1 // SPDX-License-Identifier: GPL-2.0
3 * udc.c - Core UDC Framework
5 * Copyright (C) 2010 Texas Instruments
6 * Author: Felipe Balbi <balbi@ti.com>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
25 * struct usb_udc - describes one usb device controller
26 * @driver - the gadget driver pointer. For use by the class code
27 * @dev - the child device to the actual controller
28 * @gadget - the gadget. For use by the class code
29 * @list - for use by the udc class driver
30 * @vbus - for udcs who care about vbus status, this value is real vbus status;
31 * for udcs who do not care about vbus status, this value is always true
33 * This represents the internal data structure which is used by the UDC-class
34 * to hold information about udc driver and gadget together.
37 struct usb_gadget_driver
*driver
;
38 struct usb_gadget
*gadget
;
40 struct list_head list
;
44 static struct class *udc_class
;
45 static LIST_HEAD(udc_list
);
46 static LIST_HEAD(gadget_driver_pending_list
);
47 static DEFINE_MUTEX(udc_lock
);
49 static int udc_bind_to_driver(struct usb_udc
*udc
,
50 struct usb_gadget_driver
*driver
);
52 /* ------------------------------------------------------------------------- */
55 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
56 * @ep:the endpoint being configured
57 * @maxpacket_limit:value of maximum packet size limit
59 * This function should be used only in UDC drivers to initialize endpoint
60 * (usually in probe function).
62 void usb_ep_set_maxpacket_limit(struct usb_ep
*ep
,
63 unsigned maxpacket_limit
)
65 ep
->maxpacket_limit
= maxpacket_limit
;
66 ep
->maxpacket
= maxpacket_limit
;
68 trace_usb_ep_set_maxpacket_limit(ep
, 0);
70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit
);
73 * usb_ep_enable - configure endpoint, making it usable
74 * @ep:the endpoint being configured. may not be the endpoint named "ep0".
75 * drivers discover endpoints through the ep_list of a usb_gadget.
77 * When configurations are set, or when interface settings change, the driver
78 * will enable or disable the relevant endpoints. while it is enabled, an
79 * endpoint may be used for i/o until the driver receives a disconnect() from
80 * the host or until the endpoint is disabled.
82 * the ep0 implementation (which calls this routine) must ensure that the
83 * hardware capabilities of each endpoint match the descriptor provided
84 * for it. for example, an endpoint named "ep2in-bulk" would be usable
85 * for interrupt transfers as well as bulk, but it likely couldn't be used
86 * for iso transfers or for endpoint 14. some endpoints are fully
87 * configurable, with more generic names like "ep-a". (remember that for
88 * USB, "in" means "towards the USB master".)
90 * returns zero, or a negative error code.
92 int usb_ep_enable(struct usb_ep
*ep
)
99 ret
= ep
->ops
->enable(ep
, ep
->desc
);
106 trace_usb_ep_enable(ep
, ret
);
110 EXPORT_SYMBOL_GPL(usb_ep_enable
);
113 * usb_ep_disable - endpoint is no longer usable
114 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
116 * no other task may be using this endpoint when this is called.
117 * any pending and uncompleted requests will complete with status
118 * indicating disconnect (-ESHUTDOWN) before this call returns.
119 * gadget drivers must call usb_ep_enable() again before queueing
120 * requests to the endpoint.
122 * returns zero, or a negative error code.
124 int usb_ep_disable(struct usb_ep
*ep
)
131 ret
= ep
->ops
->disable(ep
);
138 trace_usb_ep_disable(ep
, ret
);
142 EXPORT_SYMBOL_GPL(usb_ep_disable
);
145 * usb_ep_alloc_request - allocate a request object to use with this endpoint
146 * @ep:the endpoint to be used with with the request
147 * @gfp_flags:GFP_* flags to use
149 * Request objects must be allocated with this call, since they normally
150 * need controller-specific setup and may even need endpoint-specific
151 * resources such as allocation of DMA descriptors.
152 * Requests may be submitted with usb_ep_queue(), and receive a single
153 * completion callback. Free requests with usb_ep_free_request(), when
154 * they are no longer needed.
156 * Returns the request, or null if one could not be allocated.
158 struct usb_request
*usb_ep_alloc_request(struct usb_ep
*ep
,
161 struct usb_request
*req
= NULL
;
163 req
= ep
->ops
->alloc_request(ep
, gfp_flags
);
165 trace_usb_ep_alloc_request(ep
, req
, req
? 0 : -ENOMEM
);
169 EXPORT_SYMBOL_GPL(usb_ep_alloc_request
);
172 * usb_ep_free_request - frees a request object
173 * @ep:the endpoint associated with the request
174 * @req:the request being freed
176 * Reverses the effect of usb_ep_alloc_request().
177 * Caller guarantees the request is not queued, and that it will
178 * no longer be requeued (or otherwise used).
180 void usb_ep_free_request(struct usb_ep
*ep
,
181 struct usb_request
*req
)
183 trace_usb_ep_free_request(ep
, req
, 0);
184 ep
->ops
->free_request(ep
, req
);
186 EXPORT_SYMBOL_GPL(usb_ep_free_request
);
189 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
190 * @ep:the endpoint associated with the request
191 * @req:the request being submitted
192 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
193 * pre-allocate all necessary memory with the request.
195 * This tells the device controller to perform the specified request through
196 * that endpoint (reading or writing a buffer). When the request completes,
197 * including being canceled by usb_ep_dequeue(), the request's completion
198 * routine is called to return the request to the driver. Any endpoint
199 * (except control endpoints like ep0) may have more than one transfer
200 * request queued; they complete in FIFO order. Once a gadget driver
201 * submits a request, that request may not be examined or modified until it
202 * is given back to that driver through the completion callback.
204 * Each request is turned into one or more packets. The controller driver
205 * never merges adjacent requests into the same packet. OUT transfers
206 * will sometimes use data that's already buffered in the hardware.
207 * Drivers can rely on the fact that the first byte of the request's buffer
208 * always corresponds to the first byte of some USB packet, for both
209 * IN and OUT transfers.
211 * Bulk endpoints can queue any amount of data; the transfer is packetized
212 * automatically. The last packet will be short if the request doesn't fill it
213 * out completely. Zero length packets (ZLPs) should be avoided in portable
214 * protocols since not all usb hardware can successfully handle zero length
215 * packets. (ZLPs may be explicitly written, and may be implicitly written if
216 * the request 'zero' flag is set.) Bulk endpoints may also be used
217 * for interrupt transfers; but the reverse is not true, and some endpoints
218 * won't support every interrupt transfer. (Such as 768 byte packets.)
220 * Interrupt-only endpoints are less functional than bulk endpoints, for
221 * example by not supporting queueing or not handling buffers that are
222 * larger than the endpoint's maxpacket size. They may also treat data
223 * toggle differently.
225 * Control endpoints ... after getting a setup() callback, the driver queues
226 * one response (even if it would be zero length). That enables the
227 * status ack, after transferring data as specified in the response. Setup
228 * functions may return negative error codes to generate protocol stalls.
229 * (Note that some USB device controllers disallow protocol stall responses
230 * in some cases.) When control responses are deferred (the response is
231 * written after the setup callback returns), then usb_ep_set_halt() may be
232 * used on ep0 to trigger protocol stalls. Depending on the controller,
233 * it may not be possible to trigger a status-stage protocol stall when the
234 * data stage is over, that is, from within the response's completion
237 * For periodic endpoints, like interrupt or isochronous ones, the usb host
238 * arranges to poll once per interval, and the gadget driver usually will
239 * have queued some data to transfer at that time.
241 * Returns zero, or a negative error code. Endpoints that are not enabled
242 * report errors; errors will also be
243 * reported when the usb peripheral is disconnected.
245 int usb_ep_queue(struct usb_ep
*ep
,
246 struct usb_request
*req
, gfp_t gfp_flags
)
250 if (WARN_ON_ONCE(!ep
->enabled
&& ep
->address
)) {
255 ret
= ep
->ops
->queue(ep
, req
, gfp_flags
);
258 trace_usb_ep_queue(ep
, req
, ret
);
262 EXPORT_SYMBOL_GPL(usb_ep_queue
);
265 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
266 * @ep:the endpoint associated with the request
267 * @req:the request being canceled
269 * If the request is still active on the endpoint, it is dequeued and its
270 * completion routine is called (with status -ECONNRESET); else a negative
271 * error code is returned. This is guaranteed to happen before the call to
272 * usb_ep_dequeue() returns.
274 * Note that some hardware can't clear out write fifos (to unlink the request
275 * at the head of the queue) except as part of disconnecting from usb. Such
276 * restrictions prevent drivers from supporting configuration changes,
277 * even to configuration zero (a "chapter 9" requirement).
279 int usb_ep_dequeue(struct usb_ep
*ep
, struct usb_request
*req
)
283 ret
= ep
->ops
->dequeue(ep
, req
);
284 trace_usb_ep_dequeue(ep
, req
, ret
);
288 EXPORT_SYMBOL_GPL(usb_ep_dequeue
);
291 * usb_ep_set_halt - sets the endpoint halt feature.
292 * @ep: the non-isochronous endpoint being stalled
294 * Use this to stall an endpoint, perhaps as an error report.
295 * Except for control endpoints,
296 * the endpoint stays halted (will not stream any data) until the host
297 * clears this feature; drivers may need to empty the endpoint's request
298 * queue first, to make sure no inappropriate transfers happen.
300 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
301 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
302 * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
303 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
305 * Returns zero, or a negative error code. On success, this call sets
306 * underlying hardware state that blocks data transfers.
307 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
308 * transfer requests are still queued, or if the controller hardware
309 * (usually a FIFO) still holds bytes that the host hasn't collected.
311 int usb_ep_set_halt(struct usb_ep
*ep
)
315 ret
= ep
->ops
->set_halt(ep
, 1);
316 trace_usb_ep_set_halt(ep
, ret
);
320 EXPORT_SYMBOL_GPL(usb_ep_set_halt
);
323 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
324 * @ep:the bulk or interrupt endpoint being reset
326 * Use this when responding to the standard usb "set interface" request,
327 * for endpoints that aren't reconfigured, after clearing any other state
328 * in the endpoint's i/o queue.
330 * Returns zero, or a negative error code. On success, this call clears
331 * the underlying hardware state reflecting endpoint halt and data toggle.
332 * Note that some hardware can't support this request (like pxa2xx_udc),
333 * and accordingly can't correctly implement interface altsettings.
335 int usb_ep_clear_halt(struct usb_ep
*ep
)
339 ret
= ep
->ops
->set_halt(ep
, 0);
340 trace_usb_ep_clear_halt(ep
, ret
);
344 EXPORT_SYMBOL_GPL(usb_ep_clear_halt
);
347 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
348 * @ep: the endpoint being wedged
350 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
351 * requests. If the gadget driver clears the halt status, it will
352 * automatically unwedge the endpoint.
354 * Returns zero on success, else negative errno.
356 int usb_ep_set_wedge(struct usb_ep
*ep
)
360 if (ep
->ops
->set_wedge
)
361 ret
= ep
->ops
->set_wedge(ep
);
363 ret
= ep
->ops
->set_halt(ep
, 1);
365 trace_usb_ep_set_wedge(ep
, ret
);
369 EXPORT_SYMBOL_GPL(usb_ep_set_wedge
);
372 * usb_ep_fifo_status - returns number of bytes in fifo, or error
373 * @ep: the endpoint whose fifo status is being checked.
375 * FIFO endpoints may have "unclaimed data" in them in certain cases,
376 * such as after aborted transfers. Hosts may not have collected all
377 * the IN data written by the gadget driver (and reported by a request
378 * completion). The gadget driver may not have collected all the data
379 * written OUT to it by the host. Drivers that need precise handling for
380 * fault reporting or recovery may need to use this call.
382 * This returns the number of such bytes in the fifo, or a negative
383 * errno if the endpoint doesn't use a FIFO or doesn't support such
386 int usb_ep_fifo_status(struct usb_ep
*ep
)
390 if (ep
->ops
->fifo_status
)
391 ret
= ep
->ops
->fifo_status(ep
);
395 trace_usb_ep_fifo_status(ep
, ret
);
399 EXPORT_SYMBOL_GPL(usb_ep_fifo_status
);
402 * usb_ep_fifo_flush - flushes contents of a fifo
403 * @ep: the endpoint whose fifo is being flushed.
405 * This call may be used to flush the "unclaimed data" that may exist in
406 * an endpoint fifo after abnormal transaction terminations. The call
407 * must never be used except when endpoint is not being used for any
408 * protocol translation.
410 void usb_ep_fifo_flush(struct usb_ep
*ep
)
412 if (ep
->ops
->fifo_flush
)
413 ep
->ops
->fifo_flush(ep
);
415 trace_usb_ep_fifo_flush(ep
, 0);
417 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush
);
419 /* ------------------------------------------------------------------------- */
422 * usb_gadget_frame_number - returns the current frame number
423 * @gadget: controller that reports the frame number
425 * Returns the usb frame number, normally eleven bits from a SOF packet,
426 * or negative errno if this device doesn't support this capability.
428 int usb_gadget_frame_number(struct usb_gadget
*gadget
)
432 ret
= gadget
->ops
->get_frame(gadget
);
434 trace_usb_gadget_frame_number(gadget
, ret
);
438 EXPORT_SYMBOL_GPL(usb_gadget_frame_number
);
441 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
442 * @gadget: controller used to wake up the host
444 * Returns zero on success, else negative error code if the hardware
445 * doesn't support such attempts, or its support has not been enabled
446 * by the usb host. Drivers must return device descriptors that report
447 * their ability to support this, or hosts won't enable it.
449 * This may also try to use SRP to wake the host and start enumeration,
450 * even if OTG isn't otherwise in use. OTG devices may also start
451 * remote wakeup even when hosts don't explicitly enable it.
453 int usb_gadget_wakeup(struct usb_gadget
*gadget
)
457 if (!gadget
->ops
->wakeup
) {
462 ret
= gadget
->ops
->wakeup(gadget
);
465 trace_usb_gadget_wakeup(gadget
, ret
);
469 EXPORT_SYMBOL_GPL(usb_gadget_wakeup
);
472 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
473 * @gadget:the device being declared as self-powered
475 * this affects the device status reported by the hardware driver
476 * to reflect that it now has a local power supply.
478 * returns zero on success, else negative errno.
480 int usb_gadget_set_selfpowered(struct usb_gadget
*gadget
)
484 if (!gadget
->ops
->set_selfpowered
) {
489 ret
= gadget
->ops
->set_selfpowered(gadget
, 1);
492 trace_usb_gadget_set_selfpowered(gadget
, ret
);
496 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered
);
499 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
500 * @gadget:the device being declared as bus-powered
502 * this affects the device status reported by the hardware driver.
503 * some hardware may not support bus-powered operation, in which
504 * case this feature's value can never change.
506 * returns zero on success, else negative errno.
508 int usb_gadget_clear_selfpowered(struct usb_gadget
*gadget
)
512 if (!gadget
->ops
->set_selfpowered
) {
517 ret
= gadget
->ops
->set_selfpowered(gadget
, 0);
520 trace_usb_gadget_clear_selfpowered(gadget
, ret
);
524 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered
);
527 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
528 * @gadget:The device which now has VBUS power.
531 * This call is used by a driver for an external transceiver (or GPIO)
532 * that detects a VBUS power session starting. Common responses include
533 * resuming the controller, activating the D+ (or D-) pullup to let the
534 * host detect that a USB device is attached, and starting to draw power
535 * (8mA or possibly more, especially after SET_CONFIGURATION).
537 * Returns zero on success, else negative errno.
539 int usb_gadget_vbus_connect(struct usb_gadget
*gadget
)
543 if (!gadget
->ops
->vbus_session
) {
548 ret
= gadget
->ops
->vbus_session(gadget
, 1);
551 trace_usb_gadget_vbus_connect(gadget
, ret
);
555 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect
);
558 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
559 * @gadget:The device whose VBUS usage is being described
560 * @mA:How much current to draw, in milliAmperes. This should be twice
561 * the value listed in the configuration descriptor bMaxPower field.
563 * This call is used by gadget drivers during SET_CONFIGURATION calls,
564 * reporting how much power the device may consume. For example, this
565 * could affect how quickly batteries are recharged.
567 * Returns zero on success, else negative errno.
569 int usb_gadget_vbus_draw(struct usb_gadget
*gadget
, unsigned mA
)
573 if (!gadget
->ops
->vbus_draw
) {
578 ret
= gadget
->ops
->vbus_draw(gadget
, mA
);
583 trace_usb_gadget_vbus_draw(gadget
, ret
);
587 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw
);
590 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
591 * @gadget:the device whose VBUS supply is being described
594 * This call is used by a driver for an external transceiver (or GPIO)
595 * that detects a VBUS power session ending. Common responses include
596 * reversing everything done in usb_gadget_vbus_connect().
598 * Returns zero on success, else negative errno.
600 int usb_gadget_vbus_disconnect(struct usb_gadget
*gadget
)
604 if (!gadget
->ops
->vbus_session
) {
609 ret
= gadget
->ops
->vbus_session(gadget
, 0);
612 trace_usb_gadget_vbus_disconnect(gadget
, ret
);
616 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect
);
619 * usb_gadget_connect - software-controlled connect to USB host
620 * @gadget:the peripheral being connected
622 * Enables the D+ (or potentially D-) pullup. The host will start
623 * enumerating this gadget when the pullup is active and a VBUS session
624 * is active (the link is powered). This pullup is always enabled unless
625 * usb_gadget_disconnect() has been used to disable it.
627 * Returns zero on success, else negative errno.
629 int usb_gadget_connect(struct usb_gadget
*gadget
)
633 if (!gadget
->ops
->pullup
) {
638 if (gadget
->deactivated
) {
640 * If gadget is deactivated we only save new state.
641 * Gadget will be connected automatically after activation.
643 gadget
->connected
= true;
647 ret
= gadget
->ops
->pullup(gadget
, 1);
649 gadget
->connected
= 1;
652 trace_usb_gadget_connect(gadget
, ret
);
656 EXPORT_SYMBOL_GPL(usb_gadget_connect
);
659 * usb_gadget_disconnect - software-controlled disconnect from USB host
660 * @gadget:the peripheral being disconnected
662 * Disables the D+ (or potentially D-) pullup, which the host may see
663 * as a disconnect (when a VBUS session is active). Not all systems
664 * support software pullup controls.
666 * Returns zero on success, else negative errno.
668 int usb_gadget_disconnect(struct usb_gadget
*gadget
)
672 if (!gadget
->ops
->pullup
) {
677 if (gadget
->deactivated
) {
679 * If gadget is deactivated we only save new state.
680 * Gadget will stay disconnected after activation.
682 gadget
->connected
= false;
686 ret
= gadget
->ops
->pullup(gadget
, 0);
688 gadget
->connected
= 0;
691 trace_usb_gadget_disconnect(gadget
, ret
);
695 EXPORT_SYMBOL_GPL(usb_gadget_disconnect
);
698 * usb_gadget_deactivate - deactivate function which is not ready to work
699 * @gadget: the peripheral being deactivated
701 * This routine may be used during the gadget driver bind() call to prevent
702 * the peripheral from ever being visible to the USB host, unless later
703 * usb_gadget_activate() is called. For example, user mode components may
704 * need to be activated before the system can talk to hosts.
706 * Returns zero on success, else negative errno.
708 int usb_gadget_deactivate(struct usb_gadget
*gadget
)
712 if (gadget
->deactivated
)
715 if (gadget
->connected
) {
716 ret
= usb_gadget_disconnect(gadget
);
721 * If gadget was being connected before deactivation, we want
722 * to reconnect it in usb_gadget_activate().
724 gadget
->connected
= true;
726 gadget
->deactivated
= true;
729 trace_usb_gadget_deactivate(gadget
, ret
);
733 EXPORT_SYMBOL_GPL(usb_gadget_deactivate
);
736 * usb_gadget_activate - activate function which is not ready to work
737 * @gadget: the peripheral being activated
739 * This routine activates gadget which was previously deactivated with
740 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
742 * Returns zero on success, else negative errno.
744 int usb_gadget_activate(struct usb_gadget
*gadget
)
748 if (!gadget
->deactivated
)
751 gadget
->deactivated
= false;
754 * If gadget has been connected before deactivation, or became connected
755 * while it was being deactivated, we call usb_gadget_connect().
757 if (gadget
->connected
)
758 ret
= usb_gadget_connect(gadget
);
761 trace_usb_gadget_activate(gadget
, ret
);
765 EXPORT_SYMBOL_GPL(usb_gadget_activate
);
767 /* ------------------------------------------------------------------------- */
769 #ifdef CONFIG_HAS_DMA
771 int usb_gadget_map_request_by_dev(struct device
*dev
,
772 struct usb_request
*req
, int is_in
)
774 if (req
->length
== 0)
780 mapped
= dma_map_sg(dev
, req
->sg
, req
->num_sgs
,
781 is_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
783 dev_err(dev
, "failed to map SGs\n");
787 req
->num_mapped_sgs
= mapped
;
789 if (is_vmalloc_addr(req
->buf
)) {
790 dev_err(dev
, "buffer is not dma capable\n");
792 } else if (object_is_on_stack(req
->buf
)) {
793 dev_err(dev
, "buffer is on stack\n");
797 req
->dma
= dma_map_single(dev
, req
->buf
, req
->length
,
798 is_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
800 if (dma_mapping_error(dev
, req
->dma
)) {
801 dev_err(dev
, "failed to map buffer\n");
810 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev
);
812 int usb_gadget_map_request(struct usb_gadget
*gadget
,
813 struct usb_request
*req
, int is_in
)
815 return usb_gadget_map_request_by_dev(gadget
->dev
.parent
, req
, is_in
);
817 EXPORT_SYMBOL_GPL(usb_gadget_map_request
);
819 void usb_gadget_unmap_request_by_dev(struct device
*dev
,
820 struct usb_request
*req
, int is_in
)
822 if (req
->length
== 0)
825 if (req
->num_mapped_sgs
) {
826 dma_unmap_sg(dev
, req
->sg
, req
->num_sgs
,
827 is_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
829 req
->num_mapped_sgs
= 0;
830 } else if (req
->dma_mapped
) {
831 dma_unmap_single(dev
, req
->dma
, req
->length
,
832 is_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
836 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev
);
838 void usb_gadget_unmap_request(struct usb_gadget
*gadget
,
839 struct usb_request
*req
, int is_in
)
841 usb_gadget_unmap_request_by_dev(gadget
->dev
.parent
, req
, is_in
);
843 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request
);
845 #endif /* CONFIG_HAS_DMA */
847 /* ------------------------------------------------------------------------- */
850 * usb_gadget_giveback_request - give the request back to the gadget layer
851 * Context: in_interrupt()
853 * This is called by device controller drivers in order to return the
854 * completed request back to the gadget layer.
856 void usb_gadget_giveback_request(struct usb_ep
*ep
,
857 struct usb_request
*req
)
859 if (likely(req
->status
== 0))
860 usb_led_activity(USB_LED_EVENT_GADGET
);
862 trace_usb_gadget_giveback_request(ep
, req
, 0);
864 req
->complete(ep
, req
);
866 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request
);
868 /* ------------------------------------------------------------------------- */
871 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
872 * in second parameter or NULL if searched endpoint not found
873 * @g: controller to check for quirk
874 * @name: name of searched endpoint
876 struct usb_ep
*gadget_find_ep_by_name(struct usb_gadget
*g
, const char *name
)
880 gadget_for_each_ep(ep
, g
) {
881 if (!strcmp(ep
->name
, name
))
887 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name
);
889 /* ------------------------------------------------------------------------- */
891 int usb_gadget_ep_match_desc(struct usb_gadget
*gadget
,
892 struct usb_ep
*ep
, struct usb_endpoint_descriptor
*desc
,
893 struct usb_ss_ep_comp_descriptor
*ep_comp
)
897 int num_req_streams
= 0;
899 /* endpoint already claimed? */
903 type
= usb_endpoint_type(desc
);
904 max
= usb_endpoint_maxp(desc
);
906 if (usb_endpoint_dir_in(desc
) && !ep
->caps
.dir_in
)
908 if (usb_endpoint_dir_out(desc
) && !ep
->caps
.dir_out
)
911 if (max
> ep
->maxpacket_limit
)
914 /* "high bandwidth" works only at high speed */
915 if (!gadget_is_dualspeed(gadget
) && usb_endpoint_maxp_mult(desc
) > 1)
919 case USB_ENDPOINT_XFER_CONTROL
:
920 /* only support ep0 for portable CONTROL traffic */
922 case USB_ENDPOINT_XFER_ISOC
:
923 if (!ep
->caps
.type_iso
)
925 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */
926 if (!gadget_is_dualspeed(gadget
) && max
> 1023)
929 case USB_ENDPOINT_XFER_BULK
:
930 if (!ep
->caps
.type_bulk
)
932 if (ep_comp
&& gadget_is_superspeed(gadget
)) {
933 /* Get the number of required streams from the
934 * EP companion descriptor and see if the EP
937 num_req_streams
= ep_comp
->bmAttributes
& 0x1f;
938 if (num_req_streams
> ep
->max_streams
)
942 case USB_ENDPOINT_XFER_INT
:
943 /* Bulk endpoints handle interrupt transfers,
944 * except the toggle-quirky iso-synch kind
946 if (!ep
->caps
.type_int
&& !ep
->caps
.type_bulk
)
948 /* INT: limit 64 bytes full speed, 1024 high/super speed */
949 if (!gadget_is_dualspeed(gadget
) && max
> 64)
956 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc
);
958 /* ------------------------------------------------------------------------- */
960 static void usb_gadget_state_work(struct work_struct
*work
)
962 struct usb_gadget
*gadget
= work_to_gadget(work
);
963 struct usb_udc
*udc
= gadget
->udc
;
966 sysfs_notify(&udc
->dev
.kobj
, NULL
, "state");
969 void usb_gadget_set_state(struct usb_gadget
*gadget
,
970 enum usb_device_state state
)
972 gadget
->state
= state
;
973 schedule_work(&gadget
->work
);
975 EXPORT_SYMBOL_GPL(usb_gadget_set_state
);
977 /* ------------------------------------------------------------------------- */
979 static void usb_udc_connect_control(struct usb_udc
*udc
)
982 usb_gadget_connect(udc
->gadget
);
984 usb_gadget_disconnect(udc
->gadget
);
988 * usb_udc_vbus_handler - updates the udc core vbus status, and try to
989 * connect or disconnect gadget
990 * @gadget: The gadget which vbus change occurs
991 * @status: The vbus status
993 * The udc driver calls it when it wants to connect or disconnect gadget
994 * according to vbus status.
996 void usb_udc_vbus_handler(struct usb_gadget
*gadget
, bool status
)
998 struct usb_udc
*udc
= gadget
->udc
;
1002 usb_udc_connect_control(udc
);
1005 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler
);
1008 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1009 * @gadget: The gadget which bus reset occurs
1010 * @driver: The gadget driver we want to notify
1012 * If the udc driver has bus reset handler, it needs to call this when the bus
1013 * reset occurs, it notifies the gadget driver that the bus reset occurs as
1014 * well as updates gadget state.
1016 void usb_gadget_udc_reset(struct usb_gadget
*gadget
,
1017 struct usb_gadget_driver
*driver
)
1019 driver
->reset(gadget
);
1020 usb_gadget_set_state(gadget
, USB_STATE_DEFAULT
);
1022 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset
);
1025 * usb_gadget_udc_start - tells usb device controller to start up
1026 * @udc: The UDC to be started
1028 * This call is issued by the UDC Class driver when it's about
1029 * to register a gadget driver to the device controller, before
1030 * calling gadget driver's bind() method.
1032 * It allows the controller to be powered off until strictly
1033 * necessary to have it powered on.
1035 * Returns zero on success, else negative errno.
1037 static inline int usb_gadget_udc_start(struct usb_udc
*udc
)
1039 return udc
->gadget
->ops
->udc_start(udc
->gadget
, udc
->driver
);
1043 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1044 * @gadget: The device we want to stop activity
1045 * @driver: The driver to unbind from @gadget
1047 * This call is issued by the UDC Class driver after calling
1048 * gadget driver's unbind() method.
1050 * The details are implementation specific, but it can go as
1051 * far as powering off UDC completely and disable its data
1054 static inline void usb_gadget_udc_stop(struct usb_udc
*udc
)
1056 udc
->gadget
->ops
->udc_stop(udc
->gadget
);
1060 * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1062 * @udc: The device we want to set maximum speed
1063 * @speed: The maximum speed to allowed to run
1065 * This call is issued by the UDC Class driver before calling
1066 * usb_gadget_udc_start() in order to make sure that we don't try to
1067 * connect on speeds the gadget driver doesn't support.
1069 static inline void usb_gadget_udc_set_speed(struct usb_udc
*udc
,
1070 enum usb_device_speed speed
)
1072 if (udc
->gadget
->ops
->udc_set_speed
) {
1073 enum usb_device_speed s
;
1075 s
= min(speed
, udc
->gadget
->max_speed
);
1076 udc
->gadget
->ops
->udc_set_speed(udc
->gadget
, s
);
1081 * usb_udc_release - release the usb_udc struct
1082 * @dev: the dev member within usb_udc
1084 * This is called by driver's core in order to free memory once the last
1085 * reference is released.
1087 static void usb_udc_release(struct device
*dev
)
1089 struct usb_udc
*udc
;
1091 udc
= container_of(dev
, struct usb_udc
, dev
);
1092 dev_dbg(dev
, "releasing '%s'\n", dev_name(dev
));
1096 static const struct attribute_group
*usb_udc_attr_groups
[];
1098 static void usb_udc_nop_release(struct device
*dev
)
1100 dev_vdbg(dev
, "%s\n", __func__
);
1103 /* should be called with udc_lock held */
1104 static int check_pending_gadget_drivers(struct usb_udc
*udc
)
1106 struct usb_gadget_driver
*driver
;
1109 list_for_each_entry(driver
, &gadget_driver_pending_list
, pending
)
1110 if (!driver
->udc_name
|| strcmp(driver
->udc_name
,
1111 dev_name(&udc
->dev
)) == 0) {
1112 ret
= udc_bind_to_driver(udc
, driver
);
1113 if (ret
!= -EPROBE_DEFER
)
1114 list_del(&driver
->pending
);
1122 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1123 * @parent: the parent device to this udc. Usually the controller driver's
1125 * @gadget: the gadget to be added to the list.
1126 * @release: a gadget release function.
1128 * Returns zero on success, negative errno otherwise.
1129 * Calls the gadget release function in the latter case.
1131 int usb_add_gadget_udc_release(struct device
*parent
, struct usb_gadget
*gadget
,
1132 void (*release
)(struct device
*dev
))
1134 struct usb_udc
*udc
;
1137 dev_set_name(&gadget
->dev
, "gadget");
1138 INIT_WORK(&gadget
->work
, usb_gadget_state_work
);
1139 gadget
->dev
.parent
= parent
;
1142 gadget
->dev
.release
= release
;
1144 gadget
->dev
.release
= usb_udc_nop_release
;
1146 device_initialize(&gadget
->dev
);
1148 udc
= kzalloc(sizeof(*udc
), GFP_KERNEL
);
1150 goto err_put_gadget
;
1152 device_initialize(&udc
->dev
);
1153 udc
->dev
.release
= usb_udc_release
;
1154 udc
->dev
.class = udc_class
;
1155 udc
->dev
.groups
= usb_udc_attr_groups
;
1156 udc
->dev
.parent
= parent
;
1157 ret
= dev_set_name(&udc
->dev
, "%s", kobject_name(&parent
->kobj
));
1161 ret
= device_add(&gadget
->dev
);
1165 udc
->gadget
= gadget
;
1168 mutex_lock(&udc_lock
);
1169 list_add_tail(&udc
->list
, &udc_list
);
1171 ret
= device_add(&udc
->dev
);
1173 goto err_unlist_udc
;
1175 usb_gadget_set_state(gadget
, USB_STATE_NOTATTACHED
);
1178 /* pick up one of pending gadget drivers */
1179 ret
= check_pending_gadget_drivers(udc
);
1183 mutex_unlock(&udc_lock
);
1188 device_del(&udc
->dev
);
1191 list_del(&udc
->list
);
1192 mutex_unlock(&udc_lock
);
1194 device_del(&gadget
->dev
);
1197 put_device(&udc
->dev
);
1200 put_device(&gadget
->dev
);
1203 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release
);
1206 * usb_get_gadget_udc_name - get the name of the first UDC controller
1207 * This functions returns the name of the first UDC controller in the system.
1208 * Please note that this interface is usefull only for legacy drivers which
1209 * assume that there is only one UDC controller in the system and they need to
1210 * get its name before initialization. There is no guarantee that the UDC
1211 * of the returned name will be still available, when gadget driver registers
1214 * Returns pointer to string with UDC controller name on success, NULL
1215 * otherwise. Caller should kfree() returned string.
1217 char *usb_get_gadget_udc_name(void)
1219 struct usb_udc
*udc
;
1222 /* For now we take the first available UDC */
1223 mutex_lock(&udc_lock
);
1224 list_for_each_entry(udc
, &udc_list
, list
) {
1226 name
= kstrdup(udc
->gadget
->name
, GFP_KERNEL
);
1230 mutex_unlock(&udc_lock
);
1233 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name
);
1236 * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1237 * @parent: the parent device to this udc. Usually the controller
1239 * @gadget: the gadget to be added to the list
1241 * Returns zero on success, negative errno otherwise.
1243 int usb_add_gadget_udc(struct device
*parent
, struct usb_gadget
*gadget
)
1245 return usb_add_gadget_udc_release(parent
, gadget
, NULL
);
1247 EXPORT_SYMBOL_GPL(usb_add_gadget_udc
);
1249 static void usb_gadget_remove_driver(struct usb_udc
*udc
)
1251 dev_dbg(&udc
->dev
, "unregistering UDC driver [%s]\n",
1252 udc
->driver
->function
);
1254 kobject_uevent(&udc
->dev
.kobj
, KOBJ_CHANGE
);
1256 usb_gadget_disconnect(udc
->gadget
);
1257 udc
->driver
->disconnect(udc
->gadget
);
1258 udc
->driver
->unbind(udc
->gadget
);
1259 usb_gadget_udc_stop(udc
);
1262 udc
->dev
.driver
= NULL
;
1263 udc
->gadget
->dev
.driver
= NULL
;
1267 * usb_del_gadget_udc - deletes @udc from udc_list
1268 * @gadget: the gadget to be removed.
1270 * This, will call usb_gadget_unregister_driver() if
1271 * the @udc is still busy.
1273 void usb_del_gadget_udc(struct usb_gadget
*gadget
)
1275 struct usb_udc
*udc
= gadget
->udc
;
1280 dev_vdbg(gadget
->dev
.parent
, "unregistering gadget\n");
1282 mutex_lock(&udc_lock
);
1283 list_del(&udc
->list
);
1286 struct usb_gadget_driver
*driver
= udc
->driver
;
1288 usb_gadget_remove_driver(udc
);
1289 list_add(&driver
->pending
, &gadget_driver_pending_list
);
1291 mutex_unlock(&udc_lock
);
1293 kobject_uevent(&udc
->dev
.kobj
, KOBJ_REMOVE
);
1294 flush_work(&gadget
->work
);
1295 device_unregister(&udc
->dev
);
1296 device_unregister(&gadget
->dev
);
1297 memset(&gadget
->dev
, 0x00, sizeof(gadget
->dev
));
1299 EXPORT_SYMBOL_GPL(usb_del_gadget_udc
);
1301 /* ------------------------------------------------------------------------- */
1303 static int udc_bind_to_driver(struct usb_udc
*udc
, struct usb_gadget_driver
*driver
)
1307 dev_dbg(&udc
->dev
, "registering UDC driver [%s]\n",
1310 udc
->driver
= driver
;
1311 udc
->dev
.driver
= &driver
->driver
;
1312 udc
->gadget
->dev
.driver
= &driver
->driver
;
1314 usb_gadget_udc_set_speed(udc
, driver
->max_speed
);
1316 ret
= driver
->bind(udc
->gadget
, driver
);
1319 ret
= usb_gadget_udc_start(udc
);
1321 driver
->unbind(udc
->gadget
);
1324 usb_udc_connect_control(udc
);
1326 kobject_uevent(&udc
->dev
.kobj
, KOBJ_CHANGE
);
1330 dev_err(&udc
->dev
, "failed to start %s: %d\n",
1331 udc
->driver
->function
, ret
);
1333 udc
->dev
.driver
= NULL
;
1334 udc
->gadget
->dev
.driver
= NULL
;
1338 int usb_gadget_probe_driver(struct usb_gadget_driver
*driver
)
1340 struct usb_udc
*udc
= NULL
;
1343 if (!driver
|| !driver
->bind
|| !driver
->setup
)
1346 mutex_lock(&udc_lock
);
1347 if (driver
->udc_name
) {
1348 list_for_each_entry(udc
, &udc_list
, list
) {
1349 ret
= strcmp(driver
->udc_name
, dev_name(&udc
->dev
));
1355 else if (udc
->driver
)
1360 list_for_each_entry(udc
, &udc_list
, list
) {
1361 /* For now we take the first one */
1367 if (!driver
->match_existing_only
) {
1368 list_add_tail(&driver
->pending
, &gadget_driver_pending_list
);
1369 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1374 mutex_unlock(&udc_lock
);
1377 ret
= udc_bind_to_driver(udc
, driver
);
1378 mutex_unlock(&udc_lock
);
1381 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver
);
1383 int usb_gadget_unregister_driver(struct usb_gadget_driver
*driver
)
1385 struct usb_udc
*udc
= NULL
;
1388 if (!driver
|| !driver
->unbind
)
1391 mutex_lock(&udc_lock
);
1392 list_for_each_entry(udc
, &udc_list
, list
) {
1393 if (udc
->driver
== driver
) {
1394 usb_gadget_remove_driver(udc
);
1395 usb_gadget_set_state(udc
->gadget
,
1396 USB_STATE_NOTATTACHED
);
1398 /* Maybe there is someone waiting for this UDC? */
1399 check_pending_gadget_drivers(udc
);
1401 * For now we ignore bind errors as probably it's
1402 * not a valid reason to fail other's gadget unbind
1410 list_del(&driver
->pending
);
1413 mutex_unlock(&udc_lock
);
1416 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver
);
1418 /* ------------------------------------------------------------------------- */
1420 static ssize_t
srp_store(struct device
*dev
,
1421 struct device_attribute
*attr
, const char *buf
, size_t n
)
1423 struct usb_udc
*udc
= container_of(dev
, struct usb_udc
, dev
);
1425 if (sysfs_streq(buf
, "1"))
1426 usb_gadget_wakeup(udc
->gadget
);
1430 static DEVICE_ATTR_WO(srp
);
1432 static ssize_t
soft_connect_store(struct device
*dev
,
1433 struct device_attribute
*attr
, const char *buf
, size_t n
)
1435 struct usb_udc
*udc
= container_of(dev
, struct usb_udc
, dev
);
1438 dev_err(dev
, "soft-connect without a gadget driver\n");
1442 if (sysfs_streq(buf
, "connect")) {
1443 usb_gadget_udc_start(udc
);
1444 usb_gadget_connect(udc
->gadget
);
1445 } else if (sysfs_streq(buf
, "disconnect")) {
1446 usb_gadget_disconnect(udc
->gadget
);
1447 udc
->driver
->disconnect(udc
->gadget
);
1448 usb_gadget_udc_stop(udc
);
1450 dev_err(dev
, "unsupported command '%s'\n", buf
);
1456 static DEVICE_ATTR_WO(soft_connect
);
1458 static ssize_t
state_show(struct device
*dev
, struct device_attribute
*attr
,
1461 struct usb_udc
*udc
= container_of(dev
, struct usb_udc
, dev
);
1462 struct usb_gadget
*gadget
= udc
->gadget
;
1464 return sprintf(buf
, "%s\n", usb_state_string(gadget
->state
));
1466 static DEVICE_ATTR_RO(state
);
1468 static ssize_t
function_show(struct device
*dev
, struct device_attribute
*attr
,
1471 struct usb_udc
*udc
= container_of(dev
, struct usb_udc
, dev
);
1472 struct usb_gadget_driver
*drv
= udc
->driver
;
1474 if (!drv
|| !drv
->function
)
1476 return scnprintf(buf
, PAGE_SIZE
, "%s\n", drv
->function
);
1478 static DEVICE_ATTR_RO(function
);
1480 #define USB_UDC_SPEED_ATTR(name, param) \
1481 ssize_t name##_show(struct device *dev, \
1482 struct device_attribute *attr, char *buf) \
1484 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1485 return snprintf(buf, PAGE_SIZE, "%s\n", \
1486 usb_speed_string(udc->gadget->param)); \
1488 static DEVICE_ATTR_RO(name)
1490 static USB_UDC_SPEED_ATTR(current_speed
, speed
);
1491 static USB_UDC_SPEED_ATTR(maximum_speed
, max_speed
);
1493 #define USB_UDC_ATTR(name) \
1494 ssize_t name##_show(struct device *dev, \
1495 struct device_attribute *attr, char *buf) \
1497 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1498 struct usb_gadget *gadget = udc->gadget; \
1500 return snprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1502 static DEVICE_ATTR_RO(name)
1504 static USB_UDC_ATTR(is_otg
);
1505 static USB_UDC_ATTR(is_a_peripheral
);
1506 static USB_UDC_ATTR(b_hnp_enable
);
1507 static USB_UDC_ATTR(a_hnp_support
);
1508 static USB_UDC_ATTR(a_alt_hnp_support
);
1509 static USB_UDC_ATTR(is_selfpowered
);
1511 static struct attribute
*usb_udc_attrs
[] = {
1513 &dev_attr_soft_connect
.attr
,
1514 &dev_attr_state
.attr
,
1515 &dev_attr_function
.attr
,
1516 &dev_attr_current_speed
.attr
,
1517 &dev_attr_maximum_speed
.attr
,
1519 &dev_attr_is_otg
.attr
,
1520 &dev_attr_is_a_peripheral
.attr
,
1521 &dev_attr_b_hnp_enable
.attr
,
1522 &dev_attr_a_hnp_support
.attr
,
1523 &dev_attr_a_alt_hnp_support
.attr
,
1524 &dev_attr_is_selfpowered
.attr
,
1528 static const struct attribute_group usb_udc_attr_group
= {
1529 .attrs
= usb_udc_attrs
,
1532 static const struct attribute_group
*usb_udc_attr_groups
[] = {
1533 &usb_udc_attr_group
,
1537 static int usb_udc_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
1539 struct usb_udc
*udc
= container_of(dev
, struct usb_udc
, dev
);
1542 ret
= add_uevent_var(env
, "USB_UDC_NAME=%s", udc
->gadget
->name
);
1544 dev_err(dev
, "failed to add uevent USB_UDC_NAME\n");
1549 ret
= add_uevent_var(env
, "USB_UDC_DRIVER=%s",
1550 udc
->driver
->function
);
1552 dev_err(dev
, "failed to add uevent USB_UDC_DRIVER\n");
1560 static int __init
usb_udc_init(void)
1562 udc_class
= class_create(THIS_MODULE
, "udc");
1563 if (IS_ERR(udc_class
)) {
1564 pr_err("failed to create udc class --> %ld\n",
1565 PTR_ERR(udc_class
));
1566 return PTR_ERR(udc_class
);
1569 udc_class
->dev_uevent
= usb_udc_uevent
;
1572 subsys_initcall(usb_udc_init
);
1574 static void __exit
usb_udc_exit(void)
1576 class_destroy(udc_class
);
1578 module_exit(usb_udc_exit
);
1580 MODULE_DESCRIPTION("UDC Framework");
1581 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1582 MODULE_LICENSE("GPL v2");