2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include <linux/iversion.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
44 #include "compression.h"
46 static struct kmem_cache
*btrfs_inode_defrag_cachep
;
48 * when auto defrag is enabled we
49 * queue up these defrag structs to remember which
50 * inodes need defragging passes
53 struct rb_node rb_node
;
57 * transid where the defrag was added, we search for
58 * extents newer than this
65 /* last offset we were able to defrag */
68 /* if we've wrapped around back to zero once already */
72 static int __compare_inode_defrag(struct inode_defrag
*defrag1
,
73 struct inode_defrag
*defrag2
)
75 if (defrag1
->root
> defrag2
->root
)
77 else if (defrag1
->root
< defrag2
->root
)
79 else if (defrag1
->ino
> defrag2
->ino
)
81 else if (defrag1
->ino
< defrag2
->ino
)
87 /* pop a record for an inode into the defrag tree. The lock
88 * must be held already
90 * If you're inserting a record for an older transid than an
91 * existing record, the transid already in the tree is lowered
93 * If an existing record is found the defrag item you
96 static int __btrfs_add_inode_defrag(struct btrfs_inode
*inode
,
97 struct inode_defrag
*defrag
)
99 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
100 struct inode_defrag
*entry
;
102 struct rb_node
*parent
= NULL
;
105 p
= &fs_info
->defrag_inodes
.rb_node
;
108 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
110 ret
= __compare_inode_defrag(defrag
, entry
);
112 p
= &parent
->rb_left
;
114 p
= &parent
->rb_right
;
116 /* if we're reinserting an entry for
117 * an old defrag run, make sure to
118 * lower the transid of our existing record
120 if (defrag
->transid
< entry
->transid
)
121 entry
->transid
= defrag
->transid
;
122 if (defrag
->last_offset
> entry
->last_offset
)
123 entry
->last_offset
= defrag
->last_offset
;
127 set_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
);
128 rb_link_node(&defrag
->rb_node
, parent
, p
);
129 rb_insert_color(&defrag
->rb_node
, &fs_info
->defrag_inodes
);
133 static inline int __need_auto_defrag(struct btrfs_fs_info
*fs_info
)
135 if (!btrfs_test_opt(fs_info
, AUTO_DEFRAG
))
138 if (btrfs_fs_closing(fs_info
))
145 * insert a defrag record for this inode if auto defrag is
148 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
149 struct btrfs_inode
*inode
)
151 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
152 struct btrfs_root
*root
= inode
->root
;
153 struct inode_defrag
*defrag
;
157 if (!__need_auto_defrag(fs_info
))
160 if (test_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
))
164 transid
= trans
->transid
;
166 transid
= inode
->root
->last_trans
;
168 defrag
= kmem_cache_zalloc(btrfs_inode_defrag_cachep
, GFP_NOFS
);
172 defrag
->ino
= btrfs_ino(inode
);
173 defrag
->transid
= transid
;
174 defrag
->root
= root
->root_key
.objectid
;
176 spin_lock(&fs_info
->defrag_inodes_lock
);
177 if (!test_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
)) {
179 * If we set IN_DEFRAG flag and evict the inode from memory,
180 * and then re-read this inode, this new inode doesn't have
181 * IN_DEFRAG flag. At the case, we may find the existed defrag.
183 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
185 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
187 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
189 spin_unlock(&fs_info
->defrag_inodes_lock
);
194 * Requeue the defrag object. If there is a defrag object that points to
195 * the same inode in the tree, we will merge them together (by
196 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
198 static void btrfs_requeue_inode_defrag(struct btrfs_inode
*inode
,
199 struct inode_defrag
*defrag
)
201 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
204 if (!__need_auto_defrag(fs_info
))
208 * Here we don't check the IN_DEFRAG flag, because we need merge
211 spin_lock(&fs_info
->defrag_inodes_lock
);
212 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
213 spin_unlock(&fs_info
->defrag_inodes_lock
);
218 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
222 * pick the defragable inode that we want, if it doesn't exist, we will get
225 static struct inode_defrag
*
226 btrfs_pick_defrag_inode(struct btrfs_fs_info
*fs_info
, u64 root
, u64 ino
)
228 struct inode_defrag
*entry
= NULL
;
229 struct inode_defrag tmp
;
231 struct rb_node
*parent
= NULL
;
237 spin_lock(&fs_info
->defrag_inodes_lock
);
238 p
= fs_info
->defrag_inodes
.rb_node
;
241 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
243 ret
= __compare_inode_defrag(&tmp
, entry
);
247 p
= parent
->rb_right
;
252 if (parent
&& __compare_inode_defrag(&tmp
, entry
) > 0) {
253 parent
= rb_next(parent
);
255 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
261 rb_erase(parent
, &fs_info
->defrag_inodes
);
262 spin_unlock(&fs_info
->defrag_inodes_lock
);
266 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info
*fs_info
)
268 struct inode_defrag
*defrag
;
269 struct rb_node
*node
;
271 spin_lock(&fs_info
->defrag_inodes_lock
);
272 node
= rb_first(&fs_info
->defrag_inodes
);
274 rb_erase(node
, &fs_info
->defrag_inodes
);
275 defrag
= rb_entry(node
, struct inode_defrag
, rb_node
);
276 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
278 cond_resched_lock(&fs_info
->defrag_inodes_lock
);
280 node
= rb_first(&fs_info
->defrag_inodes
);
282 spin_unlock(&fs_info
->defrag_inodes_lock
);
285 #define BTRFS_DEFRAG_BATCH 1024
287 static int __btrfs_run_defrag_inode(struct btrfs_fs_info
*fs_info
,
288 struct inode_defrag
*defrag
)
290 struct btrfs_root
*inode_root
;
292 struct btrfs_key key
;
293 struct btrfs_ioctl_defrag_range_args range
;
299 key
.objectid
= defrag
->root
;
300 key
.type
= BTRFS_ROOT_ITEM_KEY
;
301 key
.offset
= (u64
)-1;
303 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
305 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
306 if (IS_ERR(inode_root
)) {
307 ret
= PTR_ERR(inode_root
);
311 key
.objectid
= defrag
->ino
;
312 key
.type
= BTRFS_INODE_ITEM_KEY
;
314 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
316 ret
= PTR_ERR(inode
);
319 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
321 /* do a chunk of defrag */
322 clear_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
323 memset(&range
, 0, sizeof(range
));
325 range
.start
= defrag
->last_offset
;
327 sb_start_write(fs_info
->sb
);
328 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
330 sb_end_write(fs_info
->sb
);
332 * if we filled the whole defrag batch, there
333 * must be more work to do. Queue this defrag
336 if (num_defrag
== BTRFS_DEFRAG_BATCH
) {
337 defrag
->last_offset
= range
.start
;
338 btrfs_requeue_inode_defrag(BTRFS_I(inode
), defrag
);
339 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
341 * we didn't fill our defrag batch, but
342 * we didn't start at zero. Make sure we loop
343 * around to the start of the file.
345 defrag
->last_offset
= 0;
347 btrfs_requeue_inode_defrag(BTRFS_I(inode
), defrag
);
349 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
355 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
356 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
361 * run through the list of inodes in the FS that need
364 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
366 struct inode_defrag
*defrag
;
368 u64 root_objectid
= 0;
370 atomic_inc(&fs_info
->defrag_running
);
372 /* Pause the auto defragger. */
373 if (test_bit(BTRFS_FS_STATE_REMOUNTING
,
377 if (!__need_auto_defrag(fs_info
))
380 /* find an inode to defrag */
381 defrag
= btrfs_pick_defrag_inode(fs_info
, root_objectid
,
384 if (root_objectid
|| first_ino
) {
393 first_ino
= defrag
->ino
+ 1;
394 root_objectid
= defrag
->root
;
396 __btrfs_run_defrag_inode(fs_info
, defrag
);
398 atomic_dec(&fs_info
->defrag_running
);
401 * during unmount, we use the transaction_wait queue to
402 * wait for the defragger to stop
404 wake_up(&fs_info
->transaction_wait
);
408 /* simple helper to fault in pages and copy. This should go away
409 * and be replaced with calls into generic code.
411 static noinline
int btrfs_copy_from_user(loff_t pos
, size_t write_bytes
,
412 struct page
**prepared_pages
,
416 size_t total_copied
= 0;
418 int offset
= pos
& (PAGE_SIZE
- 1);
420 while (write_bytes
> 0) {
421 size_t count
= min_t(size_t,
422 PAGE_SIZE
- offset
, write_bytes
);
423 struct page
*page
= prepared_pages
[pg
];
425 * Copy data from userspace to the current page
427 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
429 /* Flush processor's dcache for this page */
430 flush_dcache_page(page
);
433 * if we get a partial write, we can end up with
434 * partially up to date pages. These add
435 * a lot of complexity, so make sure they don't
436 * happen by forcing this copy to be retried.
438 * The rest of the btrfs_file_write code will fall
439 * back to page at a time copies after we return 0.
441 if (!PageUptodate(page
) && copied
< count
)
444 iov_iter_advance(i
, copied
);
445 write_bytes
-= copied
;
446 total_copied
+= copied
;
448 /* Return to btrfs_file_write_iter to fault page */
449 if (unlikely(copied
== 0))
452 if (copied
< PAGE_SIZE
- offset
) {
463 * unlocks pages after btrfs_file_write is done with them
465 static void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
468 for (i
= 0; i
< num_pages
; i
++) {
469 /* page checked is some magic around finding pages that
470 * have been modified without going through btrfs_set_page_dirty
471 * clear it here. There should be no need to mark the pages
472 * accessed as prepare_pages should have marked them accessed
473 * in prepare_pages via find_or_create_page()
475 ClearPageChecked(pages
[i
]);
476 unlock_page(pages
[i
]);
481 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode
*inode
,
484 struct extent_state
**cached_state
)
486 u64 search_start
= start
;
487 const u64 end
= start
+ len
- 1;
489 while (search_start
< end
) {
490 const u64 search_len
= end
- search_start
+ 1;
491 struct extent_map
*em
;
495 em
= btrfs_get_extent(inode
, NULL
, 0, search_start
,
500 if (em
->block_start
!= EXTENT_MAP_HOLE
)
504 if (em
->start
< search_start
)
505 em_len
-= search_start
- em
->start
;
506 if (em_len
> search_len
)
509 ret
= set_extent_bit(&inode
->io_tree
, search_start
,
510 search_start
+ em_len
- 1,
512 NULL
, cached_state
, GFP_NOFS
);
514 search_start
= extent_map_end(em
);
523 * after copy_from_user, pages need to be dirtied and we need to make
524 * sure holes are created between the current EOF and the start of
525 * any next extents (if required).
527 * this also makes the decision about creating an inline extent vs
528 * doing real data extents, marking pages dirty and delalloc as required.
530 int btrfs_dirty_pages(struct inode
*inode
, struct page
**pages
,
531 size_t num_pages
, loff_t pos
, size_t write_bytes
,
532 struct extent_state
**cached
)
534 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
539 u64 end_of_last_block
;
540 u64 end_pos
= pos
+ write_bytes
;
541 loff_t isize
= i_size_read(inode
);
542 unsigned int extra_bits
= 0;
544 start_pos
= pos
& ~((u64
) fs_info
->sectorsize
- 1);
545 num_bytes
= round_up(write_bytes
+ pos
- start_pos
,
546 fs_info
->sectorsize
);
548 end_of_last_block
= start_pos
+ num_bytes
- 1;
550 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))) {
551 if (start_pos
>= isize
&&
552 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)) {
554 * There can't be any extents following eof in this case
555 * so just set the delalloc new bit for the range
558 extra_bits
|= EXTENT_DELALLOC_NEW
;
560 err
= btrfs_find_new_delalloc_bytes(BTRFS_I(inode
),
568 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
569 extra_bits
, cached
, 0);
573 for (i
= 0; i
< num_pages
; i
++) {
574 struct page
*p
= pages
[i
];
581 * we've only changed i_size in ram, and we haven't updated
582 * the disk i_size. There is no need to log the inode
586 i_size_write(inode
, end_pos
);
591 * this drops all the extents in the cache that intersect the range
592 * [start, end]. Existing extents are split as required.
594 void btrfs_drop_extent_cache(struct btrfs_inode
*inode
, u64 start
, u64 end
,
597 struct extent_map
*em
;
598 struct extent_map
*split
= NULL
;
599 struct extent_map
*split2
= NULL
;
600 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
601 u64 len
= end
- start
+ 1;
609 WARN_ON(end
< start
);
610 if (end
== (u64
)-1) {
619 split
= alloc_extent_map();
621 split2
= alloc_extent_map();
622 if (!split
|| !split2
)
625 write_lock(&em_tree
->lock
);
626 em
= lookup_extent_mapping(em_tree
, start
, len
);
628 write_unlock(&em_tree
->lock
);
632 gen
= em
->generation
;
633 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
634 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
636 write_unlock(&em_tree
->lock
);
639 start
= em
->start
+ em
->len
;
641 len
= start
+ len
- (em
->start
+ em
->len
);
643 write_unlock(&em_tree
->lock
);
646 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
647 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
648 clear_bit(EXTENT_FLAG_LOGGING
, &flags
);
649 modified
= !list_empty(&em
->list
);
653 if (em
->start
< start
) {
654 split
->start
= em
->start
;
655 split
->len
= start
- em
->start
;
657 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
658 split
->orig_start
= em
->orig_start
;
659 split
->block_start
= em
->block_start
;
662 split
->block_len
= em
->block_len
;
664 split
->block_len
= split
->len
;
665 split
->orig_block_len
= max(split
->block_len
,
667 split
->ram_bytes
= em
->ram_bytes
;
669 split
->orig_start
= split
->start
;
670 split
->block_len
= 0;
671 split
->block_start
= em
->block_start
;
672 split
->orig_block_len
= 0;
673 split
->ram_bytes
= split
->len
;
676 split
->generation
= gen
;
677 split
->bdev
= em
->bdev
;
678 split
->flags
= flags
;
679 split
->compress_type
= em
->compress_type
;
680 replace_extent_mapping(em_tree
, em
, split
, modified
);
681 free_extent_map(split
);
685 if (testend
&& em
->start
+ em
->len
> start
+ len
) {
686 u64 diff
= start
+ len
- em
->start
;
688 split
->start
= start
+ len
;
689 split
->len
= em
->start
+ em
->len
- (start
+ len
);
690 split
->bdev
= em
->bdev
;
691 split
->flags
= flags
;
692 split
->compress_type
= em
->compress_type
;
693 split
->generation
= gen
;
695 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
696 split
->orig_block_len
= max(em
->block_len
,
699 split
->ram_bytes
= em
->ram_bytes
;
701 split
->block_len
= em
->block_len
;
702 split
->block_start
= em
->block_start
;
703 split
->orig_start
= em
->orig_start
;
705 split
->block_len
= split
->len
;
706 split
->block_start
= em
->block_start
708 split
->orig_start
= em
->orig_start
;
711 split
->ram_bytes
= split
->len
;
712 split
->orig_start
= split
->start
;
713 split
->block_len
= 0;
714 split
->block_start
= em
->block_start
;
715 split
->orig_block_len
= 0;
718 if (extent_map_in_tree(em
)) {
719 replace_extent_mapping(em_tree
, em
, split
,
722 ret
= add_extent_mapping(em_tree
, split
,
724 ASSERT(ret
== 0); /* Logic error */
726 free_extent_map(split
);
730 if (extent_map_in_tree(em
))
731 remove_extent_mapping(em_tree
, em
);
732 write_unlock(&em_tree
->lock
);
736 /* once for the tree*/
740 free_extent_map(split
);
742 free_extent_map(split2
);
746 * this is very complex, but the basic idea is to drop all extents
747 * in the range start - end. hint_block is filled in with a block number
748 * that would be a good hint to the block allocator for this file.
750 * If an extent intersects the range but is not entirely inside the range
751 * it is either truncated or split. Anything entirely inside the range
752 * is deleted from the tree.
754 int __btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
755 struct btrfs_root
*root
, struct inode
*inode
,
756 struct btrfs_path
*path
, u64 start
, u64 end
,
757 u64
*drop_end
, int drop_cache
,
759 u32 extent_item_size
,
762 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
763 struct extent_buffer
*leaf
;
764 struct btrfs_file_extent_item
*fi
;
765 struct btrfs_key key
;
766 struct btrfs_key new_key
;
767 u64 ino
= btrfs_ino(BTRFS_I(inode
));
768 u64 search_start
= start
;
771 u64 extent_offset
= 0;
773 u64 last_end
= start
;
779 int modify_tree
= -1;
782 int leafs_visited
= 0;
785 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
- 1, 0);
787 if (start
>= BTRFS_I(inode
)->disk_i_size
&& !replace_extent
)
790 update_refs
= (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
791 root
== fs_info
->tree_root
);
794 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
795 search_start
, modify_tree
);
798 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
799 leaf
= path
->nodes
[0];
800 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
801 if (key
.objectid
== ino
&&
802 key
.type
== BTRFS_EXTENT_DATA_KEY
)
808 leaf
= path
->nodes
[0];
809 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
811 ret
= btrfs_next_leaf(root
, path
);
819 leaf
= path
->nodes
[0];
823 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
825 if (key
.objectid
> ino
)
827 if (WARN_ON_ONCE(key
.objectid
< ino
) ||
828 key
.type
< BTRFS_EXTENT_DATA_KEY
) {
833 if (key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
836 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
837 struct btrfs_file_extent_item
);
838 extent_type
= btrfs_file_extent_type(leaf
, fi
);
840 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
841 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
842 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
843 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
844 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
845 extent_end
= key
.offset
+
846 btrfs_file_extent_num_bytes(leaf
, fi
);
847 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
848 extent_end
= key
.offset
+
849 btrfs_file_extent_inline_len(leaf
,
857 * Don't skip extent items representing 0 byte lengths. They
858 * used to be created (bug) if while punching holes we hit
859 * -ENOSPC condition. So if we find one here, just ensure we
860 * delete it, otherwise we would insert a new file extent item
861 * with the same key (offset) as that 0 bytes length file
862 * extent item in the call to setup_items_for_insert() later
865 if (extent_end
== key
.offset
&& extent_end
>= search_start
) {
866 last_end
= extent_end
;
867 goto delete_extent_item
;
870 if (extent_end
<= search_start
) {
876 search_start
= max(key
.offset
, start
);
877 if (recow
|| !modify_tree
) {
879 btrfs_release_path(path
);
884 * | - range to drop - |
885 * | -------- extent -------- |
887 if (start
> key
.offset
&& end
< extent_end
) {
889 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
894 memcpy(&new_key
, &key
, sizeof(new_key
));
895 new_key
.offset
= start
;
896 ret
= btrfs_duplicate_item(trans
, root
, path
,
898 if (ret
== -EAGAIN
) {
899 btrfs_release_path(path
);
905 leaf
= path
->nodes
[0];
906 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
907 struct btrfs_file_extent_item
);
908 btrfs_set_file_extent_num_bytes(leaf
, fi
,
911 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
912 struct btrfs_file_extent_item
);
914 extent_offset
+= start
- key
.offset
;
915 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
916 btrfs_set_file_extent_num_bytes(leaf
, fi
,
918 btrfs_mark_buffer_dirty(leaf
);
920 if (update_refs
&& disk_bytenr
> 0) {
921 ret
= btrfs_inc_extent_ref(trans
, root
,
922 disk_bytenr
, num_bytes
, 0,
923 root
->root_key
.objectid
,
925 start
- extent_offset
);
926 BUG_ON(ret
); /* -ENOMEM */
931 * From here on out we will have actually dropped something, so
932 * last_end can be updated.
934 last_end
= extent_end
;
937 * | ---- range to drop ----- |
938 * | -------- extent -------- |
940 if (start
<= key
.offset
&& end
< extent_end
) {
941 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
946 memcpy(&new_key
, &key
, sizeof(new_key
));
947 new_key
.offset
= end
;
948 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
950 extent_offset
+= end
- key
.offset
;
951 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
952 btrfs_set_file_extent_num_bytes(leaf
, fi
,
954 btrfs_mark_buffer_dirty(leaf
);
955 if (update_refs
&& disk_bytenr
> 0)
956 inode_sub_bytes(inode
, end
- key
.offset
);
960 search_start
= extent_end
;
962 * | ---- range to drop ----- |
963 * | -------- extent -------- |
965 if (start
> key
.offset
&& end
>= extent_end
) {
967 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
972 btrfs_set_file_extent_num_bytes(leaf
, fi
,
974 btrfs_mark_buffer_dirty(leaf
);
975 if (update_refs
&& disk_bytenr
> 0)
976 inode_sub_bytes(inode
, extent_end
- start
);
977 if (end
== extent_end
)
985 * | ---- range to drop ----- |
986 * | ------ extent ------ |
988 if (start
<= key
.offset
&& end
>= extent_end
) {
991 del_slot
= path
->slots
[0];
994 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
999 extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1000 inode_sub_bytes(inode
,
1001 extent_end
- key
.offset
);
1002 extent_end
= ALIGN(extent_end
,
1003 fs_info
->sectorsize
);
1004 } else if (update_refs
&& disk_bytenr
> 0) {
1005 ret
= btrfs_free_extent(trans
, root
,
1006 disk_bytenr
, num_bytes
, 0,
1007 root
->root_key
.objectid
,
1008 key
.objectid
, key
.offset
-
1010 BUG_ON(ret
); /* -ENOMEM */
1011 inode_sub_bytes(inode
,
1012 extent_end
- key
.offset
);
1015 if (end
== extent_end
)
1018 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
1023 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
1026 btrfs_abort_transaction(trans
, ret
);
1033 btrfs_release_path(path
);
1040 if (!ret
&& del_nr
> 0) {
1042 * Set path->slots[0] to first slot, so that after the delete
1043 * if items are move off from our leaf to its immediate left or
1044 * right neighbor leafs, we end up with a correct and adjusted
1045 * path->slots[0] for our insertion (if replace_extent != 0).
1047 path
->slots
[0] = del_slot
;
1048 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1050 btrfs_abort_transaction(trans
, ret
);
1053 leaf
= path
->nodes
[0];
1055 * If btrfs_del_items() was called, it might have deleted a leaf, in
1056 * which case it unlocked our path, so check path->locks[0] matches a
1059 if (!ret
&& replace_extent
&& leafs_visited
== 1 &&
1060 (path
->locks
[0] == BTRFS_WRITE_LOCK_BLOCKING
||
1061 path
->locks
[0] == BTRFS_WRITE_LOCK
) &&
1062 btrfs_leaf_free_space(fs_info
, leaf
) >=
1063 sizeof(struct btrfs_item
) + extent_item_size
) {
1066 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1068 if (!del_nr
&& path
->slots
[0] < btrfs_header_nritems(leaf
)) {
1069 struct btrfs_key slot_key
;
1071 btrfs_item_key_to_cpu(leaf
, &slot_key
, path
->slots
[0]);
1072 if (btrfs_comp_cpu_keys(&key
, &slot_key
) > 0)
1075 setup_items_for_insert(root
, path
, &key
,
1078 sizeof(struct btrfs_item
) +
1079 extent_item_size
, 1);
1083 if (!replace_extent
|| !(*key_inserted
))
1084 btrfs_release_path(path
);
1086 *drop_end
= found
? min(end
, last_end
) : end
;
1090 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
1091 struct btrfs_root
*root
, struct inode
*inode
, u64 start
,
1092 u64 end
, int drop_cache
)
1094 struct btrfs_path
*path
;
1097 path
= btrfs_alloc_path();
1100 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, start
, end
, NULL
,
1101 drop_cache
, 0, 0, NULL
);
1102 btrfs_free_path(path
);
1106 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
1107 u64 objectid
, u64 bytenr
, u64 orig_offset
,
1108 u64
*start
, u64
*end
)
1110 struct btrfs_file_extent_item
*fi
;
1111 struct btrfs_key key
;
1114 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
1117 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1118 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1121 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1122 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
1123 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
1124 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
1125 btrfs_file_extent_compression(leaf
, fi
) ||
1126 btrfs_file_extent_encryption(leaf
, fi
) ||
1127 btrfs_file_extent_other_encoding(leaf
, fi
))
1130 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1131 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
1134 *start
= key
.offset
;
1140 * Mark extent in the range start - end as written.
1142 * This changes extent type from 'pre-allocated' to 'regular'. If only
1143 * part of extent is marked as written, the extent will be split into
1146 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
1147 struct btrfs_inode
*inode
, u64 start
, u64 end
)
1149 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1150 struct btrfs_root
*root
= inode
->root
;
1151 struct extent_buffer
*leaf
;
1152 struct btrfs_path
*path
;
1153 struct btrfs_file_extent_item
*fi
;
1154 struct btrfs_key key
;
1155 struct btrfs_key new_key
;
1167 u64 ino
= btrfs_ino(inode
);
1169 path
= btrfs_alloc_path();
1176 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1179 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1182 if (ret
> 0 && path
->slots
[0] > 0)
1185 leaf
= path
->nodes
[0];
1186 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1187 if (key
.objectid
!= ino
||
1188 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
1190 btrfs_abort_transaction(trans
, ret
);
1193 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1194 struct btrfs_file_extent_item
);
1195 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_PREALLOC
) {
1197 btrfs_abort_transaction(trans
, ret
);
1200 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1201 if (key
.offset
> start
|| extent_end
< end
) {
1203 btrfs_abort_transaction(trans
, ret
);
1207 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1208 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1209 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
1210 memcpy(&new_key
, &key
, sizeof(new_key
));
1212 if (start
== key
.offset
&& end
< extent_end
) {
1215 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1216 ino
, bytenr
, orig_offset
,
1217 &other_start
, &other_end
)) {
1218 new_key
.offset
= end
;
1219 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
1220 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1221 struct btrfs_file_extent_item
);
1222 btrfs_set_file_extent_generation(leaf
, fi
,
1224 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1226 btrfs_set_file_extent_offset(leaf
, fi
,
1228 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1229 struct btrfs_file_extent_item
);
1230 btrfs_set_file_extent_generation(leaf
, fi
,
1232 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1234 btrfs_mark_buffer_dirty(leaf
);
1239 if (start
> key
.offset
&& end
== extent_end
) {
1242 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1243 ino
, bytenr
, orig_offset
,
1244 &other_start
, &other_end
)) {
1245 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1246 struct btrfs_file_extent_item
);
1247 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1248 start
- key
.offset
);
1249 btrfs_set_file_extent_generation(leaf
, fi
,
1252 new_key
.offset
= start
;
1253 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
1255 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1256 struct btrfs_file_extent_item
);
1257 btrfs_set_file_extent_generation(leaf
, fi
,
1259 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1261 btrfs_set_file_extent_offset(leaf
, fi
,
1262 start
- orig_offset
);
1263 btrfs_mark_buffer_dirty(leaf
);
1268 while (start
> key
.offset
|| end
< extent_end
) {
1269 if (key
.offset
== start
)
1272 new_key
.offset
= split
;
1273 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
1274 if (ret
== -EAGAIN
) {
1275 btrfs_release_path(path
);
1279 btrfs_abort_transaction(trans
, ret
);
1283 leaf
= path
->nodes
[0];
1284 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1285 struct btrfs_file_extent_item
);
1286 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1287 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1288 split
- key
.offset
);
1290 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1291 struct btrfs_file_extent_item
);
1293 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1294 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
1295 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1296 extent_end
- split
);
1297 btrfs_mark_buffer_dirty(leaf
);
1299 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
,
1300 0, root
->root_key
.objectid
,
1303 btrfs_abort_transaction(trans
, ret
);
1307 if (split
== start
) {
1310 if (start
!= key
.offset
) {
1312 btrfs_abort_transaction(trans
, ret
);
1323 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1324 ino
, bytenr
, orig_offset
,
1325 &other_start
, &other_end
)) {
1327 btrfs_release_path(path
);
1330 extent_end
= other_end
;
1331 del_slot
= path
->slots
[0] + 1;
1333 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1334 0, root
->root_key
.objectid
,
1337 btrfs_abort_transaction(trans
, ret
);
1343 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1344 ino
, bytenr
, orig_offset
,
1345 &other_start
, &other_end
)) {
1347 btrfs_release_path(path
);
1350 key
.offset
= other_start
;
1351 del_slot
= path
->slots
[0];
1353 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1354 0, root
->root_key
.objectid
,
1357 btrfs_abort_transaction(trans
, ret
);
1362 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1363 struct btrfs_file_extent_item
);
1364 btrfs_set_file_extent_type(leaf
, fi
,
1365 BTRFS_FILE_EXTENT_REG
);
1366 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1367 btrfs_mark_buffer_dirty(leaf
);
1369 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1370 struct btrfs_file_extent_item
);
1371 btrfs_set_file_extent_type(leaf
, fi
,
1372 BTRFS_FILE_EXTENT_REG
);
1373 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1374 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1375 extent_end
- key
.offset
);
1376 btrfs_mark_buffer_dirty(leaf
);
1378 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1380 btrfs_abort_transaction(trans
, ret
);
1385 btrfs_free_path(path
);
1390 * on error we return an unlocked page and the error value
1391 * on success we return a locked page and 0
1393 static int prepare_uptodate_page(struct inode
*inode
,
1394 struct page
*page
, u64 pos
,
1395 bool force_uptodate
)
1399 if (((pos
& (PAGE_SIZE
- 1)) || force_uptodate
) &&
1400 !PageUptodate(page
)) {
1401 ret
= btrfs_readpage(NULL
, page
);
1405 if (!PageUptodate(page
)) {
1409 if (page
->mapping
!= inode
->i_mapping
) {
1418 * this just gets pages into the page cache and locks them down.
1420 static noinline
int prepare_pages(struct inode
*inode
, struct page
**pages
,
1421 size_t num_pages
, loff_t pos
,
1422 size_t write_bytes
, bool force_uptodate
)
1425 unsigned long index
= pos
>> PAGE_SHIFT
;
1426 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1430 for (i
= 0; i
< num_pages
; i
++) {
1432 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1433 mask
| __GFP_WRITE
);
1441 err
= prepare_uptodate_page(inode
, pages
[i
], pos
,
1443 if (!err
&& i
== num_pages
- 1)
1444 err
= prepare_uptodate_page(inode
, pages
[i
],
1445 pos
+ write_bytes
, false);
1448 if (err
== -EAGAIN
) {
1455 wait_on_page_writeback(pages
[i
]);
1460 while (faili
>= 0) {
1461 unlock_page(pages
[faili
]);
1462 put_page(pages
[faili
]);
1470 * This function locks the extent and properly waits for data=ordered extents
1471 * to finish before allowing the pages to be modified if need.
1474 * 1 - the extent is locked
1475 * 0 - the extent is not locked, and everything is OK
1476 * -EAGAIN - need re-prepare the pages
1477 * the other < 0 number - Something wrong happens
1480 lock_and_cleanup_extent_if_need(struct btrfs_inode
*inode
, struct page
**pages
,
1481 size_t num_pages
, loff_t pos
,
1483 u64
*lockstart
, u64
*lockend
,
1484 struct extent_state
**cached_state
)
1486 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1492 start_pos
= round_down(pos
, fs_info
->sectorsize
);
1493 last_pos
= start_pos
1494 + round_up(pos
+ write_bytes
- start_pos
,
1495 fs_info
->sectorsize
) - 1;
1497 if (start_pos
< inode
->vfs_inode
.i_size
) {
1498 struct btrfs_ordered_extent
*ordered
;
1500 lock_extent_bits(&inode
->io_tree
, start_pos
, last_pos
,
1502 ordered
= btrfs_lookup_ordered_range(inode
, start_pos
,
1503 last_pos
- start_pos
+ 1);
1505 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1506 ordered
->file_offset
<= last_pos
) {
1507 unlock_extent_cached(&inode
->io_tree
, start_pos
,
1508 last_pos
, cached_state
);
1509 for (i
= 0; i
< num_pages
; i
++) {
1510 unlock_page(pages
[i
]);
1513 btrfs_start_ordered_extent(&inode
->vfs_inode
,
1515 btrfs_put_ordered_extent(ordered
);
1519 btrfs_put_ordered_extent(ordered
);
1520 clear_extent_bit(&inode
->io_tree
, start_pos
, last_pos
,
1521 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1522 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
1523 0, 0, cached_state
);
1524 *lockstart
= start_pos
;
1525 *lockend
= last_pos
;
1529 for (i
= 0; i
< num_pages
; i
++) {
1530 if (clear_page_dirty_for_io(pages
[i
]))
1531 account_page_redirty(pages
[i
]);
1532 set_page_extent_mapped(pages
[i
]);
1533 WARN_ON(!PageLocked(pages
[i
]));
1539 static noinline
int check_can_nocow(struct btrfs_inode
*inode
, loff_t pos
,
1540 size_t *write_bytes
)
1542 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1543 struct btrfs_root
*root
= inode
->root
;
1544 struct btrfs_ordered_extent
*ordered
;
1545 u64 lockstart
, lockend
;
1549 ret
= btrfs_start_write_no_snapshotting(root
);
1553 lockstart
= round_down(pos
, fs_info
->sectorsize
);
1554 lockend
= round_up(pos
+ *write_bytes
,
1555 fs_info
->sectorsize
) - 1;
1558 lock_extent(&inode
->io_tree
, lockstart
, lockend
);
1559 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
1560 lockend
- lockstart
+ 1);
1564 unlock_extent(&inode
->io_tree
, lockstart
, lockend
);
1565 btrfs_start_ordered_extent(&inode
->vfs_inode
, ordered
, 1);
1566 btrfs_put_ordered_extent(ordered
);
1569 num_bytes
= lockend
- lockstart
+ 1;
1570 ret
= can_nocow_extent(&inode
->vfs_inode
, lockstart
, &num_bytes
,
1574 btrfs_end_write_no_snapshotting(root
);
1576 *write_bytes
= min_t(size_t, *write_bytes
,
1577 num_bytes
- pos
+ lockstart
);
1580 unlock_extent(&inode
->io_tree
, lockstart
, lockend
);
1585 static noinline ssize_t
__btrfs_buffered_write(struct file
*file
,
1589 struct inode
*inode
= file_inode(file
);
1590 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1591 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1592 struct page
**pages
= NULL
;
1593 struct extent_state
*cached_state
= NULL
;
1594 struct extent_changeset
*data_reserved
= NULL
;
1595 u64 release_bytes
= 0;
1598 size_t num_written
= 0;
1601 bool only_release_metadata
= false;
1602 bool force_page_uptodate
= false;
1604 nrptrs
= min(DIV_ROUND_UP(iov_iter_count(i
), PAGE_SIZE
),
1605 PAGE_SIZE
/ (sizeof(struct page
*)));
1606 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1607 nrptrs
= max(nrptrs
, 8);
1608 pages
= kmalloc_array(nrptrs
, sizeof(struct page
*), GFP_KERNEL
);
1612 while (iov_iter_count(i
) > 0) {
1613 size_t offset
= pos
& (PAGE_SIZE
- 1);
1614 size_t sector_offset
;
1615 size_t write_bytes
= min(iov_iter_count(i
),
1616 nrptrs
* (size_t)PAGE_SIZE
-
1618 size_t num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1620 size_t reserve_bytes
;
1623 size_t dirty_sectors
;
1627 WARN_ON(num_pages
> nrptrs
);
1630 * Fault pages before locking them in prepare_pages
1631 * to avoid recursive lock
1633 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1638 sector_offset
= pos
& (fs_info
->sectorsize
- 1);
1639 reserve_bytes
= round_up(write_bytes
+ sector_offset
,
1640 fs_info
->sectorsize
);
1642 extent_changeset_release(data_reserved
);
1643 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, pos
,
1646 if ((BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1647 BTRFS_INODE_PREALLOC
)) &&
1648 check_can_nocow(BTRFS_I(inode
), pos
,
1649 &write_bytes
) > 0) {
1651 * For nodata cow case, no need to reserve
1654 only_release_metadata
= true;
1656 * our prealloc extent may be smaller than
1657 * write_bytes, so scale down.
1659 num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1661 reserve_bytes
= round_up(write_bytes
+
1663 fs_info
->sectorsize
);
1669 WARN_ON(reserve_bytes
== 0);
1670 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
),
1673 if (!only_release_metadata
)
1674 btrfs_free_reserved_data_space(inode
,
1678 btrfs_end_write_no_snapshotting(root
);
1682 release_bytes
= reserve_bytes
;
1685 * This is going to setup the pages array with the number of
1686 * pages we want, so we don't really need to worry about the
1687 * contents of pages from loop to loop
1689 ret
= prepare_pages(inode
, pages
, num_pages
,
1691 force_page_uptodate
);
1693 btrfs_delalloc_release_extents(BTRFS_I(inode
),
1698 extents_locked
= lock_and_cleanup_extent_if_need(
1699 BTRFS_I(inode
), pages
,
1700 num_pages
, pos
, write_bytes
, &lockstart
,
1701 &lockend
, &cached_state
);
1702 if (extents_locked
< 0) {
1703 if (extents_locked
== -EAGAIN
)
1705 btrfs_delalloc_release_extents(BTRFS_I(inode
),
1707 ret
= extents_locked
;
1711 copied
= btrfs_copy_from_user(pos
, write_bytes
, pages
, i
);
1713 num_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, reserve_bytes
);
1714 dirty_sectors
= round_up(copied
+ sector_offset
,
1715 fs_info
->sectorsize
);
1716 dirty_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, dirty_sectors
);
1719 * if we have trouble faulting in the pages, fall
1720 * back to one page at a time
1722 if (copied
< write_bytes
)
1726 force_page_uptodate
= true;
1730 force_page_uptodate
= false;
1731 dirty_pages
= DIV_ROUND_UP(copied
+ offset
,
1735 if (num_sectors
> dirty_sectors
) {
1736 /* release everything except the sectors we dirtied */
1737 release_bytes
-= dirty_sectors
<<
1738 fs_info
->sb
->s_blocksize_bits
;
1739 if (only_release_metadata
) {
1740 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
1745 __pos
= round_down(pos
,
1746 fs_info
->sectorsize
) +
1747 (dirty_pages
<< PAGE_SHIFT
);
1748 btrfs_delalloc_release_space(inode
,
1749 data_reserved
, __pos
,
1754 release_bytes
= round_up(copied
+ sector_offset
,
1755 fs_info
->sectorsize
);
1758 ret
= btrfs_dirty_pages(inode
, pages
, dirty_pages
,
1759 pos
, copied
, &cached_state
);
1761 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1762 lockstart
, lockend
, &cached_state
);
1763 btrfs_delalloc_release_extents(BTRFS_I(inode
), reserve_bytes
);
1765 btrfs_drop_pages(pages
, num_pages
);
1770 if (only_release_metadata
)
1771 btrfs_end_write_no_snapshotting(root
);
1773 if (only_release_metadata
&& copied
> 0) {
1774 lockstart
= round_down(pos
,
1775 fs_info
->sectorsize
);
1776 lockend
= round_up(pos
+ copied
,
1777 fs_info
->sectorsize
) - 1;
1779 set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
1780 lockend
, EXTENT_NORESERVE
, NULL
,
1782 only_release_metadata
= false;
1785 btrfs_drop_pages(pages
, num_pages
);
1789 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1790 if (dirty_pages
< (fs_info
->nodesize
>> PAGE_SHIFT
) + 1)
1791 btrfs_btree_balance_dirty(fs_info
);
1794 num_written
+= copied
;
1799 if (release_bytes
) {
1800 if (only_release_metadata
) {
1801 btrfs_end_write_no_snapshotting(root
);
1802 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
1805 btrfs_delalloc_release_space(inode
, data_reserved
,
1806 round_down(pos
, fs_info
->sectorsize
),
1811 extent_changeset_free(data_reserved
);
1812 return num_written
? num_written
: ret
;
1815 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
1817 struct file
*file
= iocb
->ki_filp
;
1818 struct inode
*inode
= file_inode(file
);
1819 loff_t pos
= iocb
->ki_pos
;
1821 ssize_t written_buffered
;
1825 written
= generic_file_direct_write(iocb
, from
);
1827 if (written
< 0 || !iov_iter_count(from
))
1831 written_buffered
= __btrfs_buffered_write(file
, from
, pos
);
1832 if (written_buffered
< 0) {
1833 err
= written_buffered
;
1837 * Ensure all data is persisted. We want the next direct IO read to be
1838 * able to read what was just written.
1840 endbyte
= pos
+ written_buffered
- 1;
1841 err
= btrfs_fdatawrite_range(inode
, pos
, endbyte
);
1844 err
= filemap_fdatawait_range(inode
->i_mapping
, pos
, endbyte
);
1847 written
+= written_buffered
;
1848 iocb
->ki_pos
= pos
+ written_buffered
;
1849 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_SHIFT
,
1850 endbyte
>> PAGE_SHIFT
);
1852 return written
? written
: err
;
1855 static void update_time_for_write(struct inode
*inode
)
1857 struct timespec now
;
1859 if (IS_NOCMTIME(inode
))
1862 now
= current_time(inode
);
1863 if (!timespec_equal(&inode
->i_mtime
, &now
))
1864 inode
->i_mtime
= now
;
1866 if (!timespec_equal(&inode
->i_ctime
, &now
))
1867 inode
->i_ctime
= now
;
1869 if (IS_I_VERSION(inode
))
1870 inode_inc_iversion(inode
);
1873 static ssize_t
btrfs_file_write_iter(struct kiocb
*iocb
,
1874 struct iov_iter
*from
)
1876 struct file
*file
= iocb
->ki_filp
;
1877 struct inode
*inode
= file_inode(file
);
1878 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1879 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1882 ssize_t num_written
= 0;
1883 bool sync
= (file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
);
1886 size_t count
= iov_iter_count(from
);
1890 if (!(iocb
->ki_flags
& IOCB_DIRECT
) &&
1891 (iocb
->ki_flags
& IOCB_NOWAIT
))
1894 if (!inode_trylock(inode
)) {
1895 if (iocb
->ki_flags
& IOCB_NOWAIT
)
1900 err
= generic_write_checks(iocb
, from
);
1902 inode_unlock(inode
);
1907 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
1909 * We will allocate space in case nodatacow is not set,
1912 if (!(BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1913 BTRFS_INODE_PREALLOC
)) ||
1914 check_can_nocow(BTRFS_I(inode
), pos
, &count
) <= 0) {
1915 inode_unlock(inode
);
1920 current
->backing_dev_info
= inode_to_bdi(inode
);
1921 err
= file_remove_privs(file
);
1923 inode_unlock(inode
);
1928 * If BTRFS flips readonly due to some impossible error
1929 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1930 * although we have opened a file as writable, we have
1931 * to stop this write operation to ensure FS consistency.
1933 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
1934 inode_unlock(inode
);
1940 * We reserve space for updating the inode when we reserve space for the
1941 * extent we are going to write, so we will enospc out there. We don't
1942 * need to start yet another transaction to update the inode as we will
1943 * update the inode when we finish writing whatever data we write.
1945 update_time_for_write(inode
);
1947 start_pos
= round_down(pos
, fs_info
->sectorsize
);
1948 oldsize
= i_size_read(inode
);
1949 if (start_pos
> oldsize
) {
1950 /* Expand hole size to cover write data, preventing empty gap */
1951 end_pos
= round_up(pos
+ count
,
1952 fs_info
->sectorsize
);
1953 err
= btrfs_cont_expand(inode
, oldsize
, end_pos
);
1955 inode_unlock(inode
);
1958 if (start_pos
> round_up(oldsize
, fs_info
->sectorsize
))
1963 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1965 if (iocb
->ki_flags
& IOCB_DIRECT
) {
1966 num_written
= __btrfs_direct_write(iocb
, from
);
1968 num_written
= __btrfs_buffered_write(file
, from
, pos
);
1969 if (num_written
> 0)
1970 iocb
->ki_pos
= pos
+ num_written
;
1972 pagecache_isize_extended(inode
, oldsize
,
1973 i_size_read(inode
));
1976 inode_unlock(inode
);
1979 * We also have to set last_sub_trans to the current log transid,
1980 * otherwise subsequent syncs to a file that's been synced in this
1981 * transaction will appear to have already occurred.
1983 spin_lock(&BTRFS_I(inode
)->lock
);
1984 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
1985 spin_unlock(&BTRFS_I(inode
)->lock
);
1986 if (num_written
> 0)
1987 num_written
= generic_write_sync(iocb
, num_written
);
1990 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1992 current
->backing_dev_info
= NULL
;
1993 return num_written
? num_written
: err
;
1996 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1998 struct btrfs_file_private
*private = filp
->private_data
;
2000 if (private && private->trans
)
2001 btrfs_ioctl_trans_end(filp
);
2002 if (private && private->filldir_buf
)
2003 kfree(private->filldir_buf
);
2005 filp
->private_data
= NULL
;
2008 * ordered_data_close is set by settattr when we are about to truncate
2009 * a file from a non-zero size to a zero size. This tries to
2010 * flush down new bytes that may have been written if the
2011 * application were using truncate to replace a file in place.
2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
2014 &BTRFS_I(inode
)->runtime_flags
))
2015 filemap_flush(inode
->i_mapping
);
2019 static int start_ordered_ops(struct inode
*inode
, loff_t start
, loff_t end
)
2022 struct blk_plug plug
;
2025 * This is only called in fsync, which would do synchronous writes, so
2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2027 * multiple disks using raid profile, a large IO can be split to
2028 * several segments of stripe length (currently 64K).
2030 blk_start_plug(&plug
);
2031 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
2032 ret
= btrfs_fdatawrite_range(inode
, start
, end
);
2033 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
2034 blk_finish_plug(&plug
);
2040 * fsync call for both files and directories. This logs the inode into
2041 * the tree log instead of forcing full commits whenever possible.
2043 * It needs to call filemap_fdatawait so that all ordered extent updates are
2044 * in the metadata btree are up to date for copying to the log.
2046 * It drops the inode mutex before doing the tree log commit. This is an
2047 * important optimization for directories because holding the mutex prevents
2048 * new operations on the dir while we write to disk.
2050 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
2052 struct dentry
*dentry
= file_dentry(file
);
2053 struct inode
*inode
= d_inode(dentry
);
2054 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2055 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2056 struct btrfs_trans_handle
*trans
;
2057 struct btrfs_log_ctx ctx
;
2059 bool full_sync
= false;
2063 * The range length can be represented by u64, we have to do the typecasts
2064 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2066 len
= (u64
)end
- (u64
)start
+ 1;
2067 trace_btrfs_sync_file(file
, datasync
);
2069 btrfs_init_log_ctx(&ctx
, inode
);
2072 * We write the dirty pages in the range and wait until they complete
2073 * out of the ->i_mutex. If so, we can flush the dirty pages by
2074 * multi-task, and make the performance up. See
2075 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2077 ret
= start_ordered_ops(inode
, start
, end
);
2082 atomic_inc(&root
->log_batch
);
2083 full_sync
= test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2084 &BTRFS_I(inode
)->runtime_flags
);
2086 * We might have have had more pages made dirty after calling
2087 * start_ordered_ops and before acquiring the inode's i_mutex.
2091 * For a full sync, we need to make sure any ordered operations
2092 * start and finish before we start logging the inode, so that
2093 * all extents are persisted and the respective file extent
2094 * items are in the fs/subvol btree.
2096 ret
= btrfs_wait_ordered_range(inode
, start
, len
);
2099 * Start any new ordered operations before starting to log the
2100 * inode. We will wait for them to finish in btrfs_sync_log().
2102 * Right before acquiring the inode's mutex, we might have new
2103 * writes dirtying pages, which won't immediately start the
2104 * respective ordered operations - that is done through the
2105 * fill_delalloc callbacks invoked from the writepage and
2106 * writepages address space operations. So make sure we start
2107 * all ordered operations before starting to log our inode. Not
2108 * doing this means that while logging the inode, writeback
2109 * could start and invoke writepage/writepages, which would call
2110 * the fill_delalloc callbacks (cow_file_range,
2111 * submit_compressed_extents). These callbacks add first an
2112 * extent map to the modified list of extents and then create
2113 * the respective ordered operation, which means in
2114 * tree-log.c:btrfs_log_inode() we might capture all existing
2115 * ordered operations (with btrfs_get_logged_extents()) before
2116 * the fill_delalloc callback adds its ordered operation, and by
2117 * the time we visit the modified list of extent maps (with
2118 * btrfs_log_changed_extents()), we see and process the extent
2119 * map they created. We then use the extent map to construct a
2120 * file extent item for logging without waiting for the
2121 * respective ordered operation to finish - this file extent
2122 * item points to a disk location that might not have yet been
2123 * written to, containing random data - so after a crash a log
2124 * replay will make our inode have file extent items that point
2125 * to disk locations containing invalid data, as we returned
2126 * success to userspace without waiting for the respective
2127 * ordered operation to finish, because it wasn't captured by
2128 * btrfs_get_logged_extents().
2130 ret
= start_ordered_ops(inode
, start
, end
);
2133 inode_unlock(inode
);
2136 atomic_inc(&root
->log_batch
);
2139 * If the last transaction that changed this file was before the current
2140 * transaction and we have the full sync flag set in our inode, we can
2141 * bail out now without any syncing.
2143 * Note that we can't bail out if the full sync flag isn't set. This is
2144 * because when the full sync flag is set we start all ordered extents
2145 * and wait for them to fully complete - when they complete they update
2146 * the inode's last_trans field through:
2148 * btrfs_finish_ordered_io() ->
2149 * btrfs_update_inode_fallback() ->
2150 * btrfs_update_inode() ->
2151 * btrfs_set_inode_last_trans()
2153 * So we are sure that last_trans is up to date and can do this check to
2154 * bail out safely. For the fast path, when the full sync flag is not
2155 * set in our inode, we can not do it because we start only our ordered
2156 * extents and don't wait for them to complete (that is when
2157 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2158 * value might be less than or equals to fs_info->last_trans_committed,
2159 * and setting a speculative last_trans for an inode when a buffered
2160 * write is made (such as fs_info->generation + 1 for example) would not
2161 * be reliable since after setting the value and before fsync is called
2162 * any number of transactions can start and commit (transaction kthread
2163 * commits the current transaction periodically), and a transaction
2164 * commit does not start nor waits for ordered extents to complete.
2167 if (btrfs_inode_in_log(BTRFS_I(inode
), fs_info
->generation
) ||
2168 (full_sync
&& BTRFS_I(inode
)->last_trans
<=
2169 fs_info
->last_trans_committed
) ||
2170 (!btrfs_have_ordered_extents_in_range(inode
, start
, len
) &&
2171 BTRFS_I(inode
)->last_trans
2172 <= fs_info
->last_trans_committed
)) {
2174 * We've had everything committed since the last time we were
2175 * modified so clear this flag in case it was set for whatever
2176 * reason, it's no longer relevant.
2178 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2179 &BTRFS_I(inode
)->runtime_flags
);
2181 * An ordered extent might have started before and completed
2182 * already with io errors, in which case the inode was not
2183 * updated and we end up here. So check the inode's mapping
2184 * for any errors that might have happened since we last
2185 * checked called fsync.
2187 ret
= filemap_check_wb_err(inode
->i_mapping
, file
->f_wb_err
);
2188 inode_unlock(inode
);
2193 * ok we haven't committed the transaction yet, lets do a commit
2195 if (file
->private_data
)
2196 btrfs_ioctl_trans_end(file
);
2199 * We use start here because we will need to wait on the IO to complete
2200 * in btrfs_sync_log, which could require joining a transaction (for
2201 * example checking cross references in the nocow path). If we use join
2202 * here we could get into a situation where we're waiting on IO to
2203 * happen that is blocked on a transaction trying to commit. With start
2204 * we inc the extwriter counter, so we wait for all extwriters to exit
2205 * before we start blocking join'ers. This comment is to keep somebody
2206 * from thinking they are super smart and changing this to
2207 * btrfs_join_transaction *cough*Josef*cough*.
2209 trans
= btrfs_start_transaction(root
, 0);
2210 if (IS_ERR(trans
)) {
2211 ret
= PTR_ERR(trans
);
2212 inode_unlock(inode
);
2217 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
, start
, end
, &ctx
);
2219 /* Fallthrough and commit/free transaction. */
2223 /* we've logged all the items and now have a consistent
2224 * version of the file in the log. It is possible that
2225 * someone will come in and modify the file, but that's
2226 * fine because the log is consistent on disk, and we
2227 * have references to all of the file's extents
2229 * It is possible that someone will come in and log the
2230 * file again, but that will end up using the synchronization
2231 * inside btrfs_sync_log to keep things safe.
2233 inode_unlock(inode
);
2236 * If any of the ordered extents had an error, just return it to user
2237 * space, so that the application knows some writes didn't succeed and
2238 * can take proper action (retry for e.g.). Blindly committing the
2239 * transaction in this case, would fool userspace that everything was
2240 * successful. And we also want to make sure our log doesn't contain
2241 * file extent items pointing to extents that weren't fully written to -
2242 * just like in the non fast fsync path, where we check for the ordered
2243 * operation's error flag before writing to the log tree and return -EIO
2244 * if any of them had this flag set (btrfs_wait_ordered_range) -
2245 * therefore we need to check for errors in the ordered operations,
2246 * which are indicated by ctx.io_err.
2249 btrfs_end_transaction(trans
);
2254 if (ret
!= BTRFS_NO_LOG_SYNC
) {
2256 ret
= btrfs_sync_log(trans
, root
, &ctx
);
2258 ret
= btrfs_end_transaction(trans
);
2263 ret
= btrfs_wait_ordered_range(inode
, start
, len
);
2265 btrfs_end_transaction(trans
);
2269 ret
= btrfs_commit_transaction(trans
);
2271 ret
= btrfs_end_transaction(trans
);
2274 ASSERT(list_empty(&ctx
.list
));
2275 err
= file_check_and_advance_wb_err(file
);
2278 return ret
> 0 ? -EIO
: ret
;
2281 static const struct vm_operations_struct btrfs_file_vm_ops
= {
2282 .fault
= filemap_fault
,
2283 .map_pages
= filemap_map_pages
,
2284 .page_mkwrite
= btrfs_page_mkwrite
,
2287 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
2289 struct address_space
*mapping
= filp
->f_mapping
;
2291 if (!mapping
->a_ops
->readpage
)
2294 file_accessed(filp
);
2295 vma
->vm_ops
= &btrfs_file_vm_ops
;
2300 static int hole_mergeable(struct btrfs_inode
*inode
, struct extent_buffer
*leaf
,
2301 int slot
, u64 start
, u64 end
)
2303 struct btrfs_file_extent_item
*fi
;
2304 struct btrfs_key key
;
2306 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
2309 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2310 if (key
.objectid
!= btrfs_ino(inode
) ||
2311 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2314 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
2316 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2319 if (btrfs_file_extent_disk_bytenr(leaf
, fi
))
2322 if (key
.offset
== end
)
2324 if (key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
) == start
)
2329 static int fill_holes(struct btrfs_trans_handle
*trans
,
2330 struct btrfs_inode
*inode
,
2331 struct btrfs_path
*path
, u64 offset
, u64 end
)
2333 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
2334 struct btrfs_root
*root
= inode
->root
;
2335 struct extent_buffer
*leaf
;
2336 struct btrfs_file_extent_item
*fi
;
2337 struct extent_map
*hole_em
;
2338 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
2339 struct btrfs_key key
;
2342 if (btrfs_fs_incompat(fs_info
, NO_HOLES
))
2345 key
.objectid
= btrfs_ino(inode
);
2346 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2347 key
.offset
= offset
;
2349 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2352 * We should have dropped this offset, so if we find it then
2353 * something has gone horribly wrong.
2360 leaf
= path
->nodes
[0];
2361 if (hole_mergeable(inode
, leaf
, path
->slots
[0] - 1, offset
, end
)) {
2365 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2366 struct btrfs_file_extent_item
);
2367 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) +
2369 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2370 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2371 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2372 btrfs_mark_buffer_dirty(leaf
);
2376 if (hole_mergeable(inode
, leaf
, path
->slots
[0], offset
, end
)) {
2379 key
.offset
= offset
;
2380 btrfs_set_item_key_safe(fs_info
, path
, &key
);
2381 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2382 struct btrfs_file_extent_item
);
2383 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) + end
-
2385 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2386 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2387 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2388 btrfs_mark_buffer_dirty(leaf
);
2391 btrfs_release_path(path
);
2393 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
),
2394 offset
, 0, 0, end
- offset
, 0, end
- offset
, 0, 0, 0);
2399 btrfs_release_path(path
);
2401 hole_em
= alloc_extent_map();
2403 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2404 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
2406 hole_em
->start
= offset
;
2407 hole_em
->len
= end
- offset
;
2408 hole_em
->ram_bytes
= hole_em
->len
;
2409 hole_em
->orig_start
= offset
;
2411 hole_em
->block_start
= EXTENT_MAP_HOLE
;
2412 hole_em
->block_len
= 0;
2413 hole_em
->orig_block_len
= 0;
2414 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
2415 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
2416 hole_em
->generation
= trans
->transid
;
2419 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2420 write_lock(&em_tree
->lock
);
2421 ret
= add_extent_mapping(em_tree
, hole_em
, 1);
2422 write_unlock(&em_tree
->lock
);
2423 } while (ret
== -EEXIST
);
2424 free_extent_map(hole_em
);
2426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2427 &inode
->runtime_flags
);
2434 * Find a hole extent on given inode and change start/len to the end of hole
2435 * extent.(hole/vacuum extent whose em->start <= start &&
2436 * em->start + em->len > start)
2437 * When a hole extent is found, return 1 and modify start/len.
2439 static int find_first_non_hole(struct inode
*inode
, u64
*start
, u64
*len
)
2441 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2442 struct extent_map
*em
;
2445 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0,
2446 round_down(*start
, fs_info
->sectorsize
),
2447 round_up(*len
, fs_info
->sectorsize
), 0);
2451 /* Hole or vacuum extent(only exists in no-hole mode) */
2452 if (em
->block_start
== EXTENT_MAP_HOLE
) {
2454 *len
= em
->start
+ em
->len
> *start
+ *len
?
2455 0 : *start
+ *len
- em
->start
- em
->len
;
2456 *start
= em
->start
+ em
->len
;
2458 free_extent_map(em
);
2462 static int btrfs_punch_hole_lock_range(struct inode
*inode
,
2463 const u64 lockstart
,
2465 struct extent_state
**cached_state
)
2468 struct btrfs_ordered_extent
*ordered
;
2471 truncate_pagecache_range(inode
, lockstart
, lockend
);
2473 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2475 ordered
= btrfs_lookup_first_ordered_extent(inode
, lockend
);
2478 * We need to make sure we have no ordered extents in this range
2479 * and nobody raced in and read a page in this range, if we did
2480 * we need to try again.
2483 (ordered
->file_offset
+ ordered
->len
<= lockstart
||
2484 ordered
->file_offset
> lockend
)) &&
2485 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)) {
2487 btrfs_put_ordered_extent(ordered
);
2491 btrfs_put_ordered_extent(ordered
);
2492 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2493 lockend
, cached_state
);
2494 ret
= btrfs_wait_ordered_range(inode
, lockstart
,
2495 lockend
- lockstart
+ 1);
2502 static int btrfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
2504 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2505 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2506 struct extent_state
*cached_state
= NULL
;
2507 struct btrfs_path
*path
;
2508 struct btrfs_block_rsv
*rsv
;
2509 struct btrfs_trans_handle
*trans
;
2514 u64 orig_start
= offset
;
2516 u64 min_size
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2520 unsigned int rsv_count
;
2522 bool no_holes
= btrfs_fs_incompat(fs_info
, NO_HOLES
);
2524 bool truncated_block
= false;
2525 bool updated_inode
= false;
2527 ret
= btrfs_wait_ordered_range(inode
, offset
, len
);
2532 ino_size
= round_up(inode
->i_size
, fs_info
->sectorsize
);
2533 ret
= find_first_non_hole(inode
, &offset
, &len
);
2535 goto out_only_mutex
;
2537 /* Already in a large hole */
2539 goto out_only_mutex
;
2542 lockstart
= round_up(offset
, btrfs_inode_sectorsize(inode
));
2543 lockend
= round_down(offset
+ len
,
2544 btrfs_inode_sectorsize(inode
)) - 1;
2545 same_block
= (BTRFS_BYTES_TO_BLKS(fs_info
, offset
))
2546 == (BTRFS_BYTES_TO_BLKS(fs_info
, offset
+ len
- 1));
2548 * We needn't truncate any block which is beyond the end of the file
2549 * because we are sure there is no data there.
2552 * Only do this if we are in the same block and we aren't doing the
2555 if (same_block
&& len
< fs_info
->sectorsize
) {
2556 if (offset
< ino_size
) {
2557 truncated_block
= true;
2558 ret
= btrfs_truncate_block(inode
, offset
, len
, 0);
2562 goto out_only_mutex
;
2565 /* zero back part of the first block */
2566 if (offset
< ino_size
) {
2567 truncated_block
= true;
2568 ret
= btrfs_truncate_block(inode
, offset
, 0, 0);
2570 inode_unlock(inode
);
2575 /* Check the aligned pages after the first unaligned page,
2576 * if offset != orig_start, which means the first unaligned page
2577 * including several following pages are already in holes,
2578 * the extra check can be skipped */
2579 if (offset
== orig_start
) {
2580 /* after truncate page, check hole again */
2581 len
= offset
+ len
- lockstart
;
2583 ret
= find_first_non_hole(inode
, &offset
, &len
);
2585 goto out_only_mutex
;
2588 goto out_only_mutex
;
2593 /* Check the tail unaligned part is in a hole */
2594 tail_start
= lockend
+ 1;
2595 tail_len
= offset
+ len
- tail_start
;
2597 ret
= find_first_non_hole(inode
, &tail_start
, &tail_len
);
2598 if (unlikely(ret
< 0))
2599 goto out_only_mutex
;
2601 /* zero the front end of the last page */
2602 if (tail_start
+ tail_len
< ino_size
) {
2603 truncated_block
= true;
2604 ret
= btrfs_truncate_block(inode
,
2605 tail_start
+ tail_len
,
2608 goto out_only_mutex
;
2613 if (lockend
< lockstart
) {
2615 goto out_only_mutex
;
2618 ret
= btrfs_punch_hole_lock_range(inode
, lockstart
, lockend
,
2621 inode_unlock(inode
);
2622 goto out_only_mutex
;
2625 path
= btrfs_alloc_path();
2631 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
2636 rsv
->size
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2640 * 1 - update the inode
2641 * 1 - removing the extents in the range
2642 * 1 - adding the hole extent if no_holes isn't set
2644 rsv_count
= no_holes
? 2 : 3;
2645 trans
= btrfs_start_transaction(root
, rsv_count
);
2646 if (IS_ERR(trans
)) {
2647 err
= PTR_ERR(trans
);
2651 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
2654 trans
->block_rsv
= rsv
;
2656 cur_offset
= lockstart
;
2657 len
= lockend
- cur_offset
;
2658 while (cur_offset
< lockend
) {
2659 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
2660 cur_offset
, lockend
+ 1,
2661 &drop_end
, 1, 0, 0, NULL
);
2665 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2667 if (cur_offset
< drop_end
&& cur_offset
< ino_size
) {
2668 ret
= fill_holes(trans
, BTRFS_I(inode
), path
,
2669 cur_offset
, drop_end
);
2672 * If we failed then we didn't insert our hole
2673 * entries for the area we dropped, so now the
2674 * fs is corrupted, so we must abort the
2677 btrfs_abort_transaction(trans
, ret
);
2683 cur_offset
= drop_end
;
2685 ret
= btrfs_update_inode(trans
, root
, inode
);
2691 btrfs_end_transaction(trans
);
2692 btrfs_btree_balance_dirty(fs_info
);
2694 trans
= btrfs_start_transaction(root
, rsv_count
);
2695 if (IS_ERR(trans
)) {
2696 ret
= PTR_ERR(trans
);
2701 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
2703 BUG_ON(ret
); /* shouldn't happen */
2704 trans
->block_rsv
= rsv
;
2706 ret
= find_first_non_hole(inode
, &cur_offset
, &len
);
2707 if (unlikely(ret
< 0))
2720 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2722 * If we are using the NO_HOLES feature we might have had already an
2723 * hole that overlaps a part of the region [lockstart, lockend] and
2724 * ends at (or beyond) lockend. Since we have no file extent items to
2725 * represent holes, drop_end can be less than lockend and so we must
2726 * make sure we have an extent map representing the existing hole (the
2727 * call to __btrfs_drop_extents() might have dropped the existing extent
2728 * map representing the existing hole), otherwise the fast fsync path
2729 * will not record the existence of the hole region
2730 * [existing_hole_start, lockend].
2732 if (drop_end
<= lockend
)
2733 drop_end
= lockend
+ 1;
2735 * Don't insert file hole extent item if it's for a range beyond eof
2736 * (because it's useless) or if it represents a 0 bytes range (when
2737 * cur_offset == drop_end).
2739 if (cur_offset
< ino_size
&& cur_offset
< drop_end
) {
2740 ret
= fill_holes(trans
, BTRFS_I(inode
), path
,
2741 cur_offset
, drop_end
);
2743 /* Same comment as above. */
2744 btrfs_abort_transaction(trans
, ret
);
2754 inode_inc_iversion(inode
);
2755 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2757 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2758 ret
= btrfs_update_inode(trans
, root
, inode
);
2759 updated_inode
= true;
2760 btrfs_end_transaction(trans
);
2761 btrfs_btree_balance_dirty(fs_info
);
2763 btrfs_free_path(path
);
2764 btrfs_free_block_rsv(fs_info
, rsv
);
2766 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2769 if (!updated_inode
&& truncated_block
&& !ret
&& !err
) {
2771 * If we only end up zeroing part of a page, we still need to
2772 * update the inode item, so that all the time fields are
2773 * updated as well as the necessary btrfs inode in memory fields
2774 * for detecting, at fsync time, if the inode isn't yet in the
2775 * log tree or it's there but not up to date.
2777 trans
= btrfs_start_transaction(root
, 1);
2778 if (IS_ERR(trans
)) {
2779 err
= PTR_ERR(trans
);
2781 err
= btrfs_update_inode(trans
, root
, inode
);
2782 ret
= btrfs_end_transaction(trans
);
2785 inode_unlock(inode
);
2791 /* Helper structure to record which range is already reserved */
2792 struct falloc_range
{
2793 struct list_head list
;
2799 * Helper function to add falloc range
2801 * Caller should have locked the larger range of extent containing
2804 static int add_falloc_range(struct list_head
*head
, u64 start
, u64 len
)
2806 struct falloc_range
*prev
= NULL
;
2807 struct falloc_range
*range
= NULL
;
2809 if (list_empty(head
))
2813 * As fallocate iterate by bytenr order, we only need to check
2816 prev
= list_entry(head
->prev
, struct falloc_range
, list
);
2817 if (prev
->start
+ prev
->len
== start
) {
2822 range
= kmalloc(sizeof(*range
), GFP_KERNEL
);
2825 range
->start
= start
;
2827 list_add_tail(&range
->list
, head
);
2831 static int btrfs_fallocate_update_isize(struct inode
*inode
,
2835 struct btrfs_trans_handle
*trans
;
2836 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2840 if (mode
& FALLOC_FL_KEEP_SIZE
|| end
<= i_size_read(inode
))
2843 trans
= btrfs_start_transaction(root
, 1);
2845 return PTR_ERR(trans
);
2847 inode
->i_ctime
= current_time(inode
);
2848 i_size_write(inode
, end
);
2849 btrfs_ordered_update_i_size(inode
, end
, NULL
);
2850 ret
= btrfs_update_inode(trans
, root
, inode
);
2851 ret2
= btrfs_end_transaction(trans
);
2853 return ret
? ret
: ret2
;
2857 RANGE_BOUNDARY_WRITTEN_EXTENT
= 0,
2858 RANGE_BOUNDARY_PREALLOC_EXTENT
= 1,
2859 RANGE_BOUNDARY_HOLE
= 2,
2862 static int btrfs_zero_range_check_range_boundary(struct inode
*inode
,
2865 const u64 sectorsize
= btrfs_inode_sectorsize(inode
);
2866 struct extent_map
*em
;
2869 offset
= round_down(offset
, sectorsize
);
2870 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, offset
, sectorsize
, 0);
2874 if (em
->block_start
== EXTENT_MAP_HOLE
)
2875 ret
= RANGE_BOUNDARY_HOLE
;
2876 else if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2877 ret
= RANGE_BOUNDARY_PREALLOC_EXTENT
;
2879 ret
= RANGE_BOUNDARY_WRITTEN_EXTENT
;
2881 free_extent_map(em
);
2885 static int btrfs_zero_range(struct inode
*inode
,
2890 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2891 struct extent_map
*em
;
2892 struct extent_changeset
*data_reserved
= NULL
;
2895 const u64 sectorsize
= btrfs_inode_sectorsize(inode
);
2896 u64 alloc_start
= round_down(offset
, sectorsize
);
2897 u64 alloc_end
= round_up(offset
+ len
, sectorsize
);
2898 u64 bytes_to_reserve
= 0;
2899 bool space_reserved
= false;
2901 inode_dio_wait(inode
);
2903 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0,
2904 alloc_start
, alloc_end
- alloc_start
, 0);
2911 * Avoid hole punching and extent allocation for some cases. More cases
2912 * could be considered, but these are unlikely common and we keep things
2913 * as simple as possible for now. Also, intentionally, if the target
2914 * range contains one or more prealloc extents together with regular
2915 * extents and holes, we drop all the existing extents and allocate a
2916 * new prealloc extent, so that we get a larger contiguous disk extent.
2918 if (em
->start
<= alloc_start
&&
2919 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
2920 const u64 em_end
= em
->start
+ em
->len
;
2922 if (em_end
>= offset
+ len
) {
2924 * The whole range is already a prealloc extent,
2925 * do nothing except updating the inode's i_size if
2928 free_extent_map(em
);
2929 ret
= btrfs_fallocate_update_isize(inode
, offset
+ len
,
2934 * Part of the range is already a prealloc extent, so operate
2935 * only on the remaining part of the range.
2937 alloc_start
= em_end
;
2938 ASSERT(IS_ALIGNED(alloc_start
, sectorsize
));
2939 len
= offset
+ len
- alloc_start
;
2940 offset
= alloc_start
;
2941 alloc_hint
= em
->block_start
+ em
->len
;
2943 free_extent_map(em
);
2945 if (BTRFS_BYTES_TO_BLKS(fs_info
, offset
) ==
2946 BTRFS_BYTES_TO_BLKS(fs_info
, offset
+ len
- 1)) {
2947 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0,
2948 alloc_start
, sectorsize
, 0);
2954 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
2955 free_extent_map(em
);
2956 ret
= btrfs_fallocate_update_isize(inode
, offset
+ len
,
2960 if (len
< sectorsize
&& em
->block_start
!= EXTENT_MAP_HOLE
) {
2961 free_extent_map(em
);
2962 ret
= btrfs_truncate_block(inode
, offset
, len
, 0);
2964 ret
= btrfs_fallocate_update_isize(inode
,
2969 free_extent_map(em
);
2970 alloc_start
= round_down(offset
, sectorsize
);
2971 alloc_end
= alloc_start
+ sectorsize
;
2975 alloc_start
= round_up(offset
, sectorsize
);
2976 alloc_end
= round_down(offset
+ len
, sectorsize
);
2979 * For unaligned ranges, check the pages at the boundaries, they might
2980 * map to an extent, in which case we need to partially zero them, or
2981 * they might map to a hole, in which case we need our allocation range
2984 if (!IS_ALIGNED(offset
, sectorsize
)) {
2985 ret
= btrfs_zero_range_check_range_boundary(inode
, offset
);
2988 if (ret
== RANGE_BOUNDARY_HOLE
) {
2989 alloc_start
= round_down(offset
, sectorsize
);
2991 } else if (ret
== RANGE_BOUNDARY_WRITTEN_EXTENT
) {
2992 ret
= btrfs_truncate_block(inode
, offset
, 0, 0);
3000 if (!IS_ALIGNED(offset
+ len
, sectorsize
)) {
3001 ret
= btrfs_zero_range_check_range_boundary(inode
,
3005 if (ret
== RANGE_BOUNDARY_HOLE
) {
3006 alloc_end
= round_up(offset
+ len
, sectorsize
);
3008 } else if (ret
== RANGE_BOUNDARY_WRITTEN_EXTENT
) {
3009 ret
= btrfs_truncate_block(inode
, offset
+ len
, 0, 1);
3018 if (alloc_start
< alloc_end
) {
3019 struct extent_state
*cached_state
= NULL
;
3020 const u64 lockstart
= alloc_start
;
3021 const u64 lockend
= alloc_end
- 1;
3023 bytes_to_reserve
= alloc_end
- alloc_start
;
3024 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
),
3028 space_reserved
= true;
3029 ret
= btrfs_qgroup_reserve_data(inode
, &data_reserved
,
3030 alloc_start
, bytes_to_reserve
);
3033 ret
= btrfs_punch_hole_lock_range(inode
, lockstart
, lockend
,
3037 ret
= btrfs_prealloc_file_range(inode
, mode
, alloc_start
,
3038 alloc_end
- alloc_start
,
3040 offset
+ len
, &alloc_hint
);
3041 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
3042 lockend
, &cached_state
);
3043 /* btrfs_prealloc_file_range releases reserved space on error */
3045 space_reserved
= false;
3049 ret
= btrfs_fallocate_update_isize(inode
, offset
+ len
, mode
);
3051 if (ret
&& space_reserved
)
3052 btrfs_free_reserved_data_space(inode
, data_reserved
,
3053 alloc_start
, bytes_to_reserve
);
3054 extent_changeset_free(data_reserved
);
3059 static long btrfs_fallocate(struct file
*file
, int mode
,
3060 loff_t offset
, loff_t len
)
3062 struct inode
*inode
= file_inode(file
);
3063 struct extent_state
*cached_state
= NULL
;
3064 struct extent_changeset
*data_reserved
= NULL
;
3065 struct falloc_range
*range
;
3066 struct falloc_range
*tmp
;
3067 struct list_head reserve_list
;
3075 struct extent_map
*em
;
3076 int blocksize
= btrfs_inode_sectorsize(inode
);
3079 alloc_start
= round_down(offset
, blocksize
);
3080 alloc_end
= round_up(offset
+ len
, blocksize
);
3081 cur_offset
= alloc_start
;
3083 /* Make sure we aren't being give some crap mode */
3084 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
|
3085 FALLOC_FL_ZERO_RANGE
))
3088 if (mode
& FALLOC_FL_PUNCH_HOLE
)
3089 return btrfs_punch_hole(inode
, offset
, len
);
3092 * Only trigger disk allocation, don't trigger qgroup reserve
3094 * For qgroup space, it will be checked later.
3096 if (!(mode
& FALLOC_FL_ZERO_RANGE
)) {
3097 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
),
3098 alloc_end
- alloc_start
);
3105 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
) {
3106 ret
= inode_newsize_ok(inode
, offset
+ len
);
3112 * TODO: Move these two operations after we have checked
3113 * accurate reserved space, or fallocate can still fail but
3114 * with page truncated or size expanded.
3116 * But that's a minor problem and won't do much harm BTW.
3118 if (alloc_start
> inode
->i_size
) {
3119 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
3123 } else if (offset
+ len
> inode
->i_size
) {
3125 * If we are fallocating from the end of the file onward we
3126 * need to zero out the end of the block if i_size lands in the
3127 * middle of a block.
3129 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
3135 * wait for ordered IO before we have any locks. We'll loop again
3136 * below with the locks held.
3138 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
3139 alloc_end
- alloc_start
);
3143 if (mode
& FALLOC_FL_ZERO_RANGE
) {
3144 ret
= btrfs_zero_range(inode
, offset
, len
, mode
);
3145 inode_unlock(inode
);
3149 locked_end
= alloc_end
- 1;
3151 struct btrfs_ordered_extent
*ordered
;
3153 /* the extent lock is ordered inside the running
3156 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
3157 locked_end
, &cached_state
);
3158 ordered
= btrfs_lookup_first_ordered_extent(inode
, locked_end
);
3161 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
3162 ordered
->file_offset
< alloc_end
) {
3163 btrfs_put_ordered_extent(ordered
);
3164 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
3165 alloc_start
, locked_end
,
3168 * we can't wait on the range with the transaction
3169 * running or with the extent lock held
3171 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
3172 alloc_end
- alloc_start
);
3177 btrfs_put_ordered_extent(ordered
);
3182 /* First, check if we exceed the qgroup limit */
3183 INIT_LIST_HEAD(&reserve_list
);
3184 while (cur_offset
< alloc_end
) {
3185 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
3186 alloc_end
- cur_offset
, 0);
3191 last_byte
= min(extent_map_end(em
), alloc_end
);
3192 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
3193 last_byte
= ALIGN(last_byte
, blocksize
);
3194 if (em
->block_start
== EXTENT_MAP_HOLE
||
3195 (cur_offset
>= inode
->i_size
&&
3196 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
3197 ret
= add_falloc_range(&reserve_list
, cur_offset
,
3198 last_byte
- cur_offset
);
3200 free_extent_map(em
);
3203 ret
= btrfs_qgroup_reserve_data(inode
, &data_reserved
,
3204 cur_offset
, last_byte
- cur_offset
);
3206 free_extent_map(em
);
3211 * Do not need to reserve unwritten extent for this
3212 * range, free reserved data space first, otherwise
3213 * it'll result in false ENOSPC error.
3215 btrfs_free_reserved_data_space(inode
, data_reserved
,
3216 cur_offset
, last_byte
- cur_offset
);
3218 free_extent_map(em
);
3219 cur_offset
= last_byte
;
3223 * If ret is still 0, means we're OK to fallocate.
3224 * Or just cleanup the list and exit.
3226 list_for_each_entry_safe(range
, tmp
, &reserve_list
, list
) {
3228 ret
= btrfs_prealloc_file_range(inode
, mode
,
3230 range
->len
, i_blocksize(inode
),
3231 offset
+ len
, &alloc_hint
);
3233 btrfs_free_reserved_data_space(inode
,
3234 data_reserved
, range
->start
,
3236 list_del(&range
->list
);
3243 * We didn't need to allocate any more space, but we still extended the
3244 * size of the file so we need to update i_size and the inode item.
3246 ret
= btrfs_fallocate_update_isize(inode
, actual_end
, mode
);
3248 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
3251 inode_unlock(inode
);
3252 /* Let go of our reservation. */
3253 if (ret
!= 0 && !(mode
& FALLOC_FL_ZERO_RANGE
))
3254 btrfs_free_reserved_data_space(inode
, data_reserved
,
3255 alloc_start
, alloc_end
- cur_offset
);
3256 extent_changeset_free(data_reserved
);
3260 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int whence
)
3262 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3263 struct extent_map
*em
= NULL
;
3264 struct extent_state
*cached_state
= NULL
;
3271 if (inode
->i_size
== 0)
3275 * *offset can be negative, in this case we start finding DATA/HOLE from
3276 * the very start of the file.
3278 start
= max_t(loff_t
, 0, *offset
);
3280 lockstart
= round_down(start
, fs_info
->sectorsize
);
3281 lockend
= round_up(i_size_read(inode
),
3282 fs_info
->sectorsize
);
3283 if (lockend
<= lockstart
)
3284 lockend
= lockstart
+ fs_info
->sectorsize
;
3286 len
= lockend
- lockstart
+ 1;
3288 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
3291 while (start
< inode
->i_size
) {
3292 em
= btrfs_get_extent_fiemap(BTRFS_I(inode
), NULL
, 0,
3300 if (whence
== SEEK_HOLE
&&
3301 (em
->block_start
== EXTENT_MAP_HOLE
||
3302 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
3304 else if (whence
== SEEK_DATA
&&
3305 (em
->block_start
!= EXTENT_MAP_HOLE
&&
3306 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
3309 start
= em
->start
+ em
->len
;
3310 free_extent_map(em
);
3314 free_extent_map(em
);
3316 if (whence
== SEEK_DATA
&& start
>= inode
->i_size
)
3319 *offset
= min_t(loff_t
, start
, inode
->i_size
);
3321 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
3326 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int whence
)
3328 struct inode
*inode
= file
->f_mapping
->host
;
3335 offset
= generic_file_llseek(file
, offset
, whence
);
3339 if (offset
>= i_size_read(inode
)) {
3340 inode_unlock(inode
);
3344 ret
= find_desired_extent(inode
, &offset
, whence
);
3346 inode_unlock(inode
);
3351 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
3353 inode_unlock(inode
);
3357 static int btrfs_file_open(struct inode
*inode
, struct file
*filp
)
3359 filp
->f_mode
|= FMODE_NOWAIT
;
3360 return generic_file_open(inode
, filp
);
3363 const struct file_operations btrfs_file_operations
= {
3364 .llseek
= btrfs_file_llseek
,
3365 .read_iter
= generic_file_read_iter
,
3366 .splice_read
= generic_file_splice_read
,
3367 .write_iter
= btrfs_file_write_iter
,
3368 .mmap
= btrfs_file_mmap
,
3369 .open
= btrfs_file_open
,
3370 .release
= btrfs_release_file
,
3371 .fsync
= btrfs_sync_file
,
3372 .fallocate
= btrfs_fallocate
,
3373 .unlocked_ioctl
= btrfs_ioctl
,
3374 #ifdef CONFIG_COMPAT
3375 .compat_ioctl
= btrfs_compat_ioctl
,
3377 .clone_file_range
= btrfs_clone_file_range
,
3378 .dedupe_file_range
= btrfs_dedupe_file_range
,
3381 void btrfs_auto_defrag_exit(void)
3383 kmem_cache_destroy(btrfs_inode_defrag_cachep
);
3386 int __init
btrfs_auto_defrag_init(void)
3388 btrfs_inode_defrag_cachep
= kmem_cache_create("btrfs_inode_defrag",
3389 sizeof(struct inode_defrag
), 0,
3392 if (!btrfs_inode_defrag_cachep
)
3398 int btrfs_fdatawrite_range(struct inode
*inode
, loff_t start
, loff_t end
)
3403 * So with compression we will find and lock a dirty page and clear the
3404 * first one as dirty, setup an async extent, and immediately return
3405 * with the entire range locked but with nobody actually marked with
3406 * writeback. So we can't just filemap_write_and_wait_range() and
3407 * expect it to work since it will just kick off a thread to do the
3408 * actual work. So we need to call filemap_fdatawrite_range _again_
3409 * since it will wait on the page lock, which won't be unlocked until
3410 * after the pages have been marked as writeback and so we're good to go
3411 * from there. We have to do this otherwise we'll miss the ordered
3412 * extents and that results in badness. Please Josef, do not think you
3413 * know better and pull this out at some point in the future, it is
3414 * right and you are wrong.
3416 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3417 if (!ret
&& test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
3418 &BTRFS_I(inode
)->runtime_flags
))
3419 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);