2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <linux/error-injection.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "print-tree.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
53 #include "compression.h"
54 #include "tree-checker.h"
55 #include "ref-verify.h"
58 #include <asm/cpufeature.h>
61 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
62 BTRFS_HEADER_FLAG_RELOC |\
63 BTRFS_SUPER_FLAG_ERROR |\
64 BTRFS_SUPER_FLAG_SEEDING |\
65 BTRFS_SUPER_FLAG_METADUMP |\
66 BTRFS_SUPER_FLAG_METADUMP_V2)
68 static const struct extent_io_ops btree_extent_io_ops
;
69 static void end_workqueue_fn(struct btrfs_work
*work
);
70 static void free_fs_root(struct btrfs_root
*root
);
71 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
);
72 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
73 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
74 struct btrfs_fs_info
*fs_info
);
75 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
76 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
77 struct extent_io_tree
*dirty_pages
,
79 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
80 struct extent_io_tree
*pinned_extents
);
81 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
82 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
85 * btrfs_end_io_wq structs are used to do processing in task context when an IO
86 * is complete. This is used during reads to verify checksums, and it is used
87 * by writes to insert metadata for new file extents after IO is complete.
89 struct btrfs_end_io_wq
{
93 struct btrfs_fs_info
*info
;
95 enum btrfs_wq_endio_type metadata
;
96 struct btrfs_work work
;
99 static struct kmem_cache
*btrfs_end_io_wq_cache
;
101 int __init
btrfs_end_io_wq_init(void)
103 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
104 sizeof(struct btrfs_end_io_wq
),
108 if (!btrfs_end_io_wq_cache
)
113 void btrfs_end_io_wq_exit(void)
115 kmem_cache_destroy(btrfs_end_io_wq_cache
);
119 * async submit bios are used to offload expensive checksumming
120 * onto the worker threads. They checksum file and metadata bios
121 * just before they are sent down the IO stack.
123 struct async_submit_bio
{
125 struct btrfs_fs_info
*fs_info
;
127 extent_submit_bio_hook_t
*submit_bio_start
;
128 extent_submit_bio_hook_t
*submit_bio_done
;
130 unsigned long bio_flags
;
132 * bio_offset is optional, can be used if the pages in the bio
133 * can't tell us where in the file the bio should go
136 struct btrfs_work work
;
141 * Lockdep class keys for extent_buffer->lock's in this root. For a given
142 * eb, the lockdep key is determined by the btrfs_root it belongs to and
143 * the level the eb occupies in the tree.
145 * Different roots are used for different purposes and may nest inside each
146 * other and they require separate keysets. As lockdep keys should be
147 * static, assign keysets according to the purpose of the root as indicated
148 * by btrfs_root->objectid. This ensures that all special purpose roots
149 * have separate keysets.
151 * Lock-nesting across peer nodes is always done with the immediate parent
152 * node locked thus preventing deadlock. As lockdep doesn't know this, use
153 * subclass to avoid triggering lockdep warning in such cases.
155 * The key is set by the readpage_end_io_hook after the buffer has passed
156 * csum validation but before the pages are unlocked. It is also set by
157 * btrfs_init_new_buffer on freshly allocated blocks.
159 * We also add a check to make sure the highest level of the tree is the
160 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
161 * needs update as well.
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
168 static struct btrfs_lockdep_keyset
{
169 u64 id
; /* root objectid */
170 const char *name_stem
; /* lock name stem */
171 char names
[BTRFS_MAX_LEVEL
+ 1][20];
172 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
173 } btrfs_lockdep_keysets
[] = {
174 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
175 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
176 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
177 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
178 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
179 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
180 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
181 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
182 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
183 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
184 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
185 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
186 { .id
= 0, .name_stem
= "tree" },
189 void __init
btrfs_init_lockdep(void)
193 /* initialize lockdep class names */
194 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
195 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
197 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
198 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
199 "btrfs-%s-%02d", ks
->name_stem
, j
);
203 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
206 struct btrfs_lockdep_keyset
*ks
;
208 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
210 /* find the matching keyset, id 0 is the default entry */
211 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
212 if (ks
->id
== objectid
)
215 lockdep_set_class_and_name(&eb
->lock
,
216 &ks
->keys
[level
], ks
->names
[level
]);
222 * extents on the btree inode are pretty simple, there's one extent
223 * that covers the entire device
225 struct extent_map
*btree_get_extent(struct btrfs_inode
*inode
,
226 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
229 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
230 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
231 struct extent_map
*em
;
234 read_lock(&em_tree
->lock
);
235 em
= lookup_extent_mapping(em_tree
, start
, len
);
237 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
238 read_unlock(&em_tree
->lock
);
241 read_unlock(&em_tree
->lock
);
243 em
= alloc_extent_map();
245 em
= ERR_PTR(-ENOMEM
);
250 em
->block_len
= (u64
)-1;
252 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
254 write_lock(&em_tree
->lock
);
255 ret
= add_extent_mapping(em_tree
, em
, 0);
256 if (ret
== -EEXIST
) {
258 em
= lookup_extent_mapping(em_tree
, start
, len
);
265 write_unlock(&em_tree
->lock
);
271 u32
btrfs_csum_data(const char *data
, u32 seed
, size_t len
)
273 return btrfs_crc32c(seed
, data
, len
);
276 void btrfs_csum_final(u32 crc
, u8
*result
)
278 put_unaligned_le32(~crc
, result
);
282 * compute the csum for a btree block, and either verify it or write it
283 * into the csum field of the block.
285 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
286 struct extent_buffer
*buf
,
289 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
290 char result
[BTRFS_CSUM_SIZE
];
292 unsigned long cur_len
;
293 unsigned long offset
= BTRFS_CSUM_SIZE
;
295 unsigned long map_start
;
296 unsigned long map_len
;
300 len
= buf
->len
- offset
;
302 err
= map_private_extent_buffer(buf
, offset
, 32,
303 &kaddr
, &map_start
, &map_len
);
306 cur_len
= min(len
, map_len
- (offset
- map_start
));
307 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
312 memset(result
, 0, BTRFS_CSUM_SIZE
);
314 btrfs_csum_final(crc
, result
);
317 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
320 memcpy(&found
, result
, csum_size
);
322 read_extent_buffer(buf
, &val
, 0, csum_size
);
323 btrfs_warn_rl(fs_info
,
324 "%s checksum verify failed on %llu wanted %X found %X level %d",
325 fs_info
->sb
->s_id
, buf
->start
,
326 val
, found
, btrfs_header_level(buf
));
330 write_extent_buffer(buf
, result
, 0, csum_size
);
337 * we can't consider a given block up to date unless the transid of the
338 * block matches the transid in the parent node's pointer. This is how we
339 * detect blocks that either didn't get written at all or got written
340 * in the wrong place.
342 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
343 struct extent_buffer
*eb
, u64 parent_transid
,
346 struct extent_state
*cached_state
= NULL
;
348 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
350 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
357 btrfs_tree_read_lock(eb
);
358 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
361 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
363 if (extent_buffer_uptodate(eb
) &&
364 btrfs_header_generation(eb
) == parent_transid
) {
368 btrfs_err_rl(eb
->fs_info
,
369 "parent transid verify failed on %llu wanted %llu found %llu",
371 parent_transid
, btrfs_header_generation(eb
));
375 * Things reading via commit roots that don't have normal protection,
376 * like send, can have a really old block in cache that may point at a
377 * block that has been freed and re-allocated. So don't clear uptodate
378 * if we find an eb that is under IO (dirty/writeback) because we could
379 * end up reading in the stale data and then writing it back out and
380 * making everybody very sad.
382 if (!extent_buffer_under_io(eb
))
383 clear_extent_buffer_uptodate(eb
);
385 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
388 btrfs_tree_read_unlock_blocking(eb
);
393 * Return 0 if the superblock checksum type matches the checksum value of that
394 * algorithm. Pass the raw disk superblock data.
396 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
399 struct btrfs_super_block
*disk_sb
=
400 (struct btrfs_super_block
*)raw_disk_sb
;
401 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
404 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
406 const int csum_size
= sizeof(crc
);
407 char result
[csum_size
];
410 * The super_block structure does not span the whole
411 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
412 * is filled with zeros and is included in the checksum.
414 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
415 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
416 btrfs_csum_final(crc
, result
);
418 if (memcmp(raw_disk_sb
, result
, csum_size
))
422 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
423 btrfs_err(fs_info
, "unsupported checksum algorithm %u",
432 * helper to read a given tree block, doing retries as required when
433 * the checksums don't match and we have alternate mirrors to try.
435 static int btree_read_extent_buffer_pages(struct btrfs_fs_info
*fs_info
,
436 struct extent_buffer
*eb
,
439 struct extent_io_tree
*io_tree
;
444 int failed_mirror
= 0;
446 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
447 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
449 ret
= read_extent_buffer_pages(io_tree
, eb
, WAIT_COMPLETE
,
452 if (!verify_parent_transid(io_tree
, eb
,
460 * This buffer's crc is fine, but its contents are corrupted, so
461 * there is no reason to read the other copies, they won't be
464 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
467 num_copies
= btrfs_num_copies(fs_info
,
472 if (!failed_mirror
) {
474 failed_mirror
= eb
->read_mirror
;
478 if (mirror_num
== failed_mirror
)
481 if (mirror_num
> num_copies
)
485 if (failed
&& !ret
&& failed_mirror
)
486 repair_eb_io_failure(fs_info
, eb
, failed_mirror
);
492 * checksum a dirty tree block before IO. This has extra checks to make sure
493 * we only fill in the checksum field in the first page of a multi-page block
496 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
498 u64 start
= page_offset(page
);
500 struct extent_buffer
*eb
;
502 eb
= (struct extent_buffer
*)page
->private;
503 if (page
!= eb
->pages
[0])
506 found_start
= btrfs_header_bytenr(eb
);
508 * Please do not consolidate these warnings into a single if.
509 * It is useful to know what went wrong.
511 if (WARN_ON(found_start
!= start
))
513 if (WARN_ON(!PageUptodate(page
)))
516 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fsid
,
517 btrfs_header_fsid(), BTRFS_FSID_SIZE
) == 0);
519 return csum_tree_block(fs_info
, eb
, 0);
522 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
523 struct extent_buffer
*eb
)
525 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
526 u8 fsid
[BTRFS_FSID_SIZE
];
529 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
531 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
535 fs_devices
= fs_devices
->seed
;
540 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
541 u64 phy_offset
, struct page
*page
,
542 u64 start
, u64 end
, int mirror
)
546 struct extent_buffer
*eb
;
547 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
548 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
555 eb
= (struct extent_buffer
*)page
->private;
557 /* the pending IO might have been the only thing that kept this buffer
558 * in memory. Make sure we have a ref for all this other checks
560 extent_buffer_get(eb
);
562 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
566 eb
->read_mirror
= mirror
;
567 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
572 found_start
= btrfs_header_bytenr(eb
);
573 if (found_start
!= eb
->start
) {
574 btrfs_err_rl(fs_info
, "bad tree block start %llu %llu",
575 found_start
, eb
->start
);
579 if (check_tree_block_fsid(fs_info
, eb
)) {
580 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
585 found_level
= btrfs_header_level(eb
);
586 if (found_level
>= BTRFS_MAX_LEVEL
) {
587 btrfs_err(fs_info
, "bad tree block level %d",
588 (int)btrfs_header_level(eb
));
593 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
596 ret
= csum_tree_block(fs_info
, eb
, 1);
601 * If this is a leaf block and it is corrupt, set the corrupt bit so
602 * that we don't try and read the other copies of this block, just
605 if (found_level
== 0 && btrfs_check_leaf_full(root
, eb
)) {
606 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
610 if (found_level
> 0 && btrfs_check_node(root
, eb
))
614 set_extent_buffer_uptodate(eb
);
617 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
618 btree_readahead_hook(eb
, ret
);
622 * our io error hook is going to dec the io pages
623 * again, we have to make sure it has something
626 atomic_inc(&eb
->io_pages
);
627 clear_extent_buffer_uptodate(eb
);
629 free_extent_buffer(eb
);
634 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
636 struct extent_buffer
*eb
;
638 eb
= (struct extent_buffer
*)page
->private;
639 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
640 eb
->read_mirror
= failed_mirror
;
641 atomic_dec(&eb
->io_pages
);
642 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
643 btree_readahead_hook(eb
, -EIO
);
644 return -EIO
; /* we fixed nothing */
647 static void end_workqueue_bio(struct bio
*bio
)
649 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
650 struct btrfs_fs_info
*fs_info
;
651 struct btrfs_workqueue
*wq
;
652 btrfs_work_func_t func
;
654 fs_info
= end_io_wq
->info
;
655 end_io_wq
->status
= bio
->bi_status
;
657 if (bio_op(bio
) == REQ_OP_WRITE
) {
658 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
659 wq
= fs_info
->endio_meta_write_workers
;
660 func
= btrfs_endio_meta_write_helper
;
661 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
662 wq
= fs_info
->endio_freespace_worker
;
663 func
= btrfs_freespace_write_helper
;
664 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
665 wq
= fs_info
->endio_raid56_workers
;
666 func
= btrfs_endio_raid56_helper
;
668 wq
= fs_info
->endio_write_workers
;
669 func
= btrfs_endio_write_helper
;
672 if (unlikely(end_io_wq
->metadata
==
673 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
674 wq
= fs_info
->endio_repair_workers
;
675 func
= btrfs_endio_repair_helper
;
676 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
677 wq
= fs_info
->endio_raid56_workers
;
678 func
= btrfs_endio_raid56_helper
;
679 } else if (end_io_wq
->metadata
) {
680 wq
= fs_info
->endio_meta_workers
;
681 func
= btrfs_endio_meta_helper
;
683 wq
= fs_info
->endio_workers
;
684 func
= btrfs_endio_helper
;
688 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
689 btrfs_queue_work(wq
, &end_io_wq
->work
);
692 blk_status_t
btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
693 enum btrfs_wq_endio_type metadata
)
695 struct btrfs_end_io_wq
*end_io_wq
;
697 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
699 return BLK_STS_RESOURCE
;
701 end_io_wq
->private = bio
->bi_private
;
702 end_io_wq
->end_io
= bio
->bi_end_io
;
703 end_io_wq
->info
= info
;
704 end_io_wq
->status
= 0;
705 end_io_wq
->bio
= bio
;
706 end_io_wq
->metadata
= metadata
;
708 bio
->bi_private
= end_io_wq
;
709 bio
->bi_end_io
= end_workqueue_bio
;
713 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
715 unsigned long limit
= min_t(unsigned long,
716 info
->thread_pool_size
,
717 info
->fs_devices
->open_devices
);
721 static void run_one_async_start(struct btrfs_work
*work
)
723 struct async_submit_bio
*async
;
726 async
= container_of(work
, struct async_submit_bio
, work
);
727 ret
= async
->submit_bio_start(async
->private_data
, async
->bio
,
728 async
->mirror_num
, async
->bio_flags
,
734 static void run_one_async_done(struct btrfs_work
*work
)
736 struct async_submit_bio
*async
;
738 async
= container_of(work
, struct async_submit_bio
, work
);
740 /* If an error occurred we just want to clean up the bio and move on */
742 async
->bio
->bi_status
= async
->status
;
743 bio_endio(async
->bio
);
747 async
->submit_bio_done(async
->private_data
, async
->bio
, async
->mirror_num
,
748 async
->bio_flags
, async
->bio_offset
);
751 static void run_one_async_free(struct btrfs_work
*work
)
753 struct async_submit_bio
*async
;
755 async
= container_of(work
, struct async_submit_bio
, work
);
759 blk_status_t
btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
760 int mirror_num
, unsigned long bio_flags
,
761 u64 bio_offset
, void *private_data
,
762 extent_submit_bio_hook_t
*submit_bio_start
,
763 extent_submit_bio_hook_t
*submit_bio_done
)
765 struct async_submit_bio
*async
;
767 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
769 return BLK_STS_RESOURCE
;
771 async
->private_data
= private_data
;
772 async
->fs_info
= fs_info
;
774 async
->mirror_num
= mirror_num
;
775 async
->submit_bio_start
= submit_bio_start
;
776 async
->submit_bio_done
= submit_bio_done
;
778 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
779 run_one_async_done
, run_one_async_free
);
781 async
->bio_flags
= bio_flags
;
782 async
->bio_offset
= bio_offset
;
786 if (op_is_sync(bio
->bi_opf
))
787 btrfs_set_work_high_priority(&async
->work
);
789 btrfs_queue_work(fs_info
->workers
, &async
->work
);
793 static blk_status_t
btree_csum_one_bio(struct bio
*bio
)
795 struct bio_vec
*bvec
;
796 struct btrfs_root
*root
;
799 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
800 bio_for_each_segment_all(bvec
, bio
, i
) {
801 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
802 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
807 return errno_to_blk_status(ret
);
810 static blk_status_t
__btree_submit_bio_start(void *private_data
, struct bio
*bio
,
811 int mirror_num
, unsigned long bio_flags
,
815 * when we're called for a write, we're already in the async
816 * submission context. Just jump into btrfs_map_bio
818 return btree_csum_one_bio(bio
);
821 static blk_status_t
__btree_submit_bio_done(void *private_data
, struct bio
*bio
,
822 int mirror_num
, unsigned long bio_flags
,
825 struct inode
*inode
= private_data
;
829 * when we're called for a write, we're already in the async
830 * submission context. Just jump into btrfs_map_bio
832 ret
= btrfs_map_bio(btrfs_sb(inode
->i_sb
), bio
, mirror_num
, 1);
834 bio
->bi_status
= ret
;
840 static int check_async_write(struct btrfs_inode
*bi
)
842 if (atomic_read(&bi
->sync_writers
))
845 if (static_cpu_has(X86_FEATURE_XMM4_2
))
851 static blk_status_t
btree_submit_bio_hook(void *private_data
, struct bio
*bio
,
852 int mirror_num
, unsigned long bio_flags
,
855 struct inode
*inode
= private_data
;
856 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
857 int async
= check_async_write(BTRFS_I(inode
));
860 if (bio_op(bio
) != REQ_OP_WRITE
) {
862 * called for a read, do the setup so that checksum validation
863 * can happen in the async kernel threads
865 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
866 BTRFS_WQ_ENDIO_METADATA
);
869 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
871 ret
= btree_csum_one_bio(bio
);
874 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
877 * kthread helpers are used to submit writes so that
878 * checksumming can happen in parallel across all CPUs
880 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, 0,
881 bio_offset
, private_data
,
882 __btree_submit_bio_start
,
883 __btree_submit_bio_done
);
891 bio
->bi_status
= ret
;
896 #ifdef CONFIG_MIGRATION
897 static int btree_migratepage(struct address_space
*mapping
,
898 struct page
*newpage
, struct page
*page
,
899 enum migrate_mode mode
)
902 * we can't safely write a btree page from here,
903 * we haven't done the locking hook
908 * Buffers may be managed in a filesystem specific way.
909 * We must have no buffers or drop them.
911 if (page_has_private(page
) &&
912 !try_to_release_page(page
, GFP_KERNEL
))
914 return migrate_page(mapping
, newpage
, page
, mode
);
919 static int btree_writepages(struct address_space
*mapping
,
920 struct writeback_control
*wbc
)
922 struct btrfs_fs_info
*fs_info
;
925 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
927 if (wbc
->for_kupdate
)
930 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
931 /* this is a bit racy, but that's ok */
932 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
933 BTRFS_DIRTY_METADATA_THRESH
);
937 return btree_write_cache_pages(mapping
, wbc
);
940 static int btree_readpage(struct file
*file
, struct page
*page
)
942 struct extent_io_tree
*tree
;
943 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
944 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
947 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
949 if (PageWriteback(page
) || PageDirty(page
))
952 return try_release_extent_buffer(page
);
955 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
958 struct extent_io_tree
*tree
;
959 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
960 extent_invalidatepage(tree
, page
, offset
);
961 btree_releasepage(page
, GFP_NOFS
);
962 if (PagePrivate(page
)) {
963 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
964 "page private not zero on page %llu",
965 (unsigned long long)page_offset(page
));
966 ClearPagePrivate(page
);
967 set_page_private(page
, 0);
972 static int btree_set_page_dirty(struct page
*page
)
975 struct extent_buffer
*eb
;
977 BUG_ON(!PagePrivate(page
));
978 eb
= (struct extent_buffer
*)page
->private;
980 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
981 BUG_ON(!atomic_read(&eb
->refs
));
982 btrfs_assert_tree_locked(eb
);
984 return __set_page_dirty_nobuffers(page
);
987 static const struct address_space_operations btree_aops
= {
988 .readpage
= btree_readpage
,
989 .writepages
= btree_writepages
,
990 .releasepage
= btree_releasepage
,
991 .invalidatepage
= btree_invalidatepage
,
992 #ifdef CONFIG_MIGRATION
993 .migratepage
= btree_migratepage
,
995 .set_page_dirty
= btree_set_page_dirty
,
998 void readahead_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
1000 struct extent_buffer
*buf
= NULL
;
1001 struct inode
*btree_inode
= fs_info
->btree_inode
;
1003 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1006 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1008 free_extent_buffer(buf
);
1011 int reada_tree_block_flagged(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1012 int mirror_num
, struct extent_buffer
**eb
)
1014 struct extent_buffer
*buf
= NULL
;
1015 struct inode
*btree_inode
= fs_info
->btree_inode
;
1016 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1019 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1023 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1025 ret
= read_extent_buffer_pages(io_tree
, buf
, WAIT_PAGE_LOCK
,
1028 free_extent_buffer(buf
);
1032 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1033 free_extent_buffer(buf
);
1035 } else if (extent_buffer_uptodate(buf
)) {
1038 free_extent_buffer(buf
);
1043 struct extent_buffer
*btrfs_find_create_tree_block(
1044 struct btrfs_fs_info
*fs_info
,
1047 if (btrfs_is_testing(fs_info
))
1048 return alloc_test_extent_buffer(fs_info
, bytenr
);
1049 return alloc_extent_buffer(fs_info
, bytenr
);
1053 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1055 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1056 buf
->start
+ buf
->len
- 1);
1059 void btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1061 filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1062 buf
->start
, buf
->start
+ buf
->len
- 1);
1065 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1068 struct extent_buffer
*buf
= NULL
;
1071 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1075 ret
= btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
);
1077 free_extent_buffer(buf
);
1078 return ERR_PTR(ret
);
1084 void clean_tree_block(struct btrfs_fs_info
*fs_info
,
1085 struct extent_buffer
*buf
)
1087 if (btrfs_header_generation(buf
) ==
1088 fs_info
->running_transaction
->transid
) {
1089 btrfs_assert_tree_locked(buf
);
1091 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1092 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
1094 fs_info
->dirty_metadata_batch
);
1095 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1096 btrfs_set_lock_blocking(buf
);
1097 clear_extent_buffer_dirty(buf
);
1102 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1104 struct btrfs_subvolume_writers
*writers
;
1107 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1109 return ERR_PTR(-ENOMEM
);
1111 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_KERNEL
);
1114 return ERR_PTR(ret
);
1117 init_waitqueue_head(&writers
->wait
);
1122 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1124 percpu_counter_destroy(&writers
->counter
);
1128 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1131 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1133 root
->commit_root
= NULL
;
1135 root
->orphan_cleanup_state
= 0;
1137 root
->objectid
= objectid
;
1138 root
->last_trans
= 0;
1139 root
->highest_objectid
= 0;
1140 root
->nr_delalloc_inodes
= 0;
1141 root
->nr_ordered_extents
= 0;
1143 root
->inode_tree
= RB_ROOT
;
1144 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1145 root
->block_rsv
= NULL
;
1146 root
->orphan_block_rsv
= NULL
;
1148 INIT_LIST_HEAD(&root
->dirty_list
);
1149 INIT_LIST_HEAD(&root
->root_list
);
1150 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1151 INIT_LIST_HEAD(&root
->delalloc_root
);
1152 INIT_LIST_HEAD(&root
->ordered_extents
);
1153 INIT_LIST_HEAD(&root
->ordered_root
);
1154 INIT_LIST_HEAD(&root
->logged_list
[0]);
1155 INIT_LIST_HEAD(&root
->logged_list
[1]);
1156 spin_lock_init(&root
->orphan_lock
);
1157 spin_lock_init(&root
->inode_lock
);
1158 spin_lock_init(&root
->delalloc_lock
);
1159 spin_lock_init(&root
->ordered_extent_lock
);
1160 spin_lock_init(&root
->accounting_lock
);
1161 spin_lock_init(&root
->log_extents_lock
[0]);
1162 spin_lock_init(&root
->log_extents_lock
[1]);
1163 mutex_init(&root
->objectid_mutex
);
1164 mutex_init(&root
->log_mutex
);
1165 mutex_init(&root
->ordered_extent_mutex
);
1166 mutex_init(&root
->delalloc_mutex
);
1167 init_waitqueue_head(&root
->log_writer_wait
);
1168 init_waitqueue_head(&root
->log_commit_wait
[0]);
1169 init_waitqueue_head(&root
->log_commit_wait
[1]);
1170 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1171 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1172 atomic_set(&root
->log_commit
[0], 0);
1173 atomic_set(&root
->log_commit
[1], 0);
1174 atomic_set(&root
->log_writers
, 0);
1175 atomic_set(&root
->log_batch
, 0);
1176 atomic_set(&root
->orphan_inodes
, 0);
1177 refcount_set(&root
->refs
, 1);
1178 atomic_set(&root
->will_be_snapshotted
, 0);
1179 atomic64_set(&root
->qgroup_meta_rsv
, 0);
1180 root
->log_transid
= 0;
1181 root
->log_transid_committed
= -1;
1182 root
->last_log_commit
= 0;
1184 extent_io_tree_init(&root
->dirty_log_pages
, NULL
);
1186 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1187 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1188 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1190 root
->defrag_trans_start
= fs_info
->generation
;
1192 root
->defrag_trans_start
= 0;
1193 root
->root_key
.objectid
= objectid
;
1196 spin_lock_init(&root
->root_item_lock
);
1199 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1202 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1204 root
->fs_info
= fs_info
;
1208 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1209 /* Should only be used by the testing infrastructure */
1210 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1212 struct btrfs_root
*root
;
1215 return ERR_PTR(-EINVAL
);
1217 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1219 return ERR_PTR(-ENOMEM
);
1221 /* We don't use the stripesize in selftest, set it as sectorsize */
1222 __setup_root(root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1223 root
->alloc_bytenr
= 0;
1229 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1230 struct btrfs_fs_info
*fs_info
,
1233 struct extent_buffer
*leaf
;
1234 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1235 struct btrfs_root
*root
;
1236 struct btrfs_key key
;
1238 uuid_le uuid
= NULL_UUID_LE
;
1240 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1242 return ERR_PTR(-ENOMEM
);
1244 __setup_root(root
, fs_info
, objectid
);
1245 root
->root_key
.objectid
= objectid
;
1246 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1247 root
->root_key
.offset
= 0;
1249 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1251 ret
= PTR_ERR(leaf
);
1256 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1257 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1258 btrfs_set_header_generation(leaf
, trans
->transid
);
1259 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1260 btrfs_set_header_owner(leaf
, objectid
);
1263 write_extent_buffer_fsid(leaf
, fs_info
->fsid
);
1264 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
1265 btrfs_mark_buffer_dirty(leaf
);
1267 root
->commit_root
= btrfs_root_node(root
);
1268 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1270 root
->root_item
.flags
= 0;
1271 root
->root_item
.byte_limit
= 0;
1272 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1273 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1274 btrfs_set_root_level(&root
->root_item
, 0);
1275 btrfs_set_root_refs(&root
->root_item
, 1);
1276 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1277 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1278 btrfs_set_root_dirid(&root
->root_item
, 0);
1279 if (is_fstree(objectid
))
1281 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1282 root
->root_item
.drop_level
= 0;
1284 key
.objectid
= objectid
;
1285 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1287 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1291 btrfs_tree_unlock(leaf
);
1297 btrfs_tree_unlock(leaf
);
1298 free_extent_buffer(root
->commit_root
);
1299 free_extent_buffer(leaf
);
1303 return ERR_PTR(ret
);
1306 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1307 struct btrfs_fs_info
*fs_info
)
1309 struct btrfs_root
*root
;
1310 struct extent_buffer
*leaf
;
1312 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1314 return ERR_PTR(-ENOMEM
);
1316 __setup_root(root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1318 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1319 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1320 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1323 * DON'T set REF_COWS for log trees
1325 * log trees do not get reference counted because they go away
1326 * before a real commit is actually done. They do store pointers
1327 * to file data extents, and those reference counts still get
1328 * updated (along with back refs to the log tree).
1331 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1335 return ERR_CAST(leaf
);
1338 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1339 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1340 btrfs_set_header_generation(leaf
, trans
->transid
);
1341 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1342 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1345 write_extent_buffer_fsid(root
->node
, fs_info
->fsid
);
1346 btrfs_mark_buffer_dirty(root
->node
);
1347 btrfs_tree_unlock(root
->node
);
1351 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1352 struct btrfs_fs_info
*fs_info
)
1354 struct btrfs_root
*log_root
;
1356 log_root
= alloc_log_tree(trans
, fs_info
);
1357 if (IS_ERR(log_root
))
1358 return PTR_ERR(log_root
);
1359 WARN_ON(fs_info
->log_root_tree
);
1360 fs_info
->log_root_tree
= log_root
;
1364 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1365 struct btrfs_root
*root
)
1367 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1368 struct btrfs_root
*log_root
;
1369 struct btrfs_inode_item
*inode_item
;
1371 log_root
= alloc_log_tree(trans
, fs_info
);
1372 if (IS_ERR(log_root
))
1373 return PTR_ERR(log_root
);
1375 log_root
->last_trans
= trans
->transid
;
1376 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1378 inode_item
= &log_root
->root_item
.inode
;
1379 btrfs_set_stack_inode_generation(inode_item
, 1);
1380 btrfs_set_stack_inode_size(inode_item
, 3);
1381 btrfs_set_stack_inode_nlink(inode_item
, 1);
1382 btrfs_set_stack_inode_nbytes(inode_item
,
1384 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1386 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1388 WARN_ON(root
->log_root
);
1389 root
->log_root
= log_root
;
1390 root
->log_transid
= 0;
1391 root
->log_transid_committed
= -1;
1392 root
->last_log_commit
= 0;
1396 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1397 struct btrfs_key
*key
)
1399 struct btrfs_root
*root
;
1400 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1401 struct btrfs_path
*path
;
1405 path
= btrfs_alloc_path();
1407 return ERR_PTR(-ENOMEM
);
1409 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1415 __setup_root(root
, fs_info
, key
->objectid
);
1417 ret
= btrfs_find_root(tree_root
, key
, path
,
1418 &root
->root_item
, &root
->root_key
);
1425 generation
= btrfs_root_generation(&root
->root_item
);
1426 root
->node
= read_tree_block(fs_info
,
1427 btrfs_root_bytenr(&root
->root_item
),
1429 if (IS_ERR(root
->node
)) {
1430 ret
= PTR_ERR(root
->node
);
1432 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1434 free_extent_buffer(root
->node
);
1437 root
->commit_root
= btrfs_root_node(root
);
1439 btrfs_free_path(path
);
1445 root
= ERR_PTR(ret
);
1449 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1450 struct btrfs_key
*location
)
1452 struct btrfs_root
*root
;
1454 root
= btrfs_read_tree_root(tree_root
, location
);
1458 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1459 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1460 btrfs_check_and_init_root_item(&root
->root_item
);
1466 int btrfs_init_fs_root(struct btrfs_root
*root
)
1469 struct btrfs_subvolume_writers
*writers
;
1471 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1472 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1474 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1479 writers
= btrfs_alloc_subvolume_writers();
1480 if (IS_ERR(writers
)) {
1481 ret
= PTR_ERR(writers
);
1484 root
->subv_writers
= writers
;
1486 btrfs_init_free_ino_ctl(root
);
1487 spin_lock_init(&root
->ino_cache_lock
);
1488 init_waitqueue_head(&root
->ino_cache_wait
);
1490 ret
= get_anon_bdev(&root
->anon_dev
);
1494 mutex_lock(&root
->objectid_mutex
);
1495 ret
= btrfs_find_highest_objectid(root
,
1496 &root
->highest_objectid
);
1498 mutex_unlock(&root
->objectid_mutex
);
1502 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1504 mutex_unlock(&root
->objectid_mutex
);
1508 /* the caller is responsible to call free_fs_root */
1512 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1515 struct btrfs_root
*root
;
1517 spin_lock(&fs_info
->fs_roots_radix_lock
);
1518 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1519 (unsigned long)root_id
);
1520 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1524 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1525 struct btrfs_root
*root
)
1529 ret
= radix_tree_preload(GFP_NOFS
);
1533 spin_lock(&fs_info
->fs_roots_radix_lock
);
1534 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1535 (unsigned long)root
->root_key
.objectid
,
1538 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1539 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1540 radix_tree_preload_end();
1545 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1546 struct btrfs_key
*location
,
1549 struct btrfs_root
*root
;
1550 struct btrfs_path
*path
;
1551 struct btrfs_key key
;
1554 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1555 return fs_info
->tree_root
;
1556 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1557 return fs_info
->extent_root
;
1558 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1559 return fs_info
->chunk_root
;
1560 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1561 return fs_info
->dev_root
;
1562 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1563 return fs_info
->csum_root
;
1564 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1565 return fs_info
->quota_root
? fs_info
->quota_root
:
1567 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1568 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1570 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1571 return fs_info
->free_space_root
? fs_info
->free_space_root
:
1574 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1576 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1577 return ERR_PTR(-ENOENT
);
1581 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1585 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1590 ret
= btrfs_init_fs_root(root
);
1594 path
= btrfs_alloc_path();
1599 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1600 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1601 key
.offset
= location
->objectid
;
1603 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1604 btrfs_free_path(path
);
1608 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1610 ret
= btrfs_insert_fs_root(fs_info
, root
);
1612 if (ret
== -EEXIST
) {
1621 return ERR_PTR(ret
);
1624 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1626 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1628 struct btrfs_device
*device
;
1629 struct backing_dev_info
*bdi
;
1632 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1635 bdi
= device
->bdev
->bd_bdi
;
1636 if (bdi_congested(bdi
, bdi_bits
)) {
1646 * called by the kthread helper functions to finally call the bio end_io
1647 * functions. This is where read checksum verification actually happens
1649 static void end_workqueue_fn(struct btrfs_work
*work
)
1652 struct btrfs_end_io_wq
*end_io_wq
;
1654 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1655 bio
= end_io_wq
->bio
;
1657 bio
->bi_status
= end_io_wq
->status
;
1658 bio
->bi_private
= end_io_wq
->private;
1659 bio
->bi_end_io
= end_io_wq
->end_io
;
1660 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1664 static int cleaner_kthread(void *arg
)
1666 struct btrfs_root
*root
= arg
;
1667 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1669 struct btrfs_trans_handle
*trans
;
1674 /* Make the cleaner go to sleep early. */
1675 if (btrfs_need_cleaner_sleep(fs_info
))
1679 * Do not do anything if we might cause open_ctree() to block
1680 * before we have finished mounting the filesystem.
1682 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1685 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1689 * Avoid the problem that we change the status of the fs
1690 * during the above check and trylock.
1692 if (btrfs_need_cleaner_sleep(fs_info
)) {
1693 mutex_unlock(&fs_info
->cleaner_mutex
);
1697 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
1698 btrfs_run_delayed_iputs(fs_info
);
1699 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
1701 again
= btrfs_clean_one_deleted_snapshot(root
);
1702 mutex_unlock(&fs_info
->cleaner_mutex
);
1705 * The defragger has dealt with the R/O remount and umount,
1706 * needn't do anything special here.
1708 btrfs_run_defrag_inodes(fs_info
);
1711 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1712 * with relocation (btrfs_relocate_chunk) and relocation
1713 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1714 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1715 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1716 * unused block groups.
1718 btrfs_delete_unused_bgs(fs_info
);
1721 set_current_state(TASK_INTERRUPTIBLE
);
1722 if (!kthread_should_stop())
1724 __set_current_state(TASK_RUNNING
);
1726 } while (!kthread_should_stop());
1729 * Transaction kthread is stopped before us and wakes us up.
1730 * However we might have started a new transaction and COWed some
1731 * tree blocks when deleting unused block groups for example. So
1732 * make sure we commit the transaction we started to have a clean
1733 * shutdown when evicting the btree inode - if it has dirty pages
1734 * when we do the final iput() on it, eviction will trigger a
1735 * writeback for it which will fail with null pointer dereferences
1736 * since work queues and other resources were already released and
1737 * destroyed by the time the iput/eviction/writeback is made.
1739 trans
= btrfs_attach_transaction(root
);
1740 if (IS_ERR(trans
)) {
1741 if (PTR_ERR(trans
) != -ENOENT
)
1743 "cleaner transaction attach returned %ld",
1748 ret
= btrfs_commit_transaction(trans
);
1751 "cleaner open transaction commit returned %d",
1758 static int transaction_kthread(void *arg
)
1760 struct btrfs_root
*root
= arg
;
1761 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1762 struct btrfs_trans_handle
*trans
;
1763 struct btrfs_transaction
*cur
;
1766 unsigned long delay
;
1770 cannot_commit
= false;
1771 delay
= HZ
* fs_info
->commit_interval
;
1772 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1774 spin_lock(&fs_info
->trans_lock
);
1775 cur
= fs_info
->running_transaction
;
1777 spin_unlock(&fs_info
->trans_lock
);
1781 now
= get_seconds();
1782 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1783 (now
< cur
->start_time
||
1784 now
- cur
->start_time
< fs_info
->commit_interval
)) {
1785 spin_unlock(&fs_info
->trans_lock
);
1789 transid
= cur
->transid
;
1790 spin_unlock(&fs_info
->trans_lock
);
1792 /* If the file system is aborted, this will always fail. */
1793 trans
= btrfs_attach_transaction(root
);
1794 if (IS_ERR(trans
)) {
1795 if (PTR_ERR(trans
) != -ENOENT
)
1796 cannot_commit
= true;
1799 if (transid
== trans
->transid
) {
1800 btrfs_commit_transaction(trans
);
1802 btrfs_end_transaction(trans
);
1805 wake_up_process(fs_info
->cleaner_kthread
);
1806 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1808 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1809 &fs_info
->fs_state
)))
1810 btrfs_cleanup_transaction(fs_info
);
1811 set_current_state(TASK_INTERRUPTIBLE
);
1812 if (!kthread_should_stop() &&
1813 (!btrfs_transaction_blocked(fs_info
) ||
1815 schedule_timeout(delay
);
1816 __set_current_state(TASK_RUNNING
);
1817 } while (!kthread_should_stop());
1822 * this will find the highest generation in the array of
1823 * root backups. The index of the highest array is returned,
1824 * or -1 if we can't find anything.
1826 * We check to make sure the array is valid by comparing the
1827 * generation of the latest root in the array with the generation
1828 * in the super block. If they don't match we pitch it.
1830 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1833 int newest_index
= -1;
1834 struct btrfs_root_backup
*root_backup
;
1837 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1838 root_backup
= info
->super_copy
->super_roots
+ i
;
1839 cur
= btrfs_backup_tree_root_gen(root_backup
);
1840 if (cur
== newest_gen
)
1844 /* check to see if we actually wrapped around */
1845 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1846 root_backup
= info
->super_copy
->super_roots
;
1847 cur
= btrfs_backup_tree_root_gen(root_backup
);
1848 if (cur
== newest_gen
)
1851 return newest_index
;
1856 * find the oldest backup so we know where to store new entries
1857 * in the backup array. This will set the backup_root_index
1858 * field in the fs_info struct
1860 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1863 int newest_index
= -1;
1865 newest_index
= find_newest_super_backup(info
, newest_gen
);
1866 /* if there was garbage in there, just move along */
1867 if (newest_index
== -1) {
1868 info
->backup_root_index
= 0;
1870 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1875 * copy all the root pointers into the super backup array.
1876 * this will bump the backup pointer by one when it is
1879 static void backup_super_roots(struct btrfs_fs_info
*info
)
1882 struct btrfs_root_backup
*root_backup
;
1885 next_backup
= info
->backup_root_index
;
1886 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1887 BTRFS_NUM_BACKUP_ROOTS
;
1890 * just overwrite the last backup if we're at the same generation
1891 * this happens only at umount
1893 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1894 if (btrfs_backup_tree_root_gen(root_backup
) ==
1895 btrfs_header_generation(info
->tree_root
->node
))
1896 next_backup
= last_backup
;
1898 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1901 * make sure all of our padding and empty slots get zero filled
1902 * regardless of which ones we use today
1904 memset(root_backup
, 0, sizeof(*root_backup
));
1906 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1908 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1909 btrfs_set_backup_tree_root_gen(root_backup
,
1910 btrfs_header_generation(info
->tree_root
->node
));
1912 btrfs_set_backup_tree_root_level(root_backup
,
1913 btrfs_header_level(info
->tree_root
->node
));
1915 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1916 btrfs_set_backup_chunk_root_gen(root_backup
,
1917 btrfs_header_generation(info
->chunk_root
->node
));
1918 btrfs_set_backup_chunk_root_level(root_backup
,
1919 btrfs_header_level(info
->chunk_root
->node
));
1921 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1922 btrfs_set_backup_extent_root_gen(root_backup
,
1923 btrfs_header_generation(info
->extent_root
->node
));
1924 btrfs_set_backup_extent_root_level(root_backup
,
1925 btrfs_header_level(info
->extent_root
->node
));
1928 * we might commit during log recovery, which happens before we set
1929 * the fs_root. Make sure it is valid before we fill it in.
1931 if (info
->fs_root
&& info
->fs_root
->node
) {
1932 btrfs_set_backup_fs_root(root_backup
,
1933 info
->fs_root
->node
->start
);
1934 btrfs_set_backup_fs_root_gen(root_backup
,
1935 btrfs_header_generation(info
->fs_root
->node
));
1936 btrfs_set_backup_fs_root_level(root_backup
,
1937 btrfs_header_level(info
->fs_root
->node
));
1940 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1941 btrfs_set_backup_dev_root_gen(root_backup
,
1942 btrfs_header_generation(info
->dev_root
->node
));
1943 btrfs_set_backup_dev_root_level(root_backup
,
1944 btrfs_header_level(info
->dev_root
->node
));
1946 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1947 btrfs_set_backup_csum_root_gen(root_backup
,
1948 btrfs_header_generation(info
->csum_root
->node
));
1949 btrfs_set_backup_csum_root_level(root_backup
,
1950 btrfs_header_level(info
->csum_root
->node
));
1952 btrfs_set_backup_total_bytes(root_backup
,
1953 btrfs_super_total_bytes(info
->super_copy
));
1954 btrfs_set_backup_bytes_used(root_backup
,
1955 btrfs_super_bytes_used(info
->super_copy
));
1956 btrfs_set_backup_num_devices(root_backup
,
1957 btrfs_super_num_devices(info
->super_copy
));
1960 * if we don't copy this out to the super_copy, it won't get remembered
1961 * for the next commit
1963 memcpy(&info
->super_copy
->super_roots
,
1964 &info
->super_for_commit
->super_roots
,
1965 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1969 * this copies info out of the root backup array and back into
1970 * the in-memory super block. It is meant to help iterate through
1971 * the array, so you send it the number of backups you've already
1972 * tried and the last backup index you used.
1974 * this returns -1 when it has tried all the backups
1976 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1977 struct btrfs_super_block
*super
,
1978 int *num_backups_tried
, int *backup_index
)
1980 struct btrfs_root_backup
*root_backup
;
1981 int newest
= *backup_index
;
1983 if (*num_backups_tried
== 0) {
1984 u64 gen
= btrfs_super_generation(super
);
1986 newest
= find_newest_super_backup(info
, gen
);
1990 *backup_index
= newest
;
1991 *num_backups_tried
= 1;
1992 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1993 /* we've tried all the backups, all done */
1996 /* jump to the next oldest backup */
1997 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1998 BTRFS_NUM_BACKUP_ROOTS
;
1999 *backup_index
= newest
;
2000 *num_backups_tried
+= 1;
2002 root_backup
= super
->super_roots
+ newest
;
2004 btrfs_set_super_generation(super
,
2005 btrfs_backup_tree_root_gen(root_backup
));
2006 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2007 btrfs_set_super_root_level(super
,
2008 btrfs_backup_tree_root_level(root_backup
));
2009 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2012 * fixme: the total bytes and num_devices need to match or we should
2015 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2016 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2020 /* helper to cleanup workers */
2021 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2023 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2024 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2025 btrfs_destroy_workqueue(fs_info
->workers
);
2026 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2027 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2028 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2029 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2030 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2031 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2032 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2033 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2034 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2035 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2036 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2037 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2038 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2040 * Now that all other work queues are destroyed, we can safely destroy
2041 * the queues used for metadata I/O, since tasks from those other work
2042 * queues can do metadata I/O operations.
2044 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2045 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2048 static void free_root_extent_buffers(struct btrfs_root
*root
)
2051 free_extent_buffer(root
->node
);
2052 free_extent_buffer(root
->commit_root
);
2054 root
->commit_root
= NULL
;
2058 /* helper to cleanup tree roots */
2059 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2061 free_root_extent_buffers(info
->tree_root
);
2063 free_root_extent_buffers(info
->dev_root
);
2064 free_root_extent_buffers(info
->extent_root
);
2065 free_root_extent_buffers(info
->csum_root
);
2066 free_root_extent_buffers(info
->quota_root
);
2067 free_root_extent_buffers(info
->uuid_root
);
2069 free_root_extent_buffers(info
->chunk_root
);
2070 free_root_extent_buffers(info
->free_space_root
);
2073 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2076 struct btrfs_root
*gang
[8];
2079 while (!list_empty(&fs_info
->dead_roots
)) {
2080 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2081 struct btrfs_root
, root_list
);
2082 list_del(&gang
[0]->root_list
);
2084 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2085 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2087 free_extent_buffer(gang
[0]->node
);
2088 free_extent_buffer(gang
[0]->commit_root
);
2089 btrfs_put_fs_root(gang
[0]);
2094 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2099 for (i
= 0; i
< ret
; i
++)
2100 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2103 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2104 btrfs_free_log_root_tree(NULL
, fs_info
);
2105 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
2109 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2111 mutex_init(&fs_info
->scrub_lock
);
2112 atomic_set(&fs_info
->scrubs_running
, 0);
2113 atomic_set(&fs_info
->scrub_pause_req
, 0);
2114 atomic_set(&fs_info
->scrubs_paused
, 0);
2115 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2116 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2117 fs_info
->scrub_workers_refcnt
= 0;
2120 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2122 spin_lock_init(&fs_info
->balance_lock
);
2123 mutex_init(&fs_info
->balance_mutex
);
2124 atomic_set(&fs_info
->balance_running
, 0);
2125 atomic_set(&fs_info
->balance_pause_req
, 0);
2126 atomic_set(&fs_info
->balance_cancel_req
, 0);
2127 fs_info
->balance_ctl
= NULL
;
2128 init_waitqueue_head(&fs_info
->balance_wait_q
);
2131 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2133 struct inode
*inode
= fs_info
->btree_inode
;
2135 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2136 set_nlink(inode
, 1);
2138 * we set the i_size on the btree inode to the max possible int.
2139 * the real end of the address space is determined by all of
2140 * the devices in the system
2142 inode
->i_size
= OFFSET_MAX
;
2143 inode
->i_mapping
->a_ops
= &btree_aops
;
2145 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2146 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
, inode
);
2147 BTRFS_I(inode
)->io_tree
.track_uptodate
= 0;
2148 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2150 BTRFS_I(inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2152 BTRFS_I(inode
)->root
= fs_info
->tree_root
;
2153 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2154 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2155 btrfs_insert_inode_hash(inode
);
2158 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2160 fs_info
->dev_replace
.lock_owner
= 0;
2161 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2162 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2163 rwlock_init(&fs_info
->dev_replace
.lock
);
2164 atomic_set(&fs_info
->dev_replace
.read_locks
, 0);
2165 atomic_set(&fs_info
->dev_replace
.blocking_readers
, 0);
2166 init_waitqueue_head(&fs_info
->replace_wait
);
2167 init_waitqueue_head(&fs_info
->dev_replace
.read_lock_wq
);
2170 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2172 spin_lock_init(&fs_info
->qgroup_lock
);
2173 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2174 fs_info
->qgroup_tree
= RB_ROOT
;
2175 fs_info
->qgroup_op_tree
= RB_ROOT
;
2176 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2177 fs_info
->qgroup_seq
= 1;
2178 fs_info
->qgroup_ulist
= NULL
;
2179 fs_info
->qgroup_rescan_running
= false;
2180 mutex_init(&fs_info
->qgroup_rescan_lock
);
2183 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2184 struct btrfs_fs_devices
*fs_devices
)
2186 int max_active
= fs_info
->thread_pool_size
;
2187 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2190 btrfs_alloc_workqueue(fs_info
, "worker",
2191 flags
| WQ_HIGHPRI
, max_active
, 16);
2193 fs_info
->delalloc_workers
=
2194 btrfs_alloc_workqueue(fs_info
, "delalloc",
2195 flags
, max_active
, 2);
2197 fs_info
->flush_workers
=
2198 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2199 flags
, max_active
, 0);
2201 fs_info
->caching_workers
=
2202 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2205 * a higher idle thresh on the submit workers makes it much more
2206 * likely that bios will be send down in a sane order to the
2209 fs_info
->submit_workers
=
2210 btrfs_alloc_workqueue(fs_info
, "submit", flags
,
2211 min_t(u64
, fs_devices
->num_devices
,
2214 fs_info
->fixup_workers
=
2215 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2218 * endios are largely parallel and should have a very
2221 fs_info
->endio_workers
=
2222 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2223 fs_info
->endio_meta_workers
=
2224 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2226 fs_info
->endio_meta_write_workers
=
2227 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2229 fs_info
->endio_raid56_workers
=
2230 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2232 fs_info
->endio_repair_workers
=
2233 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2234 fs_info
->rmw_workers
=
2235 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2236 fs_info
->endio_write_workers
=
2237 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2239 fs_info
->endio_freespace_worker
=
2240 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2242 fs_info
->delayed_workers
=
2243 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2245 fs_info
->readahead_workers
=
2246 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2248 fs_info
->qgroup_rescan_workers
=
2249 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2250 fs_info
->extent_workers
=
2251 btrfs_alloc_workqueue(fs_info
, "extent-refs", flags
,
2252 min_t(u64
, fs_devices
->num_devices
,
2255 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2256 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2257 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2258 fs_info
->endio_meta_write_workers
&&
2259 fs_info
->endio_repair_workers
&&
2260 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2261 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2262 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2263 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2264 fs_info
->extent_workers
&&
2265 fs_info
->qgroup_rescan_workers
)) {
2272 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2273 struct btrfs_fs_devices
*fs_devices
)
2276 struct btrfs_root
*log_tree_root
;
2277 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2278 u64 bytenr
= btrfs_super_log_root(disk_super
);
2280 if (fs_devices
->rw_devices
== 0) {
2281 btrfs_warn(fs_info
, "log replay required on RO media");
2285 log_tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2289 __setup_root(log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2291 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2292 fs_info
->generation
+ 1);
2293 if (IS_ERR(log_tree_root
->node
)) {
2294 btrfs_warn(fs_info
, "failed to read log tree");
2295 ret
= PTR_ERR(log_tree_root
->node
);
2296 kfree(log_tree_root
);
2298 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2299 btrfs_err(fs_info
, "failed to read log tree");
2300 free_extent_buffer(log_tree_root
->node
);
2301 kfree(log_tree_root
);
2304 /* returns with log_tree_root freed on success */
2305 ret
= btrfs_recover_log_trees(log_tree_root
);
2307 btrfs_handle_fs_error(fs_info
, ret
,
2308 "Failed to recover log tree");
2309 free_extent_buffer(log_tree_root
->node
);
2310 kfree(log_tree_root
);
2314 if (sb_rdonly(fs_info
->sb
)) {
2315 ret
= btrfs_commit_super(fs_info
);
2323 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2325 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2326 struct btrfs_root
*root
;
2327 struct btrfs_key location
;
2330 BUG_ON(!fs_info
->tree_root
);
2332 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2333 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2334 location
.offset
= 0;
2336 root
= btrfs_read_tree_root(tree_root
, &location
);
2338 return PTR_ERR(root
);
2339 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2340 fs_info
->extent_root
= root
;
2342 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2343 root
= btrfs_read_tree_root(tree_root
, &location
);
2345 return PTR_ERR(root
);
2346 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2347 fs_info
->dev_root
= root
;
2348 btrfs_init_devices_late(fs_info
);
2350 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2351 root
= btrfs_read_tree_root(tree_root
, &location
);
2353 return PTR_ERR(root
);
2354 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2355 fs_info
->csum_root
= root
;
2357 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2358 root
= btrfs_read_tree_root(tree_root
, &location
);
2359 if (!IS_ERR(root
)) {
2360 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2361 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2362 fs_info
->quota_root
= root
;
2365 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2366 root
= btrfs_read_tree_root(tree_root
, &location
);
2368 ret
= PTR_ERR(root
);
2372 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2373 fs_info
->uuid_root
= root
;
2376 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2377 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2378 root
= btrfs_read_tree_root(tree_root
, &location
);
2380 return PTR_ERR(root
);
2381 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2382 fs_info
->free_space_root
= root
;
2388 int open_ctree(struct super_block
*sb
,
2389 struct btrfs_fs_devices
*fs_devices
,
2397 struct btrfs_key location
;
2398 struct buffer_head
*bh
;
2399 struct btrfs_super_block
*disk_super
;
2400 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2401 struct btrfs_root
*tree_root
;
2402 struct btrfs_root
*chunk_root
;
2405 int num_backups_tried
= 0;
2406 int backup_index
= 0;
2408 int clear_free_space_tree
= 0;
2410 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2411 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2412 if (!tree_root
|| !chunk_root
) {
2417 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2423 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2428 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2429 (1 + ilog2(nr_cpu_ids
));
2431 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2434 goto fail_dirty_metadata_bytes
;
2437 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2440 goto fail_delalloc_bytes
;
2443 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2444 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2445 INIT_LIST_HEAD(&fs_info
->trans_list
);
2446 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2447 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2448 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2449 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2450 spin_lock_init(&fs_info
->delalloc_root_lock
);
2451 spin_lock_init(&fs_info
->trans_lock
);
2452 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2453 spin_lock_init(&fs_info
->delayed_iput_lock
);
2454 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2455 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2456 spin_lock_init(&fs_info
->super_lock
);
2457 spin_lock_init(&fs_info
->qgroup_op_lock
);
2458 spin_lock_init(&fs_info
->buffer_lock
);
2459 spin_lock_init(&fs_info
->unused_bgs_lock
);
2460 rwlock_init(&fs_info
->tree_mod_log_lock
);
2461 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2462 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2463 mutex_init(&fs_info
->reloc_mutex
);
2464 mutex_init(&fs_info
->delalloc_root_mutex
);
2465 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2466 seqlock_init(&fs_info
->profiles_lock
);
2468 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2469 INIT_LIST_HEAD(&fs_info
->space_info
);
2470 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2471 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2472 btrfs_mapping_init(&fs_info
->mapping_tree
);
2473 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2474 BTRFS_BLOCK_RSV_GLOBAL
);
2475 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2476 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2477 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2478 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2479 BTRFS_BLOCK_RSV_DELOPS
);
2480 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2481 atomic_set(&fs_info
->defrag_running
, 0);
2482 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2483 atomic_set(&fs_info
->reada_works_cnt
, 0);
2484 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2486 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2487 fs_info
->metadata_ratio
= 0;
2488 fs_info
->defrag_inodes
= RB_ROOT
;
2489 atomic64_set(&fs_info
->free_chunk_space
, 0);
2490 fs_info
->tree_mod_log
= RB_ROOT
;
2491 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2492 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2493 /* readahead state */
2494 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2495 spin_lock_init(&fs_info
->reada_lock
);
2496 btrfs_init_ref_verify(fs_info
);
2498 fs_info
->thread_pool_size
= min_t(unsigned long,
2499 num_online_cpus() + 2, 8);
2501 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2502 spin_lock_init(&fs_info
->ordered_root_lock
);
2504 fs_info
->btree_inode
= new_inode(sb
);
2505 if (!fs_info
->btree_inode
) {
2507 goto fail_bio_counter
;
2509 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2511 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2513 if (!fs_info
->delayed_root
) {
2517 btrfs_init_delayed_root(fs_info
->delayed_root
);
2519 btrfs_init_scrub(fs_info
);
2520 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2521 fs_info
->check_integrity_print_mask
= 0;
2523 btrfs_init_balance(fs_info
);
2524 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2526 sb
->s_blocksize
= BTRFS_BDEV_BLOCKSIZE
;
2527 sb
->s_blocksize_bits
= blksize_bits(BTRFS_BDEV_BLOCKSIZE
);
2529 btrfs_init_btree_inode(fs_info
);
2531 spin_lock_init(&fs_info
->block_group_cache_lock
);
2532 fs_info
->block_group_cache_tree
= RB_ROOT
;
2533 fs_info
->first_logical_byte
= (u64
)-1;
2535 extent_io_tree_init(&fs_info
->freed_extents
[0], NULL
);
2536 extent_io_tree_init(&fs_info
->freed_extents
[1], NULL
);
2537 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2538 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2540 mutex_init(&fs_info
->ordered_operations_mutex
);
2541 mutex_init(&fs_info
->tree_log_mutex
);
2542 mutex_init(&fs_info
->chunk_mutex
);
2543 mutex_init(&fs_info
->transaction_kthread_mutex
);
2544 mutex_init(&fs_info
->cleaner_mutex
);
2545 mutex_init(&fs_info
->volume_mutex
);
2546 mutex_init(&fs_info
->ro_block_group_mutex
);
2547 init_rwsem(&fs_info
->commit_root_sem
);
2548 init_rwsem(&fs_info
->cleanup_work_sem
);
2549 init_rwsem(&fs_info
->subvol_sem
);
2550 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2552 btrfs_init_dev_replace_locks(fs_info
);
2553 btrfs_init_qgroup(fs_info
);
2555 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2556 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2558 init_waitqueue_head(&fs_info
->transaction_throttle
);
2559 init_waitqueue_head(&fs_info
->transaction_wait
);
2560 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2561 init_waitqueue_head(&fs_info
->async_submit_wait
);
2563 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2565 /* Usable values until the real ones are cached from the superblock */
2566 fs_info
->nodesize
= 4096;
2567 fs_info
->sectorsize
= 4096;
2568 fs_info
->stripesize
= 4096;
2570 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2576 __setup_root(tree_root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2578 invalidate_bdev(fs_devices
->latest_bdev
);
2581 * Read super block and check the signature bytes only
2583 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2590 * We want to check superblock checksum, the type is stored inside.
2591 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2593 if (btrfs_check_super_csum(fs_info
, bh
->b_data
)) {
2594 btrfs_err(fs_info
, "superblock checksum mismatch");
2601 * super_copy is zeroed at allocation time and we never touch the
2602 * following bytes up to INFO_SIZE, the checksum is calculated from
2603 * the whole block of INFO_SIZE
2605 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2606 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2607 sizeof(*fs_info
->super_for_commit
));
2610 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2612 ret
= btrfs_check_super_valid(fs_info
);
2614 btrfs_err(fs_info
, "superblock contains fatal errors");
2619 disk_super
= fs_info
->super_copy
;
2620 if (!btrfs_super_root(disk_super
))
2623 /* check FS state, whether FS is broken. */
2624 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2625 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2628 * run through our array of backup supers and setup
2629 * our ring pointer to the oldest one
2631 generation
= btrfs_super_generation(disk_super
);
2632 find_oldest_super_backup(fs_info
, generation
);
2635 * In the long term, we'll store the compression type in the super
2636 * block, and it'll be used for per file compression control.
2638 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2640 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
2646 features
= btrfs_super_incompat_flags(disk_super
) &
2647 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2650 "cannot mount because of unsupported optional features (%llx)",
2656 features
= btrfs_super_incompat_flags(disk_super
);
2657 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2658 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2659 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2660 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZSTD
)
2661 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD
;
2663 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2664 btrfs_info(fs_info
, "has skinny extents");
2667 * flag our filesystem as having big metadata blocks if
2668 * they are bigger than the page size
2670 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2671 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2673 "flagging fs with big metadata feature");
2674 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2677 nodesize
= btrfs_super_nodesize(disk_super
);
2678 sectorsize
= btrfs_super_sectorsize(disk_super
);
2679 stripesize
= sectorsize
;
2680 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2681 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2683 /* Cache block sizes */
2684 fs_info
->nodesize
= nodesize
;
2685 fs_info
->sectorsize
= sectorsize
;
2686 fs_info
->stripesize
= stripesize
;
2689 * mixed block groups end up with duplicate but slightly offset
2690 * extent buffers for the same range. It leads to corruptions
2692 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2693 (sectorsize
!= nodesize
)) {
2695 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2696 nodesize
, sectorsize
);
2701 * Needn't use the lock because there is no other task which will
2704 btrfs_set_super_incompat_flags(disk_super
, features
);
2706 features
= btrfs_super_compat_ro_flags(disk_super
) &
2707 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2708 if (!sb_rdonly(sb
) && features
) {
2710 "cannot mount read-write because of unsupported optional features (%llx)",
2716 max_active
= fs_info
->thread_pool_size
;
2718 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2721 goto fail_sb_buffer
;
2724 sb
->s_bdi
->congested_fn
= btrfs_congested_fn
;
2725 sb
->s_bdi
->congested_data
= fs_info
;
2726 sb
->s_bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
2727 sb
->s_bdi
->ra_pages
= VM_MAX_READAHEAD
* SZ_1K
/ PAGE_SIZE
;
2728 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
2729 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
2731 sb
->s_blocksize
= sectorsize
;
2732 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2733 memcpy(&sb
->s_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
);
2735 mutex_lock(&fs_info
->chunk_mutex
);
2736 ret
= btrfs_read_sys_array(fs_info
);
2737 mutex_unlock(&fs_info
->chunk_mutex
);
2739 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
2740 goto fail_sb_buffer
;
2743 generation
= btrfs_super_chunk_root_generation(disk_super
);
2745 __setup_root(chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2747 chunk_root
->node
= read_tree_block(fs_info
,
2748 btrfs_super_chunk_root(disk_super
),
2750 if (IS_ERR(chunk_root
->node
) ||
2751 !extent_buffer_uptodate(chunk_root
->node
)) {
2752 btrfs_err(fs_info
, "failed to read chunk root");
2753 if (!IS_ERR(chunk_root
->node
))
2754 free_extent_buffer(chunk_root
->node
);
2755 chunk_root
->node
= NULL
;
2756 goto fail_tree_roots
;
2758 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2759 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2761 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2762 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2764 ret
= btrfs_read_chunk_tree(fs_info
);
2766 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
2767 goto fail_tree_roots
;
2771 * keep the device that is marked to be the target device for the
2772 * dev_replace procedure
2774 btrfs_close_extra_devices(fs_devices
, 0);
2776 if (!fs_devices
->latest_bdev
) {
2777 btrfs_err(fs_info
, "failed to read devices");
2778 goto fail_tree_roots
;
2782 generation
= btrfs_super_generation(disk_super
);
2784 tree_root
->node
= read_tree_block(fs_info
,
2785 btrfs_super_root(disk_super
),
2787 if (IS_ERR(tree_root
->node
) ||
2788 !extent_buffer_uptodate(tree_root
->node
)) {
2789 btrfs_warn(fs_info
, "failed to read tree root");
2790 if (!IS_ERR(tree_root
->node
))
2791 free_extent_buffer(tree_root
->node
);
2792 tree_root
->node
= NULL
;
2793 goto recovery_tree_root
;
2796 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2797 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2798 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2800 mutex_lock(&tree_root
->objectid_mutex
);
2801 ret
= btrfs_find_highest_objectid(tree_root
,
2802 &tree_root
->highest_objectid
);
2804 mutex_unlock(&tree_root
->objectid_mutex
);
2805 goto recovery_tree_root
;
2808 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2810 mutex_unlock(&tree_root
->objectid_mutex
);
2812 ret
= btrfs_read_roots(fs_info
);
2814 goto recovery_tree_root
;
2816 fs_info
->generation
= generation
;
2817 fs_info
->last_trans_committed
= generation
;
2819 ret
= btrfs_recover_balance(fs_info
);
2821 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
2822 goto fail_block_groups
;
2825 ret
= btrfs_init_dev_stats(fs_info
);
2827 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
2828 goto fail_block_groups
;
2831 ret
= btrfs_init_dev_replace(fs_info
);
2833 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
2834 goto fail_block_groups
;
2837 btrfs_close_extra_devices(fs_devices
, 1);
2839 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
2841 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
2843 goto fail_block_groups
;
2846 ret
= btrfs_sysfs_add_device(fs_devices
);
2848 btrfs_err(fs_info
, "failed to init sysfs device interface: %d",
2850 goto fail_fsdev_sysfs
;
2853 ret
= btrfs_sysfs_add_mounted(fs_info
);
2855 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
2856 goto fail_fsdev_sysfs
;
2859 ret
= btrfs_init_space_info(fs_info
);
2861 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
2865 ret
= btrfs_read_block_groups(fs_info
);
2867 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
2871 if (!sb_rdonly(sb
) && !btrfs_check_rw_degradable(fs_info
, NULL
)) {
2873 "writeable mount is not allowed due to too many missing devices");
2877 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2879 if (IS_ERR(fs_info
->cleaner_kthread
))
2882 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2884 "btrfs-transaction");
2885 if (IS_ERR(fs_info
->transaction_kthread
))
2888 if (!btrfs_test_opt(fs_info
, NOSSD
) &&
2889 !fs_info
->fs_devices
->rotating
) {
2890 btrfs_set_and_info(fs_info
, SSD
, "enabling ssd optimizations");
2894 * Mount does not set all options immediately, we can do it now and do
2895 * not have to wait for transaction commit
2897 btrfs_apply_pending_changes(fs_info
);
2899 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2900 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
2901 ret
= btrfsic_mount(fs_info
, fs_devices
,
2902 btrfs_test_opt(fs_info
,
2903 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2905 fs_info
->check_integrity_print_mask
);
2908 "failed to initialize integrity check module: %d",
2912 ret
= btrfs_read_qgroup_config(fs_info
);
2914 goto fail_trans_kthread
;
2916 if (btrfs_build_ref_tree(fs_info
))
2917 btrfs_err(fs_info
, "couldn't build ref tree");
2919 /* do not make disk changes in broken FS or nologreplay is given */
2920 if (btrfs_super_log_root(disk_super
) != 0 &&
2921 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
2922 ret
= btrfs_replay_log(fs_info
, fs_devices
);
2929 ret
= btrfs_find_orphan_roots(fs_info
);
2933 if (!sb_rdonly(sb
)) {
2934 ret
= btrfs_cleanup_fs_roots(fs_info
);
2938 mutex_lock(&fs_info
->cleaner_mutex
);
2939 ret
= btrfs_recover_relocation(tree_root
);
2940 mutex_unlock(&fs_info
->cleaner_mutex
);
2942 btrfs_warn(fs_info
, "failed to recover relocation: %d",
2949 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2950 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2951 location
.offset
= 0;
2953 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2954 if (IS_ERR(fs_info
->fs_root
)) {
2955 err
= PTR_ERR(fs_info
->fs_root
);
2962 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
2963 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2964 clear_free_space_tree
= 1;
2965 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
2966 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
2967 btrfs_warn(fs_info
, "free space tree is invalid");
2968 clear_free_space_tree
= 1;
2971 if (clear_free_space_tree
) {
2972 btrfs_info(fs_info
, "clearing free space tree");
2973 ret
= btrfs_clear_free_space_tree(fs_info
);
2976 "failed to clear free space tree: %d", ret
);
2977 close_ctree(fs_info
);
2982 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
2983 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2984 btrfs_info(fs_info
, "creating free space tree");
2985 ret
= btrfs_create_free_space_tree(fs_info
);
2988 "failed to create free space tree: %d", ret
);
2989 close_ctree(fs_info
);
2994 down_read(&fs_info
->cleanup_work_sem
);
2995 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
2996 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
2997 up_read(&fs_info
->cleanup_work_sem
);
2998 close_ctree(fs_info
);
3001 up_read(&fs_info
->cleanup_work_sem
);
3003 ret
= btrfs_resume_balance_async(fs_info
);
3005 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3006 close_ctree(fs_info
);
3010 ret
= btrfs_resume_dev_replace_async(fs_info
);
3012 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3013 close_ctree(fs_info
);
3017 btrfs_qgroup_rescan_resume(fs_info
);
3019 if (!fs_info
->uuid_root
) {
3020 btrfs_info(fs_info
, "creating UUID tree");
3021 ret
= btrfs_create_uuid_tree(fs_info
);
3024 "failed to create the UUID tree: %d", ret
);
3025 close_ctree(fs_info
);
3028 } else if (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3029 fs_info
->generation
!=
3030 btrfs_super_uuid_tree_generation(disk_super
)) {
3031 btrfs_info(fs_info
, "checking UUID tree");
3032 ret
= btrfs_check_uuid_tree(fs_info
);
3035 "failed to check the UUID tree: %d", ret
);
3036 close_ctree(fs_info
);
3040 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3042 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3045 * backuproot only affect mount behavior, and if open_ctree succeeded,
3046 * no need to keep the flag
3048 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3053 btrfs_free_qgroup_config(fs_info
);
3055 kthread_stop(fs_info
->transaction_kthread
);
3056 btrfs_cleanup_transaction(fs_info
);
3057 btrfs_free_fs_roots(fs_info
);
3059 kthread_stop(fs_info
->cleaner_kthread
);
3062 * make sure we're done with the btree inode before we stop our
3065 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3068 btrfs_sysfs_remove_mounted(fs_info
);
3071 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3074 btrfs_put_block_group_cache(fs_info
);
3077 free_root_pointers(fs_info
, 1);
3078 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3081 btrfs_stop_all_workers(fs_info
);
3082 btrfs_free_block_groups(fs_info
);
3085 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3087 iput(fs_info
->btree_inode
);
3089 percpu_counter_destroy(&fs_info
->bio_counter
);
3090 fail_delalloc_bytes
:
3091 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3092 fail_dirty_metadata_bytes
:
3093 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3095 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3097 btrfs_free_stripe_hash_table(fs_info
);
3098 btrfs_close_devices(fs_info
->fs_devices
);
3102 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
3103 goto fail_tree_roots
;
3105 free_root_pointers(fs_info
, 0);
3107 /* don't use the log in recovery mode, it won't be valid */
3108 btrfs_set_super_log_root(disk_super
, 0);
3110 /* we can't trust the free space cache either */
3111 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3113 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3114 &num_backups_tried
, &backup_index
);
3116 goto fail_block_groups
;
3117 goto retry_root_backup
;
3119 ALLOW_ERROR_INJECTION(open_ctree
, ERRNO
);
3121 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3124 set_buffer_uptodate(bh
);
3126 struct btrfs_device
*device
= (struct btrfs_device
*)
3129 btrfs_warn_rl_in_rcu(device
->fs_info
,
3130 "lost page write due to IO error on %s",
3131 rcu_str_deref(device
->name
));
3132 /* note, we don't set_buffer_write_io_error because we have
3133 * our own ways of dealing with the IO errors
3135 clear_buffer_uptodate(bh
);
3136 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3142 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3143 struct buffer_head
**bh_ret
)
3145 struct buffer_head
*bh
;
3146 struct btrfs_super_block
*super
;
3149 bytenr
= btrfs_sb_offset(copy_num
);
3150 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3153 bh
= __bread(bdev
, bytenr
/ BTRFS_BDEV_BLOCKSIZE
, BTRFS_SUPER_INFO_SIZE
);
3155 * If we fail to read from the underlying devices, as of now
3156 * the best option we have is to mark it EIO.
3161 super
= (struct btrfs_super_block
*)bh
->b_data
;
3162 if (btrfs_super_bytenr(super
) != bytenr
||
3163 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3173 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3175 struct buffer_head
*bh
;
3176 struct buffer_head
*latest
= NULL
;
3177 struct btrfs_super_block
*super
;
3182 /* we would like to check all the supers, but that would make
3183 * a btrfs mount succeed after a mkfs from a different FS.
3184 * So, we need to add a special mount option to scan for
3185 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3187 for (i
= 0; i
< 1; i
++) {
3188 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3192 super
= (struct btrfs_super_block
*)bh
->b_data
;
3194 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3197 transid
= btrfs_super_generation(super
);
3204 return ERR_PTR(ret
);
3210 * Write superblock @sb to the @device. Do not wait for completion, all the
3211 * buffer heads we write are pinned.
3213 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3214 * the expected device size at commit time. Note that max_mirrors must be
3215 * same for write and wait phases.
3217 * Return number of errors when buffer head is not found or submission fails.
3219 static int write_dev_supers(struct btrfs_device
*device
,
3220 struct btrfs_super_block
*sb
, int max_mirrors
)
3222 struct buffer_head
*bh
;
3230 if (max_mirrors
== 0)
3231 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3233 for (i
= 0; i
< max_mirrors
; i
++) {
3234 bytenr
= btrfs_sb_offset(i
);
3235 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3236 device
->commit_total_bytes
)
3239 btrfs_set_super_bytenr(sb
, bytenr
);
3242 crc
= btrfs_csum_data((const char *)sb
+ BTRFS_CSUM_SIZE
, crc
,
3243 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
3244 btrfs_csum_final(crc
, sb
->csum
);
3246 /* One reference for us, and we leave it for the caller */
3247 bh
= __getblk(device
->bdev
, bytenr
/ BTRFS_BDEV_BLOCKSIZE
,
3248 BTRFS_SUPER_INFO_SIZE
);
3250 btrfs_err(device
->fs_info
,
3251 "couldn't get super buffer head for bytenr %llu",
3257 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3259 /* one reference for submit_bh */
3262 set_buffer_uptodate(bh
);
3264 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3265 bh
->b_private
= device
;
3268 * we fua the first super. The others we allow
3271 op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
;
3272 if (i
== 0 && !btrfs_test_opt(device
->fs_info
, NOBARRIER
))
3273 op_flags
|= REQ_FUA
;
3274 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3278 return errors
< i
? 0 : -1;
3282 * Wait for write completion of superblocks done by write_dev_supers,
3283 * @max_mirrors same for write and wait phases.
3285 * Return number of errors when buffer head is not found or not marked up to
3288 static int wait_dev_supers(struct btrfs_device
*device
, int max_mirrors
)
3290 struct buffer_head
*bh
;
3295 if (max_mirrors
== 0)
3296 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3298 for (i
= 0; i
< max_mirrors
; i
++) {
3299 bytenr
= btrfs_sb_offset(i
);
3300 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3301 device
->commit_total_bytes
)
3304 bh
= __find_get_block(device
->bdev
,
3305 bytenr
/ BTRFS_BDEV_BLOCKSIZE
,
3306 BTRFS_SUPER_INFO_SIZE
);
3312 if (!buffer_uptodate(bh
))
3315 /* drop our reference */
3318 /* drop the reference from the writing run */
3322 return errors
< i
? 0 : -1;
3326 * endio for the write_dev_flush, this will wake anyone waiting
3327 * for the barrier when it is done
3329 static void btrfs_end_empty_barrier(struct bio
*bio
)
3331 complete(bio
->bi_private
);
3335 * Submit a flush request to the device if it supports it. Error handling is
3336 * done in the waiting counterpart.
3338 static void write_dev_flush(struct btrfs_device
*device
)
3340 struct request_queue
*q
= bdev_get_queue(device
->bdev
);
3341 struct bio
*bio
= device
->flush_bio
;
3343 if (!test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
3347 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3348 bio_set_dev(bio
, device
->bdev
);
3349 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
3350 init_completion(&device
->flush_wait
);
3351 bio
->bi_private
= &device
->flush_wait
;
3353 btrfsic_submit_bio(bio
);
3354 set_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3358 * If the flush bio has been submitted by write_dev_flush, wait for it.
3360 static blk_status_t
wait_dev_flush(struct btrfs_device
*device
)
3362 struct bio
*bio
= device
->flush_bio
;
3364 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
))
3367 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3368 wait_for_completion_io(&device
->flush_wait
);
3370 return bio
->bi_status
;
3373 static int check_barrier_error(struct btrfs_fs_info
*fs_info
)
3375 if (!btrfs_check_rw_degradable(fs_info
, NULL
))
3381 * send an empty flush down to each device in parallel,
3382 * then wait for them
3384 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3386 struct list_head
*head
;
3387 struct btrfs_device
*dev
;
3388 int errors_wait
= 0;
3391 lockdep_assert_held(&info
->fs_devices
->device_list_mutex
);
3392 /* send down all the barriers */
3393 head
= &info
->fs_devices
->devices
;
3394 list_for_each_entry(dev
, head
, dev_list
) {
3395 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3399 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3400 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3403 write_dev_flush(dev
);
3404 dev
->last_flush_error
= BLK_STS_OK
;
3407 /* wait for all the barriers */
3408 list_for_each_entry(dev
, head
, dev_list
) {
3409 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3415 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3416 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3419 ret
= wait_dev_flush(dev
);
3421 dev
->last_flush_error
= ret
;
3422 btrfs_dev_stat_inc_and_print(dev
,
3423 BTRFS_DEV_STAT_FLUSH_ERRS
);
3430 * At some point we need the status of all disks
3431 * to arrive at the volume status. So error checking
3432 * is being pushed to a separate loop.
3434 return check_barrier_error(info
);
3439 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3442 int min_tolerated
= INT_MAX
;
3444 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3445 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3446 min_tolerated
= min(min_tolerated
,
3447 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3448 tolerated_failures
);
3450 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3451 if (raid_type
== BTRFS_RAID_SINGLE
)
3453 if (!(flags
& btrfs_raid_group
[raid_type
]))
3455 min_tolerated
= min(min_tolerated
,
3456 btrfs_raid_array
[raid_type
].
3457 tolerated_failures
);
3460 if (min_tolerated
== INT_MAX
) {
3461 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3465 return min_tolerated
;
3468 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3470 struct list_head
*head
;
3471 struct btrfs_device
*dev
;
3472 struct btrfs_super_block
*sb
;
3473 struct btrfs_dev_item
*dev_item
;
3477 int total_errors
= 0;
3480 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3483 * max_mirrors == 0 indicates we're from commit_transaction,
3484 * not from fsync where the tree roots in fs_info have not
3485 * been consistent on disk.
3487 if (max_mirrors
== 0)
3488 backup_super_roots(fs_info
);
3490 sb
= fs_info
->super_for_commit
;
3491 dev_item
= &sb
->dev_item
;
3493 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3494 head
= &fs_info
->fs_devices
->devices
;
3495 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3498 ret
= barrier_all_devices(fs_info
);
3501 &fs_info
->fs_devices
->device_list_mutex
);
3502 btrfs_handle_fs_error(fs_info
, ret
,
3503 "errors while submitting device barriers.");
3508 list_for_each_entry(dev
, head
, dev_list
) {
3513 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3514 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3517 btrfs_set_stack_device_generation(dev_item
, 0);
3518 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3519 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3520 btrfs_set_stack_device_total_bytes(dev_item
,
3521 dev
->commit_total_bytes
);
3522 btrfs_set_stack_device_bytes_used(dev_item
,
3523 dev
->commit_bytes_used
);
3524 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3525 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3526 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3527 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3528 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_FSID_SIZE
);
3530 flags
= btrfs_super_flags(sb
);
3531 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3533 ret
= write_dev_supers(dev
, sb
, max_mirrors
);
3537 if (total_errors
> max_errors
) {
3538 btrfs_err(fs_info
, "%d errors while writing supers",
3540 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3542 /* FUA is masked off if unsupported and can't be the reason */
3543 btrfs_handle_fs_error(fs_info
, -EIO
,
3544 "%d errors while writing supers",
3550 list_for_each_entry(dev
, head
, dev_list
) {
3553 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3554 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3557 ret
= wait_dev_supers(dev
, max_mirrors
);
3561 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3562 if (total_errors
> max_errors
) {
3563 btrfs_handle_fs_error(fs_info
, -EIO
,
3564 "%d errors while writing supers",
3571 /* Drop a fs root from the radix tree and free it. */
3572 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3573 struct btrfs_root
*root
)
3575 spin_lock(&fs_info
->fs_roots_radix_lock
);
3576 radix_tree_delete(&fs_info
->fs_roots_radix
,
3577 (unsigned long)root
->root_key
.objectid
);
3578 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3580 if (btrfs_root_refs(&root
->root_item
) == 0)
3581 synchronize_srcu(&fs_info
->subvol_srcu
);
3583 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3584 btrfs_free_log(NULL
, root
);
3585 if (root
->reloc_root
) {
3586 free_extent_buffer(root
->reloc_root
->node
);
3587 free_extent_buffer(root
->reloc_root
->commit_root
);
3588 btrfs_put_fs_root(root
->reloc_root
);
3589 root
->reloc_root
= NULL
;
3593 if (root
->free_ino_pinned
)
3594 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3595 if (root
->free_ino_ctl
)
3596 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3600 static void free_fs_root(struct btrfs_root
*root
)
3602 iput(root
->ino_cache_inode
);
3603 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3604 btrfs_free_block_rsv(root
->fs_info
, root
->orphan_block_rsv
);
3605 root
->orphan_block_rsv
= NULL
;
3607 free_anon_bdev(root
->anon_dev
);
3608 if (root
->subv_writers
)
3609 btrfs_free_subvolume_writers(root
->subv_writers
);
3610 free_extent_buffer(root
->node
);
3611 free_extent_buffer(root
->commit_root
);
3612 kfree(root
->free_ino_ctl
);
3613 kfree(root
->free_ino_pinned
);
3615 btrfs_put_fs_root(root
);
3618 void btrfs_free_fs_root(struct btrfs_root
*root
)
3623 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3625 u64 root_objectid
= 0;
3626 struct btrfs_root
*gang
[8];
3629 unsigned int ret
= 0;
3633 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3634 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3635 (void **)gang
, root_objectid
,
3638 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3641 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3643 for (i
= 0; i
< ret
; i
++) {
3644 /* Avoid to grab roots in dead_roots */
3645 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3649 /* grab all the search result for later use */
3650 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3652 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3654 for (i
= 0; i
< ret
; i
++) {
3657 root_objectid
= gang
[i
]->root_key
.objectid
;
3658 err
= btrfs_orphan_cleanup(gang
[i
]);
3661 btrfs_put_fs_root(gang
[i
]);
3666 /* release the uncleaned roots due to error */
3667 for (; i
< ret
; i
++) {
3669 btrfs_put_fs_root(gang
[i
]);
3674 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
3676 struct btrfs_root
*root
= fs_info
->tree_root
;
3677 struct btrfs_trans_handle
*trans
;
3679 mutex_lock(&fs_info
->cleaner_mutex
);
3680 btrfs_run_delayed_iputs(fs_info
);
3681 mutex_unlock(&fs_info
->cleaner_mutex
);
3682 wake_up_process(fs_info
->cleaner_kthread
);
3684 /* wait until ongoing cleanup work done */
3685 down_write(&fs_info
->cleanup_work_sem
);
3686 up_write(&fs_info
->cleanup_work_sem
);
3688 trans
= btrfs_join_transaction(root
);
3690 return PTR_ERR(trans
);
3691 return btrfs_commit_transaction(trans
);
3694 void close_ctree(struct btrfs_fs_info
*fs_info
)
3696 struct btrfs_root
*root
= fs_info
->tree_root
;
3699 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3701 /* wait for the qgroup rescan worker to stop */
3702 btrfs_qgroup_wait_for_completion(fs_info
, false);
3704 /* wait for the uuid_scan task to finish */
3705 down(&fs_info
->uuid_tree_rescan_sem
);
3706 /* avoid complains from lockdep et al., set sem back to initial state */
3707 up(&fs_info
->uuid_tree_rescan_sem
);
3709 /* pause restriper - we want to resume on mount */
3710 btrfs_pause_balance(fs_info
);
3712 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3714 btrfs_scrub_cancel(fs_info
);
3716 /* wait for any defraggers to finish */
3717 wait_event(fs_info
->transaction_wait
,
3718 (atomic_read(&fs_info
->defrag_running
) == 0));
3720 /* clear out the rbtree of defraggable inodes */
3721 btrfs_cleanup_defrag_inodes(fs_info
);
3723 cancel_work_sync(&fs_info
->async_reclaim_work
);
3725 if (!sb_rdonly(fs_info
->sb
)) {
3727 * If the cleaner thread is stopped and there are
3728 * block groups queued for removal, the deletion will be
3729 * skipped when we quit the cleaner thread.
3731 btrfs_delete_unused_bgs(fs_info
);
3733 ret
= btrfs_commit_super(fs_info
);
3735 btrfs_err(fs_info
, "commit super ret %d", ret
);
3738 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3739 btrfs_error_commit_super(fs_info
);
3741 kthread_stop(fs_info
->transaction_kthread
);
3742 kthread_stop(fs_info
->cleaner_kthread
);
3744 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
3746 btrfs_free_qgroup_config(fs_info
);
3748 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3749 btrfs_info(fs_info
, "at unmount delalloc count %lld",
3750 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3753 btrfs_sysfs_remove_mounted(fs_info
);
3754 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3756 btrfs_free_fs_roots(fs_info
);
3758 btrfs_put_block_group_cache(fs_info
);
3761 * we must make sure there is not any read request to
3762 * submit after we stopping all workers.
3764 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3765 btrfs_stop_all_workers(fs_info
);
3767 btrfs_free_block_groups(fs_info
);
3769 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3770 free_root_pointers(fs_info
, 1);
3772 iput(fs_info
->btree_inode
);
3774 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3775 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
3776 btrfsic_unmount(fs_info
->fs_devices
);
3779 btrfs_close_devices(fs_info
->fs_devices
);
3780 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3782 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3783 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3784 percpu_counter_destroy(&fs_info
->bio_counter
);
3785 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3787 btrfs_free_stripe_hash_table(fs_info
);
3788 btrfs_free_ref_cache(fs_info
);
3790 __btrfs_free_block_rsv(root
->orphan_block_rsv
);
3791 root
->orphan_block_rsv
= NULL
;
3793 while (!list_empty(&fs_info
->pinned_chunks
)) {
3794 struct extent_map
*em
;
3796 em
= list_first_entry(&fs_info
->pinned_chunks
,
3797 struct extent_map
, list
);
3798 list_del_init(&em
->list
);
3799 free_extent_map(em
);
3803 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3807 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3809 ret
= extent_buffer_uptodate(buf
);
3813 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3814 parent_transid
, atomic
);
3820 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3822 struct btrfs_fs_info
*fs_info
;
3823 struct btrfs_root
*root
;
3824 u64 transid
= btrfs_header_generation(buf
);
3827 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3829 * This is a fast path so only do this check if we have sanity tests
3830 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3831 * outside of the sanity tests.
3833 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
3836 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3837 fs_info
= root
->fs_info
;
3838 btrfs_assert_tree_locked(buf
);
3839 if (transid
!= fs_info
->generation
)
3840 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3841 buf
->start
, transid
, fs_info
->generation
);
3842 was_dirty
= set_extent_buffer_dirty(buf
);
3844 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
3846 fs_info
->dirty_metadata_batch
);
3847 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3849 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3850 * but item data not updated.
3851 * So here we should only check item pointers, not item data.
3853 if (btrfs_header_level(buf
) == 0 &&
3854 btrfs_check_leaf_relaxed(root
, buf
)) {
3855 btrfs_print_leaf(buf
);
3861 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
3865 * looks as though older kernels can get into trouble with
3866 * this code, they end up stuck in balance_dirty_pages forever
3870 if (current
->flags
& PF_MEMALLOC
)
3874 btrfs_balance_delayed_items(fs_info
);
3876 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
3877 BTRFS_DIRTY_METADATA_THRESH
);
3879 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
3883 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
3885 __btrfs_btree_balance_dirty(fs_info
, 1);
3888 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
3890 __btrfs_btree_balance_dirty(fs_info
, 0);
3893 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3895 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3896 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3898 return btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
);
3901 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
)
3903 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
3904 u64 nodesize
= btrfs_super_nodesize(sb
);
3905 u64 sectorsize
= btrfs_super_sectorsize(sb
);
3908 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
3909 btrfs_err(fs_info
, "no valid FS found");
3912 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
) {
3913 btrfs_err(fs_info
, "unrecognized or unsupported super flag: %llu",
3914 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
3917 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3918 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
3919 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
3922 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3923 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
3924 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
3927 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3928 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
3929 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
3934 * Check sectorsize and nodesize first, other check will need it.
3935 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3937 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
3938 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
3939 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
3942 /* Only PAGE SIZE is supported yet */
3943 if (sectorsize
!= PAGE_SIZE
) {
3945 "sectorsize %llu not supported yet, only support %lu",
3946 sectorsize
, PAGE_SIZE
);
3949 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
3950 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
3951 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
3954 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
3955 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
3956 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
3960 /* Root alignment check */
3961 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
3962 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
3963 btrfs_super_root(sb
));
3966 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
3967 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
3968 btrfs_super_chunk_root(sb
));
3971 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
3972 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
3973 btrfs_super_log_root(sb
));
3977 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_FSID_SIZE
) != 0) {
3979 "dev_item UUID does not match fsid: %pU != %pU",
3980 fs_info
->fsid
, sb
->dev_item
.fsid
);
3985 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3988 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
3989 btrfs_err(fs_info
, "bytes_used is too small %llu",
3990 btrfs_super_bytes_used(sb
));
3993 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
3994 btrfs_err(fs_info
, "invalid stripesize %u",
3995 btrfs_super_stripesize(sb
));
3998 if (btrfs_super_num_devices(sb
) > (1UL << 31))
3999 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
4000 btrfs_super_num_devices(sb
));
4001 if (btrfs_super_num_devices(sb
) == 0) {
4002 btrfs_err(fs_info
, "number of devices is 0");
4006 if (btrfs_super_bytenr(sb
) != BTRFS_SUPER_INFO_OFFSET
) {
4007 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
4008 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
4013 * Obvious sys_chunk_array corruptions, it must hold at least one key
4016 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4017 btrfs_err(fs_info
, "system chunk array too big %u > %u",
4018 btrfs_super_sys_array_size(sb
),
4019 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
4022 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
4023 + sizeof(struct btrfs_chunk
)) {
4024 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
4025 btrfs_super_sys_array_size(sb
),
4026 sizeof(struct btrfs_disk_key
)
4027 + sizeof(struct btrfs_chunk
));
4032 * The generation is a global counter, we'll trust it more than the others
4033 * but it's still possible that it's the one that's wrong.
4035 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
4037 "suspicious: generation < chunk_root_generation: %llu < %llu",
4038 btrfs_super_generation(sb
),
4039 btrfs_super_chunk_root_generation(sb
));
4040 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
4041 && btrfs_super_cache_generation(sb
) != (u64
)-1)
4043 "suspicious: generation < cache_generation: %llu < %llu",
4044 btrfs_super_generation(sb
),
4045 btrfs_super_cache_generation(sb
));
4050 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4052 mutex_lock(&fs_info
->cleaner_mutex
);
4053 btrfs_run_delayed_iputs(fs_info
);
4054 mutex_unlock(&fs_info
->cleaner_mutex
);
4056 down_write(&fs_info
->cleanup_work_sem
);
4057 up_write(&fs_info
->cleanup_work_sem
);
4059 /* cleanup FS via transaction */
4060 btrfs_cleanup_transaction(fs_info
);
4063 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4065 struct btrfs_ordered_extent
*ordered
;
4067 spin_lock(&root
->ordered_extent_lock
);
4069 * This will just short circuit the ordered completion stuff which will
4070 * make sure the ordered extent gets properly cleaned up.
4072 list_for_each_entry(ordered
, &root
->ordered_extents
,
4074 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4075 spin_unlock(&root
->ordered_extent_lock
);
4078 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4080 struct btrfs_root
*root
;
4081 struct list_head splice
;
4083 INIT_LIST_HEAD(&splice
);
4085 spin_lock(&fs_info
->ordered_root_lock
);
4086 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4087 while (!list_empty(&splice
)) {
4088 root
= list_first_entry(&splice
, struct btrfs_root
,
4090 list_move_tail(&root
->ordered_root
,
4091 &fs_info
->ordered_roots
);
4093 spin_unlock(&fs_info
->ordered_root_lock
);
4094 btrfs_destroy_ordered_extents(root
);
4097 spin_lock(&fs_info
->ordered_root_lock
);
4099 spin_unlock(&fs_info
->ordered_root_lock
);
4102 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4103 struct btrfs_fs_info
*fs_info
)
4105 struct rb_node
*node
;
4106 struct btrfs_delayed_ref_root
*delayed_refs
;
4107 struct btrfs_delayed_ref_node
*ref
;
4110 delayed_refs
= &trans
->delayed_refs
;
4112 spin_lock(&delayed_refs
->lock
);
4113 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4114 spin_unlock(&delayed_refs
->lock
);
4115 btrfs_info(fs_info
, "delayed_refs has NO entry");
4119 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4120 struct btrfs_delayed_ref_head
*head
;
4122 bool pin_bytes
= false;
4124 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4126 if (!mutex_trylock(&head
->mutex
)) {
4127 refcount_inc(&head
->refs
);
4128 spin_unlock(&delayed_refs
->lock
);
4130 mutex_lock(&head
->mutex
);
4131 mutex_unlock(&head
->mutex
);
4132 btrfs_put_delayed_ref_head(head
);
4133 spin_lock(&delayed_refs
->lock
);
4136 spin_lock(&head
->lock
);
4137 while ((n
= rb_first(&head
->ref_tree
)) != NULL
) {
4138 ref
= rb_entry(n
, struct btrfs_delayed_ref_node
,
4141 rb_erase(&ref
->ref_node
, &head
->ref_tree
);
4142 RB_CLEAR_NODE(&ref
->ref_node
);
4143 if (!list_empty(&ref
->add_list
))
4144 list_del(&ref
->add_list
);
4145 atomic_dec(&delayed_refs
->num_entries
);
4146 btrfs_put_delayed_ref(ref
);
4148 if (head
->must_insert_reserved
)
4150 btrfs_free_delayed_extent_op(head
->extent_op
);
4151 delayed_refs
->num_heads
--;
4152 if (head
->processing
== 0)
4153 delayed_refs
->num_heads_ready
--;
4154 atomic_dec(&delayed_refs
->num_entries
);
4155 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4156 RB_CLEAR_NODE(&head
->href_node
);
4157 spin_unlock(&head
->lock
);
4158 spin_unlock(&delayed_refs
->lock
);
4159 mutex_unlock(&head
->mutex
);
4162 btrfs_pin_extent(fs_info
, head
->bytenr
,
4163 head
->num_bytes
, 1);
4164 btrfs_put_delayed_ref_head(head
);
4166 spin_lock(&delayed_refs
->lock
);
4169 spin_unlock(&delayed_refs
->lock
);
4174 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4176 struct btrfs_inode
*btrfs_inode
;
4177 struct list_head splice
;
4179 INIT_LIST_HEAD(&splice
);
4181 spin_lock(&root
->delalloc_lock
);
4182 list_splice_init(&root
->delalloc_inodes
, &splice
);
4184 while (!list_empty(&splice
)) {
4185 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4188 list_del_init(&btrfs_inode
->delalloc_inodes
);
4189 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
4190 &btrfs_inode
->runtime_flags
);
4191 spin_unlock(&root
->delalloc_lock
);
4193 btrfs_invalidate_inodes(btrfs_inode
->root
);
4195 spin_lock(&root
->delalloc_lock
);
4198 spin_unlock(&root
->delalloc_lock
);
4201 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4203 struct btrfs_root
*root
;
4204 struct list_head splice
;
4206 INIT_LIST_HEAD(&splice
);
4208 spin_lock(&fs_info
->delalloc_root_lock
);
4209 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4210 while (!list_empty(&splice
)) {
4211 root
= list_first_entry(&splice
, struct btrfs_root
,
4213 list_del_init(&root
->delalloc_root
);
4214 root
= btrfs_grab_fs_root(root
);
4216 spin_unlock(&fs_info
->delalloc_root_lock
);
4218 btrfs_destroy_delalloc_inodes(root
);
4219 btrfs_put_fs_root(root
);
4221 spin_lock(&fs_info
->delalloc_root_lock
);
4223 spin_unlock(&fs_info
->delalloc_root_lock
);
4226 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4227 struct extent_io_tree
*dirty_pages
,
4231 struct extent_buffer
*eb
;
4236 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4241 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4242 while (start
<= end
) {
4243 eb
= find_extent_buffer(fs_info
, start
);
4244 start
+= fs_info
->nodesize
;
4247 wait_on_extent_buffer_writeback(eb
);
4249 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4251 clear_extent_buffer_dirty(eb
);
4252 free_extent_buffer_stale(eb
);
4259 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4260 struct extent_io_tree
*pinned_extents
)
4262 struct extent_io_tree
*unpin
;
4268 unpin
= pinned_extents
;
4271 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4272 EXTENT_DIRTY
, NULL
);
4276 clear_extent_dirty(unpin
, start
, end
);
4277 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4282 if (unpin
== &fs_info
->freed_extents
[0])
4283 unpin
= &fs_info
->freed_extents
[1];
4285 unpin
= &fs_info
->freed_extents
[0];
4293 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache
*cache
)
4295 struct inode
*inode
;
4297 inode
= cache
->io_ctl
.inode
;
4299 invalidate_inode_pages2(inode
->i_mapping
);
4300 BTRFS_I(inode
)->generation
= 0;
4301 cache
->io_ctl
.inode
= NULL
;
4304 btrfs_put_block_group(cache
);
4307 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4308 struct btrfs_fs_info
*fs_info
)
4310 struct btrfs_block_group_cache
*cache
;
4312 spin_lock(&cur_trans
->dirty_bgs_lock
);
4313 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4314 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4315 struct btrfs_block_group_cache
,
4318 btrfs_err(fs_info
, "orphan block group dirty_bgs list");
4319 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4323 if (!list_empty(&cache
->io_list
)) {
4324 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4325 list_del_init(&cache
->io_list
);
4326 btrfs_cleanup_bg_io(cache
);
4327 spin_lock(&cur_trans
->dirty_bgs_lock
);
4330 list_del_init(&cache
->dirty_list
);
4331 spin_lock(&cache
->lock
);
4332 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4333 spin_unlock(&cache
->lock
);
4335 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4336 btrfs_put_block_group(cache
);
4337 spin_lock(&cur_trans
->dirty_bgs_lock
);
4339 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4341 while (!list_empty(&cur_trans
->io_bgs
)) {
4342 cache
= list_first_entry(&cur_trans
->io_bgs
,
4343 struct btrfs_block_group_cache
,
4346 btrfs_err(fs_info
, "orphan block group on io_bgs list");
4350 list_del_init(&cache
->io_list
);
4351 spin_lock(&cache
->lock
);
4352 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4353 spin_unlock(&cache
->lock
);
4354 btrfs_cleanup_bg_io(cache
);
4358 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4359 struct btrfs_fs_info
*fs_info
)
4361 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4362 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4363 ASSERT(list_empty(&cur_trans
->io_bgs
));
4365 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4367 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4368 wake_up(&fs_info
->transaction_blocked_wait
);
4370 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4371 wake_up(&fs_info
->transaction_wait
);
4373 btrfs_destroy_delayed_inodes(fs_info
);
4374 btrfs_assert_delayed_root_empty(fs_info
);
4376 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4378 btrfs_destroy_pinned_extent(fs_info
,
4379 fs_info
->pinned_extents
);
4381 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4382 wake_up(&cur_trans
->commit_wait
);
4385 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4387 struct btrfs_transaction
*t
;
4389 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4391 spin_lock(&fs_info
->trans_lock
);
4392 while (!list_empty(&fs_info
->trans_list
)) {
4393 t
= list_first_entry(&fs_info
->trans_list
,
4394 struct btrfs_transaction
, list
);
4395 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4396 refcount_inc(&t
->use_count
);
4397 spin_unlock(&fs_info
->trans_lock
);
4398 btrfs_wait_for_commit(fs_info
, t
->transid
);
4399 btrfs_put_transaction(t
);
4400 spin_lock(&fs_info
->trans_lock
);
4403 if (t
== fs_info
->running_transaction
) {
4404 t
->state
= TRANS_STATE_COMMIT_DOING
;
4405 spin_unlock(&fs_info
->trans_lock
);
4407 * We wait for 0 num_writers since we don't hold a trans
4408 * handle open currently for this transaction.
4410 wait_event(t
->writer_wait
,
4411 atomic_read(&t
->num_writers
) == 0);
4413 spin_unlock(&fs_info
->trans_lock
);
4415 btrfs_cleanup_one_transaction(t
, fs_info
);
4417 spin_lock(&fs_info
->trans_lock
);
4418 if (t
== fs_info
->running_transaction
)
4419 fs_info
->running_transaction
= NULL
;
4420 list_del_init(&t
->list
);
4421 spin_unlock(&fs_info
->trans_lock
);
4423 btrfs_put_transaction(t
);
4424 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4425 spin_lock(&fs_info
->trans_lock
);
4427 spin_unlock(&fs_info
->trans_lock
);
4428 btrfs_destroy_all_ordered_extents(fs_info
);
4429 btrfs_destroy_delayed_inodes(fs_info
);
4430 btrfs_assert_delayed_root_empty(fs_info
);
4431 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
4432 btrfs_destroy_all_delalloc_inodes(fs_info
);
4433 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4438 static struct btrfs_fs_info
*btree_fs_info(void *private_data
)
4440 struct inode
*inode
= private_data
;
4441 return btrfs_sb(inode
->i_sb
);
4444 static const struct extent_io_ops btree_extent_io_ops
= {
4445 /* mandatory callbacks */
4446 .submit_bio_hook
= btree_submit_bio_hook
,
4447 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4448 /* note we're sharing with inode.c for the merge bio hook */
4449 .merge_bio_hook
= btrfs_merge_bio_hook
,
4450 .readpage_io_failed_hook
= btree_io_failed_hook
,
4451 .set_range_writeback
= btrfs_set_range_writeback
,
4452 .tree_fs_info
= btree_fs_info
,
4454 /* optional callbacks */