2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/err.h>
20 #include <linux/uuid.h>
22 #include "transaction.h"
24 #include "print-tree.h"
27 * Read a root item from the tree. In case we detect a root item smaller then
28 * sizeof(root_item), we know it's an old version of the root structure and
29 * initialize all new fields to zero. The same happens if we detect mismatching
30 * generation numbers as then we know the root was once mounted with an older
31 * kernel that was not aware of the root item structure change.
33 static void btrfs_read_root_item(struct extent_buffer
*eb
, int slot
,
34 struct btrfs_root_item
*item
)
40 len
= btrfs_item_size_nr(eb
, slot
);
41 read_extent_buffer(eb
, item
, btrfs_item_ptr_offset(eb
, slot
),
42 min_t(int, len
, (int)sizeof(*item
)));
43 if (len
< sizeof(*item
))
45 if (!need_reset
&& btrfs_root_generation(item
)
46 != btrfs_root_generation_v2(item
)) {
47 if (btrfs_root_generation_v2(item
) != 0) {
48 btrfs_warn(eb
->fs_info
,
49 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
54 memset(&item
->generation_v2
, 0,
55 sizeof(*item
) - offsetof(struct btrfs_root_item
,
59 memcpy(item
->uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
64 * btrfs_find_root - lookup the root by the key.
65 * root: the root of the root tree
66 * search_key: the key to search
67 * path: the path we search
68 * root_item: the root item of the tree we look for
69 * root_key: the root key of the tree we look for
71 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
72 * of the search key, just lookup the root with the highest offset for a
75 * If we find something return 0, otherwise > 0, < 0 on error.
77 int btrfs_find_root(struct btrfs_root
*root
, const struct btrfs_key
*search_key
,
78 struct btrfs_path
*path
, struct btrfs_root_item
*root_item
,
79 struct btrfs_key
*root_key
)
81 struct btrfs_key found_key
;
82 struct extent_buffer
*l
;
86 ret
= btrfs_search_slot(NULL
, root
, search_key
, path
, 0, 0);
90 if (search_key
->offset
!= -1ULL) { /* the search key is exact */
94 BUG_ON(ret
== 0); /* Logical error */
95 if (path
->slots
[0] == 0)
102 slot
= path
->slots
[0];
104 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
105 if (found_key
.objectid
!= search_key
->objectid
||
106 found_key
.type
!= BTRFS_ROOT_ITEM_KEY
) {
112 btrfs_read_root_item(l
, slot
, root_item
);
114 memcpy(root_key
, &found_key
, sizeof(found_key
));
116 btrfs_release_path(path
);
120 void btrfs_set_root_node(struct btrfs_root_item
*item
,
121 struct extent_buffer
*node
)
123 btrfs_set_root_bytenr(item
, node
->start
);
124 btrfs_set_root_level(item
, btrfs_header_level(node
));
125 btrfs_set_root_generation(item
, btrfs_header_generation(node
));
129 * copy the data in 'item' into the btree
131 int btrfs_update_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
132 *root
, struct btrfs_key
*key
, struct btrfs_root_item
135 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
136 struct btrfs_path
*path
;
137 struct extent_buffer
*l
;
143 path
= btrfs_alloc_path();
147 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
149 btrfs_abort_transaction(trans
, ret
);
154 btrfs_print_leaf(path
->nodes
[0]);
155 btrfs_crit(fs_info
, "unable to update root key %llu %u %llu",
156 key
->objectid
, key
->type
, key
->offset
);
161 slot
= path
->slots
[0];
162 ptr
= btrfs_item_ptr_offset(l
, slot
);
163 old_len
= btrfs_item_size_nr(l
, slot
);
166 * If this is the first time we update the root item which originated
167 * from an older kernel, we need to enlarge the item size to make room
168 * for the added fields.
170 if (old_len
< sizeof(*item
)) {
171 btrfs_release_path(path
);
172 ret
= btrfs_search_slot(trans
, root
, key
, path
,
175 btrfs_abort_transaction(trans
, ret
);
179 ret
= btrfs_del_item(trans
, root
, path
);
181 btrfs_abort_transaction(trans
, ret
);
184 btrfs_release_path(path
);
185 ret
= btrfs_insert_empty_item(trans
, root
, path
,
188 btrfs_abort_transaction(trans
, ret
);
192 slot
= path
->slots
[0];
193 ptr
= btrfs_item_ptr_offset(l
, slot
);
197 * Update generation_v2 so at the next mount we know the new root
200 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
202 write_extent_buffer(l
, item
, ptr
, sizeof(*item
));
203 btrfs_mark_buffer_dirty(path
->nodes
[0]);
205 btrfs_free_path(path
);
209 int btrfs_insert_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
210 const struct btrfs_key
*key
, struct btrfs_root_item
*item
)
213 * Make sure generation v1 and v2 match. See update_root for details.
215 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
216 return btrfs_insert_item(trans
, root
, key
, item
, sizeof(*item
));
219 int btrfs_find_orphan_roots(struct btrfs_fs_info
*fs_info
)
221 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
222 struct extent_buffer
*leaf
;
223 struct btrfs_path
*path
;
224 struct btrfs_key key
;
225 struct btrfs_key root_key
;
226 struct btrfs_root
*root
;
230 path
= btrfs_alloc_path();
234 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
235 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
238 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
239 root_key
.offset
= (u64
)-1;
242 ret
= btrfs_search_slot(NULL
, tree_root
, &key
, path
, 0, 0);
248 leaf
= path
->nodes
[0];
249 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
250 ret
= btrfs_next_leaf(tree_root
, path
);
255 leaf
= path
->nodes
[0];
258 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
259 btrfs_release_path(path
);
261 if (key
.objectid
!= BTRFS_ORPHAN_OBJECTID
||
262 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
265 root_key
.objectid
= key
.offset
;
269 * The root might have been inserted already, as before we look
270 * for orphan roots, log replay might have happened, which
271 * triggers a transaction commit and qgroup accounting, which
272 * in turn reads and inserts fs roots while doing backref
275 root
= btrfs_lookup_fs_root(fs_info
, root_key
.objectid
);
277 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
279 if (btrfs_root_refs(&root
->root_item
) == 0)
280 btrfs_add_dead_root(root
);
284 root
= btrfs_read_fs_root(tree_root
, &root_key
);
285 err
= PTR_ERR_OR_ZERO(root
);
286 if (err
&& err
!= -ENOENT
) {
288 } else if (err
== -ENOENT
) {
289 struct btrfs_trans_handle
*trans
;
291 btrfs_release_path(path
);
293 trans
= btrfs_join_transaction(tree_root
);
295 err
= PTR_ERR(trans
);
296 btrfs_handle_fs_error(fs_info
, err
,
297 "Failed to start trans to delete orphan item");
300 err
= btrfs_del_orphan_item(trans
, tree_root
,
302 btrfs_end_transaction(trans
);
304 btrfs_handle_fs_error(fs_info
, err
,
305 "Failed to delete root orphan item");
311 err
= btrfs_init_fs_root(root
);
313 btrfs_free_fs_root(root
);
317 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
319 err
= btrfs_insert_fs_root(fs_info
, root
);
321 BUG_ON(err
== -EEXIST
);
322 btrfs_free_fs_root(root
);
326 if (btrfs_root_refs(&root
->root_item
) == 0)
327 btrfs_add_dead_root(root
);
330 btrfs_free_path(path
);
334 /* drop the root item for 'key' from the tree root */
335 int btrfs_del_root(struct btrfs_trans_handle
*trans
,
336 struct btrfs_fs_info
*fs_info
, const struct btrfs_key
*key
)
338 struct btrfs_root
*root
= fs_info
->tree_root
;
339 struct btrfs_path
*path
;
342 path
= btrfs_alloc_path();
345 ret
= btrfs_search_slot(trans
, root
, key
, path
, -1, 1);
351 ret
= btrfs_del_item(trans
, root
, path
);
353 btrfs_free_path(path
);
357 int btrfs_del_root_ref(struct btrfs_trans_handle
*trans
,
358 struct btrfs_fs_info
*fs_info
,
359 u64 root_id
, u64 ref_id
, u64 dirid
, u64
*sequence
,
360 const char *name
, int name_len
)
363 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
364 struct btrfs_path
*path
;
365 struct btrfs_root_ref
*ref
;
366 struct extent_buffer
*leaf
;
367 struct btrfs_key key
;
372 path
= btrfs_alloc_path();
376 key
.objectid
= root_id
;
377 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
380 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
383 leaf
= path
->nodes
[0];
384 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
385 struct btrfs_root_ref
);
387 WARN_ON(btrfs_root_ref_dirid(leaf
, ref
) != dirid
);
388 WARN_ON(btrfs_root_ref_name_len(leaf
, ref
) != name_len
);
389 ptr
= (unsigned long)(ref
+ 1);
390 WARN_ON(memcmp_extent_buffer(leaf
, name
, ptr
, name_len
));
391 *sequence
= btrfs_root_ref_sequence(leaf
, ref
);
393 ret
= btrfs_del_item(trans
, tree_root
, path
);
401 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
402 btrfs_release_path(path
);
403 key
.objectid
= ref_id
;
404 key
.type
= BTRFS_ROOT_REF_KEY
;
405 key
.offset
= root_id
;
410 btrfs_free_path(path
);
415 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
416 * or BTRFS_ROOT_BACKREF_KEY.
418 * The dirid, sequence, name and name_len refer to the directory entry
419 * that is referencing the root.
421 * For a forward ref, the root_id is the id of the tree referencing
422 * the root and ref_id is the id of the subvol or snapshot.
424 * For a back ref the root_id is the id of the subvol or snapshot and
425 * ref_id is the id of the tree referencing it.
427 * Will return 0, -ENOMEM, or anything from the CoW path
429 int btrfs_add_root_ref(struct btrfs_trans_handle
*trans
,
430 struct btrfs_fs_info
*fs_info
,
431 u64 root_id
, u64 ref_id
, u64 dirid
, u64 sequence
,
432 const char *name
, int name_len
)
434 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
435 struct btrfs_key key
;
437 struct btrfs_path
*path
;
438 struct btrfs_root_ref
*ref
;
439 struct extent_buffer
*leaf
;
442 path
= btrfs_alloc_path();
446 key
.objectid
= root_id
;
447 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
450 ret
= btrfs_insert_empty_item(trans
, tree_root
, path
, &key
,
451 sizeof(*ref
) + name_len
);
453 btrfs_abort_transaction(trans
, ret
);
454 btrfs_free_path(path
);
458 leaf
= path
->nodes
[0];
459 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
460 btrfs_set_root_ref_dirid(leaf
, ref
, dirid
);
461 btrfs_set_root_ref_sequence(leaf
, ref
, sequence
);
462 btrfs_set_root_ref_name_len(leaf
, ref
, name_len
);
463 ptr
= (unsigned long)(ref
+ 1);
464 write_extent_buffer(leaf
, name
, ptr
, name_len
);
465 btrfs_mark_buffer_dirty(leaf
);
467 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
468 btrfs_release_path(path
);
469 key
.objectid
= ref_id
;
470 key
.type
= BTRFS_ROOT_REF_KEY
;
471 key
.offset
= root_id
;
475 btrfs_free_path(path
);
480 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
481 * for subvolumes. To work around this problem, we steal a bit from
482 * root_item->inode_item->flags, and use it to indicate if those fields
483 * have been properly initialized.
485 void btrfs_check_and_init_root_item(struct btrfs_root_item
*root_item
)
487 u64 inode_flags
= btrfs_stack_inode_flags(&root_item
->inode
);
489 if (!(inode_flags
& BTRFS_INODE_ROOT_ITEM_INIT
)) {
490 inode_flags
|= BTRFS_INODE_ROOT_ITEM_INIT
;
491 btrfs_set_stack_inode_flags(&root_item
->inode
, inode_flags
);
492 btrfs_set_root_flags(root_item
, 0);
493 btrfs_set_root_limit(root_item
, 0);
497 void btrfs_update_root_times(struct btrfs_trans_handle
*trans
,
498 struct btrfs_root
*root
)
500 struct btrfs_root_item
*item
= &root
->root_item
;
503 ktime_get_real_ts(&ct
);
504 spin_lock(&root
->root_item_lock
);
505 btrfs_set_root_ctransid(item
, trans
->transid
);
506 btrfs_set_stack_timespec_sec(&item
->ctime
, ct
.tv_sec
);
507 btrfs_set_stack_timespec_nsec(&item
->ctime
, ct
.tv_nsec
);
508 spin_unlock(&root
->root_item_lock
);