Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / usb / host / ehci-sched.c
blobe56db44708bccd86ac43a870d51fc039224305c8
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 2001-2004 by David Brownell
4 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5 */
7 /* this file is part of ehci-hcd.c */
9 /*-------------------------------------------------------------------------*/
12 * EHCI scheduled transaction support: interrupt, iso, split iso
13 * These are called "periodic" transactions in the EHCI spec.
15 * Note that for interrupt transfers, the QH/QTD manipulation is shared
16 * with the "asynchronous" transaction support (control/bulk transfers).
17 * The only real difference is in how interrupt transfers are scheduled.
19 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
20 * It keeps track of every ITD (or SITD) that's linked, and holds enough
21 * pre-calculated schedule data to make appending to the queue be quick.
24 static int ehci_get_frame(struct usb_hcd *hcd);
27 * periodic_next_shadow - return "next" pointer on shadow list
28 * @periodic: host pointer to qh/itd/sitd
29 * @tag: hardware tag for type of this record
31 static union ehci_shadow *
32 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
33 __hc32 tag)
35 switch (hc32_to_cpu(ehci, tag)) {
36 case Q_TYPE_QH:
37 return &periodic->qh->qh_next;
38 case Q_TYPE_FSTN:
39 return &periodic->fstn->fstn_next;
40 case Q_TYPE_ITD:
41 return &periodic->itd->itd_next;
42 /* case Q_TYPE_SITD: */
43 default:
44 return &periodic->sitd->sitd_next;
48 static __hc32 *
49 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
50 __hc32 tag)
52 switch (hc32_to_cpu(ehci, tag)) {
53 /* our ehci_shadow.qh is actually software part */
54 case Q_TYPE_QH:
55 return &periodic->qh->hw->hw_next;
56 /* others are hw parts */
57 default:
58 return periodic->hw_next;
62 /* caller must hold ehci->lock */
63 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
65 union ehci_shadow *prev_p = &ehci->pshadow[frame];
66 __hc32 *hw_p = &ehci->periodic[frame];
67 union ehci_shadow here = *prev_p;
69 /* find predecessor of "ptr"; hw and shadow lists are in sync */
70 while (here.ptr && here.ptr != ptr) {
71 prev_p = periodic_next_shadow(ehci, prev_p,
72 Q_NEXT_TYPE(ehci, *hw_p));
73 hw_p = shadow_next_periodic(ehci, &here,
74 Q_NEXT_TYPE(ehci, *hw_p));
75 here = *prev_p;
77 /* an interrupt entry (at list end) could have been shared */
78 if (!here.ptr)
79 return;
81 /* update shadow and hardware lists ... the old "next" pointers
82 * from ptr may still be in use, the caller updates them.
84 *prev_p = *periodic_next_shadow(ehci, &here,
85 Q_NEXT_TYPE(ehci, *hw_p));
87 if (!ehci->use_dummy_qh ||
88 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
89 != EHCI_LIST_END(ehci))
90 *hw_p = *shadow_next_periodic(ehci, &here,
91 Q_NEXT_TYPE(ehci, *hw_p));
92 else
93 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
96 /*-------------------------------------------------------------------------*/
98 /* Bandwidth and TT management */
100 /* Find the TT data structure for this device; create it if necessary */
101 static struct ehci_tt *find_tt(struct usb_device *udev)
103 struct usb_tt *utt = udev->tt;
104 struct ehci_tt *tt, **tt_index, **ptt;
105 unsigned port;
106 bool allocated_index = false;
108 if (!utt)
109 return NULL; /* Not below a TT */
112 * Find/create our data structure.
113 * For hubs with a single TT, we get it directly.
114 * For hubs with multiple TTs, there's an extra level of pointers.
116 tt_index = NULL;
117 if (utt->multi) {
118 tt_index = utt->hcpriv;
119 if (!tt_index) { /* Create the index array */
120 tt_index = kzalloc(utt->hub->maxchild *
121 sizeof(*tt_index), GFP_ATOMIC);
122 if (!tt_index)
123 return ERR_PTR(-ENOMEM);
124 utt->hcpriv = tt_index;
125 allocated_index = true;
127 port = udev->ttport - 1;
128 ptt = &tt_index[port];
129 } else {
130 port = 0;
131 ptt = (struct ehci_tt **) &utt->hcpriv;
134 tt = *ptt;
135 if (!tt) { /* Create the ehci_tt */
136 struct ehci_hcd *ehci =
137 hcd_to_ehci(bus_to_hcd(udev->bus));
139 tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
140 if (!tt) {
141 if (allocated_index) {
142 utt->hcpriv = NULL;
143 kfree(tt_index);
145 return ERR_PTR(-ENOMEM);
147 list_add_tail(&tt->tt_list, &ehci->tt_list);
148 INIT_LIST_HEAD(&tt->ps_list);
149 tt->usb_tt = utt;
150 tt->tt_port = port;
151 *ptt = tt;
154 return tt;
157 /* Release the TT above udev, if it's not in use */
158 static void drop_tt(struct usb_device *udev)
160 struct usb_tt *utt = udev->tt;
161 struct ehci_tt *tt, **tt_index, **ptt;
162 int cnt, i;
164 if (!utt || !utt->hcpriv)
165 return; /* Not below a TT, or never allocated */
167 cnt = 0;
168 if (utt->multi) {
169 tt_index = utt->hcpriv;
170 ptt = &tt_index[udev->ttport - 1];
172 /* How many entries are left in tt_index? */
173 for (i = 0; i < utt->hub->maxchild; ++i)
174 cnt += !!tt_index[i];
175 } else {
176 tt_index = NULL;
177 ptt = (struct ehci_tt **) &utt->hcpriv;
180 tt = *ptt;
181 if (!tt || !list_empty(&tt->ps_list))
182 return; /* never allocated, or still in use */
184 list_del(&tt->tt_list);
185 *ptt = NULL;
186 kfree(tt);
187 if (cnt == 1) {
188 utt->hcpriv = NULL;
189 kfree(tt_index);
193 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
194 struct ehci_per_sched *ps)
196 dev_dbg(&ps->udev->dev,
197 "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
198 ps->ep->desc.bEndpointAddress,
199 (sign >= 0 ? "reserve" : "release"), type,
200 (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
201 ps->phase, ps->phase_uf, ps->period,
202 ps->usecs, ps->c_usecs, ps->cs_mask);
205 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
206 struct ehci_qh *qh, int sign)
208 unsigned start_uf;
209 unsigned i, j, m;
210 int usecs = qh->ps.usecs;
211 int c_usecs = qh->ps.c_usecs;
212 int tt_usecs = qh->ps.tt_usecs;
213 struct ehci_tt *tt;
215 if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
216 return;
217 start_uf = qh->ps.bw_phase << 3;
219 bandwidth_dbg(ehci, sign, "intr", &qh->ps);
221 if (sign < 0) { /* Release bandwidth */
222 usecs = -usecs;
223 c_usecs = -c_usecs;
224 tt_usecs = -tt_usecs;
227 /* Entire transaction (high speed) or start-split (full/low speed) */
228 for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
229 i += qh->ps.bw_uperiod)
230 ehci->bandwidth[i] += usecs;
232 /* Complete-split (full/low speed) */
233 if (qh->ps.c_usecs) {
234 /* NOTE: adjustments needed for FSTN */
235 for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
236 i += qh->ps.bw_uperiod) {
237 for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
238 if (qh->ps.cs_mask & m)
239 ehci->bandwidth[i+j] += c_usecs;
244 /* FS/LS bus bandwidth */
245 if (tt_usecs) {
246 tt = find_tt(qh->ps.udev);
247 if (sign > 0)
248 list_add_tail(&qh->ps.ps_list, &tt->ps_list);
249 else
250 list_del(&qh->ps.ps_list);
252 for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
253 i += qh->ps.bw_period)
254 tt->bandwidth[i] += tt_usecs;
258 /*-------------------------------------------------------------------------*/
260 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
261 struct ehci_tt *tt)
263 struct ehci_per_sched *ps;
264 unsigned uframe, uf, x;
265 u8 *budget_line;
267 if (!tt)
268 return;
269 memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
271 /* Add up the contributions from all the endpoints using this TT */
272 list_for_each_entry(ps, &tt->ps_list, ps_list) {
273 for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
274 uframe += ps->bw_uperiod) {
275 budget_line = &budget_table[uframe];
276 x = ps->tt_usecs;
278 /* propagate the time forward */
279 for (uf = ps->phase_uf; uf < 8; ++uf) {
280 x += budget_line[uf];
282 /* Each microframe lasts 125 us */
283 if (x <= 125) {
284 budget_line[uf] = x;
285 break;
287 budget_line[uf] = 125;
288 x -= 125;
294 static int __maybe_unused same_tt(struct usb_device *dev1,
295 struct usb_device *dev2)
297 if (!dev1->tt || !dev2->tt)
298 return 0;
299 if (dev1->tt != dev2->tt)
300 return 0;
301 if (dev1->tt->multi)
302 return dev1->ttport == dev2->ttport;
303 else
304 return 1;
307 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
309 /* Which uframe does the low/fullspeed transfer start in?
311 * The parameter is the mask of ssplits in "H-frame" terms
312 * and this returns the transfer start uframe in "B-frame" terms,
313 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
314 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
315 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
317 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
319 unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK;
321 if (!smask) {
322 ehci_err(ehci, "invalid empty smask!\n");
323 /* uframe 7 can't have bw so this will indicate failure */
324 return 7;
326 return ffs(smask) - 1;
329 static const unsigned char
330 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
332 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
333 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
335 int i;
337 for (i = 0; i < 7; i++) {
338 if (max_tt_usecs[i] < tt_usecs[i]) {
339 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
340 tt_usecs[i] = max_tt_usecs[i];
346 * Return true if the device's tt's downstream bus is available for a
347 * periodic transfer of the specified length (usecs), starting at the
348 * specified frame/uframe. Note that (as summarized in section 11.19
349 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
350 * uframe.
352 * The uframe parameter is when the fullspeed/lowspeed transfer
353 * should be executed in "B-frame" terms, which is the same as the
354 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
355 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
356 * See the EHCI spec sec 4.5 and fig 4.7.
358 * This checks if the full/lowspeed bus, at the specified starting uframe,
359 * has the specified bandwidth available, according to rules listed
360 * in USB 2.0 spec section 11.18.1 fig 11-60.
362 * This does not check if the transfer would exceed the max ssplit
363 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
364 * since proper scheduling limits ssplits to less than 16 per uframe.
366 static int tt_available(
367 struct ehci_hcd *ehci,
368 struct ehci_per_sched *ps,
369 struct ehci_tt *tt,
370 unsigned frame,
371 unsigned uframe
374 unsigned period = ps->bw_period;
375 unsigned usecs = ps->tt_usecs;
377 if ((period == 0) || (uframe >= 7)) /* error */
378 return 0;
380 for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
381 frame += period) {
382 unsigned i, uf;
383 unsigned short tt_usecs[8];
385 if (tt->bandwidth[frame] + usecs > 900)
386 return 0;
388 uf = frame << 3;
389 for (i = 0; i < 8; (++i, ++uf))
390 tt_usecs[i] = ehci->tt_budget[uf];
392 if (max_tt_usecs[uframe] <= tt_usecs[uframe])
393 return 0;
395 /* special case for isoc transfers larger than 125us:
396 * the first and each subsequent fully used uframe
397 * must be empty, so as to not illegally delay
398 * already scheduled transactions
400 if (usecs > 125) {
401 int ufs = (usecs / 125);
403 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
404 if (tt_usecs[i] > 0)
405 return 0;
408 tt_usecs[uframe] += usecs;
410 carryover_tt_bandwidth(tt_usecs);
412 /* fail if the carryover pushed bw past the last uframe's limit */
413 if (max_tt_usecs[7] < tt_usecs[7])
414 return 0;
417 return 1;
420 #else
422 /* return true iff the device's transaction translator is available
423 * for a periodic transfer starting at the specified frame, using
424 * all the uframes in the mask.
426 static int tt_no_collision(
427 struct ehci_hcd *ehci,
428 unsigned period,
429 struct usb_device *dev,
430 unsigned frame,
431 u32 uf_mask
434 if (period == 0) /* error */
435 return 0;
437 /* note bandwidth wastage: split never follows csplit
438 * (different dev or endpoint) until the next uframe.
439 * calling convention doesn't make that distinction.
441 for (; frame < ehci->periodic_size; frame += period) {
442 union ehci_shadow here;
443 __hc32 type;
444 struct ehci_qh_hw *hw;
446 here = ehci->pshadow[frame];
447 type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
448 while (here.ptr) {
449 switch (hc32_to_cpu(ehci, type)) {
450 case Q_TYPE_ITD:
451 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
452 here = here.itd->itd_next;
453 continue;
454 case Q_TYPE_QH:
455 hw = here.qh->hw;
456 if (same_tt(dev, here.qh->ps.udev)) {
457 u32 mask;
459 mask = hc32_to_cpu(ehci,
460 hw->hw_info2);
461 /* "knows" no gap is needed */
462 mask |= mask >> 8;
463 if (mask & uf_mask)
464 break;
466 type = Q_NEXT_TYPE(ehci, hw->hw_next);
467 here = here.qh->qh_next;
468 continue;
469 case Q_TYPE_SITD:
470 if (same_tt(dev, here.sitd->urb->dev)) {
471 u16 mask;
473 mask = hc32_to_cpu(ehci, here.sitd
474 ->hw_uframe);
475 /* FIXME assumes no gap for IN! */
476 mask |= mask >> 8;
477 if (mask & uf_mask)
478 break;
480 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
481 here = here.sitd->sitd_next;
482 continue;
483 /* case Q_TYPE_FSTN: */
484 default:
485 ehci_dbg(ehci,
486 "periodic frame %d bogus type %d\n",
487 frame, type);
490 /* collision or error */
491 return 0;
495 /* no collision */
496 return 1;
499 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
501 /*-------------------------------------------------------------------------*/
503 static void enable_periodic(struct ehci_hcd *ehci)
505 if (ehci->periodic_count++)
506 return;
508 /* Stop waiting to turn off the periodic schedule */
509 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
511 /* Don't start the schedule until PSS is 0 */
512 ehci_poll_PSS(ehci);
513 turn_on_io_watchdog(ehci);
516 static void disable_periodic(struct ehci_hcd *ehci)
518 if (--ehci->periodic_count)
519 return;
521 /* Don't turn off the schedule until PSS is 1 */
522 ehci_poll_PSS(ehci);
525 /*-------------------------------------------------------------------------*/
527 /* periodic schedule slots have iso tds (normal or split) first, then a
528 * sparse tree for active interrupt transfers.
530 * this just links in a qh; caller guarantees uframe masks are set right.
531 * no FSTN support (yet; ehci 0.96+)
533 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
535 unsigned i;
536 unsigned period = qh->ps.period;
538 dev_dbg(&qh->ps.udev->dev,
539 "link qh%d-%04x/%p start %d [%d/%d us]\n",
540 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
541 & (QH_CMASK | QH_SMASK),
542 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
544 /* high bandwidth, or otherwise every microframe */
545 if (period == 0)
546 period = 1;
548 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
549 union ehci_shadow *prev = &ehci->pshadow[i];
550 __hc32 *hw_p = &ehci->periodic[i];
551 union ehci_shadow here = *prev;
552 __hc32 type = 0;
554 /* skip the iso nodes at list head */
555 while (here.ptr) {
556 type = Q_NEXT_TYPE(ehci, *hw_p);
557 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
558 break;
559 prev = periodic_next_shadow(ehci, prev, type);
560 hw_p = shadow_next_periodic(ehci, &here, type);
561 here = *prev;
564 /* sorting each branch by period (slow-->fast)
565 * enables sharing interior tree nodes
567 while (here.ptr && qh != here.qh) {
568 if (qh->ps.period > here.qh->ps.period)
569 break;
570 prev = &here.qh->qh_next;
571 hw_p = &here.qh->hw->hw_next;
572 here = *prev;
574 /* link in this qh, unless some earlier pass did that */
575 if (qh != here.qh) {
576 qh->qh_next = here;
577 if (here.qh)
578 qh->hw->hw_next = *hw_p;
579 wmb();
580 prev->qh = qh;
581 *hw_p = QH_NEXT(ehci, qh->qh_dma);
584 qh->qh_state = QH_STATE_LINKED;
585 qh->xacterrs = 0;
586 qh->unlink_reason = 0;
588 /* update per-qh bandwidth for debugfs */
589 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
590 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
591 : (qh->ps.usecs * 8);
593 list_add(&qh->intr_node, &ehci->intr_qh_list);
595 /* maybe enable periodic schedule processing */
596 ++ehci->intr_count;
597 enable_periodic(ehci);
600 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
602 unsigned i;
603 unsigned period;
606 * If qh is for a low/full-speed device, simply unlinking it
607 * could interfere with an ongoing split transaction. To unlink
608 * it safely would require setting the QH_INACTIVATE bit and
609 * waiting at least one frame, as described in EHCI 4.12.2.5.
611 * We won't bother with any of this. Instead, we assume that the
612 * only reason for unlinking an interrupt QH while the current URB
613 * is still active is to dequeue all the URBs (flush the whole
614 * endpoint queue).
616 * If rebalancing the periodic schedule is ever implemented, this
617 * approach will no longer be valid.
620 /* high bandwidth, or otherwise part of every microframe */
621 period = qh->ps.period ? : 1;
623 for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
624 periodic_unlink(ehci, i, qh);
626 /* update per-qh bandwidth for debugfs */
627 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
628 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
629 : (qh->ps.usecs * 8);
631 dev_dbg(&qh->ps.udev->dev,
632 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
633 qh->ps.period,
634 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
635 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
637 /* qh->qh_next still "live" to HC */
638 qh->qh_state = QH_STATE_UNLINK;
639 qh->qh_next.ptr = NULL;
641 if (ehci->qh_scan_next == qh)
642 ehci->qh_scan_next = list_entry(qh->intr_node.next,
643 struct ehci_qh, intr_node);
644 list_del(&qh->intr_node);
647 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
649 if (qh->qh_state != QH_STATE_LINKED ||
650 list_empty(&qh->unlink_node))
651 return;
653 list_del_init(&qh->unlink_node);
656 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
657 * avoiding unnecessary CPU wakeup
661 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
663 /* If the QH isn't linked then there's nothing we can do. */
664 if (qh->qh_state != QH_STATE_LINKED)
665 return;
667 /* if the qh is waiting for unlink, cancel it now */
668 cancel_unlink_wait_intr(ehci, qh);
670 qh_unlink_periodic(ehci, qh);
672 /* Make sure the unlinks are visible before starting the timer */
673 wmb();
676 * The EHCI spec doesn't say how long it takes the controller to
677 * stop accessing an unlinked interrupt QH. The timer delay is
678 * 9 uframes; presumably that will be long enough.
680 qh->unlink_cycle = ehci->intr_unlink_cycle;
682 /* New entries go at the end of the intr_unlink list */
683 list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
685 if (ehci->intr_unlinking)
686 ; /* Avoid recursive calls */
687 else if (ehci->rh_state < EHCI_RH_RUNNING)
688 ehci_handle_intr_unlinks(ehci);
689 else if (ehci->intr_unlink.next == &qh->unlink_node) {
690 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
691 ++ehci->intr_unlink_cycle;
696 * It is common only one intr URB is scheduled on one qh, and
697 * given complete() is run in tasklet context, introduce a bit
698 * delay to avoid unlink qh too early.
700 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
701 struct ehci_qh *qh)
703 qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
705 /* New entries go at the end of the intr_unlink_wait list */
706 list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
708 if (ehci->rh_state < EHCI_RH_RUNNING)
709 ehci_handle_start_intr_unlinks(ehci);
710 else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
711 ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
712 ++ehci->intr_unlink_wait_cycle;
716 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
718 struct ehci_qh_hw *hw = qh->hw;
719 int rc;
721 qh->qh_state = QH_STATE_IDLE;
722 hw->hw_next = EHCI_LIST_END(ehci);
724 if (!list_empty(&qh->qtd_list))
725 qh_completions(ehci, qh);
727 /* reschedule QH iff another request is queued */
728 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
729 rc = qh_schedule(ehci, qh);
730 if (rc == 0) {
731 qh_refresh(ehci, qh);
732 qh_link_periodic(ehci, qh);
735 /* An error here likely indicates handshake failure
736 * or no space left in the schedule. Neither fault
737 * should happen often ...
739 * FIXME kill the now-dysfunctional queued urbs
741 else {
742 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
743 qh, rc);
747 /* maybe turn off periodic schedule */
748 --ehci->intr_count;
749 disable_periodic(ehci);
752 /*-------------------------------------------------------------------------*/
754 static int check_period(
755 struct ehci_hcd *ehci,
756 unsigned frame,
757 unsigned uframe,
758 unsigned uperiod,
759 unsigned usecs
761 /* complete split running into next frame?
762 * given FSTN support, we could sometimes check...
764 if (uframe >= 8)
765 return 0;
767 /* convert "usecs we need" to "max already claimed" */
768 usecs = ehci->uframe_periodic_max - usecs;
770 for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
771 uframe += uperiod) {
772 if (ehci->bandwidth[uframe] > usecs)
773 return 0;
776 /* success! */
777 return 1;
780 static int check_intr_schedule(
781 struct ehci_hcd *ehci,
782 unsigned frame,
783 unsigned uframe,
784 struct ehci_qh *qh,
785 unsigned *c_maskp,
786 struct ehci_tt *tt
789 int retval = -ENOSPC;
790 u8 mask = 0;
792 if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */
793 goto done;
795 if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
796 goto done;
797 if (!qh->ps.c_usecs) {
798 retval = 0;
799 *c_maskp = 0;
800 goto done;
803 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
804 if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
805 unsigned i;
807 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
808 for (i = uframe+2; i < 8 && i <= uframe+4; i++)
809 if (!check_period(ehci, frame, i,
810 qh->ps.bw_uperiod, qh->ps.c_usecs))
811 goto done;
812 else
813 mask |= 1 << i;
815 retval = 0;
817 *c_maskp = mask;
819 #else
820 /* Make sure this tt's buffer is also available for CSPLITs.
821 * We pessimize a bit; probably the typical full speed case
822 * doesn't need the second CSPLIT.
824 * NOTE: both SPLIT and CSPLIT could be checked in just
825 * one smart pass...
827 mask = 0x03 << (uframe + qh->gap_uf);
828 *c_maskp = mask;
830 mask |= 1 << uframe;
831 if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
832 if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
833 qh->ps.bw_uperiod, qh->ps.c_usecs))
834 goto done;
835 if (!check_period(ehci, frame, uframe + qh->gap_uf,
836 qh->ps.bw_uperiod, qh->ps.c_usecs))
837 goto done;
838 retval = 0;
840 #endif
841 done:
842 return retval;
845 /* "first fit" scheduling policy used the first time through,
846 * or when the previous schedule slot can't be re-used.
848 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
850 int status = 0;
851 unsigned uframe;
852 unsigned c_mask;
853 struct ehci_qh_hw *hw = qh->hw;
854 struct ehci_tt *tt;
856 hw->hw_next = EHCI_LIST_END(ehci);
858 /* reuse the previous schedule slots, if we can */
859 if (qh->ps.phase != NO_FRAME) {
860 ehci_dbg(ehci, "reused qh %p schedule\n", qh);
861 return 0;
864 uframe = 0;
865 c_mask = 0;
866 tt = find_tt(qh->ps.udev);
867 if (IS_ERR(tt)) {
868 status = PTR_ERR(tt);
869 goto done;
871 compute_tt_budget(ehci->tt_budget, tt);
873 /* else scan the schedule to find a group of slots such that all
874 * uframes have enough periodic bandwidth available.
876 /* "normal" case, uframing flexible except with splits */
877 if (qh->ps.bw_period) {
878 int i;
879 unsigned frame;
881 for (i = qh->ps.bw_period; i > 0; --i) {
882 frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
883 for (uframe = 0; uframe < 8; uframe++) {
884 status = check_intr_schedule(ehci,
885 frame, uframe, qh, &c_mask, tt);
886 if (status == 0)
887 goto got_it;
891 /* qh->ps.bw_period == 0 means every uframe */
892 } else {
893 status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
895 if (status)
896 goto done;
898 got_it:
899 qh->ps.phase = (qh->ps.period ? ehci->random_frame &
900 (qh->ps.period - 1) : 0);
901 qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
902 qh->ps.phase_uf = uframe;
903 qh->ps.cs_mask = qh->ps.period ?
904 (c_mask << 8) | (1 << uframe) :
905 QH_SMASK;
907 /* reset S-frame and (maybe) C-frame masks */
908 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
909 hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
910 reserve_release_intr_bandwidth(ehci, qh, 1);
912 done:
913 return status;
916 static int intr_submit(
917 struct ehci_hcd *ehci,
918 struct urb *urb,
919 struct list_head *qtd_list,
920 gfp_t mem_flags
922 unsigned epnum;
923 unsigned long flags;
924 struct ehci_qh *qh;
925 int status;
926 struct list_head empty;
928 /* get endpoint and transfer/schedule data */
929 epnum = urb->ep->desc.bEndpointAddress;
931 spin_lock_irqsave(&ehci->lock, flags);
933 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
934 status = -ESHUTDOWN;
935 goto done_not_linked;
937 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
938 if (unlikely(status))
939 goto done_not_linked;
941 /* get qh and force any scheduling errors */
942 INIT_LIST_HEAD(&empty);
943 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
944 if (qh == NULL) {
945 status = -ENOMEM;
946 goto done;
948 if (qh->qh_state == QH_STATE_IDLE) {
949 status = qh_schedule(ehci, qh);
950 if (status)
951 goto done;
954 /* then queue the urb's tds to the qh */
955 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
956 BUG_ON(qh == NULL);
958 /* stuff into the periodic schedule */
959 if (qh->qh_state == QH_STATE_IDLE) {
960 qh_refresh(ehci, qh);
961 qh_link_periodic(ehci, qh);
962 } else {
963 /* cancel unlink wait for the qh */
964 cancel_unlink_wait_intr(ehci, qh);
967 /* ... update usbfs periodic stats */
968 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
970 done:
971 if (unlikely(status))
972 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
973 done_not_linked:
974 spin_unlock_irqrestore(&ehci->lock, flags);
975 if (status)
976 qtd_list_free(ehci, urb, qtd_list);
978 return status;
981 static void scan_intr(struct ehci_hcd *ehci)
983 struct ehci_qh *qh;
985 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
986 intr_node) {
988 /* clean any finished work for this qh */
989 if (!list_empty(&qh->qtd_list)) {
990 int temp;
993 * Unlinks could happen here; completion reporting
994 * drops the lock. That's why ehci->qh_scan_next
995 * always holds the next qh to scan; if the next qh
996 * gets unlinked then ehci->qh_scan_next is adjusted
997 * in qh_unlink_periodic().
999 temp = qh_completions(ehci, qh);
1000 if (unlikely(temp))
1001 start_unlink_intr(ehci, qh);
1002 else if (unlikely(list_empty(&qh->qtd_list) &&
1003 qh->qh_state == QH_STATE_LINKED))
1004 start_unlink_intr_wait(ehci, qh);
1009 /*-------------------------------------------------------------------------*/
1011 /* ehci_iso_stream ops work with both ITD and SITD */
1013 static struct ehci_iso_stream *
1014 iso_stream_alloc(gfp_t mem_flags)
1016 struct ehci_iso_stream *stream;
1018 stream = kzalloc(sizeof(*stream), mem_flags);
1019 if (likely(stream != NULL)) {
1020 INIT_LIST_HEAD(&stream->td_list);
1021 INIT_LIST_HEAD(&stream->free_list);
1022 stream->next_uframe = NO_FRAME;
1023 stream->ps.phase = NO_FRAME;
1025 return stream;
1028 static void
1029 iso_stream_init(
1030 struct ehci_hcd *ehci,
1031 struct ehci_iso_stream *stream,
1032 struct urb *urb
1035 static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1037 struct usb_device *dev = urb->dev;
1038 u32 buf1;
1039 unsigned epnum, maxp;
1040 int is_input;
1041 unsigned tmp;
1044 * this might be a "high bandwidth" highspeed endpoint,
1045 * as encoded in the ep descriptor's wMaxPacket field
1047 epnum = usb_pipeendpoint(urb->pipe);
1048 is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1049 maxp = usb_endpoint_maxp(&urb->ep->desc);
1050 buf1 = is_input ? 1 << 11 : 0;
1052 /* knows about ITD vs SITD */
1053 if (dev->speed == USB_SPEED_HIGH) {
1054 unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
1056 stream->highspeed = 1;
1058 buf1 |= maxp;
1059 maxp *= multi;
1061 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1062 stream->buf1 = cpu_to_hc32(ehci, buf1);
1063 stream->buf2 = cpu_to_hc32(ehci, multi);
1065 /* usbfs wants to report the average usecs per frame tied up
1066 * when transfers on this endpoint are scheduled ...
1068 stream->ps.usecs = HS_USECS_ISO(maxp);
1070 /* period for bandwidth allocation */
1071 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1072 1 << (urb->ep->desc.bInterval - 1));
1074 /* Allow urb->interval to override */
1075 stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1077 stream->uperiod = urb->interval;
1078 stream->ps.period = urb->interval >> 3;
1079 stream->bandwidth = stream->ps.usecs * 8 /
1080 stream->ps.bw_uperiod;
1082 } else {
1083 u32 addr;
1084 int think_time;
1085 int hs_transfers;
1087 addr = dev->ttport << 24;
1088 if (!ehci_is_TDI(ehci)
1089 || (dev->tt->hub !=
1090 ehci_to_hcd(ehci)->self.root_hub))
1091 addr |= dev->tt->hub->devnum << 16;
1092 addr |= epnum << 8;
1093 addr |= dev->devnum;
1094 stream->ps.usecs = HS_USECS_ISO(maxp);
1095 think_time = dev->tt->think_time;
1096 stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1097 dev->speed, is_input, 1, maxp));
1098 hs_transfers = max(1u, (maxp + 187) / 188);
1099 if (is_input) {
1100 u32 tmp;
1102 addr |= 1 << 31;
1103 stream->ps.c_usecs = stream->ps.usecs;
1104 stream->ps.usecs = HS_USECS_ISO(1);
1105 stream->ps.cs_mask = 1;
1107 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1108 tmp = (1 << (hs_transfers + 2)) - 1;
1109 stream->ps.cs_mask |= tmp << (8 + 2);
1110 } else
1111 stream->ps.cs_mask = smask_out[hs_transfers - 1];
1113 /* period for bandwidth allocation */
1114 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1115 1 << (urb->ep->desc.bInterval - 1));
1117 /* Allow urb->interval to override */
1118 stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1119 stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1121 stream->ps.period = urb->interval;
1122 stream->uperiod = urb->interval << 3;
1123 stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1124 stream->ps.bw_period;
1126 /* stream->splits gets created from cs_mask later */
1127 stream->address = cpu_to_hc32(ehci, addr);
1130 stream->ps.udev = dev;
1131 stream->ps.ep = urb->ep;
1133 stream->bEndpointAddress = is_input | epnum;
1134 stream->maxp = maxp;
1137 static struct ehci_iso_stream *
1138 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1140 unsigned epnum;
1141 struct ehci_iso_stream *stream;
1142 struct usb_host_endpoint *ep;
1143 unsigned long flags;
1145 epnum = usb_pipeendpoint (urb->pipe);
1146 if (usb_pipein(urb->pipe))
1147 ep = urb->dev->ep_in[epnum];
1148 else
1149 ep = urb->dev->ep_out[epnum];
1151 spin_lock_irqsave(&ehci->lock, flags);
1152 stream = ep->hcpriv;
1154 if (unlikely(stream == NULL)) {
1155 stream = iso_stream_alloc(GFP_ATOMIC);
1156 if (likely(stream != NULL)) {
1157 ep->hcpriv = stream;
1158 iso_stream_init(ehci, stream, urb);
1161 /* if dev->ep [epnum] is a QH, hw is set */
1162 } else if (unlikely(stream->hw != NULL)) {
1163 ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1164 urb->dev->devpath, epnum,
1165 usb_pipein(urb->pipe) ? "in" : "out");
1166 stream = NULL;
1169 spin_unlock_irqrestore(&ehci->lock, flags);
1170 return stream;
1173 /*-------------------------------------------------------------------------*/
1175 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1177 static struct ehci_iso_sched *
1178 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1180 struct ehci_iso_sched *iso_sched;
1181 int size = sizeof(*iso_sched);
1183 size += packets * sizeof(struct ehci_iso_packet);
1184 iso_sched = kzalloc(size, mem_flags);
1185 if (likely(iso_sched != NULL))
1186 INIT_LIST_HEAD(&iso_sched->td_list);
1188 return iso_sched;
1191 static inline void
1192 itd_sched_init(
1193 struct ehci_hcd *ehci,
1194 struct ehci_iso_sched *iso_sched,
1195 struct ehci_iso_stream *stream,
1196 struct urb *urb
1199 unsigned i;
1200 dma_addr_t dma = urb->transfer_dma;
1202 /* how many uframes are needed for these transfers */
1203 iso_sched->span = urb->number_of_packets * stream->uperiod;
1205 /* figure out per-uframe itd fields that we'll need later
1206 * when we fit new itds into the schedule.
1208 for (i = 0; i < urb->number_of_packets; i++) {
1209 struct ehci_iso_packet *uframe = &iso_sched->packet[i];
1210 unsigned length;
1211 dma_addr_t buf;
1212 u32 trans;
1214 length = urb->iso_frame_desc[i].length;
1215 buf = dma + urb->iso_frame_desc[i].offset;
1217 trans = EHCI_ISOC_ACTIVE;
1218 trans |= buf & 0x0fff;
1219 if (unlikely(((i + 1) == urb->number_of_packets))
1220 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1221 trans |= EHCI_ITD_IOC;
1222 trans |= length << 16;
1223 uframe->transaction = cpu_to_hc32(ehci, trans);
1225 /* might need to cross a buffer page within a uframe */
1226 uframe->bufp = (buf & ~(u64)0x0fff);
1227 buf += length;
1228 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1229 uframe->cross = 1;
1233 static void
1234 iso_sched_free(
1235 struct ehci_iso_stream *stream,
1236 struct ehci_iso_sched *iso_sched
1239 if (!iso_sched)
1240 return;
1241 /* caller must hold ehci->lock! */
1242 list_splice(&iso_sched->td_list, &stream->free_list);
1243 kfree(iso_sched);
1246 static int
1247 itd_urb_transaction(
1248 struct ehci_iso_stream *stream,
1249 struct ehci_hcd *ehci,
1250 struct urb *urb,
1251 gfp_t mem_flags
1254 struct ehci_itd *itd;
1255 dma_addr_t itd_dma;
1256 int i;
1257 unsigned num_itds;
1258 struct ehci_iso_sched *sched;
1259 unsigned long flags;
1261 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1262 if (unlikely(sched == NULL))
1263 return -ENOMEM;
1265 itd_sched_init(ehci, sched, stream, urb);
1267 if (urb->interval < 8)
1268 num_itds = 1 + (sched->span + 7) / 8;
1269 else
1270 num_itds = urb->number_of_packets;
1272 /* allocate/init ITDs */
1273 spin_lock_irqsave(&ehci->lock, flags);
1274 for (i = 0; i < num_itds; i++) {
1277 * Use iTDs from the free list, but not iTDs that may
1278 * still be in use by the hardware.
1280 if (likely(!list_empty(&stream->free_list))) {
1281 itd = list_first_entry(&stream->free_list,
1282 struct ehci_itd, itd_list);
1283 if (itd->frame == ehci->now_frame)
1284 goto alloc_itd;
1285 list_del(&itd->itd_list);
1286 itd_dma = itd->itd_dma;
1287 } else {
1288 alloc_itd:
1289 spin_unlock_irqrestore(&ehci->lock, flags);
1290 itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1291 &itd_dma);
1292 spin_lock_irqsave(&ehci->lock, flags);
1293 if (!itd) {
1294 iso_sched_free(stream, sched);
1295 spin_unlock_irqrestore(&ehci->lock, flags);
1296 return -ENOMEM;
1300 memset(itd, 0, sizeof(*itd));
1301 itd->itd_dma = itd_dma;
1302 itd->frame = NO_FRAME;
1303 list_add(&itd->itd_list, &sched->td_list);
1305 spin_unlock_irqrestore(&ehci->lock, flags);
1307 /* temporarily store schedule info in hcpriv */
1308 urb->hcpriv = sched;
1309 urb->error_count = 0;
1310 return 0;
1313 /*-------------------------------------------------------------------------*/
1315 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1316 struct ehci_iso_stream *stream, int sign)
1318 unsigned uframe;
1319 unsigned i, j;
1320 unsigned s_mask, c_mask, m;
1321 int usecs = stream->ps.usecs;
1322 int c_usecs = stream->ps.c_usecs;
1323 int tt_usecs = stream->ps.tt_usecs;
1324 struct ehci_tt *tt;
1326 if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
1327 return;
1328 uframe = stream->ps.bw_phase << 3;
1330 bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1332 if (sign < 0) { /* Release bandwidth */
1333 usecs = -usecs;
1334 c_usecs = -c_usecs;
1335 tt_usecs = -tt_usecs;
1338 if (!stream->splits) { /* High speed */
1339 for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1340 i += stream->ps.bw_uperiod)
1341 ehci->bandwidth[i] += usecs;
1343 } else { /* Full speed */
1344 s_mask = stream->ps.cs_mask;
1345 c_mask = s_mask >> 8;
1347 /* NOTE: adjustment needed for frame overflow */
1348 for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1349 i += stream->ps.bw_uperiod) {
1350 for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1351 (++j, m <<= 1)) {
1352 if (s_mask & m)
1353 ehci->bandwidth[i+j] += usecs;
1354 else if (c_mask & m)
1355 ehci->bandwidth[i+j] += c_usecs;
1359 tt = find_tt(stream->ps.udev);
1360 if (sign > 0)
1361 list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1362 else
1363 list_del(&stream->ps.ps_list);
1365 for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1366 i += stream->ps.bw_period)
1367 tt->bandwidth[i] += tt_usecs;
1371 static inline int
1372 itd_slot_ok(
1373 struct ehci_hcd *ehci,
1374 struct ehci_iso_stream *stream,
1375 unsigned uframe
1378 unsigned usecs;
1380 /* convert "usecs we need" to "max already claimed" */
1381 usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1383 for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1384 uframe += stream->ps.bw_uperiod) {
1385 if (ehci->bandwidth[uframe] > usecs)
1386 return 0;
1388 return 1;
1391 static inline int
1392 sitd_slot_ok(
1393 struct ehci_hcd *ehci,
1394 struct ehci_iso_stream *stream,
1395 unsigned uframe,
1396 struct ehci_iso_sched *sched,
1397 struct ehci_tt *tt
1400 unsigned mask, tmp;
1401 unsigned frame, uf;
1403 mask = stream->ps.cs_mask << (uframe & 7);
1405 /* for OUT, don't wrap SSPLIT into H-microframe 7 */
1406 if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1407 return 0;
1409 /* for IN, don't wrap CSPLIT into the next frame */
1410 if (mask & ~0xffff)
1411 return 0;
1413 /* check bandwidth */
1414 uframe &= stream->ps.bw_uperiod - 1;
1415 frame = uframe >> 3;
1417 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1418 /* The tt's fullspeed bus bandwidth must be available.
1419 * tt_available scheduling guarantees 10+% for control/bulk.
1421 uf = uframe & 7;
1422 if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1423 return 0;
1424 #else
1425 /* tt must be idle for start(s), any gap, and csplit.
1426 * assume scheduling slop leaves 10+% for control/bulk.
1428 if (!tt_no_collision(ehci, stream->ps.bw_period,
1429 stream->ps.udev, frame, mask))
1430 return 0;
1431 #endif
1433 do {
1434 unsigned max_used;
1435 unsigned i;
1437 /* check starts (OUT uses more than one) */
1438 uf = uframe;
1439 max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1440 for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1441 if (ehci->bandwidth[uf] > max_used)
1442 return 0;
1445 /* for IN, check CSPLIT */
1446 if (stream->ps.c_usecs) {
1447 max_used = ehci->uframe_periodic_max -
1448 stream->ps.c_usecs;
1449 uf = uframe & ~7;
1450 tmp = 1 << (2+8);
1451 for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1452 if ((stream->ps.cs_mask & tmp) == 0)
1453 continue;
1454 if (ehci->bandwidth[uf+i] > max_used)
1455 return 0;
1459 uframe += stream->ps.bw_uperiod;
1460 } while (uframe < EHCI_BANDWIDTH_SIZE);
1462 stream->ps.cs_mask <<= uframe & 7;
1463 stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1464 return 1;
1468 * This scheduler plans almost as far into the future as it has actual
1469 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1470 * "as small as possible" to be cache-friendlier.) That limits the size
1471 * transfers you can stream reliably; avoid more than 64 msec per urb.
1472 * Also avoid queue depths of less than ehci's worst irq latency (affected
1473 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1474 * and other factors); or more than about 230 msec total (for portability,
1475 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1478 static int
1479 iso_stream_schedule(
1480 struct ehci_hcd *ehci,
1481 struct urb *urb,
1482 struct ehci_iso_stream *stream
1485 u32 now, base, next, start, period, span, now2;
1486 u32 wrap = 0, skip = 0;
1487 int status = 0;
1488 unsigned mod = ehci->periodic_size << 3;
1489 struct ehci_iso_sched *sched = urb->hcpriv;
1490 bool empty = list_empty(&stream->td_list);
1491 bool new_stream = false;
1493 period = stream->uperiod;
1494 span = sched->span;
1495 if (!stream->highspeed)
1496 span <<= 3;
1498 /* Start a new isochronous stream? */
1499 if (unlikely(empty && !hcd_periodic_completion_in_progress(
1500 ehci_to_hcd(ehci), urb->ep))) {
1502 /* Schedule the endpoint */
1503 if (stream->ps.phase == NO_FRAME) {
1504 int done = 0;
1505 struct ehci_tt *tt = find_tt(stream->ps.udev);
1507 if (IS_ERR(tt)) {
1508 status = PTR_ERR(tt);
1509 goto fail;
1511 compute_tt_budget(ehci->tt_budget, tt);
1513 start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1515 /* find a uframe slot with enough bandwidth.
1516 * Early uframes are more precious because full-speed
1517 * iso IN transfers can't use late uframes,
1518 * and therefore they should be allocated last.
1520 next = start;
1521 start += period;
1522 do {
1523 start--;
1524 /* check schedule: enough space? */
1525 if (stream->highspeed) {
1526 if (itd_slot_ok(ehci, stream, start))
1527 done = 1;
1528 } else {
1529 if ((start % 8) >= 6)
1530 continue;
1531 if (sitd_slot_ok(ehci, stream, start,
1532 sched, tt))
1533 done = 1;
1535 } while (start > next && !done);
1537 /* no room in the schedule */
1538 if (!done) {
1539 ehci_dbg(ehci, "iso sched full %p", urb);
1540 status = -ENOSPC;
1541 goto fail;
1543 stream->ps.phase = (start >> 3) &
1544 (stream->ps.period - 1);
1545 stream->ps.bw_phase = stream->ps.phase &
1546 (stream->ps.bw_period - 1);
1547 stream->ps.phase_uf = start & 7;
1548 reserve_release_iso_bandwidth(ehci, stream, 1);
1551 /* New stream is already scheduled; use the upcoming slot */
1552 else {
1553 start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1556 stream->next_uframe = start;
1557 new_stream = true;
1560 now = ehci_read_frame_index(ehci) & (mod - 1);
1562 /* Take the isochronous scheduling threshold into account */
1563 if (ehci->i_thresh)
1564 next = now + ehci->i_thresh; /* uframe cache */
1565 else
1566 next = (now + 2 + 7) & ~0x07; /* full frame cache */
1568 /* If needed, initialize last_iso_frame so that this URB will be seen */
1569 if (ehci->isoc_count == 0)
1570 ehci->last_iso_frame = now >> 3;
1573 * Use ehci->last_iso_frame as the base. There can't be any
1574 * TDs scheduled for earlier than that.
1576 base = ehci->last_iso_frame << 3;
1577 next = (next - base) & (mod - 1);
1578 start = (stream->next_uframe - base) & (mod - 1);
1580 if (unlikely(new_stream))
1581 goto do_ASAP;
1584 * Typical case: reuse current schedule, stream may still be active.
1585 * Hopefully there are no gaps from the host falling behind
1586 * (irq delays etc). If there are, the behavior depends on
1587 * whether URB_ISO_ASAP is set.
1589 now2 = (now - base) & (mod - 1);
1591 /* Is the schedule about to wrap around? */
1592 if (unlikely(!empty && start < period)) {
1593 ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1594 urb, stream->next_uframe, base, period, mod);
1595 status = -EFBIG;
1596 goto fail;
1599 /* Is the next packet scheduled after the base time? */
1600 if (likely(!empty || start <= now2 + period)) {
1602 /* URB_ISO_ASAP: make sure that start >= next */
1603 if (unlikely(start < next &&
1604 (urb->transfer_flags & URB_ISO_ASAP)))
1605 goto do_ASAP;
1607 /* Otherwise use start, if it's not in the past */
1608 if (likely(start >= now2))
1609 goto use_start;
1611 /* Otherwise we got an underrun while the queue was empty */
1612 } else {
1613 if (urb->transfer_flags & URB_ISO_ASAP)
1614 goto do_ASAP;
1615 wrap = mod;
1616 now2 += mod;
1619 /* How many uframes and packets do we need to skip? */
1620 skip = (now2 - start + period - 1) & -period;
1621 if (skip >= span) { /* Entirely in the past? */
1622 ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1623 urb, start + base, span - period, now2 + base,
1624 base);
1626 /* Try to keep the last TD intact for scanning later */
1627 skip = span - period;
1629 /* Will it come before the current scan position? */
1630 if (empty) {
1631 skip = span; /* Skip the entire URB */
1632 status = 1; /* and give it back immediately */
1633 iso_sched_free(stream, sched);
1634 sched = NULL;
1637 urb->error_count = skip / period;
1638 if (sched)
1639 sched->first_packet = urb->error_count;
1640 goto use_start;
1642 do_ASAP:
1643 /* Use the first slot after "next" */
1644 start = next + ((start - next) & (period - 1));
1646 use_start:
1647 /* Tried to schedule too far into the future? */
1648 if (unlikely(start + span - period >= mod + wrap)) {
1649 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1650 urb, start, span - period, mod + wrap);
1651 status = -EFBIG;
1652 goto fail;
1655 start += base;
1656 stream->next_uframe = (start + skip) & (mod - 1);
1658 /* report high speed start in uframes; full speed, in frames */
1659 urb->start_frame = start & (mod - 1);
1660 if (!stream->highspeed)
1661 urb->start_frame >>= 3;
1662 return status;
1664 fail:
1665 iso_sched_free(stream, sched);
1666 urb->hcpriv = NULL;
1667 return status;
1670 /*-------------------------------------------------------------------------*/
1672 static inline void
1673 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1674 struct ehci_itd *itd)
1676 int i;
1678 /* it's been recently zeroed */
1679 itd->hw_next = EHCI_LIST_END(ehci);
1680 itd->hw_bufp[0] = stream->buf0;
1681 itd->hw_bufp[1] = stream->buf1;
1682 itd->hw_bufp[2] = stream->buf2;
1684 for (i = 0; i < 8; i++)
1685 itd->index[i] = -1;
1687 /* All other fields are filled when scheduling */
1690 static inline void
1691 itd_patch(
1692 struct ehci_hcd *ehci,
1693 struct ehci_itd *itd,
1694 struct ehci_iso_sched *iso_sched,
1695 unsigned index,
1696 u16 uframe
1699 struct ehci_iso_packet *uf = &iso_sched->packet[index];
1700 unsigned pg = itd->pg;
1702 /* BUG_ON(pg == 6 && uf->cross); */
1704 uframe &= 0x07;
1705 itd->index[uframe] = index;
1707 itd->hw_transaction[uframe] = uf->transaction;
1708 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1709 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1710 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1712 /* iso_frame_desc[].offset must be strictly increasing */
1713 if (unlikely(uf->cross)) {
1714 u64 bufp = uf->bufp + 4096;
1716 itd->pg = ++pg;
1717 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1718 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1722 static inline void
1723 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1725 union ehci_shadow *prev = &ehci->pshadow[frame];
1726 __hc32 *hw_p = &ehci->periodic[frame];
1727 union ehci_shadow here = *prev;
1728 __hc32 type = 0;
1730 /* skip any iso nodes which might belong to previous microframes */
1731 while (here.ptr) {
1732 type = Q_NEXT_TYPE(ehci, *hw_p);
1733 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1734 break;
1735 prev = periodic_next_shadow(ehci, prev, type);
1736 hw_p = shadow_next_periodic(ehci, &here, type);
1737 here = *prev;
1740 itd->itd_next = here;
1741 itd->hw_next = *hw_p;
1742 prev->itd = itd;
1743 itd->frame = frame;
1744 wmb();
1745 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1748 /* fit urb's itds into the selected schedule slot; activate as needed */
1749 static void itd_link_urb(
1750 struct ehci_hcd *ehci,
1751 struct urb *urb,
1752 unsigned mod,
1753 struct ehci_iso_stream *stream
1756 int packet;
1757 unsigned next_uframe, uframe, frame;
1758 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1759 struct ehci_itd *itd;
1761 next_uframe = stream->next_uframe & (mod - 1);
1763 if (unlikely(list_empty(&stream->td_list)))
1764 ehci_to_hcd(ehci)->self.bandwidth_allocated
1765 += stream->bandwidth;
1767 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1768 if (ehci->amd_pll_fix == 1)
1769 usb_amd_quirk_pll_disable();
1772 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1774 /* fill iTDs uframe by uframe */
1775 for (packet = iso_sched->first_packet, itd = NULL;
1776 packet < urb->number_of_packets;) {
1777 if (itd == NULL) {
1778 /* ASSERT: we have all necessary itds */
1779 /* BUG_ON(list_empty(&iso_sched->td_list)); */
1781 /* ASSERT: no itds for this endpoint in this uframe */
1783 itd = list_entry(iso_sched->td_list.next,
1784 struct ehci_itd, itd_list);
1785 list_move_tail(&itd->itd_list, &stream->td_list);
1786 itd->stream = stream;
1787 itd->urb = urb;
1788 itd_init(ehci, stream, itd);
1791 uframe = next_uframe & 0x07;
1792 frame = next_uframe >> 3;
1794 itd_patch(ehci, itd, iso_sched, packet, uframe);
1796 next_uframe += stream->uperiod;
1797 next_uframe &= mod - 1;
1798 packet++;
1800 /* link completed itds into the schedule */
1801 if (((next_uframe >> 3) != frame)
1802 || packet == urb->number_of_packets) {
1803 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1804 itd = NULL;
1807 stream->next_uframe = next_uframe;
1809 /* don't need that schedule data any more */
1810 iso_sched_free(stream, iso_sched);
1811 urb->hcpriv = stream;
1813 ++ehci->isoc_count;
1814 enable_periodic(ehci);
1817 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1819 /* Process and recycle a completed ITD. Return true iff its urb completed,
1820 * and hence its completion callback probably added things to the hardware
1821 * schedule.
1823 * Note that we carefully avoid recycling this descriptor until after any
1824 * completion callback runs, so that it won't be reused quickly. That is,
1825 * assuming (a) no more than two urbs per frame on this endpoint, and also
1826 * (b) only this endpoint's completions submit URBs. It seems some silicon
1827 * corrupts things if you reuse completed descriptors very quickly...
1829 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1831 struct urb *urb = itd->urb;
1832 struct usb_iso_packet_descriptor *desc;
1833 u32 t;
1834 unsigned uframe;
1835 int urb_index = -1;
1836 struct ehci_iso_stream *stream = itd->stream;
1837 struct usb_device *dev;
1838 bool retval = false;
1840 /* for each uframe with a packet */
1841 for (uframe = 0; uframe < 8; uframe++) {
1842 if (likely(itd->index[uframe] == -1))
1843 continue;
1844 urb_index = itd->index[uframe];
1845 desc = &urb->iso_frame_desc[urb_index];
1847 t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1848 itd->hw_transaction[uframe] = 0;
1850 /* report transfer status */
1851 if (unlikely(t & ISO_ERRS)) {
1852 urb->error_count++;
1853 if (t & EHCI_ISOC_BUF_ERR)
1854 desc->status = usb_pipein(urb->pipe)
1855 ? -ENOSR /* hc couldn't read */
1856 : -ECOMM; /* hc couldn't write */
1857 else if (t & EHCI_ISOC_BABBLE)
1858 desc->status = -EOVERFLOW;
1859 else /* (t & EHCI_ISOC_XACTERR) */
1860 desc->status = -EPROTO;
1862 /* HC need not update length with this error */
1863 if (!(t & EHCI_ISOC_BABBLE)) {
1864 desc->actual_length = EHCI_ITD_LENGTH(t);
1865 urb->actual_length += desc->actual_length;
1867 } else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1868 desc->status = 0;
1869 desc->actual_length = EHCI_ITD_LENGTH(t);
1870 urb->actual_length += desc->actual_length;
1871 } else {
1872 /* URB was too late */
1873 urb->error_count++;
1877 /* handle completion now? */
1878 if (likely((urb_index + 1) != urb->number_of_packets))
1879 goto done;
1882 * ASSERT: it's really the last itd for this urb
1883 * list_for_each_entry (itd, &stream->td_list, itd_list)
1884 * BUG_ON(itd->urb == urb);
1887 /* give urb back to the driver; completion often (re)submits */
1888 dev = urb->dev;
1889 ehci_urb_done(ehci, urb, 0);
1890 retval = true;
1891 urb = NULL;
1893 --ehci->isoc_count;
1894 disable_periodic(ehci);
1896 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1897 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1898 if (ehci->amd_pll_fix == 1)
1899 usb_amd_quirk_pll_enable();
1902 if (unlikely(list_is_singular(&stream->td_list)))
1903 ehci_to_hcd(ehci)->self.bandwidth_allocated
1904 -= stream->bandwidth;
1906 done:
1907 itd->urb = NULL;
1909 /* Add to the end of the free list for later reuse */
1910 list_move_tail(&itd->itd_list, &stream->free_list);
1912 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1913 if (list_empty(&stream->td_list)) {
1914 list_splice_tail_init(&stream->free_list,
1915 &ehci->cached_itd_list);
1916 start_free_itds(ehci);
1919 return retval;
1922 /*-------------------------------------------------------------------------*/
1924 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1925 gfp_t mem_flags)
1927 int status = -EINVAL;
1928 unsigned long flags;
1929 struct ehci_iso_stream *stream;
1931 /* Get iso_stream head */
1932 stream = iso_stream_find(ehci, urb);
1933 if (unlikely(stream == NULL)) {
1934 ehci_dbg(ehci, "can't get iso stream\n");
1935 return -ENOMEM;
1937 if (unlikely(urb->interval != stream->uperiod)) {
1938 ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1939 stream->uperiod, urb->interval);
1940 goto done;
1943 #ifdef EHCI_URB_TRACE
1944 ehci_dbg(ehci,
1945 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1946 __func__, urb->dev->devpath, urb,
1947 usb_pipeendpoint(urb->pipe),
1948 usb_pipein(urb->pipe) ? "in" : "out",
1949 urb->transfer_buffer_length,
1950 urb->number_of_packets, urb->interval,
1951 stream);
1952 #endif
1954 /* allocate ITDs w/o locking anything */
1955 status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1956 if (unlikely(status < 0)) {
1957 ehci_dbg(ehci, "can't init itds\n");
1958 goto done;
1961 /* schedule ... need to lock */
1962 spin_lock_irqsave(&ehci->lock, flags);
1963 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1964 status = -ESHUTDOWN;
1965 goto done_not_linked;
1967 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1968 if (unlikely(status))
1969 goto done_not_linked;
1970 status = iso_stream_schedule(ehci, urb, stream);
1971 if (likely(status == 0)) {
1972 itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1973 } else if (status > 0) {
1974 status = 0;
1975 ehci_urb_done(ehci, urb, 0);
1976 } else {
1977 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1979 done_not_linked:
1980 spin_unlock_irqrestore(&ehci->lock, flags);
1981 done:
1982 return status;
1985 /*-------------------------------------------------------------------------*/
1988 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1989 * TTs in USB 2.0 hubs. These need microframe scheduling.
1992 static inline void
1993 sitd_sched_init(
1994 struct ehci_hcd *ehci,
1995 struct ehci_iso_sched *iso_sched,
1996 struct ehci_iso_stream *stream,
1997 struct urb *urb
2000 unsigned i;
2001 dma_addr_t dma = urb->transfer_dma;
2003 /* how many frames are needed for these transfers */
2004 iso_sched->span = urb->number_of_packets * stream->ps.period;
2006 /* figure out per-frame sitd fields that we'll need later
2007 * when we fit new sitds into the schedule.
2009 for (i = 0; i < urb->number_of_packets; i++) {
2010 struct ehci_iso_packet *packet = &iso_sched->packet[i];
2011 unsigned length;
2012 dma_addr_t buf;
2013 u32 trans;
2015 length = urb->iso_frame_desc[i].length & 0x03ff;
2016 buf = dma + urb->iso_frame_desc[i].offset;
2018 trans = SITD_STS_ACTIVE;
2019 if (((i + 1) == urb->number_of_packets)
2020 && !(urb->transfer_flags & URB_NO_INTERRUPT))
2021 trans |= SITD_IOC;
2022 trans |= length << 16;
2023 packet->transaction = cpu_to_hc32(ehci, trans);
2025 /* might need to cross a buffer page within a td */
2026 packet->bufp = buf;
2027 packet->buf1 = (buf + length) & ~0x0fff;
2028 if (packet->buf1 != (buf & ~(u64)0x0fff))
2029 packet->cross = 1;
2031 /* OUT uses multiple start-splits */
2032 if (stream->bEndpointAddress & USB_DIR_IN)
2033 continue;
2034 length = (length + 187) / 188;
2035 if (length > 1) /* BEGIN vs ALL */
2036 length |= 1 << 3;
2037 packet->buf1 |= length;
2041 static int
2042 sitd_urb_transaction(
2043 struct ehci_iso_stream *stream,
2044 struct ehci_hcd *ehci,
2045 struct urb *urb,
2046 gfp_t mem_flags
2049 struct ehci_sitd *sitd;
2050 dma_addr_t sitd_dma;
2051 int i;
2052 struct ehci_iso_sched *iso_sched;
2053 unsigned long flags;
2055 iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2056 if (iso_sched == NULL)
2057 return -ENOMEM;
2059 sitd_sched_init(ehci, iso_sched, stream, urb);
2061 /* allocate/init sITDs */
2062 spin_lock_irqsave(&ehci->lock, flags);
2063 for (i = 0; i < urb->number_of_packets; i++) {
2065 /* NOTE: for now, we don't try to handle wraparound cases
2066 * for IN (using sitd->hw_backpointer, like a FSTN), which
2067 * means we never need two sitds for full speed packets.
2071 * Use siTDs from the free list, but not siTDs that may
2072 * still be in use by the hardware.
2074 if (likely(!list_empty(&stream->free_list))) {
2075 sitd = list_first_entry(&stream->free_list,
2076 struct ehci_sitd, sitd_list);
2077 if (sitd->frame == ehci->now_frame)
2078 goto alloc_sitd;
2079 list_del(&sitd->sitd_list);
2080 sitd_dma = sitd->sitd_dma;
2081 } else {
2082 alloc_sitd:
2083 spin_unlock_irqrestore(&ehci->lock, flags);
2084 sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2085 &sitd_dma);
2086 spin_lock_irqsave(&ehci->lock, flags);
2087 if (!sitd) {
2088 iso_sched_free(stream, iso_sched);
2089 spin_unlock_irqrestore(&ehci->lock, flags);
2090 return -ENOMEM;
2094 memset(sitd, 0, sizeof(*sitd));
2095 sitd->sitd_dma = sitd_dma;
2096 sitd->frame = NO_FRAME;
2097 list_add(&sitd->sitd_list, &iso_sched->td_list);
2100 /* temporarily store schedule info in hcpriv */
2101 urb->hcpriv = iso_sched;
2102 urb->error_count = 0;
2104 spin_unlock_irqrestore(&ehci->lock, flags);
2105 return 0;
2108 /*-------------------------------------------------------------------------*/
2110 static inline void
2111 sitd_patch(
2112 struct ehci_hcd *ehci,
2113 struct ehci_iso_stream *stream,
2114 struct ehci_sitd *sitd,
2115 struct ehci_iso_sched *iso_sched,
2116 unsigned index
2119 struct ehci_iso_packet *uf = &iso_sched->packet[index];
2120 u64 bufp;
2122 sitd->hw_next = EHCI_LIST_END(ehci);
2123 sitd->hw_fullspeed_ep = stream->address;
2124 sitd->hw_uframe = stream->splits;
2125 sitd->hw_results = uf->transaction;
2126 sitd->hw_backpointer = EHCI_LIST_END(ehci);
2128 bufp = uf->bufp;
2129 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2130 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2132 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2133 if (uf->cross)
2134 bufp += 4096;
2135 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2136 sitd->index = index;
2139 static inline void
2140 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2142 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2143 sitd->sitd_next = ehci->pshadow[frame];
2144 sitd->hw_next = ehci->periodic[frame];
2145 ehci->pshadow[frame].sitd = sitd;
2146 sitd->frame = frame;
2147 wmb();
2148 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2151 /* fit urb's sitds into the selected schedule slot; activate as needed */
2152 static void sitd_link_urb(
2153 struct ehci_hcd *ehci,
2154 struct urb *urb,
2155 unsigned mod,
2156 struct ehci_iso_stream *stream
2159 int packet;
2160 unsigned next_uframe;
2161 struct ehci_iso_sched *sched = urb->hcpriv;
2162 struct ehci_sitd *sitd;
2164 next_uframe = stream->next_uframe;
2166 if (list_empty(&stream->td_list))
2167 /* usbfs ignores TT bandwidth */
2168 ehci_to_hcd(ehci)->self.bandwidth_allocated
2169 += stream->bandwidth;
2171 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2172 if (ehci->amd_pll_fix == 1)
2173 usb_amd_quirk_pll_disable();
2176 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2178 /* fill sITDs frame by frame */
2179 for (packet = sched->first_packet, sitd = NULL;
2180 packet < urb->number_of_packets;
2181 packet++) {
2183 /* ASSERT: we have all necessary sitds */
2184 BUG_ON(list_empty(&sched->td_list));
2186 /* ASSERT: no itds for this endpoint in this frame */
2188 sitd = list_entry(sched->td_list.next,
2189 struct ehci_sitd, sitd_list);
2190 list_move_tail(&sitd->sitd_list, &stream->td_list);
2191 sitd->stream = stream;
2192 sitd->urb = urb;
2194 sitd_patch(ehci, stream, sitd, sched, packet);
2195 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2196 sitd);
2198 next_uframe += stream->uperiod;
2200 stream->next_uframe = next_uframe & (mod - 1);
2202 /* don't need that schedule data any more */
2203 iso_sched_free(stream, sched);
2204 urb->hcpriv = stream;
2206 ++ehci->isoc_count;
2207 enable_periodic(ehci);
2210 /*-------------------------------------------------------------------------*/
2212 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2213 | SITD_STS_XACT | SITD_STS_MMF)
2215 /* Process and recycle a completed SITD. Return true iff its urb completed,
2216 * and hence its completion callback probably added things to the hardware
2217 * schedule.
2219 * Note that we carefully avoid recycling this descriptor until after any
2220 * completion callback runs, so that it won't be reused quickly. That is,
2221 * assuming (a) no more than two urbs per frame on this endpoint, and also
2222 * (b) only this endpoint's completions submit URBs. It seems some silicon
2223 * corrupts things if you reuse completed descriptors very quickly...
2225 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2227 struct urb *urb = sitd->urb;
2228 struct usb_iso_packet_descriptor *desc;
2229 u32 t;
2230 int urb_index;
2231 struct ehci_iso_stream *stream = sitd->stream;
2232 struct usb_device *dev;
2233 bool retval = false;
2235 urb_index = sitd->index;
2236 desc = &urb->iso_frame_desc[urb_index];
2237 t = hc32_to_cpup(ehci, &sitd->hw_results);
2239 /* report transfer status */
2240 if (unlikely(t & SITD_ERRS)) {
2241 urb->error_count++;
2242 if (t & SITD_STS_DBE)
2243 desc->status = usb_pipein(urb->pipe)
2244 ? -ENOSR /* hc couldn't read */
2245 : -ECOMM; /* hc couldn't write */
2246 else if (t & SITD_STS_BABBLE)
2247 desc->status = -EOVERFLOW;
2248 else /* XACT, MMF, etc */
2249 desc->status = -EPROTO;
2250 } else if (unlikely(t & SITD_STS_ACTIVE)) {
2251 /* URB was too late */
2252 urb->error_count++;
2253 } else {
2254 desc->status = 0;
2255 desc->actual_length = desc->length - SITD_LENGTH(t);
2256 urb->actual_length += desc->actual_length;
2259 /* handle completion now? */
2260 if ((urb_index + 1) != urb->number_of_packets)
2261 goto done;
2264 * ASSERT: it's really the last sitd for this urb
2265 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2266 * BUG_ON(sitd->urb == urb);
2269 /* give urb back to the driver; completion often (re)submits */
2270 dev = urb->dev;
2271 ehci_urb_done(ehci, urb, 0);
2272 retval = true;
2273 urb = NULL;
2275 --ehci->isoc_count;
2276 disable_periodic(ehci);
2278 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2279 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2280 if (ehci->amd_pll_fix == 1)
2281 usb_amd_quirk_pll_enable();
2284 if (list_is_singular(&stream->td_list))
2285 ehci_to_hcd(ehci)->self.bandwidth_allocated
2286 -= stream->bandwidth;
2288 done:
2289 sitd->urb = NULL;
2291 /* Add to the end of the free list for later reuse */
2292 list_move_tail(&sitd->sitd_list, &stream->free_list);
2294 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2295 if (list_empty(&stream->td_list)) {
2296 list_splice_tail_init(&stream->free_list,
2297 &ehci->cached_sitd_list);
2298 start_free_itds(ehci);
2301 return retval;
2305 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2306 gfp_t mem_flags)
2308 int status = -EINVAL;
2309 unsigned long flags;
2310 struct ehci_iso_stream *stream;
2312 /* Get iso_stream head */
2313 stream = iso_stream_find(ehci, urb);
2314 if (stream == NULL) {
2315 ehci_dbg(ehci, "can't get iso stream\n");
2316 return -ENOMEM;
2318 if (urb->interval != stream->ps.period) {
2319 ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2320 stream->ps.period, urb->interval);
2321 goto done;
2324 #ifdef EHCI_URB_TRACE
2325 ehci_dbg(ehci,
2326 "submit %p dev%s ep%d%s-iso len %d\n",
2327 urb, urb->dev->devpath,
2328 usb_pipeendpoint(urb->pipe),
2329 usb_pipein(urb->pipe) ? "in" : "out",
2330 urb->transfer_buffer_length);
2331 #endif
2333 /* allocate SITDs */
2334 status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2335 if (status < 0) {
2336 ehci_dbg(ehci, "can't init sitds\n");
2337 goto done;
2340 /* schedule ... need to lock */
2341 spin_lock_irqsave(&ehci->lock, flags);
2342 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2343 status = -ESHUTDOWN;
2344 goto done_not_linked;
2346 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2347 if (unlikely(status))
2348 goto done_not_linked;
2349 status = iso_stream_schedule(ehci, urb, stream);
2350 if (likely(status == 0)) {
2351 sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2352 } else if (status > 0) {
2353 status = 0;
2354 ehci_urb_done(ehci, urb, 0);
2355 } else {
2356 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2358 done_not_linked:
2359 spin_unlock_irqrestore(&ehci->lock, flags);
2360 done:
2361 return status;
2364 /*-------------------------------------------------------------------------*/
2366 static void scan_isoc(struct ehci_hcd *ehci)
2368 unsigned uf, now_frame, frame;
2369 unsigned fmask = ehci->periodic_size - 1;
2370 bool modified, live;
2371 union ehci_shadow q, *q_p;
2372 __hc32 type, *hw_p;
2375 * When running, scan from last scan point up to "now"
2376 * else clean up by scanning everything that's left.
2377 * Touches as few pages as possible: cache-friendly.
2379 if (ehci->rh_state >= EHCI_RH_RUNNING) {
2380 uf = ehci_read_frame_index(ehci);
2381 now_frame = (uf >> 3) & fmask;
2382 live = true;
2383 } else {
2384 now_frame = (ehci->last_iso_frame - 1) & fmask;
2385 live = false;
2387 ehci->now_frame = now_frame;
2389 frame = ehci->last_iso_frame;
2391 restart:
2392 /* Scan each element in frame's queue for completions */
2393 q_p = &ehci->pshadow[frame];
2394 hw_p = &ehci->periodic[frame];
2395 q.ptr = q_p->ptr;
2396 type = Q_NEXT_TYPE(ehci, *hw_p);
2397 modified = false;
2399 while (q.ptr != NULL) {
2400 switch (hc32_to_cpu(ehci, type)) {
2401 case Q_TYPE_ITD:
2403 * If this ITD is still active, leave it for
2404 * later processing ... check the next entry.
2405 * No need to check for activity unless the
2406 * frame is current.
2408 if (frame == now_frame && live) {
2409 rmb();
2410 for (uf = 0; uf < 8; uf++) {
2411 if (q.itd->hw_transaction[uf] &
2412 ITD_ACTIVE(ehci))
2413 break;
2415 if (uf < 8) {
2416 q_p = &q.itd->itd_next;
2417 hw_p = &q.itd->hw_next;
2418 type = Q_NEXT_TYPE(ehci,
2419 q.itd->hw_next);
2420 q = *q_p;
2421 break;
2426 * Take finished ITDs out of the schedule
2427 * and process them: recycle, maybe report
2428 * URB completion. HC won't cache the
2429 * pointer for much longer, if at all.
2431 *q_p = q.itd->itd_next;
2432 if (!ehci->use_dummy_qh ||
2433 q.itd->hw_next != EHCI_LIST_END(ehci))
2434 *hw_p = q.itd->hw_next;
2435 else
2436 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2437 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2438 wmb();
2439 modified = itd_complete(ehci, q.itd);
2440 q = *q_p;
2441 break;
2442 case Q_TYPE_SITD:
2444 * If this SITD is still active, leave it for
2445 * later processing ... check the next entry.
2446 * No need to check for activity unless the
2447 * frame is current.
2449 if (((frame == now_frame) ||
2450 (((frame + 1) & fmask) == now_frame))
2451 && live
2452 && (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2454 q_p = &q.sitd->sitd_next;
2455 hw_p = &q.sitd->hw_next;
2456 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2457 q = *q_p;
2458 break;
2462 * Take finished SITDs out of the schedule
2463 * and process them: recycle, maybe report
2464 * URB completion.
2466 *q_p = q.sitd->sitd_next;
2467 if (!ehci->use_dummy_qh ||
2468 q.sitd->hw_next != EHCI_LIST_END(ehci))
2469 *hw_p = q.sitd->hw_next;
2470 else
2471 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2472 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2473 wmb();
2474 modified = sitd_complete(ehci, q.sitd);
2475 q = *q_p;
2476 break;
2477 default:
2478 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2479 type, frame, q.ptr);
2480 /* BUG(); */
2481 /* FALL THROUGH */
2482 case Q_TYPE_QH:
2483 case Q_TYPE_FSTN:
2484 /* End of the iTDs and siTDs */
2485 q.ptr = NULL;
2486 break;
2489 /* Assume completion callbacks modify the queue */
2490 if (unlikely(modified && ehci->isoc_count > 0))
2491 goto restart;
2494 /* Stop when we have reached the current frame */
2495 if (frame == now_frame)
2496 return;
2498 /* The last frame may still have active siTDs */
2499 ehci->last_iso_frame = frame;
2500 frame = (frame + 1) & fmask;
2502 goto restart;