TX DMA busy\n");
665 /* Some data to go along to the callback */
666 desc
->callback
= pl011_dma_tx_callback
;
667 desc
->callback_param
= uap
;
669 /* All errors should happen at prepare time */
670 dmaengine_submit(desc
);
672 /* Fire the DMA transaction */
673 dma_dev
->device_issue_pending(chan
);
675 uap
->dmacr
|= UART011_TXDMAE
;
676 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
677 uap
->dmatx
.queued
= true;
680 * Now we know that DMA will fire, so advance the ring buffer
681 * with the stuff we just dispatched.
683 xmit
->tail
= (xmit
->tail
+ count
) & (UART_XMIT_SIZE
- 1);
684 uap
->port
.icount
.tx
+= count
;
686 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
687 uart_write_wakeup(&uap
->port
);
693 * We received a transmit interrupt without a pending X-char but with
694 * pending characters.
695 * Locking: called with port lock held and IRQs disabled.
697 * false if we want to use PIO to transmit
698 * true if we queued a DMA buffer
700 static bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
702 if (!uap
->using_tx_dma
)
706 * If we already have a TX buffer queued, but received a
707 * TX interrupt, it will be because we've just sent an X-char.
708 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
710 if (uap
->dmatx
.queued
) {
711 uap
->dmacr
|= UART011_TXDMAE
;
712 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
713 uap
->im
&= ~UART011_TXIM
;
714 pl011_write(uap
->im
, uap
, REG_IMSC
);
719 * We don't have a TX buffer queued, so try to queue one.
720 * If we successfully queued a buffer, mask the TX IRQ.
722 if (pl011_dma_tx_refill(uap
) > 0) {
723 uap
->im
&= ~UART011_TXIM
;
724 pl011_write(uap
->im
, uap
, REG_IMSC
);
731 * Stop the DMA transmit (eg, due to received XOFF).
732 * Locking: called with port lock held and IRQs disabled.
734 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
736 if (uap
->dmatx
.queued
) {
737 uap
->dmacr
&= ~UART011_TXDMAE
;
738 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
743 * Try to start a DMA transmit, or in the case of an XON/OFF
744 * character queued for send, try to get that character out ASAP.
745 * Locking: called with port lock held and IRQs disabled.
747 * false if we want the TX IRQ to be enabled
748 * true if we have a buffer queued
750 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
754 if (!uap
->using_tx_dma
)
757 if (!uap
->port
.x_char
) {
758 /* no X-char, try to push chars out in DMA mode */
761 if (!uap
->dmatx
.queued
) {
762 if (pl011_dma_tx_refill(uap
) > 0) {
763 uap
->im
&= ~UART011_TXIM
;
764 pl011_write(uap
->im
, uap
, REG_IMSC
);
767 } else if (!(uap
->dmacr
& UART011_TXDMAE
)) {
768 uap
->dmacr
|= UART011_TXDMAE
;
769 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
775 * We have an X-char to send. Disable DMA to prevent it loading
776 * the TX fifo, and then see if we can stuff it into the FIFO.
779 uap
->dmacr
&= ~UART011_TXDMAE
;
780 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
782 if (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
) {
784 * No space in the FIFO, so enable the transmit interrupt
785 * so we know when there is space. Note that once we've
786 * loaded the character, we should just re-enable DMA.
791 pl011_write(uap
->port
.x_char
, uap
, REG_DR
);
792 uap
->port
.icount
.tx
++;
793 uap
->port
.x_char
= 0;
795 /* Success - restore the DMA state */
797 pl011_write(dmacr
, uap
, REG_DMACR
);
803 * Flush the transmit buffer.
804 * Locking: called with port lock held and IRQs disabled.
806 static void pl011_dma_flush_buffer(struct uart_port
*port
)
807 __releases(&uap
->port
.lock
)
808 __acquires(&uap
->port
.lock
)
810 struct uart_amba_port
*uap
=
811 container_of(port
, struct uart_amba_port
, port
);
813 if (!uap
->using_tx_dma
)
816 /* Avoid deadlock with the DMA engine callback */
817 spin_unlock(&uap
->port
.lock
);
818 dmaengine_terminate_all(uap
->dmatx
.chan
);
819 spin_lock(&uap
->port
.lock
);
820 if (uap
->dmatx
.queued
) {
821 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
823 uap
->dmatx
.queued
= false;
824 uap
->dmacr
&= ~UART011_TXDMAE
;
825 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
829 static void pl011_dma_rx_callback(void *data
);
831 static int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
833 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
834 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
835 struct dma_async_tx_descriptor
*desc
;
836 struct pl011_sgbuf
*sgbuf
;
841 /* Start the RX DMA job */
842 sgbuf
= uap
->dmarx
.use_buf_b
?
843 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
844 desc
= dmaengine_prep_slave_sg(rxchan
, &sgbuf
->sg
, 1,
846 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
848 * If the DMA engine is busy and cannot prepare a
849 * channel, no big deal, the driver will fall back
850 * to interrupt mode as a result of this error code.
853 uap
->dmarx
.running
= false;
854 dmaengine_terminate_all(rxchan
);
858 /* Some data to go along to the callback */
859 desc
->callback
= pl011_dma_rx_callback
;
860 desc
->callback_param
= uap
;
861 dmarx
->cookie
= dmaengine_submit(desc
);
862 dma_async_issue_pending(rxchan
);
864 uap
->dmacr
|= UART011_RXDMAE
;
865 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
866 uap
->dmarx
.running
= true;
868 uap
->im
&= ~UART011_RXIM
;
869 pl011_write(uap
->im
, uap
, REG_IMSC
);
875 * This is called when either the DMA job is complete, or
876 * the FIFO timeout interrupt occurred. This must be called
877 * with the port spinlock uap->port.lock held.
879 static void pl011_dma_rx_chars(struct uart_amba_port
*uap
,
880 u32 pending
, bool use_buf_b
,
883 struct tty_port
*port
= &uap
->port
.state
->port
;
884 struct pl011_sgbuf
*sgbuf
= use_buf_b
?
885 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
887 u32 fifotaken
= 0; /* only used for vdbg() */
889 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
892 if (uap
->dmarx
.poll_rate
) {
893 /* The data can be taken by polling */
894 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
895 /* Recalculate the pending size */
896 if (pending
>= dmataken
)
900 /* Pick the remain data from the DMA */
904 * First take all chars in the DMA pipe, then look in the FIFO.
905 * Note that tty_insert_flip_buf() tries to take as many chars
908 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
911 uap
->port
.icount
.rx
+= dma_count
;
912 if (dma_count
< pending
)
913 dev_warn(uap
->port
.dev
,
914 "couldn't insert all characters (TTY is full?)\n");
917 /* Reset the last_residue for Rx DMA poll */
918 if (uap
->dmarx
.poll_rate
)
919 dmarx
->last_residue
= sgbuf
->sg
.length
;
922 * Only continue with trying to read the FIFO if all DMA chars have
925 if (dma_count
== pending
&& readfifo
) {
926 /* Clear any error flags */
927 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
928 UART011_FEIS
, uap
, REG_ICR
);
931 * If we read all the DMA'd characters, and we had an
932 * incomplete buffer, that could be due to an rx error, or
933 * maybe we just timed out. Read any pending chars and check
936 * Error conditions will only occur in the FIFO, these will
937 * trigger an immediate interrupt and stop the DMA job, so we
938 * will always find the error in the FIFO, never in the DMA
941 fifotaken
= pl011_fifo_to_tty(uap
);
944 spin_unlock(&uap
->port
.lock
);
945 dev_vdbg(uap
->port
.dev
,
946 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
947 dma_count
, fifotaken
);
948 tty_flip_buffer_push(port
);
949 spin_lock(&uap
->port
.lock
);
952 static void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
954 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
955 struct dma_chan
*rxchan
= dmarx
->chan
;
956 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
957 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
959 struct dma_tx_state state
;
960 enum dma_status dmastat
;
963 * Pause the transfer so we can trust the current counter,
964 * do this before we pause the PL011 block, else we may
967 if (dmaengine_pause(rxchan
))
968 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
969 dmastat
= rxchan
->device
->device_tx_status(rxchan
,
970 dmarx
->cookie
, &state
);
971 if (dmastat
!= DMA_PAUSED
)
972 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
974 /* Disable RX DMA - incoming data will wait in the FIFO */
975 uap
->dmacr
&= ~UART011_RXDMAE
;
976 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
977 uap
->dmarx
.running
= false;
979 pending
= sgbuf
->sg
.length
- state
.residue
;
980 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
981 /* Then we terminate the transfer - we now know our residue */
982 dmaengine_terminate_all(rxchan
);
985 * This will take the chars we have so far and insert
986 * into the framework.
988 pl011_dma_rx_chars(uap
, pending
, dmarx
->use_buf_b
, true);
990 /* Switch buffer & re-trigger DMA job */
991 dmarx
->use_buf_b
= !dmarx
->use_buf_b
;
992 if (pl011_dma_rx_trigger_dma(uap
)) {
993 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
994 "fall back to interrupt mode\n");
995 uap
->im
|= UART011_RXIM
;
996 pl011_write(uap
->im
, uap
, REG_IMSC
);
1000 static void pl011_dma_rx_callback(void *data
)
1002 struct uart_amba_port
*uap
= data
;
1003 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
1004 struct dma_chan
*rxchan
= dmarx
->chan
;
1005 bool lastbuf
= dmarx
->use_buf_b
;
1006 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
1007 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
1009 struct dma_tx_state state
;
1013 * This completion interrupt occurs typically when the
1014 * RX buffer is totally stuffed but no timeout has yet
1015 * occurred. When that happens, we just want the RX
1016 * routine to flush out the secondary DMA buffer while
1017 * we immediately trigger the next DMA job.
1019 spin_lock_irq(&uap
->port
.lock
);
1021 * Rx data can be taken by the UART interrupts during
1022 * the DMA irq handler. So we check the residue here.
1024 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1025 pending
= sgbuf
->sg
.length
- state
.residue
;
1026 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
1027 /* Then we terminate the transfer - we now know our residue */
1028 dmaengine_terminate_all(rxchan
);
1030 uap
->dmarx
.running
= false;
1031 dmarx
->use_buf_b
= !lastbuf
;
1032 ret
= pl011_dma_rx_trigger_dma(uap
);
1034 pl011_dma_rx_chars(uap
, pending
, lastbuf
, false);
1035 spin_unlock_irq(&uap
->port
.lock
);
1037 * Do this check after we picked the DMA chars so we don't
1038 * get some IRQ immediately from RX.
1041 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
1042 "fall back to interrupt mode\n");
1043 uap
->im
|= UART011_RXIM
;
1044 pl011_write(uap
->im
, uap
, REG_IMSC
);
1049 * Stop accepting received characters, when we're shutting down or
1050 * suspending this port.
1051 * Locking: called with port lock held and IRQs disabled.
1053 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1055 /* FIXME. Just disable the DMA enable */
1056 uap
->dmacr
&= ~UART011_RXDMAE
;
1057 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1061 * Timer handler for Rx DMA polling.
1062 * Every polling, It checks the residue in the dma buffer and transfer
1063 * data to the tty. Also, last_residue is updated for the next polling.
1065 static void pl011_dma_rx_poll(struct timer_list
*t
)
1067 struct uart_amba_port
*uap
= from_timer(uap
, t
, dmarx
.timer
);
1068 struct tty_port
*port
= &uap
->port
.state
->port
;
1069 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
1070 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
1071 unsigned long flags
= 0;
1072 unsigned int dmataken
= 0;
1073 unsigned int size
= 0;
1074 struct pl011_sgbuf
*sgbuf
;
1076 struct dma_tx_state state
;
1078 sgbuf
= dmarx
->use_buf_b
? &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
1079 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1080 if (likely(state
.residue
< dmarx
->last_residue
)) {
1081 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
1082 size
= dmarx
->last_residue
- state
.residue
;
1083 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
1085 if (dma_count
== size
)
1086 dmarx
->last_residue
= state
.residue
;
1087 dmarx
->last_jiffies
= jiffies
;
1089 tty_flip_buffer_push(port
);
1092 * If no data is received in poll_timeout, the driver will fall back
1093 * to interrupt mode. We will retrigger DMA at the first interrupt.
1095 if (jiffies_to_msecs(jiffies
- dmarx
->last_jiffies
)
1096 > uap
->dmarx
.poll_timeout
) {
1098 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1099 pl011_dma_rx_stop(uap
);
1100 uap
->im
|= UART011_RXIM
;
1101 pl011_write(uap
->im
, uap
, REG_IMSC
);
1102 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1104 uap
->dmarx
.running
= false;
1105 dmaengine_terminate_all(rxchan
);
1106 del_timer(&uap
->dmarx
.timer
);
1108 mod_timer(&uap
->dmarx
.timer
,
1109 jiffies
+ msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1113 static void pl011_dma_startup(struct uart_amba_port
*uap
)
1117 if (!uap
->dma_probed
)
1118 pl011_dma_probe(uap
);
1120 if (!uap
->dmatx
.chan
)
1123 uap
->dmatx
.buf
= kmalloc(PL011_DMA_BUFFER_SIZE
, GFP_KERNEL
| __GFP_DMA
);
1124 if (!uap
->dmatx
.buf
) {
1125 dev_err(uap
->port
.dev
, "no memory for DMA TX buffer\n");
1126 uap
->port
.fifosize
= uap
->fifosize
;
1130 sg_init_one(&uap
->dmatx
.sg
, uap
->dmatx
.buf
, PL011_DMA_BUFFER_SIZE
);
1132 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1133 uap
->port
.fifosize
= PL011_DMA_BUFFER_SIZE
;
1134 uap
->using_tx_dma
= true;
1136 if (!uap
->dmarx
.chan
)
1139 /* Allocate and map DMA RX buffers */
1140 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1143 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1144 "RX buffer A", ret
);
1148 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
,
1151 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1152 "RX buffer B", ret
);
1153 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1158 uap
->using_rx_dma
= true;
1161 /* Turn on DMA error (RX/TX will be enabled on demand) */
1162 uap
->dmacr
|= UART011_DMAONERR
;
1163 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1166 * ST Micro variants has some specific dma burst threshold
1167 * compensation. Set this to 16 bytes, so burst will only
1168 * be issued above/below 16 bytes.
1170 if (uap
->vendor
->dma_threshold
)
1171 pl011_write(ST_UART011_DMAWM_RX_16
| ST_UART011_DMAWM_TX_16
,
1174 if (uap
->using_rx_dma
) {
1175 if (pl011_dma_rx_trigger_dma(uap
))
1176 dev_dbg(uap
->port
.dev
, "could not trigger initial "
1177 "RX DMA job, fall back to interrupt mode\n");
1178 if (uap
->dmarx
.poll_rate
) {
1179 timer_setup(&uap
->dmarx
.timer
, pl011_dma_rx_poll
, 0);
1180 mod_timer(&uap
->dmarx
.timer
,
1182 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1183 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1184 uap
->dmarx
.last_jiffies
= jiffies
;
1189 static void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1191 if (!(uap
->using_tx_dma
|| uap
->using_rx_dma
))
1194 /* Disable RX and TX DMA */
1195 while (pl011_read(uap
, REG_FR
) & uap
->vendor
->fr_busy
)
1198 spin_lock_irq(&uap
->port
.lock
);
1199 uap
->dmacr
&= ~(UART011_DMAONERR
| UART011_RXDMAE
| UART011_TXDMAE
);
1200 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1201 spin_unlock_irq(&uap
->port
.lock
);
1203 if (uap
->using_tx_dma
) {
1204 /* In theory, this should already be done by pl011_dma_flush_buffer */
1205 dmaengine_terminate_all(uap
->dmatx
.chan
);
1206 if (uap
->dmatx
.queued
) {
1207 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
1209 uap
->dmatx
.queued
= false;
1212 kfree(uap
->dmatx
.buf
);
1213 uap
->using_tx_dma
= false;
1216 if (uap
->using_rx_dma
) {
1217 dmaengine_terminate_all(uap
->dmarx
.chan
);
1218 /* Clean up the RX DMA */
1219 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
, DMA_FROM_DEVICE
);
1220 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
, DMA_FROM_DEVICE
);
1221 if (uap
->dmarx
.poll_rate
)
1222 del_timer_sync(&uap
->dmarx
.timer
);
1223 uap
->using_rx_dma
= false;
1227 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1229 return uap
->using_rx_dma
;
1232 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1234 return uap
->using_rx_dma
&& uap
->dmarx
.running
;
1238 /* Blank functions if the DMA engine is not available */
1239 static inline void pl011_dma_probe(struct uart_amba_port
*uap
)
1243 static inline void pl011_dma_remove(struct uart_amba_port
*uap
)
1247 static inline void pl011_dma_startup(struct uart_amba_port
*uap
)
1251 static inline void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1255 static inline bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
1260 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
1264 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
1269 static inline void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
1273 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1277 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
1282 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1287 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1292 #define pl011_dma_flush_buffer NULL
1295 static void pl011_stop_tx(struct uart_port
*port
)
1297 struct uart_amba_port
*uap
=
1298 container_of(port
, struct uart_amba_port
, port
);
1300 uap
->im
&= ~UART011_TXIM
;
1301 pl011_write(uap
->im
, uap
, REG_IMSC
);
1302 pl011_dma_tx_stop(uap
);
1305 static bool pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
);
1307 /* Start TX with programmed I/O only (no DMA) */
1308 static void pl011_start_tx_pio(struct uart_amba_port
*uap
)
1310 if (pl011_tx_chars(uap
, false)) {
1311 uap
->im
|= UART011_TXIM
;
1312 pl011_write(uap
->im
, uap
, REG_IMSC
);
1316 static void pl011_start_tx(struct uart_port
*port
)
1318 struct uart_amba_port
*uap
=
1319 container_of(port
, struct uart_amba_port
, port
);
1321 if (!pl011_dma_tx_start(uap
))
1322 pl011_start_tx_pio(uap
);
1325 static void pl011_stop_rx(struct uart_port
*port
)
1327 struct uart_amba_port
*uap
=
1328 container_of(port
, struct uart_amba_port
, port
);
1330 uap
->im
&= ~(UART011_RXIM
|UART011_RTIM
|UART011_FEIM
|
1331 UART011_PEIM
|UART011_BEIM
|UART011_OEIM
);
1332 pl011_write(uap
->im
, uap
, REG_IMSC
);
1334 pl011_dma_rx_stop(uap
);
1337 static void pl011_enable_ms(struct uart_port
*port
)
1339 struct uart_amba_port
*uap
=
1340 container_of(port
, struct uart_amba_port
, port
);
1342 uap
->im
|= UART011_RIMIM
|UART011_CTSMIM
|UART011_DCDMIM
|UART011_DSRMIM
;
1343 pl011_write(uap
->im
, uap
, REG_IMSC
);
1346 static void pl011_rx_chars(struct uart_amba_port
*uap
)
1347 __releases(&uap
->port
.lock
)
1348 __acquires(&uap
->port
.lock
)
1350 pl011_fifo_to_tty(uap
);
1352 spin_unlock(&uap
->port
.lock
);
1353 tty_flip_buffer_push(&uap
->port
.state
->port
);
1355 * If we were temporarily out of DMA mode for a while,
1356 * attempt to switch back to DMA mode again.
1358 if (pl011_dma_rx_available(uap
)) {
1359 if (pl011_dma_rx_trigger_dma(uap
)) {
1360 dev_dbg(uap
->port
.dev
, "could not trigger RX DMA job "
1361 "fall back to interrupt mode again\n");
1362 uap
->im
|= UART011_RXIM
;
1363 pl011_write(uap
->im
, uap
, REG_IMSC
);
1365 #ifdef CONFIG_DMA_ENGINE
1366 /* Start Rx DMA poll */
1367 if (uap
->dmarx
.poll_rate
) {
1368 uap
->dmarx
.last_jiffies
= jiffies
;
1369 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1370 mod_timer(&uap
->dmarx
.timer
,
1372 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1377 spin_lock(&uap
->port
.lock
);
1380 static bool pl011_tx_char(struct uart_amba_port
*uap
, unsigned char c
,
1383 if (unlikely(!from_irq
) &&
1384 pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1385 return false; /* unable to transmit character */
1387 pl011_write(c
, uap
, REG_DR
);
1388 uap
->port
.icount
.tx
++;
1393 /* Returns true if tx interrupts have to be (kept) enabled */
1394 static bool pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
)
1396 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
1397 int count
= uap
->fifosize
>> 1;
1399 if (uap
->port
.x_char
) {
1400 if (!pl011_tx_char(uap
, uap
->port
.x_char
, from_irq
))
1402 uap
->port
.x_char
= 0;
1405 if (uart_circ_empty(xmit
) || uart_tx_stopped(&uap
->port
)) {
1406 pl011_stop_tx(&uap
->port
);
1410 /* If we are using DMA mode, try to send some characters. */
1411 if (pl011_dma_tx_irq(uap
))
1415 if (likely(from_irq
) && count
-- == 0)
1418 if (!pl011_tx_char(uap
, xmit
->buf
[xmit
->tail
], from_irq
))
1421 xmit
->tail
= (xmit
->tail
+ 1) & (UART_XMIT_SIZE
- 1);
1422 } while (!uart_circ_empty(xmit
));
1424 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
1425 uart_write_wakeup(&uap
->port
);
1427 if (uart_circ_empty(xmit
)) {
1428 pl011_stop_tx(&uap
->port
);
1434 static void pl011_modem_status(struct uart_amba_port
*uap
)
1436 unsigned int status
, delta
;
1438 status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1440 delta
= status
^ uap
->old_status
;
1441 uap
->old_status
= status
;
1446 if (delta
& UART01x_FR_DCD
)
1447 uart_handle_dcd_change(&uap
->port
, status
& UART01x_FR_DCD
);
1449 if (delta
& uap
->vendor
->fr_dsr
)
1450 uap
->port
.icount
.dsr
++;
1452 if (delta
& uap
->vendor
->fr_cts
)
1453 uart_handle_cts_change(&uap
->port
,
1454 status
& uap
->vendor
->fr_cts
);
1456 wake_up_interruptible(&uap
->port
.state
->port
.delta_msr_wait
);
1459 static void check_apply_cts_event_workaround(struct uart_amba_port
*uap
)
1461 unsigned int dummy_read
;
1463 if (!uap
->vendor
->cts_event_workaround
)
1466 /* workaround to make sure that all bits are unlocked.. */
1467 pl011_write(0x00, uap
, REG_ICR
);
1470 * WA: introduce 26ns(1 uart clk) delay before W1C;
1471 * single apb access will incur 2 pclk(133.12Mhz) delay,
1472 * so add 2 dummy reads
1474 dummy_read
= pl011_read(uap
, REG_ICR
);
1475 dummy_read
= pl011_read(uap
, REG_ICR
);
1478 static irqreturn_t
pl011_int(int irq
, void *dev_id
)
1480 struct uart_amba_port
*uap
= dev_id
;
1481 unsigned long flags
;
1482 unsigned int status
, pass_counter
= AMBA_ISR_PASS_LIMIT
;
1485 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1486 status
= pl011_read(uap
, REG_RIS
) & uap
->im
;
1489 check_apply_cts_event_workaround(uap
);
1491 pl011_write(status
& ~(UART011_TXIS
|UART011_RTIS
|
1495 if (status
& (UART011_RTIS
|UART011_RXIS
)) {
1496 if (pl011_dma_rx_running(uap
))
1497 pl011_dma_rx_irq(uap
);
1499 pl011_rx_chars(uap
);
1501 if (status
& (UART011_DSRMIS
|UART011_DCDMIS
|
1502 UART011_CTSMIS
|UART011_RIMIS
))
1503 pl011_modem_status(uap
);
1504 if (status
& UART011_TXIS
)
1505 pl011_tx_chars(uap
, true);
1507 if (pass_counter
-- == 0)
1510 status
= pl011_read(uap
, REG_RIS
) & uap
->im
;
1511 } while (status
!= 0);
1515 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1517 return IRQ_RETVAL(handled
);
1520 static unsigned int pl011_tx_empty(struct uart_port
*port
)
1522 struct uart_amba_port
*uap
=
1523 container_of(port
, struct uart_amba_port
, port
);
1525 /* Allow feature register bits to be inverted to work around errata */
1526 unsigned int status
= pl011_read(uap
, REG_FR
) ^ uap
->vendor
->inv_fr
;
1528 return status
& (uap
->vendor
->fr_busy
| UART01x_FR_TXFF
) ?
1532 static unsigned int pl011_get_mctrl(struct uart_port
*port
)
1534 struct uart_amba_port
*uap
=
1535 container_of(port
, struct uart_amba_port
, port
);
1536 unsigned int result
= 0;
1537 unsigned int status
= pl011_read(uap
, REG_FR
);
1539 #define TIOCMBIT(uartbit, tiocmbit) \
1540 if (status & uartbit) \
1543 TIOCMBIT(UART01x_FR_DCD
, TIOCM_CAR
);
1544 TIOCMBIT(uap
->vendor
->fr_dsr
, TIOCM_DSR
);
1545 TIOCMBIT(uap
->vendor
->fr_cts
, TIOCM_CTS
);
1546 TIOCMBIT(uap
->vendor
->fr_ri
, TIOCM_RNG
);
1551 static void pl011_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
1553 struct uart_amba_port
*uap
=
1554 container_of(port
, struct uart_amba_port
, port
);
1557 cr
= pl011_read(uap
, REG_CR
);
1559 #define TIOCMBIT(tiocmbit, uartbit) \
1560 if (mctrl & tiocmbit) \
1565 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTS
);
1566 TIOCMBIT(TIOCM_DTR
, UART011_CR_DTR
);
1567 TIOCMBIT(TIOCM_OUT1
, UART011_CR_OUT1
);
1568 TIOCMBIT(TIOCM_OUT2
, UART011_CR_OUT2
);
1569 TIOCMBIT(TIOCM_LOOP
, UART011_CR_LBE
);
1571 if (port
->status
& UPSTAT_AUTORTS
) {
1572 /* We need to disable auto-RTS if we want to turn RTS off */
1573 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTSEN
);
1577 pl011_write(cr
, uap
, REG_CR
);
1580 static void pl011_break_ctl(struct uart_port
*port
, int break_state
)
1582 struct uart_amba_port
*uap
=
1583 container_of(port
, struct uart_amba_port
, port
);
1584 unsigned long flags
;
1587 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1588 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
1589 if (break_state
== -1)
1590 lcr_h
|= UART01x_LCRH_BRK
;
1592 lcr_h
&= ~UART01x_LCRH_BRK
;
1593 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1594 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1597 #ifdef CONFIG_CONSOLE_POLL
1599 static void pl011_quiesce_irqs(struct uart_port
*port
)
1601 struct uart_amba_port
*uap
=
1602 container_of(port
, struct uart_amba_port
, port
);
1604 pl011_write(pl011_read(uap
, REG_MIS
), uap
, REG_ICR
);
1606 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1607 * we simply mask it. start_tx() will unmask it.
1609 * Note we can race with start_tx(), and if the race happens, the
1610 * polling user might get another interrupt just after we clear it.
1611 * But it should be OK and can happen even w/o the race, e.g.
1612 * controller immediately got some new data and raised the IRQ.
1614 * And whoever uses polling routines assumes that it manages the device
1615 * (including tx queue), so we're also fine with start_tx()'s caller
1618 pl011_write(pl011_read(uap
, REG_IMSC
) & ~UART011_TXIM
, uap
,
1622 static int pl011_get_poll_char(struct uart_port
*port
)
1624 struct uart_amba_port
*uap
=
1625 container_of(port
, struct uart_amba_port
, port
);
1626 unsigned int status
;
1629 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1632 pl011_quiesce_irqs(port
);
1634 status
= pl011_read(uap
, REG_FR
);
1635 if (status
& UART01x_FR_RXFE
)
1636 return NO_POLL_CHAR
;
1638 return pl011_read(uap
, REG_DR
);
1641 static void pl011_put_poll_char(struct uart_port
*port
,
1644 struct uart_amba_port
*uap
=
1645 container_of(port
, struct uart_amba_port
, port
);
1647 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1650 pl011_write(ch
, uap
, REG_DR
);
1653 #endif /* CONFIG_CONSOLE_POLL */
1655 static int pl011_hwinit(struct uart_port
*port
)
1657 struct uart_amba_port
*uap
=
1658 container_of(port
, struct uart_amba_port
, port
);
1661 /* Optionaly enable pins to be muxed in and configured */
1662 pinctrl_pm_select_default_state(port
->dev
);
1665 * Try to enable the clock producer.
1667 retval
= clk_prepare_enable(uap
->clk
);
1671 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
1673 /* Clear pending error and receive interrupts */
1674 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
1675 UART011_FEIS
| UART011_RTIS
| UART011_RXIS
,
1679 * Save interrupts enable mask, and enable RX interrupts in case if
1680 * the interrupt is used for NMI entry.
1682 uap
->im
= pl011_read(uap
, REG_IMSC
);
1683 pl011_write(UART011_RTIM
| UART011_RXIM
, uap
, REG_IMSC
);
1685 if (dev_get_platdata(uap
->port
.dev
)) {
1686 struct amba_pl011_data
*plat
;
1688 plat
= dev_get_platdata(uap
->port
.dev
);
1695 static bool pl011_split_lcrh(const struct uart_amba_port
*uap
)
1697 return pl011_reg_to_offset(uap
, REG_LCRH_RX
) !=
1698 pl011_reg_to_offset(uap
, REG_LCRH_TX
);
1701 static void pl011_write_lcr_h(struct uart_amba_port
*uap
, unsigned int lcr_h
)
1703 pl011_write(lcr_h
, uap
, REG_LCRH_RX
);
1704 if (pl011_split_lcrh(uap
)) {
1707 * Wait 10 PCLKs before writing LCRH_TX register,
1708 * to get this delay write read only register 10 times
1710 for (i
= 0; i
< 10; ++i
)
1711 pl011_write(0xff, uap
, REG_MIS
);
1712 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1716 static int pl011_allocate_irq(struct uart_amba_port
*uap
)
1718 pl011_write(uap
->im
, uap
, REG_IMSC
);
1720 return request_irq(uap
->port
.irq
, pl011_int
, 0, "uart-pl011", uap
);
1724 * Enable interrupts, only timeouts when using DMA
1725 * if initial RX DMA job failed, start in interrupt mode
1728 static void pl011_enable_interrupts(struct uart_amba_port
*uap
)
1730 spin_lock_irq(&uap
->port
.lock
);
1732 /* Clear out any spuriously appearing RX interrupts */
1733 pl011_write(UART011_RTIS
| UART011_RXIS
, uap
, REG_ICR
);
1734 uap
->im
= UART011_RTIM
;
1735 if (!pl011_dma_rx_running(uap
))
1736 uap
->im
|= UART011_RXIM
;
1737 pl011_write(uap
->im
, uap
, REG_IMSC
);
1738 spin_unlock_irq(&uap
->port
.lock
);
1741 static int pl011_startup(struct uart_port
*port
)
1743 struct uart_amba_port
*uap
=
1744 container_of(port
, struct uart_amba_port
, port
);
1748 retval
= pl011_hwinit(port
);
1752 retval
= pl011_allocate_irq(uap
);
1756 pl011_write(uap
->vendor
->ifls
, uap
, REG_IFLS
);
1758 spin_lock_irq(&uap
->port
.lock
);
1760 /* restore RTS and DTR */
1761 cr
= uap
->old_cr
& (UART011_CR_RTS
| UART011_CR_DTR
);
1762 cr
|= UART01x_CR_UARTEN
| UART011_CR_RXE
| UART011_CR_TXE
;
1763 pl011_write(cr
, uap
, REG_CR
);
1765 spin_unlock_irq(&uap
->port
.lock
);
1768 * initialise the old status of the modem signals
1770 uap
->old_status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1773 pl011_dma_startup(uap
);
1775 pl011_enable_interrupts(uap
);
1780 clk_disable_unprepare(uap
->clk
);
1784 static int sbsa_uart_startup(struct uart_port
*port
)
1786 struct uart_amba_port
*uap
=
1787 container_of(port
, struct uart_amba_port
, port
);
1790 retval
= pl011_hwinit(port
);
1794 retval
= pl011_allocate_irq(uap
);
1798 /* The SBSA UART does not support any modem status lines. */
1799 uap
->old_status
= 0;
1801 pl011_enable_interrupts(uap
);
1806 static void pl011_shutdown_channel(struct uart_amba_port
*uap
,
1811 val
= pl011_read(uap
, lcrh
);
1812 val
&= ~(UART01x_LCRH_BRK
| UART01x_LCRH_FEN
);
1813 pl011_write(val
, uap
, lcrh
);
1817 * disable the port. It should not disable RTS and DTR.
1818 * Also RTS and DTR state should be preserved to restore
1819 * it during startup().
1821 static void pl011_disable_uart(struct uart_amba_port
*uap
)
1825 uap
->port
.status
&= ~(UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
);
1826 spin_lock_irq(&uap
->port
.lock
);
1827 cr
= pl011_read(uap
, REG_CR
);
1829 cr
&= UART011_CR_RTS
| UART011_CR_DTR
;
1830 cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
1831 pl011_write(cr
, uap
, REG_CR
);
1832 spin_unlock_irq(&uap
->port
.lock
);
1835 * disable break condition and fifos
1837 pl011_shutdown_channel(uap
, REG_LCRH_RX
);
1838 if (pl011_split_lcrh(uap
))
1839 pl011_shutdown_channel(uap
, REG_LCRH_TX
);
1842 static void pl011_disable_interrupts(struct uart_amba_port
*uap
)
1844 spin_lock_irq(&uap
->port
.lock
);
1846 /* mask all interrupts and clear all pending ones */
1848 pl011_write(uap
->im
, uap
, REG_IMSC
);
1849 pl011_write(0xffff, uap
, REG_ICR
);
1851 spin_unlock_irq(&uap
->port
.lock
);
1854 static void pl011_shutdown(struct uart_port
*port
)
1856 struct uart_amba_port
*uap
=
1857 container_of(port
, struct uart_amba_port
, port
);
1859 pl011_disable_interrupts(uap
);
1861 pl011_dma_shutdown(uap
);
1863 free_irq(uap
->port
.irq
, uap
);
1865 pl011_disable_uart(uap
);
1868 * Shut down the clock producer
1870 clk_disable_unprepare(uap
->clk
);
1871 /* Optionally let pins go into sleep states */
1872 pinctrl_pm_select_sleep_state(port
->dev
);
1874 if (dev_get_platdata(uap
->port
.dev
)) {
1875 struct amba_pl011_data
*plat
;
1877 plat
= dev_get_platdata(uap
->port
.dev
);
1882 if (uap
->port
.ops
->flush_buffer
)
1883 uap
->port
.ops
->flush_buffer(port
);
1886 static void sbsa_uart_shutdown(struct uart_port
*port
)
1888 struct uart_amba_port
*uap
=
1889 container_of(port
, struct uart_amba_port
, port
);
1891 pl011_disable_interrupts(uap
);
1893 free_irq(uap
->port
.irq
, uap
);
1895 if (uap
->port
.ops
->flush_buffer
)
1896 uap
->port
.ops
->flush_buffer(port
);
1900 pl011_setup_status_masks(struct uart_port
*port
, struct ktermios
*termios
)
1902 port
->read_status_mask
= UART011_DR_OE
| 255;
1903 if (termios
->c_iflag
& INPCK
)
1904 port
->read_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1905 if (termios
->c_iflag
& (IGNBRK
| BRKINT
| PARMRK
))
1906 port
->read_status_mask
|= UART011_DR_BE
;
1909 * Characters to ignore
1911 port
->ignore_status_mask
= 0;
1912 if (termios
->c_iflag
& IGNPAR
)
1913 port
->ignore_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1914 if (termios
->c_iflag
& IGNBRK
) {
1915 port
->ignore_status_mask
|= UART011_DR_BE
;
1917 * If we're ignoring parity and break indicators,
1918 * ignore overruns too (for real raw support).
1920 if (termios
->c_iflag
& IGNPAR
)
1921 port
->ignore_status_mask
|= UART011_DR_OE
;
1925 * Ignore all characters if CREAD is not set.
1927 if ((termios
->c_cflag
& CREAD
) == 0)
1928 port
->ignore_status_mask
|= UART_DUMMY_DR_RX
;
1932 pl011_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
1933 struct ktermios
*old
)
1935 struct uart_amba_port
*uap
=
1936 container_of(port
, struct uart_amba_port
, port
);
1937 unsigned int lcr_h
, old_cr
;
1938 unsigned long flags
;
1939 unsigned int baud
, quot
, clkdiv
;
1941 if (uap
->vendor
->oversampling
)
1947 * Ask the core to calculate the divisor for us.
1949 baud
= uart_get_baud_rate(port
, termios
, old
, 0,
1950 port
->uartclk
/ clkdiv
);
1951 #ifdef CONFIG_DMA_ENGINE
1953 * Adjust RX DMA polling rate with baud rate if not specified.
1955 if (uap
->dmarx
.auto_poll_rate
)
1956 uap
->dmarx
.poll_rate
= DIV_ROUND_UP(10000000, baud
);
1959 if (baud
> port
->uartclk
/16)
1960 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 8, baud
);
1962 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 4, baud
);
1964 switch (termios
->c_cflag
& CSIZE
) {
1966 lcr_h
= UART01x_LCRH_WLEN_5
;
1969 lcr_h
= UART01x_LCRH_WLEN_6
;
1972 lcr_h
= UART01x_LCRH_WLEN_7
;
1975 lcr_h
= UART01x_LCRH_WLEN_8
;
1978 if (termios
->c_cflag
& CSTOPB
)
1979 lcr_h
|= UART01x_LCRH_STP2
;
1980 if (termios
->c_cflag
& PARENB
) {
1981 lcr_h
|= UART01x_LCRH_PEN
;
1982 if (!(termios
->c_cflag
& PARODD
))
1983 lcr_h
|= UART01x_LCRH_EPS
;
1984 if (termios
->c_cflag
& CMSPAR
)
1985 lcr_h
|= UART011_LCRH_SPS
;
1987 if (uap
->fifosize
> 1)
1988 lcr_h
|= UART01x_LCRH_FEN
;
1990 spin_lock_irqsave(&port
->lock
, flags
);
1993 * Update the per-port timeout.
1995 uart_update_timeout(port
, termios
->c_cflag
, baud
);
1997 pl011_setup_status_masks(port
, termios
);
1999 if (UART_ENABLE_MS(port
, termios
->c_cflag
))
2000 pl011_enable_ms(port
);
2002 /* first, disable everything */
2003 old_cr
= pl011_read(uap
, REG_CR
);
2004 pl011_write(0, uap
, REG_CR
);
2006 if (termios
->c_cflag
& CRTSCTS
) {
2007 if (old_cr
& UART011_CR_RTS
)
2008 old_cr
|= UART011_CR_RTSEN
;
2010 old_cr
|= UART011_CR_CTSEN
;
2011 port
->status
|= UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
;
2013 old_cr
&= ~(UART011_CR_CTSEN
| UART011_CR_RTSEN
);
2014 port
->status
&= ~(UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
);
2017 if (uap
->vendor
->oversampling
) {
2018 if (baud
> port
->uartclk
/ 16)
2019 old_cr
|= ST_UART011_CR_OVSFACT
;
2021 old_cr
&= ~ST_UART011_CR_OVSFACT
;
2025 * Workaround for the ST Micro oversampling variants to
2026 * increase the bitrate slightly, by lowering the divisor,
2027 * to avoid delayed sampling of start bit at high speeds,
2028 * else we see data corruption.
2030 if (uap
->vendor
->oversampling
) {
2031 if ((baud
>= 3000000) && (baud
< 3250000) && (quot
> 1))
2033 else if ((baud
> 3250000) && (quot
> 2))
2037 pl011_write(quot
& 0x3f, uap
, REG_FBRD
);
2038 pl011_write(quot
>> 6, uap
, REG_IBRD
);
2041 * ----------v----------v----------v----------v-----
2042 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2043 * REG_FBRD & REG_IBRD.
2044 * ----------^----------^----------^----------^-----
2046 pl011_write_lcr_h(uap
, lcr_h
);
2047 pl011_write(old_cr
, uap
, REG_CR
);
2049 spin_unlock_irqrestore(&port
->lock
, flags
);
2053 sbsa_uart_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
2054 struct ktermios
*old
)
2056 struct uart_amba_port
*uap
=
2057 container_of(port
, struct uart_amba_port
, port
);
2058 unsigned long flags
;
2060 tty_termios_encode_baud_rate(termios
, uap
->fixed_baud
, uap
->fixed_baud
);
2062 /* The SBSA UART only supports 8n1 without hardware flow control. */
2063 termios
->c_cflag
&= ~(CSIZE
| CSTOPB
| PARENB
| PARODD
);
2064 termios
->c_cflag
&= ~(CMSPAR
| CRTSCTS
);
2065 termios
->c_cflag
|= CS8
| CLOCAL
;
2067 spin_lock_irqsave(&port
->lock
, flags
);
2068 uart_update_timeout(port
, CS8
, uap
->fixed_baud
);
2069 pl011_setup_status_masks(port
, termios
);
2070 spin_unlock_irqrestore(&port
->lock
, flags
);
2073 static const char *pl011_type(struct uart_port
*port
)
2075 struct uart_amba_port
*uap
=
2076 container_of(port
, struct uart_amba_port
, port
);
2077 return uap
->port
.type
== PORT_AMBA
? uap
->type
: NULL
;
2081 * Release the memory region(s) being used by 'port'
2083 static void pl011_release_port(struct uart_port
*port
)
2085 release_mem_region(port
->mapbase
, SZ_4K
);
2089 * Request the memory region(s) being used by 'port'
2091 static int pl011_request_port(struct uart_port
*port
)
2093 return request_mem_region(port
->mapbase
, SZ_4K
, "uart-pl011")
2094 != NULL
? 0 : -EBUSY
;
2098 * Configure/autoconfigure the port.
2100 static void pl011_config_port(struct uart_port
*port
, int flags
)
2102 if (flags
& UART_CONFIG_TYPE
) {
2103 port
->type
= PORT_AMBA
;
2104 pl011_request_port(port
);
2109 * verify the new serial_struct (for TIOCSSERIAL).
2111 static int pl011_verify_port(struct uart_port
*port
, struct serial_struct
*ser
)
2114 if (ser
->type
!= PORT_UNKNOWN
&& ser
->type
!= PORT_AMBA
)
2116 if (ser
->irq
< 0 || ser
->irq
>= nr_irqs
)
2118 if (ser
->baud_base
< 9600)
2123 static const struct uart_ops amba_pl011_pops
= {
2124 .tx_empty
= pl011_tx_empty
,
2125 .set_mctrl
= pl011_set_mctrl
,
2126 .get_mctrl
= pl011_get_mctrl
,
2127 .stop_tx
= pl011_stop_tx
,
2128 .start_tx
= pl011_start_tx
,
2129 .stop_rx
= pl011_stop_rx
,
2130 .enable_ms
= pl011_enable_ms
,
2131 .break_ctl
= pl011_break_ctl
,
2132 .startup
= pl011_startup
,
2133 .shutdown
= pl011_shutdown
,
2134 .flush_buffer
= pl011_dma_flush_buffer
,
2135 .set_termios
= pl011_set_termios
,
2137 .release_port
= pl011_release_port
,
2138 .request_port
= pl011_request_port
,
2139 .config_port
= pl011_config_port
,
2140 .verify_port
= pl011_verify_port
,
2141 #ifdef CONFIG_CONSOLE_POLL
2142 .poll_init
= pl011_hwinit
,
2143 .poll_get_char
= pl011_get_poll_char
,
2144 .poll_put_char
= pl011_put_poll_char
,
2148 static void sbsa_uart_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
2152 static unsigned int sbsa_uart_get_mctrl(struct uart_port
*port
)
2157 static const struct uart_ops sbsa_uart_pops
= {
2158 .tx_empty
= pl011_tx_empty
,
2159 .set_mctrl
= sbsa_uart_set_mctrl
,
2160 .get_mctrl
= sbsa_uart_get_mctrl
,
2161 .stop_tx
= pl011_stop_tx
,
2162 .start_tx
= pl011_start_tx
,
2163 .stop_rx
= pl011_stop_rx
,
2164 .startup
= sbsa_uart_startup
,
2165 .shutdown
= sbsa_uart_shutdown
,
2166 .set_termios
= sbsa_uart_set_termios
,
2168 .release_port
= pl011_release_port
,
2169 .request_port
= pl011_request_port
,
2170 .config_port
= pl011_config_port
,
2171 .verify_port
= pl011_verify_port
,
2172 #ifdef CONFIG_CONSOLE_POLL
2173 .poll_init
= pl011_hwinit
,
2174 .poll_get_char
= pl011_get_poll_char
,
2175 .poll_put_char
= pl011_put_poll_char
,
2179 static struct uart_amba_port
*amba_ports
[UART_NR
];
2181 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2183 static void pl011_console_putchar(struct uart_port
*port
, int ch
)
2185 struct uart_amba_port
*uap
=
2186 container_of(port
, struct uart_amba_port
, port
);
2188 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
2190 pl011_write(ch
, uap
, REG_DR
);
2194 pl011_console_write(struct console
*co
, const char *s
, unsigned int count
)
2196 struct uart_amba_port
*uap
= amba_ports
[co
->index
];
2197 unsigned int old_cr
= 0, new_cr
;
2198 unsigned long flags
;
2201 clk_enable(uap
->clk
);
2203 local_irq_save(flags
);
2204 if (uap
->port
.sysrq
)
2206 else if (oops_in_progress
)
2207 locked
= spin_trylock(&uap
->port
.lock
);
2209 spin_lock(&uap
->port
.lock
);
2212 * First save the CR then disable the interrupts
2214 if (!uap
->vendor
->always_enabled
) {
2215 old_cr
= pl011_read(uap
, REG_CR
);
2216 new_cr
= old_cr
& ~UART011_CR_CTSEN
;
2217 new_cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
2218 pl011_write(new_cr
, uap
, REG_CR
);
2221 uart_console_write(&uap
->port
, s
, count
, pl011_console_putchar
);
2224 * Finally, wait for transmitter to become empty and restore the
2225 * TCR. Allow feature register bits to be inverted to work around
2228 while ((pl011_read(uap
, REG_FR
) ^ uap
->vendor
->inv_fr
)
2229 & uap
->vendor
->fr_busy
)
2231 if (!uap
->vendor
->always_enabled
)
2232 pl011_write(old_cr
, uap
, REG_CR
);
2235 spin_unlock(&uap
->port
.lock
);
2236 local_irq_restore(flags
);
2238 clk_disable(uap
->clk
);
2242 pl011_console_get_options(struct uart_amba_port
*uap
, int *baud
,
2243 int *parity
, int *bits
)
2245 if (pl011_read(uap
, REG_CR
) & UART01x_CR_UARTEN
) {
2246 unsigned int lcr_h
, ibrd
, fbrd
;
2248 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
2251 if (lcr_h
& UART01x_LCRH_PEN
) {
2252 if (lcr_h
& UART01x_LCRH_EPS
)
2258 if ((lcr_h
& 0x60) == UART01x_LCRH_WLEN_7
)
2263 ibrd
= pl011_read(uap
, REG_IBRD
);
2264 fbrd
= pl011_read(uap
, REG_FBRD
);
2266 *baud
= uap
->port
.uartclk
* 4 / (64 * ibrd
+ fbrd
);
2268 if (uap
->vendor
->oversampling
) {
2269 if (pl011_read(uap
, REG_CR
)
2270 & ST_UART011_CR_OVSFACT
)
2276 static int __init
pl011_console_setup(struct console
*co
, char *options
)
2278 struct uart_amba_port
*uap
;
2286 * Check whether an invalid uart number has been specified, and
2287 * if so, search for the first available port that does have
2290 if (co
->index
>= UART_NR
)
2292 uap
= amba_ports
[co
->index
];
2296 /* Allow pins to be muxed in and configured */
2297 pinctrl_pm_select_default_state(uap
->port
.dev
);
2299 ret
= clk_prepare(uap
->clk
);
2303 if (dev_get_platdata(uap
->port
.dev
)) {
2304 struct amba_pl011_data
*plat
;
2306 plat
= dev_get_platdata(uap
->port
.dev
);
2311 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
2313 if (uap
->vendor
->fixed_options
) {
2314 baud
= uap
->fixed_baud
;
2317 uart_parse_options(options
,
2318 &baud
, &parity
, &bits
, &flow
);
2320 pl011_console_get_options(uap
, &baud
, &parity
, &bits
);
2323 return uart_set_options(&uap
->port
, co
, baud
, parity
, bits
, flow
);
2327 * pl011_console_match - non-standard console matching
2328 * @co: registering console
2329 * @name: name from console command line
2330 * @idx: index from console command line
2331 * @options: ptr to option string from console command line
2333 * Only attempts to match console command lines of the form:
2334 * console=pl011,mmio|mmio32,<addr>[,<options>]
2335 * console=pl011,0x<addr>[,<options>]
2336 * This form is used to register an initial earlycon boot console and
2337 * replace it with the amba_console at pl011 driver init.
2339 * Performs console setup for a match (as required by interface)
2340 * If no <options> are specified, then assume the h/w is already setup.
2342 * Returns 0 if console matches; otherwise non-zero to use default matching
2344 static int __init
pl011_console_match(struct console
*co
, char *name
, int idx
,
2347 unsigned char iotype
;
2348 resource_size_t addr
;
2352 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2353 * have a distinct console name, so make sure we check for that.
2354 * The actual implementation of the erratum occurs in the probe
2357 if ((strcmp(name
, "qdf2400_e44") != 0) && (strcmp(name
, "pl011") != 0))
2360 if (uart_parse_earlycon(options
, &iotype
, &addr
, &options
))
2363 if (iotype
!= UPIO_MEM
&& iotype
!= UPIO_MEM32
)
2366 /* try to match the port specified on the command line */
2367 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2368 struct uart_port
*port
;
2373 port
= &amba_ports
[i
]->port
;
2375 if (port
->mapbase
!= addr
)
2380 return pl011_console_setup(co
, options
);
2386 static struct uart_driver amba_reg
;
2387 static struct console amba_console
= {
2389 .write
= pl011_console_write
,
2390 .device
= uart_console_device
,
2391 .setup
= pl011_console_setup
,
2392 .match
= pl011_console_match
,
2393 .flags
= CON_PRINTBUFFER
| CON_ANYTIME
,
2398 #define AMBA_CONSOLE (&amba_console)
2400 static void qdf2400_e44_putc(struct uart_port
*port
, int c
)
2402 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2404 writel(c
, port
->membase
+ UART01x_DR
);
2405 while (!(readl(port
->membase
+ UART01x_FR
) & UART011_FR_TXFE
))
2409 static void qdf2400_e44_early_write(struct console
*con
, const char *s
, unsigned n
)
2411 struct earlycon_device
*dev
= con
->data
;
2413 uart_console_write(&dev
->port
, s
, n
, qdf2400_e44_putc
);
2416 static void pl011_putc(struct uart_port
*port
, int c
)
2418 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2420 if (port
->iotype
== UPIO_MEM32
)
2421 writel(c
, port
->membase
+ UART01x_DR
);
2423 writeb(c
, port
->membase
+ UART01x_DR
);
2424 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_BUSY
)
2428 static void pl011_early_write(struct console
*con
, const char *s
, unsigned n
)
2430 struct earlycon_device
*dev
= con
->data
;
2432 uart_console_write(&dev
->port
, s
, n
, pl011_putc
);
2436 * On non-ACPI systems, earlycon is enabled by specifying
2437 * "earlycon=pl011,<address>" on the kernel command line.
2439 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2440 * by specifying only "earlycon" on the command line. Because it requires
2441 * SPCR, the console starts after ACPI is parsed, which is later than a
2442 * traditional early console.
2444 * To get the traditional early console that starts before ACPI is parsed,
2445 * specify the full "earlycon=pl011,<address>" option.
2447 static int __init
pl011_early_console_setup(struct earlycon_device
*device
,
2450 if (!device
->port
.membase
)
2453 device
->con
->write
= pl011_early_write
;
2457 OF_EARLYCON_DECLARE(pl011
, "arm,pl011", pl011_early_console_setup
);
2458 OF_EARLYCON_DECLARE(pl011
, "arm,sbsa-uart", pl011_early_console_setup
);
2461 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2462 * Erratum 44, traditional earlycon can be enabled by specifying
2463 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2465 * Alternatively, you can just specify "earlycon", and the early console
2466 * will be enabled with the information from the SPCR table. In this
2467 * case, the SPCR code will detect the need for the E44 work-around,
2468 * and set the console name to "qdf2400_e44".
2471 qdf2400_e44_early_console_setup(struct earlycon_device
*device
,
2474 if (!device
->port
.membase
)
2477 device
->con
->write
= qdf2400_e44_early_write
;
2480 EARLYCON_DECLARE(qdf2400_e44
, qdf2400_e44_early_console_setup
);
2483 #define AMBA_CONSOLE NULL
2486 static struct uart_driver amba_reg
= {
2487 .owner
= THIS_MODULE
,
2488 .driver_name
= "ttyAMA",
2489 .dev_name
= "ttyAMA",
2490 .major
= SERIAL_AMBA_MAJOR
,
2491 .minor
= SERIAL_AMBA_MINOR
,
2493 .cons
= AMBA_CONSOLE
,
2496 static int pl011_probe_dt_alias(int index
, struct device
*dev
)
2498 struct device_node
*np
;
2499 static bool seen_dev_with_alias
= false;
2500 static bool seen_dev_without_alias
= false;
2503 if (!IS_ENABLED(CONFIG_OF
))
2510 ret
= of_alias_get_id(np
, "serial");
2512 seen_dev_without_alias
= true;
2515 seen_dev_with_alias
= true;
2516 if (ret
>= ARRAY_SIZE(amba_ports
) || amba_ports
[ret
] != NULL
) {
2517 dev_warn(dev
, "requested serial port %d not available.\n", ret
);
2522 if (seen_dev_with_alias
&& seen_dev_without_alias
)
2523 dev_warn(dev
, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2528 /* unregisters the driver also if no more ports are left */
2529 static void pl011_unregister_port(struct uart_amba_port
*uap
)
2534 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2535 if (amba_ports
[i
] == uap
)
2536 amba_ports
[i
] = NULL
;
2537 else if (amba_ports
[i
])
2540 pl011_dma_remove(uap
);
2542 uart_unregister_driver(&amba_reg
);
2545 static int pl011_find_free_port(void)
2549 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++)
2550 if (amba_ports
[i
] == NULL
)
2556 static int pl011_setup_port(struct device
*dev
, struct uart_amba_port
*uap
,
2557 struct resource
*mmiobase
, int index
)
2561 base
= devm_ioremap_resource(dev
, mmiobase
);
2563 return PTR_ERR(base
);
2565 index
= pl011_probe_dt_alias(index
, dev
);
2568 uap
->port
.dev
= dev
;
2569 uap
->port
.mapbase
= mmiobase
->start
;
2570 uap
->port
.membase
= base
;
2571 uap
->port
.fifosize
= uap
->fifosize
;
2572 uap
->port
.flags
= UPF_BOOT_AUTOCONF
;
2573 uap
->port
.line
= index
;
2575 amba_ports
[index
] = uap
;
2580 static int pl011_register_port(struct uart_amba_port
*uap
)
2584 /* Ensure interrupts from this UART are masked and cleared */
2585 pl011_write(0, uap
, REG_IMSC
);
2586 pl011_write(0xffff, uap
, REG_ICR
);
2588 if (!amba_reg
.state
) {
2589 ret
= uart_register_driver(&amba_reg
);
2591 dev_err(uap
->port
.dev
,
2592 "Failed to register AMBA-PL011 driver\n");
2597 ret
= uart_add_one_port(&amba_reg
, &uap
->port
);
2599 pl011_unregister_port(uap
);
2604 static int pl011_probe(struct amba_device
*dev
, const struct amba_id
*id
)
2606 struct uart_amba_port
*uap
;
2607 struct vendor_data
*vendor
= id
->data
;
2610 portnr
= pl011_find_free_port();
2614 uap
= devm_kzalloc(&dev
->dev
, sizeof(struct uart_amba_port
),
2619 uap
->clk
= devm_clk_get(&dev
->dev
, NULL
);
2620 if (IS_ERR(uap
->clk
))
2621 return PTR_ERR(uap
->clk
);
2623 uap
->reg_offset
= vendor
->reg_offset
;
2624 uap
->vendor
= vendor
;
2625 uap
->fifosize
= vendor
->get_fifosize(dev
);
2626 uap
->port
.iotype
= vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2627 uap
->port
.irq
= dev
->irq
[0];
2628 uap
->port
.ops
= &amba_pl011_pops
;
2630 snprintf(uap
->type
, sizeof(uap
->type
), "PL011 rev%u", amba_rev(dev
));
2632 ret
= pl011_setup_port(&dev
->dev
, uap
, &dev
->res
, portnr
);
2636 amba_set_drvdata(dev
, uap
);
2638 return pl011_register_port(uap
);
2641 static int pl011_remove(struct amba_device
*dev
)
2643 struct uart_amba_port
*uap
= amba_get_drvdata(dev
);
2645 uart_remove_one_port(&amba_reg
, &uap
->port
);
2646 pl011_unregister_port(uap
);
2650 #ifdef CONFIG_PM_SLEEP
2651 static int pl011_suspend(struct device
*dev
)
2653 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2658 return uart_suspend_port(&amba_reg
, &uap
->port
);
2661 static int pl011_resume(struct device
*dev
)
2663 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2668 return uart_resume_port(&amba_reg
, &uap
->port
);
2672 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops
, pl011_suspend
, pl011_resume
);
2674 static int sbsa_uart_probe(struct platform_device
*pdev
)
2676 struct uart_amba_port
*uap
;
2682 * Check the mandatory baud rate parameter in the DT node early
2683 * so that we can easily exit with the error.
2685 if (pdev
->dev
.of_node
) {
2686 struct device_node
*np
= pdev
->dev
.of_node
;
2688 ret
= of_property_read_u32(np
, "current-speed", &baudrate
);
2695 portnr
= pl011_find_free_port();
2699 uap
= devm_kzalloc(&pdev
->dev
, sizeof(struct uart_amba_port
),
2704 ret
= platform_get_irq(pdev
, 0);
2706 if (ret
!= -EPROBE_DEFER
)
2707 dev_err(&pdev
->dev
, "cannot obtain irq\n");
2710 uap
->port
.irq
= ret
;
2712 #ifdef CONFIG_ACPI_SPCR_TABLE
2713 if (qdf2400_e44_present
) {
2714 dev_info(&pdev
->dev
, "working around QDF2400 SoC erratum 44\n");
2715 uap
->vendor
= &vendor_qdt_qdf2400_e44
;
2718 uap
->vendor
= &vendor_sbsa
;
2720 uap
->reg_offset
= uap
->vendor
->reg_offset
;
2722 uap
->port
.iotype
= uap
->vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2723 uap
->port
.ops
= &sbsa_uart_pops
;
2724 uap
->fixed_baud
= baudrate
;
2726 snprintf(uap
->type
, sizeof(uap
->type
), "SBSA");
2728 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2730 ret
= pl011_setup_port(&pdev
->dev
, uap
, r
, portnr
);
2734 platform_set_drvdata(pdev
, uap
);
2736 return pl011_register_port(uap
);
2739 static int sbsa_uart_remove(struct platform_device
*pdev
)
2741 struct uart_amba_port
*uap
= platform_get_drvdata(pdev
);
2743 uart_remove_one_port(&amba_reg
, &uap
->port
);
2744 pl011_unregister_port(uap
);
2748 static const struct of_device_id sbsa_uart_of_match
[] = {
2749 { .compatible
= "arm,sbsa-uart", },
2752 MODULE_DEVICE_TABLE(of
, sbsa_uart_of_match
);
2754 static const struct acpi_device_id sbsa_uart_acpi_match
[] = {
2758 MODULE_DEVICE_TABLE(acpi
, sbsa_uart_acpi_match
);
2760 static struct platform_driver arm_sbsa_uart_platform_driver
= {
2761 .probe
= sbsa_uart_probe
,
2762 .remove
= sbsa_uart_remove
,
2764 .name
= "sbsa-uart",
2765 .of_match_table
= of_match_ptr(sbsa_uart_of_match
),
2766 .acpi_match_table
= ACPI_PTR(sbsa_uart_acpi_match
),
2770 static const struct amba_id pl011_ids
[] = {
2774 .data
= &vendor_arm
,
2782 .id
= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2784 .data
= &vendor_zte
,
2789 MODULE_DEVICE_TABLE(amba
, pl011_ids
);
2791 static struct amba_driver pl011_driver
= {
2793 .name
= "uart-pl011",
2794 .pm
= &pl011_dev_pm_ops
,
2796 .id_table
= pl011_ids
,
2797 .probe
= pl011_probe
,
2798 .remove
= pl011_remove
,
2801 static int __init
pl011_init(void)
2803 printk(KERN_INFO
"Serial: AMBA PL011 UART driver\n");
2805 if (platform_driver_register(&arm_sbsa_uart_platform_driver
))
2806 pr_warn("could not register SBSA UART platform driver\n");
2807 return amba_driver_register(&pl011_driver
);
2810 static void __exit
pl011_exit(void)
2812 platform_driver_unregister(&arm_sbsa_uart_platform_driver
);
2813 amba_driver_unregister(&pl011_driver
);
2817 * While this can be a module, if builtin it's most likely the console
2818 * So let's leave module_exit but move module_init to an earlier place
2820 arch_initcall(pl011_init
);
2821 module_exit(pl011_exit
);
2823 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2824 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2825 MODULE_LICENSE("GPL");